From f8b634dd5aaf6c5de830d63934abe39da7c247a7 Mon Sep 17 00:00:00 2001 From: anishathalye Date: Fri, 5 Jul 2024 13:51:57 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@21c46c9cea788d86c6112b2f7642a8835eec55ce --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 114895 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16378592 -> 16378606 bytes master/.doctrees/index.doctree | Bin 42636 -> 42636 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 2012 ++++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1346 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 282 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 4306 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1204 +++-- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 648 +-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 598 ++- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 926 ++-- .../tutorials/token_classification.ipynb | 168 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 230171 -> 230169 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333647 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 142186 -> 142186 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 514364 -> 514366 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 120657 -> 120657 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 149929 -> 149929 bytes .../tutorials/datalab/workflows.doctree | Bin 405645 -> 405651 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199353 bytes .../tutorials/indepth_overview.doctree | Bin 220325 -> 220325 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104189 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176673 -> 176655 bytes master/_sources/index.rst | 4 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/index.html | 4 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 2012 ++++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1346 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 282 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 58 +- master/tutorials/datalab/image.ipynb | 4306 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 416 +- master/tutorials/datalab/workflows.ipynb | 1204 +++-- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 648 +-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 598 ++- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 926 ++-- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 168 +- versioning.js | 2 +- 179 files changed, 13450 insertions(+), 13026 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 7b7a7503f..85caf24c2 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: fc87451fab9a1cf1e283b90e1b533322 +config: 81b02f17cdb0bc77709a8a921d75dfce tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 6d0cc54a74218534bc63d592699e16b95e45372d..5dd974ad9574033e3510072e87536967e3ef62f5 100644 GIT binary patch delta 117 zcmdlWxj}M6IHRGdVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ YQL1^Og^796<_^XHPBOG{axZ5D0PH{^uK)l5 delta 117 zcmdlWxj}M6IHO^Hrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Yl5v_za;jnS<_^XHPBOG{axZ5D00f63CjbBd diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 310065927e5336f495d0af1ddbbea24b16f6198c..1c227224329de7e4f0a48cae176934c0244c0e45 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H3;FtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= Ob121 delta 1464 zcmX^3o8{ndmJRWYhWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK^JFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O7Fd(KU3BABblF8gxh;aFP`DHbl6cWfN_D%>{sGVPd!KjS^PV#^vCNrR z=4=ylmAX2v_O=al7MDBQJRK!I)l=s7dfdKNkK0-5c9wO7+Ffd>L~V1c-q!LGZ%7|w z9{`!Q_tSAP*&r*LPuZcbN)v&^(f>SH@CGEW(bs};36pAT!7OcR*`g0NNhy#;{fkh{ z0V#vJI@p4By+se+UbG}m74ufvr45aSb$PfFK>yWi%BTY3^`X(e3yEuuIhjjbB?5U& z)x!(@shGA)zqRy`quS}^LSQbAthP87WW5{7J z`#cwA5#%74TFR5yeY9w*Okoz7{5h4i!{lfNy9<*yt?Us@F1E9eFgdb|O~K??HmiWi zFLPKJAd@j9PhhB)&msWy&-S2qd)OD4?BBQoz`z)=^Yk-=Hy2~#TCFdhO7D;I0Py%RCvD5%Srvb^ z6R*G~W*fML*8RK)yr#`EY-G5cLS7|i4jSm>-_yVhv~-R4@5aOdF`L5`(Y?a6Y4ZW6 ztfXvu;yjJcKIY>mF`HU3WMP>UUg6i#iP&=Jjq{NVw1$NZZWDKY@hE6OhCxd@Al^QZ zxgzF}vgoZWjmycp2*breo9WUOYZ6vu6m$&PjQ=MpqWN5@2Kg$6OSO10n{&vrFq4SIgK`y3dZo!Gu$iVqHN`YZx`{c|lhK01KzcF)JWndPFoG*o akS|}fVYR!+NPp%?;$rhBos1v-amR13#oO5c delta 4197 zcmbuC+e=hY6vo;6oblF7qlsgR5QWlBni;P%nUG)QY=B=MnrQmWVa<`4M3-}=^Bd+mLuV_DO& zteF<(?!H#q@9p*UILk{ag5_nEWucOw#}x`{n#)__3YNNp6+w@uz0w;hyx|VvT*0LJY9L#mT(TGgElLVx(fA@1 zb3n>~p$)WQU2ii2w-+plQ^lNBb?bv8VM86N2GD=?x_!hB;*G(Po^y$7<($kWt`h!y zrWxV+zEn)xVcc4L$WiUoQV}qhX3ZUj_RR-#eJfE|`{suguDNT~fVr>NF2dT`^-<(7 zn0=m&vIuezOfBUr>^@pFRi`iuO#Yn8F2Uqz2D=NBH>~UtOm=3nk1#p1gH6KZSPrX# z$uDzR7$B1zk|!`!FJKV>`e%F4yIt%HO!n7AHpk^2Q znuqQA2AVs`hN=MZ)@|HLnfKU*VZcBR*jf6S!CRe}xL)sxr_%ew+z&i{%t_lccviz- zZO1FHiJ2yDp*0^b2Cr$e3>!(86UeK?%t1G=^6zP223ow%`*vbtznID8cG0=ab7j$1$6FF=$~~6kg`N=tOKfbjSH{23o`XI=6{CzjzchAZgH+4v4o7 zWS)pQlx%vdDr0K0E<(CEXd_*@Vokz|WI;!e&G>(!Vw%fS>X5G@U24VCeTrRZ>1rlL z3YBr>k!aeGv^j$;3p0sW*ss>mM5Qv(0yfihsHK>$DE*j2BgqyV1k#fX@I0yDLI$@} aVS#$yhSlySnf}zF#Kq=MI>{gXF~@Ir4C{>m diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 3528c15900023e057921c247fe0e9037fc30e12e..d58851b0252d65de16060f86c73b4304a2889b65 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H5Y74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0sz$Ie< delta 3571 zcmX@QLh$Gc!3~~_hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK_&74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL3N%QC+J diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index d9c7dc16c805dba1a4dc630c9b1c7bc22ba6853c..2cfa6ab29a3e49ff4c7a1269a6e6e795aba3a3e1 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G%#7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMg z=9WpuX(q|3hRKtA7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aM`)J4ln zKdG&+jU_HeuElFS_J}i9*AR8O9B!whL2^3m^$xo$CU@0F<+^CZ5p_$RI=9Sjk{yuqeqEWH4&r8<~mwQPb=nb~a~BY;ZbR<^S9NGXJ#VVUX=NW)UN zgRLHFaYNQAfD*%1+J?*6q!dT`)lxFc#@dm6($RbID21Aq+3lVOsP$2z2enT0dQfZk z6+db{J>WyFhX)4%E7MYcQKLN61Q->49bC8W8h~{m`7YKryoB6LB!7v$8~ur7)zRZ) z*O9C`8XS+I)?hk?S}$g1Q0p`GF=}0XXh6}CYyw5caxG}qTy{E5Jp8 zP&LR_Y2+L@aaFKp{^uLXgI`-OU{r12Mf{^nB(#Axj9gTiEeB_CYK@!)<$U)qQrL!h z)x8I)na3!dKpwH;w5%5x-AwOP;vMYb*?rUmenBoGeA i4LV~hUaB^w1^nbb?FROZ3wQw8we>&pTe)YNcG7<^Is7~T delta 4228 zcmbuC-%FEG7{@thZRwWwW*Zwscwx$B5r@Vn^m}(m#J!-&#zTPJ#CS)Hhz=*05F}k zR`UhhDaXc*7OF4U6g}mP0koND=DN$d1wu9MR#ZEHvetUOvin#bgr4K6k`GA3thJf1 z9;xv`)@gu}!_^yx^7#~NNBT7r8Xu1~A^T*Z_u3;AYFgvByB?s{N8Mehbt0ys*3RBK z)Ot1^M6E{$1^_EJ6Ms>oHW&bmy0s48TX${1I*{~b-Y~R;+)O0h!QYMiM6z1w$gJ$iSdXHM?r;#6J-C7Ag^A@$b zX1}6n|BFk&q2nYyh#CuDg;CV;`ZUn2oNkDJc@x6cA;c%=4!WRwsg_q|S}<#^UX{t? zhd$3Ej~9}zQAfRF{k zB_LaDk_+I(4aw$;Ki^0i{MuFlyP@HF6%5i@m={W(Vdq z_8+FXB1-85@`#nEWxc@2R(huh?_iG@KR_Me7ZftWr(L+*ZWIS-j)VEuFqczha?YZTXR h&{<{UQX`O*@RR$r6WBK);W)Bu>wo083w4IJ(0@@N46^_L diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index ef2c652d995e660fc7cc36c4df274956a2c3665f..f78e477e74c2cf7c930b22d2cf56720d6253f9b2 100644 GIT binary patch delta 62 zcmZotYEs(Z#$sq{n3kKLT#=z~VUTQ`W@4FYY-VI`Y-E{eY-C_+WMGz-lwz2gWRjX} Rlxm)6VPc-Nxtyh&2LL*;5)c3Y delta 62 zcmZotYEs(Z#$uSCXXqISUk!)_6 RWSnM_oNAc7xtyh&2LM1@5=;O9 diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index c61e1726a137e9e3f68a0dd531d56bbfaffb0371..0839e98a94e8127989a43a5e948b7392b3d352ef 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= TsmVsE=7|<2=1H3y8KWx!&?ywR delta 64 zcmccfmGRD3#ti|ChWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g T=9WpuX(q|3hRK^78KWx!)zcL7 diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 9733d7a3b0e305f0d356700d5fd7e04bdcab5781..50d78bfcce049065f2609689d3c4cded9fbd579f 100644 GIT binary patch delta 62 zcmZ2yxXy4xHlv}bVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796<~fW);s9Oh5?lZP delta 62 zcmZ2yxXy4xHltyFrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS<~fW);s9fm5|{u0 diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index c3c6abad27dbf26f6c6d737098bd9f5fcd5f5994..a67d591557e2be3e992dd40e3f571ad909809938 100644 GIT binary patch delta 62 zcmdlUw>@q{G^3%ZVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796<{rk?x&U;<6ITEL delta 62 zcmdlUw>@q{G^1gDrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS<{rk?x&V4^6O#Y{ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 528b04c6db0f1976fd580e54892692416710cc8b..de32fdc62e56873c8910c5c4a7f38e705be8f073 100644 GIT binary patch delta 81 zcmX@Gg8#q@{tc;&My7^ox%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= jsmVsE=7|<2=1KaKV+E9(cQLl_VgzBP?YkJ6+b#hBD`Xk+ delta 81 zcmX@Gg8#q@{tc;&M){e>rItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g j=9WpuX(q|3hROPqV+E9(cQLl_VgzBP?YkJ6+b#hBH3}Lo diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 8e4d0cf60494c24ede8ba83a4316ee6d804da1a0..9dbf6d5ef9c1072d3f3a78097f377a02d39453e8 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# UQj?8R%@Zw5%#$|%VNLl20Pk)VIRF3v delta 64 zcmaFxf%(A)<_)J=4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} U%`KCR(@c_64U;$jVNLl20QDFabpQYW diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index f5f903facb8e11d18a8165c5791d5c789a7b4240..1d978093a2dd15a6be921dd23b9193aabfa329d9 100644 GIT binary patch delta 117 zcmX@AbyRDEFQcKUVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ YQL1^Og^796<~qjhf@Ek*6TZ&~03w1zwos9_Pzxw4uK$8m@_kYf}RUBguj4!jy%(xQL5gmsi5@67F>G1!RYMtOq>-VFobHM|s z>g9??piNv@c@fKVf*ZqYT+mDt;%t2$FV=doHreoBLE%_~`~2%0MB|pLIDxnj-^rP+ z`@p`5=B8Y})jWv}Iw4|hKJiteTs&#Hjn%-hwyzBc+AX|$JmPw4i2WV6fV7Fi$}9!H z9P?qbci`@>H?Z#6@I|=vQvN8O#-?ryntTCi?yw-B7CA3FN*`y3t(S)_SCnzpz`b~gMWW-1sVti7nvVS zJ~ML#oCV)_zaxa1=QDS{@MBQn7>|Q!?<0@(Wect2`w#v?6ZDj$NPJvj@X??0;g`DO z#o^ifOCLA~;eBLs+2c2{yP{i|OD5O+u?Gwin@iJJggZrFnPI)vKtp`&-_ljkKpl>f zT*7XfEL^^uN8_f3yuue*RtdFhaCEMtfR$;Xhw@cF^I7v4Jil8C^^J zHJnK0>gq$}2IdLj(5Ijz=EtqUZ87rc>5Irgb(%6|%pF>UHd7nT|(jyF7e=+VRjDvMEWe z8hA_LS6jXj`VH=j;c%QACG6(t6q$0vx_OuiWqOQ~cwQV5`+CV<4085}&I&AJlQZM= z8omt6nCy#4embeM6=*2^gxN+E!F?n?^pf@8qSfD delta 5702 zcmbtYZD>OS|z2GO|rE1W=_kMH2j zmc3x#L~~OvUvHko2AvSGHlMheC>Kv#zQbzZSlbT<1nm~y-5zmuaESdK*MYQ&!pbZK zABg#|**kD|*PB@PZ1^HvdMSSrPh(TJg-sFKYw(vnQ@HnhaWZL&8;M774Gu$Z+fJVA zJB_B`7oUf(4i4zRKO4?L6JV=v8F@iNUCd0Z5>JoZ1-qyWWEnn=@8oOab!Z|K&AH<) ze&<*k4TNnZFm1mMUJ`#!`^DPURuMkYi@Q_JbUWLTu^!Tl)=BhzXA<}f{V;g zCZCzP49jH;@Ci!k&LXR zeHu=ra`GIu8_rx7gEXj9gu)kCQ(d%GZm6K!8X=V@Lo}r0MB%+MT}5fsM5cVTRGZSI zfwx}WMoVBqmAnnlvu?dY-5MP8J18Jk%Dd25*hUmdP-eE{0k@l}NM_J%|8HWUgGjRy zkM(zuHpLQ#&47LpG(T zRReD+{A$a0ke_TI|>00J7N_5c6? diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index eb0e18a8e6e19bcbd9e41230759541cfe8b754b3..4340ed8be1ed87fa803a13210b765746fe9fd6ae 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H5|7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqg z=9WpuX(q|3hRK`T7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqOM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H6D7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{Ar<6$%a delta 1137 zcmZ4agL&l-<_*4#hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK`j7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{A8FJ-6z diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 1277c51c10f3e9aac5be348250ca2c97750582b2..282456b339ce8357cdd34e5a7b33eb26216f618f 100644 GIT binary patch delta 122 zcmcbsd{=pcKck_kVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ fQL1^Og^796<_5;O%tj<@)1Ul+U21bCYY7hk-6kYT delta 122 zcmcbsd{=pcKciuOrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN fl5v_za;jnS<_5;O%tj<@)1Ul+U21bCYY7hk_qHU$ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index cd20e44623269cf9008ddf8a8a6f220567e5fafb..8d45544e82598c0bf75051dda6dce1c8b0f45d0c 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pp{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7+%MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~pm{N}b delta 1125 zcmeBu&(!;#X+t=pVSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W zxn+`Znn`l1Ve;k`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0q&sN6( diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 109f688c6cab0ae023961740693dd186973d3259..9969048a4687c50b3874eddb9aecafacb5c320d2 100644 GIT binary patch delta 62 zcmew$^+9TbE0dwAVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796<}#*VTmWl^6GH$1 delta 62 zcmew$^+9TbE0bYOM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G%#81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0LdOF2mk;8 delta 2628 zcmccdp5?}SmJQL2hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRKtA81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0Pb`#8~^|S diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index ab4c2b7afb30391df6e5574aa7d9b372ed2ff3b1..42884ea4aa674e963ea4a24dea374820894596bf 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wx)(@x%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1KY~`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OPGWC}scv delta 2632 zcmaERn&s_jmJNZ7w)vUHrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hROOV`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OQkcG6Dbq diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index f9e818534fa2439e6e837504c9ac92cce61e886e..981a43cabdc58c54e00a1774472ded4cf7057bb6 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wx)(@x%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1KY~`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qg z=9WpuX(q|3hROOV`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qv5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796<}OAFVE|At5)uFa delta 62 zcmZ3axkz(EB%@(|rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS<}OAFVE|Ry5>5aB diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index aa84ee3f969343f9d6d83c5679fb8a5d17402f4c..fbe9eeb924b10e9fb4fce344225b37d1208e3ddd 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}NhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H5o7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQ$;ssCu delta 2506 zcmbRCjb++5mJN}NhWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK_|7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NT1Sq`uO diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index eecb507b039b8abfe5638a8f3d0538e5b431be25..7dfc78f04ec2a5ee7407d47247ba2f0072af0d97 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H5Y7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>jb@2Kbi delta 3034 zcmZ3sg>~5$)(xJFhWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK_&7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>kxm9%64 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index b2517dc407366b648d627702c3d10c0e367da244..a44fc2107f18c68287ac57cd94a7c37fa1970b86 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TVVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796<`%|>JOFAV6Epw- delta 62 zcmaDV^HgR-Fr#69rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS<`%|>JOFRa6L0_k diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 661cddf54dba2b37bb07a1eca890b34b72e1cf72..23ea81cc6f33d5843f53a565fd9f3c0f1d993ed9 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H5Y7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+g z=9WpuX(q|3hRK_&7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H4t7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~toYsmcHV delta 3021 zcmdmUn03!#)(zf_hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK_27_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~zG8wF&?L diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index dd60fe06d3d796bbda4db85003d995a3c9b2693c..6de4311672110a818b82ad9a8127c854dadf8cda 100644 GIT binary patch delta 2688 zcmbuA-7AA(7{(iW=e0Hy$pP`!Xil{4efMF?SQIP836gwlv*jaECTjALlmkuMGdZB) z1m(cymN=4f;=~b(NRBxXj^yjjU*Osw@auP7&;8uba}`rw#gvJ9g=jSghK79;eZ~rt zPYPHZe#s``tjm(v9VH*aH_7&}%`QJQytQ=q~ znK^WnQKx|M8HfziwOXTuP)1w2Lac6x)d(Do=DB&uEaN8&XzE8%711(t+gHF!Sz(y;Yr2b z+6iru+&kX0l#2P&n@pwmRKNfZjK%x4)IGS1Ja_WYgrJtr#tzlMQp)&)Et~AKMjeRj zmNiryc}8A)*)HQ}EAPlRCF2|GSrpuyL+vuYzkQGab)TogL=d=fbecRbfQ*wYF{)zW yOEuMBJR$Rr+(+sCW)OJOC~~jTf}w>Mj@(a4bjCfeJng;Zt3Z3=i>J`XZPpK$r%Z7G delta 2688 zcmbuA-7AA(7{(iW=e2AT$pP^eniFmI?o%1Enw8=NNj~1KDI5?JHTg)&fu?!L0r@yV zIk4@PIMQk-J8@)+NIT|4IFhe7e}QX%z^~tRJ@<1zPikG6T31Hg3e)J2IO!O-j~Of` zt7I|T%wCgZH+m(%-{>$ICDABZCA-~cb9lu;v(I1aGq9#?GuzX16jO9_wg2W>x^9?l z<`&R-j!OaK^AH)L8+D!%LKz+CO0l{@)+lf^QRLwvvyAgJR#u6fR*)KnZ#;M*6WSVB zy*?Mp9wM$fi5~b`%{*3_(T!m%3kuB0BCep;CCeph8&W;dr%75kx+U~l*gI7>hkCchM zvlrSTx%bY%Y9{7SZ#0wMvx9nYU~FedL;WMi$a5zTO$cZxF?ps2mQuzat@&hIFz7&B zw~-P>b^v!kpOVxC>~9gK*kvsnNYFN ywVK>lPsqH(4{P*(I|96E6n;=?z|g`AN1mrBI^%&?o=)D1RiHic#Z&O(PWuDJ?N-46 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 380c4711532bbe67c477c19de97da4040d525ed8..c7f438545ab079c8dd39f964c372f3148c418f95 100644 GIT binary patch delta 2967 zcmaF)oaNOM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H6D7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6iwTW_ delta 2967 zcmaF)oaNg z=9WpuX(q|3hRK`j7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6WfYkH diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 91d4dabde54d73fcbbae5606dc785751a05ec74f..c33407593096976a228074e8449cbeb8161ad08b 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TVVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796<`%|>JOFAV6Epw- delta 62 zcmaDV^HgR-Fr#69rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS<`%|>JOFRa6L0_k diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 78ea31d83dfa4d1c058c5f72d5eb23b5b0970b1c..c4c158bbfdc0a7c560d5fef49fd02fc9d965acce 100644 GIT binary patch delta 3483 zcmbuC(MwZd7{>W(XIgU;Tj|6SB#4O0v$MJBMd8&zp&TY+NtBygi(%rz5fwIcfs|VK zF?Lan)hdL7tzO&*5qVK`CApjEX3+?`=q7du>Y^B(<4xY~*&pzGpZ9s*_x%p1vSF-j z7;}Bh-enI?O!}{cI=f}RBk1f2I9!U`q4bP76uC>0T|wWtJ>YW&{7S$**6nor=qghI zj5B$bw;N*B3+m*u$x7qWcLPShG%aoiNHz3=r~A!xy>S!~RzrDuvwH@~N=Ns%{MiOI zohPa7t^}Y=&d|k<3zq6pV)ApuCzGG@aG#0pC{lCvs@h`c_$h$YMoZ~_3zCvPn}j!p z*wxX$gC%sVZ-*C9Ro7_)b^&?nIJ<(X=FU}6uL=J=s%i+n22@E69Y?Rc`O*@a?(Iks zXja?&6z@IRzz5=1?TNCGKbl6G|6j&NzpiuUVIz&)&(wqX`HYo5KdGR&>@kzbMs|Se zIxf9hG=ccO8)jZ!m+12Qhsb9^k54N><@F)dfR;Y*{b;5Gp9B_Rgkq(4*#1X&taO;H z-*RRsJ{@mM6q$(@el9oQC02{9d=SD@;@%;41f5(VTqja8&aX|@i$^YY!U**~$Fog) z#o96U6+7HbKB@7NhLrW(XIgU;Tj|6SB#4O0<2L7ZQFt{_D2Iud5_Yy`lTqekyQr|C3#8P- z!`MYNR;v&Swt8_NMCe7)mE>-sn?)n&qMO(V>Y^B(&zrp6vp?YXKJW9q@B1B2Wm8|- z)Mxux*VLpf>B&PV)6^bCzGG4!9D}swMxy^t7?lO@G}6Zjh0gVCL|>>o46;6 z*cIsC!6G`=x5Epls^hEZoLfOvv*Q)iYuq=Fs_G`*0IF0DoJ6m@`SKE)?wwEp zXja?&q}qGBK^=&hwI|9%zDNpb{(l(@{krZ(65n2;bLMw#W-Qb?J61y%G!Qc(lh|&; zGk?5>4z!6_X!`b#T5}j&%76o;wUSI}V__^GGmsl;Z(qRZs^7}{FF?4eIU>#4&IKMts&mTM3DLvHtoSJFc z&(}||uh`*k@d=HWc*M<~H{ner$|GzD$N9cd_F)gkC%%MPJ72xTB47wyEARwc-#H=P cn()L>^IJThzQw{VkbCiK)W}yJvfe(ZUjX+1aL>k)s!kWG2xoQBm7*L!nWrHA{u5qMHd3l#GHPgNh^wx*MHMZ@Tn*{(#T(d7kg@`TfqxhPBzS zHqp!YX5Jq-Ck*y%b6NzO-`?u8wOAcCYpcg*wKQ8TEq-q|@AKMyg4O5nIPDIvc#r)6 zsF*t<4sb>~Tq+>a1v~_a)AUudk%Q1_VwDnxJ`)dEI2tlNsD{i1T=%?DkA+pBO`@w& zPu!+}7H;4KM5bw+pTk1S(4aGfjhvxh+w&z*!x{SGilEl+UF%Ch>u~!7YOUY57qC*y z?LZ?+b)5%{V$7YP4TsL4b6z>J8ns4_Uq`L_le1_{v!|Z`4O3FMPzG*MUGHb8+1!*E z9a$re^9CvjoYElnVhJ;O2ChL#FXG=X?F1qdV~hCap;6FI(Gi~-^WShkp1hgPj_y`t zPu%DM=T^?$O!X0q8hdB7PmMi2R;$MT@iwo1ybimpV|%LT>Wla?j20U@YN#&V1md*r?J(ANif+Dp51#`r8il zm<#xypIfRRdqSKERg)?2g#Mv&MOjSn^Qn+dP&RTX0n|Vrlxs@4Y z6VH+rOYgeyEm$a!bg_%zf-09wBUSBZdU-_$V^9%yP);3WAE38IVO_@q}E{7{~dkyEJvpjnphFT3AAtoo%|a$k7EOnMrgdD(Y-a8YJ1&R;jSPunUdY zJkYv0jDk=i*?NfcZVhr2y_pa}$tVais7QjKccZiEn_l`of57MYJkR&{{C?-;!kS!I zlk_w0g5Nga4Dh|%TCA-?i``-OSOwnV5qv(2(`pfH7NJ$(d9TCiv31+MKF%xNXFmWc z=8lN{DkB{(_af2-JOqg|^i{o41)jMYkfIr9crIItquG30#=H- z9cV=9u3o?>#@t!jaOey==hY*tQETM*4b-YTIg7?Ld-@5`Fr~Z~E5I$P_kV_(%}C->Q)0JbwObJNn@wd^)F^HluhR;HIs z97|O#z3bw)V4*O+IEvL0SYCD*@Z4pnuyqfkjl3#yaCR*v}|kGM{J z9nZqA<-Wz>r`VWR3S2d}7Ib6FuH|KGJ($^A-c&dUn3XDMKYuFD#WGn%-DMhD9mwEs zr6M+S6?d1t0M*%KcY>;9va5Mbg<1s!Gvci#-CiZ_=s&eIUPcJfn41WlF z*VFsM`MLLu)m5I@Z_2Mqig?eEPSld-#}S^rzX8ZBN4)otyhgnBTwL=8P?StplczqJ z#(Ywv<@IpaQHq0x$9x;nXD7Qb@SGE8<8UAiVqnKKrKC6!;1Xn*!7M zX=4R?ING2pxG_b@Y6{)~4M+@Je$kD*&!iBs`}&L|K-nKUGTs@NZ=OU(_lJ)0^V_F@ z%&|X|1Hi~1s-?cp{M`F^QTRg#$=IQvEQ>#F%}C;98UvTMi%4lma5i>C5#Gr3_Dsrp)eahv7=pd2LNUL4y#i?o$p!NVHPR9huZv1XwN1lH-q9aLRxrWP zHvA4b`bm8iog3)@_V*8ghJJr9!bx}_x)eG12@f<7)l*5Kk|RIO|AXfKFYv>|6>Lcs zGVj`jYS2auZwxmp1gJu!b;tzg69w>#!xfes6e4vnAwHin>(+-yw8A`)M7j!H@Qz;i z0>^0_uA!%mMd60I!W{gzbQh8ZRj?#Q=)=9lD5&D%x^Q}$uo&qWIpg~9P`c2k0er}R MKIy`{Ov0>$zjJ&O)c^nh delta 4920 zcmb_gT}V>_6z1yGxz$#!bfFa?g8jMc-!?}XL0}}MB0aPW+Qt^vtktw4qqRy(lU5#S z{Zenelv58mkTi`VqFz=ImStE$SrSqPA(h>EN6=&6df4OlbI$$FcQ2cKre?ZwxU8)p*`Pb7VS2tQ!LIGZ3UvuXfvA~reb@6tI*-hb8xeu1Yp#; zW*cWE?nwN1#VC{(rW}EgZt`h#yiwVfgu&UTabV-R**EK20;VdNPUok(XQ1*ld~4dJ zc+_vqKN^qvn~Xp_>e-8`&<8dz+mwuLoky3Ap))ItIx;L*aUgdPR40XT3+8(|;#$*- zcou%e@(P0=XG2LPaMj$orXO2&6E9oq!OS-CrqVIMtW-gJ_-&a5%VaI}SE*@bAe%o` zny{H`xxeZOsLrC*396E4Rq?87l@bVM#9K$&T}iZkw4Pl~A7WmnP;%?eL1X|Kei!zx zqt^#lTY3$3wVvqjpI?;}@tz>9Nki&y4LoPhX&|#4@%AEljd)wQ?7&MvQ8Haeo|aUa z@=1+W@{IcqQ5-Zp<=|ecgDr*$B@zep~L+6=5Zi% z><^g%82Lj@G<18lU4&^@Y1`S9I!NE+SjE7&WKw3g_!91cuS|Z|gQN^UDbv%i;k4_*fh%t1H z4L=vH*T@xWbZyQlt)I;^~yrydnHWBcy>O(p6}K?KJW3Y@B9dnQCliWNvI^nP_ZeU}|JwmX?%an3`mg znrxJ6o@ilWp0v4!@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je;S{Xkn3T zZkc49W|Ew0n7p}$@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je}CkwC|(I6*w%$X5WDiupz})p0q5Hv@OeMakMH}whh^_!+536G zBX`U8?Bi^HvP+k;svS#MYFyD&C1I+H)U8NyJ2Ng@nV6MTEX~woT88tU?_T#98POp+ zs4rk7pZLPKG)V9KbAZ^?ZT`^o77?5JH2-X_s|Tz`^gcfc^|V6h2=zpc-IHuYzcskW zoTb|I!npoQX#`*~-h%Q29dB3*BJnl#(gmp4Y2Li%2aF`LFw%P$wI=&v>#rLNsP#`W zhW5I9^AT#@8N7;GU*3VO&xdX!A*`n7sh|Y-*}X`e`$TayT?2Y$&x0dmy4Ca|uZ?a1 zMiS`p*eGiKZMFd@%j0d>QWm*3p`v~6PW1!Do{gw9a|?-qoXhy!r^hj-sFLs#fFOjnuJqg~Cfd4t$Zo8JsmzES)0v`@E9c x*9Pv`diXyTI7filr;CFDUMoX(ad8E{uswhzP~g&ji`W9^_rP~9#nS%A*1wubsW|`u delta 3077 zcmbuA-%FEG7{{5@p%a%*b|W+hj13ApdpEatN@g%pi;OqM&=lotZ6Ss_Q5=FIh!+|` z^jwB8B9c&8@(}IDZbs0J;gt}AZe17%vMcWjdXMBE@P7LPKIilN_?~kPOZLN({bR2! zFf|^Wi_YlNw>q@2>I zT^=L(+~LKgZhGgO1jJI$@Q22?h*;_q{Od|>9bh&5gFNf$Y=O{W>hzshC)x1-sJD)p zOU=+rz`N% z?RD?o7;632e-pL7dH`Er4BSUTSV_!LUUTu8Fd z$VX!y!H<@<^i&A6E)4v>?=T1zr-CoDI_ZYa4HlVsD1Z3c^4h*`Yga1Tr^TB{zmTiWhK=w w_1wPuE~3zMO#VOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796=B-S}xB!1&6QckC delta 62 zcmew@^;>E~3zK1frg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS=B-S}xB!I-6W;&; diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 2d9b225c9d76b02e86f619d6a7f6a3eaa683a946..f72675f57fbcc476be55223ab4a63bcf059c41fa 100644 GIT binary patch delta 1253 zcmdlng>AOM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G(57!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$*7|HA delta 1253 zcmdlng>Ag z=9WpuX(q|3hRKub7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$UdC|I diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 69a323512e9f6147278cd2a5d128cabc6b063f34..7b57027d05265340bf88f015e34951b00339204e 100644 GIT binary patch delta 13101 zcmbuG`*VzE6vyYhm#~q|=IVZFLu7);+Q>~yLNql>BnVMLB$5&#Lfzt0X%Vy$YL>o&Irru8=V;zVTla0L{AR0n8PjRh^+J}eKOPgW@cD2BPU1o zjZ6=nlAAFnbWZNv*%_JEg5IxN57L=F&32K>L|dKWrejiZBgoBUUEMMdliL;<_N$oG zy2#*bot389P8hE$kVTR;w0#TfBR^kpZwz_b;=H?Ip*VbOkNl2nSQxg@_8VJ3(s8zg z0L7#EQd>dq<bMwwW#7uzVDtq}2E9i)6Hojw|S2_X4OkO1+E{=cWw@h*o>BlhOyF)B%}$QR(ujBT?y`=`Yb-O*6-$R5dRi zrT#e^&b4xGGD`h^{v4hbQsPyr&BsABW4+o>vGb_fS)Uv{Ol)81zGn8s6 z>W5Md>%vg#mGu)*>Mtb&QR<;hu_(3p(|VK|uyqPb?fSV1mHxbAF)F>YYZ{vC!`<^x zD(&+}rM9nNYWYE!y5JDJb4GkyhgSF|4?xRwQN{?+rskJ9Jpwf0{&Z5%%a`>dn zIkyI-TF+lW*VRw~_i)FHS5a!orHyE=clHsQL4Ch52bdwISr)-)(k_bp1J;7L=NOKL*V;{^4Mg+Fj5GreQcr!sCKC@MWA&~@}~-vd#o*`A-6~JrJc(< z(JGXC<271~=4SDJ8ed_6N0G-xu~<(YGnwGM!ECNbQsnC7)HC%I-4SBAi(8< zC_0NWYx>c2fN8%(;@bZ71Wm&%cgVlJBuB1}nEOAy&+LR(&&#`+NZ;`wB zvYLJcD&Xi`X^>z9#lrlAS~h8*4v(k=?E#ivJ>l-V)<6f)%`2qXz`if(0$hiDU!@i2 z8kIG00@7h9BDQz2Fr|?Pk7=iPpsmcmbx|(D4ICbzYzMxwI>&!Sq+)8)Li@v&op2!1 zs}?Rnbd0hVSpml`8uFGBkBY^Gsfs2#jgT$W`5h%6ZezO*OPf!SY3LXx(!ozuch~nUREL1!>cCNA-jloe^mNpCh(E;bE>9Ar&xDL#i_bQLL6V-+<-J zC%6h-j%xvw+a#S^lCuM45^ULrm7?v*C-Cc1I z)xlazv8-0rcu9?V8=Y3poL+e~+*7xNyBe3js4mjHI4(f*1%5r)q)IZb%^@yD6Pv2F z5uNv_UgA-amdYzrG&B0z;3ySK!{?!{hU6(?*UOF!4bc2p#5HJ3!k;RbLBa_i$uym+LA2yten|oJV>PiU=LOOWziU(RF z{FY)LGHfKhCw%xg#*}pM<0?fzX#f|5TO0K*@LGK5t#5>14jOyP*yYQ?HW)7*O5l;W zJ4*L%@&KG2t{+8D9+qBr(Vk?l7~Kc%0x33fX{?^#3v2+fe}-NGYPn&izHTTgZgoV@ zM~fz;*vP)8^z-QBA5Xfd7s69OirqP{Qs0CQ0A6)R4~84x@<4wG?08Oksy{<=mbw(a z^jvR*FSJ6u+&nqW-EA1U;w&B71AjGed{7Vxnes-is-s(>d-J>1{tp$Fe>1u6{U4o{ BPS*ec delta 13101 zcmbuG`%{!<6vyYh7j%JTxq818iVmW(f*@E52$5rmqN13hT*MSFpoS)1l0s2S5f^>T z(NZ%VB}a0rBi(Y$AL}FE;~Ex*HMrBJHjs3p zHPK&jZ@tu7(7%vcFO$78*)n;Un{~T6#0!>>1(cNfj%|^Q)^V|w-jIH_mB%L{IaBIv z>#me6q{VE~-IMwPR4b)kMu~Z8BLSkt7VOlFVJLNI);?5PIAaVdT`=nfnyYE<1eB`I zi$|${%!hNW&PztA-z}Po=6WVS7nNRER)k9bS&@Y1TK7R5Nk4 zA?pUCRKtc)lzOFP3QGOCGzO&}+8m8ii$7^Zss7uhq0}CqnNaCZJC~x;JG*D1xjx*p z5T(+7KU8Y{5~fxjgsJZxf_KiSZyL}F-{hfanT{NRXH)sH?I^YWFP8T6$>{nrmgvGn6{z$~KfLuH8ea-EYoBsR4BfDAnV) z{U|m0Hhj{B-rb5)v+qZtxyC;{j#790H3p>?H=IYQPa5H8#NYp|L8&Rv;ckj)egaat znrIwYVy;x_ZfNowP#Rm3yK^NdUCm`Dd-QQJ%Z z|2!z1rkqEkVd-@pJ`wE|NnEUWaCDxs293d9Se7=6{m=ntuW3TDBAkjrNCyvIXi-l0 zL<2c>LNT=1CT%K|2(;f=di93IGtMge&|>h$bBfsmECI(}R-({zlGR#;%^+D6d#kSE zcCs2Evc1&ZpbJZvXy9isj)#QNJ=KorToh95$xQ+3fi7U|HU}5cKUTf#i~)Zdrylln z%Hevl>gh}wT!eIR<>eF9+IG$aB0kDhjiQk$K(xMP50ETVa~?oCu-Meo*e71`2fEjY*8f{*Oq=xMH8K> zwHMv?s-EJ}IxUq~rD$gKwZUF0mWI!QoejxDM3=~p4EEQ2S;n=~sgQ&W$zjML7HxJQ z7#z#)zJngOw%YXOgQvCcJA-)fXPqpDydFtMi^0;N5q;QjEN;$SZMicgFbL`3!7CqV z&G1`_ZOE{Z^dR`~v5zU~;LA0Ne$oIg2)8rp-Ql(P)=S?6zZ^6N$=Kz~!FCug9ZKPm zxFP7GrkYZP!SFLYG2LP|WqX)u`AM!wd2<&)HdZIr?a+bOj zzVu9QhA*`GdAfLTnyX6!y5cMyIstz*uzyexiCOYSuBMAik!$O_)%Fh+mVYz3?)4uY C>VOXb diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index a78458ebde2f2f9db8f16849c8f5311688c33f12..55b940c0a821e11e4e594d6f09939bbcd08857ce 100644 GIT binary patch delta 1676 zcmeDE&D8swX+toht*K#JZhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hd6IrgesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm908K6qBme*a delta 1676 zcmeDE&D8swX+tohZGNV4sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W zxn+`Znn`l1VX}ToesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Iu{DcmMzZ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 2bf4dba1f946480b0afaf7149c3904981828a460..10b10cc52a416c3ed8ebc7f58b4dcedb83e3de1a 100644 GIT binary patch delta 117 zcmeyW`Big6IHRGdVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ YQL1^Og^796<_<9YcP3cG6L_;z4Ga|wEAl>YyNmnSeD1zvrMMXhSnshfJmK4Mw0cjeD zAV{<>I%+|Ypaok{JHm@#+WHX`M5UMFwFg1)q>!lK!P(}J^S=8BJkRg9GxN@Dezh&X z+V(63k-msIo=#pm+uN@sH8ZLkT1<^=sy?czN}sC4%*0s4NJNdKYQ#tTqwxg40~-mL zHB>SAVAGBc=ZWiRRW3BqP-{LEu)4!CR|CV%WJQoifU@C_Y(hblPbV3 zx8VX6Ua#LZ1G`-b0uSJdE5SqwHoFp>o`u)01hqNP3C~+&3tOH;nK0xH!95OtB{!$= z972jXcSXEWhEIe?$F5&w0`}mp3bYb_j%-7gDPO_I=4#+)kIIn1<13&L+hkF=J`$eZ zdXb4A5Wtt;z)M`oEDFP9J8d7cEcXYz__ziKsqu9~=^vcvq;<%!@hwt_-7140S2jsi z;x=SZXpU}h-T{B^k9YcP3cG6L_;z4Ga|wEAl+osG%FNZ6hZXRqGCZ%HgOXaB|&Kp0cjeD zAV{<>I%+|Ypaok{JHm@#+WHX`M5UMFwFg1)q>!lK!P(}J^S=8BJkRg9GxN@DVYQ>M z+VLy}q4ZgGLc18t^bdri`aonb5)bP!C9WHWqJUcg;U^HKU_a!A7#@;n83xo zFzTVgFNWYZVdxskV+TMUCMGji5l-4?QGBx6ZlALXKQxyDE}SVrmT*Hg1>bK%H&uXN zZo?%iyk5U&26j6V_#VI&M}kZlHailWnuXVn1ob)42+vz{3)`MUg)rnz!95OtB`2rw z972jXcO|@0flq`-$Esgq0(Rl9Dzp=Rjx0ltDPO_E=IY>Ok17zy<13&L+vHHVJ`$eZ zMv=@9@ZrmE;3lqQ4uxT|leUjJmj458d|Zcv)cA&>{0~la(>i3?g)LHm-Ku~WS2jsC z;x=SaXpU~M-vNK_krr7eBB%^UedP}$mECC9^6T-n0Y|^aB L9`v4;es%o^GS2+% diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 228d56cba87ca6fbcbb298664fa6cb3add22f43f..1676abcac09478415cc96155f55303ae4dc197a4 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39a#N^9cq7#?lZAjSZi6h$J4s5})E5mIA{QFIwG zQOh#U(vzYsi&#NveNN3zs+AgT4FQV@iDGCFD^)34MN5p7NYC7f&B~ASoj>6F{p`KZ zKIiN?GgH?aQr8=DG@XT6!}5!Yb6#6EImVI`ksleG7ZDX69T6Uz6%lT+hFhZYvvb4p zvLo|y!tv-`>x119D5c^5TTS3Pn`yOTpE5EQ%hxFn9X$`r*(taDpbcBB zLi@h)TT$spKkD~zz0#s&nfBz!4vd;C(D7Ce0CQ3c`I-F~3c`8b6-B^O=diM=D z;Ky5jg;J+)n}g;$^_MTB)M-1Q!N}3W@jKH{>dak_&|Lq;XQR|>RS_t)VecxG`bBjd zO8sliT$FnDw_l;u+`3m$>gIZ1R66ZYB`SUGXaSn*_Tz7&)P@rQsI>fjn0ovqOf5YP z@0@}&56}v0=aSJfN$26SNo_oWQkOJWpwhQnE}>F$D}2+LKi`W|)7!3~>-yyva1Wb0 z+EME6&N?*LTi5@KQY&v9MyWTudjKjAS;E%Z*WWHfvHR}M2C({QTGe|BrLsQws=M>m z?@{WE{%L5g&kVGn)B}SVAe9a?_9cj=D21V8B86-07RvpLk)a(`cWMYjUT4INNlQ&^ z9$MynGc%yvfIwzOOZ90G+kP#D-XBSZBqXd=) zFddg44J0w-0ZP}7dx`BsxuwZ$0h;fc6lO)a^HW(W%AKFaUO=^p8EhY_<%<~dxq!q> z)rT_A3x;QWouwLl8ACXNjl-i5Px{iX90A(UDi!Q|>uzT*Eel z4#iZvmW@zce+DP90&9V<8yqW_^WIjr7`UBy%@}DOU%Z0_@JE&Gn(IO91|$s5si^n> zXB?@u9=Z_wQtKX8>;>ZaQwNy`Z>eKVpaBU3`!G<<-#X8{d48%ilj_f~1whw07eLr- zhL``F3(UxW-OSp-BuE&%>JNw=jm!UBBvvr+I!lHdsHd9^2Tn_8?+dXv?Y_;bk)5Zv z;2-uuXnD*7gPvSfwZw#_Qt1co8!hMy55y#ajH>g@TeFG{|& zaF+BK#tVn9;lvlFO79?b*LRE%8);L9^fKZwr%Xzt>?~;y(x|$)B2TIUjye+JO~}3! zx@A;UE?q|MH$CDD+oVHix?G5TXy^{<7XhwsPTqS^%ICzHiLc9&QmLX=`UwyS2^;Hp z0PkoQ`dy3kHqt42uL-dyef+r;gF4WbcBui#*}2D?u1ZsV(8MeMEhWNNnh^Wbs)tgJ z1;q2TiSiXtOYeosbB6-rl9loTvi(#ZjvQ;cIC_eFY!pc5cQRxzzJ7t+1saerIBvqk zxfEF>4*~Kfk@reude!SySRs!Gpj;P^cvDUZ2GZ5H=CT8_Hy^Bpime|E!k`g3)O7mM zSc4}uoR;syW2f#g?L)Z}-QZkzIP{6^jV!?bv*5zPlP}Mb%#_nANBSF zPq!Q{%7zRp=s+Td`5Gv8lrxy>;|!@!yWwD@%3?z!a?d|m5F-~3fi&=QL)m0^0&&=Q zbJHn<2aVWoXm&fKZ@sqG8zzLh5tk=T`^?aX-iUh7bKww7oo$AukzgQX=`)nW6%k^8 zO6WJ-Lx%!q7WIP$CEh?-&sdfqe9SgP9k7W_Xcm zM<|u(NkAWrQ>^gv2(cekgevQSDcw1Cy){)iiQ=g-UU?TCyXf9*Wfa^GLOhh-O;$SL zzDysGyvRIX!EY4Z;YgZNHOcj@x$Bsk%3C%ot(cT1Zc*xzFfA`^Q-*NyY-^&DPnB1I z0y=^x;c^9--}J#KnYyz4ot^I|LhM84P}K)`tD`wqbp!Hr@=2e%kQP0w#ss?FDM0W&DG4bJkR!n0}ptg z!;d#7Yr~yi7ni-Hy$>wL_x(ut%`m!NSrV1?1g1U*okUUBO>mw0B=SW1`*tmAI&P58 uQ-VBpQT|0O0eArXE{x0@T6CBjVUP&p1GgeL`HV+?6cj-kiN9`tWBwn`ed?~qeZGc$F)VRgM>N7LDqqWr0)u_ZC9CtD+;Y}Ux=$gBukj3vvKn`?=Uu-K+rY*DtD znC$4-tf_gC*|}4)?OWLZpsEQ@bNI^^119D5xnBPE%UUrew^#cIIJ&%+gLEMu=IHVL zAyO@8-qrqRB{=X9ha6BSyDxXt1a|{6drj~)AM|^KL4J-wa919DA3hAdMZDU*@Q?twEaFDLs`l38mWe)&W#UT>g2K z=vV=5UT2=iR~-a`wL7J1Ne(IvDjh^~ZCI0!Qd`SrqttV+!@0JWr=rx>jm2oLci(^m ze!S(ED0Swxd1$WFfAKO(ov{NNjGR3jzcUS`&ffJ1&GnyrE=s*tH5H{c>|Kpgzo?Ew zseh@Nk5bS6<|~w%Q}-H5-CXaFN@pCZM5RAFnvdqX{rHrXD{DQ%g?6 zJ176l1GK{0xn#6V(s}r7QX7w;)Md>TsPyfYOQ_V`3g2|*&-bF#^tLPLx_a^9)QZjma(;t^|#AV?7q8m0jxfnR`s4jsjLsa>h65? zJCr)Be+HWCGXpIs^}t{TNTtJ!eFwIFWN1g#of^WB*BLQm(sC19 zfR;JW%nT?uD43biQhgf2_MqC3Q7jDAc7?J*R9iWQMWJ;r8pk?OZvOsWDtP;(4Qv|c4+%s0T9o2pv!>ZAKo;i&rpj_*7>|<10AJ1xmI@8AI*#(sOD1oH` zOy}iC14#^dfYP<&USj)DZb>p*gyy>@g;`PV!c>-uau=qt7f@|t2HS^f`4WbFE+8>e z^`Xo&*=#ki_jvCHR=^Jxu>iWdoJD)$5JHVBSR(2`B8H!!VrK#&bmUd`lxGeb*Rai? zLlM=kWg`^#pTSA2z*^wz2ItCUzqgew1#Tx^Ge%m#m+oLe{81&l=6=w+0SSY1Dk?s} z8AocZhc3ka)VhZi`G9!-)IsLOTk2R7Xh6ciF$@&*x6U(Po|h`krus8%5zsZR1rRoy z;pPA40yFYoHM4dw2@(dc1p;Dcgi^~fz#5}`$FtXyKl2<$Lw0`%>b1crdC@RM>OvcVgv0Z23nrPQv*-@fnmtC;b+B2ZvbDlx_bWVi;_Pr zo+CYm@xtM2IPt})(mP1q^&KO`M%t7iy^J`_E0fYF%O>qX8dVopAi4y{!l<%yh>g~_8-f`kz-94M^BTFjRML1PKNBm*DsR0Km!s6$4!_x zhawB*Awb?F@?M2ZuX?=-D&+A1l%#0?mDKX@|Mj?D<-9hTa>yaOv?+}lp$O^+nT8OQ{`2l zfX?7axLg6|H$Cy5JBqg}g1>hwn}8gTfRo_FF?9#f@dBAnO^W&u-svxxRQ%)7 zwm{Vfot|jqSTzS&XV?3Q5c`oiT=fIq>S&%--GDrueA1^brX|m+F~ROPIoHKwQ&i}b z*TroM)ZUdKnG10M&;L+OzzoXlgLC|-;H=t&ESU(uoc__MMk65OS9ikXst&akCXc?RB0tk`ReO1t zihQ^263@M%Zh&)sy<05-ZVVUs*LT$GaKWbBQ<2|3xX6besP_RfiQb+Fr+e^`x*xde z_&ix#Nj;BMWH2QmE(NX%XPGj0_o~Y73#vj(Oxj0a+TWU-4%9B8k)fkzRXe8wv;3W^| z0+G5;5SmnUuj diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 3785a403012558e420c0251de5bf7eccf4b87186..8a83d851e630088124ad63bce8d07a73764a35c1 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H5UG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7Bk(AV delta 976 zcmX>#f$7u)rVXi#hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK_!G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7J4Gx_ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index e751af98a0d51bfcf1d6c5aac35e5172a1f4e838..36a4261e11502c023257dcf935f63baa7ed0a533 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%Qsfp{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7$>#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3PR&4W zxn+`Znn`l1Ve;e}#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3?D$)$ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 1793b713bdf3a22434053fd778abc1e1e8a46dd6..a8a1cb5e67994ad92378adf6685201f189dbabc5 100644 GIT binary patch delta 117 zcmdm@yhV9~Kck_kVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ YQL1^Og^796<_5-YW-_$duvYK@0RO%r`2YX_ delta 117 zcmdm@yhV9~KciuOrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Yl5v_za;jnS<_5-YW-_$duvYK@02l=#aR2}S diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 27ac4a2eaf2dbb1f3d72224609be2dcd8fcabac4..62a85720ff0d59d568a9171732ed76f4827725da 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^AhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H5UF*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?g z=9WpuX(q|3hRK_!F*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre? diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 038c1ae31889a1b83f31d7beae40e33ddd318b7d..5f74a2f16f2b3fc43d3e93952474d491a950d300 100644 GIT binary patch delta 1690 zcmaDdi}lGY)(z2&hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G%#7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5~qyn)3 delta 1690 zcmaDdi}lGY)(z2&hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRKtA7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5(nh8Mw diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index d19197906f26db39429934745676c5682c508845..8b8af7f925c5ae550a6627962b0a14bd07b3d4a5 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H4pFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$g z=9WpuX(q|3hRK^}FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$@FYX#~YCMvbv})qOAGWQ0i`G zuDHpf99v~gt+#n|_Cl-IQR&S0IdbiJ4tu`aVYlYkt+|z+O*Ws$>GRrsdG3YIJWuwf zT5m&kLv7LmvtD*`pv2QT|y%m zJdBSR%P8i~`_03+vxQerJ^?z*;1=GVIxiLq-omV zBdZ@O;>fRa>ulD$fP8=^LN?epGdU3Iw zKw~3&F_tAs^i+^7rYN(li-H%O)x?fGM#jpJ0?F*NS+=#7yh3i1KT7Gs*g#H15hY!f z0;5qXwv%39hsbwbcx}=}PYcl*@wOUNS0mA@ZG&Wr*nX76At%$HETd9lYLM&%0;yLQ z&?>Ru3^4&$XBbvH?h(BhxJ*t02gaB}lE~;JZ!D2_bW8yla*g$?w+G}(^goxAA>Yp8 z)_rmfn2f)rEMo3s5(~`wzcTNhkPH7oX2mmt{JV^&5wbs-z}6dA&^l}p*I$xqR7S{! zngz~Sc$E#}@F00Q7n?D^YBJM_U5T^}*sG&$&;(8;Qk}?7rp4)z#}IN{pMVWGDhh10 zWF}zRyPA69Bj;4fHHilB delta 5860 zcmb`L>r0bS9LG6FXUplf6=}WcLPbPGl!#J6l+}ysMU-`(8A`p|cl`mM@Av!ro!_}|UPMeU zBBsj3zY)bJeN0LDYAPNzu)f8w<}J&Qm7Oa`R2L3&J8Y~-{H$! zU*~JgYpiQ(@cCKTlgsXq2acFkBw58X621@&)lS~07IxN9kKz1O(j^0ivR-Qjf0xn( z29M%H=1PjW^Iq#9?rh_=6OMt-GPsSO%$S`B1#e;Y3JY(YydUej%CAq|iq)<1H`A-I znpOU3#uC(ZaAp_idUoX;kmO_S>rgb)c>*m}DM(3xrb6Y}?n-PTYPhAO)(W}SFiVMn zXO?AR^+s_vXN8&dm3QC)q(UV`w{UyK0c;nlJW$<=Rju;&HMfD;;$e>oz~uFy@@3v3 z6dm&4Kt@st9gzo>nePi^AY-Y7!hBt@7wNE${%qKV)T^V#%@Nc!vQ-0Ixe{6kU`!9| z-w9npI@+n;MeAI!cN-cwwBL!k1`jr(uIG*{2DUlR3GYb(4i+U8;3e%-K$KAwEd}QPc?**~t4Mg#Z2k+Bkcjxs3cM#Y5fpRWhCyt5T zk<|~Ba>s}5m}@D|`FILB6m?hE7pTKJI_cXYU>8Jdeg1tjTI=;6zW`UQCxJ9;uQi%0 z+9*i|%!O1qWCzwZ>{-RybH|8RF7nnG2fw_SoJqrYZTBXUtaS&7K^!e3YEqmkMscBv zKw~3&F_I-sbXSv&mN>Jlj)NB+wIm;TjEs~a1;(?_R@v4%@(Q_4{wQS$b0awxN0cm0 z3Jgc7-a>kS9U|X#(Y47E-7Umm#@lMrJWa%?we^#UV#{HYgq%!&vJ6X!Nnx@b2&7$^ zOKZg3)5HQ?ol#h8ze|jw?-Dr<92g@CX(GFWys^dJ(Gdk;$aOZL-RhGo(feFZhI~7V zoA=07U^4!evWZ!bNg^=o|H{03LeBpOnWfJN^6xU5M#%o;09$WVLGQ3lTzg4sQ5hi@ zYC1S$(N#8ygZ<>`ENsRCn#D@TcBaxcV6P6hK^HiYN(~}!JT1$LJ%*6u`UGsiVNvX$ z<WZHtnYAK($dewUy>fjNMlcy_PK~%oY6_bpz(3 S0uLj!6nhC(3Hdu*On(EFBpDC@ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 15616494596d46f72d9d437a5e6daa5837b53623..0f78508bc69aaf56cc379003036bb887a0974b8d 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tp{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7$wj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGlg>tm1r delta 1199 zcmey>$@Hs}X+u1tVSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W zxn+`Znn`l1Ve;e&j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGlnz-T}K diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 23081d9a87122486ffb9d2198328817bea72db3c..9a3a10a416d6e69a7b8d8afc70a18449952709b6 100644 GIT binary patch delta 122 zcmX?Va@1slKck_kVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ fQL1^Og^796<_5;oJVqpI)1Ry$Aia48-&$?}-#jEO delta 122 zcmX?Va@1slKciuOrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN fl5v_za;jnS<_5;oJVqpI)1Ry$Aia48-&$?}`OGAx diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 0fa6623961108969c654e79505e916569622eeed..d9a807500d726def0981202916a4e91109d45005 100644 GIT binary patch delta 1928 zcmbRJif#5Qwhe)dwx)(@x%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1KY~`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~u~INbCRr delta 1928 zcmbRJif#5Qwhe)dw)vUHrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hROOV`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~v)(PxJr) diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 2a2ae799db461ef560c895227bfb09af4ff5c94d..4741e6f174113a624e15382632ac7ef5bd539037 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTp{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7+@#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ03VAs9smFU delta 1023 zcmZo!!_=~dX@fVTVSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W zxn+`Znn`l1Ve;l0#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0R84V8UO$Q diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 8d7701c5a1ee43acde424cd6267805842745db12..619a7559d9ddb0d20643a0af7223e53d2fcc541e 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H4t7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d02cn6`v3p{ delta 527 zcmX@{m+{13#tq(#hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK_27&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d06k8g7XSbN diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index c5f435c31bd39a78da6973d8f1ec3056f49c394d..221f83cb7c28dac0fb5ac035ea79ea3acc05ffee 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G(581IpxD_+!P^F^jPg=ATrGg z=9WpuX(q|3hRKub81IpxD_+!P^F^jPg=ATrGwx)(@x%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1KY~`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dcJ0|2F^t delta 1705 zcmdlyhh_5|mJP*>w)vUHrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hROOV`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5da=D1=aun diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index de0dfa616dc59676244524fc042ce59929a46821..9cf28038e7160a9b15fe350d3c460514e0229d0c 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyND=p(?nY1o*NSd)B8JRf10%d?uWLr#!k~vYb zB?}pR#hbmalRKUdeg9wRpmPCl(mbpLR;SYG8&vVYb z=X`J4@g?K-_ly^Z`hD;t98`p6nGuE_B@BZz~ivnHrj2u^)+?b-kKb5 zt=*gF$DColAZd%VC2mK$G-GX%DaqTh zdVNx#_7g_+$&J`!}G}o;MGm)bsvElzRECL6o}K(T!5A zhd%|V($YDE66?D50z~yXG|BoS#aies=#wSgFQL@zh2&1~PZE!}3UG9L2~XWYz4XA;@3*x5P520}H^k|u+Fv34~voLg96RWVe9WZLIuaXK)@ z@!NcjlI}2*;bmsW_JvdYZz39|cq~npF|!GZ;}V~HSRB1x%hIrK=p%!uM)o##LtSEr zpQTblI~&3#^=hZj zGXu8xouPVCMf)7HiXR`cfAE@8sVd0ISCK+@Ba^RRO+WfF`IF+#T^1|Ue(32B#$&)O zNUf3lY4ENJRhvL5W_}JdP_BAS^n5%o0he!BADPDe=&-(VKrdPyTuaM2JRdFMvB~vK z{6rLXt(1_-XC>S~W5xU+xVJ(kq?)8e!XXS)_6k3S^9@u{#d}fx#KCCt)$#~%G?b7& zSjUehgY{<}N)^xb^Ek?QhfkwLs3z3?J})$2A!u_CKZ+h;_j_h~@iebPmqAiLZvwUA zh~y^G70JyMJ;-(7Fp=tV5!5P$ClhFRm_GnFb6B7ACBF{xL$5fCXq@6P)P9Gzfaf1} zp@w_B1Bf9!v%H*|r}$Su4@ebH08sT;o0S)=_;Z2B2$gQ3uYc#C01+Nrk!sZpW>Erz z>c_E|$J5+Heii++s3w%O%-5lh&`gUaS==&dz;_0z`j5cuVku3Nv@(jGL`@dhMp9jl PB|=NAkktQ!zt{f*A{7|E%*BtoHZfn3T0fDN$WC)O*1wmBNGQ$Zd(z`VAFIcnG+>j zvXH@7JlTb9*~UV4VRMJ&9R{OuvdkqA)S(GZ1x$=Th>$pENrd=qnfn7C{($HCJnwtX z`+iT_u|?z9qVakm%WU%6-^y>v+q-UkR*q+Vc5Zf6mM70v<*BW;1lb2VW zn_p$G%dW1?tXBMN0#Hp`3*<1@aZD-#IU1AV)HXwMuXO7QEs(TP+Tyn&U7EHw%A~}t zSiL@}Px%R>`egg+%_y}ltrVrczIF#dmDAQCK&DJveKJ3N7?pnXd^ai`v9+SopY0b> z=`*>tsPwrF?dX}hHVS|$Esiii7CO^gFS$|axy}2~ItRCGN2%vsZ2(mkyJt}1w?%e< z80zkY?JX$vW(oAI2+rxr9mp*T1^#B|HlS8nTsDQ)IbL1~5JO?dDm^H5tf~v8F4gQp zsSCS1P-<#@7C@DU8t$XShdw7j3?0mO&BZA7_P%u}wd?KuDD{Hhi&C$=Gk{VT+B#9H z_0XpPRa)8yQDRNUZh)v>hk99e*rkQuf<9T)`3g$SJoaD}NWIe2gHe5QN_3zd)}CBI zslC1BDE0W+TPSt@Ts=x%=(~hcH}%6*_vL<++I=-2t+oF8U#Rq7*^Ek!1m9ujPz6FQ zE^Cqn!zaR^p(~Y@Bk$`msZu$jm5rmZ(U9DsyfGCiwKHC9TP(}xf15CablVz(bOv-! z;c~?p(9#{o%40DPamLMzbS9qtik+P!WFS-nEosu&7pqqi!?B6=t|*3TkVq|V7NY}W z9J|9;DXDfd8D3>s*uHRx|4qc6NghoTCCqGs;yA_U9u`AyR>s?QWU2_T(iNo8-Aw0eSJIE3bpEusdyhp6wI6!=gYhVE z3sO@!e-^x}Le<7ml9`_e4U}uOCVDZJ7lF$+qz_Nwesoy(?$?VZJJ-@uHqS$gcw%y6 z13w;tT`MJM@>vl#(5QNb`A_uq*941m-E`eI5;6xk^4e^KIW)A7IzvMSSe()7%5#C82MXh&vBY6HH z7us{5w*fJPXNH$j!zBL-=mDwXaR93RYP0-;6@Sk2D526V^!4xj6ClD9D^jf*z${Ad zfckNC@mQLD#IK>B7S)6jmiQX<5t?q%B#PT64fxI=Reu`HE*4WX3CpACiPvO+Z6wv@ PXgsvU3P}Aw_OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1KY~`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_Vg z=9WpuX(q|3hROOV`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_Vv5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796=6XgY4gf;X5zPPq delta 62 zcmZ1|yij<9AERM@rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS=6XgY4gg4c5(xkR diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index f66d3920af64fa36372b03adb6369978d4053b67..d96340ebda5e1555fa4aec0d24bd1c0fa7b0d68d 100644 GIT binary patch delta 117 zcmbQJK2d#xH>07cVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ YQL1^Og^796<{HMuY-DH);Be#y0Os5wtpET3 delta 117 zcmbQJK2d#xH=|*Grg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Yl5v_za;jnS<{HMuY-DH);Be#y0RI#sB>(^b diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 0f49c851a448dd7b0f179975e5e2ab483767b300..5b6bcbcb5f86be92e17d7a366f7072fb1741d4f2 100644 GIT binary patch delta 4131 zcmbuC-%Ha`7{+$J zgcBSKQ3<50Y;eGHC1oW97FZE^AwoBXcF~{h`*3#V)jRX* zv>$Bswn(hEt3O)jR=OM!rzh-au)7>~Pp8AK)Z3MYNT}Nu4mrbJ_OPqd?R14$68cs7 z%g92Dmvt0wR^z0!{V^OQi}pB59v~^7fh{>66`ZOswtBIa!K^LBA|T)!pN=6zjuOmZEZGLYCsnXhfDG{GeNwqGv25OVLYO zaYMQLI*Vz$7c3-3-{3}!rN_^xaZ<82T})c2g)DzIkmplroC{l?EVJEoM6M1EeQAOY zq(|BcR-#QD;vWyg4DKQLsW7SK6_sGY?ZTYFrWuBCn=of!JORjL${DO#;1ZI6iylOf z<@2#>_=G%nulL&1fJ{R_H!JW&>hNn0K!#wh?eTi(lOnk12AjkXmeV#bWRL?SmPt8( z-w0c{91$(3f-=%ft@L&iyhTD}JvOGVa?e>l+uAd(2=cIH~CBy+Oa!&*NF?K9$ZM~P^Jb!#YI$7>~_pz2$x}8SY}^{o*ugo dMWlA!LRUuN1^$`nxiDJPqYS)U{IzEb{sM)0{CNNX delta 4131 zcmbuC-%FEG7{__aA9Gt~I%QGmq()+z?|!K7VuBZ1dqHQgh%O3wXEV*jtS!O@DdvS( zA)Me?h>k$I$_58IS5j6&V1X5p7c%I^&@LKuVUa?|xw_wT{($fIe4gi==lOEB=5n^? za^e~|`np{a&o%XGO|7#|uXWeEgHBylf_f;Vc$|vvQuI1qRXgfEL06}{Bjo5{18_4t za~YZUd0BhzdL>Ru+aAGQvfvD(VYz#>gc0iiHJJ211C55FPtR zU}g2uF!GwyMOazu?NhQ8bwipgMfsh>vJ|T$RF>+2W5ST>Jlf7}(L@&A8dy@nFf#rUP z6InhVuY^y?b9Z`gJPyb-)VNK7$5MxPy8s!2>9&V!pK{gjrNwM28g&|xS;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7$_#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y&$8{AvII delta 1709 zcmX@x#dWreYeO`nVSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W zxn+`Znn`l1Ve;f2#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y))u0|@{C diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 3c2f7da2ca244767f9a63d9b3d2cdce1f280e1e4..2a69490172173ea96e534f62ac4b924c3466bcd2 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHp{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7-OMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgZqRWo!Td delta 1200 zcmX@z%W}GxWrHuHVSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W zxn+`Znn`l1Ve;lWMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgZ{VY8(In diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 12b576c8872e724110d8e2c29b15d4028c9581cf..eadcc5bacae6e56f3b268091a88feeee982d2d57 100644 GIT binary patch delta 751 zcmeBL#@e-vb%Qsfp{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7+@Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuF4W zxn+`Znn`l1Ve;l0Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFv5|qPk%3uSQi@?}l1XZ^ uQL1^Og^78ReoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6KZc`54v delta 139 zcmdm@wnc42A){S>rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN ul5v_za;jmneoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6K&1uA0z diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 24b2efd690b6d6c5e4076b2a2fafefee9fb85b16..a0cd2d23d4202090787aba538b59c41a0bbae0d1 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H3?7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vSI6P5 delta 760 zcmaF+p6Ts-rVZ|lhWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK^N7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vlMm#6 diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 8fd48f83669a4c8db7d0d709999121b896ee346d..39598b635073585d8e601392c8e9d6de3c0de0e9 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G%l7&nrk%Yi3o@&=|wg z=9WpuX(q|3hRKs_7&nrk%Yi3o@&=|wyg_K&uD0Bn3kKLT#=z~VUTQ`W@4FYY-VI`Y-E{eY-C_+WMGz-lwz2gWRjX} Xlxm)6VPc-Nc>-fEIokY~_i+ON;(sC( delta 117 zcmeB?>yg_K&uEyRXXqISUk!)_6 XWSnM_oNAc7c>-fEIokY~_i+ON`nMvC diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 609fe8416a44ed3a660d140d61d6ef4c3cf45feb..6ee852ce66155984edb44f39a623dc0305ae55fc 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G$)7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0C`{g761SM delta 1704 zcmdlyiF5NL&JFI2hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRKsF7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0Hp~5wEzGB diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 79e38718ef3830afd981e02085e8d4cb953afa76..f524f081129be225f1dac75fd8218c42005580b2 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgpWqb@GW+AT0R}>R7_l}ui8p1G1EO3>T=8ii}AuElAuQCfIq^qv7 zuo#(@QZG))PD*yR7N!wP^Pcx~I-3X9%>(P%2y=C~qVo%prC7Vq z8IhyzPEGbmURml4%aXH0a(bfbj7wA9T13*kVV~Qp>Z^AZ6NPT0dVJ>@J5 z7&VL6A-P7S1>c1b-Jq-TU1Yr({|5coZn2{#C|>!FwI)ccJ^@>kaXToKT86hWm#t zQ0pAYLvbreLlcK%5LGCaN|s<$kEI&u{9?QvH%3J!@}Qkf zV^^j82Mjc_sY-ByqY$e%LUvZhCj;yT`xX>#rsP(E6ZFh7QQu0HaYbb_1y~3-L&CP~ zEq_>Jsfz5KVY&z}-e-$y_Sk%$itgxYGSW=27=r#Ndx+>d4)|>Wi(vS5PJ8Fy~74KMUjKr!Fur(2}fs*XCmnbzFp3$SW zHr=DGr_F03ko+=vMa#}y62gwZzoH+qOs|GEQFgOsx@=V zAEGQ-p1Ctj7ve<+Y(>i)o6l3x?VXKAiU~Q!fZyDG?>GAZcmJ2f%_QD~O~S>1@CB~j NFl`OL7#7C5egQtC@)ZC8 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 7310add5af4784b42f1a827f6b98f8a5db0e4c0a..0f437238ce79db8a5b6fce18b66e1a8a051b00af 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+Xlj_2o1a{fp>JW3Y@B9dnQCliWNvI^nP_ZeU}|JwmX?%an3`mg znrxJ6o@ilWo;10R@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WP@&&WIg delta 1486 zcmZo@W@~6>+u+M+n4f7}YFT7apl@nqmS}2XZjxk_Xkn0)n3`%}X=IRSY>;S{Xkn3T zZkc49W|Ew0m^`_T@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRN!_C|P diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index a0e73b2f4c3e549e2e33f0b0a21a7980f4aa1c73..f33ea849ee3df9356bf1c5fe286b25e6338c56e9 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G$)7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D6>V2+ delta 2066 zcmZ4ggKhl}whiu#hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRKsF7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D=Ov5|qPk%3uSQi@?}l1XZ^ cQL1^Og^796<`%|wGPF&ez$m&oklB+P0B>9(*8l(j delta 121 zcmbOwJ4<#$Fr#69rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN cl5v_za;jnS<`%|wGPF&ez$m&oklB+P0Eu)XPXGV_ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 9595bdcd9ffccc26a8a3eade173e345808fa0cd6..8e2e5bca3a41627c61765be7b1c4cc4570522f82 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8telHFO8JxqT40U0E~GQ+jF!w;qlVFgBKBYg zT1VQglQS#;Uyg219sBq51;>1Hs!6=C#VL3;+eyq?cL;P-uNt-bbIdoRspF3n{= zXi}U-&S0psrMJDH#L?mo7M2Fw#V(KARqA)U97Qfiaj?178E7sHw73Eue@UUIS&S;* z08F>V%6WC8YSmY5wulVVp*-W(|1`ejcSE>WB)0uhLDc7rr-A6C$8H1Bs>*h(++O`s zpIslRw1@+HwRGd|{G^ZV<4+6JTw(F9+-_Vz9#=AkHi$eXc)w=_goZ_EXo7(#o$o}^ z*%3c>QeiQBA&9!pj}eM)xIBfTJ<$#T6}H$<0F#Xr7I$x0P_*vm2LKiR+pweM&TGIi zmFMYuhtV#I+&_-Go_TZ@a23wS8Q3%pi$!_|IHpQe`(zx=^UCy2)V1qb1a%#JQHHwu zX2wugeJ+l=n&!Jv*LANdP}d&|@Yt@1XJfm$UM#+uvO~+FUT9z2LdH>gcuM&Q-E`%*@tMG^%*5%TYOM zWo9}zq4XVrRBCj`Efe2wWi~z>l|dyMSTTJzvjlK9GPRT(Nx3Z%he#*{HjK36gA2A1ySn2+-Rk-@4yT z#w(V5BlnOw$U1;CPr^-nx`%1BzKhv`ftykwsnB5oVt<~c?xAb_Y!X=EJPC6NTj~8E zYs>`f|9mgD(#MNzz_AR4d@|3lp(^7FB(oR*v#+CFcE5hi#g7yq_c|D(h!0-FkT6^ua_FkM#Uz|;U z(5QI2+6%%ZAzyc1QGT&eROl^i$~Sy^lhM+mm*ne4fo>EVK3}u9q^Y2_u(`$4EJl@Y z0A{+PWxT3Eb($+SIz*c7K#q0me;QwMdm-E};#+>HAR6$*Qb2UV>vn-?WyMjf+!_$Jh_GDd3kC(>e}-xgt`vCC`DZZ z(_^TsIU7S=ZF9Y->zY^PsOyh;cx;!)GO^uUCl=mJx}jxJC$z6^oz_u$xL=7O3t4iF zv@)QCGOU|&rH<9`{!S&8GP{%$z-IkV!F5uJZ?GPNyu7u%DqG3qQ9D~jk%;1VE=A?A zliBI)xYBnBQmHoen>N1J$y|ImB7=(8vts&eXK~`qmiQiP<)HQ-{AY}6gV1WB}KfadF22lI79k;7zfWgWnoC*Vdt6=oW(?O|?U;3gGFDs(u2*q>*pyXa~^n*dfgPrzKlPI^Dc z8qxv#Ki`YZ^zi~4(3hZ)OZI6tRB2s-WEKNp_OOM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G(L7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7g z=9WpuX(q|3hRKur7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G%l7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qg z=9WpuX(q|3hRKs_7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHRGdVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ fQL1^Og^796<_^YMMkA87=}(@(BDUF=xt<#U!PFz4 delta 122 zcmX>jdq#FcIHO^Hrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN fl5v_za;jnS<_^YMMkA87=}(@(BDUF=xt<#U++-vd diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 6df3d9ec139ac203f4a9d833110055512245bf52..80a49ad37b515543c9c1c0693ecdd7cfce216b08 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G$)7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AF@DrW delta 707 zcmX>!f%(t`<_+$QhWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRKsF7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A54zVD diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 9211123085cc1ea928819c0dc8e5fe0f5043bbb1..23f7f955bbbcb2189005d33ad3fc0f8c5ac6f463 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G(57+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20og z=9WpuX(q|3hRKub7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20a>^OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1G%l82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dd@QlOX^A delta 483 zcmX?gh4IuC#tq(#hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRKs_82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5db$xl>q<% diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index aebed1a36080259c1a99c25d241948bd0e49a407..9d5711d2b2bd9b2caee752e3e918e577d3283617 100644 GIT binary patch delta 122 zcmca7cTa9ZI-{YfVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ fQL1^Og^796<{6CZ8I4HRrayTfi`?ev%*VL_?u;bg delta 122 zcmca7cTa9ZI-_BJrg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN fl5v_za;jnS<{6CZ8I4HRrayTfi`?ev%*VL_2`eR6 diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 8bd786af7828f2c0e2c22b1f3a839e6a9c7fd2dd..053c78ba1817c66652e9dffaf6de012b9ae2ac77 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnp{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| zYO+zPd7_1hdD7$x#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OSU!(G>sy delta 699 zcmZp_#@v35d4oHnVSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W zxn+`Znn`l1Ve;e(#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OQmI)8zmF diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 016d95944bd5c04003fb025c5027facd1776c1d5..1d87a85ec8f1e84a040eca91d12d79f75ae5151e 100644 GIT binary patch delta 1014 zcmX@}mgUS_mJPm)hNgyTx%tTz8Tu9m$;N3WmZ`>OM&`ywmWjqj2Bt;^W@$+&hN(#= zsmVsE=7|<2=1H6D7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc6<1 delta 1014 zcmX@}mgUS_mJPm)hWVMsrItk&1^T8&W{IXI<|au-i53P)iK(dumPQ7N#s-OIi53>g z=9WpuX(q|3hRK`j7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc(j66 z(4GmE6T6m6D_^C1xr${gl`C5%wOrZ63S|>3rgiC7rhAw2-Mg0UUMaP5`AS`8UGAm~ zoK#R(blRaD*gvClmnvO)7T8>U#jPv2%ap5HzD(7`GVa(!^uIYdiY}=GyLam~U`|ez zgv>q}_`d+a|LM75KcIr$iE% z`7F!Ab@9h>NnLzgRi9Jj2em9C{oHMTRj|AmHBOFJaCf`txij&q*_{-kQowVtdueW4 zDgW%Ar9@@GftH>!k~ujxAUgWM#=R;T%Z-gG&uM%LkqvCA_P{2dlLN+_DwT-Zlmah% z)+mK4KCaddCzlbY;Krs#iJU;Y$L!>qrPLK!fOgton?cjHclXr3y;Hj+^c$4fyH|H) zYYXV#Gt&TypJmCp(u zffNyyaZgIeL>hy1`tBtRY`G96liv>NlCD*zqc}XE8ZsZf|s3I`H@9^Txy8~Q3>wAz!K;rC)nb6WZ~Q; z72JTHHjsM1l^xX7eIqx_$@yfBZmF3l_A=*yl>4px;v6G5o0DSH%*hE45*(1)_ggMI zCKlU9!{vAOfURFRN*Zz^G6!Y$8_+8?Kz>e6Nv_P=lDauL5y5lQdiBoiK7dP(v4R;D zb&;r2mh11cib{hq?soAa1IWAlz<{Wh0NP8*n6nQYSW^qB(Z#4F7MYV1OUw!WF0V6i zFJiphD`eLw>6#S7OjYZKy0_a?O{b%kE zD4Y{8QyK6w)m@GREwL}R<)WV0oy+Lypb*sxYEue}WXm@wZV&arW2 zuGkPC-Z324$-}*japPRzys17K2Eicabwtf+lm@JWj(o1{z|!UUkgM6nPf`nMPI66` z6aLBcX{r4KS%65UmfKQ7i~`$TW4;BuO7p)?;<8gqqLla)_;)+{?J{a=-6vR@Bm?Jw z!VGU2ZfjJjf2IeDd{HFWZ+sYuSkw5smFnPr>PB)%gSdDyyrlw8{N$*vU93U(@m}YO zOZ!E^^qt+aHdnG_?ZB9@^}P`!%^>c_o_>BD=+e!OJXDP)L8?EVYaWwO5T0I9l9ea@zyF(} zxLs;QrEI%AeJ+v8{5Xd%(?lY1M4Iwv4v_$n;;v02(kddAZZL;P4~cXtjhEIF zsqOc?w2nxI0$$pfMa1@3c=2x{?T7{h=01@Q74y;-BCW8@BfqUBl2Q6Sk&1|PrT0oA z6%*+T^BN-kOr*1uX9~W(0PkziLQrP5;M7l?$t93RL z=`fML?!Zg0iIm)Q3;FFTkq#f;Mx?)pwE8kHttQe*F(kk3mHuBA>ON=7E+SqdKgNgc zCDH~W<(xc3q(UM!zR62J5vk{IKa<~95UEzF<3u`1B!B;tM7m9+JFQO<=_Qd$v^`6t zvq;LCqG-{J7w3>4b07UeemqX34&!bTX%msY+jomd3yDJ_#S5R+cP39G1!T8hDgy_O&mo0K*VR4 zokV&=q`ndtk$xeP_&zT!BGTFIZt~k^BJDfHOYezfJme$4y(Q8}MM)z4N~E-t(L~x$ zByx=y5?rbHq=CsKAbX< zNS7p|n&IE>5~=!!?QOBNoJb2=A8(g!=PC`XFUsSx2bLAh<%$=@$P?n@(f_$JPfJPX z%uIjERWGQ{jh*DKU8xYERE^b5x(MJ5Q3QsgM=0xYX`Q>ld;t>y$BHUrz;H)n>&EzWFAEWDX710kZ$5a*5--{c0!nkqcYI7~dB!I#Z zr9uO$0&Tx#W{~(cJ^`&HY7(ql6`finR3JiOQIU+BI_3+}d}OsQ+>cyY1W^sK^#%+j zN_y2Y)X1$KfZ`rglNo;ne^ zC!V+h*#MbH)Pd`t(~SFddKjXMXW>tD(FRD*eKolb4oi`jyEW4aQt~sE-1V7JC_GjW zgJW_R=GEieLzLW&*@jPUoogG(^8^|?5UEygQcNK#y;|3|q z%cy8*C=vF{Kza~oFJD{}9h*a3fz7L(Ye({N?&jR)oO^yG*KBSnByU3UT+u>uX2kYz zZho#>R6vrwB=C}CES}XKF~ZY1W~3d|hO0O~l{-JL5%&>fi%QSlZU;##YiYQ1^SYpR zc%sMcnr=_z^5$3MBA05olr3S-cN%;|BcOp13}vrwYXGZ zCF4i#!irpl?N)T+6K?NzH?UQ6godEd#p?vz6K;25J|1IKz`@ z4As|(4sfFZ?o`Z%DKCz@nAZ~xUcI>E%S)qQ%PR1y0=KN0hgQ|2>TxHhD>(CVgQyj9UtMn3 zG97XsUTdH>Ii)ylo`*|W7Q$t2?1ehc=VpvR?AC{Xl)X*l;qe*6kP>+9fdMnVuR>y} z9k*;7%F*x5qJ4y?beo3DUelIauwszt6sK9)T7_2@7~YLi#Q+k=cL_szlfZ33qi^01F44Fw@%9y z$4R-5>*S)%+^jJsawLAeT7lOxfphWT^gpdtcy)uxmEtz9bAy=``-E`j4XwDMVH#vm zA4=BRhyY&nU=W~~a5rZ9QRmN*&(cJ*Nv1w82X3m`#!sRas`)Br!+iX|hB^d^xF^T56L`3Zl7kaQam$FX@PW7CMQSm|wqfX>R zyL;n{}`}eOO6iZGLaCcL&BeXhZ@RM>6{p!(YFW6GQ0-ER7Zj>Z}SHgWFMF!QsKoG zJ~jc-@5X&R=;O2pCn2@)vI`#{MUKxrHVZuOzC*>WKQuI?a_0&Jkp8AQt^-SrkCa^O zPeZ_lNYriY(IH@_0auO;0n@8Ol{jZ4h0$`}V_Bg3dJJ`B$oI>C5^>(2v%!+PJ5VFO zFN7CbrgIs}c@GzNd=RK%LTC$5WPm;<)Y1Cm{eT7^nR+qkJiDagUYs4sojQ+Pf=_O7VZLY;*X&{$(R%XlM*OdWF08<^ zVsw=^Ia-cfzlHpKjk|ualY9ZPWIE((U8*6A&x`pv+STLyzFLM>M5C_56k$oM~56%e{Sl{@?eFL1q`s`2Db$2T6O^ zg%xD#pAC7Cf(P%fN(kKCbD~9zaImac^n%9&Wo4o?R+#p3QCkrq1AkJ8uF~ojl?c-6 zu+U(&R=DUMPaIU#iWu$=5o^Lco#?2HbP0x=McrAMFSm$RP®qOGhjC!C@I)Q(L( zqSSv615t?FqsF@E6TPFHZj}^m`uAYGg_^~P_VApbv$SY+06b2#Ud9HQ32N37DPeqh zQ41ybMqJAXbH5PHqD(6%i5P=A6C&8Ql0qDWf(I2xM}4=AwfMA1dcyg`nreHdGBy}_;S_l>a4e9=K0@0x_|A_*gP z3U+U|XgRes*e^8?&^^dc`YMYCqC$vF}tD;H7#X9)xy6CBb zSN`#R(KHobo%BLfM2}|uAu3Bx`|&T)E_yUaBL11ia5tIwC8d)VD&9+vmJb)d31u^1 zFOXsrc|b`8cTU7Y~#OfrbdWB~|1?f>=$}dtFZ4fL5DU7JsBV zb*>@)o(77(p7;iBAZ{T3nIW$6SkM`qX)KNg2fvB1!iCA=uX*+0yLRGVShNZv!tXkZ zlWBmvSvRyU`KO_cPdba4XJ%9J6#POGxP;xn{C(Qt7Y<-fNqS_q5+KYb_OA$rO$ zN)C<_=l^>cvK9ePS`_KviSc5Im;s^Lb8!+(nk2SJK+>-Rv@m_D_^z6-c3L3bCE}~m zi^O6vU#+%8yqq3=zEu1NJ^K6dU<1`k@y(Ka+jl3#xfCq#s#vAqkN$8+e3&B4x+gwC zt9^^aYRX~SBk?2_$6{Ro(!~W;~5ZY{U)|E!~;M*HvuU} zGnF9bqgfA<4|fd#Ro6)(pys`}ixsrhW*XtdNXY`;+@P#QlKt=51$$A$npVkPmgQuC zry5SSOTMQ5y6cimXYp6+5k(nrMl|$`+_RZqff^;l%YsRM$!iA1K1V78mL@3W?9b7F z&%qL5$&!-eR8L8)wuFlshG_sZQa$B{NvbRNo`nO<`2~S=d12Z?vl;(cSBSWIe4$9h9u1wz_s$vXGUY z`G}+x%PdTS@a{3mRH|FnNy!3M4nLfdm#Qt2sp2Tj)@j8Y4YKs}*CV z=xPQTD`&?^wRE|%t-SOoZ7{u}bUj@)H26Z=Hk@y}?Q7|6C0||DT)La52M4s4{!EWH z=qxQu!KS52f1zL*J*5q3Z^zT6akQ%HBSkx8!r@Y1>2Q{70-rDF5}$)`(p|K{TuwTk5{+FbeJSTpi(4KvfMSKT1XZfW2C0K`?!8I+lvaCf zk-BMhL4ouOT79rx`a4zXIg}o!N00p=?M{uAv`?y~N4peCowVawhox01vunqsDq8*h zlvG7e)BGYmOSO1)NgCMG*{@2sQm~uXrRQneL${@WQVyr@N~^1Q-5k%Pzf%PNZ_>c@ zc^4O(%Vfp0YEj5G)3#SaWIxiQ8^UB6ly96?=A#W#4YI%% zGd5Cofwt9}Wpim;XqSy;S#_d>X$kkaW#g##T13mLhw-eJm6v^k?rY=CZb&oP2Wl8| zOW6-BmnTq1O+mjk5(Vhw9c%;p57$YDH`>WWQj(rvds~?vWRI0tp{KL#Fry}X2e5Bf z*+6QyS81|93ZCdG8%2%Pu8&Mkeb;}0EJ>I;r>i|y!la?HDZD1|=17@QI3hrZa`4<0 zCWkY|$^y|Yn-Emz=ER^neR5>sRGq1_WDb_hC*Da+8ay5Dm?tYG_z{26? z6|yDN6P?xssaIYnt4TdEX_KrgrT)G^Hirh`vfZ*lrX+t{Y>rr^vQnHKD8I3fhNf0k*$ z%nRmbU~zT%&%ENpYRES+`;t+Im!lg&MBQl(-Ej7*KiqlV0b)4Iqv zvqWS7p&q>3Qyw8k7c}#~&>NuQTX{wZ5>g9H2ADHQ-iu}I3t*Q9VBQcrTslk+SfcwM zFkVSCNNN*tSw?us%dd`}3M$+sW$`g|uzEEy1>yf?(Spw*}jd+o8Bl z=ez;?6bi;%YQ5u-B9S4LAPROTjm??I6$@w-Ry(Wk&}yHHim8mG$OY@V5M@!UPEZ03 zdJ#;Zm#=~e^yIbTElr@;VajrpZ)Ke_kU)Rvm4O7xGb#fK)WxK1Lk)h+sVv8M2ZFzO z0;iQ!>dYdJzcKZorjq6A2Y!GDo=8%@W!Z7}AFYfB+4{2Dm zHAWIB&GVEARKM9PlxeK&dahQ6fpt?tOT&FDl_e>~-&ZNoRW>}>fEVkOEVl;;Me_zF z+N%?oRr$;Ygt=RkZz!8Z+m*8!HHCY2C`T}d_D{Q%=w>ugC1VeJdX3wwoJV2e3YEQC zRVjHu`IcHF@h9a(R+xH+m1S9Wk;u6l zQcK$&ex^*4@oi1NDbdqN;XEegEQ?awEZOw{_?0K zI=&iFUe!{?S2L@t{-6jWYoWGm=1%};GL-0H%Dsa$ft!PXI~9ie=6*hE!B zC11TTL-m`PRo#?rN);%Mt{{h%)~YIm@WC;rK&4|0js)-tQ4Cdn%CXY^plTlrgR0#= zs4~(BQ5;bnp>cETnCdY-diAtw4Rz|AbE=ONY{fNISL$_hk*cABH$&z#)nPTO8D{>e zG-LNz;feREo)Nqmz77ki%$SJ@Ab_aYp$|Dqb@(+hB#s8L*&Y(`^({w8z}G*zLjneQ z=nn}PySTbh)io0@+-C2&`u%fb_xly z#wj6%wCd~7Sq!k~aplD49P0C-khLlwa=>Vb*rcmoDe++p^hn|o#Az#q6Y;!AQH;pmh!=N4C zJ_`AXTI|%55VSKQ)}8hbj#=gW|eELTa;2#a3I{16%j&dgDkfUDny%%<_!L>1bO zVJnKq?9UOaszcAvfVAmC&!ek>XzFc(k0rMVf9~v<4gu=I@yh+MIc)M`2457vzMRSRO_u4hz7zVYT_8U(!sU zy)ZN|Wu`9<&7h;;lU1PyXaMeA6Z$7L%aKi?8fw@_J3>z~L=N`j12H_cFLV`!A72>S zihA?OsnD&or%mUB-mH2lG?OOF{u`l{X;oPiif*Qnc-ZtfbUCf2z6iRz;>)1B!+r~` zKyjPD4c#Inh2pl)4C`Rw=kcPCp>)WIw}zEwb}mZHxVbaK6d*4rR1Q{0g?Zp`eQ1;j zIJ{vF^wznkK3wVv+d>_a8XH!JnqYg`up2CMDssVKkZ?BBjGs;H4-Zxf+d+LXrApXI z>ffHV!w$0hw@!nwfPepN7#7IZr|rU25ukV$T6`(e!z@&dGX28>P8~ipEZ|i4sIU^$ zXKluY1#-CbxG3pF=j_SBYR#!(4Jg8bnPEMdy!>ibUX!XghY1g*Bo%w)tV$LTcCc&%;g&nkqqZWOyX_t8XJc-19bU zAss7wM}&`HUN7J&9wOMED8~}^@C$Sr3iE|Cy)O_<7>E+4Bpo*g$AkxRrDfT00lAV; zH9U|jMb*LsxpKKd_-;yjMYC}9MJ_VbY1)Jba;0sj@IbD7>=GUr0JruC59G?kUg3fH zuH(1ikrZKEM!1?K6_5?S0)O8~3I!*>iO_&s#~aCDsiEPEOOx>_#_tH(c~Eq(S_UDB}9O~e7w7qvnrT#DSR-?IuTt%2F2xdQsC-Pqy`s~l&K(Y zf>;NtHB_s?z02XP89=oiiYy@cMtDiM{z`Z<%d8MY0KKn=vpl7V0U)BFmm({5yA!@q zfErD5cS@9S%iVAZ%d{F$r80N57q#nn=B*=b=UDd1DIbuL3?AJ|wS1teq>>sP9Z_dnkHZ%k*_*Ja|-+X6Q zLrrgWPB>zT0@46h_g3pc$|JQE-WaB?E=Gs#Bh@1X_N#`TQEHz|018CxJIF+exsmmtU!V5{gRq7WF_mD(67;FIoWvu=!jlPDTj8 zAb~+%$#5T6&yynC?mDerC=AdEpPfrHS`(Q3_AE=iL)vMei zwNJ3OUOZ7JVM2+|)$@fC>heO}TEI}z3Ze`PQ6Mty-wO$yj&R`zb-Dn{blko&VhA>h zLlPk%$&+D2X@o=w5BOXjF#r=uRYeF$?v5}oB%-V!A_KxB=3*jBO@x5?up?}ujhG^c z$WTK>PfX-?WW-|jc`QvbiJ7u|{mdM5;L=HVGjz*%@)3kqAU9Dmh-ItoB80 z6vE-PKSGUhB+(JsLU4RB5oa*Y>(UX7g9$tn7g0qbgu~i05iPM_{w~ML0WVZL!b%k) z)=Alk)C4VSN0*17YQ#cD?_wG?!OArBjqW75v=n^zMMPUQJE1BdzaM(4_Sc3HX9W=A zQNZdnkp(tt5-~@>0=^2!YZVa&tZCMAVDBiM5(^q??OJ042kXhMT3_}^-FF{%I&ZaPkisUj^&o^K@D8dwG@?LM4D zts}I@SuZUh>>41&6d?seNBe9b`?Y2qtY^}SgTy;nwNF^%AqWmn*tKbxYB?`aVTWH^ z5{uC>+N0PDuS#hT<8oJNZGD{f;xgKC0`?G9!KeZEtsqd$-LtZ*n{Of_vLT8O|U)wNY{dATO9 z@$y>Qi8u~R)zelJq-n(R>t--r=d|*#3)OFcG;QDhADT)UX-fw*CBG9*`!~|gAYM+^ z3Rvz{1pxvI=xC;0iFG{Kg4c0cD_%!qTkS)}MHEcxq`iV7f*%LsyK3jK&ISmm9&FG< zyB+Dg<6G?s9A+o`Y2V{SIyP9_N5IHl6>b}??S$f)XIXNbR>*#@DqKB5n}f%s^0TyW zLKp{86pM)vU1r@Z5+W zU8WS3qdMr`x-yvJhm|@sOaBc=tk(UEmzHT%w z_iyFfWpC51#qCS&(A~htRl9W8aQmV?Iy4IZ4cqV6^~U9q1G;&*Og*F0PlHRkoA~@vzv^z`_Mta)!?8T!maYsc`PT$b z+|iA|2kYP0Nu{W4{7AP1%TJ%^e#hnA=em8E^zvfeAzb!&#e-{K>o#Gz@QrRGF8ltW zYl%u8^wL{heSEU}FWnN{^Zvhem65#tt)4faM1K|k?3e3ro8{==y6jIr^njG)h8J$k~(s#m~~CVeb!zQ&@zkDE=m>HYs`2G82{HYNJy znO{#ln;5Mpp1lyOC!RIL>xpNR6M15JW%b1JRVwJ4Vsm#9%1reUh7C+>q$8EZmTD5c68+NdUodV&ZYA0=5*EX!}u-I^u)-odg-x|VQg<+nGt>U z=;p-V@I|J+7vjmk2#TzSuGakxZw=LF;Ii2WeV@RO#I*4GNWB=_?AAEmX1+|H|9dC|@ z8+g2SoB4LOEj-@c0^S^RAdh!*7mwFq58p0yA8(Fhg}ga>9pcTg{4me+)e-$GY>xY< z^@DMscQ~*A5nI4@N#7Bdqps*D;N#L8dKs2OZt>^Wxx@dy?4Ev-0v#{)R8O*U#dEzX z9Lbyh(xZC`e?#5h`bTjGsMc8OvLD8&dH3`a^~p zVW|B6jA1I~mvD=3_wu&k4Q}_~u3ev?19bnU0Wkj|IZG_aoFuy-Hhla1RC$s zjJt9Bkv)x1Fuk6=jnlBYzh@d>W13I0jVgTn&3DGiSpE2!Mq=iTobePk@5sf*XZZZ| zrN#+bRKCpT)!DYy7>3U~u-!<;*$L2i2&>a@kMRg@Z`fySjKikOaUSG{Xoj(J~y zZd`=h4S#7&!FIU%mvJ2Clk(B{80*(i8F?L_7ZVb>3)|zaHgW{kr?V~c2>w0VA2|@W zUsN)38$RBwOeES4B3|Vp$yCszLgY-$|84EaB#d9BapVwOZfO%q+@H`s65{h7bc-bJ zdzTjZhKyc)BHyXe@kb*gvoPOYV@km^h?t+3RbFtsVY4>sFA5Jt-fv&JZ*cjX+A~h+}w1EHmK3cbb=z- z+M2r2qchu^I?(Eej;2Ypnww(kMXQ>wLEN+5f^_EhFy&FO2Hyth%CAl+>}m_?jC7!iIJDc7Y$yFHlgRHNs|#{Os{F{?D3}Q^r&l+ zsfbo1r<%}%mZa^49Md*hT`)b^b={e!CG_ZTvrLO=bs1->D+=`Y=Nwag3fBUdrqljj zEigsXqp^#F4jZx5guYur`fIb?bcD7|Top9z$~C5jw1H^734IKiw5^?Q+DE(AZZ$PU zT|>0UNu~{d+-^c&CQV9^lh25rrH6O!G_DGa5(oD(-*YcJLgQBX?6Jp6MFcMkZF6#R3mT-M5i>Td?T&~ zgYv+QU=)PiHnpP-hTIKCLFN0wNHjeRM&j!yL4);r9!!C&#lh1Sy$Z%$w>QCF6K9-pSuJkF*f!rGyV*W>p9V9LWB-D&|1;53Obn82WDY;Atyrngc2SU2St9i2U7k*{a|lj zH4L7nY#i+EOjC0pxyQ5!_I9FGu(wLz1W$Y0)*LW2><~0`>y)6OXLJdwd9#~2Qz6>& z*#lrd_ck*>0G53yDg;DKMc)8#7h59~=JhdmQi-;}kAuzY#Hd_1%-odmQWp9XWuZVd zb)*R-o+8{e}&$jde}y^xBpSs>P0kjxb+!NM`-`%ITpJRot8 zIUar-Yp%?84VMQ12tW?@j5p5_!s7G#%!|_rsSA^XS>`7Nh)!64h51hbKBFivR+-WEbS+3(DU_Ma2Fc9;tpqX42&gQP0Ci8Z>=JQ8d7*N+M9lFQM*` zd7uDWe+lh}%`O1|HNc0%<`7Whk+~dD95Fu=63-Y3PCIHo!DwMTF4uq$Pn(@=w*_dT zK0IgE0_PiZS#bHB`J)hp2+});B^~^59)08f=w-7D>Mxq#u-%^Xfc(einsDBAb1xh@ zB#a_&@nOW>VGbh<3fA05j}C9SYwp1s3WOR$dCxjxBY-BLp~g}X40~iQVzW9#AT|NU ztpz*2G`m@Y2X&qV5=-4sgBQP}nZ1-9>GI7R^IJAuu(NqMh~Sp9-H`HtJh|m7i2lNY z0WT78$jrTL(Sw;Q%vP8sv7oENYr$!mg>eXi2z>=>#GrE^l5(;WQGFJt1y~O~gJu-g@u4*hfjK=?jIsK?P9ro5)daw>k1ggf6`wEzDw%7zI zIb+CuGBQ;KDRv8MToFDP38Il{BWqltp|%_>Rl+h%LE{QcjtT_U{Wwb<99S`l7PfZ{ z$Us~U#+0#q%NkvnA9x2WE|75AqJdwPv$$CuNK}1N+0qH65NuH0@<@cr@-;1g;xeI@ z1zkm63;(KZ*^0|ebuH*7>sr|9OAEUCycQ1Poh`ib`HI-Mt_vW+8DlG zYiYvv1Q9iVqpCN;z?Fs(<)EyxnUJsjH?9#~ee zTdg&8Ke8}Bx8(tdLu>NVC+_F*t8IYe_TLrUUSh@+YG+G+PSk!yCU_4zN91gFGa%8dwKxbnaK^Ca|?3d?2-6X3RgRiLj29(}aVojn<7g&03kQ zjH5P8vRJpX+7zAp6_{qTvaY+3E>*xSw>1nV-m_E}!KV%@x>vszbaGqQGKO3b5+KM( z63Dwf*1N14{tsN~<|^32Z$)>g*MgHJtn2KhKx zWAncRX!xb7*E0 zK8I>FW6dF~Z+Y0Uxpj;H-O2+5pa+9n3dyGO;8bJur;ycY*3i!uVeRf&^deBbja31! zwYH+CX4ZnQ+6u|A|LMjFSF{t9VxQqbM@K7qNN6qC(OF1(eTIk);e>`%LHWhwL1frF zf_xlsj~1X==xcbPr!_}NBx85$K~{CE45B3aMJP1_l?-13-~EGmMXrdrVhNk#Df z3~Myo>OTmIcAZ6N3D|JC)c|6Fm2GC{(ZG?p-DBWmV4WsGRvWs|nkPVC&~v5I2@fu^ zu4LN`6H1-<&molh-Z}_V%3H-aa1gLG_;Izhl>l?s2bv%~^hRVWwwshEkvvmUw zFnqBKRN90NXScUmVdrhu2FS}`-3}|;MF~Qe^rnUwqM$q%2(c zgS9KNCH%P8T3Lq5$_K4d9Fo<4vZ_N++32)2R)xx;m-%wVZR>fqD@mXFXImbU^E>hP zv3ftSK0s_i%V$=$S4|068idcS?*&-1GXM!vJskAX8iQ@N^fxPdF0Kgncw01ihE=*)W zh^~{#gZl|K3qR&JiM4%=-8L`Y#+XYu zka<{$U~dX1mpR(!;$KvgRkG(uIT8TB?K#Wl$8+tpTw6UsVVGZF zQ-L#iwoo{Fk*&UfL7+YeLV>#-+*W{I0Tvhy49uxKj@sA|2-DF%~l`kmfFyF z#HhRf%(J~zAibWhv6W_9vr}InGUx?9ikiN|mM_Q`2(1*@d>(yWT(%n}K*Tg_1Qh>Z zGh-Ln_S?>57Zo40%@yQ|!X7uAu-Y*j7l$kUpljZgeVo@=ysIrg2<<3z1OgSpQ*4fczzhZdMU~h&?qsd+< zLFGlOeVu^*0P4>LlALz7kCS1}-}1Bd1ebk0A_T&G_BBkCi+zXRUWUz?c91A?v`s2OAd9tsEk$ISCa{tTB9?&r6YVG2LirP~60l`C`x)do5LMB>i_JcS5=2V=Erbnp zSGB*yM0C~dI|UHI)-C~O*RZ2yP%&It%N{4lcX@5KDmbdX{izF~rT4T~LheJK+qaL# zrKi8W5ia`H3lUJJW{yJnw-k4N3MM`5|)J$ob6HJtZ| zZ@2o1y$=5U$qRcFKCXRZKgaf68aqTOhwg;)YJp*52l~FI-)@Cknd7b3I}?T zwHTHTaiG^Yi{ZCn4m9Q$!!l~ecUY(GTE}>{DU~>-J#Y=VVZfg)2!S6>4qre8Sjpz7 zgM|@J2irB9|AAM)T`q?cTl=z)*I-GMW10fVrQ;ku7?TCh5oFAUEy_FQv3yOIyvu~H zY3jhzydouRRMGJr+ZM$RZPgrEO3{4&Q^a@bI5r5FJxw5^u|oltE-RA3w{;ymCE!KB zEG;}x-%(b~SEUUdR>ql*D;ygEnxs0)!;Os{2YEa&CfPBIZTt(u0R*Rpo0~btNO_L6 zT07cMx@*62OrS@TIyxAyq}cz_l?x0_aWGEQ7ziR0r16}5gi&s^uJugqjF5XS;^_8RsTj9AUZZ z9Q=y`K=XTlDTIq0ooGaqSmszR)V{O_C!Dt2kuESA{?p@I?xWCjE%L9 zJHA)()i>uI$3=Yg>_vxyhU25#j&ucowA&*zEA!RnPaMr;e05u~9O!Ryklt>-cWk4*t&lr^r?I_0)ahiLK0etld$q#~mWmv5uq(Y~Jlv{r zmS9{#{J)r?;KuYS8sKi+r3Z}AJ4cE?^Gu%6nNMRN)#5Cz6rJWjSF_&Z+$Lmdb%A7g zObmSPbN((8ord?LoYSSEclNO;@S$-0d~$W!6OX3mX_wucDdJGLvJcC6MS@T7y2 zaXo?0r|u%JnYHcYl*y1eI(K!R5$vwW?#^(=Av4I!2}621(I-^ifurfp(}F2w^>$i> zQ_AY+yo4#W8Q?rGn368j$@sB!;{8z&CEK5v&68oy3xe6K9^tGY+&~9MJ8xr3E5|r5 z3Z~TMJLeL{$%zl6TkD)*AO)5x1wT%5{)9)PpQZ^5Z-RK{z1ImR&2UBvvezf5S+kwD zu+aw0b)FSsv`>f?fs^qDBOhAe6O?^{^A}9+#iIX;T)`6OZpIPwGq(~aq%L!!i*oNk z*%i*?|BdB}S327>?(KPU$pua|D6Cgv8r;0mX+Y%Qq0P=?B2>=U;$(cfpE@O}mopSS zms-jO+)j5UOxn%kx7y3&yZ1XQvE9R=;#l?bN{w&z&6vtQJOre(#<9 zW&nKX;GP86{^7ii2M@AtSoq#qEND=|;AAV%SL|woRv_@O%+(6PLwks8KI1-y554^p z&?B>?YlrEv|ziyO=s%!_d8fji7)g{cNtciiL8CYM1_29lln3(+Z>MXt0Nb|$`7;uRLP<&2Hv){@3e2n%RRL70iq^(8OY>F+39gga%H7Mmo?;s` zuk4y2AkkZal%7#B;Jwsa9p0?zTB~6neh5?o{HB=;ygodz=em5jpU3lD^912u zZ|@BOg(-397qT}p_ySiW$?28}sJs5s?9 z-+|5rA!l8zyQ=^)`oifiuC}bhRRF~W51)6bgrW%Y8Qy1sMEyi5ywSuHCx*3ub)g6S za>3hcF4n~habMmI*C9s5AOfg|{q*}?*D)a>wD`X37$XN9(6eCOhc2|t%mt<=F4p}g z!8!EQ#k`Fn02g1lPGTY}Ub$FzodhTOwW}QKK!yMYf{d#!x_KG;r)#GaQ7ZFMNT5(e zyl&op-~CpAw?0FHhb3eTTruL2+pw+7!=2-$`)Cu&($CwC1r3eRjJ`iC^LNYCQC@>Ta~j$c0O5 zy3v{?7xt*dcU86yFaKHBtrpbfsK#z1yw=pc1KWse?nW=~=fdtSdGxr}?#F@>|JGFW zKKS34{1%9IA1N{vB4imqDAkQ_s{P@%!lhl@aROE!13{n%Isb<(R(5w6$&m&*z1_0~ zF`t>?R)dJdSSyqbbfa%M^UUGC!EW?EN-k_P+|9i0Ag(6(3Dsi5VbzgtwC%`+iYzzU zcI3hb+3r}@ZATzLb)es!(&*V`ytmGn%!ktWseI@pPjinJ5HiX9w&u<}cMH~S4Pu#0 zwlz?`#Eo`wxv=*#H`>wU!m6v>co_&wu5*tRkp9V^?PykRaj#(A(Ga3&bCduL2i<5# zlMBcH>_$79T=>UnH`>wU!WWm^Xh)L^cU^I#9ZfFGzUoFhnq0W;jvMW0a$)%gZnUGx zg|D8t(T*k;dS1HGjwTm|ym7Y?5})Xc=Wd9j=JE$VRr5ab1bT=(c|w3eqTHhbNx7~G zu$9t-_A$9|ScpehF1d{!ejmf{kJ@Q@+|hc^ash!(b{;Nx&*qVfMECeDQCWva*p?`N zC)yG)6_2qP2ZH}S-P&IM@OI??NSBmo(lD`>%(5}vDU z^DDuendWiAs?nZ1jHyLHZhhfV;(JhEpbv(75|rRtdIckRnCQ`i{Er?hoK@L#QOvU) zTFt}w_$BTLqKbzr2us)Zq%#g)L1=)Wwb;v@K>bA? z1DN6Qu)XeRC)y%^qrb^cynL>OXOB=X_i5!}-AEA)NvK48GzcIh5BX*U9O7a8HY(QZGaxYBbA_5}%qY)ZX3z1E(4FOBe0lPJc*)0l zj!|B>#|h>IG#x9d;N%IOAK1q(UPF*=h*81#$)2AnJ9&-=3bY#W=;~>nmh3aYATV>b zCk$l&TB9H)_Dw!&k*m} z;h7=pCsqWewhte2eapd6bL} zLZ)a2@>`?Fvr;BScZ3;FJ+0ZN@J~nvfZmgnL-5kmotiWJjb|@iCtQ8!xkis3`QYit zo;1xs(iV4jSViW|XWWYr^$|!k+!W~@O!-x?c~h0VlUDn@4-|ZLX{;Chy(|)Xz2dy+ zp*d1bOz`?>gKibQ{V2k{s@{#Xy1b^>$*(}**}C4#RPP_^dmAtYFGS7{5gIsBh;FO^ zcFPX}H`;qu_%2F1eA3aI#5i0b^S6a)U2hYCmG)f@kkQ*5`_ESr!$H%Y-r0ig$1K@j zq=L!4ynW@O!*G8;uStf=OPSu2GSO>(fAfzQBT0{T;2+@?@-2JUj*;GyjKdwLncxJs zj(F>U)#qJmknxvK3z{DFb^?k~Ui4Lpqh7|rJb;@FKA!Q?hwz$bdsj(7!i}L?pc?08 zd`RdYz)rYhy!SL?Xa$hI;h)EAH_dxV26p^D)ChX!Al==0UMn2PdE1M5$~WhF`>@U3 zfsQ&s1Mo6_R>>X!=?9W_cr|eJeDB+MVRRk~JDqwqcpnL%`$&6XzvEuLls6c6+PhU? z7Z3#x<2Q@wdqNZt8)dy+S@kOw&ht-2e^K1G>GhT-KWIGqQFNZI_ z_T^LCO(thQf)rXS5H8)@Ix}$7H^*GLw}hLuS4Owc|O*= z7@wFUP`X2&w$O)m$b_zBsSoXtN%idaKD0w7)qSgdjfF;3?m=|dl{|>3-RujE;1|@j z_oApE3+hh$e5@~H1XV&^7+}={z6`3t?w@>U4^1?PJLN-rXi|;3=tFyGQhjlWro0yJ zxZ*>5Xma%NEg#xLlWO{XAKF8cYV>0t+C!6Sn-@N`hbGme-+Y6FxHq`Nf@p^|N(q|v z&8!cy-uI0L9i@Ijdp~gNSdj``NK&T4?`8g#jO&%$GyY~^FN|`5tmghsAX@I%gW~3X z#?2o>>k4i?jf#P7RQ?qbP&_D83&O(v$JiD=1TOnSloNih_Mc=7Py&*2G0Fz3M*1_t z!PJl;M!4VS|0w3^oi5>Lz14-aO=<2|!}8JoD(ns*ATE&CGs+AS9ra`R?)>h84gD|ZY0*vmlNsM}=FQ&R&-kn&J{_V+8Y+gK*8ar-Uwz|e`-YqS zQz$iT=V!jXh8<4g@mdG}BFbrUXa6Rl;Vn(|v+gH9DYmey{|Cw`EzQ48D5nQK{LHu4 zf_8e8?%z&1ZSLb|-2Z%1F`=KIb!Yntp>Sl7{~#Ud77g>S6KZz- z2tWGEuw>wTI@-TpC|tK}KkLhD$YR~lweOpu{JU!p#`|CLLkM^@ML-%-O!Dwy{~SN# z=bmvwe~x6I;YatDiP=Q6{fyU9{s(g==YPmPs(;R|S*{=52_)=d=KJ%Ro%%WE)&>5* z{u_1^7W>h5iLm=B?>}O9W|^P$TEPE!q1y^S`fIU-oo}^({QBH>tJe5gzY!K-M{lEk z-0bhodS3!ZaQ@=bVW4n{=UX^?m%knRva1`&>rx^X6u&6d6_)zR&-mqY`;IgIT8ztG zY?$1ArS;&9Db@hZm;EOcp!2lBM)>ZgpYgAakR(T#7I^WFKa4JWetY0YAF06c08c;i zucOr|Py7dHwZk+2R$6tv@UQ1%2VQ;YkCOAJY2OABp1lhqtobX5F#JOhq58)l!aGq^ zBg&z*B5E+>_LansS|4Qv;f=eXwf2w_2Dmpo3jGmrvM{x3qFDFh7#Sku$yDPt#wf*Ptzv~ZKw&qv4f(}hMH7|kBUMYYErG6 z6&2WBgpP?q8)|a2=Ap66bVvXf*vT|LZQWV<1Q^hg1Z+f#S1M`;NR!mJE3pC@B7#4o^~zPJ(=G7 z+-J+#_vk*NIDCdbcBn;h&0K%%P>bT6Z~PUORGs~`Z`m^34v48<9tYNkn@jzv%iKjx zH06hgLA)ODc%}bKONhDoD&)E9PwV{a(7y=kPJcWF z@B^&b>yKFuS4ya21me&kf9ePXVCpww5_2DBdhg$fok~&Q%Ar~Tt=Q*d{xxYWB91g$ z+Jxx#v;U{CIGJ9~S=|2`dWAsjj7e}-5yIiV4NgAJ~BEUsUU7aMZHA9qVQ26)59 z>;5;aC4x(C`4dMR1im!n;CIKrHL>~k1%*xe4Ud-h9U1WVfrsn&{5>UAZhPpziP-)B z-*?cC))JmFTbkxeysF5vX8WJ}SA^Ej{c-9_m^$E<|2|7hee!pI>R135a3Ku&!+*ET zCGDO6UK$rbC}OsAp`wMb_@n<-iN>6X0f%WUB!RTn0n}c<1W;%ja6#5cw0*!KOSs%~ z2%z@%IhW}$u2KL_BMMK+b`7BJ02YS+%`M=b9A9o#4%lglSfi>0Jd&Y?dIu1fW=qPh z=@UTh-E)8utT;J9-rc#YcEB+_D#0`2+`)$+r9$ z8bDmF{ZG)1;Q`cM>OY~{XaY{j{F1bmILP1i_f!|)NSvAbUw(e@BqrcDnct)M|4M%g z69cG?SczZnZ|=JQrm0ybQG>o20XUV;y$}+z0wRd5C<(h3+;`?(>*~;^e!v9z1@9V` zzu<7=0C!@CTYACLgY~L1Oeu37CbbX1#Q=i#`l0}w@fO9godR&iTNHD;l)tuWxAI?a zbq{z+obi?zytq_P!SbzoVKcjKfgPL}6yR(l8XoZMtAIF*JO`mGOUt31M+PjDA_MFj z6M(&JA<>Ml%Zu&D2VjR={2DMZ06W~Gcz1HZdHJzpB>@kJO>0TcHgf{1NGleq%q!P) z+&ASqwObg_j%vzUYXZix{q=)0Va&>a0%D&J5ap#5)S=FX0PODx9lY2Qfc-sDys*@PQMVv()2=Q8x zed(x9fh!|~p1zAw;E0YWj)_yuvmk(X0_-Bzu(I02W+b-BV45_=5)1mle(ZLZq9P=w zD_p5zap?j@efG>s>BkbB0$Z^zSqf^ml_P z6n&|#gh&nMc2Lw|tc5~ex81U_;wbJV;1na9E0)nI3SdCspQ#~`v)k4|fiqBlt;3_T z?7AqTsXbF!&>*nyq39`D0LJ%G?7__zC@D1TS6-|;K(SW-_0B-WMBHJ)Z}@6h`3;#P z%8ONt%kRA~3ZtELuV%dBnxsMSovhFi!!{u0DIP*{7PUZuM7KtG?A)Xvk0=O~vdfC9%&&*y?}G`gw<>TsmeAY7?TVMOT7KQjBa--a z^M1vCxj6Qq0#`AJU!x8y+Ts>0uI?X>E0X2MKAu)or$!VrLt?u6xepb?%10ue%k?(# zmV&sR9O1^ozS|1w=!1B^{yoJ~*#T@GD2TI)+aBV;3aw@f626ZWdu0+&pD3skuUsAd zo++q94}!_ymx>)S6XRR6fpqMRf;#XZo^SnDFb-)xB!KIr`(KJR>)4&pV z=@Do{^k50#j8~x9aTZhyByL@ipp@Q$zY!Z%xZ*o7MK;k^Kg(z&*A66)YY3fQtsA&W z_TWVURL7H4;vX2Oqki>~OJBa+zJ|2NcwBhkU~2qVy$tNmYVD}k7Xo7fJ5xK0NT?I* zc{r>J@ArF2)9q(c0tZ-x_qkc1m^EJm+f9MGimcn4mR?Mmk3WjG|G_yASYI#C_=RkwCAPg(I1`ddd#ilO{oI-4lN{kUI z92RT}#9;)%%?ASchGx!q+P**>M!=#6j6W8*T{fEO=RoYEiyNwz2I4S+C}y7x#9;(c zEWH?r!w8}{@me6?(9FTM-wwoK1W{b}OJE4qd(rHjS?i3twtN_&I^g7SD$#=gq0SPY zmE60QO<+Z~-&)lj0^bEHs1XefS|6}KibqdgXUo3soWWXDP%f~jkG%f@p5;|!qja>f zx(>bVm661_11}tvNyKLvKHHPsZl`R;(p{9qE;ej%QR+|#_RvFliPmgl2r&>akq3D) z7y;U_>48d-a|t8-fM$-Ym5}Kus25p7iTkaSl-}T5M~QhNud^5Rl+?K@ z^DAATU4W9h_9bW0;ggD;G_WGXR@_jOhyM|r>^MyoXrurgP9 z%o3}C%A_34*=#OU68o)RB#UUE+=sP={odG;x;s!xK{T+b@(>4$ZKkJ0t{~T;kMbGSzy1Lg*k8GjlRGky>>d9=tUp-!?mr?|=PM^)W*S*(SB{})7 zV2k+P@Zy{j^X^`UJr|XjclSChx~yzx5$g>Pm3FMn##(l;{igC)iz=2GDi!A6QPwq^ ziP_&ZH}gI{Pe#WjO`C?Wr2HW2VqFYTxW8BR^nnxW zT)%f)7;g&tf$HKL1_d=_y-o)E;V$7IVv<~jAYGtVgCHwhDZZ?UJJU1?Dx)?B5sK-@ z2KmB;ra_gc)ddOlfyHfu{&Z)*&1r)B@B0N=;d*t>ZTG++;?x=->QxK$JP2}!26$tXKP-sYl@``wXe}ko9v&2dOO3c%E{_f(?&g%Nk0v9p4CL-3+5FA8pyjyR zg%kR5Vi0xY{tI6CWQ>#+d*X?yK?h}4OG<*sUHNh;gJuR%C&nb>iTa_L6NDqFLRYTy zf~YH4zvyb={GgvL*H!ewpgl4xyCp%y3{!uTvSeuxb?WYKD8b(ajgwg&ToFW^cl#Tj zVP#OM98YSl4kB(B7kE&-Cg_BPEQCE zemV&EO$ZzPafa%IfKaEXgWvcp=0`4{&UwI0~p7f_qz_;;zuhEqJ3P0POkhpi1Hxdgf;e zoDajQ1xHtuT1G$n1?NzEn?gk#nx8w#Iw^wPS*xKza+;{HfM7XI)Z@Crm?nz*DO^(q zlee&nx0wzHIRhRAv&B}Te_0zmQi`6?IVPAqN%;jECn+&Ax*%IUF_>>=<-Fe|1%I^2 z0JTzsrQNIyce8eaz>MJ2R3FDLcAnI8b7&BpMD4i=6w!05+B6s^DTSC*TLkl+tz6>f zZG-vFR$j~~3T{LdUcBbZB<14n!6np5N;6bA{5d=rCn*KD!J~uu23Jn=@uXnB!Ic;9 z&J5-oTzPTL>|nmZl^6TX4dxqMd2!{UV4S2BMa8$le1j|h_5Sz4e1q$NCwxSwFFk5;sSl;6L z?cv}MYUoD8Gz9EI##mYHmv*DRI2CNk9#`B)x+&C&mF|1!#9WK|JFwn1N;j5Q(V-$6 zywkrD=*xl?Hux^w0juS=y20A>!R>6Uj{I#e?8qy@mUXWY*B!cF4fdl($1;zQPAu_8 zFfm~g6VJE&C0Jg&yY*)9`wA%HhP%PV73nLgtI@xwiKm@jte)PiRf} z@Hn_N*M0Nn!AFS15O*0kzYKPw>RJHUz7Bq4jYK~D5q!`RB0s(jHc|&3P{or)7HYP? zQ)mfvv0=qv9|_pULh^fV$idC zNIzS=-t`T+Xoc4uwL&)WYxg=KIK*}YBI<=G(B+`HBIG&0KRYBOk{WODo!_!`okRMv zTM;4T!E)|@JWn-^O0@z0o$^OjhAdt3;0;Vu)d*CjCo4_!RMRECgqmJoSi z3?YwK2qG&}L-5?pBWy}W$Q4V76lR5xhbRP*{<$HyIFSaXkjs`3sa_aD?*9uSry7K; z;zR~D4mn990*Et>M>xNhA=I;51(j>9LSFF@eyUvvb$C?ZOzsdu?&6pA4Ot;op|GwY zTe(!f^dwgv1X~LmdxxB(Mj`~5z%|lzUCZ{7OM(?Wiwwha+#?B8-?-J2J3klODN zP&_FXEL|Q_kJzmTw+$gB_V_JZwmoDR|F-$=4)LIR4q`EBOKtVNA){Sr(S`fpSav&9 zQHi+)_}jzClOa911Bh8x>#~q}oaKUZA>>)s|G{^G`4>WPs`UtTyc~j4tw$j3YDfmT zwZo~GCu)+qwpZ_lxDbuQo4k#su5E?qA#JE#TY)0FwsEgRa8eSD{bvYHN*;k;e}&+r zJ^42kQK&#G65bTCm3-jw4IaHa=7y()Yi(P z)!wEO+{e=HStxb2>TP{kA6D`z)DPZ254}SDDwhrqqbL=YXym&p<37~Iy(ff@9P2= zs)u#5K<6{rQ~xkO7V9162AMu#N2%daNQ+PwnNRf5rz^tl*-8o;6B>4kuAmK&8y-gP zpbPsuYr-(0mT;xFkzvG+AQMmrbYbK^x&Rm-6ZTf-QW76V9WM}2trNqj-E=?zOa>rS z0x4nC(E>qZN?O=w3tV>tjL!^TXcAN$U`#Xmf zP#dW)MulyWMlt+*g%#OJVl5aDc811MB2KPZfv*H{8585-s;d-0~>VbozS!DZ&i zFb`r23J~D5Orz{;%V=yEA7-SsS%n<$Cx=y*x%f>Fqwd@iP@hV|-cT#H0QfK~tfI`t zlaVX7fOjh!Yl@V^QX=eAk-|jR2$~R_ARd69k%QYqaH=gEB35^ZV=ZV3mZxu;t+VPQ^Tsl zigRH*EJD%W4D*8)x5J)MN7Mut{q0-Q(h$gh66WP#Zru)f6V{&?fFzx9T)r*@?!OJg z)3^DD2d;k(BWK1EWP7i9Rv9MPg_l^Hd4@WKe`66(0lBkMxVID<;J#}(ro+Py~6(>F9+h@^y%I$4+yJ^yv;(~@DKmVf-oyVGK92;#X;dtvLri0%jr)E zFE6%ImrLRk5uQ#Ryb|UxWrce{gOu=UcCsWaEjb)FzqSwahILut=@uDAfIr9$FO^~w z95jXFq7Gq#DTU!%5 zPw5+uOG*S0r~cvOoNGdZ=C`{*(!g+B&MQ!ThJ@q7BT@WoXn1pKzg4`T%@a9|zBD?! zX-s${YS6(JX$#meJ^TrEV3q?gF)%x1PB^YP5)wY27mjO=L~+lea9ndFia#z3pHKae zh}V1>qAmC#{0P;{%~0X+bZ0oOITGA@?hD5?N1}N9SU9dZ62;4>%N^v~GvyA_>b#y_BzYgB7wer>g?MgI-I z9Xb{D5YK;FVRVcN&oCGI)5iZ-`kS1fA}7%?>(7am<*O<(<>zXitm_oBempLkfrABuGB%Nq0^a*|qRXeC{ssGV}FWX?NZpD6T zud2)z)mBmaB4$jvX4i5~t_&BOsT?Xu=6}&rwa`LM3S?hMZ>=J)3K1kXbXGad?XL2c z2H)E>S6f-ZrXtl>vdt4atCm{AREDnui@T`EgSq8Iw{=(HfsLXDt?j8=@}Cf^)LZo} z^{ZP>3^iy2rh%%d5<7S{SoPW>e?+}ihKa*f7cC0g0>!RaRnc0i%ymYqYFjKT`)GaJ z9)2CKx?m|cCjrH-2B{sP=Oop8D~aXsDXLKFL^?!HLv3s?85PFWBF1e61t(nH-A zwjWV-Cqe;AIne^=?+j~Cs^a8$@$r<(K;*%jXwBHjpYA)r)AOo27BG@g_FhyaO0-zu zC6y;DnWFNB#LKF#)ZUXI*ye`HmQ5J19s(zBsXQg0fERaEKT%Olwbjj`^{=XM8xe9@ zi zFi(4^&r>5zIXgDFhq?xCzfkY70IDmSHe40PTx+S{&?E!ovr-P6mFlW9E#T6Eoj&l) zfju6t(y(Zy`W20kWIm1r*Mih~nVKp@z088()`IOne%}s8MyTcQI@Hjqk5U0kMyQ*z z=c#IYz(!?VDP+P?gWBAl+?b-KwkJ6>AT+r|He{*Y*}kQ!7#5nTCT}&6MHO&U zh!z!`PBfIGhSa9qm!mefDI4XhsclL#vM(GksW-|ocT58{wP7jLk4(uy5&^JDl&Ahj zn{tXw?PDuTME!#73w_$C$^Ga5A?XWN?bVay2)VFGO>I~H1Jt#Xn%u4|hXM?d7NYb= zQ(W^?N3yv7>fh=9i>gN?xIRE_kehQE1J!bKuJs^wWop<&Q9H3`<1vIkudJ|R&4#NV z(?|j$Et9D!MwqGfD^`q zg+K58t2&%IfXt;5Y}mb5YU+1bfP~vn=E__SVRFh? zC(UB+FIQYNYq`IS_tbo%4i*cU%RZ?qLCtEKP-+*s9EDZ2(=3D$-kQVc;F92teKdQy zH&>~nS1>B91Rxm07GQ5tFj1}MX4ty!DH9`4XM zR`Zc43oMP-I1ry@_-qV>C2ICk&4B=gtY?2sEA}o&II*HD*f?cb$|W~XOrHA^f~ zkU)tZj!{lxwRWUtrp2u86l<8}th~pRvzq?(f57U{xc`FHUlTOrWnImltfBV#&2Hff zr>AHRSgtG0bWJ~*)wUU$ITlzD&?7EcPAFpzC$xX7mj^q^G_x%r#3P_DRG6~L1VHTlGi@NOuXD@2>2fH0i2baIlxdH&iFiYF5!mk-K|T)|pH)G&bHoDbiVFnrXSaSTbY+(| zRS$#NRU*h~$<0trz^-}(`M{>$bt2T9OE?QZsj-C#wIUW0%>@Y6nP?OygbBV<7z3jN zBbE^vl%qJolAwqbG8Y~KZl~UMfq|-svt%yiDAzO*ezM;>MMpfeh}MRL2p9M|(L!1R z<*~k;mUmi&!pZ6ko3Xvb7upm=#9C8F9$!Ry*w5N9)SI1X;^GW$4I(Dnu?k!BGFZ|f z)Pc*?A_a489zpH(GK9BbWz8eX{yjf9(;~v!#%ea4ZxfMbjn^9OBlHwG5ht3p>QZFS zP83B<`S(QFs8JCerRB>NIz@E1wVKU(caK<11L_HDdqe<53}n$0D)fn%kGf!s`bEsA z61dPm!jnv3{Gf>MIDz1y5tL*6gb+nvMWmAnWRHj#zzG~Ej+p-MH2_H9nBBjBj;WVL zG+{df{5;{82@z?Pk$@OCOIj3hpu)e01B5$`AYipE;zR|!p4t%+;fz=7V-cI`{Chm^ zq7kgk%8}LCV%tberTVIsCwm^1XU7IVj;PGC&$n=%J7$0#%WoG^8|FWb=vKunKy|A~ zdmBq$2>3#OHBvvUi^RiBX2X=|$SqtHLt5mBUOTpoTxo|_mkyD;`F*8D zk(HeAdbxLGHGbdAVUhhE@Y-=)B=Gxur$$EEj!(nt$UFk)n!Yu3BSmkBR)p{KuM~?!2!YDeUM>c4eb@K<&Zks(G~H!Ua7rMgP`UA z39jzUE={}5s#MzjVw0}@o`BdVC8zG(dJmnMQ-<~-;d#RbtqJ;NYL`F4YXT`Xn<&kDej446tL&@wH29n8#ABj&9yx_pHHo{vuJ!I zNI=MBqHYV|R!8ke&O%I=DZ6U%$kA9G9xK{SyO1bo14!zv-Bn4(1lQqO{6Lkm%_Ft5 zX<{~D2xt%Ii?x#})eLnnBRmR`5hVeb#H2{CglkCb^W)IzHDI)SI<^x!IO))lz2B z1;)c|+8qRo!I|yaNBrG8cWJ-<_i}R!^u-T}_A24s(!;~{X$v`l(+9MRs03UOX^#^9 zr!NdXrftm$T>hD^{Tij(^JMeSJf$t-1m2cWTu;(s>{;zOvI#bvmo(sZiJ}3xb4lBP zEd1rG+8$i^v>SBcC*0KT<`}7Ww4P=^9x1PP?D10mr|z zxYVSS_5VbVg*!fLPmu`(S?f%kz*japaxC0st1Bg&K0`;rwR!|8n@YX#hYaq~9BCxU+oxt|Kan-iH$_3fsajfgUJM{wbb?J1g5s8 ze-h5N(On@sVP1RP51hc;A{`~6h|oZ0CmsE(yt9jLDJRgpJ3Sn%=%G77)o0 z*}l59)L2rdzwQ>9!194QJeQ@EbswVJNF}g;sE*z^HVoI5aRMI2y3JGqokv;Vgujf@ z;W;d&?B{Vh`1b^0<9JwM#>70Pg9C`)F zo2whfF-qsrzlTrf>+0gz5p!Rp`;n@MR*Q9q$o1gxQmGzH`A$a|)`ULGb)@+h5yGym zmW?rIfD5tugpN35-xnU8)ZHgnhu&q_ zu0R66p4E}ZEkn-hRAdc&zNl-$2{gGv?=R20syj&5z{l&72?}q~`${uz>y~pNboX?_ zss7yP7u`jU5&DqcW$O0Gf-ckR$2y#uE@fSx>XuQ3SochqWlMXw0dujB^5uC>Uc>Y^ z(iq0)KdDW2fffMy?{wRFpt1i*4R|t8vroDoIFOBX6ft7SK=ms`@yQhSt6dba!Zlcl zin2t>_OQS?O2l%4~2_sIY334Vm1hKXfket54Ke z3PPU)Q6_j+Cn}l}3i!heAFc-b>P3~>6I@sz+|Ez-z^&fNBVa*TR8`81pc$qbWJg3z zK~I6px+uL9l~8y}loRXHIysEFX=7~JC1cbjA`~FhH9O?vlpVE=^E#LpRgwRFyg}3+ zXCf$bDo*YX!`eq};l88p9HpSRqR<&4xxuepqXH;%yBq;Z`a~(nzJm`tvqvpzd9mVt zQC`riUsR8ZDAJ9gQCF?-x_wwwBX@$5u-({zHNSA*16E9n>PPg;0@h=DvMV#qOYH#8 z^P;K~bu3`KV9z&ECoy=yY|i|yBzJ($yP`I5Z?C?OH2(IU6<2gZPW@YE(+$*)!IqaSi-{ah*f zHdQWYQzd#7u|As^KI{Sgt4A9-4X7FYl;USIf}&fpMaGm4Yv_q`>j z7VN{_ln!wHVDv)n!b6VHTo{qYQe0RB7w5MrPHf?;lnKz~Y;+#MC{m0<7P(Ue&+js}P}fk#CDKcg{+Ln)kp7wyBZ zFF!;N;E}P@=V;y+hD7U_>bNovnz+Qc^1nN~#RS&G>x|HtoBa9S;W58Zlv7(5(~`ZP z5+hp0xBtD%0s`=*Z%`H&BicZF5@P&a|2>XmrTslq4X`{nrWUacWMYWm$@cY5T?00z znEhO1M_R;O;u>1iDhAJwF9lPZn3MeK+b$-BvKm=90lvnL>F1@ouqks>!LVrpN5?v53vyH8GtmV}l58%yc=%i`_0uWzczj%rkEH#=9j2hVPXWcz0jSZLYvW z2VycRQz`2&%~6czUX8Z`;^+3WXR8v`DoIdV48Dm4%yUZ zn1x{F7JJPJS>31+8^}YXonP!k{&^~?8~cD8evm45A^*K{Wb8El`*+c?6De&1NjItK zjx6WReP_15L)sP?Y>aJ79)Z~KcPu+e!o(FCtUEl zyie>MF3h+Av7fnR#tn{b?Sa<^lVbZ@Ce)fY_ubj<3+dItb$0A@2cj=CAr!}g*u}B; zxhS=k#=hp%z1GK0cgE|A-Lb!N5vK2tb>-J3hhlee`!zou+u0HksGMKNtPsi&%f&{&W5_R>4)EwT-*SMXv4;=ghB)N^ze!UVukju_dA_m>;BhvZ0q_ z`@*>zaqFprgxq?epsEv>&RGps#PRiV@JJc=flKpCaGa3FQ4^QQrODLC{l=xxro`3c z*ZS#k@Az}Mxt2&%HO+zDZXQ>govNBP0G>9A>q2SAm;;#uAl6P?`wk0w#f4$(42}Ib-^VTCfA9Js?oTrO(sSu1mb)jeB1~Ez=R*$t2vY~^dio&P zzcFrhC2FK9zL&lertgbeM3x5;s=%ScagTWISaUS)75}^}DUJKUuM5iJhLIb-U)g4q zK;WIYZHUBf-H#hf6%v7}!iNWOlemkG`!((j+4XBx%NPv(e~%MWaoK;wQKptftwf;8 z(Cg2*D%_vOy^pI%_4=(Y@y)1CG{+_0jrDX&^#T{`_~k*!WOGRTCvqnc+Gglj=lFO+ zk4f}&;OB&RyI^Ed);azy_okn_#s_edz33iq&9A@rjJM&}x4q*dc@zsB8gI*EZN$j< zTfFJ$IU(MM(yQkdfenk|^T-`?eAo@9uZTa$=@qVu*YRe{#P#v>$Q3i`QHC?D-yOe+ zTrm;BlN~!2@6OzEwQhVEQjE+0ayVWLH*P%|e~LTb*yHivxlwCY_dD^GSh#iO*AR0( zK9bkdp10#EbKJrNh*rw&9(^zVPilh_Haw5NL)IBS>;yI6#Bbu7DSI2gn_L-s>oVQJ z*FHgyO&`|UC1EmE#RyatM!P1w=dLx}BSFtyYj5?0zbFwyjFz{#d*2DNY9+Lwgh50Q zTS&33rA$zIu^AhOWH3lfSVfVK?}a^-;KcSOB|ITKZ`C)Ukd2u0`YKo^Mo~=!1b01E2tXKv`#op*1)E=30paV&K(jcYsrNW`-&30$r_l{IiV*f z@UCmZT&f22-4jR)nI-l;69#btQGF5!2{ZsP+$h~fe6AfVADnQ|9^Wl8M|?FZp_FLH zb}UGl=mHPNBy_J}wGJALPq4SaYs<;fwd3@JzWnbivl348>kso1u2|u9%r^-*mA(#I zElk+PuU?B2_VVlbB?%6cP>C|tXG2#e)PxZ$5(X1xsSk)S$U)W$yYhVkPNsBE@P>$u z367MnlwhTAkx&^fY)u$KWyJ)-14tNeXQsAekD1!~y$KFvYBxJ1RAEC_Bt*d1hY~W# z{5TABI+9Rg<_DEdB$SfP*sB|UBRbTp@6CGbiVuYE&L-G6n>}^+t%L()o&xyMfp}-A zd^h16?yl?aCoJOE++P!1h1)(&$mQ47FB9tVYuOv=Z{PO`p8Rjkr-X0$^@4SxaO3qh ziNM{qlU?FB{C8_7>G$iE5^+py9qe~W6z)C9Em63)&LeRWzwbbm#Bs!`Tc4SJx$g)U zY9^-e57>;ZfnE?^H*qjg-Qtt%$1;_P`>hs8xiSiZ64wyoAvMoD%h1*Ig8{*b zb19#9Y_U|GHGi%Xw2DkDw6aS zd9t#3iC!xqA(7%sqe7E9LS9nh6>GM^v#vWt8xy-z<})}BLmWHyY-gf9JDy;0XYrx> zR=nKV764NS3SeKe7jwWIOlC!au zU~JnZQgUJl<*V8!PN(=gKHQ0&ymH%*mGv}hX=#^4JT{LTk`?zzBz%WiIVvFPFO+I6 z5JD3k)`lJf6VFrnwF2SAHB3AAa71DurH3dG*51GG$sUbJtPUTiCr+l+UxXRGo6G~Ak)FFWGa9aQI$Pywroou@Dt*q%y!+$qitdN0LsW3m2*+rO3Yqc_%HD@4e)g z zV*R85`QGb|l0M77K53Hli(I_ZEa_*txT{4H9;z+8ad7LT&2llmUD9f~__jmRUb%Rz zQ&Onxqqg0X+RCpO)GO(ee8afDNgrk0+5MBk=jPQ6%(n?6LlYrR|XOp@Ud=kNi!=ZCY1yTrN z{#TR6QDK^1OA4$f8EfX}q$6^4>TIjOE=RqFZu%keueZGP^W>;E!AIW-56$|nt_N7v z(#ObdlwD7sA**k>LVu3Z{@}8)s^^oc@@C9e1gSQ@*AHY%qx85O<&8^aSQ@6EDOEp~ ztkZ8J0s;d5B1y*P#ObFHVK^@xe2Uk{$XFSAJ*Am!mQe?14El94R!ORUtVO(Drs^xT!}V3;wEZ@x4 z&zFlS-{^mn!>oRZ{%cBuQ8LfN`<0=1g+AR%7zM6>ulJF?*kQE=H5FkQ!rINflw$|Y z*XW&O-hQ5Qn20nCXy6$574VM ze+MKS)a!9wAMceOxs)jJRDLvTN5GdcUv94h_K?}l_I@Wo#KUsCaaN?^u&njYI>R0!$-j;70FLkM zb7rrtd~hJk^@c0Eoo%3G5fZ~!#c2=S89UabEel^-;K4>@Xq}mAKCb2Mn`>xG_?Vrk zZ)nAiTH95Ifq8}?N(DiLSA-XDY-8vtjaCh8XgE-T)#~Hp&N7-BNR7QVhJmo6nc*m< zgNsB4f=5dOo;Q%?7fd4}(ablXAr62o9?iSF)YhLy6#`!6?8 zdMZe~9YaKWn6<)?PPC7Nz=D1-RAozkO?P8U7it37!Ig%SG#~teM;Vzyk>te$Lw+>W z^OP#Yx;+NU5HeyF!`r=v+eFP2!^8syJoH;s%36mFlo2n%q1zDyX&0q<_`)#*4ju^( zy^k9x$qEI`o>BuTeX)2rEaj+lqt zjI>oq+>pthMm&{NM62yyMry>|R@F#Kb1c*_%-c9drr=hSu7;Mr#$Sl7s$zIm+c;O| zFu$I08Pz3!^EZ-`9Sc3o3^dM^IcS58l-{9$`8vc%%6BXtuB9sHa7aVqFyklVDBQYc z{FQ8rby2)(y1nu7V1BVia+oZNGm^3%3q9OSEUy;z4Rj9kjYfKyRHYh0_J_CWbf3)1 zG~SWbnUG`bNpN+c~czLPm*erF^k zq+BX*(t2cjQy!jp*Um2$tux?NV{MpOfpE-WX?rnFPV+k6(eO=x3FvK)$+iRcZ2*X zg#|Z_q{PXB!^k_>9FjEh_MVZlDp^%Rv+zh#Y(g#FlzcntGrO5nX>_M$2o&Lg3tmG8!K9l=j zTURC1yI)Bak|)X(uGl71&b|?5^{<#r%A-8WJ-HZgC4aFTyEeKd6NUr;VH(Ks=7Co- zWncplCV;+b@*bIpOO0eo*b*>BKFL4GFn+a?DfLXi^sSv-mol@34|fHXB6)(1G_!Rw zIN6O-VK@#$9D67ZOTH+n7dk~GyAVmWXDZiZXNKvLJHXJG~n>-R08Ip%lwg3nio;(>adGcz?LQ;+Zh_GDp6qr*#ImL-85YL(nm^Imr z(y$e>Ai_`>+%|cTorp)V+}i%w#7Pb|m>R&7T?oLj5E;D-1lD{7&}P;xoyIWX=uFC&y81CVRIt zsuzs8l6+LgZFYm~vJE(x6Ik6&PABW__Nk~!?EQ%>%*gsGWdO8&l-!9d8e(}s>!--JPhuTUV#-l|K(dZBwW)Leko1< znO^x}VTy`UcQ_Vcs^*WfXzN<0j3(sv0mP9TQ!Ha}3Z;vU2;HE`kdzAY*Qa}N${>pG z2#LB+OgTwa2g8Tm;oP(oFF6puo1HSO3L&6#CL*IUU`FNLWIC8kxhizqm@==1^ewJ@ zGNlp0M2vr`;Q8H@IYHmk)v`$r0GSRgyOKrxo^D(#YqCQb!VAU%%fYPEh!|Z@=eNr#V z+AJKAdQ8?^P;u(Fa`DEfRNVF{bi8^@YK8|v58`b+6Ek2YW+jy`AVM=a)T~}yPIb)E za;my-Q%}oOt1M5gPDxoHsABHqIC!%zwJw#a$i57ieR)Dnn!37*1jb->IyIcY0Z9CTr^Lz0{n_1eT&2f628hTJ%BvjhILH9l5eF#9IvhA5!D( znaZW62lT6uX09=9Y|~09T`N%uF}3G8QtoBm%EgD}+{+<8Y4XZ4_}(|IhTL2_TPN+J zT*G$+roANeOvN|nOBQB^S(rnik1CCpk5lIC2$<1%s$92sCZ<)BBk4Uu+7Ov}kF+#% zSN_FJiW7&l9`R~pH_=4%8Q-P zYW7d_VK0(#%aUK?SOuHWH|@OS_yhZ;{UA4yR9~g7mcCi=$9umTbwP_hVYr!)J*|D%Qp2hD2eaVYHSeO(?&W=qP@D6c14!``n|Nzvg}VDq^-ssZ2WV& z>Q!1_OJx6&v3V+_|CP3pJlu!Y|AJ)?m;zlZTlIlMy7_ap*C~CAwbd%<=aT+Z4r_hf z(lxSJTRhS?$iEJ#oNjKdF7QsTDl6ttVEQ>(8!JQ7Kgy474Nt!>SL@Z<^huUzbVFk^aX1w0vyzKN07Jc(v5U?Hz$qeC*2H(MqATEEYc-l=ICXzy$|k5 zUn_qOijSw`zGqR>Yn@8}Kz#*Z+GkSMH}QSoIimq{M#m9Hl^Xyid+tG2wa64b;n(y> zR$?J0jQ%bCj{Mo{{~{f?GYj?fev>|q(oh%G6*E1zkZKrv z2Cry8eMukPQ<1STNHU+QFvFT+z8QBj8p8Ir88s+u_`{g(EPfo^YM*gKW^!^`26~$C zsiP$sRb*2>otg1U{`JM|jMsAU&D@N7a=;5(n(;<fdW*Zj$x1 z%`fvPc`%75q-L0qdLgU}&)g^n$==#bN>&{aYdN4yY-UWRO7_Ha`b;~Dhl>fhl9xtX zR+5@&!!m0nw1+F{nVTrXcm?)ZEim0kraja$Wro&}_Vd~oWXk(_r+3RV?>4U9Gqae` zO)|g01tNQ84yQycjsQsUi5zv}zRDaXEAyujnbYKAr_q@M<>IriGbhQ#i4!x&%0=I) znSz&M0WB;EZclCS}qGpZglhJhDbgR$*GK$BEhc(r+`pO)(*2tPpaD4&u-X|-EtcSn+$~lazlSRq5DmeU9H|r8v4-Esd znA%8U)t!vM{%jNFnmoqO3O*LoWL+t1m?$d~P%x{W0r>mDMV?A>Okx zl&;BY>WF`|-CVUY#6VViik%R)3uE&J`LHEJ>^i`0ips)NRyEpr0~+OyWDgd2)?6!8=dwscMkqrgmVZ1u z5nf!*+NveQL^DD#>-D^%9kg`K?j{F=D<0Xu%33*BIr~;sso{7iBs)W{XFi(jb@C0@ zBC_Yn#j)D#jdC$9Dtm)Gy;w1^{NAHU<@fe7l;5jP&R!?q`y#Xa-u2n#_cqBbzt=lI zdy{dn-22z9ctkpSR0COtGR_MUS9P*X&rz{G%B`QZh?hnk{#! zpVg`8XvLByW!Ge;Dpqc6@9e?N;K;=6ow5c?CYRe_($wtmYLX3(ugFf5ZBTo4x%{`+ zl*>PHUAg?(8?x8Py0VAzdyj1|zqj|!@_RMAvv0||s&hD-lm>`P3h0oZEK(DEew5uu zcEeFm%2n{yv+U2Z8&0;%(aS2h?v!J8!v)Sc%Vf>vy5^YO(A7QX8(9TAtCrt8qhp-#W*W^;Fo~Nh#YJrsdqEj9UCZp6H`8T}vEjWa^i*+zz?F8Ise)7O#0DbDS#Twb{6wNPe9@H76Z!hD$SY_VWAY z&daIcfY(jSa-LA8p#Lv^1hv-W^mLaAF}t-`WlPd?@W@j;Yj-Hylhc;lOmpDBas!61 z3lb@4VdBA@cj&t?=19(L$|v&wA`IJ5|3wJvJ)^Jv+}B+_;dW`xQ&g*@>$_)ic5zu2 zU&x{4!~Xw!n+w=o%4x@)u*=n)^Hz9Gyq@zDzgE1NbCA-C{lC3Ugj0-p2drMP8HsH& zScu~=C7baeXCR?EVVtkR@*d`#p*;IGM+L=?a@J6mX7#~`89r>srmBY6Gv8M^?y%clo^`?unlvK4meeiyTlrqoVLlOWQi(g z^4>N#mC`*COm1&3a)5IVxqopcWtDQ*(`+m0#KR?b7o{bFOj6i*uP)xuqDt;;!fq(2 zT_^VeX@2Bwj+(tNm2jiaU6Hw zyg&Kx4vM@2$_y75imCpzw`F@P(J^%!)92aNa;0#C$g_&y(|Y9-a5v4zJb|^H%eBt(%oMnY%{p+`J?B`?f`S z3%G?Au8_p5x;k$gX{!JK43;c+OWrnC|B!zM%ifx|oKnSk=-;rUzyXrB<&7q2Xx5qO zo~%Y(P0a3kH{Tw@cjX0JS^Wmhcjx(6v|0w({jj36o5UxH^J2A*=2d1=g8 z5U(HfJ)U}_bZ4zkl{W@++oM!)^GO~*Yls)uJj=U`$<%pq&g;D4n7y1A>;9RC3)DsN;@iB| z@?&Xs`M7HXfAxT&PWe2&IlnjGIsZK2bHY_Ej1N|qrE>$%MelIX?NV2v)q)F29hO6#3>8him4KqcrZ#FqF;e_-r3$ip#Ge^?$bo z<~O%PeR+iEpQH&S(0pNuD!&S)J!9tM3j-qak6R-ZeN;ZB+5QD+O?19BrRsA8K-Jvj zEW#7>f3Qd)^OEvCsVumGe4(2${~@PRKQ*7ykN%>NBWd}hyuDu#nr7vH&8ghV$)`-u zeF2Ki%U?(70+u6KSK7}ERkIANRz6mv)LK~y>{eEO7SngH=g90E<;TIEhWY)ikgKL~ zJ|%xCe-rd>lCLN9c>o_iYlH6=P0^n^qT z)Pjr|vNPWqdd|!TE=s`M{F7XS*NgH`@ausUk|=XmN}_cCA%87VgywA8?mO<12xaT@ z$0EFBgD#LCK&*ulCZGsMIs4!De59c@IQuv+7uWygne&_Q?Q5MFc zvYJEj-TcSpoJT&+|AWjKk!nMoXZd?M=Q}U+=W>pN-{t>~QGRQ8Qzoan&EB+=i_pi# z^nuc?;P!=gex`4oP|Y(oIeM{2K_(Bjp=-W3+z2)eCmOK@JXD+BB2Ty-ZFKCHnKGU6n%Tm1g#Yc@%4COL3{~2h0ys`W zXVY!22jAYNT3qm?0j3s|R=RNPut_FI)~tQLC!~%*S!GYdLrP6}3@BHD%~;bSvI-F0 zj#JgnFg0_;YsmuB6Rv{c%T2{Dc>T1=ltSqLN4)>qQI2fr~<+PXr4 zum3O|CJR5|y=gla-tdu5V9zJhHbQrln|~DRb*-H}gxVEMcSaVxxx^aT7T|$?mrQt| zpJ%}ZV$Bl3E-CK?K~dSg0tU4lP`GJFZk8gZ1Kz{W{ambEuf^o=C0J5abWiT zRtsn7*g`V<@m2-1$hzHo`c4h7FDjUc5=)K9^<4`35^Gv(Cg4tVFBr-doZhS8Jeinl zzk(|4;LIj9;QD|9Cr2~8zeW~ZAhY9`Flda#?$y@?11anZW)%!$tzS3rgup2UL1wkF zdDG42on2Beg+LJy*p7R6leq;8D3J!+3B%d4MFq#L4oD+HiFS^5Y{%jP>aY;tsHHO{ z61+TG&;-(!k<`HW!>sx80?K%gc((Ue^c-=5@v0RCuWeZI1+_a{`(wdY!iU!k=nD>O z3P>XyUl0zhE5OsM1sl`Gf@v19`Fc}9JA#i1 zhMfHccx<-NNS&hvgt<;Y?NaI**TZ0vxrpDG|FvKJg?m6h9~ z`?&(j5RQP^f4*QU(I3Wx?d5VkOut$%5u^Fi)Ix7q_NgFGa+0}Lg}rFxx`2aq zAt|||AcqgTu(h=c-P!&rg>LLtW0jH(vnebil3`}NF>J)X0>Y3yVC7Ae>h0W0g_H$a z!e`q!7rGLiW+-^O6<(6-uC-_3k2F<`hYpnsNl5{P01;ISf0sE#c^6XpbpqzQ8ijKy z4Us;}u^eSCJ1*~hu1Ofpo_O3_>1X3Us2tD+Uy|+af*WUZuWvtlNw)VF6wfEk; z-gnM9iJ#wn?(TK`_HmyxOlE%bd&|5tr_9XTz{r`LEfxkxE~Zt1izu=ag$fYE!K+>5 zRF1>84v~v!IsDQoawIi}+%A!D;2sl9ZMxIjBC|&%&9Q1&)hp7SbA=IoBWc!YF`9hb zFOo+ytANUdczR^y8GA+rxKt5Ib+ZUK22|l5>4tBqBOh~MH_{@XP~3T9UUuYB2bRy( zvd9dYmn00IvX9U0@ynr+ooJ@yW(4%7b(A-LIy|zr6+6^<43Ff7y6~})aKk`+2g@c$ zQtc@-e`aI>p7>iN%@I==D#LOtGXCN|b0bf)5e>Il9LeL7omWIUu=9B=TOE0s=CwIQ z++f6a3aW>m*#`yThg%~z)2Q=17%SXjN91{$N9-mT7}O6&)<$?wleT!%{>Y6#L&*gL zRu1J%h|!G;K6E1T-cNBrfZ&KgEuOgd=}4+=P|Ui)tu91Tog!dHK!D(Y=C%y#f=^$H z>`W6`RJS0qY`+niL!lN7mG9cKj;(kaDYS#v8v*$wb0BNRV`7U$Eys?L>V**$fezsTqmZndV$_Of3<4OC)!#J@T z9~SrEf^6Yw@gvScd1uA2Z5^Wx<2msh8#dYSs<;PNE&ryNYNrk}2Lv2kQH_735*@lH zrdi}C_#ht5-T`j7FMh!CLaU#M=Tr1oz?zI*o{6W>I1y7>{ZhP^3%ZTph!@au82MIQ zM8N?AhjCnNIQm(PX`AoyReXUaNI~;PyxTHLOXHVJ<%8ByPi@$4a>O}m1m|&Tuc#}W z$3@hOf<0##mvnC&Rl|AbjV4hEc5JRVAj*a-n-UoHjAkGKCI;mH`MP~|=O_sqWU!%I z)Eo+nATw4~=O`Pzv1e3oj+|4!s5e}s@fZ|UpOdLebd&{GKoS?Vm}X-%rp0F;#lBUK z3xxQtAxc4M4Fe)5%#tf~X=0cM_D+j(ux5=DmK_zq-6jkv7?GuNYjiVS5 zW#Dqpk2T9Lm=xts^I6OM=TQo@=Hy@x^I9+jYrzKML9?P}*sPn(G3%L49cGK)?20D>qSsO_?kGGe7IViEc z;f925B?~A5rRkd}kIH8=t;vdpXA~f+K9Xp>S|I63qc~C-L1k-Hb3)>cW(XxTtEB;@ zlpR0M1xo^~P-fFoSLD@RLi3FfV2!}#9V8Bv;*7xIoh939u^b$`N@(^MVmQdUNvO_L zV=6c7DaqnEEbJ|r@Z)C10HdTCKbhup2TI_+jWNT=2%6>*1Jfx|;!iPAC6yD=6Pd&s ze~OjF(Zn8tfB~VS1!@*i>ItjEC9pn(2!vbcB-n--smxIRA0m zA=%00-l&nx;gVB!Ndmb7XZA^8SrSui!2z=c^AAb3(%jvG*}g^CeY~ygsB!qDWYLcY z1!Nj9>?%(L*!`-s!beX@p72nFhm{*XdPbs$;rAA-%kO?cQVcT*l00!)a)e9%eoaC% zrKvo*pnm1txemx~TuB}D%qy>OjdbR2SYk@_M3r&I$O1JL)i#0$ZJr5-rqnPfF=`Qm1DMYUf^Xg>cT zfEWM=(zp&(E@Fq(m`{>-uw4uxl3)={^Q8%34aG|>qkGT{t4!s&Hqn=1?T67)Q{f#7FWJOaQ zF9`;hp{K>sO;Ei}(E+$lQFMO_xry(}Fu>fkVugP=B-#h|r6SC{#zc?f_^zK~*2CD! z=-}FHffEa&8*@@vE{#s1S@Oh4;lDAu9`@Q4y@OT^&m=ygu46yf`#hjS)8d)Q3< z_oHSL4mxc%VcoN46TZ7>HetaC$w}fnj=k?U)ElMoKi&CB_|vi=%z;K#!P~lpSA& z`~emLtSxR(CuTCIwweYphd9pD8^vUClK3=_8N}rlwT_uZ^Aw7)IDhorhE=}NjnJc> z(Cp(5F^@R+d(t(gEzLIo-=Shaz0Y~>ok1~ky_obMf zTypibn6;dpGVa8{dlg2$uJ>YoXOqO=(ho7@ z>;mH5!@kCRp)@ozZ@bSsP3DqakjPcKhGJAPPmfXfKB)`t=_Y+hqv9c+(kN8zA*J|o z8bjS(mT2DF)~+bhM_NrG1h0wIh*#E=zOBW=Z19yP(ZbaDNi!^1m`;tQzy3H31~zvn zZtRe1x>SO~TiozOwS%PGbb3`wX%MHIX8}^G2Q&YP>WjPbrGYfD%uEggIoPX8VQjt9i z_A*AQrQ|3_$2Uq{@oS~DjRjie+}ab1)Y1q_8?ayqdq|ydpiT-qJ`+RWT}e_nqK8SY zPm{t#iAfe@NMWMHBzt5@;SC6roRcek=*T8#43&=KazjQ*Ra|n}IB6NBtVZ-nDRsw} zf0fo|Wv#A~@+m~cU|Tp{g5kSumNeLkP4X6)WjnCYEZfw@(sf+f=oQlUocR+rnkC+{ zSvs045V=FTg68p@DZcrkdHbZRcxTz|;->AFQru8|dnAFb@nT)@)B{qQ2Waq+p($D` zi5-aA{3)e)1Z}F{7Cjqx*BM2eFvT3*Vd-xci2v0OZsCthDOSyXkBkAi4~0K{hvI?* z&PhL6q2+o0p1AWBDb05N-vc55w8lfPNjI>v;-0spURI3QIPE_1Gok?;^pN-&Nmf6W z!U=dxrt>rDEIT&2?Y(q8#WT3?xHwmTmCmB*CEtUAc*0Hx+vPq>N_EX~@ z57GpCDR`G9Z!KCE8+-r95&px?<97_SL0WO94%ubqaNGMt=wfY9fh<<~r#GetPn6qJi!kBof@LjXy>A0I2WVUvofv6Hw0pJ&8E-(?CknHM{N zVn-RGiXN!Lgu6cI4{2@K@USe}7WG*f>xP9ZW6#?$)X=$=vF<1#C6?RNYv88XCX~iw zo5Hm=$JS;Y2shdu3-?cq2)TP=gSq6kgRyp8^6atLHeAyEY%Dw?Vai_qEA|8@`Hsu6 zr8HyPcfDdc%3bN&0A;4uZG~3fj-`26X1=AUbZOy(uic5YqVbI>Ua~eQ{7q~}*cUaH zYKJ*90&I>7_ja)lV`-iOn@|$iF2D0ptkDWRx$f$Uy1t0r`{Th2nE;dU;g_*gD}V?B z2Gw|4utfClV`*0JF)#@q=tAi?Ddv2Ron4C|GOd3c#r@xZC}b5c?()z0N)jGu8CT4b zK^Lv#e#YKOSZEvf?C01#u#X$hu^HtQN3)IXH#OgOj(h(zY-9-5t$E?!UE|mBzCmunmlcaRgV-=H}7s+$qcb8y@mE_pUG?r*N_AJRB@ zi^~+48W#u8&6#93c^rH?%p@I@ar3z3_V_q^uG%?m+%85_Zg_c8oHfnIW8Xx~%#U-& z%G|iTpK;|*7+}_dl5oS)I5;AaA%AmdoG+Jj8*LW!#u&4pQ^v)?t8J$2zzK0-)@*Wm zWgL%li4`a=f@bExN_Ql#Ga6tMXM^V~h)brI&J441QCu@ilONn!76)sR818?rHv7Tk zwQ(;Q?rwP6rnrrqaB(C}0G>c*&excE#-1Nmt|GU=XH2%j>3) zhA-TVJI^8Pd0>`(^rN`L_H0@0TQgYTdsDLdqZxMBCo}BOFJ@Q)Pd0*6-T^C_BfXQn ziS2|Y*Ot}BWiB$R^P#`>Bm#r7mkE9Fb~l-iNtgJcm#hw_0rv*7;T-E_4P{nbZp|;U zMqKXmReE8Rh8@}P0V2`Cu(Iw z2!Z>0StYFr8Yaok)7j3P7?ygblEam0y{Hgi8L?n7y^g0WpI*04NA$A(M-=7 zj1~E^z0?HUN@QaQfmvl#ae*Olxm-r|X(>~A%23%xLZIge*#cS4d=jIWn5JXp9^EGEa7fn!vmTvQ30Q^kUh3S|MgFkx|_rGwd5IXEjj0l3oL^R>>Yw zXaEC&k3@K<_4IA`+aU9$_CM!p8SJZFgQjkl(R_o(DDe0e8PzsiOyyDAWeJ49y&4(C zE=TNG>bpz!l0y4z$ z`VN}m9xyWyh!qO!*=kNeI;C$*E(cxR#vib7{t+9j)Y( z34voaa_TYK(M~R+*1$anmO!C1Jpo)>-ieyP3^%!!XyB`doH|H{ddaCai)Kvl*hl^= zAyCmkPO&EVzk@?{3Lir5JyP#-XD@?8hOq|$J4twm^U{Pl|?6F^i--gR!kNq0FqN^PC z*ssB=?s9u8xTf}zHz(I=1LdtKp0eZTVtI}Q$Ux2wz{N50EE=x_kQkg3C+|U+Y>j7` zk5#eE`)XL`pS3LWje2=oQtnoYJdlDhg2uX|Nf~k*^eVl-4_=iee`f~*tZS$C#9NEy zRAz>_ycG0-tB1%N5IdY1A%_zuWzC(2)wYs*UcU2=7sE|<_q0bbM@ z@hjnznzk$C*7)IU`F&f?mGJ!~@`E&HFk@oCbRs(LxJLe*cuU)L^1I~kI#_;){C$11 zTn$RY-S^0MJHXZYn4D^>VN;8aXj0|fI#mzl-njW0`6?T;B$wpnlwE<*jv3b)CCCR` zW1DO8a-#K7x8!eVaCbY$cSFzW-*E-1mS~G1DgX=b%X`sGSIkh=59MP)hwK}rxo_mw z6dP6|p06STT`QGYB4-`ZnZs*j7K#8Gfz7xWaOK1WQXCa$_l^1b7V zzD&*V#t~Y@J7S3Iv#mU_GD&fchW&S#)_6yX0#4kl!9F>PJ%sv|0>xl!xV9}^si z3|FkBp?>|eq6dnfrSPoUu5iaI$0`i9O?q!R18hw(!zGXyAV(9G--yClX1jw#ZzN(>w5i`cD;upzE>ZDqbs`Xu7uv5(DH~(gA8d zDGrm^H1>-E&d;vdBvx)Bf7;bjt|iy47VO`dR!V06(9TAAk>q>YDX)_2YkRib5=XY2 z+?g%c%td*V{BG~2RM3dNZlJO!%J5S+ttq;#dhY<-I9f>+ zfe8!-n7*cff}IsgOuEN@mGW|3iou8>_Qn4W*}X#PLd?;nOxc85M1q6>31-8|I&1uO zi1G-*JTgM*MAUb2l=2QS_3klB8^Zd~1f~3E+NzJ&O;M89qBv+O+mGv1DQWg&CwKgv zQN>l6E51Kh`5q8i&k0>%@|-3MmCcDL1C}V8(ex@)1D0slU70HiC|1_P?yHpd%}qtG zG&R*}jj|1CDs{cmmZm8tuwQ*Hv%^oY@+ly(vczCh1Ag0;R4c&EzzBeCvCmF`0iIKL zD|^!LWK>dCdZP|<-_^_q7avdtgJ0uyN0hEV1&8~bQdSURf1Xjs(jYN+PUFjOIHExh zls2gRh0-1GxTxH2zKNQ6N7;qOZ_U6MfQ^LWo=3_c8j6hW=6+K8U|=`O91iNeQ+iM= z<6zt$0~~p|gqwb);{?*h5@mVdH`H@op5HFu?sm=!|rYuScz-ukLWnlW(1P z8&fyH?R?^kehLl&oGm&Y3U~XR{o{`kicXE=;gHoDe4|M`nVjI2&Ej7XSDx28K8?gV zXFW`Wbw>oE?E(On`VUo zw8VZEh2gWPAeyHj-@fgtm<{(-%u(M3tqZxeKqoTdbrfT;V19gGyf!nQ>a{SbjG(eL z8k8MR^ROKNa@eoDX63|}(0C~zl;C~E@e+z&j+n{^D&nOyuESJ5GCaN$b!9v{K7_jR zjPdbnX!;{V`_07o{?si${WX3Vb!9&k??zqu?-}t_-w!b|ub&-1kfLP_m2GG`Jk(R7 z&)ec{@$qHxbKU6rrV<0fW6I{GRg-Tx;fg=vH__}^1N<2P1OPVdkaPY-{5(o7k?6>n zcxP;PA^s6%PvsCs{vCgSmIFRRQAGw@8YLYHs25Nt8TcUw$=$Y%nkdd z)C3XD5D120p)f$Dc+iQ{53QYhw;tj*Ot40>COUWAw_d^^YBmH516J!gbZowjBHrjt zXu>Yu46-3dFtWE>gsOz z{Wu^*GlyQ__RA7<6mb~?f;Xk$a-6?8A*m^y{pBe2Z#vVzO~_y-dB}guNK3r-YC<%X z>E9;gZJ0khY81M=37k5h9?PcX`VzgmF-?6te|dL_9~$V zh0GXQoiw;~@36~bxt0*lM zi@d#5^{}6#Y6H#m0)!ugu6e8MvD`xyM9G0e03v=Aqa3l`AiUXENlDZ4(i3@xUZ_cG$R}%{fTKWYoqW2D{uT~J#`voER8}Y7+B0qM!0jo zsC6_WoQaYRijA|XhbBklTcVXpl>&Dcsi}^RF$3c4j_Q6iV;zI=b=wUa+_#^)Ewzsj z1XS3yr2}>up!TNGGu)$nyIpq0o22S8OB5LF)*BTo)HEBq!%cr3^l8amS2(nwr3$qf zS<4M2jDmxG=Iv11A**n42q}rBM&`V3Qy7)vsx` zssP-JbacW|#BEJORB;=6|5Ck!#eeIeqn5ucmpc_FsaI*`U_5 zox2*VLuqbB7{E*`Z6lO=a5k1#P%~`6 z&$;C&7#uoX)7avp2Q+OwP1dS?MKhJ!T5Ny@U<|*(u3GJA}*q z;B78DvA*^Im#c52?aGnd(n4!eczG+WN#R}FXghF@Hz`E>z8OpBH-&aP&D5CbDG5ik z^$={ySPy?vYuDRxYDb}JtvjlCulB*uQnhoa4M5PbPo`Gu$x@v(LTlFjC~ZSWHWyWD zH*t=pn65>fMXcs(uW`9=7HT_kx!qT2VXt|{4Bo5EU{8P7uH`!1+RfT(PDlBBv;{OD zFA&9Gpl)Gr^1_0@v}1op39a$m3)<#f$2))B%zO1sZ52mW@>rY5`N7c_+Af?Q_mR#;$A6*=$+WN)xxEJJ`f$nl5}lf6V$Af9_Q|@Y=-FKOux*t}C$lg)M17rZHO;*& z<63~JCl zNA%vvf4tsysmDYe%}ok#zfOJ=9k?FlkSNd~gD%a>vv1Ibr>lXbKnR^>_RW!3mFw-dX^oXrHIjQ7&fWDrnozPs;VX6ixI?mjhCNI1VYa>w%~NTHA_KOyP;bkc;dHq^ ziHQTa{|G(RffNj?|G67JC}O_e2JI5Ja>r=A{;DfWcHA62)&4PNSPZaH4vZEzt5F zA?16zCnb@;*VIX3RNBEO=><_$+XhJ^Nq%+1qe z(q?kK)GlcUx&GE6=_I+PbV}MtuKwXku=mAhe69=o`?PLJPYM4K1C#1Eqw59#6%bsJ zBsXa~?=^eyYH(iCehOIg6u2_8jTLe}cGnu!*5!EPiu|No6vI&ElqF5jm$4;{(6f~~ zZg@S%Rvh zl}R*v$eJNB2ubz0$&5hMB*C9h((78l=f#X9nxOt)XgRZz$|&3oeFr0|dR!pHCl(~_ zrWvlkheDZCjJ8#;46thVaQ}gL(c+|XCyY2QnRDWG7*%3Mmu4R`TPjl=1UjknHEy*5xx+mBC50pi) zQ0l2fTMR=1vNtKJy?^pB2VlIjRWiijQ}}W~vWzGwG${ED`P)g9+@B~Su6r`0pl3ak ziGr&8CL>a8`oLrxBJjMZXyC(KTUvj>=Dhq=k{D4R)sotIqD zh)s^(n+%ULnOw!b6_pFU2df;!kPa&hAonasu=6!H# zBg1x@zQZ8=?vmz*_BS=qbRYmIWyf`kUkq^iQ-WP>SCklF*gz-F2z;Wg;U%RcBXD7m zVF5fgCmdRb7-%+g1$jo`Y>{CC1qTe3rSLY2G(V%GfoAtiruj#m44-JcmZ?0ai(zN2 zst8v%l+oQlv#&gZvb~34HH8KcQ`x_dVH0PCJN*naGg$^EaDd?%HHY&NhCetCzl#kt zA9yevK1Lb*sqWU(3>n`hUG)`)IgV&np|dAGo^0Sz+^S<`UqcEdxL8g_HlqL!Omvsh_Z%jN#D%J9;Gt#)v;89~0yFqPxL z+ifW1IE>q8*hMoOf-MH2%#C+Fkc+%XhT9!Az|A_*Ct7|KX0{c-8GP`~(*~-~H@?HR zt~%G>8bA2UaDgL#=CUE0Q&sz$hUr}Ht$T)EoJbuW8~mt6nzZ0e1GK7bDr}qa%1~9C zb&(p2lwwN1AB0SZwu~URtW$c{W^L2nD+Lb5W~}R6H)R=@Jm8&Ta-h6=DJBOBYmoAl zleACc6!K1zIEAjc86mV~3LLG?@af+DJdD=#^WZ~6joxjIsoiE#B)_KY{v(Afm zn{|%%n-L5L%{p)Xr&;HMlV+WV{$VhX)i2eg^D_-oi#VOfH%qPl8J*jr^1wT;cy-&<2sgI>z6(g@`fqsG)DAym0u~zq zHq(hw&xll4)OlG-ZQP}2D(q{(_*$4G)zk|dV^U4MV4pPA)C+RrQcb-;Bu_QhQ%$|#l_AyC3qEJ1ntFj{eyXV#oGeH+^@5mkb8eF%sjs=-)pAs-Df-ro zNe$=hRJ+pL+Ks8HroJ)1D%I3C{0^Dz^y<&lWX?|M$5Z=L+bQEtYD0ASR-`*lKc702 zjkDPIYHDNFqfq4SRGN3xq^n@S{=jwcqI;=EZn*jUAoXv~T^~I+%d`7sDlAfA%oh03 ztg^44QfoMs9jle*#R>e{IxURmQ38+}h+zJE6$u|odZVWs{99MKrTx@|9$mw*uGgiy z$N^-McK^}!{cX&-3D61MfaX*3W0pzcuimO$>4 zHrNiGaE*3FHI36Y(@8QG3!0|2p%h{)_HLebp%%-*qE*^FS`NzAX;g2@K^bFlRok>} z90zqEtxm^c9F#_LTY?x4UqjLkaU3p$rP17*Ffjb~X&KbEi0hPgk>k*#OB&7b>NQ8y@U+>g5>ZWxi~OEXR~v_FW` zUUAZYjZRzkpqY5P=BDMa!<$!9T82Gx z^oa4qGmL3HDcl+Z*xc5PIq~lKX$}3^+bb8r)wo1=MHK`q7NqpbiNtwz%nsYObW)pn$gN?l|>IT6}F*wrh{lW>d&UEd34E z3AcTgHh~lB=$o`w9DTb_X#=_3q+00**=UcuIHvn?xmj-Ma0)6TUtf>(MO^Z$XFAM` znA{_E(oGtgX~pPbisc8=IuVOpZy8YL;$NVQlmCwlq#b zWW~;H(;GUmI_usceJQoh0LLFs>6|`}Q$d@a=_Yk0_e(da>)_z@3HGc2dbwEzAxg6f z9>%9va}ussrNjBLjIbpda{+-aeJ+=KU7y~XYt1(;{Q#HyCOv&Gm;5u+oSb7!kEGBM zZdjPU&yrQo$I|o>6zak2D$@VrXigtxR?3<2>0`Ovj7qbCdrV6|#*uG=%()+?rweKN z$lxpK38-tYtrBj_0Z$`wM)}&W){N>eVsitpB$DR}c7I1Ue zK5TO;U2DrKyy9Z|JQ{@q7~GdIjuUswOs(pE`W%|2c}zs$ze%^pf4ob#tiw{fQaj@d z1vNIjFkmU}8H+7hk`3!-z_;`a-@D!!+qmS0dKqwLGLxI#AY-^Ko3w3~VTu5ke#w9v zxXJ#}Zg^aa3^;t2DLbH5#xgH9Y27u$)G7Y%meHXuo7+mBVTwZU6d6)ZQ7Uc5OD^8% z4CW?6Q!`A#>v3AfX0D0qj0|rZ7VKJ{Id^$Mh9j4|zub)Q+YmyMVb*(C2Ap@yB&|kd zz-Q%5a@E9)MHH`g@Q|q)$L&~S=;mZl9sK|h!|?P487G`sDuwGZOhLKN1~ct<8#CbM znBlsuIwOG7*N5#H_c`;u+MNMU4VVIl_GbLT>40}Q;|n|I!7j%$;O!4np!$qiGh_ZT z>$cN*vleYGW@tEs;_GHQ{cf7+e7I%SBEFLWCuK9Z<@d}50v=@i#^s)Wm~o727(dU@ z(>&84w)vs{@N+?G{+&YM`pDn?;`n{JsZu7%%r}HR){mtPz26| z%*;U4LmumcS4U+YqUcD7LAV%~Npsf=b-SZA37KBV->I7i%D7Qrh3m>Qhgcx~Cm&a| zB0h66olM;^pkAODu!%VRnLVLU$*3TE+$bs2+X_i#^*nJzTBf=dOKfjOX6la>T(awstWm56@Wo+Shq!LDaZFYPm+Ubq zE0t#797Zwx=~-5|)r>57SjohMUzTK1onZP6Z0fSCKb%=9l5ti&PPS>gvX*e2t^biM z8&|e~_KI1yPgk=p)5ZZbul`LN6cU~XtJ>~ny|-q~RPrQ?YUL6m3PHp^FSEWnGE6tM zG~VOv(b&%TnM(@XjL|l%B-6c(<7(4&lRyN6jUQgz!Z_9f-Lxy=J}H^q#z;MO#swIu z)=6oMt4HK6 zML~gKs-QrAa3DWKuht55YN1XOs1vC|g(5WqI2jXQk;}d|mUv-b<1W}#8stJbgN-98 ztOkG@JTcPvoF=X@mE9%A?W~f}wHPDK{s0V&MXb?}Qo$NrEi>kD9NH_5rL=nJA8&MF z-2|nnjhY{a!5|9UN--|=r`C9z1KX8kte^nPN;VFpR*5*(xSLZ+(+nfc0L+-BPo~j< zn!`P#@i52Xk6a_oRvQe52YE)i#Z1JvrxY6D2{F?}s!EJB?+F+V`%8^|Xo5Oa?qU99 z8P6MTjJD_PWWQE+m}GoP+3R{>_zL>6E$e8C8OC@!HhFZR(aVWVzFKSS--1mJzGytk z6=-|Q*u{#?9dh5;hl_KU9vf{~9pRTxjn-V!{)Lh1WDXFyGje%nbVVOt8ocr6x5l-e zoXn`_TO-_F>Wn`4sZ+KErDK`U|LX6E%U!Y?II{x%?wbuO^_jl+u}O9!mzy1weW?zc z8{aQ`2q)X~0ohA9JuDNObK6B{pW|{H$+ORJ+Obh(7jxArHQBql0=ndElO}O`_Hu4? z$ueelqFPm^F}6YRBeUx;3qP?aKU-;S@{<*%*)cSeJ+MO?446+ir6?z4S90WQRc6=c zl5MAFx8ej%nUy_~<~EZwgc3sUc%YsAioJ2kg6w<;6M5U!*_SAtoWtzAC)^RM)@J*2 zgn!+X4PPEGX0E$EdkdF)V|VrrF7U41Yqo9Tq3q$@u>R>p_6sig^?ddKuA1WS>}-l| zjd{1TXIq+N+;Bg;0fj4L-lOcDT)#Z|IvaNFV1z38nEeYU-&$Ud$;WEhQ zZOyW57v{{Tl?Cr?mowQ+UfVgR4=s6IyK7Dy7eb5rnkhGoFjJ0=Hd9_H%Q-;dCqzrk zJoF`R3%eTZ*|AoEsDn0#dP02VWPt;E_P87#{_VVLjbTmLMwJyLNb4Mvga?Weyi;Q2C)87pybpjI-cfz|V7Yf?NOi z>Wb7|fuxl^8d`|)$>Z_@xT6<>48O|}I~^!3W6`7{JD za`41Dxm0J!FqNz8<-*x-7ZBe!cOgXwVlWE)a_>=i0fx$VNZSQXa_7^wUDGso55-p* zcwLL!mZZ;KZkp?U|cJ2xRriT|%pY?R|3{sWp%` zAa@QS;21&ggv!CW%cu#gjLKa|2n>qJT}!KhMbg|o)FyC{vEgTgg5Crtl(~OU69`k~ zRuK)H(B!V9)quY)cRsZV^hvqJguo30y$0H(<{qKez?}5lm4rawEP5xLWz2m;Gxdc) z6piNoVrh%QI$FD9VNvdF7ofr{)D9Szdyry&K)N=A>5Ru!=5Diu5x>{;-1B7Q_n(n_ zpIq%{<+|9zwce6kIEeWIzPmIRc7?crH!shHrQ8?r$d$Q&ldJCcTmuZw_{1g{-{86h z=iVjP`CD?=k*j!H?i4b^xV<|!1~iB}{*fzofa{dwxtGZAX(w|Rli%IXvonty7nm^z zJ6*|@6JCbvY<}3yTmzY*EPBBHo&6}cu_OGA-sNt9{7wDx+SP_XN7l}R(@-y98@IeP za?SO~Q_`%g1_g=XcF)2FD;wpFA#-|0-=BWTYfL$sv2Z9|W95uDx5`T))3YXR^DYo2 zeBtL+5@CN0&U;0!quS*)rMa;qtT8`4Z>yQ`*B*Jrv`7e$oY0y@R@T_He_m5UOcasF zc!^779^)k+#CZpyExb22kMWX8vOLC15)^rimjuM;F<#=N%1b6z&QHu^tS(N@izL=u zl9~60;Lgs?dr3hP?=H@p;|j)E*G}z;s>Z`gIA-oXe?lJBqyykmQD#nUYg{lTuM4rz z)~R_C;zuqh?=SNA-5GiAM39g3SVf#!z$&6ZyPq%Q*^};O zdn4~O;dA+RUMoBD_tQMs{pbQNd70Of=Hs$1Zuu$bM4eXdX!6;*gVAE!e0Ox#F2CC3 z`19=ZcSHL~?V7*($A6<@^MigF5eh#dH$alxEqkRu(k&QGD#QAq9#!C!vM&bxLviv55?r*C6C~|$0 znD0esTBYUt(L7jX0%CabZATOlZEcA+XXQ7f98JZ@1YEZpn% zN127z?&$XweZ5hu9g*&6fZ947k1nHguI~W-@V(*r55Q;9+79j>`0mL3SklkCOvxWY z<76i6O0;+?nEdv%{6-X3MkbiH=vs-jHQq8k|0d~HvuEVP)6@&N{oH&H615`c=MSXu z$u6k{JyC~o*1zJVOY>zk?!q9;4$obmpH3Xnd2@aq&2-4M zqF@Z}v@<`T>yO7F1eNnq##0+>>{F|N8G=Vz6}%^^tFS3}R|l?zeg*RgJ)fopH6;H+ zvw~&hI<$EKY*ljscW+s6jr6Cc0`~V?f$Z-SgzWEwLfGH=9ogTXc4B{@9?t$A*R|jb zso%B_`}>o=?C+>Q`+Mxbf+OVjW)k-I+tKXr6Q%6$5pf0g$pFz#T|jkEI2cA+^@mLn zmL?T!rtn}40RF_D>WqRFL{Uz;1p;#ITvR~wFdBnNmeCwm`^}Vzm8>aGSFxr%I=$d4 zG3C*<1>FcU*J@UkCorqZ!Y!;S+ixpKB&uAvr=Sf*;KA@s)O`I!sI$w}ji%pKWSg^u^O@{wnkV+YB zn0ET3PS*>lo&s}3+n~Rn6nMkIX$JOVNDLoC9%RX(-ggRUw&gJC;2X3r9(K3jIZe#^ z4$BX1F+>Gm;o}0TvwzH37(_mAgZ}c8c`iNt23|QZ2D;2E%(P~c3fn>()@)029SiN* z%#mJ&j#g}PVZFk;jz8fY7kN+qW1GKZW@}xQXT>IWEG#_Z#QT*Ev=`PD(mV@h0xjdgM-JY#Lr%J!dieAD!bud9*vfSq8e!M~ zDw0?GSIhtVKSOVu|NB41)aC=n`&16u;Dr+YylaW$stey+@y?NbAJfq8?LXD&Ui`T8 z;Q2L$pJ-w|)PpcTA;}i`ZY**|OZbIKwCO@2yv12Y{}yNW!NOejV>|xz6_z-4Zy{_< zdJdgEP`HgkG(e*|Q3>jm;ulk4 znprl0#hX8AVs~Loyj-Yo0eZ~CrVEb>Us1RxGT}Pol&6I)9f4uh$HI8fIDYfBa00mw zw=D7?*WYZ54CHr9&!QUeR=n4z=pYZSQ|1qd2h2Zj|ilS&9O9Jy=$Umpp9oLo@`Pp)cK#8&i8c6E>zO3jG%_rC2b-3lcg=CdXZ{)J6X#S6P z4fHL@%{x+Ti=3*9?ogl%Iat&mXX2vEGy#NEMo`%r9p73sm9F(HcIkun_9FN~Wg%Lz zs|eEp6=H`yMG=%@6k@A=Maydefi(wctbsulRNFE@y+XYCaM29Xw)j{PMWDhBj~AVw zxx3~)EYh%NCMZ_*Z--C)RW#idSTOOZ{9e&u3SDBr>}t(hh`T>8s%r~Z#rq-|h=#X( zELvv;*A!kcbg_lFn?>+av-kHrm=~8@_)L&Ysc!C35gBus0BIRwH7Oy5( z+^o0@$$u{>hUm2r?+GfNM(Rt$*mAAfv*j*!DBerjpVOmwB2Byoy9_`X-R^i|_&m?n z#iW+Yvf{cFYC&c=#C(}osVu%pq{ufEGg_K#EM~OyD5uz&Nb|9<7-INBEGsJxCVx*E zR{Wg&J#2Jwx;4HXkCi_(HEtUZ&>pz)?ito`XiXh@UM~Y!5 zbTHtF;uIo+{a>uA8vo6zs{C596Um=&n^o20`^7NaEyTr7ieb20h$p`&UP`W^Z;Rp4 z#X@}ZQ}G@Ly2$b^#(ASIb|njVSIswBGy@Y8xVMik@kB1i;1r5^zu&b&ad-R2qx+9w zL-CHAN0R=b=8lGN!vOVxX3E7>&S+RN*AY2- z26&?AHYM(8Z7|%5Mg)`uSu--?slpNr3$#F7EN@rx9+p9oq`rH}eNQ%-5LaU03S5dW z@r89nq=0>539R;Ik{6RoV6`uk9AhYfwYW^OXKG0+u8E<>l6|leiByvomt3crkeG~o zgLj0z;o35)WIKgvh)ZK|X{v>OK*A5hF8gUb-VvNSzGSd95^pa|N3AMLs2^W2-3zwS ze@!6_;e!S&ED>SYRrfk&-(eBRF5R%0etoHH)hyah#31RJSyI&>;g-11?2>!1(!K)j z*t#w#p}46+jKV>{dK8a@naV^v>A2a_5;#kgA#!_p$+Vx)bUF@QS+Wjx2LPe)ht(yp zeJ_*zeO-wqW%p*Z7Qt+xKcc#15oJGTQU2?`EpSVTrZ)QHQK2VZaj;|-tfD8hV@{P^ z;gUTrm-KL9b7wv(ft|3K0{SN<_nWfG1dr0z@F_B>Hru=O3s-Gb<5IF_pX3f{T1qyT zAj!VJlwO6k^(5IYpj62vmkUcL(5yE!`F1FpTy)c&+!nk(QowR8n+5khj0&MHl(c};H8mB`$Sm-7y> zw`|Wg__sojHCO^b2jTDL+%%5$)VkYK5SBFf^MTm;m~tr`w8J zV!v&r8!SOVr+1bf_z9^PG}RDHZQwfaT`7F!cL@Laq4W}X4PNrK^f(W$dAu^X&pU*hT9kbz(lST#`|=TGj8dD9E@PC+o4}SoIgu@2F}dtKQA+G| zR*6k!lr3?9zYi~F|E^kEc9|$Sdn2o~p4Du<*SL&F%DvrFHp~jH#Rpm3et)vRe>lwY zz(>n^5d6<)%3_FeC6~(TlE2e$l*PFIgm=UHjH5;N=y{dR4c(9jeIXt;K zgqM1=<@4*Y<(oAq-%o^p+=R{F(TvScZO-DfXj#6O)O#FIuB0ByP4U|gz3o)KfVT}z z**w`7Z|+=Pi$X{EVR(5!BXp~&uPbh;DZj^KlZ|!dN9>tob!Iu7sKxyLF0b5RLy~Sd zr>q>#Fx!S2?ko2|5u?l7;Kjqrf2s9dj`PU!Hl`d5Wl}kqqZ7-YSh9#mD$8BD+$X=4 z!-`)P5yvhnUs#JR;Ls9F5hQi`eVkn@{xAD zZ5T+7X$aSqcgiDqaQ$+(d_R!K`yQ2Vg~GVvSvh>PwhgDgC|5i4?z4AAUc8ETKkmM` zbFGRH=c>+Su6U$N#T`c`RobB9o+XpYYgBRAhNPB8wybbq5}M!&E9SSHb`{mkZ@7Ke zij5W|uexW&J0^kc`c|}OAtVDU7PA!`qAD)2zrKyBc)_MV$SNLjdGQsu*cy+t75CV@ z+esA;)=Xo(jEajqCiN(@0?xB{JLl9J#f_`j^W!4J`NbRSptUnAYFGOIVucFES7h;C z;s@g^e64tk8Q-ide_?|IeywOnvr#ia9|h=m?aU!{TzGQ`VgP=#a!6xZG{V&d1>C-C zhl@51IWPi^>^RgH&D%D!4*ILZ&_?J=`=O1|yADHJqLl43o1iw^XEsKYw$B{ID@Cf_ zm7eJ6wwWRSf9qggr=dI^YSd+DUDS5xOi%P{_|Q7YqRUV})U@-^rbt3kcfyA@K%!kU zyP^cmrlzP(_|VuNsZkg4Pmgd!Yr72HfL?SR>V=B-%ydV!_RjP|#=SG^q2XOYs3HA^ zLAkv%Ez#|6L+c^o-kI&u;BG_P|4M&8LK%>>_ z0!1MLy*32Rzd2>Jf7rj3T3b1^F1}VWbhf>}N)r~WQ|khQ)nRI3XqYBUuMgsfhG_L7 zQAjYKuVoScwG@M>7(H~Hy}wovrWNV*BCSBA6>36Mp`m)AJ~&jR3l*qCRC+#(_-~~! zATG4`Q-_6Uf&|)Nfi6%jRB6M)bV89(CDN(*B9&Sjh#LC*I_6&s?QS{68wbrDy2IX2 z8>$c0go)Ha{9vIlG+3(=2tq^ELM>mQ(+f0e)MfY3G5-HjC=@Z$o>&0{{WTg}w1OZ_u!=Ltzm{SUYwa02J%%?N&-5O4y`Gb2)(G`_ zzFGy=7liS(ftrxuP(9||7?WY?3-$^M7OF*|{4kABBnVQeg?fI7C|JYSh6%#Zkd4zl zamCVU<9WVnzB*J82>b4ZJ9)mrfq~i}9bc#p7J=6F>d+wQSz*Co z#2_e*ru==u3-27#A^+Sa8uDhC08N}R+|N%3j;DoPbwUHRdSQql z44g-!6{rIR;6TElP&{PsRIr9xs0j@T)`SX!0=2?GwLql@$I}Z{A*w(S1F4!Iu!d;( zN}gYsMyJ<^R6#nm2CNGf)C7ix1%-$LAv-WA81I%1ui^b$tH{+03H<)KQ58}ZFA|`6 zb{A~W?1jS{w-E;LQ@XazRx~OtZSCKPuMN_M@`XZ85XdD63sUpLbSiyNa1b9h5egFF z!E?uESo-}-sKO1WRL$X)|FdmWA&sEDJ`u6;0|s^P(LY}E&km{kzVyH7E2NR4H4^#{ z_wxG}fso+bw5Din$yh5tok*__73f8Qn&4m|2(1!^1!{CEb)beHtP=%d!Ixnmx=PIt z)In?v;Rl5XwIaP*E#mW4LBu=NAzBUQ)fq9D=NAI;BrrrJ5n_B_x3Uz$~;^bNxY{adrh^~^9na@;uFp}tlf1baFK2WvxhI$@9| zNCiHrgFqe{q*vo>y{e3setZ>lK~<;-Vx3B;4ONE)=`;{XgaYUzp(-sN+^q__7KBBO zK1?MN>L8?rXhTCa5O1|G6sQ6NgF=vN^9$baIrZ=*JpX@cGAJZ81YK`Dg8y%=qUZN7 z@X^=p!|Q=1!1segVTgmSqYYApslr0|YGEM!AyA8iZ0GXRi!>sgS|1by{X+=DL6|U5 z8yXm@gYc*os6w#oA7gex@Cw$0g@hoXPA}AIgFy;)kVqdS(uCeW zoCZz_>{(th7p{>2%CzAybR3JW7W>$U5MI`x^s{QpBFG$FyUVS#~s0T(0#g9C&0FjQ(_R2PN>^3}l_9ZX>~B7sO0 zEJP}+EuQ$0CN#lkSc^P(1eJz!F;t2LEkg=s()!Z2>pF_ z_&~pZZd%Lss^Y(f+xx0Se4S7OeOVByA)^s&p9U@iGZK*idIJ(%0t5OFs!~|i2X71( z=>tQ+DWQ}qRIgIQBtxqW3*w82FkU#*W+IG7T9^)kvx|A)QzfU}~!_y0YD^xoU-Ycv4)?Bkrkr_Zp874H@Atz>n_{Ml+NC%4@@HHn zqa$l)m7Hc7JT0H$L5`{Fif$S?B`5BBif;9{vGCd*L!9`x8D}8KhgZGwo~4TT^WSE4 zjk6>;=rt-!dQMl8X$M&yO(&n#vWjh_-P1NSup6gyDOJxHRyw7cy2cKdNvB!tjhvlS zy^rou)7zhK@eB`AtQ;ScG<8Kqr$GtRtyIo7Selqc4AE5`YnYkgHG7g`BBJ7~P>0S` z#Ln2vA@NL3(+!ojMg-S0W-6V{Ysd;Trj^nx)4hIP{gl>~>{{#%bOYU%OeHNP$^Yqj zJFS?Cn)c_~idz=k7ppW8B$IYFi?pHVot&MMYLUTUPp2$}&3jQDl43-qqWgP7i>lL^ zKEo7WbeP#ke3Gp1K8o%4ls$r?3P)B+I#S_FX_;V;t_)WM#qRvf zKJMK6X3UOFi|8JG@5vKBE>r2f@3z95%#u^>4+|FbsSN)pv2J}sFxN~z9MPZQoJ#3v zDNYti#dK1+Ofr=<#fCT84%S{aQ?8-tHb@^zN}+>Q)6uNFt!fl<7V?(pUXLK??QWI1 zbQU!tlVq9I^_<0CfPBJF^&|tp5W9QvOeI?{6|%6(lbU#Cz|7O)ta_m}s~a1Ji3=&ow=)x=$NM+efrdbb=ebIsub8~4W5PWS_F?n-KL4wuweAZzHOd?rk(klCLu*7>? zTRfArkq{Bh6m}JZ!OX&vvdo-?9Lz2wP~G~i(wE-LCKy^X!D%zpcvQvRC)S|PXfxs! zIn)#erD7`?gAL0_(@>~r7)7*H&VA#J*;8AiM(1;g8W}r-_-o{tK8WZ!TQRMaV;F|N zQw2LT77lF2+8NXkNS#5O|#n+HlcyOSv!HBibT>>q-Kp?C9S3-2Ix@97ghFqIZl zll>y3)sjY0GmH2tUo+eFcte}YEUFZ$vz0<8(=u!YW*V^xO-xmiSOQ{4%s|&xRmCyP zbT*kbusP+jP6oluOr=ZR1ar4NJ)3rgM5KjgXJA zA&UWoX^b5rlQZ(FWvc#KIi>2s<*|y;YW^1eNl&Y&b)S!ryxEn9K13i9nLR#;378EG=b9Lt((Tc(X-ApfIg zMEC8@0%TmZuxZ(8O;2HHHPh1Sz=E8`@a;GlNBm~;CCG@nbKX zo;jdW%c~4WGsjC~uF10PVwbl~?CU7gim08BfLr~@jT2hO`8LbpBTVc*m_qWFfhiba z7d09~YR2t;ItJ6YlEw&<&8IY!SeD5YCgi-KA$I6a(o|CZ;>RR=AXX7x^IctMXi;@a z1=`A-1hp)~jsRFPrttW_?v}v7MF8 z`g?g3%4YqtS-H6ktRHGzFPrtt zX8jOtE!4{&H>zto z#({`}vo<9{*U~jS@LJxd-`xsS2|O2gMO)QzFas*hCX-3S%$XT{Sf;!9 zoBFlD<1Gu37l%FoFCgscbUvek97_QP0DEKjtJ3sG>K}+zhF9u)ki+XV{b+!-x6d9N zSF`D~1;i!EV}VqrEgWoki-Gv%)s&GHwZE+IGCXa_6P+~@RfZ7lq0tVAj zflm^E;X|+EX$yQuRs)O9n**z&dyTw?yAgzD+EI&eN(mzkuURExA#R0N>Laf`55t=QUL5Iy7Y!CAp5i= zAe5v;N9Qdimvb7nFK@@_oZvjh=*6KO8kr>PR!JFjb~G48h@{@5UxP1Pd=SD zjTG=f!Z<(=rroKwpbx>WrE~a#fmH*gck*c)z&{w0tO^_~EmnT{L=db}DX|-BmVYvK z2ymLCIJ)70NAj>85~)^<3<$5;_9FwrYX(?z+$L3wSu=ZhWs*Q2P%tXdWh_z_;DRK0 zEMOu)#(gLy@C1pjBqRe!sAAy>$4#F~0wXc#65Qf>-^ESX4IcfhWrBn@Y*48n;PQ5o zAP6u(fEqMPKiJe49BtS~2>^&AT0_ zToLuj^)85O`-7+%ai~!mf1?rMkY|RO8K8BR97Kf7ax!D(>{Q;5I-LILM)v0|X^X5Y%tPtuFi zO9NSGGsFl#V_{5!?jYlkJR?ml#CT&N0~(3k1Ck z1xR$c4dKrK_M{M`lLFwJ&JvfDl#yZVhZ!KlU?3$Xd%72T6H&ET_vVdiBBJIX7NELy zO`_5?SiKl|yaA(v@Lb-_Fu-VK5vNij_9A<%j~fRMMJTQgqK=MZHAxwIMrB(d5(fd@ z2Xj^Gs+uR3Oy{@sts$d<8LB3`ms~~N@r&w+_MK&}D)C0OkCjfzGG$MToW18r#5in$s0?qVOwmt}2>lvXE?+D(6h=D;WJ17fK8whXd-2vBnw>vE2ZVHQLJy zVQ!WSBWliy5ii%A7E!6MdA;~@O=lSzOK=*4i%k^FCqP$CK@~%h0bGt!~`EUjzy_wOCq=c0RQD8u@H89x-hiu8Rg zTcRb)C~F6OM#%vR1q_+bDDH-51#^bof=vrGljuTLnzW-6ylAQ_d!1!u#O^DI6}rBG zr6i(aseTbF6k4Sw?n>6D#Ov?Y3>#%vrAnt4@xvOSlNkv|W&D8l&X~4`+$5ySba!o> zP2>>q7*>{`x-82GkZ{B(cGetdb|U9(Rx=5F4^Wb!{gZ1EHX1%ITZV6kw^+V7$>QPP zWXSOJVPe;;8P@*8I*8ct#-3$kN7>jRV@J!zj=l0Fl#LyGtSn_?N7>l%ugp?j*M%Epd;*jCEM4iemyjU8oUN7>lXY=rwiYwW0gXz4NT#XD7(>9*6FxHVrCXL@r*B$8_%o?Q5(oB_f z2Whc*NA2uH#7!ALd#3)6o6r54Om0jLCGVsR3J%~0tk9%A$)v0tVctf7EXK->K`kRQ z8dxNn!z8FG1}-fevUzgvlthV>3W4bG6!{?W)dKM#fdB?o{yztZMau@M5WH-85ml!} z+x_R9nuw@clcvMb2jQ-&QoO8(7|imZMr?4^i(p^2lhFbwun0Qeu(a3-?e? z%VE&X8%Ye@SrRVcJ~uG$CUZ$*;FCe-Jn~~%7Kj@>mMSTFNXdZv3(o>(Yc-d4cTJM{ z8p7+$d9H;xDPqIw^N|}39p@Yu2NOe55G+e<*0Cu&L>bFmd-KTMGu z4-33PN*AcndfYHp_)a(_H zsMU{02(MI-^T`x1_nI@btx8CGm92_t3+wyFNt{XENrO~lctJ@{OX{~2nIp(t$REk$ z{4@*^!`5BbwgK-#Xn*8dB<2bqjCPAy@`%RD;I2!E;b$)BjmJ6kgDf$%)#eGJ<1=$R zi^~ViIk7y;%CjuMo|I?V|K3@4zF0hVWjpt-F>}VZjcxVwqbH7^qkh-@RQ*0i6d*#oxMQB1tJ?`+3KrQt zWSTfYB^mPMfqXPTL$WQAfjI9c?2f$4&td)b+>bjXlyo`=E+dVPNrEp`_CFltj!a7= z5dmrciII1CPpoKH`xH-P%f}xFh5|1ZDPSB#%Dk%BDv3Q!vK0kSjJnHvqT93fA)c63 z*|YE;=kP|7W!zShs00~w@txvrWc$KIN!CHqCdzd0k#~7doSc$R z1nQP1jTLFj_+Nlb_%CHnMt}}vQDOfUV`t5)sf@VCdtU3KYrpIOtVw<$&|wnT;Mr8j zaZKWPl9VDAkf%xa-!Sqn?}>jrrS{1oaegc@qU2SSp6+ZO{3^LadA>|8si=O2_K2H; z4DFXstzC3cD^nvE+m>3Rm7x;WIBec{amVJ`!~W^?!Q$It^E$c5|FO1btoh=h;+8^f z$L1eaifa#=S1IP+etl=L<=xupA$J`jb`)ygYQCXZ^%3lh>-w&e}2E5@0XWOqUdCjDRhr zNc*Q|^CZ(t=aKdh_kw_J0(wyjaygO} zlSL^@5;IU^ew#<$umJZ;vR0ca3M2Rv1y~Pw?-Z({ z|J{*ydEY&3v}{RWK;)|Z3Nk%CWPGt>HW*}YtCq~}oJ@MG;d4=x*2?6wl zmIf|f!cfTjnp71wJq^8*PIBZEnP3q&c@K>JYTo0Qiu13l8{rndm^Z1DxaE=gBizgO zpP#u{%;?D3uYWSX_Iu(lCsTavk@+{ACRTkhZ-jeZ>$>T!#7X;eZ|iolcxYE{c%Y*! z7TQugy=&d#BgG$n!VUdTsnh$2winjL#oB8ZwHMj!b zMv414Y^PKy;1ZdUu@QBq`1-=SUSjA){vB0f{6!pIT|8VW4_^%q2Z`~!r}uX+&DC8N z`yZ-pnA`E5v4mrif=Rt?Mh&uPzGi{Bks( z{L!T}$p2ua8x<-&ZF1eqVs~t5fARFxx`F@azw|1t?m#hfDudvEw$eVrW5pTv)4F;8 zgKgZW?vhq*_uKEhx=XtAKWCp1+i$-F|HO*;(gFW7L(4t$%DRs2M5;Bj_m|hzz1_9d zs1x@WyRY7Kd>lFyc3vnEoNP)r$f%hHrwz<8nX%yAX=cO7Ab2A>tE5o}(oJ$eiCqT= zXBkPdNCHh?Q%r|wDVX61m64HFx}s<@q(o-%s?CcEQ8z9gRjtRT zuv*l0jFV?mW=aJEOpZOwQlu(|Dv0Y3l`v&N zW>Et4qiRfjnrTAIgPn-1zL|`cXK}VoVuTRfWP)F~CLSciZ+O*Spj9HGW+EHjs~aoU zF0LCIw?Lu;qa?{R`A;(>gC#-&kqBHjLO?DVq~0(QMV&LYbC~2hSx2|7M@VWEv-ez zIQcWlQJja+OBz*C0EmM?nI>I5vm_UQP<>(rSdVg&6pIl|7o%Up-2f{H)^ijnQkWjV z^zn%m5O&Cwn!#91nsqclazK;O)F3p{CM;pEF&b6B7YYbCKD25Nbw9ncIJgoMHZPPT z?vhw2UM~&R4YNf_+F*lC-zL8JWl0lZvM7=WovZL zKY(xT@RfC;e;<`Xi-uG+pFD|xtyL+t)cW_S1Ujz)A(3)p(Z*lb~k4sR^7!8H>^ zgnp5jdiGL3X+3s*cvVP~3WOPl1gd{7qnX(Z%v&Cnio4+rncP<~B$EgjYJ%)^km)wy zYT}o08KH}^n|Z`w{#>Km@CXphAh$2PKR7s0|A|y3D>ry)KPJmh?i*2eN=zCq&WNlV zY_KA_jSyYqD#M?#17i_!w7{N8iO!1YkW<>s;63v5$HIaj0}&vWA2bo<4>gh-DEA9+A?7T(B)+ z9JJ^;W|m}u^2zxe#sYyo9&e(-rYji-$goZv1~$MTJ~3t>Ca-QANm5&IWWqaXVhQK29EH>O?v z@HirCI!ExA#fu<~lM+EXM0vLi!M~2_`=%?2@56AUk-Hm_o#1<>yg^7UoKi`|@KRzv z2Ua&?iIK?=)ZrT=`iyN@=Gr&N3!f_u5ss+ZXR`>eIbi2o|7l%Yar*>u(4l%M=L!)x zw5H7#M%W3#&yu``zLB(pgl)THf4E6*UZJ*cFUs8CyCS-$#co72PS}uaad$+kc`?Es zJzw}I5i@k$rhuN$BNHX27b725b@*Yo z8Z1y)l79oOWiZE*P%OgONd|Nhj{`Qy661vVmUIV_K^0bsW-_ses^Jd$i8vjHb$HcY zJpL<#>$|{j2Qv!`1^X_d71M_xKjbSA2nIflw7*)!q3zS)Kag7+92UeyD++OhDhMlf*+yvM{% z3@zlAnBZ6nbkbSC$COf1nPAN$0RXXm1P04*Cf~CK8-m=V3DeBLe?tgUZ+G#=8e;L0 zO`t(TF~!iFSJ5d=lOR;IAc)qiOb{s?QK|n8;dOc;Myl}GR^r!*;Z>HpS895beHLv5 z-2pj)!~w*IGQ%V(F4lKFNJtWoa0p2ixLF~K=$#h3Q^pA$mn~z9!&}XZ7QXzm8GYm7 z9~IC)5DzF>eR3%Nd@t?>a!eo&65r_LV6yY)SS3mbc`?wah;^rd2q7ef5EUiKuQE6} z-f7Nw5r;AdYdp`xx`Buf#|rWlE=vm{F;?5sITlg1BbFaikIf^rYJ@P!A9mug^&R8M z9AS)5J=!wo1rvrol^m>S)pCw_co>9TvaAq-OXM&5HRBfMFUGS8Cz>WX36#<~hDt;3 zUCAYb4obkLEiDdGiD8RR5{&0Fv_@3x?`Bc8?wMn-FhOifTgiMrFeLC^gncI=HbJ9= zw9E@^^mNLKJTBlYF|{ljgn6SO;)YXId`3BP;E0uZq5yrWSs0=LWf5BpJV{6Ukrn_5 zHn|ybI?uufyvJu}im2RIC`0QdR8q2fdbwqOy;vN4NGaDWl!dt@4Qi&y=0QRcT9oAk zYd(Euk#VSm+9KSe>gyzdMi$;pEl6i0255`P7SVE2a1_JNT+m07F@}5@8Ipq37dXRl z6ie^#&Mt_jYMa#O|Ub<0!NqDWoBl!%kH18+M@iw;CuC7mvR@5pzb@Amza%Z`z z+Au^ykBA86V1`E7^A<@IjGP{%f{>jE@KVj; zvqi+JG&0ocSQhx-t00_1drh}#N+Q6lm@g_ zBij|SjC8*%FmZ#Qg$C6`|9t_@OFyBL3cQn8b5t8?(Z^CoHYYN4p)Fub*8Rw9pF%yn z;-q-}wfgb#@QO8QKUT!0uh(}5g$h?LSppbySmJRwAbasuF!U*;I-(z!lg|l*2@ObrbsPV ze*kE)hC+Cci2xe)bdaotzGiI)dW3d>A&gX3(5=~^(TzOGB^-C#9Sau6DuAjRjOi?L z7ItUgZm@!5W_GwEnHL)-Bhm!aVd0f##I;|D@s;6~in%h&*r5LqoyanVCMC5%`V2WA z8z?gz-rGFn!X^L^$$GnfzJ!AVKL$aC?KsI&$tK0rhXyZ?p%H7Iq(4Cy9Ece!CYHqCFPvzS3$lZ7GipY zL_lo4&};Jt+J}sK@VSwpj_-;W?*=88GCjv8a(8Cyu5eK z#t*zdwj{Fy7Ka%SDn4?WVV=&CxdeQ?Tui34uE4xTx|s}471nW?4T&r!I0q!@Y7)!R zO3aJC;hy}Sq)_5NWT7E{6OI_%RvP;on+gdJi^)DW#u8*33#-}jw=RK8kvTTeLrKvHvWSdc#0!uwgTyw$yo#vMqjQc&)aMIU_YYn$Jg(vzhJzK| z2_F)oDDXyXGzyL~1Xa5^_66*tq~OEX0vVr0VkRI2QYWKxcmU}Niqz?qGV2sD(-eHa zUT!O_B|O{02QS5Bv8@hmdhwSsXK8rNzIidKVvqIG+puolTHm9MfmgK37S}PkNM0z- z_o!lQ$p{IgTSH5?VXtS+0c{&Z^+aGeB}#x%_FO$C{P6B+F~uT=WQ$Cn;f>}fUev{` z59)hIeO0M}ksP%6pEU~jUe4qc%A;t3a!#fd!)FY>hjPAfaKDHL(h?^5a}0UeL_DgAZN6ZY_!9fdgO^#7xKiI4l9`Fv(a_i7fOD z7XGFM>=_k@oPUf<3D!wt+|DqJVGK?I4-sf@fx(_+)?rnr#Drb-r$$yyiU>vc6ANcC zMhbke#Gyz*2=U4Q?ge%WgJLppHp9?OHatlZj`J1O385F)0~QS9cVJDNg8t~3pe{rbP*j}YehWx)6pbWecxVuy$BTzvUOVDS{Rt<$s3(twnKuc0_ zEWrqp4leXO#u;S&K+}q-Rjv)mL7`Q~v<1V(l*tQ{qYbOdHcDp|W+S9@nJ|{kmK9q8 z$R))z(tQ&f;%oDe+lNBvgIQ&UcS&;ZSrsu7TihMdQq3wBvnu?9d~frLU(_4`tFng8 znUGoy1AvBRk!FoU(8I)p#oY-$9p7@&#sTk0?F3(}jb}xsV3Y=H%sZvHL;`&XrlB8` z5@JBYKQh3|RKup7B~fP91;WUF6;W+coV%<3lz3FNo<-Q3R~Y}umknTq#Odhvfw#Nytt70Oq!5&%uo&`D=lQy1Z?44u)MZtI2 zjLFI>H-=nBY(1d9e*i>8w+s~H-wWMDV&_2F{}Ry{WM&@iM@s8o2*v@lLY48<0y zbHiIqmpG1uFcLF*$0NSV*R!gpHnge8NMoRk(4Jdx^jLpG_hr&0RhEeux0=v>M4|%K-~gd z5K=Q6qNi>})XFLmNQGI_x=LYICRxBAZaV0HnDr3&faItFg?$`BF^LBSv0sJxB@00SiiKeOhgRD78+MXi)m8h z^57fc-xLs*5Nn;6+B||36UIg$w=f4{(95PkG#LSSPb1SY^RT96 zaEF!vd~q@(7a9y_HW3DK8ovyVFw;hv06^?RReckDMBSPv8&-zb?Stt((GbiJW;LQp zWd3Z)bb{`PYA5Ch1R|*eK!MK# zSRVF43GXt2HvE!&)E*yD1raPjNs!xdHrO)HHeo|>$tZLXGT*i_pon}g9ZE9d7f4rj zFI-@ZUxIV+i9x8qOxp{H7*)OJ-$FRmPtklz4 z^T2EX8prvOchy$-wJO7-I>qkGYMQ4PT5?$Tw3sjvBeI2eE27Oj7^37-7!>wJqI-vi zk(Fdbmo7*Q7}#(SlyLBxEDHvpaflFnudu&uvED#9BXuQUiKGuQO^orZ=LjY#%m5w) zBQV3m=Yqk}CUTXAMA&BG*Bw+am<>P;`#YRJy~3+UkMKRn5p{be4bKdZJOwzOT?i!) zHy!$W8iX-=B>9=ZK)UKmf$m~qgJ9Li$N+)_D?4m7gns}`1ZS?@1!xS49HbUC7-i=LqH;;zCbWUg$k)qOu4(^h`5>|>r__F5%$Xp23-Z%W5Ny4 znJ@r4PO~v4mn2Muy%>NN@+qDJ-bjAN)*MUN|-mEFbV(SL+AiSXDFkq z1)wR<_8t$fGT*x|sdCh1v#}#0*sUCOiGW@jhkD4sQGf#WjX4y9CaBI>RFDu+&fma9CcZax-3UsmITMPfNYeb zF8@WqXF2M!9CcZax-3UsmZL8B9q3t(x-5+$Ek|9Jqb|!)mp?lHlyS!%ck=n=sLK`s zpXI2_a@6HN1;v)5F3VAu#aPdB)Me{RFDu+&f@V4YxHpnn-p|Oe&0eQ1%gwOMWRb zvyerLl$fIW`N#T-xu4gx6LY3N+D1$sb=#EK$L`iqw>{BDj6E$G7u{~1)y;iTzinXq z@A~xWGZwZN7j*lu)2uN^-NxUq-7!ZkyrQE>o|mo=ThE%+!|gMEb>~*@u9FwGYx5l| zajE3U3&rqf7WNfyA92GFal-0_eZ)_mUN}_z?T8x=5$&E?SSbpJ-*BL4zj|S{81?kR zLBd_V@Z^8*7qO#m=q*lvX5pX3=rs#_i+R;I^zE3r$eDCu?%eaITs%pfHkJy8jk#f% z7&7*TexlXb8{*>8XBVbK=Glb<#08nhhlx?uH~i?k{<@#ox_03j@y0PX^brR?jA;`)?f4x7q%8Nj-~~&&(Q*xJ-=|E(4SwZi1&`+jZQn}hQt3Gzn``0 z`Gx%5?yh?Nj@v55)LFj>I`F#fcf`N*`0z&Gu8;2M>VEyFJL+;V+dcV*i#~~o71cL( zc5gak(c1m}Q-3@lW{X>Mi(V4D&Rz6cNx7Xn=f{ht#r!h^-GeV!^jPuWKb=LL_`Uqy z@5CF~MQdXAEXwY!xjT>4gnrgtBiz4=JIxv~^4=vQW}P-6U*m9~%jymKw?OYY-7?_7)fba`LLk}nq5uW770!25X7ucq;o7HwmdzIX82 z=047~xX*jV7WaAQTHNQo;$HXBHr~k=H+t{A*Nu~}^3Jum&ye5O;y&+Oi~CahxX(K` zt;LPzK5q2RwYbmP$9>+p7WdivxX(Km+&8UxXsX`WZ1E}n$rg`Py@Av6PVZ#PJNMNu z>Ruf)EtnbVKX(n?zpt)Q_tiK4$(Ggct9MktdlEnIkVwG5BDUV#s0HJ3+XvHoi9>H` zJSsSzbW7v+gW~F28czy}9p^Nj5){vy(|Bf3Ts5b0LQw2;YvWl#vC9jM-wTS*+}e10 zP+ajs<5fX%?%c-jb=b2Mh{4Mm`-tj!jR%Oo&uy#-ZmOtlJTfSrzo&TDp5n9@i#M#J z*uMBc;p}Ye>pySSyv6~gHBG5+uIab)8Y@e$EWU>;i(hIyEU0tKOT~|vGrw5T`uUC3 z!3`^a*EnX+1E9a%$^*K++;~WEeay>^N0+|S%Eo@8O?~6wl5?khz`5_&H&zBe`AL1_ zn4tJ@ed7;;V*7^To9ud}@yI=OYGUf|sB`YCG~B9&#>$c>cl(GI;KI=085N@OxY8f0 zzi$5FEYUb5xalEL{LWpX*bt)^6kn?A>&2IPZ9(JldmfndyKw#MjYCRaV(=WRge62-yqboVLFB7IW8^wsul@-Q_*|?1ha+@YAXd zjmHPYriI0)ByKN`?Qb`fJ_YtY*=N(=VFZ)7`i4)p6@T<14&-&c35@)ShqF zg(?S=cV*cfrNc}Y-Z0}zbMtpzRBX5l7Zu-e+*`$WtbMEW#SGE?BObl$t>Oc&y|c9c z4B_=(w>x?95AH1XUzf$jIeNk3V$0pRxY*#+-Y&kzk$06&LHK;+6kNQK2i|vA)W*i6_cTySZ1~K7s8)K?Yc=ne6PA>=TFP%V@5-;2 zG{%E>cy>wgo%<~HBw=_OI#puXn||r}Rxt|4qFsSKU*5(}njG-?aAK;+t0ATl%J!|E6OK#Ws8G-eMbf zzpu2DAOCz9N3|Sz7i?`D5w!oVWu-4=`!B`y1H?HG6kqE42Z}E>d0X+N9@nG0Qe(R3LLxbyUb~GLv z6em8^I4&rzeW>w>pcs3&acsxpHlaebyt=V(!+XUS9`j!DU3NXZ_q$B_9ZR*clFvSO zMPnj(-t{Z?dS0*xOnblhMi0MVe4}$$7T;*a%HkXCUfJRa@{Po<4~nle`orQYZGEKi zxRST`R)5;(G2ZFqM~j1g@}qk<(qO>@r+id=rNti=U+I*`im!CnW5rjx?&G~)N%I=X zuja(Zi`|y^Q{xFiD@^)Rac&J-Rh)6({%NnrB>fd*+N#Dj;+0j!(O>)L;@ceM7T>1o zlj7S<{-niYyat-SijO}0iQ?OI|Frlv=YLv!o6b)b-)7gRdp#yt`KLU|+dTbb^}=^{aV-2c9lA)YQKee;R+L_%2=lT6~xBe{CEabjVlFG+x(2!zj^3iW*s2 z`|>r@mh$sHbccP3`TLUc_Y(308ULR}{Id4dtp1d>ud?Gx?c?yTmRO0X6eaokN)yN;rwUg!^IzpeqS}(#UuAeUo}2@ zXsp8RJbcORUBo-fmW*)M>q|Z#E53dGownkhRqj#!)Zr5^KU`4`Q_%k;(KGqq;X~A* zw|jBpfY?Q1@hbP&e|^(RZC-!z@KsCZi)riM86_rPy<|*p^@x2vuJ-162Z^fl?hL(Y zU6*+yMD5R(%!-{Y#$L7LsDJUS-TJ(qp?A0&u30i+qK~@O!eBSTX;Ge(u!YF1fpB0!|i{ zr0CFt!!QVio1KPUhUC>yO_|UJ8RD)TwZDqK%X{K~Y+iE039w+pqyfilRx{FimK66e zi%C{em<^$Y_Q=-AOb&5NCZniym!qc)2ntoG4&gE+>o{rX_oB8^U}=N>z)=jiG$6z# z7dU()ss%NLn$4DSokmn`iu3E1o*GX^)a~(Gtr)koLnU-uY6dO}1;zm#hFvGCo03A& zHlQMbt2YL3ZepC|5r$zB`e0a$;rr0wFClxpqNboBchWEl`IHRfH;Uy@6~fdCRTkXz zc^y7_xS`WDdzQ3?4s=DL_SBkw?$+ZUyf;=6UipTpGqpJR`$Ox6Oz3c!T}VwYi6v4B z+_R7~!e5+%ybxY(7#gjBCd8Cn+-Zma49O+|DIdgmFhX1)uG7?tL?6$ELB6h4oB}l+LN} zQQ3l21mfnfcGH`)ttY}i3ikR9X>o9+2Avqhph;L|Abyck0}KxY8&FuoG3$<(WWtrO zroc{;hJ*uNS_lj6TpIFqnh93Jj3(B-0yBkAV*rD9&V*Zv;SI-TE^kqWHCA%Kz{SpD z+IMC^%$NwT*>e0D7GAXl)utlk1dC^3I5r`zw_zREv*h*H@~Je`F===hH8r4Yt;{&N zJS4}k7)YWU7_cQdV-jvV%T^U8*A>utFWy+g8*7B5GE|%3~I&@z9F%J`K;H99&?j9CI2{E1fmeVhM#}6)qhu>u&f(&1J1CAuwfR zW|Dkr8uAIIppk{ANMk*O?oUj;PV{!S9x9gyI2SYrl1dZG7DIJ-fvlc|AtVK%n-MG| zL^C}Qi-**zFxNeL$*77?n<<8i>ZfXYh%rnt$m_H!rIhL_4MB-vvosjw?f>7w=(ZN;zr3`Ycz^cHF0(eQU&`Oz{N2Ofz5LzhZdiZ+@DZ^`MC}uEtK8v# zyT8?Ut*oK#vi9yZv1K(+C!niWO?cO}oFsgL>QGXMqn4S7kLgr8$7UW90{SHl|}VhKDl+JBp8E_Oj7uzV6Sr0hLe@_hYF;xITYOasF}W` zp3G!42L%&4@01Ro8O&o4B-?gIfeak8M+t>`MAhQHua=)053e~V)Qt_pM567CPGauH z4)Q#jZb~teD3?%$ZIpzQjstzJ22(Q3mniHI;^nhwW=R8{ zaJVDIwgcenoBNY`7&D=_PO4cOVr#TaWOY6#h0+bL9el7UpOZGKRx$RtO-X3@!m4ym z5Q><-ZFw4v!%D$tshIGyp-ZHo^@L?vQF0Iv!t3i!wFRF5-z55M22y(!D+?^b5Z@~{ zdK9#YdE4^Y$KucfqA@3-r^eC&)3BA3Wg)}v6)+p)_5eD4w;Zs7W{|Ps|PdvtR z!uq8JBW=W>Y{8};(P$oHrbj%6O(g82P$GS{=Ss{GP@H3@pl4vOgWxo+L8_?0>&!ag z!U`-60jwBF$PP0WWX~34>JYQpM#_O3Q^VTsQ}qR8w2;hMWJ@<-a)f{lH50x%m--g0CQg_c}0(Ls`o4)3na zFOWp!c~i?fN($?ZrKceBgO%Kd%8xrR?}#ZUH}vs&lH-!%Ijf?iK@SQOonqy(#QC5_ zTKSZQIm&0=m8l2gp%rIRV)vGMwKB9~-6K>NQ${>^n7H7?2M5P){P5tYjIu71jsy~LXzFCW4Hklc<{$x>!@vJ^sc zh8C~c3dTU*8aiW`pp`70=A;6WzlgoU?|`{?i<@H8!n>*kYo8H5G+U(UCKGX3!vHFu$BiyvQ>W;x8KinPR4nJd6hn`}_Gn_puze?#Tlsv_U zezxjYm164-isvm@HDZ`JT&4KHGpo)SBo-?CY~C2`@Sr}4C18M9mMKGpBUj@`JuaOP(o^0C$uwNjEOuiZA_Y~<;B{zxEQD3TYqz` z(lN2l=$eAX2JnT7qO1XU!2gP7mbcv6U)KLQmWZe{DPDc~i8JHjm71QLbn+`tbc^RS z70q5j?=#c5c}>YJ4y`zLg^XgQHTU{?^?U=2?x=)@mIHX8=TW9qoQL2<%q-2CmuQ9l z?uuI$V0J;PP2=U)Fr2}yj+rTAYME??oDk`(W4P-k%y^b8M&XtE41?iyV!JwSlPWHH z>xm&KntVWB(J->)Fr(ztN=^szp`n$dtiwewO<~x29EDHNph>Xwys4n?q_Fm3uF)0C zKpovUyO%rNoPp+QkiA07*f7AGijF-jt>*2dA@z9`N_gUNKvJyIm);wThu5t5I&MV8 zASqNa{)(Em;+nz}Lq}23DSH?O9R=Qd&61?{s-B|cfDW)T*bY_N*7C<#F)eqz=2JD-?So@3=XR-R*}>frz0Ip)czgW5eg zyH~793KNy$H-nyh=(~z^6ZBra-8U+pY+EJf%sr&L`@u<1{-c+)zvub;4Sz52_gns6c;%fVhltM~ z*f_#H{?m7U*HK*mF-7yMcYe`IEPj~c=6}4?C!WCUjci~zxNR^Hr!5J|%x9Fmj;WSS zHgI%B-sQQ@)>mw7`lVQ~g@^xP>Be|larh331D9`{*-CuzM~W{#yz!GBaR-=_g2xN_ zOVN!C8KyuTCetLG!enY2V)2gJ*@=joGCp9n?)i;QKhf>0cSg8_-rdNTJ+zc+)@+f* zNB_au^bT1}d`j_v4`i|FeQvn#sxVR+3(IlZR1{4IPL<9X4!~C}tvF^#6Hv2QdmRUB zcow-f@79i4ioZh&AXdgy(m+x1+Br6|NSe*Cv$HG+rQqV9F=+n4_ko@tHc#e-C8F)nf-X}%X+>cvdY#<;Hfq) zWfMOIJpjVlLI=SOY-X|=U{xh;1Tta7QXvtG%`#zlU!__~dEsL-x3~F{Mh$B>MaqO{ z_N(t(8U9fvx%PA5GnsPuikU_h{VbI)Evezx0t<_{f5Z$_mYnqcvVi93Aw8{v=1rz; zuH)j#rqW{fXET~T-zGjuD`)2!yt=M3h;iR$Y#JEnS27zY2L4=&s9N{tT0FdJTWT(f zxZul;9V*kN3JnkaXJ$bMWLdNspIHm+HeRcg|0QuPX(0EjNa8jianrJrd{rio)@EkX zIdlxExcDGd@Tqw5Edz(YZsP6M@SSH+$qiZu_(I7TWibh>T5Nl}UX85T(_B37T=jvQ zhQ*V4GYi5WM;qRGKohv+(q>kEUD{wJ3C5*~a}IS@vGOd}Sw24t+8h65n)m?FwZ$p7 zEXI&9vl3#A^IO$H>N^0kv&=!3SzrQU-Kd$p-6=zBj|{u=t2 zyQ$yEq*XfW;GRUUO%WEM=t$)bJF^2eB&nqgmYD#d5V5J2qQW!bz16}$7coj(%)0QF z%Xz49Z`Or>l%R))iR!5hZ7PWbF)hVTnrRX}+Bygl74;rRW-3EaLNHVn8*H+ff)gJ9 zHp39We1=(x&pVsWTAI7S(5^m^wgh+_P!6q8>FKD0~x0 z)=6ksyB`%@DU(T~YXR zY`?@SnCuR6MrF+u;A=|$23MgN`~u62Nk{|GnlzRZ)|nJ@GO0N3uKdikxR*og6W6~m zLyM|Sth=D$@HhyROrFKT$+4Ot7&xh1PQ%Dy0GeSz@SAM?d>JpI>%`YMcAC9RSAZK} z@nS8&B$LMqncoq)itf4R)HSTIEJo2{1jRLa||6 zgDTc1>)VN^Pu(<9VRWc_2V1B%AqEn}o^e3x*eMJ7fVIise8yzacuWEm!Ue~M?aQ0- zC852-#)-PZG}R1&3DJI&cvMi(3}Mj>eS9$gm|ubb?<@ z`1$6rKLuiAmY4(snNco$LbQ~y{Si)T4mWKdl%~~QDCgZI>I($J>h0q;$hfVQ*sRX z%SX2<^(-IZN|noCTSP!pXg9IF?B&6Z7?mx=ONK~T!)2wwc==~D`m&gZeN$FUZMAuV z==jXs&f?RnH=S5k)5>aESxwtxLTDi{mesTt8e&;ZE30W<@NQX6E30W`HEl?^PE%IX zqBN$mnzk?fu&kz))wEWdFNk$^f8T2J4Q*qMKBDc$j+=*lS4XkCtJmgFj}==Ue)50; zQ!dLL)nU{qAXWM(#T=y=2{n0`p&X{0V#}1xx&Erm?t{BkISg!*au`4><*>u>ec58} zm7B-3;yf~RijP<5R~BG z#gh_B)xO`uN*ttW;^S*JTcZ2|x0r(Ur6Eb+y~oBNB`@|y?z`(xoaG5(^>>Hpe*c>AKw=ami!Uf}J2 zZx|eV$>#I^-)@1OlQ(bgpI{FB%K`9To&9h9`el=1cWvE4H@BO7;bE6weEGy&-OWSCP039fb;jf?F3aQ+$4<^% zacOSS<<8|7Po9+cMdFx=IcL&DCtY`Q7k-h={WNpg#Z%<9x|^>#K6iQIrD#XU$Auq>)(MW}@9Y0ks21n6 z^ekvGq_6FMU<*Db~EWvyGUrKewFQk8{uNUwB=-ejufX zTNTa`&$j2?N3|}TB_apVCUF6_*G55LgVN4WBEv;4+I zZw_cHRy;khix}O8Drdx7o@*l>ZNts2Al3$zk2aqPG01Tes$m z1KM%#U;A))ZM(vm;^l)VO=@*;r-t_2wtsJqo~@uMuWQe3HxJ`*?dTo-#DB`en$aA3 zHB9cn;f(Gap7+L<1H~8eu$^qwJHOh}yM6tB`^EN?|HP#oY2&r;bRHpM!wSR2mX3up z>yz9zZS>Y2;-XIc>QmVsUT^J?haKfJY3>8WuKtB?VnXLab?g;U+odo>JlmP(`?>5K zt4rZ*@z~$#<_AX})k{oyYik?vS{HtOMH{XvT?=WkaDPgloHVw#c)2UzwXKT7`;Iwz zpg6S~hdcUmSg~n)FY!t@ezvnMhl?ND)<+!Mox_`3akzTrw!z{hc{o?)@YMn1V7yqh zt&KRo2j_kzN9F3@Y#Sn8m4{Dv9$qYa zp`h)k6vxInyhskwem~ezA$}td9~#7=_qvBCI6Sa3hl>(StuN)LdJi2nmXA58Joq@RlXShBVFCF+vO;%DErP zIsEtAc2tYs$iqYAr*2)cW0*L37>9LoT0K0hP$QPbD4jdJ@Ke!SE)ky`#QL-1rkR7q zn!z`<5$XtT-XNEf^ZuhICDzQ|(MGJ7=f)1?+|8%YIZaG{m~%A;aZZzu;sMiyGnCS; z2Q#kjldD*#>f6rrpZAkPxbFnnAFm%$xK^AiN8O}D3zrE)jzr`4OGgQ1WZ`6Ssci8( zM;1;K2{{Aq`1Q^+M1B;%?Ix%F??y4BR>?O={9)&h#a&fg=p;wU`*%HBEsh<{h@Byu z!wD8g=6|qC*<_8Yp@MNuUz1StYc9&LIFl{j# z$R%e?ZNJ|o^|Ew<` z(vhSRfmrB|lO;#gUHNS02OrG>IIL6#nsrHf?gK3Td#mi|MQZjhzF$kMH{^e0)mU6$^W zrTb-Rqb#kGrI%&td0AQ~OY3Fnd08s_wEcPeUGkJHek@NekfkqW=}lQ`eL1B+$WnJ% zS|Ll7vh<}a9V$!D%915Zt7PdoS^Bjsoi0nSi)}`s=d@4ciJ!?6>t*Sevh)vGnlDRV z$kJk2`n@bYC`-4?(o?eZuq?eOOJB>wS=uH`n`P-!Sz04Yf0v~vWvSg2ls3sy z?2wD0_mX^xWUu9{fEZt3M+9l7*;v#wS6aniW=D;v7S67JBW3-1LNR;=A~p@Xa^1@=)>PWv$wY^-pc@;J$Kd;d%eE zyLi0(Fz>;yoy~*SoL=~Q@XK#9M9{sKbQ%bM#QKW4`e z*FLMTHn=kR{K7$^`r`LGiY;%pYAZ$_UFhJB`%&S=md|y^Pbk3UDl2!#omc4MzlY1u z+Xt^S_aqw5`?hYMw(2XMK6y(A_f2Q-in!9c;l;LXgz^R7H+MXr|50YI%3MC;;Qhsl zwp*t768~iv6;2i7yKD&>cjrZgt7G!GN5dI>)8^JI`?_;4Dg53)Cw5)7wWB+2V&Mb- z*u8pEVOMY|F_^}k@T2!D#hnui-QCBg6x`sZYcDHw+~0eq_@pxr9XR3ru43A}b_a=y z=lI-DFE2iR`Z;ue;mSgv;P&xXGv2!WtkBgzZdgLE9P#tQSEW^YPaEH-b64@0*wWp- z;ab@w@&m+}*}Uxe(+cxrBHi}A$-ZuI?ez?%t)1QrzW1Z+3s=SDaS#97uD!8P7Zdh% zJ10wl?mV$#=FZ^G*e?s0Lbf||XAgJ!til?<=+z;n*CLXvAKJBzd(G^^%fS^ngv8Uw zY;7kNPkwKpxPRvM?r!}}g(rh&TyTpVT=H>(;(_kmTMKWNJk#ZwJ4=rJI=ap4*4AA- zzwoMmrQzqaX6Hdo?HcBF>n$$$pl3TV?ZYnZM7NDi9o)6`g-3!1c+=!oQTQ-8-t%f( zH}xDM5`Ws-!F}nr!n)w8w6Zua$%{|v(si)7VE^916SplaJP|y>n`k4CY4Yx&>b_k& zx=nW!zkm_k(S7|++3nsJ(yu+m+M!*$yImU#g_5@tyj4FjX;jxv?x>}58hf|P_w}y0 ziF*p)#>BeESz!_jSbkr%N+D=sxj;>|gK93r`jP$eFuV7rqJ3 z^ytzw%58e4aB@sMav&o!(2)C!r`Awa$ExPhIecwlR7@WCaC7Sl=LN;Lo-14t6es+q zkPV6(UMMsM#hEV_UI~in-xXd8ibuR6$Bp-}0k0K4_KV`--?Jhm-YDE2TzY+d;f?+2GY+EG{)6j#1i*y0xjXM4DheIVzx_cH5iwzYO^J}Opo?VseD zZtR&c}mwoNw##ccbgpZi6zyF=5=_VxQWtNrRV!*nsXUDH{jL#L*R{*!;z zsVVq=mx0B6*?cyt-k$mL_6b|O)vUMpQ@5t?3+1fl#r~}BP5oo?xQBZ~k0yqfEQ;Md zn_iBsbf50kMDKfN*7RxGz?s^@L># z-QLM%O?o{z{zqn8C$V~X(*W!^{dj}nP2F9qvWX4eyM5~=TRXX36HRQq-f_3ZTRVxx z-FQ$U(bQXf^k%=V;?P6+&E-RyjtuTuJZ39#dA0p2+^>f=G3LD=u842z+Vd|Y6|HG!iV*T)@9zr>!sf&Bap-tmTpQ$Y9S0Q+22lw?+O$$mM zEI**aT|BypAt@i^^7L-OFTH0f1N#s5-?O#eqy|^MJ)3XwK7IO4RZZq359-sfqkkLm>}go7mLJOA{@xKy zbNt^myhJn3JxcbN_n7PEbG)d!X{!G!ZsHhv(7$x+Nlha}eAIv*;`|T$w-sxS;&V?v zuIZWJ@|I=1^um*x2FiQdi18x^^b)UEb5HL0CNuajo;JdL>x3p|nb#UTvTbmw`R9X0 z;->>Ti}ObCuHMi8a!M03F>@sw>mI9KW<2BZre8E~v2ToTni`YGJp_VJN5Kd67S;24 z)x?h~+KFdxW3^~FU4FB7k0+GfbWYPj?!{*|y&atV_>iWA{7p~sz*_^li0L18VZ)I7 z;gTOVJs#YHC>7i@_ZRQM1N(R5DR{NJ-cB^*#`&CE*M93>_4cJ7vQ zn-Jf;H)y^*%H8$jrauNJyDdgmyycT7hVaaR2aEL!k%p2^(+k1n${||^3FW%?4spk4 znpkVR2O$*?5_7M6&vtLmHEnG^x!XTEQgrJ#ke=#4u$?&Mp}8I0&n|32X7zqJ`xqpo zH!g0vDR^Pt{U9;$-T?#MhbJ~6ugqGweX=x}_7;mL(blKmzI~|MX>!w~SZtTrcE`3s z;?UchDjUuj)I&UbT=%x_>r?(0Th|>B)$#nlXQOuu2m&fLETFN)iZwKo8BGHm zsMa?0SnJ6-(~HrtdDw6AnEjxu*tRW8?Pj1f`xn@K`k!Wqo(JwNd_3WOcu~e2*_WCO zL&rA?K>y90m6NQp5c)Vkko_g+ik1RVU}<@JEywjxjmAN($;7RAjCbyVA^$!^g`OrG8h3FCSP zhfvD%pc2@Bu2?+zZ}i!m^qg#sW#%__mQz=ADoDTW%Yiq{i5nlZQ)YDxE-CpR$jSLK z*Cu**OJJPscbL#%+2OD07e%Yhfdkr<4f z$XF`aoi;y*mEC+ov?nMfDSja)mAp5>RVjNLTJiQNVYfvZ32AC-nFYVf(P~@kjnPl) zaaI_<;E2qB3iK(6dNf+)%I9>UuYG}6r9QW z^3dmZIX=?u9HFpGh+nSOv=VXalr@Xi>EQz>xX@`#30h{w;EXOQhe&U&IUza`^rBia zdjGuSrsR|;qQ->$nPWqY(_g~zN$Um${+FCpk02+wr(K`(ALWeG3EZ26p_X8%p$r0- zu=x;FL=9#< e2|Wv~e}@?(x@{Du}r2UwyIQhO{a?5 zbhfFe5%X0+jubtjQUwZsj;{N)xDibnQwL3f6Qw@%tcktun;nf<>;m_u#@kS;J$}ae z^sE+a#x!T6gYFAAbGC~yfb!b7gwgLV#&(=U!tgI&L{0sv;dsEGrp?fc-g&MIi=(Y|^Nj~=5Q3K6v z+GJl(de$_~z_!FDv$uqrz&RE{f*I>d5eJOrr1G_m7->v@SI3Ak&Gg3-8a~{oa@Bt| z{PB85m}2IJ2s<|$)|Azi8>%C|XCotw3d?~(==wzy?Py|z^TNqt$uUnb6A$D}rz$no zCJJt0#JFGzn7UF_=NiS;!9Spt5%!ZQY^}I}o`F>yDZE5gtrJt)*fW=qd9Nbm*&coi zj!{ceulAy4`dhS>_PO@P#gNt?$8)egwUdWbsVE)l!1WVx!XF~|Lte>y1FC#sOqEW? z4O%jc?a<`%RV#flSG|bh!V3Xxi8Ja~t;AYg?K|T|dop1MOtvaziDxK%ccD>S4k3^d zcFC1hPh@*f?i(Qt7DY`XW%e>+dJ*grid_S3Xs1iT{f%!mNqrTJ%EWE36(S=kHrn{R zmZ--dp>~|85L1xa#t()FEoSksKW&RpeHp`F96nRrNMk1&@YHStEF+CrssZ<=?DB9_ zd99WAvwc!OKFYXGBSTPiif&V_6h-ZkwVCJa7-5q*bwM$t%vezYj^qkw*Q-{Vo(;qJ z=V4!Soalche-@c=7)4{pEqa2`E+&6AE7=#TRaC9unn}jf8kq-W%7bdvRXcZTis%7O zD0)E3oMy!0?_YwVW>pJS2YQW}!eBDl?xADgcBxht^KOVEWp2*F&TPC9>mcUg%rf`M z)!AQ~G+P(|L6F+cHMT55DV2p^EspbD7eGIw!tDAvWq}yjz`cn*{k+Mcp|oXffP)mZ z$hcFZuyyjxkl{y&`Fzx3(L$Vt8!+*k>J>gu<=dAE?G{uCW3Dc?LWOYlsS?(P)|V=+ zwA0DnfQ>2Ksk(#IDai2vP=o8a*io{SEqh=yYsLSZB*H=HuY1-pca5fdll z>|W+&gjQGktJN-HPS@^)9`i}|!8Ek<$^DuhQ_ybM(M&0Ow`lJ6ui?_O9nDGySHv5* z^bPhJv7M6g7K=$XRe6a4HPp%OtNq3u8U+@!rv!_NoCK!?n+O-46J5xIF^!YtW}hc8 zm%~OlMa+nV@amayVIu5F-x@W^RI`dJWgNm(ARQAk9W$;!VQlwr#?Q0Q$kU?lSd8#d zSxokKm9)nD>5R~Driuv@R5;i*LyM^v_w8BH2?c2>rC*K46xI_fu9oM8)#B{ST`(Tg zvUh(1<1%`4P7t9fyeM&G&2qH_I~8K+1d*=D_3p$xAU}nCHrCWt9-CFVH9^kE+e_RnxLl4 zjPsUcEeB!kC0KiG&azy1J8*H{hu6hnkjYtk;%$Pi6;P6$YS)n5N||nHf?kz2Vg6yV z-FkW@e+sXP1uw3qKN5!PSWPuCM<@TAP%Xpfg#St1fO+D`j58iDRw$T^*z=O-(;*JediY@2`fS$jp!Gtpe#raE~djOMf%j$L^@n{!?Aaaxa?Mj0=gr= z6Ad4PNQ=6gVs#>jA#8ZyO3|lHWymDYd)LZ4pMcat9W7sHAp&X z+!!&yI1es;evHYg;r4p_OMYWb@WoitvvH_)Do-_GYU0R(TGEzV(8;d?Fz8xNHyzN(qP`O9Yp+!SyA&QT zw2Eb*R#hn5uYNI#zYR~+vw|7((`?gGjm)hLaw!Vl149%y_dk?kbk)$%nW8EqVZwY< zhL(^EoKU%bF=_Nd6Q)4Ute`b0BCNiP6lbtE32`y#(tJ?Lr1uw7z0s3qiP z?Z3=~g+B{Iv1-zQ*7ZH8LpmnqZ7T{IDttN=Eo?u!Cb(z)614x@`i^9+gMs+dN_){I zq{gz31;H@6N}JZ0aD2shK^xKK-@kUD%lYVd8x<($tnOw%DSMsixyCMvoxHlf6Ge|g zX6u?FpRyb6)lF`OqlHJiO(7JKf)n59@%3G$@XccW5Lrn$j)B?dV54m&?2d2&%2j}B zt!Qp`ql8WM%TVWq^#f@@XSBx8J4~29nSJX{6Bg6Vt`)$864#)jeZIlq^h`6sEo4TV z82D(6kKHgrJocK3YPe`83GMXii<(IN4w&w!xKKojI$&~_Vh@_IUC5b<#*r|pWDSqX z22P!uXKnd5LG2w8Y3;ek($OmO{Xy8EQ z>S5n;<5@A{-t@)nhHJULta95Zd1;iChJ7d>+l6ru_7EI9Dw;HcWLTE({?rW zRma(&OQsVlpA>f4gd-Y}gwWt+DZ?rUt4yn|n)Yf;Xe$^eX0qEM_v9W;F{EyoX6nef zF(yR&z2Hui&{Ufh$?_YTWrLLTy9vIy@;knc4wy^BLu~CD2 zMMXGB8I^NzRp6fKjY{GxMwC&<>?Y+sFum0x;SylC>W--b1+Qy{!mq|vnhoC2qwh>& z<`OaqCm$M5-k4^krG6ICRZM|Xt5Fi$Mfgy*B9|g#{Rjsd^91H%zD*2pE*4fOm9%1E z8^A@{{HH0vj^8oWOgkpfYaQnIC=6!SrNpd2YYP$@d!l&|84 z;>_4h1*IIJBiy8vB4(%ob7uE5htrn+tx8BYi<#kTh)5};gc&20>7t|*VQdj3eQ-3x ze^C>aMy zA8mfrq6BSx(n7NrgFVdXXXb(P;Y)%?>f>ck$cIKS6mCo)&krqJsQpw7%b7mrBU-x8 zy@B%ju6f$Bgfz318Rklr+T9$UT(*@fEi2Lh8&i{^7<Y`vOV6 zZ1-B@S~^o!J`N(ge{F{6!4lbM9B*%~MTswDcWTxec6VW8Gv;|FXS6rtf9=BBI!NoA zY9e{d#zn%+R>oc`agC8>q{Ozxjk;Bhoap<`5aiR+43~`sVN=UR`q;{h0|Qks%mBd* zxKVZse8!N_^IDegHBNrY0C(^$j=!De~`;b>3VyiuqH!R>EGh*|Ir1* z;0ybZ{;fA%{vf+anK5SU2XfW(Ca7t=rK5574EUCUg!Xu-F=2%jD*Zg6KqgjlxHcM% zely+pwv2RXQbEU{PL(P9I4YVw#SHJA^Wfw;)65sO2Gfe^Em>z2h~&F_aQodv1-vC? zmR;W^q=xU$f>g6Cs*zWry#qxxXzxxLN3dKfGxxtXEi<5f04<8bIIcARztp&q?aPrN z3iHrc3(fYKM%=(6tap4Q7lRr8FE>0Q?dr{QaaMvkNHQ%oW0}E);t_9JZq{ZUDKD|0 z;@lc3P1^gb*II*;%$Sln5%1@-q~J9L&1^S`{uI@|eHp12ncwTEelGR^`9q|fb>>dg z`>Fj_Nz{5XCRX5|Z7CXWL~douOfQDHe50^QOcuTfPk|Ji-k~C8^y=WCZi+VBZ0CVT zER5jwb+{oIefq)I>Sr(=wwc@E6A;|3II>M-hM*UT>pxPb9b%|5&I^k>MU^1>DMs>= z=Is=Mm@;5Gobc)Kdohy5#o~FXA~&XBg~Ak9I#slzkCd?6E=`)2E+&`?HE^{H-&ggg zlyL1<7ggAA&d@!QZtfQ)IXxZj2EMo&Nr^LZLZo&-n&HSHh;55w<}#Gw^4yD}f9vE+ zcdo&zRr$$0SVvZ0oW|Ne%j$%M7tUa3A2wst4?!=&LO?7Tx;RmA%g!|^UhL6~K4Qk{ zk09e9-3;GO1hKZjlB{LtGSc!B!lU5S!G2$)E<*{H&SjQoDGgj8j?wJf3 zrs+}s((Rwk6Li!i4DK*K57Sd{I6UER&zTqF6f_)e?Y?0~S1Iqj$eeN9%W{T_;i;|H9N}1n8vFB9Ar8#`Y7DRr3Kvj%Y?RNm?|6ztJ z58RvB06lmE-4*w4-(peHRQ z%W8PG#oT~qy?^c`JvNDf#{7uHs*L%0WT8gx6xXtAFnv1K)tPG6N1oU*a+W&EW^5NQ zqnLc8TDfA5V4MXnZwbz2t?}dX9!1>nmrz+I^OW;cXYr@FZ@cEM|e_V*-w+T%?*M zEW&V1g#O|y#$nWKiguJC867QCbOP7*lRHdARU(>nFE4F&wiMUVQLla_saeNR5AvGY z9miEJ7E-y{%*LEBGq;zt&((5Qlfz#+#LZOYcuA+-El^L+;S0*#+yLpCrv>U+r5#pw z{4wRv-j+_3G1R`YtLtOQ&>fRx9}8@WLrIj~{*5I*8t}DOAgZ(_78`)RxV?qlP6<8t zR7DGP+DXdu6YV5;#JQLY8xYAez=Dldj^yrTtAfaq6fN~AD~$}aKqHuJ!WR}&RInvf zWtWy#u;8GENf-mrpbD0{lwGxlBf1~w{Y@)bV935rhjqjUpnWOfkp0f9L9zOro4QR+Xi5`3t*zn%q$ z-WBa94*vBmSULk&3%%=P0}Bp=fqpKoN$ORe5=QrOp!XfGKu!=9HY6TansWc6&+lTU+2PFqNlT?rzAgOr?JlyDM!i zSa30!XLvi=pAtR#c+i8Ay&b4u1iE2wJ5f1rqXq5S-qM@$jF@>pwztIVM36U*OHo40 zJ^>Wmt&bz=EgPJr><$*J1ewee@yGra59-&uuc!1&Cksp+Q{qcwt7g=6P>ic`T_|{9 zA2jEA$&Kd`M>e|b4R^vAHwtUorPy1T_))I<3NT>s*RTc!9 z*b56(O47GO@u5k>ftF($g?DliW}{Ro)TacwC!^5egDqHTazgAgx=JuwFaE=xc)g#G zDsAxa|3}&iV?Q6M&qxcFTPz5hN3K%DC<|5@jKirZi?3DtyU>8seH^6zW5m!A6baXv zagxAH_6B#SyiWaHX_%kMOByux|H*BC&;CAA@9`GcZ%&9kMOO)i(q3$CkA9Oa*nDNW z@EfGKsg@iqPn5>aD)!?f*hV|6C^(_umN9e)b|4v}dx%03Yh; z*jMY|<8#HJ;LK6Mvh>NPubY%Q--2Bcj>N_!E;EnC$LZPi2b7UcEVN(&$rRqn7fL`0 z5d*NT9@5uA$~IVZp7d(?1MNc;e1P7cGDqO$fivqZ=c)NQVN-l@=HH*$KBJGMLH40En9JKKK_iwyNHUjqqFa< z#Z|+3uXD*Nuv6;pUP77`Jv_M>7TG4 z>DgjFV6vD}iOEr0hlWbGZdmSU6uwq)41P`%5+*+rKc zS(T8JmlT;R4ByQw$gbR9s7A(b_G>4b{t`X}aCJ&}bTAi(b7kVR6~&lGBHixV@ayrc zKp^#dg1l4f$RTv`2@1Dgn)Xx_&TBrV3ohJ*JTNpj*ry9qo+u%3b^eiN{w*eR#@XpX zcBLt?z8)q>=*QI;7OdZxj5!1s+rvh?(P?>fIhFkKl?A&4Oy+68?IRvnF#b8Zyh<+l zR#*xqi&=kH-aAZo1>6$2cj%~pDYQZGCrdv%UB=!9TR({z0Jt`(<-1t@D7#2Z5ViN& z?JULXtnek7%=;;Qj^_GF(~DYhP|J}#m5E4l4~y}`ZD*``vx-~c7Yee3n!xL3PWDy6 z8A1uo$9PK)&eokevDewjB>+e2e>^CyvI!SKLLvUqGT>uWcXun!byy5vh^gsmg{Csj zC-nWjt!X;C*BRrRJ%J@9t?ekHE5b>g;=oaot@ae-1oH7iUp zr{hzd>D8@Rs4+>mHbKJ8Ev$D`iUbPQWX#0Ic0d%e=s$k4Gk-EH zJ#J&qBDtxxI^jFvic&y3(adUQqV>4Y**zx)NX^<8Q0&5R@wj~PVzgrSWCy8p2kReN zLiNKeQJw7Q2kuf_Co2|-1*MQs3h1f8IopKyMg7#xnar+M>}X7Bj9$STB17p}(}MBW z-HP!CoHz4aq^3QsShxQ3Ojs-NB22$tQ03^q?d%tOSz)q(tE-0oeMA>^Y!4S0uaA_a z+5N!%w5zsIrYHT-@2jNE{YAeQwPJX%p;{Xau5z;7uP!!FXfkkZDdlo0w|cS+%lTlC z6%G*-umbX>@Ce11;wDaakW53YV{p@?8m0z*ujKkLNQ`P^pC6hI7XuDB-^*~3vPTGm z!MHGe(gVHdVu4E#49oQNDs+kw;gm;48AWJkwZm*^1kCSlO1&lD^6MGB^vZ^jBW z-*+3$6kh?yW{toz`dmvv#glHMUW5Dr2Prj zw~|Nv+fu0>lM}&0$xnC z;(Mjz)Nqy62-G*p>L8+nS6j;o*ldlptbo0eReUlDLtSPDDvj4=7SYUE_WJHxZ>^>i zxVL24AexhdV>VfbYC+p(>p(5oGesyfGyJ*LYS7W&378!5KFt`4o@-wokKKX3`A4eo zgJ{Q#Tg|cJ#hUiiWfz*cX{vqoc5;_BR3~tp?D@-erJ8Bh&MGb~-))7{$fR;^wqero zbZbwI6td5{P77Y!Z(R=W#t%w=`G9pg<@ww7ebkRaG;mGyy@S>s8vb>Ft${S{kaez# zOCFN2WMC~xeS+l(sp?T{2OZ5nhw=8WCv_?uNAaKiYTu$-e%x9c!}?cjH(ftrouvf_ zo)Tr^SY4*|tQP#^3>rj@U3=C#Pe(6DU^IMwndjGY5PfPSZ1q>?t#$DE;7AOQNxxd* zjdIZAq80044j#WGtOo~2UKW!D2bWy6;)*{9&t_Y(_a%adZ(8xD0Y^6aT@1A=f=NyWx3v%UVw-aNMZRwKkU$?pTMbxb*g}^{5v7<-YZR7F?KP#d#_xKvxu( zB1}R}1TGyki>_zVgSXad(h#dKqr*MXRcO`bWRsC~oVUHdq7;!eaBm4&LnsF$|FV)6 zeDP59I>&B#Y|YeyW1m|0YQgY4>o;1^@Z35;4N_!zTd-92A8TEW6#c@Aok}5wPF1i~ zkT$%sR?tY-UR&Xua}FqRH!axey%lRxj*a?gZKnly=L@SKVh^3R4O1g2qKd7Y)UAjO z^<26RgAA`IVN1K1tsOpf)J7Tw7q?~T9!l4X+t50%zcp!}M0|c`$4*60a=-gOL)e&)+&-~DO(c}6IR7mOPX9-)Z2Or`i1wQn$k;O z)ce7&cGVi_hpGr%8;{q^+AtmkE@3?4+?Rt6fi^5EIA{*CeXj-4htMjHMW5-_AhA{r z4nd_<(%DM3QCbik0k>@TIP}5hYPM-KcRZ$qCZV?GIuZ1emR7gH9pa#8P1_7DxT%(H zwH9m{ZriB^-_}NxtGvCwvc(orgLmrLU?W&U{RXz#TJSJ7Z8&=8U}8^OlotE^dmHxYId*Dq8>S8p7VT>rrv(@Ev&Cz{(gW-zl75P| z`D(%*46}Y%{eW%CS)k&Kz#Tb$ezwKGHTwja94r)hL@$BUOyCt=57U;%pZ+ zF0^6^DRo>yQ+_u=R3iKxjIaI4GFNh$3|)vZ0>o*+iu*~*Ui|w$&mZJrmthAZ6 zASB+^g8pl4SGC~#WTBKSA$6^70oLcg!MVc=Z5t@)mff%GyFt_*xVMDbW7mO$EjHWm zeG>;~rPx|(!5iCb%Qc2^J8W09*e<(lKWVXL(rgd4Sf6y;5iRz?UfbVVtT{uBDV96v zplDDIdLFVJ(qeB(wia42^q38+FJ`EF!WL3g4eC$Z{?KB(p0WL+#a2CM>#qgZUa;kB z45^oFSG3^5%eFom!;5P+xThEXKu_X%x-t}a13ejb$8NG0-#~9jQsbM#WbgYE1`bcx z?WC!HVQ=-}?>0ThB&OJB?jdh53kcks0xHXGr8jSF(JC&X6qvJ_#0BX1(NP1 zBz;vxhV|p%-JF&Z9k0Y*}Qquh>uc!JhnSq9XSFHg>4hGSIbXyGdc9j>X?9W|gXceby4S?KvvGP;U`L&}Kquf2|u#Lp7W@sm5zup9W$=7pb(IS)bX zIMu{ctvrPf@s}~5aOASx*4om`0Fhka()>XAXN_bEf<@>bET?HC-wN`29NYLJ6Fhd< zf(C`4WY>c1WAUI&kn(711UfMDzF6f_Fk?j9HGIT0>r?1(eb9@Hxyk58KyL_Pv@8Ghzx;iogQ6R#x%h=a%~`eswYGB80Vhf z+CVg&z$I%#dAk-|+en6faBQn4GS(&>)Hjp2>G%=HNFBf67+Hd!Z;bTdw;Ll}`QgUM zBK&G&q!&Ng7^%M380o-|H6opOsWGw`Khqdlliz3r%K#Cl`@G zytfEUJhm9=$uBK}MLe^J1mcawNN;{%F|s7Tu84e}s|l_biw9ACRS{*&60r^VIYrb^ zyrl>+;vq%I7OyBqcIGD(k^XOimEgw{!6IHxL_3LR6Om55nHcHF4<<&I;nxx&`k08+ z@iU2_i8m4vi3bwnMMCjBA}T80Mnw8k0tEA`h``nhOsBu9f?NSS^x|1W(8QaF5F;K$ zL~`*OA~km}al9sqpP}4WBFd+23A{5Ye#+oyD7uTD`{_%U6kWneK7jNB zKSTAa=qiNyiAEQc(eV!d)5nOPIQ$INAE*4*a%xG@;DX%k1Smc6GgSYOj0+LYPM(%&QRQQwVEi$KpBrHg=RT(MzHVqSF$& zn*=6$Em3d!sVLJnFlH%)*$QDwA?(k>7&K7Gd?buXqW)n4DzL|eu&0Hvyh7ODg|HWe zuvdk!H-#`$<>H(@EKEEyw0uT^*$QDo0YyoLLME~%e#V3*3QSm$L{`bqn9$A7m|H&; z6Q(6m@9_l|pQ!ix0!`Ha4b2q^g*qd{LfF2p4onjkCQ+YJ2>Y=RCRANW5vrfaI{z6H z%3pxtMcyA(R48nsenTN_^A{LfjYR#{|3>ZjZ`7{;M(zG@)ZQN*;<+e1SkOhHR{v!? z_}{3*|BX8O->4J+jr#qIs6_p(AGNknD}SdD@m?Y9K_Sdo2s0PLtc5VS5SCjA`|Hd4 zC+Z&+B0edEJu8GgFNFP52zyxwdtC?*7D7N830uQA{U^`V)n)(}l2~ z3t{I9VHXNvSHHw2E_E9|I(E>239*AGj2k+1{OT2}mr8COXhs86G+UFG>Y zh4yuoJK_DTk6q#FucI2@$pMbnRK~Xy^&M!*v_$|LJ^fDp)=}7Y2zf!xyUE|`?vbIJ z{GH=_HF6i(MC3`T)g1}$<2y!R>GW%N`Flrgx;#f!dZ1Q2XnGHMknRfQ^pHpE%oN#E z4$wWP5j~N^bye7EI@(h%ugj9|^_2Z}x_$Ked%3#%29bgs`xer|DGjy$w zJY9E|BKyka-G$SJv^QWx2kO_-w7%fDNqayl3D*szs(PpIFsEO}&rp2^nfl6Qbg%Kn z6a=24kbd%Sj>3I|h^xu{Z!MIY9otu5j{%yv){c6Uw#~Zh~<5xJK}T^q=qpmqX1WrKj)rRM*!hE0z6ZJ za2KUZR3LmuVED7GfpSM)I~jQCWZ;$4B3?Kd zc->^+Ws`wdO$Hv81|F3L_O=W>CJnq`GO%Z5;J54zyjn8wV#&a3B?B*&4E%1rf!9d} zUM3mzHsS6Vc$H+}MUsKnNCtLw47@@z@B+!e>mvg%j|}Yk7nHfd`p^7efYK3mJGRw1`(i z23`mmcpYTmWsrfNi8t^XXb~@g47>s|@B+xd>mLJqEC#(;{TO)hV-Rbfcpzf!V_>Jn zz=OxYL&dFfYvxrsHz#6)U6?75n=OR|mMZByhYyhl;63$Uhsc4tHKYu|*1#HS zK9s@Qq4Hp0ABM^?0HcPBa; z0V80oAJf4Ra#w&7BjpYN-;LzRT_dq4@tE?}$Vk211=uD%vpm!@OS4hPD2e)wk{bi8 z8zr{}$Qgx+Fo}Fe%Pj%=jE3P#qU6!oKuMy1M$6p+z8xd?1lT$T^GFiqjbYBOV&qo9 zCdWV~QF07~5#1BmPI?!E{gR#3AQmh;X?iRQzmv|!V(qq*T;mvYk7L?86+DQO+k;kh zESg{^>Bn+{AIBoUounIw2H8p9j6?l)(&lk;ch{XzH~mjeSQuV%rWWJnP--^Z3(p>o zmrH=9{&wD*&k)?qT!c1@O>gC%#e9I570b{_J{#-8NBtH=kh z!#d*uvm6&kd%0=W6gdJZPESDxr;+PaxueKpDw-;dQl_Hw)9CN1P?I!jGmRscOykH0 z(>OAGIyy?B&eM@xp^ei~O@;ENqc93Z&H$%En`X$}-4s#jSsPK99XN$8|EnlW1%G_| zSkvFhX|+}wB$+AqRC#~h3|^nDIy$pjG|+tiP#?81SyIKVpq9XfSi*i#@%m|PHC5^D zi0^>yT=Pzm!z|QIq3g5ckpPY3<$eI`;-QNQJ&Q-d^T<6x?&g{&3a8tPq)tE4fk`s{ zET?iH4gnKn2e2GTkcR>U&X$J&%$<#9Uq`oRL#NhJl{u*CI+`;_9s%%Z4rIP1=eh8H z-qPf`@)Ur)x$kBEt&il%i{o+E{3pVD!v3BPcqG3!nBu5kS>|@OXbO~ zVmnTM`Vp$R<8ks*xjR1D$#J93%TUW?>bVT2B$>`HlSjKT;}8FUarg^v%5Z+uGC4EH zf!vSF4l2Xs7hre-hBHaB%0TW0*&~=!e-y;=FLl~b`Q{Z+wf}5Xdj(p{M(bCgXg2al zl*hY@EkgaK4`6EckxUEZ+T!ubN|ds@Jf0QaiXma6kBQ7aZlydC*qddTD_7+K~ELgxx8L)OZp0J2rk zWSu-TnA24aK)O-oi)bx!z5-CSMefm=b#fng-R0J!Tkp~Q_3|))$Lpa+_o&wfRPi2N z+rYF28&SA>v~wex@E&<=LSFZ1`X+gV>pfApa`hnfNPX&ZQ7G}|O86#4y#5q?41Ii$ zzS#_~^&X{ehLe7eT(+QQ_b7G?nqn6%-vUv)=-n1*>n<9XB2NPND+Nlsi-v9G$egXv ztX-P{JP+eK}+%W(kGcE&-i7Wsi8p=FtS8AYm4z%!mG!ES z-XkF7Zc|I=bdQ>GsOeuJ=V%CeMTb#{^Lol%fkB zs!K7}z-vUwXz=@Vd9OUojrrVWgD-VX5n;~4)o0?iY?d8WAxGwbIBhPi%tEi>jkr2U z`p-UjU@#~3oCoRx{HR49H6N&2n+7D$TqKv^hz1{YSYY zo))Q&OUh@_QR(FQ6U&_Z6PhTU?yFdZfcjpcwikH`o~8oV zOY%TO#$1A-yFynk$vs`Kh-yrDjB0p37b=H;WEF2`&CEiZU!etAoI`FFi~i=a+_wfN zSel0fMV{NWFzRohsur4syfdH(*ND1I!^9i0)YH@MVwlP43Y-Ho^|%60#Z0@dpt8^D z{1tdA&#A;!%%jh#`&IaD&nZO(kFLVCdroz)!GCy83$7vgbGmsAZqIWH%4XV#Y`AvM zDI**H%5%zBL5J%Qy_!Z{hp^Rj_&WTR)%4*yI9F5a8*o-vQ^F0fWYLxz@EWtodP8pR zCXR{p|5PvfKmE|{MM?Kb4kXk5dZq2<&!SN`kx3REy(za-nSX5!=6-F8QkM^4&Ti4b zgE}3n_t}rhqK?1GZCqLKjke%TZb$LI%NSZ0>NytZOBUV#4MoeMkl)eoSv28y)GUim z{?3ub|KJjS`v?5tEL#4D+!o;XKjaRo*k8IpY>%!q&$ef zEsKua;o>^p<#I;d<>Z_1q93#9iHbG8hpx_|rT4fjx9-8?&Z1iPIo+)L@V~O?xBJjm zL_WaGmqm*oK;5$F;REO{S}%t=H|4;^%%Z#;s5c^woWn*V(;ge46j}7OiF24|!croO zel>9mdYZZJJ$$zCW>#H8?h zB6oA!C)A_G9#C7R7p1WeEJ4mbl#8i2Z^8ZA$AEeHILB~@m<}VDNRLcAdE@~?IKNNdv zH1r`yN)KU9Qpw|y+|^Yah3aQ~LZQ6>N6((g4QR(B*&9^p5t=%c93G=~snq*1r%Zp0 zeoLhiPdKvI6OP>T1WJ%fZ=axxQmNfj6eE?^Jw>;tQr=UJZ2k;2Or_P&Sf&k_nsK@( z_U?{)(}5Sr*t1g00=tn)NqJnzM*u2smD1o{>_@r}Lg~$|JxXdl##LDF2kQK?c*fy2 zMx}W9!F6QZMElwzl}yjMo{i>Ff4e;8Zy54Tm`KU~%}FVGFCwDW~X zm;4eMno7|xF^#6uFE8N^q*CZBv^y&G3Z7aj>0WaNeO^OfQ|ZWS^iV1Vz2OX|ykXjn zH{2%G-f{-B-a^e%DeEn_W#Bt*nwWRoUMJsile)aeiYk=`yqCMWaV>xBhg!P!FGgN} zh*~;F`p~oYaFA2!)q76Z<^zUADkXm4PB4Ff;Yg*bA33LqA7MjN>C8urlT>ofXW9Mp zIdXSCr+b-?VT}g)#F2(i+*tQM3DIjp74bV&>5kuPifFg0Iz<$3hEC}Ra95}F4CYc! zFrbt*5{qerYbCZGwXS+aU5Y3@v8$U_MCk^QUqtB-(66Wxh&|pJMV00NCyFYqbbluo zQ!C**XAUaKI=8A8uctg{jYkm(H0 zGgRJ183ZuTMVScj&PC}3(9M;>K37ONL#}R0Ux1Nr9C_9aGS5(eyV4tAvO9`>hEBUH z?E#!UP`@)Y%mbZqhK_k~MlPP5Zm1_G$n;cVK@0a{DF!d4Bd}Xu%1D3~-YDQ%iuP7I z17vukea=z|ALUzsC>5;tQR?IT`??P}*HWGjvRzA!OCqDSw6r9eU@bi^i9)QUcBPcA z02@jv^8kWND}ySp6)jn`HFnlR+ZEUPCl4V_BW?=v9L$iuN-%|2vs9+1r4YGrAJsZVY5q{YQ}o1NX$DXu02+CU zMh76lDLNCNv;}Z1hvq*;QRR@|DcVv_X#rp^$LT5sGRx>dr41r~3`9$xN)A%mxI!cG z2c_Fk@3-6Nas^ZtpS+gTwunyA(jcWJ5?l*{(w`!?U?l>eQ!p1|SuhK`8H^q}MHS0) zM#IZPXHQW^c~0=OJo@VtHLSo=rdQwuXH?)&k%hIZ$n{IAC<-s#tEhw&(Oo@USy@yJ zM;V4tRPYJqghKb8P?PGY*%Mk)9qsdktku!jPbjPg+U^M@)Ie)x-yls9zhE2W34xKg8Ev=P}v zZ>6oZm5LO-D%O=c*X0B;b)n;L=u%xy7hDew`G!W+Q-%OssfY3QhN{#D=Ur-BACtmeVw`0U}S+kp^ho(^RaX@-;xShDsBF=?#?*02dmf zJx)`ZuThoL6!*0fraMY0UnBV)I{h`Y;0_gSghJe*$VQNIho}*>;0~D^p@4U&L1WbR z4lQkrKD|Q^RnV>pWP-B^vpi`6(RZkAQ;uBI6yxX){iR|Jn=#AsX2|aW?QMo;eL(L8 z_LRythb}#(q0N=rx>ZEY5qXOaH-~=Sq7o4(#4U=7K;(9cjX)D@ry~(azMV?60Bt)( zwE)dXu`SRmM*6u0>VBC%h{z-4-%{yGogve<+aiT;%fU{g=6%af4^5mSHuO{|1t> zsJQ_9sGk5EXu1FgX`KM@8UdQV5^`RwEcQid*KfpBs>=CWP)EWy{#=GDq0V;dBl2no zNn0sQfZNnjfJ-z=fHPze;4JL|XethL^`~*1`&rKEDzL9=E30eeAcL9;@S6GvaEhjWi$1$bhXi;+&qZW5d9(-kNHqm`Ns$8FppgP>q=f)Y3ryDM z9NA*2Iod7O7v+gx21BD#-;h~Ix=Wt~I8Egu0gh5*0q#&Q0Upp~fTrSPSO4l;hcD!~ zLZLM|;*eLr3`e}5%dqh~j21PQTXbDW+D^{|Fp^sbfXh@}fFty+02gU^2jvqQW_U+s zHqM{^>Zmjg6eDRwL;W-4vvBoN*Fi&L29FpsaNMYoF~e8uQ>b+(WfBgcj(399T0@SV zl_>zTJ1f%xK6X|X0L+V0RsxjnqAUa0(M72UfCPc0bb+aSOy-_S0JZ3<1R*@IE9}B! z`l%~S>SJ>M4)*IYjs8v<43PaDZ17{M(M=f+u(})OkH_@B8|IzI)VDiF{?c910}JcH zk%>K&p}=0LSkIo!a=NEd9+Akj9maU*_ewQ@Zr{VCCehmOVaAf^&+lQalc;7d7_KCm z-U~Bo5}oOVBF3B`Y4^sCW&tN-%afYZB~46?8KM} ztMy5E7#0?asB>TF7SWQvFk3|Cz9`RID%uZI(N2o)r_^)YskV7{>O4g8qlke@jiRe@ zJw)yYi@lSY^=Hlv{n0i%>8%QS4q#e_3Y?-bL+_-K(eQkBQf4$KC^rzTxRYiNgj=|i z?hjN(0kj*02HQyo2QjDfUK0no;`G6m{L)d@ybJ$kvv>+1i@*z5&}?bxbp44 z^4LCH@c~5|t~3OI@T%lHLMe$batNXhBNTsxkxgYgjzE9x zrVAsL5E?a7sfX~^kxFGXs;6!*1?%A#?WKWw_-}hDYZTIC>M{TBrH^{F5-6jTMgZUo zpd+IcZd$QPuJs>Y7{pb6I(ucB`D?T-e_co@E9mwK7F5{gww7um|64b z{TO8&KuiqOC!emxp!4#nW-NmxvFMU~Qev?%fza6~%`a1wx|AHJcp&1_Y{j4aCnyc* zjT+%NRvCzR{aDT=d#o}R*n>GrB^o{slXE@=&P9X#Hjc{`I9?f#sFb-%D4iG&HP26; zz{%a`DS?zQLBvptdC0;z0iHxYRiDW6HmSg45|k&Ow$6qo&Y#2#*C#0x5H)o^Djz#p z>E@U(bmRuU?;883cLjP<5S7qTM_d0Xg||JYa4ww|D85vAENb><3fFA<0%TipD*7Uy zhD=oksgi6MBpKC9`;szMiBh9#A*!~Mk3aRAhMvu*-V0H|i_t{~~D3mKo5}e0r)zDI#jwOs>ttnMyn;`dKhn`IKc)YLaI>ELcAEi)Ufz*yg~{ zr)>eyk5K^V!s_%}0#uRvF^C*zEA9xRGyN!hwo(dV^k@JLnhk}?Cv>YHEmy;6zc56h zZ)*aeN9zEf9|I|B4huwQ`cuLj#Sii5(GWT{hgA&SDq06U+C+fyP_h|wVM4h_8*yj) z)2q1{2l<2^6=KnuUjd*WE7IC|Fsu25&a8|tsFeVO(W4b9aK7S;FuJlL^`6f;p+7tQ zt1F++S1PGd1zp*6f#QjT=*k)Z=s*Ed7bs!>>butql=A=TyT%JSAM{-_q*=F+D~4_h zq5Opy)1vPxQ^X?7MBITwFVT0E>4F-C4(x&`^j%#VZQ$ag11nOhL8*Xv^rGl1bYKY8 zUko#KfW|CFLmZ&3i(zjM(26A(SML@pl@JbIg3J%lz$NGorc_oVOVXt!s2@|%tV^I1 zY1C>dEKwTGSPGM$M#iPEZ)wzN84PC{9bJa8kVdtZ!`h|Mn&nt)r%~}0u!Lzeb_JIB za1~cDty3b?P9-uebS2YLR$}C*(fgIkFn7Kkz^C@&hsK^3`wmG^+Rm%s5g%WrxPtS- zD$Idt6q1C=D2#X*DBcQp|xuy-pxZ`Z?jP-yxFB@w`Nqp}2G?M93@g?u-0y2MS;1I}$Kj@7GehC1ZY zh|Or8Ji5IZqd1Quw z;n|qrt?1`<)NH#_mL_dg#P!D?wxYAvQORw}On_C}P?~iVxE*7H`G)J>($4MZg14mG z0YPtZeyQvMX#az<8{p*+%6@$qT)SLg9zJJ}7t_c$YGS z+@HfFyrqF@N;-i1Ze=IHq20<3fZlr;)1@oBfTg7?bFdt!u@|-_nP%=)RsneKQ?>&9 zxKBw@5AE}0WRWLR+%YAL5)LT6@qA~lH(1{7SJD7>WN?DE2b68V{yL!i0I=dm#_AkI zm6GY&L1jIF{wKy94k?=gKOfYK(|R!bX8dIr7X=WjnB;$525VxgKXM-p27rer7+Z8w z*&N7c{<-3WUi^scM~)dZaP+{K!N}f5txusx&eN7tN|eia)fKuK?)*QR6_544=V=(i z^AwS(RG|r{;X$3JOQ*39@`4;Ql?E#1TY$xxDBugKa|V9V3tDmp&gTpA`x$NUf)4+T zBE6ulXO$E;KB3>?gR$>6umcHj%_S^HQ=L@1=8PvO=5U?v3lxa9{Z+8(s=RI0^5j}s8N?w9rj062k7%BIt zL6(vXa5YQW0uXaq(2}nxYk{o00^PVrHLfaa)U*E4by3{Wb!qlLD1+&e(wl~nK@y345s--AUuNv3;ncurFF`{<^VbmqRY2%!A~Wi^2D0TlNn zjn7fm0k|2J)$09$8$%%f#t=&RMYK)(D!4k3qqJ3r?n!EBLZhFg>n4^s+^nns_Sy{n zIZ5*^$_iD+p;*W`6iWv#6_O!z!TiUPY#dJY3a1+5vI6w`u!0a zE}i;6hPvX$z+>oQI{tYY8l6s|PnFF87oS24)2Z(>l}<;W zD{IyJ1FMoynpH_cL*wbGS#eaOo8s^1^-b5Ptrq@7=|XY;Kr7Q}(myQR=>@8qPMcm} z{c)F~j^~!5D=*-4W|H4aXkw>LITSm8IO>FK6 z{NBzzfX$f2y4*~F$RfF?0bGjao&&gEG&c)iQ?c9|0CB~crFMzjUxB?MR4JNSZKA&;$(*At8a_5(vTF-Q6KbfWaj= zEUv+&@!;-oEF2o-(Bp7-n+Xuy4g!2{RnOE1mmgc*Pghr0>&$MZd(yDjm&P2ASh=+3 z82$9YgBLLS;DrkIHe0K0>214Z)3M!ST2xQZcF(0}yLB>{0WbmAYvLJ#eHqNs5T7!b z?dZXRjAl28BN@$}5J5g>Mu_S@COuy;$;T`X5#?hxgUFc4?3SE=jxGc7~|uYj%X#&hXYep{MQ4$nDADH>^2ZZ+TKG(qW4gO|DJcRJr-^>q@GQeyM5f)%JgxIHJ$+MW% zedp4B#pys;pbuC`)F~7;I^*|)3#wlh6ns`)%VL&IO#jKo?=l1M1~2cNW-avqFPcJH zzpN(xSN(ie)+`igmO`voAe!l{x)Er0f+&*>wK%I*XEQ?~5@u)EJv(RkC%f4luv89) z%X2V{pA(IJR&~m0wud;86V*Pea^*s`&#GCu%=Y@Jfv|>fI;^3(U)ZdtYUf5{o>eV! za~b<{n_<5^i}1OL3d#qi;d#uIP@0~Hz54>8mHM@UrGBkc@0@16R9!=Rgw5q=*A0Fy z;b~i(!)w+{$p7Fys{-?}!!z=k9d%}}Fl6=$Qz@#Le(Ftrvv}eT;bCE&`{5FDR<+4* z8YuBpelD?45IPr6gamPWBrIU|Lu^O^Hu$uF*%z^915OFJ*(;#M6Fc(1Nu4vAL__Lxp$eXPtegtduF>$V%Rk~~j zB*LkzYIr4+o<;EOVrEjWDw%l^_Nk0!Sg$5mHitsQuY$pVXC|tkiSVdE74-Ca)x0VO z1O7i>)f@m(z8V^Az1m*Q?5F<~-zpw{(Z+{*TL7+)s%n;3Q>&X^(3w}=90HM|hNHSK zAyo14f7P@dd-v?qtp{#(`5)#N5<%fYB6YEq*(PO2>UPH7Ucla7Dn&=LkvdY-^oG@o zHL+x`R~2iS10nX+;%elo%|0%z%|0fpV-EP`@ruoOuDm){@aJ_f)z+)nI_4mq8k-vC zV^gag4Ul@Lu9*UrmUH*87@-m)rw}gw%`eb=3K&x=A4$P1vkp<7F)qs}Vjb=-3 zn`W)Jet)&%`W0?%_J_*))~u4L4VJp~%GHKdUbVq2UawlT<@P?)7SngV3U0?Xm$k#x z#v>H%&8~J+cA=*1qRO>KPrd12##dL{b8DOJ&F;Dd8+3yTKGgCMOwZ0{Nv|HgLpycu zhrU*aLNS}ys~jC1gG#A3HzJ?eF8)|uPtV=hPZy&6!H`M4pSZQx4vk%rR&gZML_cdGN-%qY^EF-J?nn4I(?u*fR zMz!dNdz~}tdOvdvM9cmdxo6b9{utF~RJ#E%dq&;XqFK0^6EWBrjDKOh8fE&c^aIVj ziKFydnWb=I)oX;=P|X} zk`D~V*pE_0hrpdEwR;GrN0bU4%5c+AE;8FN^h=bA9EJvqQi+CRU`MHb!{H;`8IJCc zQXNKMm`AD0BRF53k(}YwNUXY1s=14;Ty$a1M5%J4Fe{_f=}~4j2-K#(=P`0_L#6~O zpg@x}YQ$*V-yBn$Mq`c~Q|ZTGG9FVAV{jEbrao%XcB~orpIl4Fnsmm(rLksNh?L{Z z3=nz7VJa?AeJ7cCxyU#(AHsLX!O#L#bv%~p1#0hjwA2DsVghQtK<$};x-3w6CYoy? zE=)AXX8!-vC-evkhLczKUcK6N=@;6k>s;&th2?H|tmO72vkXMW$tdo!nl#z$k@Pav zX@4#JKXHF86*U3fUoKVi#A^8zoL!CM`BTOGT8h^wmgRM@(z z7ER@tM+9!~wyVYwW>JW#5rEs(y9f-o?bvjIcKxg_Ov4cSjJGzSKR&As)6LNkd1qij z{H!+3K!1Ez*=M42KdV(UQQOZd+blFN=gXyr&cc*9q};R2f)Lg$vn52O*|^>vQj2Dr z4Ip05h6{&OxjE?lLu%a|vjv35T-Izo7dIe>)S&*OZ?JXSeA&uk9pHy^ir zht$aV9J{VXL1i`poPhnz5Z9I22qNzSE^ovF*1Wa=_Y{XziG^%)=0e<)!k2}dq0Ayw z84fODD{mHYh8l}mtX#~-J}oxeK&9~#_H)}3e3LrlKDor~6whOk%D3Ds>O;G6aaWSE z2;Y@>hK2SYFrf2b+$1kj!~9lA9}Ra%b<#Hh9FF^*$YstvePic$SGpzC7P^$l1eIG?Xd zyAkMu8oJS}mi&S)sD&;_?Z_3DPkq~nZ!H&8)lIltxuC9Z!Y#}N)p@fy5h7+YmZ9&e z{T8zd#M&*GcHdQ&t+?QQS6jED>L1nAZDvkYa2xvfqYB+-=GJID{`s78yIBFE(RK`u zOX}iwb4tcbG-`dY%a}jt%SXS^Uik8{R}I(!irJPq9v;JPOQe;RMK5$ zW_4^QR;g|3#ZD~pj0`+6GiVpSK*g%wj>p+8z}1MNQs=Y5YZ<+JjZ)iz?wpy}qd3ZY%{~RPMdFN`JvyS}?S~D4%^W_C-zK zho=9cKJ3Gi_eBl*6N~v5_4-fK2mg^yydSN@KLzB67`Y!l-%=;{W9-~geg|+Nxutp@ zz|gye6KB!yht<~usLElL^&qY;hgFY*&^)Y;9yBXKBs^qRg{X4~!}73NeF$Uju=;)o zU40mb+oN&zsilX_5)ju9!}LwH;x9B#l_ThH?DIc@TsPIBBN&@Em2VU#&rLNl3M1pD zx)+5ux~Xa&#p-%f{c#l4x~Xy>W3luYhR977_c*KcI*w)Lrn-BaVZ{?zf^MqKCpeb! zFIE}xml+6%vfJVx|4}FLJ;v`OI_9n_dlIGHRm)DAS#?TvJcyI{6uRk^s&ood^_5zE z$}Eq^a>}1Ju@CVS?%!wI!@sD$fA8P93*WpC;9pHxu`Qn1i9C%J_`14s8h1h0Rq->h zbzLnygF(1TeK>=LU8M?~Md7Q|jI&ruR;kZtp}9)6I)_og7w0tU#yKp~_f>+w(eL-w zz`rrub%p}{c7x0vk+2XIg7e}l?#LU{y?xi5&}khK)_yUweUJ_r1z^0*Ks3qR9(1^ zHi}k@ZsF^}fE)Pg7OiI8z_5%~-*1`umFG>&>u6QsHY~TiiJxksRo~lYMz!Q7+A&%! zy^W54b`v8uTIIimGT2fF2;{B=fs6$pkS8w$)X6e5i>b_aFazJKi+Au9aLgU}@?LGY zgK5Di!efnUdl$2Djkq?4VD%tsTcS?l)&sMGgwwOONT-Z!^Fe7%n^ zV$gexDjt1+J4d!qQ`LTmk-Aj%d1%&wIP?>v_&LF76RHPa*a75n7isPWD_z1w6$* z!p!c`xz)4BW*(1aD&-TiiB8FKE|CgNZsk<-o}k~BsfSO@4G>eGn!6#&KQlZ1$HLWT zSPze?pU-f^$$D+oBhw7_TuSBiujHko{IM~sj)iVMrJlbq%gqb0(x_2m$0xyk)+v=B zniE<_V>q8uOJ8E5KZ?e+@02S2+}!MWimX(7o=62Jn^;4YcwyGi==sM)>fz~yxzx@V z7*cGw8wAW0QIlVqskN=<+DsKyD#on-A6r*qQ1d_3&lp?_9;s=sFo7PaPp_~DJyIz? zm_^l$*I4o%sn8E*4)yJ|+0~QINH7+COQhQMnp#e6e1l8MBbEOnezWp>i%L9F6F#ET zH@(He^hkNVGZ#X1`-Hx_{|*!Qkt+Efqlb$stscL}XyJkyK%k6H|1qERBbFLA-y8y# zdqKcxSrzihEP^mB_kp z^LktPJ+91KYE6Y!K~Jl!>f&KlM0lfzH3lMoTx$cwXfLaY$`{Wnk8sa;Rtt!e@vLeP zDdJmQJjt@LvV^Dd=rE^%+7jOiLCVAURx^ka39Pmda3oOePheH{xH3PX)dr+(LaPgx6MG%HpJ zuv_Or0sT7n=}qg^6%~@$%7tmsII&(+tYmcQDI4}@ zk_@^3P@c)H1`sWiTfIE#BoCu;O;5eJyh&~iK?)X%c50-rl~%R$wvwxtDXiRDF?(%K zwPXLnysEl4T85`eA@!HHRS@CN-thPjRXL^A1Y%K2t3JewlvZa5ls@i17Ccj1nG(?f zBF1P#El+9rscNaM`kqXx_VAqFWO0bPlp6jXRi9E@b+zix=Bj;iE0@Zi1q(*~28$D` zKcDb|j< ztttqAEo@=OTL9a?A7D)ZI$Olbr{-rtuSKetS*!^V(~DZcYIRnt1HwOxS~%=J(8`VQ zut2M+uF(;fr|RuqURtHiW|c!qlWbNUh&)BDGU`D#%*9BxxtLW@HP6l!9-STIDpGyR zZjFFwUmWH)=D_TWRIhVbopn|EPg3RcS(#|cr%~JeEN`_ar8VWXT? zO}PqMIsenk*9uxCk&N!8K10t2sWrh?dW6xvZ6MIIy&%x3A?jcuD+R*nSs!HUJbE20ilaasqn&9UWC!l%^}dmUH{WbYl~Rf zkb<73afMFm2!T%S1A+df7&G@pqsA6rnLe%&snAh@YH0~80}{|%f$C-nD?7sIGJEt$Z;dNy8Zu;xM>t6&XgjS?!nqLtI*np#@XYOT|Y zr~;L&N(lF_1dn#Ao0Y6wDexN@UAzXA;EPuowI+4(|6{R|BhA zeKdM?0JE+BrWUGNb!!?j^lV^_QcY@L%I#D+8d{aqvl`Y=ghOjuM<9kZg6*!guo&*d z%kivks!DClwVi58ZB%ooidP52b0=OlX_bb6yG7NGI#$vD_?)9IE@i8r2)I>Jy>ELkXSj*A; zhniS}Ac{7%nnFx#YPleiHM3?xTW<0cP4-|9D(; zZ*7N*F66=XRy;@*6>7bN*xJE*0r9<`)kS%9vJOJya3?D@X?z`EHC4I8*sp0}SU#?) zJOk0;^SW5o5x&>O8VS*+E4qa%F&P5>kD;_~)^rGXy&eJ%Z-RiYja1qmRz1&aG?=zt z^~CG5x3yG%^{^Tt*{3HLaiJ%cC3e2JTGGoZi!f?XMFsS>dLWEybXSM>JxQRx_r{37 zrcj@8>PH{k#BiOus#ATj%yY$hss;V9s9bZSc8RG*sM%VzbpS3vTssAUiq%&4!Wp4< z{XN`j*+44@;_rdD8{t@b^@CErsv{$;w(7zltYcr*`$3p~d=ohlqRvR%OL`B%#pbJu z8EN%Zo96Yi zXe?4aMsPC9ivWW0NC?<NW=c z@5XbxC}Ov&G1gk>xtsc6$ahb*B6fGM$}|pHcdNeRaJk*B>Q06Q&+%|~w;DX&It)>B zidA1tngF+Ut2+~{Av*uIxL$bhY`3o(G7&w+MPbvo9wLUP)_xji7W3)HEliaj8|pY;}h3-tbWY28vV!4 z#93AuZKsM#JR22cW7$>B*|-Nju3#~znm*fV>2W|s&&Dm&0o7m*Zh#J`<#VjQ5J3tz z0Tt(B9Xz0B&b5|76qtvv2nW=r1y&7}bv|y2IBPAnbw1X0&R9r!DqN2^cSi_hEUPXk zT!A=u1J!i_zH_jNKRoWK(1o~lxuicr6=u1_}71m;p$7=5ytcU4W zT6jsJD!$Tc53z8iH4Y;4Dr=x89kXXNYi|#)43GI2l<=ptff@Ebyk-Dl!K&5<+&BL|`cG}Z=v=8*Y)0$X+laxpQf=FaE7D3;ViT?n zE7jjyu%Nu#gyF>I`#?asCq#-Z7@e$_M=jlguK}#w1OE#sxz)Ab7ID&+?$6H) z0g(+Eq!;k134@FR-nC|sNx*=%4EzMdXy7lPMSIrB0^rhB=@-f*P*glSGRQ8V)DQ+a z1zZ@)Ah!U!Ir0&hL+ukeiZu#2fZHe7i5W#EA=x$82ochK24^TDpvgQ2#RME&#Gr(L zM5`H;63}o1gE9iHZ)Z?WK*B#6RA4~oOB(NvF{vaf)bI*f-t1%JU)npvM&nnFvz!q9KG2_hxPHrV2 zT?~UZ0$RLc&`!V)4MGJxe9ami1r&9CWzt!Q`v-$A0$TrM&`m%KybS}McNbuJFz6|u za(o881vE>@ps#@0o(%f){NviwfrGFbE-JSYGZ-WweKH0^2<)H+qmu`bWjFz6FBZ3{ z1Goi8J24|7CF_q9&^nC=&%cR6CZ%GPDFP0qW-v`a<1`Fr3b?AlLkR5!c5{&z5iq5} z7G3U9n9^XpE@dHXxPJ3|iCDFLjT8W1$?8f0wySFd*siV@V7t0WfbHs50vo9X%cpa( z)g2Du7Te{-kj}|_2yCGY)iW^I=K$8<@5Brryh#8~9um-8gD3&zwSnUfa5*MVI>a$@ zMu2VPZvwoZDqeFg=7NCK8eDb&yLHux87~{K{tW>u3p2PKl-OmP%v6-gJyAJZg26)p ze-vl%M8H!GOaW*_fgA!R*JF@dz~#CO@(CENH3|rLqDMd>0oXN1 zMvJ(F+|i`CfFycQl@idk5$7o@;G6~(1cWtajmiSfXi!Z+P!rau=>V63|H6_dbsS>U zYRaI#fNdHy65!vAHJS>rCqxSY_Jn9Hz@7r_1lUu+)j^0o1v(3`r$AQ$_7vzYz@7rV z1lS$kSAabQ1_-dHz#to7{>9ZJeyFI}Q(%MudkTyaU{8Uu0_-U;L4Z94CJV5qK!gB2 z1zg4qA@&rQEx?`v^90yaV1WR83M>|2Pl06u>=D00fIZ+>Yk>2mX?rM*fOVo`kNAxO z>=D03fIZ^33$RE0E&=w4-y^^t@%seufXDsU0U`E?KPiz4qUA0I&G>otQCP-x@p;uvvqr0`6(x zvV_=qUI?)Byb@sNc}sw|58`lR>bVaNU@ty7F{AH5PW~dGC=NJ={#OArU7ExSxuC%h z0mTP%o;cX%r3;PLAg+K)Ls%oefUz1R6!1a=PXSqmahAjdY5nJ_4AUg3sO;Auxq!go zoX1-L?ZrfGQVDpVK^g&b#I_g;0G;LxP+mam)eI^M*t>>7WdTdq zGN>wG#5xAm3)211ueGm5D!i+76i#bFF?Ail%~9Wp@xjnYZYUt*Zq{!spsSlfQvtL^ z669kOs{_q%<$LAw*)lM z;4Xm=)O^b|cpw^fmd66@EYJRv#brc0gq!?@6Eiv{VV`0IWJ$%~wE$Ctw*qLxGOF=j zKxi5U9|den%iyyB7ad=YJpT$wl%Byi0n;@2E+9ol*7zx)j}HS6?7-B`L1&x8XgmVE zotTcX0!ZipuB#_vE}fn!kkb=8=|*rq21y0%(jd8jPWf5GTR_|(2B`$}&>)R~kV34H zPC$wf7n2M^XcILY^$|cPr~~*4pgq(8nFS=rE@^-O0fRNjDuDJ;Ln9jjKIVGu5(YVg z=^{issg37&j~!I<|G#&ASZu8qmTo*K?^%E;{y%`Lvm38rz$fjE?{~U z2CkAq##UugTEN9>49W_4QG-Ew0S{_2s3>4+Z3dME(5`JbQdPjJh779P0QJw^h)GRR z*``5l0=#Q_eiPQH=K!v311DxAZN|xs1kic%D71+HkB$tQ2^gzEi(tA59Rd4Pr1z!0f>ch5)#<$%#Xl3=@^BLm7+^P;)o~ zmjF8H9)6A%Kzq#r#tNV_?g7RNpmXg3CJLA`R?ol5Lg;XNs7w`LS9Ur9KA`@))|ll0 zuKgS*W*otB_%JX}z|aT=N&j(m1fVRWa^>2d^+6fP^Nx;}e47Lb}(O{c^W{X*42LT*Ti>vqHgk)nk z0oodGw9|`?+X38Q`zW@LUb1Aw`OX;*5czd=I_v<>5aq;-@MT=$F#%22GB_dNh6X1E zOkT$trv=bC|8Vjw&p$5I+`!~-QK2LLq4JM_6B=9;&}R#4To$lrCxfd30(LRDE?|lV zHwC!j?q-$SLTKkc%DqcqHML*$+YBB!fScoy6Eo@@L3{yr3nn7K#|W&w!!{BZqU#?KZquZaKK34` zCl@g0Ap>s#o;ZjAwNE90P9^|IBf$4DgLDF3J!OzVK-e=q|9ph}4FV&+0t%Z9G7C7R zL4bfo&sig@fK)ik05-A-7@|QA0d(2{G;$GeaeL6)7eMleO4Zj4@(DPkL6Cs#Z&;(C z0D2(Eoz}9~mlow!|tVG}~ zO_t+H<53w^9l#x1-H92GW7$AW0WLao0U2rw`A37g0-7dZjrs!aYS2)?k3_7|Sil`m z22BMF_F~XnK!(H&TDpWx*QB+8_&BTqp0yP~r#Aq!7hqSmBZ0Y8dxf)6p%LZ)u6I#HpqBtT@Bt?K5TLze#&RECuKN?9;~tE)xmjbN1Gvz^PRwYZ zmy?GIpjTVK;&29h{kt8+WTdD}ti)iHfO?e~j1fSuynvB$0(w?qFhKyl=mHv(1gx#j zV2XehHRAF0FG5I%TC6f%K>XSaW(vquhrw(Ct?DwEE1+^c2J;1+uFqhB0D4yjJX=J- z#Z5@3RDdiIm12z8>*eZZdvVf880!DOUuv5UxZVYw{=+d3R9s#9$GS~~?(qrgqZzg|=%Idxh z4hSgHpTQvkjRrC}BB0eU21f%{G7+eq#Go8UD0V!uPxFX<(2G{ud!y{n!TvoXuDlHZUOay$Zj@J187 z)C6uNbO7snIx(Z#UQSLNLf^kQ!&yy|ii#Hw0)d6(0_bEA0B-^D{$`L$z?f?c(g+B= z!62Q0OE(#05a9B;&BRAYz+DEu0-oMukXZnoCjv(T1lW}gB*4dXG&zs7%58iec3d z&>|m$9s-`{XV6Q4XE1|40=$bd=qDh4Nd^N1xHgwzGEj(Bp21)NGb=F|DqwMC2E+dk zsxlZUU`RCvqXew1!C;JlziKiV=Mu837Ly4As?}pKNkH-@45kRk){H@ffJ!YGOc$V9 zGMFjAw>5*=4saRt0v)vTT!$EW+A^3gU}Yx;3j_prX0S-W5e=3Is29c>%LLrhV7Y*v zU0B1lQb?>Os|8H$$|`FG(19^KPXWOL85|H$a}a|=0+J3U;4+Q~p<`y?$Wa0G z)*yi60_=75B!N$SS(?QfXB@x_?KvlAJeb4D=LJ;91B+n|gmq;j7M{R^*H z2QUe|AYlKC@VNuniwn_;cY`b}!q1>k`Il4( zu!V0<%qWKQW{~_{z+Ig20`OBnoxd1(6t)c*?M^d@Cm<2N>>^770TV9k>rWyfwik&B zoFTVPUgtc?9Kdd+aAN#ICYVeqU^;#x1xPI*@-Bn40uG>op^=^e%Ew!s9x%x$Dwptm z87i3sl)}U40Db~&w*m;DW$?nHC#(_Z0QNJx6EplQPR=PH%PR)1+(HVzW|CI`9qxld z^9!i^mO%jlvoS!S5iDRA{u>1lBB0(!21NwC)}WXTF#kJaCLvD=QHj=|lz{m7j|4Qz z2>AM)K{){~j|8MqLBPeh3@Qm&5uZU70VBK!xQuE-QYK@S8Ul8wU{FhdI~9XE0@|iy zP)~q=1_liT*!|L&07fjIN<^+U(*O@4aZk07^z(jfp_PD2{tVg(*c8B^oqz{f8H5VJ z$wyR1Cjx&`p>Oa~5`Zoa;4-@*=K3wY2c<8d4D_B7Wa#Yx&d}G18DsNsa(@8@^D+n* zP`dzwK?1TBVlYI&Kg9s>5Y#XsolCOH2my3L61;E;u-zI%;4%+;ytfM);~l_$PIO|% zxtg3jSpc1%1pTQFa2W?`GnwWP<4!#WGX#v$Wy~gUl?wH2#2WJ)z=bL&W}MZ@3khr| z{YNcXe~ANFe;LPk{wHhA>C2sTqe(jkD+zoi3t=4@tZ@KaSm(rykDWPrgMbHJ7;F;o zv^#?>0)F;l;MykS@4ifS2&gxZ!7c%|7kdaCBDeAnVU2wbV7K-=F=NYkPCh6g(If_k z1$=N#W)dZ&>NEz&1T34$;Di9**$hq!STTpeX#uO|F*qyWkYez+fXGD*{wYk~|F|ky zmNL00D(99nxGZ4m3I|^j*K!HCQ{42m7F|h>pUctt`6Zc3@2u!%+JX^1f(dzpcesLrsEiaRT=bk02}D<#GK@T z1TK;OIITZK1LxW{OwzYiV|yb6(7|A|z!Sh7B;M)c;``1q1eOqJg*Wce0`CBJVWJZ= zZa3oO$pmm$i#N{Wm3+{T0B|wk4AcLcK8rvsWxzZ8D8pO_u>O1}X85<~F zdPg9tu|+_i6)q;*gxp!hV26O~YZ>ekP;vuuO9HyaFt{S1(i;ZX1ibse;D!L>GlN?KGJIulhXDSSE&s{BZv&UE z`a_D|r1VhzpYA6PV7H$+F{4!+Zc0l)(xeQY3s{tn!Ak*$Gcb51;DaxNHw0W<=#%VB z-igZKoD4n)7@vp1CjqzfG58{&Vtxi+1*{EX5G&wt0R}$=Gzm_`|67QIBi?lFAC_U2 zxB>>2V-R0}-9Cv3;9CblW@TNKp=S&XZ68)T*lN>+*Uku|I{&<%i^aCBh`q_1i%Aehs({noM z#y_nY0;d;?6>j2g-@5G$sN(6pgq^mlB^{YEEW7KH2Uz5w{4D`B8v{G$S`E}K( z=K!|Qz=;{XtY6i^+?58@++{mD%17H!~Em}KKqs1;xZzo{!CI%e@ zl-K>&`Ut^9Sr(1;CuT9y4(SxVmmrWfbH2(0k&r&1lXR9 z5@35aR)Fo<1Oen3J=-%`i0xVgfuq!7MSFNsr_3M_O(4kuc7C=4xKrjjF{726la+vT z`xq<|aOY13OKpJl-+w=o<)RW#m$6EKUFcc?b}<_S*u`uXU>CDZfL+Q?0lE~I@duIj zRJV@0+`SIqy8Y?IoaBQ9){y>&Q|$N=2eAH8CuXca%*iJN;EY0Q%u@o&9@FdJSs`I3 zSmnHc6}pUz0_;Ms5LilHq%H16R<8?)EXCj!fj>xNLM`gV@La}Sv0|6=peTK};mX(r zJth_WILHSclHF$x;M!SE%)qIKl>9=#+iMJ73Fv-@!CL`$?=kow0B0)l`u~{-kGC#u zc)WcT72C*n0$g33k4WXl!MS+GDf08(N46Tz0qkc2CuY=p$jP1pGCXCFL<3rXJ6TMU ziwaIpq%u+pz}ble(g?5%O)tPM#z%l%jGq9zlmG!-3f7-MBHU3&nsV)P5O_p&>z;@~ zZU=DP@;WhN^%r(4NWh7&41xvV>_u|Cuz+K+42n6xW#s?Kq@+WPnjTze83EtoF(@yf zqjsy30Nc;10&LG}2(Ue?Ex`87RZocRT0;T0XH5jyo;4R>d)7*T?O9s__`wt#x_#L9 zPzP`ec64IK4VM?EhY87*j6pX6-!XRtV@=kTq5dXsXLx2jJ3v4K2bd8%1Sf2?kpP;J`{6 z$=d~#D9vD(fM5;w2(T-=Pe5{A`vU@wRCKYC!$S5}WN=i#<;o0B2&k)_KPA9!!LtJF zCOR*`Zla3<>?XQWjK2SH$JlLjT~zEgx+TDFqPqlmtqkeJo;?r^yNMo)#^x~AcqSTl z6GaP1?$S;2QpgeA0IvnuE%Hu)-69_eJf}f*OSi}u2k;R3>cpJn?*w?6JEfPoIK=^6 zL^wlSigJ3o>g;v`0XTn?`rcE3zM>gP1mNIJ(nv1AUP@C6I8&cB(g+A?NWf*J7g9(2 z8209UT$Qq@SqdAH*PBKml!Juz<+ntT9YLydexm3K*inXaTP^7$+doHH`C2 z6r!}%DFTv?VU1}5YUwtcDFBC!QX|h1&}0;Y`2rGX8w&+IoxmDPiqrLn8{m#si4>I{ z<5*>-fV(=+8Uc-_v&MP>{U?C7fbVlS&pA< zb0Gota4sUi9?r!zpzj~{crGO>_INHUz#h*P1lZ%bvH*KLR})~5-kJjJ(OX9Vk6wKL zs4v7GzKsOf!?&pbd-%2>fJXu17$r9IU~TOHUf|n0G2_EhP7W0?bs2+B4saR4+CmqH zI3^7O*Qks|r#Mef(Xfs55n$WsPXJG;#4$qt;w%Flz-|q8Vn)p^oII=qt^b?>XVKCk zGg4IQ?_@Aqz}{U9#tB%km%&5S0d@np z1=tPnrvSSF4hnEp(e*td#BP9N0_+C(OMu+~rv=yza87{T0RIr+Ar$WkH_;^r@OZd_ znCrJ8cHK!g@}A)gw*)LX$KbAj=<^I72zaQ$V*%wavBon2#Wjc)u;;42biWjWV{B>2 zycY2I8iRKNj@@AJQNVr;z6hxKm^Ho$D1Dc~4*`WW@F+>+pBrf0eO8HI(rK~b8YB|% z?Ez~f7En)`c>5j=L#BO+B0d~Xt3$PnLs{p&Ny;qwaEqnkOXB#nP=0K4IXMa6FT!UF7uFDAfl_>uzbhA$()Zus&7?1rx-z-2dl zRUvl6*AQSgd~E@C!`BmFH+(|@cEdLjU^jeo0&ZF$H|ch7<#Gtmh&E2lNpDYpf1kMV zi95HW16aSa6LWsP=qjM=OV;l$pkWMyUIKD`1ihKD(%2^8lLk9& zfcf7<8~H<2a11l$*(-n?1=ugZ_UsUW<5ZQ{B&-odU?l+@%uHF1OBUO+lLEA7F5`?4 z+qJ(1*q&VwV0(6%0GIpNpNqNX0B*q>P7J3vbMkEgwx9O|xT3vT<)M&=8axqzW1Xog zrU1`$44w-ZpfzFy+}3Wr5n%iIo&dLx*@~a$jI6y|T6=I{F4&e4l?8J;ofi6x@CS*fS2HpZzXpmY!R1j;V6X2`M$SA-r z)K|cyK+fVXz%C_gDZ2i!qjoXbMa3>AmjJt%yaeu1-QpBst3eLnx)pR{#+49G4iWIB zFoXEWrVZd&YMy_^Ma4E*N`P&otN`0c1p@s4h`lw~YGnto7ge2@^WT{o0_^|J)V2ZY z?^A&-)Dso^UmOhuY}aKp5nvbET!3w(l>j?STLL`1+UemH>Hzk$V=21+aeDsR>_wQ9 zZZvGbpql_3hE4OJhk*Od81xnp){;R#0XP|(vV;q;2l-$DF59nRM0jSrG&s*lQL&2| zEx;~joB+F+iDDyTU$!yD0bJP#CuZ1_Zw7$tw?b!&ioJf#6Y!uHn_M8^NN)y<1svB) z-ZB9xwHGS{*lw*B@SshW;3h3LYOzI&A6h)sVuuzRw0Nckp6#aWC$+#P1d9DbmrTfiwV1C3o-8Mb$LmSp z32zd&wZN0v6kDgoK`riRu~~~FTAa{gwHA01pYq{3cM^E6oWwmlZy5AujZe@OkL@jESO#{%FAEpBK*kMjf4)AA6ViBFCgf73kZ5h0)qb04?+JEhoJusL(u<( zA@DC(7s*FDO8;X+jQ)iILH`Yapdaxej%pF91^rq8NZ&Of=$0FTZbc#J1`~pAiXiC1 z4nda%2wLhPXsv~yr7Aw;N>w&_bOpT3ZB+8;GI)#Hq2$rUyw)d-6KBTUTzHjOaEjynC7pZOh zO>NGb{YGoQo@7Xzq7+BqtoD3KTyxAmbP5M?(F$pC4VYp!=rrM5?VEF z@xtv2Ixg<`ElK^8C7P|^SwGHkO>IvVT^O%GX^=WP%N*BHy#GBlTF{RFjAG>jq71G4 zDeyca=cSIH8If0|2;ZGeZTYdwGZmWT&~J(PC^0|rQ#PkzGBYBpdYC3UQ<~!c_w%fi zu2QDOC}^1m)%xpqHj~)V-`T6qd)URO-*GIdp8u59%C;a)B@cFFK zo+^Ka=p>0~g3gTaoAcm&X4M7&uek`$80|Ob{1t9iJX^`dYpU+WTxWdyR~(>XGGNL+ z`7yro1kuM~O1(lKC+H(Pu^$xrLLYZ4xEuLKH}}B1 zSU3Ac=TAtNp@=}W!w-Wp=&9-D$(N)!5q_#bfraVSgURDP6VkOQBA1%=+RTMyx5k5U!+B<*v!$n64K==BC~36W_4!R zpsQ9yYL&9Gl^QX+ctr%LsHRo`GJI9j{iCxdq%|xex7snr%A1guCMYzB+D!@v@N&Uu zf4q1me*o5_>zSjyRoj5*H1StLOD&(^%B7YCMEj+A@9orR!Bn;;&k3jxu!ae?#8 z5?u+GqtGnTMN`oA6=~!*M5J1qCAwq^au_l46ylnCoh7=2CtX+(+pP*_jjo8*0WiIq zmNq)2nqJbK*mFJFx^6fe+>$jq7!Kag8Xc09F0mspSl1#^h5AJMs*-`x$?;m48iCP% z*~q^B!azNt|LH@%>gSc{nr&QhPYH~kQ#JQIiX`;L2Zu7Gc0!f#E*H(p1yIOc)rh`% zsT$qL8f!}9gG27RPUsrmx}sU3MouVWb0-wg#tE&$i&Tu46T`|pcZZdEF*%is?um`@ zcx#D%;Yn}2u0)5f<2@xhlx4LO>VY?tX!aJbB+;P&yo*GKk{)+Lk$CxtW)PSN#{YGkGZY{_Zb+j0~fDa^u?@d~j&|Hz!mp zF5W!BY+ZaO^e0})q1h2nC-lh62{lRLgtp?X8>|;@lzK!ys2%Y#W^tE)@gk&j8M>P{ zis3wJeTMXN95by$ErvUx(>MZJvsXCSS%<=LUbC^my*=m4#?@LpBO4EwfN&^Jq!XHe zlaDoPgCmc1XeG`%)}eGb(^!YjN=V^YV`kyT`MDk{*#A{NRX@nr(><&A%Psi==-Y-d z2FDWX6OK>fJYo)o8yj$VF=|$RkY8^1#3e7YG)_z3MU2R!(BM!-97Sv_bRT^4vazrK zzm&EMNA~J7gtK0?L*d4-Gq9tgER`EYb`pa5Ei$gOzJE5at6mlp19`hrM{~gk5I}C(FGlx5& zW6NE!wablpc**&$vs|(pf=e-LXeswa=24zMUFtaR`|{zw9GUA2S}h`#yO!$vYi=Wi`qt zjHk~X3pcj^pxi3>VBys6tRG+HZRbCiG|Hxh28S{RIHAWlQp=d@?$P*l0`Ii+CD+KE z4}?RB3Q)*Bq0{S|S*zXo*(zUEKJJ6J+eeXK-|k4vof{F*?+~ZG1a4-f%*eglctnSZr@6 zG_x;-+zaZxnd6=I6P3^bzkldc7uI57Fh04e# zdXE+E(7?A%N`}xc0LEv0<>!+Hj4ppUp&|HotXUTPBB4XeFH^`J-RA9<^3~5!&JCDE z`ZR!jcb(8ReA(7426rJk^b!L`hnnC@%b{>1E;6Gt`mSx_ugb4zkjNcB^6m9@F8Ue5 zxQtPxx9@+1^EwnCKR4)5=5J1@;14HMCSC$N^*T1RYrSHLozMvEVArg=w-dUEJ?okc z!De+GDw%;ZyW9SJyEjE1v`ZYL4R)F94eBSby=c^dYud z8<*Vyquz~3?s3(7yFHMs2DaH z>(GAeFxH`i*jlVZH?XHzhxTDJu@05OCSn~jv3ppD)?(YR4s~AXa)N=_DXd{uY!TL> z1nZp87wievtP3^++ac@%)}aO1{;NX|wmBg;HvDQf9Xow>Xd1To>d+}{?d4DbqdPYB zYB&+Qd39(Nw(;uF5$xa9p&Hn@YaE)GyzF~-^0FV^90{SHwv3P18_Sz$jSOB1?a(&t zhSe-V8YgrG`(KS1cks^-cgy+HuVKbHY+uzIU$0`{st!eC!>Vz?oxj}2fXYd}lU8nQ zKsCO*n~(iiFlYKpM2cX8DDN!|H*Qr=h#?rER^%`;;d^hNgzh67KbEWOv1HG`ACDam zi6!;Q*qo`ib)LYkOdU!%zzJ2uHcZVbWB;WQ>;81`Q_0B<=+`%+Fg8@`t(YsZlTwGK ztZ+h~uysiIqO0Glc zu2IOn>d5EtututeHbM5_xe>;K2d}mjJ~HdVs+RPAL*}a4GJg zxVu{@QnY+Cb7q&e&-2IE$21qyvO0T+nig{vEm^KuiE_mgT!j1Y>X{miWwC~b;Mt0fw%(T*frX(mj+gqAH*D4B3t!Ve~OCt0jf3DrYPc7mA z2@@X4_@Z7be>+7ZlXk%%{Nj!l&I4YzY2xE5g31wb6;T^SK&mRb2ue6WgA!p5zETl8 zU#yUgvw~?OONR4~NICB;;^y-st6=e>LDI(9V4!*TP|Byp6bDQ4vmB`17|sOl)Ye)s zZBk^WrgiHuBRdAX?p!H`n*ladut)Jl3x$LH7g;hsH`>83?Wk1{mT>zcTrJ{w5EltN z86F*gYPvEv*-njxrSc;MMpC~t&5wB1lmiTJ4}UT~ zhAXz|&v;2;-Tx4W)^m2Ua)LonV|I{#(&VL&FIm0}G0UMJvMQvP}&lb;LB6w(7y zGnD}gOkFA^x)i@OLMQlLTw4d&7eB|&|K2Lv^*?Not;+11*|T?-)NXy^JEry`+-qWd zfA_SCt%CTJ6tiH^fEy!@19~DV4k#69$7Bgw-M^}`7wKqUhNmbPzIC8WM5BYF3SS&i zm=oNCU)Uj<-w2=^0w9i`qX&ucb5KmuKoDhH`Jz{>d~O$PL~2pL z?_qOOkEPMJDl!CoYSYBZnSopT*o+wfm0v#c{H-MR?X%BOT%<vZLm63#&KOpUxE3=4(px>>9o`Lj5DDXLPXOW2NY2eLefi%vrb6<-~XE+_p~`w zzq(D9K95j`UL7XX4nkchbe2$a33YDCMMAwHlxDysLVY3B@gp|~l|!gecLnNCLWvwV z$!{+Rl@TjYkFyB5zo9_BCe)mHw@J~@gnHEW4x!Ey>c?>cwUAKbY|qJWR|%yU^pa4k z2-W?sd_o-|)DFjMLMaR>J_0zRWT51KcPx_!U^>&p@P4e2(<-K zSrg=mYBM3HlOKzYu@LG$p*~!VB-Bwtg@#5E>K8&?FCtJg3Dx{~0{JbMP|Fh%3AK_? z$0SLFT283TVO0n<15;UYP+B0Dksr6t6sS{#st{F;6kSWG%)!+OwV6{I-!$`lAB~ zwUx7!U>Qoy{eI(TQ z0|IrHP<1~xY>R)pN2p_s4JnvfN~l5YcBNwKA)#J-i>F~~1)*lmzeuRBgz6v~(yn?I z`f&jv=b90TsEdROPrE><_kk0L7@{!EyHokP9n%oI~c%Nc&-1kqJ5yfBYQ;a{9=@Cy&-@z|l zZ{&05E2j?)<%7r7<+t^>@eOj*`Hak_{Q6m?_%Z8Ee4R`me>l^_|2Drcf3AN$KDob@ z_x3ZR>T~~R^-+PMhDCAzD*lFFw3C>C zIN2`HV2RcUJ{K_tp18nfS(& z%JG|q#e@6{5qfS0e`ZuAL{{SsBdTzvNT~$1Pl4JiM~M77?hxKL94nw4k~M}aL$WnP zV}ke&!xKPqf-RVzG@=~0n5c01kSbgPVI<>3f`%9UTpV*tD#enrk{MIe5BiJZM)}=8 zSLa-)ik@Hhb12_$Ocm}z;P<>y6?swiXr#;2e9vK}0O2NcOf@AQ_OM(PkWxzVt;Z^m zyjA$f;gxyOSTE8c9tiz93>uft*Uj|u+VNfgCL!N%YE|qks4yNGabav{zh?Mz6H4(B z!>jP&i(>iw@z|Uj0&I!0$6$SMKcUvE^HV0v__h;ONZWW6#axxdI^y#SOJs2w17~Dc zMeD;vNnGzfnSA9@)%aH{l8Kl%F&@|IZx}M(F*Sr=Hl!*Nx;me+(MBX%HaUXtG`t+b z$73(X_wep%7Lbygso<9msYcA_n&##Ej;YGsBA|aW_r>Y0cn;aW!OZG>Zhr+oczPIa zU5UqPj8%Oas*h>3RWEy$RAT7wLP)v>-BAVDWWl2$G2>Kb1=eT}FQh(13 z1u}FDQYIeCQ9f2CXC`J%nknZ!{VeD=Jh0>6Hq0!{C(lepIz7tYnmLpEg*3HymWrP< zOD)HPIz>Q{-i$;#s*mKy13YfC2%kI429lOn*6=0g)aA#`9!|Q21~XH+wuqf-ylb`% zHHT*a7$|Q}DZb-;4IjG2z^BBc3HDqGpEIW@FPj^SO5vFSE``G_Xk0zg(RA2iLH&@I zG<|+TNgnqYhy}#(41V_(7qFJM2V*7Ri34URj$b_A1YC#fh4b!yR#fa1pFcku^-Hnb zT9jI?#PbGR@VmD17W5$S7<%;DLi~~iaj0G%skd!zERq(_CvY8qm!#&0E=u4&5HC~@ zOyJX&c<}23Ise<*?)>@wKOjex^5b&s=!YUmE^#Bf-#gk_LCdV9}};7QvNU5cR%XYUXwmPMh|N z;!iHC%Fkcchs)#C?MXofXFpQVuiHaZk!h}+CJXOJT{`eAn!m2Xd?Z0>W zCzn;`XU=WFzaC#4>lWz~&t6dR>}0`XSKD~hTTLIN;gi+|@#}xFaNk>Nxw;7I>@>Xn zS1oXQ(&acFcJb3j7*URsdr92Y{~Hd$?6*oqs z!L17&D+ln~=9>8h8w|W_Lwhcbz$!Kv5hr+Rg{yw|u7E$;rWHaSZz0t(Hez>vz-uxq z@`E--bL)ugFE^?9qnp(Ht}Q11<)%a>o^N5WNdDF)8_4->a1iO3GEnb0XtM?Z>?Hs= zta9cgpw{su3|EMszQxC{+oI+Upty=9&LW+QjfE#-xIi2(;162dGydHtLvi;yl}xE{ z+0i_=vm5^$D!@AR6CDD`o!n&9L5jYF$841o37;h z?dlKOYM#h&g8#T<5SSYJM9Giap2_#wITW-;1PUrV(L#uP*1iFtybk@26Z2XuR`P@Q z3;=DlLJt3K?+Ea6#Zo2z1?Apwqufus2ZKEA6B*(PPr)!(Ll9T(H}%{TDn2u%eyU|Ci$a}lKtLB8+qs*OwJziJ4o5`KV#%eq+Tr>EL=}eI>fNUjH2fBJw8aZXjPC4RoE&h0=}gt@i3Ge~?mJehll+JK!Jb5BuB!GZB>3b&m>6j-z) zcLS>x3jq3e;`DsZR|`z;%FU25C- z^II;P>l(t=LN{<`CufDN=Wx5Ne$~fs;lzv#cY_EHVx5lN%Ozo5A3eym!8{f^#Z~jcq|*T~QP`&@9vf=Ov4NMEna; z^s$BLcNQT6nDFPeqGW8(^J${v__?T~s1WA%NV+Hy+gF|;dV!zs`igGj{ELG`l@rez zw1hATCjKEB&45t(jmXB}7XY3%5h?^ReOL zxq`w$F|&C1f9EgIjv6Lf#JgE$XMRrAaJ)_YBemE)r+6}p#Zr&Ti-J6EK!sUnGi!iK zg;d4BIG^|}gJ6G0Dhd|GD`f14OTgd35@4Z1;uBO(abfZA)S(}i6`$4!4t=PWxFs!6 zw4QjF;6ZR-LvbmZl>a2Q(m*NRT-=K0=Cl^Cp&`+_gLsHk0DGD)Zbrcx^$>rf(a|nL ze1IlP_ZDBLNnfV;5l!0qiEC5b0fWSyC_?^F@l#shS(f-TO&%X1-bV|}8!a9|Ig1@9 z9#45VGAWSTe5&{?En9wucrJ^P10DmA$7peEwwbv@qA#C4kNNlySiD!<86>|`hrxMs z#Jr$IkhoYpiNSRcRtD_8MErt=R@dd?POLC}R*2gR>H?2{5l>@%<1ijclVBuyRvrlX!ywGYhgaqu3^XOJ!2+6i;Dgrs6K~P70&k%fbyr_J%YPy6hMK zN|O->#4D(-t{)c9V`a~DR2;)H4ihK5cU(M?%9eFXJeQS+9jC?FEL}U{;ZdHrJLRFn zIq?iu9_F4GhcN4*#-+eG_s11>Tf|)xuVUt*|4s2Cs)s^%#0y#V(DAPLH)dNLyD#ob zd8q%0-4>%Biw`pM@Z_m@CFNo93-KIQJzRS!-o$K+_&>z`DG%^1yB?mu6Q5+(L-P*- zJ!n6(`()iO;yMhk1o42^5G*PrQGl`)WqMdzBFS+0r-i#blE<{`+7c;Y9J?Aqgua1x zhN;n#gEU#Hu%x!2dpJE-qNNj-%_Su0T{2lQOfDt)mChS#Rgg4S3Avkpl-yAW$rTMH zI|cS&@1~L?G`Ch;NihmGsiWj~3YO7XQj4~BB3%+olgjRr-L$}^9+E*UtMEfZI zpTtOKOFs;foTF2^nDLUSRFV^uCEIC%nY?5)Wwh`-$!nP)RP2&~0_4jikyNNkYb18c zbGLPp=QP=6gTzIXb2mvU(Bz{nlJ``omr!zo0*jMj{0<=XNzF_a+s_F1%3n?d|0SdM>m+HarkzxyUx0N1d zltpL)_G~BZO*QvNN2xyuPj;3LrRr+YT`Hs2>(yJDR1ksW;70kU3YauNI>9dsyfs8> zC^#lSm@@Fv86tyIMoK$Sfuv&s0^J%L5U6{$R7C}vI8AD2iGE_Cgrt6x;nvyG7%8^{ z-dP~6To5D`T)#}Zkn-JTRetVtXX;+hfK*+r%ZOk~>eg{^8uxC;?Ja|`Hh4O2BBppvfWy2Hc zdYaqorSuf-KIG8+u%M#sh+pb~m1OIfO-jHk{g$MHhpNkj&R7c<*OXnO{n4aavKG{sAL`4j4BKIN z2(J(7b$Jj1lAFpTU|X;LGeMaqvTRm;U?_;73Uf#UXZzGMfK^RoI-#H0{gdpXk^z_u zllepY&xVuIWb0X+(~nRc-s>z26(QDgE9k?ZysIoD2ob59jA1aludEA8FX+cE0>JG4 zHn?b@46wNQKVUrY;Skw9YUQiLWRs{{5BOOoq0T;Ow5%MXDyqQ>6J^g>yah2?4bGn` zn@RhaDl=qRl%L;c$=Xm~tUO=#1Iu)hr~tiqs|FTcm+N5SGTFVMtnPwfYQfVUc~{D5 ztw{M3s?Tas@;{A2hfpU;o(QGv31#>jJN*{n%{vX!O;%08OvFDqKr7mR2m zuK|*3%U$5fB)J}x8!K-DRFma)kZe*Igw*gu=;8>;%Sf&rP4hNS`vFdzA-_nyx%Zqv zQ$^Wo zI`Z}2BbPIVQPZsl4uMnf#JC-CvZV!4D41_ahT)g!s68x zE(v-z{!vjDKPT5!T*l8%4HbQY8Eo;rnPzPi3_C{v0W=ZbM|W?lm>Yytrbt(?yyHYb ztzkr0g^6WgBb85dSLBEg1Klzdv)NS98cy$}NN0%(!oY<7ihh^@ZjgfIbv(ha4OaLV zW(W{fevjMkJVG&xRru_Yiq_29?>|}){^eN3WL5@(#w#vMkr4MLE3#NI@~0?zqKE(~ zGZeZ19RpULsc0)k)fdlJu$)W5HU#VDDMH}dIf`L8VvEdEyu^UkMT%ekJ3lzSTEm7p zig+y3$YlzaV^oBx&MOrmVD*IHB5==gMIp@D!xf4Tn6q1}6~D4_W?G{diaDE=%d9Rq zYlGq)<|BKHVhJlByS6F@GrR7g?TWcLc2ah+$IhtT3Ut0@F0k)Y3}F?b(0;)nu0slz zEi2+G)ekF*v8)AAIG!j41MEr_cu{+>3QVD-1ty(REDS*+lJi?{t|+1y z`YG(siJ;Ig$?d0?jQ}q;tv%mcu1S^RN=;pY%a-LWQ0oGG*^@^vtp;yW(=s+)BL;J--!KwpXHO`-)0A#_LvD z$=bEYgS-p{I_XtI`MaDd0Brw3sRy|&QFiYOqZn{UQ-Wgq-hJXE$s%7^V=C@-p6MV{B;okRVi{umNehB0X3 zfge-8RUdQ=bACKLs3LYmg)N8}FV7xCjJMGhL?piK3nCJ4C=|3Cm+KiDBtfje%nCsh zktVh#2KB-|(EG=rAQWzJXp^9)Sb?3}1f9qJUoj;p4?opuLA&wuWV@gZ_&KaY&{}38 z^0E|0xTIT96Wr2=%%JVXSXE5Csr#-VHL&c9)Wh6~B z4)%Qw4gq;H6p?V{$Dru}$El|bZo#lR!@XcU_>Ngl9h`?fCs-GJADcYi5$wWYu8jyL zp7OL%@L`5U1iTX+JPC{5GcNcwR#|Gr;F8$WK%HRhY0z6g_!%~MXtQAATKAg=6V>f# z8BA0+u(j|k(>AyaR(-Gb!Dhx)1~Fm~i0l5q1H&_dr=cEO=w^0}32w;Tdm?9}m~*p( zjV$Lv{r*K@T(JC{;2*GNM$QW+gH4MC!NYOyb8SWNS?o+}R|N-Q%WPX0?82J6vNiYy zg9Bj8JQBgvdxBSB)V}+IJ7D`#pSwf01+X}gR?98bl za*&f9ECVYeLfmkWJ~)B{c29^M&%hmauKFjjbGj2E8q6GPAz+FUqcYRCX)Bj#^W z_yFpvEHGzw$PlgHln+1%HD#OCA>j-<5PB|xjyf$Bl&%l?f_pB}Cc$D&cl@7NEOW15 zvBLWWiz$zXIIwP`&I&qibXm~x{9A&KtK1K1g#%*IYuxF`AIQT<#XABV`t3*kPiW3-C6ceP@w z0=Rd4ITdm5i{(|sy^q#Xoxps~XrRK=>#aYjh5)J;ad=IzGsaO4%($dtTH>R3jUc~-PJ+G*5DZc-tFHd{`5T|} zvvt-JRRsL?iYl4GCH?h5w;L*kBYd=aDLC$?>YA8)1KQtJt!0*?6hJWHv$ly9aKk;7 zm|@hy{A_)qTEj5$qM}p)Wxf?Nz#pHfrm2uTXjNr^`5#oH)Z81`SFT7iqO*-rLK?5bt%MR)7ILip|xh+Q-=eWs%jWq+E$${1{o{UwIHdTn&mYs#dE-( z?bY{K#t{qv_KsB3>k?C53mM%Q1kCZTeIdKpdbnW&ymlU*m_ zWNz)QI%uAvwuB31t1VYw3l@?I8`SM&LUI{Y|E4W~SWe_CEL$G|=OD-NT_@DDC4?bx z?2LLMBR|O59PmY+`W8d4L$pi)I-FCtp(a0nLCvxo6L8co7u5!a*!|AS>MQDYlo!W! z_0)psrN#~Q-U8`m(JeJPWJv<}(;a3TZM~;{T_83lJW!*P=7bH!WA*fcsHFH4wYNa# zdG$=4M0rVisUBYtUeaEvn=*C|wLzXQ)CN%?1<3`)bp68WD+J32=Y3VDGipXa*s?qn zoxLVjiWP@41~h>(!rGEhae0_~ZpJ%8 z&lilFuddKvC^yg>x_~XdYeN*C#pu*W9~GLx2!o^C2ffjuc@#?$8_L+_P-Vx)gNeuj0A+$Nm zb_r$)o~|8wgP9RjSp$CU$QfXrdZ9BI7RV6sz;vYy)oTTAzBm5}war76#GG%{e3vew?CVjxLB`<}tXkz=NyTgHTv%u7`&?PblLAR+g_J$H7*(s^Ejj+EP~o`5(SpVmlo%S3C@ z#VBGlQDN;?4(uC&-UA#jqAg8(0$ovUCi6;TLhlDiG>t<7zSYup1YJsL^&q2$Rt?sO z%niUdv$hC`D5H%PUZap-$!nAuWwd`V3;(^%^>VucMwi!S3Udy)uA(-YCLbpT#NJq0 zi>{mz4V0^{EzB(I*JP~=T$@~0FI*a_SqsV9vgJQy71u!mlUGLMS0Zb#I@&38hNex{ zvd;D(YW)zE?OdaPYzvwMWQ%C7z05pcieGj^3Wv4P&XWi|MqE4X4Cdhhg8>94hqXFs zw@}qb)qdL6%tL^tc&G%zVcM2bf$2h{wCoE*0=9aLc0BFNs!h{A z2x91p@%vJ^bG~*e$K~J?&vw{lp*B{G2(VbobefIsMySyrIXi;b7ify5V4|BC0MMARmChcZ)R|@BP_Gr;e zm?TSF(fVkCF4wefnw)n-+lV53yQ4j+63SkGr5!C6lD*$(-_Qd6K4?F1LT=V4Z4rvF z>x*`*R>*Cv)-9*if^<4`J(M*3MX#$Nr3K8on^sV~by`g@sHARR0c2OhDW!C0MIh&X znilpdtD7VhlA(z@)OV8HD@i(EF!xwE!(P3Pj^Q}0@SP>3YBfk6stX3!#|<&V9(8qd zg1E;}(M*>qLC>MBbRS$`d8uMG!S12D9R(2zWb}M!fe(l2)`f%I*TuAO`Ai*Jcar4e z*}54tIcdHwP9)@>T&OEdlZwTu}6S^D<7I7xPPR7{)JFm_Ks^wk?u+!p_?hM5(cU6ZL)kI9|OIT#NW)F04Y3bHabdzcBmuI?%H2LPG4&AmOa2xY=n`yHDAAzRbZ*>c4 zZr(fH0-7B5r>+|3Z|~9vT}=v?@L4yRws+<)T@=k#aQcA3#Cml1khE7qrbi#%A<6I{ zy6EKRxOIEP6Q{V$}QnW1CrzE?E=c zg;ssoKMKRMHoa9L{P@+U_xoH@l-}=i4+`u3KIe-IV5TGlM93|s_uKo&lKLuC4Q{x$ zl)eIO_ETy7dYar(R=azJ$>8tVPQ@TPH~+UBNue=rPbuJ?OiZ0kU41KI{!yO$cMwyd3g z9p#~2N4?*uqIA9AsO7r_G%~S=9_`T(fxczx(MLQ5>p)~3^e&U+=MT`Q&}8aheQSRa zVnBFfh+af(l0Pb7lj7q7Hn}`8U=!oyfK3`r4REk@dO&o;%zz9RX9YxGI47X!Ui(P?g z);$45U)>i_^uU7wMQ=PD5L0waf0ruy-5GsHiJ;qV=k@5z2Sm;Bm-KaMa?%xjKUyH{ zrv4rELCfs`Zlk+_vK#K}2gn74a?kbtE^PBl{l^d?ch6^iBZ}+!OMeBOEyA64h%U_U zoTv0*dubC33}MGxKTXy$hjmv8)s9AneWtnRqr%Yly$IOJn6RBRIlD;MA)4$F z7l!VAkpc+`VQ4TX$+Ti&XAMHKTFtO4K|(UFQJ6pO!`_=!7sYO;+W@9Mpe%&kO5F z%RX5cwp1guwqSh#tj&h7_tY#MwuYe(M-a}+Yzv6_X?qy@coWI}ZD&|A#q}Nx%c8c} zlovLb%9eOLP>s7A_JCIV^Iq6=+Qi()VcjV^rsrXkDLe2>pxVH{!qRAg=bYh1u+Z>R zmEk5;^%ad_BgLJsGYp}*(FVg^nrkx}(2Zik?+&YhqXkad4d}`-$=&BP*o;E*MJdB| zYOJf34QSVe6iBOP$fsr7{b0CGlgTv=$7$KZjSN3gv+&Ige*FfuHe^z#ozmWrK*91l z8qoJV2yS*~!!;_~fNqANRFks4hWk{^&%+HLX*KC6Llo6-rKtwLxp(u1J=Dh83k)|X z?x016ep;akZbLvj2R9nNP_VOG4E~XH7Bp<8+G)AVu#F=4_82PCVCa3qfaY<8-wLM; zM=63K&!C{mxZe%_0r09EiUV1DP|TMN3jc*_{f#!fE7eX< zYxp)=wu~>l9YN5+wS~f$(gLYP!_oT;!dYDL@G`XF{w2eQQ#~lEh9^)Seykhbi6-~| z6z=!m#FpVJDcGOw!~K4y>=gdMKlF4Df1(ze_&6lICzW{Mi10o%TE0#VuR(E}%nR4k zsl~vY@E4Sa{_Db%XcI?acs%Xp6eq&bLXoh3`gHhPTHxH}@XJ)g)qo)A+X@;>T zu3Qxu7vh%h&NY_7v~_`?z^;po*DzgUiSaW2-L*ncz|2)f^x^5x@bzjV`WW(OSS;6g z8iR8ijcxH0%|(;(?;E!mA7FYmH2QF(DBl6EZ8Lt9qs$BY1S^^j3Rc{GM6lwQV}cdS zoD`TCcUsW0`>e4c2EkvK0BbHARdD9-#tInz_jAU*_&NQ85uJDb41c_2tmiKYQOSmw zmv2`Eqi?t=SmVoWV>-_7bWgBG)C0lT^2dU)?>`e{ZT?blq7(T-x$Hj#>o$HTSXcT{ zz)Sut;O+b>lpFHRxCi5x7nz7|uS!isw|a$%IA^;cQ)e0a{iMd!1v86v1L6%PIc%vj zrQ({q!%P|Y8D}(g_m_Y>OeT>6|L8K|7})AFkq}s3$W#fJy&r8NA>b+^w2~2LA|Y@$ z!9+q}X)zNCfvzP@Bn0ebO(X<5mp2h@oU165n~`WDuHUDMiMW394<_RJhiVFVrE3f2 zKGYHL_SH8LU+>jOz}wYCz$?^DDEGLziD+YGD?uASqzKx`N)z}z)82$m{Gb2Z5xgVa zOw32{h98Uwf|I+OGL+nT_^qF5wFo^|4>Z+h=zm~LmMNCw7J|j2JJ$p`!%Zw-iX?p) z;tIVl$$qE+^G28+{P))daKlK`7?wBcs9s~RYqW{s+m3L=7}Hn@l3qE{#PWt?+H6xd zn38RJ&+-bHRDLtrG*pBb=rzr>=)da>5RA3cP0yJbC^geG0W+{4urL4-1A7_V4vctj zY6M)4o5A3At|?sj)PQo4=`S&2MX}Vx^6~J0KssQ}Wu{LoTKN~us};DLS_o2pVR5j3 z%IScMSDT*vA23yVt!X%BYTJ4f%NHyIB0{8mbXj~MxU#umK-h{7=-g`BS0HDAJ$9Ks zV}8h0)nWTgL$H*ee>1Us8$2K-K&T3+J7{A1lQ{o^u^l!!3t~Y7sPx2C9LSHFUNFSF zpBV$3bj)mIgs%(5y~}2uSuEJ53Rk@O=dG3{Msa9^qfo(V?#1DduRIa z-(`SE6B?Gid{nO~xMeph!7Z5?ZPb1j`^L=6X0(mE%w&OCVl$e$E(B+!X2$MD zXak})IxsrPcP`cNuEN|1^@Xrhh`Ar5wh3Gi(CE!UAn}Q*95@9Cv5+=tqP7r^_tbsL(n_Y}XY6PE^F{3{R zv=G*+XhzqV7QzyV=1=$;U)g*DKR;J7Z^X}a)y(Vhv&|1?bgz0LOsHwzg`Y2e6n@XC zE&QHb*L)P`o9mm;deQS)Z!@}PxDf8kG_PgsAsfNh{mtla4I$=+n4^s7*_t<-SdJlJ ztz*S8Ty_(td&y;PhJXcbbiIY#FRDAooP_5zljob4{`WrbpO6lCYk_$YM$1}kUQ%$h zGfT`rFb=Ve0FqM$7RFoZ!MDGd>oNArjlk!{<`8hDc4%=Z-DIB6?CJz&MMus8(81JV zoE%i%XD$IUCdkUc=UdFpSndsPxNB~O|A0+Tn6%H_OX-jA0sH;&{pOgt8jkNWC(SIM zn?(3&u;wXqRTiO99#Nh%KwH}q@fZv@>$S3|ApXG zq-FL0A)AGxEInBw=^t#WfTg3QEKHBJEGUR^iCI(-jbB$;!s$Cp^$S_h9o_PlO9kTw z!{E@QF?FV*7P937uj^9D;H4EKE1HF;?g03I{we z-?E%#F^RYtDnxV4QcGXTP3{T{%S&v8H5z_fX=%c!;7&mE(4qk4YFhMQ-+gO3?6uyq zMgq!r&oF?}>rm$KmR1XFyV-*7mJ_Y**lJ<=%)(a-X-W-GLd#N?&_R+C1ShC>(NYy8 zdBnxwyd4&F?t(a3=pIWHI*5#2ujT>ETXZ}bC+i-v{G}9MG9XqY3hvfakU zO1>?(Zl^q~4zjYGH^-7dO^Edlqpe26m1--xLxv3kc4@6!S@jU5x7KGh1&j^1KBIbw zHd{Ba@-Wq6eZ!~+>a*4D*2&a6?>nqVsdw)7T3Ob)#5Se~Ygfh&y%X5i;-(Tjjv5iN9#Tno4a)a`9rNi z;E1uXO}N5Xt(i59YN2~eE7Lrfm`8xU>(ju|ZLH|esS*v=NVB3N!X&9^Z$+0eN%B$; z>rk1H?9kWxhUFzY(JN~56lMMQ5!RE8aZEIVzWO}c8b)VneaBnTX+^?nm5J5}%Ibh= z)-XD(E|_I4$?S!>o6z8!mtzfv!{%FSG6sGp5P$*qTDdF$T@;psHR&D&sJ{{2aM+=9 zX#Sm7c(b)8)Ge}};{>Pwlw*A@7sULs%4%boeG@YvPL_)V$n>q&TxK&MoEWhFyi*3G zJCVp{UlTMt@C7exKxKx4AXVY%a0bnAo6?>Zl|()pd{w6!;N zUjD4L1Zy*}?Imk{s^u^a{9Z37fl`wwhfmFxy^Mpbi;xaI2UHCOp_5tTdr8heQ2@GWoRCv=7U&Fi0Wm) zR!$rGgO->pVDs8o{;mp!0SHET|JcW8+rtt&1SRPwtrA{~vGtJ%9JP&S=Lll~goWlJ zzZO%%eF-+EKam^Yi(rxOO*SrW%M+{zN|v&*yuAHiKv$HuU1l{R2*^tK`=Ole1m(|D z(YA^qO#T=CrdP6|ITP{TEtPFdf2)$9PW9S?;Lw`3=S~4^P-j~q!P;04Wk0{N8PGQyp4HGn&pX?1EH4d-(f2KSXbXIjK?=SZ?Hag)vm-vR0>D6#T@P}6 zHVf2B?Mxpe`e!Q;eS`tsSR#T|2(qJVog_Ip#Eym}lB}$@_Ys2xXEhx>thF8-(}PJmM=(T!p+Ejhj9S`iuS)yXi4Hr<>!SbJfC6rJ+8xw3kG%nD)L_Ah=I1#&yuOTo2u z?FU2z7mP@@Ph(&-fCUhi8m@0(M^Q=`t=!c9lYk9>X=WcobCX)znO@%fqa7z0kYZ=~ z9;zRunegIvTdMtwpjL3GgPr9omlzNtRX$|tMg81Vfkk`T=gE=F;6r?1U=P%nXinNK zP~G2-uF7F;g7kq*5g2F!)SQRRlQqa*o8>*}KVY1|dB7eD`C<0_V8PTgCfHrnzK15; z%hRNmx6dz-S}@NnZ)OR%$;<8S$x(cudEX0t&}6>7jldU(Tx?&$>gfoz8=SPnp3WL~ z5Fym0KKIKiJIf15zj)oCW3{~*?H0zawRd5ewEDs7%{pLL2!F16<0d;7LY)yF-D{u5 zDl0&;*4ui(o}i#T!U;RNR7pCAcjxWsi*h7+_M%-*{piUZd%9f6ZT|!fqe8ObGkXK6 zkldVaKPD5BlmE0IrUg2Dv@fAa(`P$+?L}~JeX(z*tu2!|(9LC%`)jbn!P2w)^;8uM z4s}>S4riBw?dgr<;6{xjl4ZpCpMXK&=H#*(;HsO}35Mz&=(>Q=A;27i11+!!`>AF} z5e2uCT-b!ax*eNYn)VMaPLM2%j)pJ2j`tjR)iX;A-$givNw|Z;(1kws&*Gln(Wfqb zr~@5d#uf+RMI2cSA$KR)F${n9T@4DYajIcTtm6WUy#IummEai0#>;Gw-_Jo`4EHMP zK!4@*Aedg#@wNbH4%of4qbW--iG<1lr}sJaaAl&SxC*gCZU?-o<4}kZ@u9wB+kfW^ zB2=bt+M#+YU~pr{2S!m=fNKpLTJWrugJoDpty9~O{kZ0B98xLLLECnYy#KBP;74=7 z@D2_YOXv3;A*izhU8Xz;j-@-!6o{3qZVslo-gj2AdO9v)R(|U3IA0)EbeRsO@2z82 zAc~+*n2Tov9Ty73#md2sk_EHPfng5x$5al2EJm6n=>otrW7PK ziktzHb~?f^YLndps%x*KG|To#0QL5$2O*&6-6Cdm#nqJw_Z}DU&z}_V7oB$0XU4yT z`uwbeaZ-5tisLcn8eVsx%M%A-_Du)+gGUEpW$oS$20XexvEZ}P^*EsmgpN<=N5`;9E8W3ID0A3 zvwR!ppK|mp-qCpsYw~L+=VAOj*u_~K=YPm>X5sP!`Z{;xXQ@HXI5dF34q48}Sg?9O zJ5yPm1>73zl)hWobIc|4fAAS_t4>zpeX?D2iUk`(F+f`!&QwJd{51FM?{YcD$6 zfEF8_b_PC*hPx(%tOriI!bsVKycN89-V7a~fX=H00Cd2x?antW9#2@Be9@_ZXr)KsVoQr%L}IOmcr`|u>jTuu?ys=QRVO;;MhvI8;oMmu!{yv`9%Pmd`H}-xzT@0Xxsly>?qK8wBCN*+ zW2D++=kJt}LeHEmAC~p2-2o3icQQ@>zaw0H`&tFa^$VxWWV;;C7d52YNY& zMgcg=mX%+eWDAUNG6i>uN-K%O4UGaP<7W|EY|{ve8cLx!r=A#uB}vWOB=e-_d7{z zeH#awsMyrS^kF;F#H)!9RN${mJ~Kp<{}d@13_;&i7uu}((`A8+(p<4D^M-$5qYt=e zhRWdb4z7nXf&2O0Tq7AfmnpzC#1#gzhI#c++Q+p_ER5fK`nk~M38I=-gV0M%wosn} z5jgr5Gr=)txz12+|2f=cW%PdHrJ*3lr401pz0g4*tJ{ewqdOmuIn_n^lDc(#>rM!@O^o)e1mHl%kqM7ieTbl z*a24tWpCyYSE@p=l|0Y&NG>G5U2>uG!o-5duDH;~2}w@9=JL`42k*Mj*C&xfCAz>_V51NRyAh1_C$tTY$a(oO>#B zJE$8(2mP9QYyhnwy2B<4x0g0HKFG};XPPMwgoTL!+d>XYZ@sW>v2C3W6>hr z&lvh1gtiuzi*ny(i7_M#z`G_Dpew;0uRvUocO#Dz+~||3-`o~Bt&IDk2xWIJ?`GLQ zLHJBlFjQ{=G$y*gBE>*MRkuuvp0=9qK`eb01_KC8iw)KW)ST}Q15?~?ma&zX?w^Ys zh!#1UvHcD-a-U?iU-u?%rgaT5erPlIR&1lgE!-?`ZV5)uR_^00BOj@3Z0kOc8F-%R zW_fQ;Fy^&$vn*jCsyqa1e^?hc%jOnoyGU0z(}D##))bI%41EzM1;)g{CcWIhN)Rht zKPE@`j+Xbu~W zhQ^0o2iy}_WncRa%+2oOdSZlHlIKhi4&Q;J1&LOVik1*3(!f!wBc3rHCk)f#3zcQ<7mTff7E z0d(_92El7L+D|zRzrJ;&eTLKU#78&UXE+VFeRXFshD0}zw87N@mX&&PS=InZaRea> zt_%0{!#qV;J!p&JGz4A`+G02jrxf;}Er!#ud8`L*F`S03cn{iQI1L+@@}Mn-)9`#b z587fl4W}o1&=$jKxWAeQZ84mNt802%F#Ft;>o;Y1mTv)zo<=o-rR#gVjQW`ZP^`-! zn#luZ1oiEkN;tf==U2x5CKIAbv6Tajb`7lg&--dBP`|T>j6a3@S9BI%7e1km&`4G2r>kv;NmQHGahIa^9dETi88K1pc zQ2&^x4UiA@pl=Zz^RO(}5#D(4Ezd)DLK+VDpetl~EfTdrIm*LwY{U=ffLlj<&aik4 zK}a};?kJKoS1l%aE=fT%QDp<@oQ(u^<#;Tx5ASIy68O9|)6<<{O!c>-hGD=nf@R|2 zM{t6qtsV^=HplZJt^ka%?2h=AO}~VVc1O-j1g-FAJR2FAfyf>1GAjgCcEIiDJWHr~ zx?S|JTzU6P=78@md62*CXrIsnvu5{V7;vGx0>rk}a z-?@3<$zd5HkUSGW{zs2n*b^D?+_Q}OO{v$cenSAG;mJQdUl|od5!Sx*9Ha^w`N6Y^ zO+gbN63@ce!%{|Ge(|7p+@v$y@{O4htmkN0hx0NmB>a|&hR?)aw7W>S$(4E6GO9)3 zrn16Yp0R5tx(OCGPtJyV(dG$e3BK2Q(dG$B?$>*7vP?mVsJA1%GKe-$R#IG(Gk|-~ z|I`!Pf#P0D%Eehf+4 zD+HQ+TrrTFo9G?J^3I5;tW8a%vR6NPbE(R5>jZEI)bpZO&7|SPWN%C6t^!%*@9%Q& zHT9x*xdhhO+*^$qHgL#9c$d4pZ2R;1dKW^pGn69{SSj(d7yUVBqP<;XyeykS5J6^8h~5*u zXg`RcHJs$F&g{cvskVNm7wt02-~UbKZn*b^`EqAeVfJiFA3 zws1&t&q{AyMoUkab-<+-4v1;jdxJv>nsha{t(deN>9 zN&fW8i*|KTQU@!)@n$lbPgoK_v?Lg+;CNxxlJ%uW6lg8+6=<0P64X8!OqBYR48a2y z8+_fsZW!SNSq*({K$Og<2l)+sEb9~mH4NN-9uWyOXAM$lL5RwCoM9LwP{Y4Q zIN(yX?-YaYL4=@GgKnFY2DsPj`z9jXoQd?Y9MD2oV?gq~2pKF9>6wuZSez8{FDpghiZO@g_EZ;JV#l%#f+@g3$!YI-@}5+PN+f^Vyk3aR9K zBLbR;U>(#}_H7X=U#jk}vaW`|O6rgPDp9q4uZSvOR6XB#mb;JtkR+SYv=Dj80Q5qz zsc!)_Of%nlMl3+wq;?A*(+&y}XPAI+y_Ijiz|8ozzI6p+Mw04dS`K|@W?nnr4uP4D z9epf+as4~gqfS1SofX_MP|Z9^_iYiFS>N5qGS~kO72ngxv^4vUaIlwen7~Yvc)bnA!Uke1)ez=e2`V6&K)kwM<^=P#3HR%z+lL-Zg zEsRI@qk3igm_80GSS|o#o8mh!n2($8V_D|^3vVj#V>*cWFPH|id`ASfqUZQ>ne7)4 zbK_j!XU1^?IcET7%mQDoz*dc%{|mPA7WM>C z+f*LWk7ad7wCT)wVSrOr5q(91LM)mHmer=%Br*&7_#wXGw7*hBX_oCri~!Lw#JPf&%GZcMtJjS7XhIxRC*qor z`M!Qc9Y*;&{q6i=(oYfNSoR(Xi|G8}B4K*2=^l})Ab~KlZ^R=xNevnrv0bo5wX6s_ zw+|i>;T3*O92e13sJk~iVy%!GIxWH>gv6Rz5tjuyXU>f%#O!|g2X6g+EAnPe#8YOh zgyyk*;M0{6uh|hcLtJ-)DH0Y686O`B1u`0rj{$R4fu8>g5`b{ zLYX71)Y$0sA+u}pn15LtvBIvsJADbx@GOt}~lDnndsD3@jcgDynqfF>x? z0ykWbxFJH>Q*K2toInIb%9MsaHFVyIXv;Ju!{T8CFyR^cGsuqrkF~dskLrlp$3IaL zLL34l5ImdRB%9q$vhl3MU7$d5cL^><0u(74bf9>PwP+}CaJQnt-6a%wE{OA0|M?~ujp zApw-U4qx;UVH-e;o2~jNa0s{{=_Al7;9R-%anCt`7Bx#$&_Fz4T%~|b5|vo@fTQK2 z^28(Hp5!Y|R}LVp>sggE$|nGK&^%$?d;^Y`i&4!Q0kn9zAmDrUxt~(JU)@nB;D|l) z850md>_;3;2`PaAq&M?uc>Zu09z|n8byBlO2*mLB%lr{`b2iHq+P%#iPYkb0hl-93H0wAfalhqKwMWD zyh3;R@6$a3Y^V>Jvpd+EXGUYWHoYC#%X;~aaAHt^tJHb;p2_Fm1jJIC8o{fB>&Sqm zhz9G&1mLGepTMZG^0ndkfc?_nKHmlGkfc02Dd4_z9~1}tL7Hn81T0~D9aVF|XRh3s zLEp=I`eS}TU!s2c$`Q?&l>zyrh^8Q*uY9m-&6)t*M)?H1HU!`{$|rDpQvhzGd;%x8 z28<$3viklbo@uf-;0IDXBN621sg9osz;q30To(gyFXazgEdQKvMJ8qHi{R@3lbT>sq9-sjT7kQl zpFqD@#VUfMlV;+h0izaai)au0O0_mcv4k-2TSBs0tnm87icCuQ4nL$SR#W7g-d@p* zJ-1QTV(~74tytF#1tpM@P@qAkBGlfdgngB(ct((lGeHbF<@)D5MPGt3FhrToSPO;N zDB7}#;;D7^zwUU&6VwK{O;V N)gg zz)|d@pVE&tZKoIp3l}J+c?tnpwR$QNrL77ZN4#FyEjfu2_;IhIRJ!)xufPv|mw@7+qL1|d z^NuMRN_u;CTA`%$_y0izdstt#_M1S`7AjQzoX2R^JfC60RmBUbtEq1(_7S?8#0$av zVb5&^Dd4pNG`y!+BDM9K2MS954lB;LWeQTbD*RpQe`4TYLjaZ?vo&Ue*Z2MUfJ=ycU@QS4Lu;KvI}(C33Z1;6{nalmM!& z$*s~LFi=kzteGIfcMSV6eE(Sh<3a-m6TSXuR=NUnB;vut?hqIq*o6>C0Wum(d8H&t z!ag?(KC|OQ5uGAWq#&U_<{vN7C*^ zNvqhXj;u)6U?4mg7I=ivsM7SbiyR&Anh+REiHw2T*Hrs-DOM1c1dF` z?3D8fqlYzyocS`yo_XAVXb&Cjl@;x6?n0rHGMwTX`ixa}1A~k5B_$4(Dl@EHi`{Og zY{gRDl$1CWQN95WcjZMpR8N_g@)AWeh`|uU2Z|~yN$>I`7HnFeQa%~TN(VHn$XeA< zHh|O`%GnOcjQiqnKP4WAG$?(+zpnC(E&lwnzLF9!Ssv#G?E;jfBZ6FQNEly%-i0o~ z%HJuGs)Yt`!M?1yo01aea1_+O5^jeF=i0K62xSF05w4seDX4X%k}`p`VEV8&Z@+Se zvMA*NqKV3efoYHR&M+WW$s|&)2};WB*h-3j-fX5pNs52|jiN9sF%8OHb~8yynNeE7 zSZ!}VXXu_n_5-q>xMW?^l_e4&wYoy#Gxtiab(0i`rYFN>@I?gcgYvln6EvBV%TX`H8r?#t=k`yeVfaB$4F7X|d z!*D!c+q+PE-FSK5Y<4##DFqUz!gt>K^;BY*a+j6%R_>;0Mo{U{NBNv+KLR1JzjA>@ z<~2hXoH(EiW4({m_hLl{)%No7#}hxu*mssG z@g3n^*s=n>3SLL7lAo3Sv;4Q`8s&bP_4*%545;qHuOF1(N!Ny-l-tSXZM0W;@T4_>$9oq_I_l}H;=Lxy zMMe4^1L~-g97~SyQH4=rNsho{$>Dw~j3w{FJ%1I(l6Rq`o{EdUNTI4vZ9nK8qLQW~ z5TH@#vw@|y0%Eq2u&D`e6bWK&1-8B*nGk&Y`hYMe;Dp7g_M=%UkIl-c~sy{tZ$J`J7 z+)rg=CsW%wP_>FM(p!MtKrvX=o~Yz+0jUL2D>JOjTc{PAH%vu|V!065OiGwFTovXZ zE9CNM73JKSgaz1Er2SZ&2yf`O<5bIRWgNOMK|iX-2{!wet0>>S{eop$sX8vaL(SDH%JEbQ3yRjLo(q_f8&s4dw_hmPY*dkg zEJRo#zsa2lsw2W1x7$hW;p^bdE*0rz6cSknm-ecziAFkbKt(xf%V8QHDhG$?qpGcf zgY9uThuJ4ol=o180(1~Y@y8jeZLNbb=TxMGHTd{qDOZhn^Yrwp>RZa{Fv5&wOD3o) zg66*J7Ulf}N9c7>&GW=m0X)EGpuB_PFl|1oD#QD~RHG`nV|eyD=3Q)yfLm13$UEClXX@Ed9qeRF)D~|9ypn) z1A;O6E5*$zd1pe1%?+_E)2pfFubVvAqca; z@Zy6NL6`-G7b~v`!YnYn_;G!ZmJ)Aq`i$dTcP#j49$KO1ie`as2+vm>Yi8@aMU zcNn}Y$cESu=rs2S@hz#{;D>`j!9?F%2pF72+t{3zGuym86+{VPtZ(L+abt)J^LYEv znYniC@4^c0l^!gof^!8nczc6NU@Q$%*yFSCI9`Nws|Tz-AJopCz4d5nW`#ZLqK2i^ zIwP+Hl`C$Y^Z8+A=zTSav|GUQanNX%a3hG4G?LeCc|S<(srrdYoG z6zQO1Tkl{}@NPw53%dk+vaC13V&|vACpbm69vD$QxV_wx@Y+8ZzZfqyD*ReI7{3_L zi^J*$qjTiN#QMQiMYZmV;9K_cug!yl>r*_uBh0ZvOz^?~ zZjOxG!`9ef(*93gxobl3VbS15Q}6*QhnMDH(sBUjurfIqzfs1!<$|=}U#T1lGJ;8q z0Gvbr?BH91Lx;TJqf`#n3xY|(Hs^4vQSd6kVSJNd%1d$%qy0MgnQ*e9ErTiFz~eC2 zS_QurFgM!;Q#J;3m`NRiNzpa$XFP)p|0spJTkvMN=dw4wNPXoCAb%TKQW$)WvPknk zV21Y##;}{)Zr6dqhX{7_FTh$5I5@cM|A3d%H^Em0uiuB4pO-(Bj0~m(51iz z_3sQb^$SAci7H$Km|+H}m6-;U%K#>qsX=sGW1zTeNS5p#;8kJBJ4#%GDjCBNr#|fK zA970Qcgf(8{-OaI3=erAihiR*wur{M`&~#S%I-wV(`vBYQ$iZiJPxN@1MW@@!94xk z9M(+_nO%hn)@FH#FV0A^d?9F6NSUMTsub%(_K>wHA;PAOAs2);zuyuvT&OT`M~Ggi zu=oCQs4(wHh#$*198y4(8W5mNXfN$p$QU0Q&S)5MC#0PVyXQPCjRignA?*rF%EFCz z(yRGWr?Tp-dCD5bx1Av@FL_2Wk|FjP!>tB?g9QGMbNzosc+A6n+@}1 zo!^DLC#V&%jzfzNAqA8n3@fkYM?+zyt-7O^%`N$jew`|6cRQJtshXOyC?Eq%$3ZVt zS9d1rcP)F?KwXQ)_^Lf1y@vWQ#qV(<2t#fresXh~LVeFcR>+tTH6=$7Z>H=}H7RiC zm0fjeoZxd)c^9sxd=rnu?9;1Bfjh4}K3e@wa43#bQ*r}wnAQnuQsB-j7n{^R!Z;yG zedWJ*89!DyIdo~P zrmS5++otOALIv-etB+70zq6$pw={7nPPJ82R)M%CXSP>63YecetB+CH6n0fFrA)q& z!&+84NnKao8PK4&x}&2k)cgTz%2!1#fGX%eNKHE@Dk!O-c&OS_wA9Ao>dQ3UaPd?y zW2D-P*lPsBn$c=+!KQRCW zCHUedvv<9E5oO(<8%oi|Ta~0u@;zYFc6DXSA_0f#c~Je&6wMJw)I-Twx6SIRu~qLlb$_y>v0#c%tUh?Beki+Rxc*ta zjqnap8m`x}Y4)MsFwQX)544Fna)@*2_hgnFZfm8`8gjpf2kxQ!Z1|`F;At&>=N-CM z{F+)N^bg9098P}sn&(wOQ!jL`mHdqcp+~9SlSyz4;T&O+D%3?tusy^|dvd6?*h*`a zphj3|DrL=xOYnKk^UCm5QfO62p?;Q<7>egG+pB$HT}Egsxgj`kS$60#*~!5EyiiUf2bxls1g_khT@thN31a<6xTd?@$aFb&8Y$7oKc}-$#dhF(8fgnF$ge! z_EX}7YmmIlXUObOT$y-|?&LQtyc&wjoxE7{Rwyoa z^5V67p}5@1ixqzh#pO<3{QYTYf3l}r(n9^ugxXtw4<)^Ak-9A!ildZ;t|#>RE3^l( zA=b{Z(TJSd!FHNXKCIr6Wi{ti92Uf`R@YFr6I*ubc*1R8jT5DZ*~Dwwz>pdmTZ;Kg zm06`a8p?tM)*UT}89nQ29@*QxV2u@;qXfrLIq90Al45?%)C{M!499naS6Lbpv3Ys`GBh~Yya4yF zG`~`28Wu5Yu?-H|R_thdO=Y&Qj)pP?N2t;AYU{;j8fQsQw_9o`hZ+!QBBZv~khV8) zfj)P~(`vO{6DvcT=2{yY*w|6?jnr1^E}9M0wnEH$u&Aqsw6Z9%0z|;0jW5{3UK+~5 z3X5d*pi-gc2g<->L2!V)fto2u1#S-3*b}{L4;VRIbDQYcdN8c)4lYF+TS+6lL)9Iv zsY8_tZjaa8By+*aZtRvy>j1qbYChOl2o0aC38AcoYqx9qvn5N=bxe)dj)KdxH9uIr z#p0MDvi8%l`Z;H zvk4|H(~Oh!;<-{oIkCp2LdesSq7&9=D93axwESW7TAJ@cgqiJPsh229h$G?9xz72nPi;HcdPviQh%kUHK8f9O>Tr#k zIiAq`PU|fL08!GdUHaoGjfu=>%FzeT@a(*%F0tzjU>srhMNNW*5DUDd@n*%7HNKE= zS<{U&cSmIpU~O(_9N2{M+97b_mc|=x4sPGkT&BQ{a?uWi*1u^mS+VSwS(C>Wilxsq zYbARg@si}cBxr`vPH^#+hO`&&3qp@Kn%b0Rup%%-s47i*`o`=D?ccLd`q#T_*nsH1 zQH7xqI(^%S@W}9Xy0%f8c5OR$)I{qvZNoHe^=+e~+DAsW3+oi#zN5B1<8Zxgv|<}R zy0QeR)7|)>*-o%m3z|Q)_*=6Xfo6MYDQS2l96(k(DMLF}p8XFe#(FtvD}bw$c7oLM zb1G^Hf&pT7qfBwJ-a^>srkyH1JIzx|*@D0^PJ3z3Q~Ett9w~V;Kj>9myNif0h%Ir} zI>EJCS|!nBWdyeJB*rAQ>uN8dHu#jOQax=tnba*$trPogye5oADYdU@<~oQ;C~#G! zHCbF5Xo9s%iJoT=>s|e}1B?jMPL_O_i(Y$?g48xmI}C8{h2LctiaKo4@@d!7BrRpy zg@B{sW3o1kV8nox7f{+A>&=v-vRav1$~+4J`m+;X3Fjowv-V_Z`8+EnS4){^Ss?vk zU!Jx^a&`S0X(^K}2?&rI$wf((=k(AzGykn(5-G)blO;OOT9M_lAo@d}Hd<1Y_fKB_ zVAEbZQSw`pJ8CI2uz!QOch-`oVgkhlru5XFptuSNfaUf_WuyNJXR-aYl$n?n1+EYH z;wo6$K&_blv>v3bOr}@66ViKnUK7ol4cAf*zj1mTW!FVbch+*G_Pp>MOfkYjv0ssv zG(qFw#r1DH0#4AlU#l`vOI?%VYnrtnd4|?(W3!Jp6Wq6TftD3lFRKV= zW@%U0vD@JdJz>IJZ9QALxbu6hJHhF(lF`-tSeqZTkt}DSma-w@UjUAB4m zRbf#Z(PD2i>=GW1ww|zLzcyKJO!mh?ZI5!$Hp25m+O7ht%TaA%d9WB_xk2AwwTTY0 zr5!${T_lWdz!_~-QCxUVd(TF`VfqE_3rq2mHbZU-czR7+NodjembSV0b-+FCGJ&i5 zO#jNqppK3w{n=^r1LDFxCrLX+zwy@y%-nWB4IgpET zGfm@0UT`TucTGrgK&89u!UnANl;7fgs#epD<@R=~#=IkS)HCl;igj(-^E;lN&?H9p zks{Z=sk$82-K?v{&X4zP%yR2=^I~qJt9i0Ezv>)VVZ1JyU~Up91SaSXQX0&{i1Mls z>vol+_^3-R6MY=Ew+z1%{3hUn(dbkPU?9I9JP zR6`$#8ZLP-sROaKBXu*V9PSk97@33b7%PWqW9b|Yj4KC+zbEL%3q8!5q?e2}#I3R}@qQ$lY z|Jyn*JDb&@y{G%xfjc&M`bc+J?$&VNnGQ2o@M+t=SGr!5oy1&2t`l{hte3*c5sv?@ zJ3}@c3yc%QeAa~vx+Cqw-clMLeW`|NT*Lg}WyP>t6iyNXAi@^P%YMt_J=m?I1@7$9 z#_DRAxIfsKV0D6{z8U z-LN;5*GpdjgRT@r!|1@UrPMZ)THS*oj0-GQg(Xpphg-FwSmz1@G-0H)C0`J(>cVOZ zTXu;GBdzCfunqBHZZI|>>?}nuUl1M}!)ggSzA0e}7n{ve;M!jW0XV)Xfz<8ih@AWYbHAq%p$*e4^Wwjtb`9Jd7G+GK9BhrOm@i|NB@1 zXIg~W+S|;4^KHUXZ1L*XKFmmw6LF$gtF9fL*olr|ly#p`qry7LTS)CXhxKr*LBM89*acjEd2Qy%DRQM)I z6jMrgNhQ4gUJ%~5B3?VS3}5MpSGNw~JEi-McMPxOg4fH1;nk%3UJVQH?~K<@pS*Li7(%??!ki#mcx=ji1AP*xrUg-f-()xL0-2Qf$I~!8z<>IB7;A zfdhhj)y;4~{0Lh9mvi-GjwumaZ0^fhLG4o`RuB+zSgOZL zBg$NvOIk!30l>5&A`kkdM=YbXfK-{y&5NL{PVu_c8b^o?L^tvy9PC(OKpju^d!vYD zR7nu=uC^aE;O9*8#gnEFenS2n>Z0J1TKRa33D=qphs?10y58rAgU{A)*tUFN&B%nY*F( z1;W$O5zS?tL(_2)V@2`#cM-EhapshWQKHyjdc-0JS%}MXB90J77G`}g3!WcAS(8M7 zZsNeqf(ScrS&yUEM^Hvv#LA{jHLzY^(EbvEYc{<9Y}y<_S<2!tWm_UB>w0izYs4e* z_+vY$n(T`sOvF{90riDpdm;)1hgY?@}iXPz3rHDpk6A@T1k4F(-2@WluL{I`d4m0U# z#6xlit^C5uVd$%fsZ>3zejRa&Y#BBFh{zOr82pZ|hn4RmNXy4ui535jz|ADw9=`oV zcb3~eN1P(Jh00c+Cpb*9*OQ&)4hQ{la$6{!^}Pj$pIr3B;kPf`tfYTN=FrPSj~hOC zTiAH(8Pz6ZE9?Itx5arM{RqLKeRVzMog6o-`M&zcWIY7>TRA{&I)@i^%E4h+1HGkh zURLPIKB|IJf0V3;zQNXhaZar#`)V7Fp6(|n>hzW=c|ru;CI{>FcZ6AWi`G+iKyb4f z7NfUBW;5dTgo&*@oj91FCw**=b4WMoX9!WACep35ezLw3*)l@X^uq;*9T|GcCJHXf zn@oKdGKbGO`h|kS+I+em9u(*&kU4lX)-M$t_BYj2w#ackeEeEJn9QMCOMQRAVPR|f z$Z@ufo|KxC3y{-Z|C8Y0)JacS;g(Iivz|VRZ||yKA~GGKc;%^wR`~%CqTR zB4>_%n1H!9mp*tto2RcQFITZT3-!cx(!S7Yk^TU=gC1OB?Hmh!)DxCgq0cfs={*qd zo7Yxb8|0gH^l@|3dc7anDEe;He!HgeW^s=qFM|d2~|$ zfZRYEA4GN-TnAZ+zIBpM(S<(E2fnX-6M(Jn#<(G2CEa@V3b#6sXaF(Xje6ow2zFN z!-jJYJm5)<$k7z}`s|C$gXeW4qbNQ?s?4x*HP}->@;GJVAV;{Jo9M+hWF(G&`Rd53 zloy#6m}-z27CBkA7I>tO)VL5jCQa>0ABMG$+$2oN)FrYi#W=at2<8F5b&Cw3 zyr1U67Wau%kWC3IyRt_uYFA-J{UWPC?|zXzE66H(HZ<~>ja)oBEHcHDpe^24x?XtT z1BKx?5WLJtt*Kgpv#WP z4FXrWhh(#W5>Fs&>Qq_cOmI6EnNJiWpXEGD^n}-^BG(8p)}M_W;YP5`I=@A>f}M9F zD+zyaj!$XHlKqluonm7>M+CS$aCCIH`j~WD>~2{ zn<)Hn2zRX??W3xT)=@Y`T@pUh-8HI|Dkik?i5f-h_IV5|dqMx|QD(v9NX@7l6#JX5 zifYLgnv*)P@pYrT+3--*_0f7!nD>{9ogNrP83X`feR4fsbG*;F%N=eWdAk0wVtWWfhYUe|6L0nHSilaQ4 z`HydGM=cOW{oN6oQ6t#56r<)o z$n{;43tR9yX##XT8|PU1`rw>Z z9{j*XvVGo^mT9s+oZB^#$J<+8?ndkOJM^&cMH(ti)o?3$) z>)6HUw?q^`l!H!k(^k0?eM1nlyBEER5~6XfY^a(t6ZX7~R#7%yS`hr%65CWqnEF0i z?5+Z*zoY%+fn;-d%tc|ZevUCWsG%-Hq7_*UU5X1#b&bg)+oT0%0oZuNTyv3?`OGh- znsB&2wPJ>d5pYSpn2W+V#%p3M>m2pNV@8M@eu;`1LYaujYD-S7$c7nW@Ci9F6D4}iwF4qX^c+%s(%r)LFnesmoZhu zM78FhF;#_{k{x2t3Ee22V?T;&k(FYfi>K+mVhhWo8wINcDc)@8<(R&3&M$U7b)A%< zL5F~*ZfvR`HbD_9c6h@(W$Y6n<(r^bi{{WsgI2^&6Tcq+DYlIKoF(T{^H}z-*a|RleQXW#;Da!A(Q~8@g1sfNvnmm% z0j%g=>UNm6Cw3uO9z^hg0|#RtiB7chaO_<%sI5O9`$QC1m&W!WPust7NGpcGJF#12 zF!tgB=JEXR*{*pXL9D9q*TdL}!duPxE%pJqW7MveHW>Q<9&35I+5C@K${T!646!Oh z?>}SltF_$M%=r-eC$&*FyTvu5TGnj0I1kp#CAkW?*~TqX$z%=$$2})Uy_iB+&$`6L z5rRM-gTt@!agISUk=tG3EQWTaTbz&Fh+BHby%yGI*E{ZwC_43tt1rA?{Lr|!!VnWj z#+?@P-g*<_DpA%rq~?MR3*&OgYZF-61EwvH+b@i;-Kw|%F}0evK5hcJHya+Mxx)IL zaT}?I!w|un9XS%`$vmsZ`O4{BfRaVM@43$;xj z3(?o(!bRsEaXXH(&ww`y0v;EwpLQ>>R|pgXOcSip=<22UOCay!hQTS&HCce*8(w zzF+Bu<4;T1pXSD2vBB$@@8hpZ*H#PSw@BA2i{f`n*Yk_xohiN(WopQZqRXno(B<*N zh_c8CtjnSJ>ab>Ie6q9954*A=9$!xNi1&rClK6_0!Hn}Wwur9`7dFQaA@k!14Hj}L>f2jbJn{3ICYd?>!y!VfB)h(Atl(B9o~wCGU3 zp)c#XBQ6krJR5KCYO&d!x8f=3J{fNb4*Y0eoGVnm8~?pzxa%LpFO;s?zs0+A1AZ2t zEnQc?imxwSOW(?W`+tb{mj2d#ivK~nUa(Ez2EE=s0VD(N?3nPq^t-K#{QLDv3HPMm z_qru;Lm%XkzztpRl`v7dZ=X-XIASMm$XeZhP!TTFOh}T3vgzFdt3YVIguz60^TD|m zOIIfBwfRY&J>;tr)(~7XPr;I?uUQ`k1SQO&4DvXesXBAs92aO6o={+8^AnUrB+PTP znJv@W9GBq3de2L6WeM&#YOqf~{#=1wj!PIwrK*W5tH!p+CwwFTj0!Pyf*eD_6{z_Xlf{J?Tfx@s1U;o&bHJA^P*eQlm+K1>I@@!K zOwlA^8BtP(fc{X_G$F-K#=6uzVKfm75X;^{hH+?@K-nJ4m9J@^FpXmJSh+L%eE&f$ zR@%#=r6pYxP7BG3dL|GCWoAVMM7>Yx*%pL4&~sqIc}iH!5!x8b9N^}Ngyxipk|Qjf zlHkS4MkM&c$7uSA0t#_5HUBLvx}fexh}v(M%U=*g>odOEiXP%21EZ zIvOVH45Z!CSa}p17;c~>H{f-*M;MOMBp$`WBMp?eQF<;EMH%cX$PGQ)V5ln0YFCD# zrZ9>p*@kO2@(q`A4Y*x_8^!W`1AeMRE;cj-hWnhr$}WG}&M}56;)c89BrJR(>?|v4OKoF}u%gWR#x$Y5WeVdt%Jf4Lja5Bws4C53 zD64EGAB+Rpl1L+N(s}Dv8J4JxGvwaK67|L{1T9H`fPnX9$=K{z<76U?#7hsK;*8M( zE6r%6Oq4A$>fwyZxK3adCmX*l7q3?-#zcXYoMGHhF08Ye#ytY-hg{>Na$!}>x9Y1= zBjdVqVcq)5_*w9J@wJiCX};*bpt*5|Z20VLYvZ2*vC(ujx=|*O7BTkR&n&H*p za&;&EC?`l7YV?!=q0?}qkMLJhMjKURIW|1F?FKz28aE5}X;Uoh+fOx~670=0=$%e_ z0K*61o3Q@wjw`>LX%rHCKgT#v6qCL;;@ew3xEU84$5LjAmPWCM!sW&$Hu4yBeTA`x zuwCcXW;;tO79xuM03Q7K0#A)Q#FS;sb7Qs;uGB$5mZAfn24TzIx_}$a)i-NrU1crTP0HmK~n8y`XGLdu4+-mS$Il5KxGd&6Uu$<1CC$~DwPI*f)B{LX-g2gO8jX1EDIt|re#^`>1!lK)uH z0bJ18<7%@(UchSb=C(V#ooS+c8H_Kk-ELgw$=H#mZCU7&eEw?Am1*YTuI9ekrnZD3 z<4i+SD|Xn{u`&$IF{vnB1QA{n9$eDK)JtBV8u*oIpB>AZ^|dEU``SdB;I%Oggyqdl zhbb{F5*Y|yElqoDWe#^+n+OSv0AY4e)MwM&{58`wMU!sR*Cdwgw4F_Bg+^X11Y^rLVz|yOd)ox(&n$Lux*1)-ppf~ z$rnx!Gi|0A0Oy2=)mfXa9UUQLq$x&LJ`5ghY9Na1#+tfNn-`W$GGSCD(S?swO@}Gd zL{1WM>T;6o;`b&u_HX_MS0uy?kV?jLhaD~NR4LFi%=X8+)HcP=%p6fNF= znTZmeAn|q#5uIS>a#Jd?ePjft`pHz4E&eUlgDqL03t;~HnsYdN!|J44+@{;)iaRD!%4^O+b>FIobr0!!cwc5B<;mn6CO{8u5Q`!qY%pl(~PINIPF7Z*}W$ z6Dgl7=P>ZImBULLGbLjthl#c`lk#5k%3B@Hcx-{|A<)@O)Vg3&f#_?v&Cx< zayOGb=0OiLZ5NW%kcr;r4nhxGtC*=Cb4yh-DeW~^!!Td-7(v0KCS46J{mu7@v#KI^ zUB^5}aF|!$yp-BCpENL&(q3~t%m_4NQeWB21eqz(A%__oY$m0>=9Oz}tQ-#LNF1gg zHIIVI;pX4SZLu!W+BN-S=v}j8teKSdn(N_ag0)*TG?~e+dY;)#caxfAGYETlmrA$E zjCAuI0TY*Hrkpn78flSj#us$lI>+Ui$-NLRt)PG(ZZYtG?vSMz4UVNnnB5C2^c z(5I*Q9oawl_CfA)GyKwzJYH-WV7@|*weU|(p+;RIQXskj8MUf@#dBPT?LH8e41b;rMc#nr%p0o6C8$4HLs>}xH!#B zpHO$4fzuAz6q?O8ucdO>I;R}wXr71NN#>Bbz)X2-$kn-aq4^HEOBj}z-wO`uKbkjD z^{{T4nUw3A3y`wPj30{N-SWfF^nQ`G#@v>}c(Fa}%)O|h++1&t6vIWpFJ{W7OD@zm zo6MwK*SzwJE!G}#ZJU|$)}6z|>@a^tT&OJq<9=(ayg5i8Hj@vVDG9FuC!~I&8Fn3~ z8-@ExGv>PHwq;vtrW~5(npB)IpSIm@?vYbuwRmpLz zx&E~m%e`TqPqp;!^A%@lX6}2%IC_=lLd#u$7b^S z>5eC6Qm$*xVZn2A55b}OD@r5|cV3yzXL9_tc~v4k{4&@jekUkgaY!WhjRqAGNm;H(c_tPCZr(2vzN^F|k+38H z2-8UTn}<~rDGM8jFaeBJ6L$$BZhnarx5Z&P)=0#h*xWj5)lQ`JGY-?YPGUXEn=P!| z4K#|x3HJCdo}Ya?8IQSD58$qe#uzPFk^KG@S2`jtAeZ; z^V~#CTg`P;^ZUd$l$>bT+uF01K8YS|+0@AP@a>w!Sh8XE*orVbclFlIiJ_Ff&#e<- z?#ZJAwAqn}DHXYZ*}D>bC|eb|nJqkw9v}_stC@d#q6t~6Wqm=8Z#;e4+q>K}i=UI0rvhU{ANxQ}HFw`N5+Os*9 z8yopsq$8-Dk~$G|1^e8S-jI8ZHLo@NTs_H#+G|!Kj8LqpRubkw;X3xJlO$Fzz^{Ii zSY(D|MbagqxRBtaJ7ngVZF(R$>yzqGNz3`F_eCXPzG}|5a(ogkoscxD6`PZk!qXp1 zEr&fIjw^evigJV@8A;6u_Q2ZqOKSQ*^HrA>BxxvpN5TTkef?30wytH;XhJ?9KpZid zVrheuC_y$Nbcd!xlI+Cj)1xS95XE-5L_NMsI!RRr!^)m;ZfX+d!Q*E0epb>jAA&=d zm@p|VHDFrmon$(QP!+nDB+c~`R(vw4F`ZcUNa9I#Rgf?*PucY^6Z!cw}2FyquUy&=A?XHqcdD+ILLadr_+9$cY zaFLnSk})GSH=_@}$(WIv7pvAx#*EawIHh*-VfojU9qJ`ll7Ac!nv7@l`2Ua9CSyWs zUR;-xj0vgbT6xKjsCq-!k?bmGrH*Kv{E%SST>FU9UszIumdTcRlvnFyB_+pQ+tTD_ zEHf8#8!zk=sRo{jQORxrrzC4 z&ZE{1i+^&5M7n zO&L)>HCU5TGfYN30k%U*O;Sc`-nLT4Z4QVTsohw|Qz@RT@ELxvs?(yFY0T;1Kh*G1 z=HK%`3Z|>(qO?1kg6XPx@%62gD?;q+_fjxjHUIVL!xT(c&5NsEr}Qn4*kAHYPl43G zQ%cBde%R(;u$%z1zDI}#edwHO8MAh~q;9gc*#Q0AQlAN*(Z?ed6I63qHhHCDf@)qI zP&w5yWu5PviV3RuuLlBCF+nvit_)7a1l7E_IW+Zw=-aC!QYV&28~;pD-N}$jI;kf+ zv*c9Ej3Od4Rc!Kv<=Ls2o0^kenrjvC$XBVDo0|XX*dY~jQ}g2M&Z(H2nioB~r($ku zUaZ)sJOchZH}%$`sUyh~FP`@qb5kqe>B!WX^3ek*o|%dXs*$J{>|KyrpWYH8sq|#{ zv^@2u?C03CpHspuyIFEPhQq6R8w`8f7J{vR~8gEVwE|)F=Q&le&?Y)0j zDrTwX?Ok*%6^}ggV(n9@e^DO+m|mKc@{JD?Qf_L%+|;qerR7F|Nu_&|Rn0R}Pxvhr z69sccjCzua8L4@(|I1W7)69#7Z&SxnX6wAWVixHZat~vVDyC6Fey%8jeHPSqUEuF8G=0a@`OemcIKQu_I zOPKZYNz|8&)V&mGB`R4}nu0W2O7l&>oAwoKZJXvtVIx(>JZEv^;8y#z8!Gnnd-PnV zrlyq%OFLYghAF9eQ$CxKhB>Ku@#U;E%t_6QZ|9_8PHJ9MElI-E z%e1wW)M8vKJ?~&zXG~UoS`07l71Aji1uR&e;O&&YO_;?E=k$sMwTckqMchpI?33Ps z>g*ZMSpBs*4)?VZpddCQIvq1s zbB^bX>5dc&=WpeTUzr_PadNsnORpW@-u6^W*5`3XONdHKZ%A3w%Xi9Xff+~AouGDJ zdWfHVyw@o|T^#S7);-;F__%tn^rHXXeVF9|ZV=u(eK^H)NeF-xp9=32`%U^Vq12-z z(x-}I=h5i{Me+IAbo>YgSM_(_rGG1m{!`KiiQ zeTitS@f*?)ieihc>61nA{hsuVqPX)&Iwr*APaAYPeYPmpyp;Y<6a#KqAF=sP`u56} ztq|Y-k$%I$^2flx)59Dsf9$r+AiXTK=(-k5YlImF<{e1)j-9+Aw13Y+>ED0;>I5L( zDtU#ARdmlFoY{gi?iuNn_dr;0ER=d>jFj7kwW&gRJmWBHd@@QYcE>C0s%P{S95(x9 zOe1sv4)dW#MiyBQf7h~d7+E)CCY8g{dKs6^API$)Fqu;cc-;o3Wp)hsf}ZVqp)L^%;~?Ih=zcD&sHN1F^8U49Z?N4)bk%##XXA zUmG(l2MW$7W-O;RX=rlB5i*B0X&IPoQF5NFFf)U&-%jr0hq5w$q>QNO;5u(;kUn&#Bhj9g+Hw`4EtW;nqwvoit-G^8nvjKG>TbMR%ZCo=|t?c9tG z*1`Lmg&A)t&AIf)jJ_0+u-<4m{By=j8&uAQIPc1Ed`-sJlBU}JQnfNfLq>Z_TOn*$ z#^w&H!4?m3>;PMKWRUi7SYYbH%-tE7Yn5Bo_`MlZM9A3SP=>v*wU{FrH3^Edwnzn* z7nxCkZSZU73)n1oEG@zU&szG1=3EA8DG8-$%yN%qCcw+f8Ji;r-qC^(#CpG|;0P_< zGrJ3?aK$V0H=&nvl{0Tul~r^gI5SQ3wi>$3b>fC=VVQG9@!N>Z5>ZTv%-kT}JyuAt z-h0?!y|=f?dapJybDg;NWxDm=^_kXtn`T?@_07%PDDJ)SmG#~QO|17Oe{H?DLi5Z^ zVv75sUFJbbJ6crq2?bzW+_WDMX3F}ZiR|A%rG&tCd>1&@nE}W4Q>X9 zzRTP$G*~>z+6EJ+WQJCg+u+#p%oNcEbyi#DzrDsP|99)G@@H99g1fL&e_7P?{>Zw%)-#pL!EX;6{W0p~<;JQne z#SG`WW-S$(%XZJQn4!C8*7rgM+pAjd9a25ZVzPDptoPopk#$a};As7+=Hm%_z{V({5 zFsEUb4`oXDzXJAYoVCGL=BoQTi;}?Pe}$gbEbBWv8CuyYYxe(*8UW1#6AW|Zer}ib z!~YGcWNeAhsYBL}GBo&h$*TT;Xl)HxZlfWNaJxrVkN?B&!BL%9>%mAV6)Br4luggV!HnO#Vs4g; zvs~Q2H0wI${q_HkRY2`ES-m_tN9MQ|J9lwv7Jj4E(bf}6cV%I=ciyPxeg9Xc!ti>(i zA&Zg@=YM+~;NvC;BOP)z3zK_tsdBDoZ573;H?uZUroR8n6TKNa%6&G=+4O`qX)L(n zFx+tQFl!*8-{Iik!*a^9&QR*U%hEv6qpUTQtzLbwGQ-M_Y>H-x6Z3za{Ia}?VpvmVfQhsd-fNhv#cE-03*^6zF$!Ys+ircm_`QVV9 zOo?f%0B4=EKT1SOD`l^zHLa`?FSqO+l(`EMNn+!xboGT6KH0Mf+l`=3-Ry^?H!bh7 zwCrVGc6HeYUkJ_a<&TQs$MKrxWa}v-HAbb5Ztf>Hq6}m(9HKx?@517O7s}CE1e#@cQX+_Fc4I zxN{=AqJ;nST=u-mcpdjByN3r}e}9*qEY**;$?5Nm*L4+h+DSN`{yBe2zdI{(@+t4i zB%xTL{X<{47@4yZpDgQWr6GrEdIGLXV$NPkKxJwUSIDchoavH)V{&q~N!R#BIUbUr zIn8s1N`L>_Cg%px#m?44!&#JNq*PF5U(HfJ(hFb zj%li?ant0foINzb`oaFwIjsnj3qTI|1;k2K)K%ErOF8(dt1CH{so(V+Qp!I>{01^^ z<&43E;V2c{e42y1*LiWx^PI~La&h*XoZ+@|vEH9KxYM2AaPeJEYf&x5F&B@2@Lz|x za+0-%C!3L=JtT*}L^FGS`V za=ocUq?YoB?&jPw!KQt3?hoZ^q(dpWq-4Nfor}FHxpqc8yOoif!HhlXS7c6&b7NuGSGoOdWScTK$(>B33x!Q{jfCI_ zkm*@_<`=B30!KUNMiTqS5csKk?(cS73|QMc_h|*W`17FLN22)S$Xtv@rJf9fM@gQP z7jwqs;zB1cx{l5Lo~Y{-HGr7yIdl&cW}t(cZe$)m(jCjv2ed#)?=nvn}a zH2s|1T|yrFMY%gg@yv3oXe(A)MH}{0?n0tG&Dq+7Tu)h^()GFDR*)O0E93?cd#a2G zC=VWG=jyiGor?n^FP_>%Gd$}R5+B`%Q+ z0p8cj`@uzSfDJ(iN$a64piGMEFXh#uxED@f(bc@u5`kVf@_wOe;ML7M4?+;jIDs?w^3F&Eetej> ziAq56D6b<~11+B9?UxADdY(r}tO+OtEi1Xybemtx&mR0XZw*!WH-F?EBnv;`L*7v2cH2D#BC}i8P{Ov>`1=5kI{3nvSeu>S$Z-dvl@%a~}Yi~pTCP%#1Pstx@ zkJrT+`6nssg`D$}lXv{Vw_*No4we>AZ)$1ro<+OA#ifO%Az(lcbcVnXBFp9 zCQt+fc9bl<>74xe6i9bsY+Dk<^vq30@t}Zwe_( zNortHW!8LIK4pQ4*Dc(fFBX_qEzf^rkJ?!HbN(U1z+*x42j?~Uq-B&Z2nW{X53@xo z#*%!>yTdO)V>jlvBUl$#E1+tQN-Uzc<}WLkLcZOWZ%47w632pBkhM4ekOQ*tI-F0K z4g%_e(!V4PjE9J0l5g6?)}P3y><{M{wx{w*Irn+xnWb_Qv^bYfnGA7^z320%5N%*Q zI9!%BF!E~t(*JG)kbf=zXY#XuxtZ@`huYtBC!ez1%Y_fWm+wRwma%eI*6o*uqoB!? zd?#;Y!6#y?KBC`Vl3d^mOF!l3plQs0Supay>qWAzuHbB2K*~MIxnX5DwzhVGC)+!@ zz=PdtqEWJ8_64OxGR%TEhK<;hPgv>)?5qh=KYi&^u$4w)JhX8wa3`9}Q1JCAxFmJf z*IosL9f@*>?@+mbl&+B5T3FSB-z5SH--3fw4gBa=Fo!bF=o3^hO^)AP>lWln?a)$D zK#1KK0x`H4SkR5o4uF;Yr5;U?k;D3TJZS+X6TEb96xrWm+vE03zrlXTS%q%HI}MIq%6QmI<^<`B3(g@ysJXnrQ@V!!T;PY3aNNsZ@Ragi9UXB5)3}ED zv6mIY!r;mFf~^$g{R_qcl)DNpQ}kqk!SVTMfjfi!^+RFv;et)&q2vLG)t@-0;kxmF zUrP%fm5T#Igh~w6QU%h^6_9eRSakzIR|-g9EU+RlL~vn?RsSDrZyg@h5%vu~8+RfE zNFWJX9Covo#i6)EY?GB_HOa=^1%f*TG8BhGp}1zCI20+aEn3{QIE9w)o^xiG^1RiD6n4a3b?+dsS)NQ9T=&qKm<$zUdo2rpq6&N()$op|Dbk>N)f z)JtZDJgpdLolex%LlgchQDcp`@Dn7x8XrE8FBHk#yvw@P(}Ih}WWUU-CYQ z8+%<*I30T(=7eilW_O%k0JAQ3njb!aP(N)^_%`B;gO`TaA!*Wz@B{{5#DWdsJv}L* zSiOsPxl?F%W>E@p$6t+y4$fz}k0@58>xovvF@ z^xHNOwc+neRiP0qD-fV#3u^QCHMi={5yY7Jq0jPd#5@N1BO6*(=Ll!Kv1deYLi*o* zBb-R;FesuGVL=oX;YWV=h>h69ats>R%hPw^!Bvk6B>0XcLc=I>3nC~eV``QQx;RNu z69=S5xWl6fF9bz)L>uy)l32)VAgU~)DH(suDtQeI7#RVJ^&wu5i%=4F8cdF8#G-_$?6!h-#Ycj<t2=_&7AoXq@jo85QMu;0Pj{DrMfrV!x2C=BehJXOU0oVI2 z;vI=9WIV&I&PR9>&9u7`;YhgXaxoZ1*LM+T zyn&K=9+7{OC-6CSBH@&XjaU#Id6MN+GLV82t6E2v3()QfrryZla@`k6+D0y7h;G*P zK{ZjuiAX21ncyh{imp#&6kaWg?8zc9(ilNwC$!^4WB{5aiDcQ<3@D}iVE4N;vW+9! zx!mM~YPFAKnQ#KuNL=0_(w&i=k+@6e$gOrf4IbShS=K;vG^oCfWV#oPYuun`WG1EI zhu)DBzg(>tV6-fw9@l;Dz{p(M{ky>|-6IaB)6mHJ3{yzbH~~FYMLOa4F_Ez>!G<7U zKoe}ERHFqgrBa7Y)dH-ZnR1I^`^*`lLU` zGIH^k2M1&wIb5ebZQ(lYcwS`p*BnCFu)tfedzB_UqUs4-A^^Nku$8JPQ1cK$*{#K;ON$`eWMDoNw zM2J>Ch-BXNO?KLSx4{pOd>HvBi!-kCjfzDc-pUYE{|VE`#sTzw8CeU#J)|}9;HQyr zh{W23sc=Hai%6EQ8Uzpn;6N4&g2qMsI2-*w64s1!gv8rNO=mD6z#5L1Iz;tg8E3i1 z^PQtE+3_??aEtnZm4@r?QSr<)y!48?NNKp{6E*+KX~4h=)0zZM1YWhG;QT{Q4SVWD zF&xKa14qXPi=Bx{iuUqE&`s0dJUrrnQ7?VBO;)}92SlBTto*~L$K!|il@9i@Dam&6@V|l;C`vynB#S_Ff z@Z6zMQyuwiXJr%|xWSdW#6}&brFY|^V5^^tjb@7tQ7|ZRr7cWRlU?}iq133_ z4t(}mW)#z%kzjNx^rSedF{-;MstvAP6xE-BZ(=tp3@~>bdFCGsiwcCJ-w4OG#zu{& z^sb+3lf$@aQPLWGg%gXS8c{ABmPRGBY$D>gsJ}6)F0QpHYC9_fh(jpCQR_T;F1qZC z8bMWf_OOlgRYz?q9CX^I!a8SdDtvRnrotVUY$_c8hfRg;u13wH>b`d?YP}~fhn3Hx zeiI9qv}vW%@#zDU>8(v7^Sz>h#u^~v57``NBf~J z;ZcEjV9n?jjGnJT^#K+EtP2jR9X*B0ZAVb_uaxGQ4WlzDCxOkP2hq}^R?%}T*=?GNs4jY&*54n;9*lN! z;nm*!SF73=orsR1?0Ebhy_;(0kBiYeX?FG1=(SXJ>9?czP}A&oH+mJHt-c@KgaXK( zM(?11cYGENdpJ2OzW6+PDy>lZS2WyDz?D{hi2jFB_uO3Wo?s=JU3NusA0^YdG1j9c zP?vp5Z`{*Y`G7^v!~B&IsJf<-VW}~Ow!0kAq$w?Y(9l3-HN$WzXspb_E9xp=+wm|P zf|ZG^Fgrq&>GnKKr$)-}z8nSvHMbd_`H*g=G7{AgDqHfi>y<5(Vk(xWZInzeZU7Ji zAk$taD>Y)=TC7}51$$kpL|-lujx+p0rer!%%SwnpitC_sLioLFO>FL@RJd|V!fSge zP0Z5X-T-WV#Q>$;jR$)ktu(SsxqwDBno|3=FMg#}wz5YvvRn9Lxn4P#WhAkIq0Kdw z9yrvbgu|MNd*EG(%4@ty;Pt6Wm?Lqe1?ftdBXQXtnabX@!n|DN0}sA*)^O!`S}Gf@ z)Y0s+@yaqrUbE19t@DP&+31FLXR1V{STIZCM`pA{^!@pj+`8*kH> zDA&=tQOlKYsrutL+Bn{_SviJQ7`k1#oaI%WHH?Lz1^bjM(H=uiZ!~?slI19O+e-;_ zRS@Hiryo!9?56S?z{Z+; z%6$Sz8$D3MBBL$%=|iO_`TIXllq+2!UGY}AhvhY!wc9RO@Ig77!3PjQz@Xs-2OvY~ z6!WqLqyt4U9*w_3KOzj~a?)O~2(62WxyJ%zn-|1wALxvX;Tb06nvp|~b{cGoaYhBI z80D8EV}UxRfJIKwt}mL<9KMBazX`|jd&b4Ec*1T|OacGWs7HLv1P2h%DPs(SCtv_N z#li-(tH9lpVm8=8-*1v*7Ja!05r@$)HKsAkzz2=>XoDp}f@Rq;VJwq94&lvnOFbNv z8>4dsJ~+>vRutp!Bv^#W;y#kz8Wm$t(t8tP49<`am>x5q{C+em23&FxuDKva!*CW0 z;l2mjx-2H3dPR(f8|@waz9PmC#V5zm1F;5fifPQK9v-}EMT|3c*&O2vHiCV(#SA5+ zoA$)?AnA&OF##mqcPyqON$tmZ`sFi})OJ8FviFlwxY%xy^y5JQ1HTq7(5|`MgUq{V-x7Z1kn$e!I zGr!7MZh6JN{Tgai2sUHY!mE5@;ld)$e$_Q&S$0r7)W1 z0s;glRIp6qkADq{eQ$@VUlsV{3-x1<@=l63e-jH2EQDWN)+~0B1D_SOj=jP=4{jie zJ;*YTw35&XT@ASHgR8<~i@!!a6lO=e*oBTf6FFUCpHL=pdfJ$1*E_Z;EzKGbdyul$ zZ%`~;JjikBKO`0oC*rbahsORv>;9sQg|Dn!>GarGc%jW@zg5R#nswL4E}+?Maj|Z+ z+3&{KT~toX5@VfN)^UB5Q$~KQAJ*o^=6#i%Fu=eYF`{RL^J4v~Uc>}qeQ9h4CHcni z*kGFV9b;qq`dAy&Q^&``XK0T9ffHjDPJDLev{(T(j^!wJFv|pi=k!QyXB6ic>xAbn zinXwFYJ*w6IJT(+ZxOeb#h#|D9a?R(h$(AhpHs@GZ?cuf;@BaSwQbvNrNei|`q8>S z?v3rhvRH#~iMt$$W!f-f711CB>%;tU^|4qNo;MV8oL6P_=~y`Fp3{!Ug;@CT&t)%M zv}KoFw%K>$l~}lOgR9Wunl-H9^EYD8QG`ABZJdvJ7<<@_uWNj50}Fj?%~rp&!R~rb zVSRDsKe2Rd!yqCC4Gj`i=UATcI2z_9t4>oIhNr1m zri2{K&U94*%f~gY@!@RMd`d%co@yMc9G2&+_A=ApTcR3EX;@jN8qZ3@rE(S1`cO^| zQ-`ZIQW~O0su;ex@TNU+l&UGSJ;aPv!6H%4FRqMNjbxO=QrC$pW)fCURuxbZ zXI5Lzt5}vfV$mhlb=rO7E9|4h;H#=TjHZx^P+JE-eD}Jl3fB6-j2chAsaom4yJ`P> zstK&-S$h8~X+l8L5Nv*=>Ol$H_E=R&3G4Zs-FH)7s2Vcci}aM#^N z!&onN8gLDDCuSOE`Kpan4mJGM%&|PImYV4lWlk550@dG98m0uPC$T#0-e5JmUyN&@ z9!_ZpYOH2{@)*!WJ&@%k5Xd2lTzFO&cND7i4ye`YrvB)SPz~E#e^dp+p&sg4j1N^& z*iNA~@?i((cT~d*UoJ}a>a2!0!d%w5s~V20=dwR{Q^RrfTsE`2`Y+n7q>s7|>|-Ip zb;&?=U52;&_|I^4jy=Z~E{aw&okR-|(Ksho-Gh>HD9*;rES-&+Sc8ojPm_(AU(D(d z+U!NLx*-Dx2)gf%Ca0^N(TlYHfp}%6`i(2k(3WB~)0S8pA`UB4!?G$)!25@(Ve1x` zy*W}{pJx5Xse@^@`y}-(nr$~t{X5MzoC$Ja^PJA;N`}eccW@fIA zM_g}+KHOIa;$~;mE1fA<7u8J1e1U^@Mpi^;6t5oQgq^Rd%c=O$P4#US2i@%z_bqyI zU+s^!SR&eB$vt&1mU$3?!2mPco#%4?E435D(U3?GtQm~1mZ}_(m$SwhZF%qNx2e0v zjykT&Uekt!NgFB#R5jIov4;j0BXhbR;-!J5?_74hujV0jgf+D^hiQfJbu=u-4Liv- z3whd+B1A)D>CFb3G#0xCFg?E2SW`vmo6t-H*Q0Y(N4L;eV`=SH8d%fFm5vo^d?~Xl zr5gAs$CZwhYnm{dwD*iV-nd0aO%OjqV0BlG6ALe#HFIFsztwD{3@z=Y`IQnmtdFLc za^X49R(fZUW~CR;#bT|-hlL9Wd0kN5;M+dvpXuoVc(76Ph8mY9QN#59^bFUInb}rWhQLUto&@5nK;@W9V4-_{?uD_(sh!mSuw+KM%KR zd{OXzO&c`vl*Spy{;a9T%nD$^MsRKvS-D$toh4>)G#y-`^2Y)DHB74kJ|e&!Q^zPd zkB(~YGm;aH<4$RYFvtW0B~SVOQPcC*FywbZQ_AzF9z^EV-W_9`~g((Yrh zE<~^~U@xJ;qe&yJRZM?2*1}?Zj>{e2*tkq@X5+F+3mcbDTH1tjsI@knnM>i!J1%&R zSPLr(I0hZ%RtEo+YpYoqL|Mt?kNU$u?LFuymybKJ`%Bh=oRu;rZ{i zff&deO`}KMH`DZ{X)Ow2N#d|Vh8Kktqgf2nvut3tXh>O^{+iD4`kEsX1n z*Ji{qeI_T35j1u}gRmek{p=Bt_*?}YWe95gB3k;Uq)Fv0lGY4J*y zSV9mm5b}s&6hI%lA38UF5X(1zK#1b*)4=VQ#hVynF$RPHM#j}Re{+0d6E^*;QOX}| zs(&4y&QI@FUWt!o()#Q8e7yQrJkw&@lcaHryYUT~6iynyco2V#Ws=49YTL$`rtZUM{>f{mv-H>|Fy6Eo645rB{oh5?RfZxG%b ztgFx5SlLupU6&;=5$-Fx>b%g}y87>Mo9?>XOkw%oFwW?4h=&tiGe{T3vLlXD$dvc- z&Uk`W=glz0bK*n<0Re&wZfVjfSk4*b2pQ}E2oJM#&6zEOLztVRYr!H|(Q#ck?pLlG z$1v0((in}~r1QcF<8@&y{`nC>G(~r|F@u3w5m=^=(3ZZ~xLmEvVHx=Vp#=Z4O}COo zdtBq_ojMUqSmYW@_v)C&AFlC)eL5%Ro;&}lW7@vM^}O=1E`p(F42|bAjC@#dN;jXS zzmsQm2@L%azbL`C&gnuJI^`R$yQCY<Q}gH*`$<%z@nq6w>^*2ma@Q zPR8g7JOZj)OILw=Jl1Vx7;3TTmF|0%5f0kL;n)wly(}Xf$NjG6w`-s-1&#suP+fg0 zV=Rq8Rv0IKg!{dz-o!G(SxIt6F|m$y(UigY4rql|r@`Ij`X3m>97mip&hDu1$1>J& zBz3NO?uz^O)3;`}5rTk?;_n943Ib? zr_{qUe{Iy^r#n9Ao53w~sP!m2Ulcz&(Ge}!u6IR_ar!8Rk*&c%%NFU_u9a)qBh!@xh>4FB|GBiLH7Y5T81bCFbm$P6G`Y=(y>}w%|ar9)p znI+HyLmw#%#;M=wpV$FWni+bQtK)2FctMqZ^#1`pzkjb^M(C-SqhIv(LOL~9zwZBl zDDgu5SwfWSV*QG*C(5`)&oo5ZWKC=;7#A<&CDnL^p5amg^uN%uSLzM_2a+1KM!%X! zO1fUZ`0FJ#c7xtbocL+AzBkK52ghTEqp=~%xTtqVt(}JW;al7F`aqzNJ6%tGPCty9 zYXXb`Sm+8QF1)Ev2It0}5A|mSkluKtPjG{@-y6NFBczdk>z@%;dJ7C=NWGIT2DpT6 z51!*@kO4XPbYnw^C#26sh8ZA0JXT_ec7pU;JHs^cJGY}Dn&2Gm#{bs!Fzh718}#Gr z;{k@TF7Uf+6#w_LN`sQLZxd%oBK^+P8xA@^s!K4yk)3;R(4U9x$}_w~DyNWy5r45%UogfH44fA#y9fW8mZ)dC#CC{H=Rp2qJPg z{=(ou_&f84mxtw@VK*snB`|XG+huRuPJWlU^1ppOj6ag!TYQZ3hZ_8i$g8e`;>z@kjE`Q}gf#z2`p zfbqUq@SAbm*YMa1&p&T$MttDlHJ;XaH;g|L8hbo4<`Z3Re`Xv)bXnss<5b{n(?U}h z!s2x&6UQQUF>#`q=w=#6%Io-;z9pui_A}Kb%?s+7+L7NI0!3Sna-qwh{G$jp2@VD<%!OQiDQyXJ&B<% z$Tc-3R30objVIcO7;Xw;G`u(@m|)r^m_v^7?TxzZ4S{V!6HRj&{EM5!&OKrdK=mh> zU6$6IWMY}73-+7LsBF5)3At*-HSxa5riLtbWrbmRtpjb#k=I-kovJ>YVVdHIj=xFr zLDOcN4l_uG0Ac_PXR%=`HNm*;0@DXOo{-Kzm{u_oLO2V?KQA`*`Z{WkFEu@-)SOsu zTK-kk^j>Ky{W@xfj?$XNq z!i^`YhunP6gU@#EZtl^Tkv`OAg{eO7kYt|a#uND<+gzLF{RKxP2ljKJ*@bH4bh#Ox z&^amhA89UUw3q~RW#t`s$Ku%p6mmo2jnM@26(645@$<|~hsto|a+mkzoVFuo28OT3j$2 z@!(_Tc1&XgG)B$z@9TKj&Lb{=6LIx>s+%MrfkPyZL66%q^pBbExN6Py}CcG!*y_E@*$?tROgbC!g zDJ~&^)GOB~1UW%EH!)$d8>FqX6F#_*v?QT5NmU~fCX)L1MkQP(^$(0o&=8y^lM}+p z-wRQ~O_s%6AOQ=Sa`}2alzJ+`8BO+2^22RbC7id3w%*}{SxiC43XB2xXF_VT-xFpK zQSG>z5KLISd_Um{DL?uop%qF0dY*s@YwKSpoFw%|2ogDwzI06FL^{SLkrU|>_rx)z zejD$^+N6F@zr;lHdrj>`PNW?I6Q2=LwGB!fMaruiB<>@4B`p&_aH%vA9zKrXA@al% zByFfj+)UDo?Gm?>^!pBpCrO&zDRCo7>vu`4Ch6~8`M=NjHt`9ef8@Z#df%{l!T$;f zJ}5Fbai(Age@wnKFL6HutZib9)%l4oOe))NYK;CFSJDtYU1179X-!?c(2oU)KIqKo zz$i3Z2$wa(>*4@3y)1E#Ul{E{%4vx#r_kCU zF)+#We#eGD#1x6&qr{hXK+m&Ti7dhVf1%~fNi1WT^n3y%uXJ^#5Y;>i3Cm*xxT{$Nzz_2o_2?mEeM5 z2taODLA9@+ROt>B?`)X_vG*#z)Fw$q1QaGtIzxVY%9HvNLBw`X;so@xXA%)mb>AdJ zs?8jjLs9(p zbcpI_%+2xhkyy8%(0*S4rk z3StQ{pJ008`(u*!_zM2Qt7a!17eHD%H)%CVTg^{`_soCcCkv9sG=#KZZxYNC{=x(H zB~5UG^upn!&Owj{-b;e-2!G*Q_mkE-LR$4S3Ep@Ag~PL}r!CX2Yn^SWAgQW2zex3C;-&cST!VOh-}0-lEYeJpT( zGG_|6`&n2fryLET11wLOX*f670(*-&8dim~%i&#wr9RVxcd8}*<2&yTa5bl|gF zCtG0qGFNxXRLg58K09-!bR*?O~IVOdK{ ze_3gH?#@>@xY>rF-fEdnX%OtTz&WfO!uWlbT`VIU*ux++MF#WI8tNi7Zg#UbIB4#Mb-X>WhO1XdDqg5vee;` zC4`wJVd!labVURQNUUy~0tZOEuvFFH?PQ02axtUv4?>^7I&m!BbV}}7gJ-FItz@f4 zz3L<{qiQ@5kZd)jyt>I&Q&I#af1o_~X_V|vv!-S?gs>LLa0xais#h(O-%wF~2u*%P z<>M5V42R-y6;3OXb7_T`F1FHdx+RZu+3*L1}ayS)y>P8!TU8-$@ ze~WE`U$(_2_~flN!58ng2_EgYAy^LD1mEnCP4J?VHo=GeW)rdFx#UzT_{u+QrGu{~ zkEDXXeb0uw<$+D`1&@;RsNg?@q*w)ira?*(6@1(`Db-&ico#JPhgUW5%C;#(eR+3& z({F&# zT_Gnn#p()jb&Ay$dg)WFu3$*8A;^+atgi6Fl45m*zcW*;uHcZLVs(X+1u0fnh%UF4 zHXfGpl5;U%+;VgZ9FWTqxnpcf7pkWk(`>z6pPpiMkcCw#RtE|B)uyKxhf#n`t6hk=+e!hemL!1%4|OD;@~SOjd+VfLvN+9e3K@wf&u$4>g7duQ?e+-f8S5} zgPQBZKW+T%ex3r`GB}BZzO#w!!~2vSG%6jlORYs2e(98|V0l>pL=8kRAHE`Z$$xc! zx}ko{D&N$vo8wQBrNSAB)ps1xk&UIUDC2SKX2`=Y)xt1G?%F>!0=@G~z0TUUZ*^%P zF7Z$Oi)C=(d#{tq@^%l}4(Fc~)Pbo(TtUFA8>Jp(V`Cf^HA!vF$iX-q&@A=59T4!m zMJmgZVBlmN*0xGz`Yz5ju4^omij9p;8#WJN>&vJ z+oz^8t01;h>IFi8v}@`bRs!aCOJ%z2hLeD?N9xanfRNs)Kd}-}*@sC57zpsQhrS~R zrOy8HzHx)WslhBGBggk&;i)eO-%p}aH-CBGy!GgnsRNh^u&7gy5dsu(sVwVcI3^ax zr*3DNbNl3`=I}#Vt;E!HH=u%hM>Z=fwI_omV}P6AO7Ie|TbL@U59y8FsV|%$J$En_ zUXs1U%MPU;BWeDTR2NcSaVix)lD))3&!nnYhGXD85?NZp+nODh)0|P8wrPGi<#K9V z4J#v8AEwS_V1#J(Bd{lK`!sbTp?CYM)b@^$zI~UfCBKz+Y3CqtW06N%Tk>1yn|6-y z)2?P3eDr$>@7mIikaSz^G>-oX0epGax@nt8`RjUVzY)A+4bxx+<4e4_aoQ=8=6{pM z$)!)Tw9YJQ<;Y*-cq4$53kJCeJgp+>-XU!%vq-F%o)~pb8%bCW>Y2ugB&J^)Cz8!W z(&mC4;V3oF@;6$Z<%@A?`w44{bZNhmG{wM|H!!8GA-_+W(>f45uhg{P$?w}~X{Sm0 za|WMI%1YBShyph#OoMf@)UMx^rj2Ca9j~iM`;8DcW;D<2FB8&ck>7FCc)dwyr2RpN zt%>;G_h+VcXR+rYm($`=Mdwssv`1N^E`GQ$?UBtVAFoVfy2IUui8rlDt0GkQujaWJ zvo-C2KSRg^#2nt&oKK}0U97^bxRADhMYsU>hLF|wCQsI=dugj#c7kz6FMO5ehJSgJ z=1|*8*5w-M|1glnhX4*P*)M$wm=N}0ETUt4U8J0vKXU zwCK%XJ(0)%{=Oi+9{F8e&etD1jPEzBGJPAV|8hh+ zETevj=S)i9$neDj51XEToU|V@FMS%z=mza8@ytc(C%gb8Xv0BJXbGg|nhM zy%S;j{mw3zGbU9(}&qL{6P+omJ9X^YI49@Vp7XHS|rp-BC7O&5z zXOrs5*Z6MQ-{8Bsf0LKR(%b0=2yFUYzC8GT`cLHd!3XJo5ZtAIrsuJ|*5r(CZCq+S zyz^~(M>2^g11RccmjNp)t5XAUC;N0E^UC0CthILr zXJb!&GJ27}htnA>#0ajL>;s&OZV^4Crla zh88_(nHj_Yz}ZVhXl8x>QGZjb%uR42D$z)>D3jS#0B{mZRIyUi46l%8=26oK4a*$& z6`VE0F^bG*%u3qTK63^o#M~*9WmW4(rY3jJY{fF~;;cp3JM)b@YPm1UA9sw%%x4xa z;P~S9(U}Wt@TT|3oEZW)3lS>}%E&wmFTP0DzA&>5&2}4>Iob|QsUPKwFIHwAq;9iu zY-R<`_L!WR;>M~W;mk}&+;UbX9302-*7V0rrkgi8DRW@cmu3C}*RT*Sl5l2S%G-=x znLkoz>whHE*@v%Syi9oG>b}2{d5JX+ppc1~PDt7%uP#ozllj((XQkwECewx+junEq zG~jurCr90;7FlfKSp8A;qS>tQ4=^zxrSQCPmG|w7mFL=l=lbG8& zi+S9PZIi{cv&WFt3LV$yIHBS(i8b+@wpsV=QGAx8FGk|5=K@r5)6NIamS%0WsMncHLPe-hCl=~ty09>VT%i}6B?gnofB;U#1y|&~ueAgIp>NhM zCyrK>GbC#igUSHVfF}*j`jaK5agF^Vv$pX>AD88A&xqkNWhP|}WEM$yO4e>Fk|ya{ zEQ2qn-98yv?#wjY&B}s%IEXaRFS%JPx4UyR+|SEm+ipW_dun0U3ra&(Nfyhp9FB(l zrCEJg0y;GAVOv*=7mUb?aznGPIQnDv$yrYreXa+Fg}Rqqcr(+?%8GO4vqyi(s^!UN zU#!jQ-<;15xsY{~R%m-OtE(elI_zFn9~$K@KFV_DC4`?p$#R0x`H{UZc7K+oWO?2I zhC3tgH(5UDujiHk{P*juwf-E(sORe}cuq8B1>z^3*-Uph{tNrJ{vNp8J3Gh=O_4xU zUmcv?fe(cEUE}NoFP_P4arVX9d^WCMHe4>kIp&`OvVWvfSQc(8Z5NddHzjfv8mhC; zP}w-^vWxBbfn&NMdl#)>O3Jp%5vOJU#Cti;%*yV>wB5;&)f&Z(%C61rQN;56Y`Bzy zvytVc+0iUhJdjgs42X}ZNVF5Pr%}@Fre)Wo*|syYTT(WY=VXs!RCa4TXi@fJcb;IE z)!7#rjk+}goIsS3Q^N`C)@IkIM1Hp^8$OkDYN@j=dkZbSzB_w64YOY&Sr38EVz|D*MaA7!@cYvhIoht53_etFFg4&yNVK2@GiTl z6B5pG@)f*7Q|}lgX!W~nZxpxE*akPY%Q;HbW9OVx$*3L?>X!Y`>7KY(x15GFju!Q`(cfUOjsBP@8~rO(IR_Ywhe(T?iatk+ zcMa~1o*ru%iaHo`m}kV7PZqeNr;o}Vk=KcqHBd%=qBm}4%9+jJchdw@{jqC8PK-cs z2pbY}9yzn|Z#ee6#quIRljY8X?4(v?!@lo?rV3^VuKe051h! z^~_Cj;Rr{uwQ^Y=o&Y8XPpX~EbSVhexVmmGT>V8vin;{nPGd9e99$5RdzZmRFwk(D zc0ZLsXaCgOrB0-?GzC*gf|egC+91 z_|P*K?r!6}VOXEsDpomc>znJrEQizqx$`Iu^#-%sq;^Q|GG-c9MCATJX^4x?UBD`b z#md}0%(`$_*&@>n4ZAK*XmfvIra__0t)ghk0qaD<}=Ind~+>CoA_A%PbmVR1})u)WHQQIy(7bNm1@CZ*Ine+l*VaCba6y%5gIJ6upR-w<0+*mqY+IZhq zTKO>7&x7w`>6_di_zIg;c`a&Cern`pP-<%X=4ohlWX-&REW49I=HY19z{@T;u3_F7 zM_z&No8~oQ96EV0lx}eJ#G6~@B~t-N+UEUAh2oqvfYJl~J=1~L0ZV`E#9eIVEj>)rH;Cxk{ z)dDj#c~%ST6qjeUz#v^-47HTe33*ogfz99Ds3BBm|`Pp-pBt7ujTX zY;m4|dhONKHkqwlYm-^&dYjDpZM4a(MRnd}DxE{yZMZ+|%(Ff}WbMxTo-;0A9JDvj zoz_(x%JZg@j6IgOgJzqb&O1$s^t_Pw7p+_8dfr~j#lu^9@J*469Ce=L862wKH1@?4 zpXW(g)~a>&%}+)rYPa-5Q_j{If|j`C`=PV0`PICeEpW@<&C`OieDWFA2VlV8L+P$r zEB_+zVbyi=6R2qx1m!cm;Q`!eRKI<$KT3_xcfmUv<->bEVo`WP^ZYt2q2UumFFdGq z{u@fTQk4Iik{d72mr~{Y*fHPg9m6~4FQ65~J@Wl&Hl}ZWIfHi~L3Dl&0*3rB9M;~$ zp6BX*c>ZmMxc~;RENWOIRQWZXIAd9^%m0>g@lQg&6Q$QbHNOVSyJ#*z4@|lRLqe33 z1KymO-+*z(5RR-c7IZp0e=pDaik$pwEN`^oWk7$FQRw7{RxR%vfLd-J>W2pCox0#L zW%=t^6!QsS2);Wa|GofTey#1`R}%^${MeOBygXvuWY{H+=J4H?vp ztT1iS)e^v?ooM8aW1%9ns4TyL7bG{m{u)cUc!(T}!uuUnp+pKDN65^tIJp+TT_; zX<)%NT2~fntNSv_R(GD#RyRJj;5;3I`sxdqZrlb~75LAeDDXm(Ih!Bhq-#-QV6EZ4k#w2g#mHru#SWwVXTGYg(j+qk^8KuoD@P;Ha- zRcw>>*ey0$_uE>4F~}&|1GnKG^eIL4qBh9eJT(xjmol@<%}mL!`5I(;s!Z zR>1I@-rBx3nsVSy0IKL};TNo8Sg?AKCk^$!UBK{a@&82*#+7#p{$vP}pFq_`6-&A} zpe>e&HdykgK+Z76eu`IhsW1V@KPi9}T=KL={!0(Pf{#R;rY;EzGo1LW#--4i*Wc1y zk3u)Ta8#{A4@W-xL*2qV9_&_fL2&C|XH3;=QONv>t89BAtW;}R2)mrzOT73kvyEC7 zn!cPibZuZ^5b};FY>j4HlDyCiA)HXd9nJ@Lx5s@I-YO4r^iJzSmVF@qKV-2i2DLKR znLm%}cTpicMqX`K+Xs2d3YUEacN}1?s^V6zSSK%hz!1G`9QNW5AC+`1yzU7G!fm;0 zIj9gZxDbblL7C4zIWBQceW9y2pKX&>IM|)fPA)BkHCRLpSXo}Eaptr8N7+gzk13Qm z@ug=b73yp7*;Gw3pcPh___@ZF&scO zRN%SV;eYSOF!DfDag%iJAu84!d#|z=3H-W+7rwidA2rhg3Y~dJ&i4lQ}v#mhm zPj*bWRH*TWE3HcX@%e{^FBpu|hU$frpA@$6;7R=PUEv^J{F|JLO8Fd~?oi}Fvp=~M z#nP%Z{fkyR@~ut>7JA+S+%>(%Cm>xxNC<#}p z=~c9kX2pGqrqH@)1{JAj$6X?dy0g3^2HEvO^>d2-Fq}LT;=+jxC8&!0(1KM(fjGlh z^p5WVl_V9he7&`GK#n%zk01KMQuG}h6G61!GpA@B6_QI)(Lu`BwThyZw8Fe`MF%M3 zc@v6GyYS6oXB5FR0f*3ZPLYfXH0_5X*rmdiZeLb(iDixbC*J#$U_F0IhWDl-=6NYM z(l6Lk?1DV2i*7SG%&>z+{c#2^y2KKVNMi(z;pFw7i>9;np2_$U(ru?K){*z3Z?@kpj{!}e7I;9={x*b5yJ;`+~9c836^&P zf(Jzg{$2;o%Kq)}so#ob`T!N&6r=oZ(GUh%V!-U?Bv_BT|5;SW1yar1A{DTPx4Z*a zgfv-D4EtKw<8SSY&ynBtT#GM}^sN_Pe$u=6ENQ>AcJV}aNTrR6VV~@J?9!wd_Asu; z_?zOcr2MU@81}iY$9u%ZGe~=-g0I)IJzwuahvL1Y|9L%%C$U6*(93|TkP5P*p-y|cc;ac=;v0mAd`mGWqbXU%oQxjk6nha~-W3+dfiGZHS+SJ- zo?2P_C;44DrZ~+F(r4fCyzZOM^O{pt49AzR$2}MDFgrmuNU+oPoW^n~A2+kzHm1ZM30J`}z`Kr^b?DwhIO@FP zrc!@Yan$ULcDa}68KPi=qj$bRQ%04vYTuV$bQ@z|0AnQ7PI)g4ds751cq)YG1NdS$4C0(EX?l z&3;(&vw+K)AD7%~!sX&?mbT*5i01~B{=>Ie*{JjvzTU7VrJMO&-=?KkoVXV4+LUU! zoSkVb^4XswK_?!Tc;hFM(q1fEO|4vst45dk;uGCVM}LiMI1~gZPUxTK7Jux~s}%0x z;$+i)aA^k5>9)wypLtG4$CWPTmE6Hl`iB2&kEGI6caGD&Ii*xylk!RheA$9wrIVex zzjhg0ih0?%j4$2B=gv+jZN>l9cY5h^7p~sXIi+bVivT#mfS=zJ-1~TlA$qi-^sBW~L{HNy ze9(=Zr7X{GRwx8eDlRHT>@L-QEoVGZ$}gpx?Re^>2TH$Z2u+_*hbs=22L9hr7IC3)xIfB=H-Ad{8f6`fiJE8PzsYFuI?y78BB(_tkk~j5p5=RFZ-F6 z{^L=W;lWoZ53rT?ty|W_k1wrgQ)UGlEVO}r5S78qio@L|F55$KC$}$yGi|w2eMehe zpU!2w;ld6=`i(wikxqQJ&)~8@SYGY_TTpVe;6Q0jbTOsB7{8Ax8~e3_r+Dzxs>LJK zW$}Ji>Hn2pW}?#1D6q++OOcJoC&e~-tSl{iPvx;?WSLbx(lKRL_4rJ*AzYheLzpt9 z>>zEHG}ERC$*i&}*lbf1Vk$&K4nUvDtdA6(<)s*RCnF}o~yI$7I=PToY96cR=!y6l3lv%!BUmR5O ztFkVRR#okKSGJb&J4{dx-}pJNZg!T01Tq#myBT<*XiQ~aPyd7Fl4ZSNo-+`>?PSHNc*naYpAcUmZ|&M3bFpK;0G z-{h5BocU~aS@}~3G~Pd$oOeqEDrA6x^Smowc|e*PRPn|EQgg$Ki_VaCYf<6t4r#cw z!rKv2W4ns|q`YOfieKy@ecGeKh17rBr=lN8dkn1DMC!c@uXsTIekZ!Zj+Eb5RlMhZ z$5p%_zb_dp-jLsC6D#UELHcJ}1uQm$@{9^upx_$MQ|$PPJzvff^6B(_ZM1fFMGds# z5}bNdHlZR}a1Gy|P!a4X*u|OTv?sqi<5u5QbYM9Wo4}6-c)WJ@u-e{&Dh?4Xuv_Mf zU#%F{h!v7h?2UHbggv4~n}!`2i8lT`yACREKRf_!Z9lvPy47KLFmmlMyb;>AZFVD6 zXY1@>)T+bqCMcuh@DS9$1Jv8Jb#{M-W@n=}`J-B$hCg&SBWw z8{Bv*I3m{Uo?RPt?FgLD`*wIBYTSKzU9_kh{O7x8b}dxv+u=dzJgG8b?`(fGMwwZrmr0}|85$NmbxeK5=V}RDrq;n% zONP&Nt1nZ?C1R;g94gj@N%SV2!eEf=&3Z|wNvM;WWT6~l$Y*LHk<;b?tQj+Wyjy*< zTp^SiBsz)FWRwU)4LVtvOem8Zg*u(V5UQYnpQ*(I9-Kx1;fNinNn{d>#3BF`OY~-i zPO6aU4HC27Xw;i|op?AhEq zM50ibm%wm%mXTDpR?hs-WE5Zz+a=l077NWnnc1X6g0nMfR;P?O zC#e6KUS+7`{K|o!>lIB68Ye^-=2yB0i^4(`dQn)IB+LX_HR;S^BiNcqrc=mdIz2ks zb!JU0oVQr*5F82?2=da2#UhDBXi|vudYN2k2or%}8bguj@XR`R!MSlu1tAil*(3pD z(;I{eiCk&~mynpkLS?crqroJTVF2AB2oZm#>vfH*L?Qam^xE|hg7Ectx(7PCtTH4- zBs1v4qzZ*m26k>Riu6F80qk92mJ7vFITl?z4>}10%azLIGO1oFl8EI7g#rF1GwOuo zBr1s!ts6SR%8FcM5K5#H@JO>zLNX9Npt?dP(i^0rP$bwowhqo{HWRr1@2(X{bmF`y z_%l6EZ97hmF0QL=+*;8_l-#Xtwx(feX{-7T4U#a4SSK_Y%wZr=VHh~D3?yuj%jF`m z!iapXSJuSw>!xcQg8nnUp<$zD`r}>K#*Gz}e@07&hR|=H!7*_I26gYzKkhRYs`#|_ zXT+v&sA+|MDW6d*_`exLYm=(JK^gC=97FUX5(h&=!(=8fKb;huT5b~SrDBCtYETHN zW);#fh(i)^Ons=tBs1z2CWX+b(@BN$FtJR57dGU)O(+82H7dkl!xFPmtTQXjX1z|N zH;P0;nFKFd%FbTzS z2z7GMsu2!-6YJ$dk;E7#H5ie1=D2`r_i;Z$O!-W|5G}+(|Jfs2msBN3z0XuOYbBQc z%eP>t)|vID*#0;xreMT?RPhBPSzl~A$Y3=`( zm)S%dYsTmiwL(6_6&m)c5+;_!vml&@N)@z*fP|!^n%Rblhkkd$nw%)9C4VK7BNPsvlg|Sv43)LH89w#)z z)JG5WpsDKf{`hLvVy#0xutYNuWH3s^VzEvll_~Tv=86^OFsbg}Bbgp}G#L$YAIJ{YG7=9{W^RL9j5%5%mnI3sAKGPu*Gyxae{Hn5XE3y1vE+!9? z%OvtJm?J?fFhJ0N@Fdskq*AF~Y?MoB==t&Le7s=t4zONhqAqX%ZS?_yl_- z4^d*7TmjEKdJ`Vfeg@d4LIyJ|i9sjT!7M&Z4B=lYg-Mv$V1}nJoe+W5StnU07&?Sf zkwFIYW(iE!b!M1kg~=6Wm^Ow=jktmPsvUyh|Lzvms2CCY*-k+xBGkxxM8go`O<_8d z(QFI@`H5htl8a%6s+US&z!Dm;;4Wc892RC0%ViK9VWuDlb2Wz=WMQFFZu$kY4#9@= zy9B{9k=Y~@8R3ZyrW0~g7z|}*GdxuqjG!DThRHjO!=LF;hNWvpT?6Xwx@J05 z8&(C3cdx4iQDjsk%*+9iG++h<17#NDt{K+|(oHh3=CtY>|DRJ;(=@$Ub=Uhm_x}FR zZ68NZg|2g|PI|-leZS>*`+l)xvv?Q@cp-sY;_YJbY%Y~R8cZ1(gdyEzse<$*b^VDXObneN;aL)P_EF0V+I46DaWeLl7tTL%F@nG7C~%DWpbvWCbMdcg&z%$ zO@-d&|5-C>r&b6A#ek}_qTQZTj*Dahszo|c#O-@d*)76gLYJn-9QwMI%p{QQRLwMW z>=s!i=?=|sPR(Qylu#REI{JMAy_p%OTi6OL)3Rp_Z+JWuMyTN(vX<0gP+<_B4FlZ> zjRzfDaTT#>Kz-iG^sg^21zlAv)TTtjDw=RYk823HDfGTUS|RKx!DNs&qwoqsoFa3qbu zfn_XiAdkk>csgw*4Gd064U>SDq0V7aCS>EpG?BvisPc+fc9Qgi#S2-wW@^TLp*kAI zCM?C-jA|jvBAqk-JmmQEzM$TJZr?VI?|k?r9A04ZL)(~h=*}R zkwgOP8wz-wb28lcf9Z9|BMHMqia{n!#4zGXF-KRW@-0g z-94U?`ZjWke4(svT4n+*9JPd*C~X5ZN!A+;3q6*SM9e}Vk0(tfhrotn8Mlvn3DGMW zP$`x%DOCm3CoKc2n11P$J`rs1ma1p91eO^FCEGB67%kB%u`2SFADY(PHE$$Y08nML zn30U3cqNi%8bb``Lkvr)oV3^$#oH8HvVkc_O`>YY*vD9Oa)|8ge5#%jk3ZSi3nRy^ zp>ROuRcx_xx$vo2O#J%Fgb)*%YI>qpE!o6W_GHu4vZ|tFV#vD*nxJVpLq3in)U1Q~ zo6X%#%(Wl-b`RRbj{A}n#e4>(zT@490)C$?=Lv{C!~QSj>R?f`E)jZ1R2_eP_lohp zV!W>y@5|jwWmC0cy!YG%72|!ycwgpJsTl7o#`}Nu7*ve+k&5xYV!W>y?|r=m732L5 z-iV6vzGA$`FIF+$ZwFabjQ3?OgNpIKV!YqMu~KHLs2J~e>N2Pp?<>apf5p82|I&EB z_T=RU*54{o-K*PdFcKbJz9zp!{_cQhKK*&`qpVzUiE8|DG})tDL$pGcy{g5 zj#Iywb`^hD^EcK0V%jwqYoWi}XFYsP%a>YgTPBhJN7Td#Dp0@`g8c_IqJb`!m>~rx zRxG32i=V%LoCMiqfNf>si5N~ekOOH6%fZ!xPb-nk##~^%>kQ9o8BprPB!H6wij+-e z!A@i~E0@fs@Qb@XCkOm*_|~jxqIP86v4K^8e$*UAyfCt^18^zoq3x+SDECY%186X# zgVD3HS~e5Uxh}iW=Snm$5eWeQ381jdn32U5iQ5*?mvnkrN$`l{rCV8UR-C{Ko+3m* zRnqvWV?d^$bJjuQ3+|Ghu3JLUfSNtO9S$?UT3yV^nj`A^*H|<@4%muM2&CYV=fJ5NaiBiH%3{F8=@cA_bc-GX(j`(iOzUAUT0HGe{PtERrK-Rt zlbKXZBZ5FzO^}#b;xiO8o05Pu-qx>5`q*(j230zv24MA!iBsB&mv5dnWLQEkagKxB z0%n^{r~sy8X4Xsqxi+!@PQcqinC(H-62J;Gu^6zYln$~>2gnAjFpX!}NSGR^*QHlB z1Cs-~$J)^c7ceZ-JKi1e$xP|7yZIwg9SwLZMWh~@vsaA-zsBN#M*t53X#~ub$%2*F z06Uu8(sjCrIf=y7Ts)&{;5ZaUT^e9$LWx`W&rQCPLMO<`2p5+OV#p-+CczUlqLzTJ zXEpGzjDjSwY!M&;?Z-mZ|F;1{-JsILm>~#H-JU z)4`Dd>SSPOCW;6Dwj*)kk#Z1E@Bn>Dz zp=fDf*hFLCd3VEVy8QGOKJkF6ohTvP@P3tws@JYG#R(VJ4XHJ>9RQO#1!!%Cc?GNt z*eS0DWYq)|qvvvFCTpk0OGph%84xrLe2*R@$c;|{o6Lds;r102u9 z(FkJGiSyI(&`S(~nDh{@?;=kK1oXWZzS`8aK;Z=aI3DSvWn1&!IiSU!rIXa_s(UsM!J2%`Z z5jTES%Gsuc{VR0$vInQv4T;bs23a~w)B-Cyp$P_?GqH4W12j$2u+^WgWKa^%Cc`w? zTLGOA9h6KMxon2DfIZrbSrRMW%O1V^^4o|{NC0?cJm(B8mR54aM1uGr(olj$V`&?x zI4ed#ts(?;I_zJmI4->0+0ELBwW4m1VM(K8H%l4`i-j$vfScq~0;ko$Bhdxf9Fc9! zyBSd?iVq{00$KvG5$xyO(@i5pl0MA@&-oVfW`HZcD>#mxU` zU<13Yu5*N8Z-G!_Ka~@KC68^49VwTJA&(Gd;sXAGL&lSA3MRM5vPPUJFM{kWghY** zlXHQG3gG~N5jBFX!0#pr31JB9Oj#YIulnPIWb~YT{J?# zU6!3QqacbB87il}5l7CpbfQ6H-bx>4OC5m{9@O3h5koW+CH8ch|0pCtcD4W-9p&H*h-A&lPN&?cqX74)Y!MY)PgRw8c zbLEUUC@DrlM&bbpnII60l^0+j0UsFewk0pF@*&+>nrl6W=r52SilLp4jt8UR6y07=#n!V6jVVxCwG ztc^jc5|hC?k+F!|&Bj6drvM%zW5ry!q$?MiGGv{YQB(&2y*Yv@!Nnm_0Ik(6%Mmu+ zX%$ejBKp_V9TyF#SrOw~Ojm{y$f_p29g6@|&7u(oQ=R#R6p};BKsqE)3yicYUafrX zO4Kmb%4DQ6X{kh+C$v;Dn~jJC1GW3 zFaA29Rw-G9L0|e*DAx#0Jn(AWfC#D22Ar)&##Tw!mVk*{yEzN+KzTKkT#uDhj86i1{XbCi&KBumDx7>+lclyEx6bX=>N z>gLxByvs>msr-1|sXs(W!9ngVlGk7=j*$r}L8=A(4>A!29#0ZkIf)VRp#!;4FwT)1 z0W&_9ZLFdsWgur1*av~Hf^3j|mR}d@M}h&eW#MDP`b_SWq@~8m=|nB@q$-Hbu69kP z0riqTV$k$s!v6J&F0Wmwl74r3`*4=9WxNGhvW7_47$1g+@GRI2U?z$oUfFNCli`ar zh+0CEsmDm%Kz1{7Tg6f&LLi40j@a}B$Kr)T{lxe zFK9CP7){Gk3=M}!T6UG^u?!fmrAU>4o+-0<;y?W5!T2wc=zs-$KAFCKMF@B+>3tp| zR{qDj1I4(0(~qo7vC0(lo!ONs=B-M%IkMYooF*0A%C_#MD$&tF}~+J|Ozu=jpq z#(~MGmLe4~sTaZakt12AG64#i%Hht$feX&i-P!~1a<=wkf0*$BnXVBG@P&dk1uK_k z3*dl7k0hOJb#Zn@C#8ANT{chr8=1XjDkL(`0=$sW7oDW7IhBN08ab;;+nDh(dk5X+ zH1D2nGgq`Hz6UfOq73QA*`Pr1siv7p1J%Td8zc9c`^3PzoF|To%)GCC6p#T3KFu`K zNJkmGx>=BQfOz6~>CBi+3+3c+54y{F;v0L(CtBo!j*$^sB>^A_;mFaOlv^ozc*!?I zwkzj}k$}4z+s^E5|Iv`o1B;1Unk>zxj^B`sEyy6G!8Lih%ogr-a^PLEg{u#o`Az#M z;uxvGRon`c;sEf#f2c`PYy%nwPUEF;54_8H`M`iEKp>gB7Z4s9Zt#tgABqHZ zWaS~T8d(m#ZV9~0dE&V7GZ&oIk{q(4YW>W3OVTPgjGMKmc=V3@cM}uV&-`uqrMP|2 z+cUd`nokcE)ABPrcs~n^l^bT>`OBBWE{(v({LI&yZ*poBqg%~7P$(N`?(;9F2Z(F; zn$^*Mb>qxCT1GP}`IT~b_Q3-oL6S~Mb`se+6XYMlbL$SCz`LCHKJA^EBf3P%@+dRv z#le8ZVmfYo;KfPO{gBsKNs))p9XtVdIfLiV|CsqzJ5jsWtZMO6XjU(=;OCj`TQYQZ z_?msh_dn0vXD4^vH*VJ9AraZb{q^qN51sG%M{#+JStECT&HJFETF!cHCl8gM_0PX> z-utfcU1#xKb0qv#KyiZ5MM_mcR+Ey@vPfFxWJQX(-!!$ME^Zz4Qm`Ui_e-g%0BC9gJ$is zlUw3;o58cXg}f`K_e1ZqZX7ae~m5*k~I9O-0lO_TVT#XM^j z*Q9{EoF|SPIV*o?6ts+%;DKp28qjDefLK;|5E>-iCwHay#K60pC;m8f)_vy*tyTRH zd)+@~o!?QcYeVt;7PB*Fi%*WC`0XEO&pcEd)?)S$d*$7;Cm$zHxq`DNwW^=kQVi)_ zKV)@VS$gGwAhV7t+8*fA0ZI^Sm3X+mUh8jJGFFMT|PXzMmMm>!Qx0_M-Z>V)R9&_w5RZR#C;w z3rbG*5DPA_WM?mrLD{ zQ9-d-7WtgjQHD6MkSP)aNP0ymSeyj+pxmzy)x-hsA`}Cg2M|Uuho*wXP9ioU;u17P zl5Q`*y?@23NNsLB7Tys5ib(*fh@Uq%c8Gw;hn|82@KUUla5<234cNYXD|BsNkM7k_B_3W>KQIi*jAfcKJusFpMcU1H85wM(!uECIEXP!Z&B*1|q3L)|32)QCau1ArTBvj8vL!^sv|{iKT z9V6Funt!q48dz=#y@?ArQoOkpP_-gHYAKG51XT^VS`l@vM283{>I89|B!rjdY@&Kd z=1T+__-Pqk=b?&;q>zAPQiBrF1%_2g5Pe5%AR(S0$yIyO;0EyFB-}Stz5p?RWIjf3 zCU%bx#eyQU2B+QRx+o&P6?#dl{VUAr(ju#fD|QomV1!M9`)6eUgo|JX@HZh7h7;qF zVOj(BcG3eARjOzvxb-x+Xf*+)6U!ET1+10WPt{Gm8Uf17Cm<1W8f6=lZX#}x`4Naa zQ-d=msU?UCA$Kpd9&y)G6UHwf1OAu=1UW&ML%!rJ&KO)UxHK|0v8;tO=PE zX?t@-r=Z3W0cd*B(Zr5H`oqwSGYa8g!Q4VDBn%cgNyTFcf*6}I;KaRViDy-EW;*7? z8=_yv5;+yNixh!s&9lk3RwAQac7=dy9hxI{s=*N~XoM`P21GXm#^E$#x0eWgF!$Kz zbT3;jJ}aK>B)CJ6js(8GAI5jLbn&TY?A) z*fuen!N39)7x7CPvBetab)g=M|Im$N#r8?|c5xZA{C2o^=3+Zdbk)J4X9dob8g>o1iKbH5fNZ2 zv1M`Md!SlCI7|{UK@2~hTf-A=A%!8wJx<0X;kzk|RbR%LWuaM+vy%<|>LPU?VIm3v z4#d(Bk)^Z8VZb6Zi%@KZP;^MjdP}aLfNEW?prBe)GBLk9*si(y zSvDq4EIk_WwItn^#7)GGWK#rQDo{cZXAx&k5?5*ft%Xj61mS#{QN=eQY+TX@K-MI= zk;qFx1Q4&oyo-~i96#&xbD(YtsCn^G1a1b@=|qlqGm|41k!8L$gkd=TG4zZME zLPSomOrnR8-nE!V8WCXk7Gy$io@xPI^RF4S{RU-O9@Bu26_-=(A5SsW0^X{GHo{E8 z3Q5>L1}uV1N&l_DR|FFy2Ew?a*qf&;Wu>uj06-HN&+5z`*m8*PNu|2>D2@-TmcVyKbUs&f3hSyu zn+ah@C?uE|DTo##xgua82#QH_ShiU(PHk0#a0265N>N~KwUAq(c!KIm#VJl65TR}r zz3qvwuOk{4=9Mh`eCUsOC~|-+oN!9T4d@~o*O_7d^_uPs1C-%Yr{boycV-y0TkKLy z2R0XS2N0u8Y@GDIK#Ia*A!WmHt-|o&GET{fK!6sqxqNA&(Fos$+tyN=6-S7u;1#k6 zagwR*S#4CZ9%4*~90$09t8+yHDs)9d_9DLuU7f4%6@t)5C0VkG!4QK;3$}ySp(PMX z$G(b2j=eZbjH)Z?hW*_{lDDKe8VhP0zb+}8SpfsFY!hRv_xoJUI#piS@OyddyAtHBnff0+jXuK zG>4G1`m%n%^yWNr!j)vF*nk-8(22&j~0-`l=qBrqY}lAjqSCW){jXp%ta zG%6qvD;IkjMiGR030VstrA%@`ejn+`BU&2t5w;sic>%Q=%3DTenW4|5c5GRAs*q81 z1IJ<94K4m`O+9q8{*@A!D2Xq~CgfMEt9*_AeZ!u6mD2S&f#I+o!bw89m6Y@%OC2`B z+KbuA?y{Q2BFGymo7%i{1$0Uol~}-dEZeyPzF2dBajzQU>woc;G|95#+BCxK&PX5V zn$ispB@yZ|dVuuiVT4F}FAuGlB<~~671JUXI64w`S5lqiNQ*+u@b-NxjAaUyhUE&g zBk}TZ)nfZXPXN*dJ(Au3fVz(%Y4xoXz~6Z*#nIt_N}XM6O|GGB4T*0^8lc6gMRI?` z1%#>7fEt$MPKr>rit5z^=16IZ6avsoNlG(X4Iq#Ol?5Fsg~@MuR7W~W8j;bg_emv& zzLLOXh}0ENA;@6+^3q56R%s~0ft?!u6}ntU|9n8~8HP_52_Va6%W4v5xg%FX4%h&x ze#liN_-Z|DHzGPm(gdBvEKm<(T#}rAl1@lcC(T9#?D4_}Lc~nVhjglck4E7Z94X(nu>y z&e9YKVblO+gD?kE9@YvL*ch44WI~LLW|4}nP=9Art{egt(|$B-adB2j)2HbH`>u~30qO#=mSEcUJ;KA`HPSk-p! z=x9LIjJkGn_az4ht>HaVz#C-_CWwyU*TY=NDi_o3(fc;AIA)QfB$Y5(Or-XdAW4f% z(tshJ1;tExt34JBwrD)D7-=vvknReor!<}dq{Vhuk}l1^(p<{Jp!!zoii4eh7FA-z ztcEBicG9!4A{f-h?1#!XOF|3_K5FRcbyAKvWRav%FabC~hVAaMDV% zy$}@|#4N}jjc1Z4Eu|tvV0TA)Bqs&SD>Uh=oy2bewQ6GKmyKGDZ=LS0b9>Qzq#J z3`ccG%YDEXllzuCx1#><1t@p(fm8O3U~N{ID==;&6O*ZrbrUqABu zr?N0xtFWzNImnP$4&yztBd{#gD0|iCk{=xfTZJu>#~?Ss=$e*W7JR7yq?nzqKF-8i zhateX(v-ODA7XSQpi(hY=D_RwwdfEAGb}v^aPCnL^8}o3ip>e&6)3rk=)aFk;LOfN z?ut~Jr4MNq#5Q&hsm5SEU_sSX!!^9Q>Q;hucqB(MQ>a_gF@u_*V;LudBMA>#Z)dF| z3AKO4Oht+DX4Utr)G@iCHvTM-yPV8*Ob0k`V-RGMwvI)Qyhmj4gKW>uK^4XnXh0;Y zq!jicd}1W^%fMd>l^{xFTCAGa(43GETMl%Ch+mTUJ_*+^>E5Jm#=w4q3T%&3WYV{Q zTAh3|L6y#IY8Wimd;-*=w(T4ySkkCfbrX+(kzLp+Pro7 zL)AQXS!{5A-BL#2955iug6{)9mRhtM2E332c<&X7;{k#KHVynehfdGS%2b^S(DtOE zvdcKesTr;67?dgm!dS^b+R)cbDlCYS1R0DCv&`L(JpN0-b~v?2_<~#p%^c1NnZ<>~ zh2Wi3Dxz(z)VJ#6UKRU?F*Kv`WAc=4IFt1{i$xmokYR;U z%`-?LieMR(OwGs&GG9)X#Q_Z)<0lq)&j=7E8Cn*ngy##x4v)#0L5v-S1WOP$|8&1h zL*rket7Zk%Cv5<#IO9!B@(GkcL|E(>WH`d>n@mX0w?gVD11?h2+pp024IHuxcuu_E z02+B=T#cC+ro=23Ruo^yB#$8m8emJup_E9`tt<}6BJ3J0BS;@4dvaHXfLcArLQt*f zya{payoT;#+NOrCZ5TLet&wo26*5o;##9W)WbxwtfY9O3#$Sq{mrXa@a08H-u0-gv z%lh_Bc~ZfEkysXKq56L_rMPPmZsPY=je{Boi*esK?iztYkyNrc@}!|6hqwzL01UGP z`;yivt9lk}Ir~tES-kmQN|NxVFc|^~gcDSWc}aM@Y`Pg-@u*udKy%m$xd-D=iqv;l z45TC1;cO17R;=vWcuXXyR)@0r=x&YeQ10UlF6)XJ`>dojmw8sveDR7T zS-Y5pxQ3CvZOozgzZt6JN+LrkU4+?DBefkX1*?dOvn!XfS=`ui11d}jb?rJe>|38H z6~;ddH`H1+R-$4tkI`Y-NFh~?0Y^oF#E}obE%+CBCEcvXE)}>x7+5aD%{Gjje}9yv zvH%w0Hweo}WdlA~rg_5(`@fmw+Vy4?UKA-cY1qQ>sHDloN^(6iH=DTx>QcttU))U# z+&hVm$vp`1Zc^r}!f200*R+_Gcw!yclRL8{j0n^|2`K>?NRSku47{3IJhDP7|9QvJ7DoP?FaV0%c5Xaiadn)0HDuK}9pSG1xyAf*Reo zVpOz=Q?wfYI$8Tw@#&bx4mB79QGam8OJZC6gg|}NEXT;O*fbn^?2#WXLy*8CgMff- z0H1f9J_PoJjD<&C!8#jrGb!TdM;IhBFs*`?iNlx-Wi|Ua*=sT0C*0guD+CM{r#LCIbzFsl#Fk-y+`E|BmKo+E zpZq&SDYFs=48}5^h=7l^J?1aqrCdT;xpCFxaEOv*lc6S!XEN3lVG8k0LG;Mli=MxK zd@F3U^p7TEF^M@&WeDDYN1mk!;}MREth*AqlM7Eg2pb&a1_&~gSWL=fas{nH*Jps; z%FtVPa`{$_yIQ19Y&<3$P%}NM2xo3#AI|C-CNRGM1B@L&hHT>B$;m8)j>);Z>*4~w z!Y)L}5^Fx<6qAbde!y}p;8_ZgbO*HYSxg{Wu{&eaC&MQ8NAgdmaqZzs$l)c&1D~}K z!cbR&YL;}z5wdFfR_Z`DM)YfJAJJp1N-2`2%6OX$;4ys1IsOZ+IcgSmN;w{}%wXgs zi#;Yx`i(gTXpOAasJo~#7*a}n;R%`Fn?Awmh~bc~B^C;>1a?n_1oJr$A{kIEplT;P z*uPeM;ilNsqOt#QQ>~2~C9@2@9=K#i!SNzJ-ek-sq9~3+&ZI|-@GzeNaTU@Y-Mo>p zy!-V{`NZ)bmbo2`8UbG{AvdyTjJj%Rt?+v*!T0dY@t{(HE#g(>ZHduV7<5u=BG!cP z2wZ*h9CI5{2$*&e_a&V@{Vxs1Y!ycuH+=Zfo33; zn3ki+xiieaPV${Q+gH}VQfbyu#E&O7whyz?E0&H)7gP|z5-k73>Sc*&$)c86u4q-m z)aNy^7P6%xzXHpXhDLnH3DRxb6E@dB5ei#GDlt%{Y%T59?9wC(u&~aVl^< zEWccx=**5Kkzv1F8SE4eA-XfGfKA{E<~xzw6YU7=c#iL$^NzLo976rjm=uz-K}tcoym` zX>x(UGXJsQ>PSWS`Bg+M5V)QZ13eY)51HUO2XY=XFTQsaG{C+{hdEO00^4yXlz+{j zGUS8``&TURiKtCdbFabq@ zFak?Ru4z<#d!;`8ao|5_2za%jmOuz3Up3nYdkC%_z;FPg98}(>RdYz6;9sSSXYj32 zhSxmDs)lW?qazN6rNoI<55^Q$HdZPk+Yt8n58gY{NIT3Gu8fZV2Oj}DH2HB6xfsLP zS#F1ZJ!Wg|UrbI#MMRiVI|_1-!;8$Hz({JbRE`N6hu9)N#|veCs~-$sy(J zRs;4{YV}gh3m>t8*1;-(2#pF%NFd@4jxCggT(j>K8Qw3nP42+W6U@JR%2T`tjK{JG zMlibH_u7sw^na-m*Kvf7LwQz#qLCyU*D6_=jRatDP|Gs3*4wKwlp$gfN+s=ZET{Aa zsY#@$sAIuTlpqVk*o|5LaUff$lc>+^9h!8qpw&p)ja4_XtGiZ0|C*7_m|)R>nsqTV z*Pw`Fx;3_~!PtOW2M`%sJeGJU2Ba^?OknNJWQ6+Sv}zY88Ad~4mVvt=z!|tQhD>_j zWDfw{&ceS&4oyA`t9*)O#bBEqQ z*}Sw2<1OqY(%J%cEr(ts1HiXK zBqgU1TZT*}gYgQz3)2R=uoNYdEU7lPV%`X-IxGELYFJu*d}?hL3kTFDYvW3ZR2Tzs zs)C-9v@)2a@gE`$WbqCo88M=~kroj0DRukinHJDPWv(v&ajBJ=Hv&GG(QMv;XT|re zN~A)TN^J1VF5H&@tq}%chrkGpc14VZy)rt*fwSSLz`>8{k96F)VaODaA-B4YP?FJI zj67&O1V#1|11J)RU|503%YZ0DurXqen87D<_b~q|b)%K0$&|l6!V`qO(L~eV77JA+PnTR7^{{+ zK*D;9F9A&sxEH&Kf;lpWSsrc9)HTmPEJ@AC7=#n8Mq8s6dcMjr8_%vOn`Z8Hp}4sXS24T z0>b}*mW+9aogL_ag~WpS{@ZoET}N_2?T%?iiDE(ZtJ#U4F~k9V=k7UNGi&3?k~xO0 z3mFkb7Z?zhY2pAtTe2EJxpR$?eCF_cbV zYgw>YC5EyXv{{Lvti(|6m`JVEwOomzgs-#`L%Cz0OA)M+J#vJyk-ndgb+sl-tF2J}{9 zDE-1WD>0On7|I=DT+1BGl^DwMz|BewWhI8PJl%gKhH~1qM7vgEC^MB9%1R7nC5EyR zL%H*y%}NYqG3c}sLm3dt=%Do~F_e`U%IyKY<)L8y0jJv|QYtZ&l^DuqdtpFCU?ql9 zQ7bW&zZke#iJ`2-Pyz!vVstb5wh}}63(=dE7|Kcv<#u|&N(^O@ouLv#xnt~RC5H0C z(*|6AIlD?gv|%NNvJyjCiJ_EKLzNgx8G8DwVkqrb2FyLYow#tX@Zn-ft9QDIYt>b| zi4_y?X(yJodZ&w6c#uu-sMyqFTRVI73G;@YDK2_=-d>{Jev@|>m+w2dulVEslLv}n`%OMp+$S&e zdT3r)oU!lZp5nfT<{kB4zWMbN@9QB(KQiwl@$)|O`?nf0EILGt{OYFO;_i`?dx^+b zH}w@yjF^0=So`R_0iwl-$$N_fADef@zjJdhmwNSsHS_KfqxPR17SV$zN5nmk&+9H; ze|%nFQGL+leZ|59xzP2AdDY@i2TtxLj+5v9i#Jcb_sMzu-DKbU?MgZ-o-}4aY5bu$BA&k3(Y2i8pq%5BkG`EiFR{alN(Rui}$a z7rax6dV;vrLy9k9qgcEIATG4Y&OIArQcCoZ;6Ivxxd~%0Rd-Ucb8d$l$6l)K z?sLwS-4~PhbtrjbG2yYM+FhNO7u9u5N0)t@L}|OdW}7=XS9YJ%#IpOGb7l8AP2Ax= zzKwIT>_(^EJKQ+-Qs-RReR27IW%oJf%I-6Ea-VZ6|RTb7%dc?$9w4yqTf?YuC{IJL?*CXMN+I zEU$iNy`#F_6TPf`G@4FjMB%z7%^Q!ao@hGWE1r9O)8St6f$N)o;}zRYZ#vp5o-)1Z zw_b7dQ%$FM#g$Jro#++E-OzNXSA6J(;&WF#-E^sUcKVE_L)&j(1;otRP0(LI(=?#; zWYq(loH(m#SF!KRrW)^;r_F5I-zzTMUfjIB_}E{HH-!G$w2yc1$iFrnQ2Ol0moz`S z&FrSQchjiZ#b#eOyZDrsW;c!WZn*2&rV-npqKZi`^OWfGwD8jUra|6Ki|d;XEWPQt zdz*TSMb9<$FFiTx1NUSrab!bNpVBLf-)X)wt)VI6J#%?O)9<`uo5o@zKY6~`Nacmn z_an*2T={;2mVMLM6xsfK&26)DWnWQjbLhpU1HI=j6UB#qB8uN{?>S8)yc@>PDYoVL zIZcPPD|Vw8{~=B9@-mg0bDL_mSE>uAE4i|}_l%q779Y21Zqp&9w~l&?mOBqQ^2VkC z&2`>bY}B!9i;bGTwzNBR;dH9=)8Ef4cIu3IO^10;*)Xs8l<-YW2Y6>wHx=75>TgYl zcxOMosk9eKs3&OFnwxmH-_LK_dwYXpg0A$g+%~_oEBVdl<}2^dFYSbw+fwIgLl+cV z8hWkR(p3wJExqBj(wB_8J-cZk4LNaP=|kgg&pKD;EiCqI>h)sJc3f1P!KW`Oe#H5U zim$(UQL$(DU0gar4R?Zm_7=6?vbflbFD)+qbj6#ct%Q+M&J5@NOPY#pS=3beP048` zzo~Omnk?F}1>4Lab~ z(gr~RE7!Iex6AK&Yg2T4O=J&~GuOHD;jP8D?0j44Bq0%>Oitk|m0HWyp9Vp(z1`F>fkM>cOM_Q-Y1n-2EgcKp`jMCrex z>EI5<6-ZTtv)WEwQQX%aUD33k_p_f@G>!6#o8Kw!Rg3Q`R{Y6bO^1{`OqIRVQ~Yja zaR5(PS$sn3yH0E$lCU+_bOvgwCH7oAmho#lh0yf#P8KPQ_RJ5y#cI9b!|C`#Cjdr!9WqY_n)6o1ub0L(wukI}_`KC#2+kDc#>zk%f zsPvvmk6+VM%(!XNZldsQ({IbJ>@LpuXVYE9UyJJRnv%sM`^4{>?it#;=Ru)ecG*RY zzj29XA2@i4)k(a42QIdkVoSanC6=tV59z55KKG)16=fdg#2y0{4Y5zWb;*>L;?@{%*W%74v-?CP{Z<@0@{~>~ z0hXjBWr)Ff%WjX1#)uspex739fJLMNr9 z$Ox#C7aUGR1AeJwE~TqESeop`10+3f5*|I629s$8GEAuUAVr7d3`Sd0+34`eEdF-c zN1m(XGRA{jUQ0PqBooE(aztQz;&l@jo2 z!pR2BZ4$CusNg@hTNMpEj-Zcd{AHKCe>q$q=dMG|frur@#x3bBo(OUr%$3wY_uGcswv0dWp|*6@`9q>wcCCe-Q~cy{1Fbr_OigGrMi zKBvMv1>cRHpr3LH=qx0sLnh;LuR&@B)kr1-_auC0YAON41HXWIN+F?=VXMzW0Ra1# zZ-t`E#3^bdpgx&y-4u&bOLteG2d>ph**0K}gy9deqC|!iZrgEowYx|z5%uk2;@jr zPnTyH4&GB9%~FhN6U&wPn% z36=x7B0;_ieTX4*o_4oKpDQ2)h$&1b7$&VGnd_5K`9f<-u6>w@Srs7|d45iF1Q8q$ zuph8sXnY4~8Ip#Qf#HU&6dI6Z%p*b#s(RJHMoDepUu!czPd71R%F^A3vpvR22@hdR zw_uTwE!ElAC4rR1egI*YL*e0NqYT&;WZZ|^%CQ*?o;EUng5wswOdR3jOUhiZ2jv%%zeenBer#!`j@p!`Ma6FTll+`zuWA; zti3%pL>zQ{C$Fx(zP-KWuLSJ&6dMi!Dt$%hj=G1V7#Co>GSpN$m5l)phk6VGcNP96 z3=hdnT%>AeO$+hfmEjv1}YWRhfJ>p8O;=~N4GDu(P|}+)U!_w}j!O}+S-OSjQBs;Knhr^2LNVa1h5ZWPe?m!SQb`+; z8BH>vS||f|xW)8w~losgqbojjCRD()= z_^fqnAjI>nQ&A+9x)NCFac`gw*S4M0TD<+ivaqJ|kFM34i4xu}So@NO3P*4PW^Myk zG?WnyenhA*a|uhlvfuI^9xIvu?64>0mM#cQ2``zHVmkRMMUDj1c z{olz{Bx~265ezeC+SC&k)Sqx}I<}-Zbd*Vp>4b$Nw5`PhGrYGKFE!g80@Vn>V>lvUUWEz6~#`CZ{$5tz|44phNFbVvU(Eczf4Sp z;@5~Pj60#uTGu?w;LlbPDLJ+!o3{$@DkBui`xF{B>b8yjgIN|(t&sG1tdqXAGK{ZX zca9joVjULGR?AyQm@2T-ng%PhR2re)hEUVU897Mp(pIKaC)Uy_lde-xpJNt^F8Nki zUwC~hZDx`#1*Jo;UIS$^)VxrsWBB2@uxTqS{8`9h^-O}*K=iOT9kv|S+JMSktvH}w zhlH|p%0a3duhn;;%FE`U!GpUHI$;_VPr>lX4idMrx|Xy&p2Bb5LhtwAKuX#20{Tqf zQ9Je@sY;n4O7s1I*&{K(3NSK06?8(yjm! zj0Nr~pU}%rp1-_PPtmUJnH|K?rzfDXuhoaFfmbGb<3|) z*n5iewN;md=G*UTtKQu;^hWVjy4n~6djDz#z2Bd=b)S0vfvfnt+dlumdwx10^mWOz z=QZ9l{MSEw^0tWR)MI@od&Hu9?m1oj>Ee5b*u8(gXUrwyi=XZpVlTS*-tfVpr;F7& zy)x)mSNHJs+p5L1lOF11Pk8d)Kb#@X8Eg-k`qO~>?4Jg#9@R-)^T_HUc1~SAzrT2M zz5xzp{wZn=5C%T<>-U# z-G24!eKdPpCwt{lcH*2JfDtA{==jo;wVLq@z=)DNnt>71ZTqL~u!WKv#EzJV(kt6B z5n~^)pWgYecZ5Tf{MugepndlM@fY*{A@ zmeNT@fO;6q85vn+Mo(lwI$+^}JZB5^-z#6cl7&8{q9kJ6&IV1E*g(zRF(9t@Ui2i)$#OUm{8|m39=!eVpFVr?*89KQ~s6e zVtk9~in#of`#VQ6WGPIfbPeZy4w`b4UuMt}H65*)FX`!o^ikSkC25 zY9^s-G}lE2zT?Eu9svfLY#f*tl z+K9{Z_YWGzr#$+=;myf;61oJLU}oT($FejS#FBKRgQ!we%~f$n-hJgMt-}5TS&aMp zmDRRO{uj_UW$8|JjGjJYv5dGv<9qphHocjDJ>vgj*`mAE(he_K~^?MV-HoZ9N#2kchoKKTAtaq;C{Ju!$}JUxE(qvtK&)^#dU9)Az> z_XvNF^7j~jYxsMdzbE*6lE0_;dz!yz`1=cgf93C4{+{FSdH!DD??wJz;_qet*7ElX ze}CieRsLS%?{)s(u&15$=0Ga~GE*~CMmCd5$JAIRfp`#Cw z+s^E5U-#IXxUWo0Q54lsKo5b1Gt#&rl%%RBc(#?!rV_5u6L^;+^t}K4oBIzCTi$zX zi2a*S-h8%$_~+Xc_xJgI6pZmf(70yUON z5yUP*qJeigRlZj9R^e)K(?%Y?Zs}W*He%o>Zw|2|%ig-GrLcdb`21aOecY9|%w+ID zfq}yLg+P@^W=%7RS1D$uH~`H-j~Jh-_ej|AG~#Q%W%fbq!A8cv;`qEY4V+wY%Yo8(Ns0VRyMCg;^6CN zG$jX|j+?N1rw~Xm3&#zF34@s9VK`!3&>iM+HJb&?7B@|}_H1yn3Lnn@eK zBaVh_CIiTnH%;UGun>vNbk@*77z60V@gPn3z3hpvue&W2PQ?%fEpVkKxMBQvU`exC zEeF&UTwKcDe0JTVp=dy@niy3(T@43R`uS0FRIzWX<@+?uST{71i_3whnpPIEI)xOj z;mVDfaXhWasH*4r0jg>OIkvI}*ydPTNn}8)CX93@g+Q1>P+WTDW1$Fd9@nM2%u<0D zBZcBB!Ka+Ui^0@PdMUdDYINOsVgDK%2Q?_rqVr` zP2%e?^n{sI6tstw_d@u-{nila3~t7?=KQ-Rwxc^CU_d6y?)Lv;iDuz18t_)08_z^% zz`LzkSsX!tOw)Qio@G|NtYLnue6oYalB}%h8JH~?Ny}M z3Pm(L`KVD!N;;tvy2`ZF5*9i`4&<{FYs8%;?w==<{)@NpbP^Yw5 zOwVNS)uCzedPsD@QN3%((^)-_-daF=JZS^TDQHW~^lF97}w|B}(=#JXyG+&+zX=2+X9OliY1 z)EGooOk3~->3Bkm$8?1c2HR_A4DgOcwA4130VNk58{>TS$XE0S2Og zz|o`t16CrfnmX=Y28)$;=U$i{fFJ@OB8Cp!f*EQkDYoobg76@6@lF~{u!G#$q5+lW zMD2d-jt{EToq8|tx2{tpht_QANfU1}5MN?gz<{d+2Y{pDbaSVdZmD_NvB><~anv?Ln=)(z88vMG1YEpmLyIq)e;9Lp2KEQ2qc zUuAM8Um8GtT=RA{f&)|prUbAEoYbHJKs6A2lFMQQVJ-4N@j>IRI>#4)_6jTD%XA~1voab|BX|-73l4ExRVz+FQHpW-Tmu^$u^9=KeoY(66!1Q>;3EN;66Y*c%!UurGu7sCYa>D1t~L07q(is%7`@ zu$%=Wpjt7C1_stT>FX;^xwCZgnD=%P1BWq&xjA36}g{%9IOGDJtcQ|5$fqfZ|lq*eV*E z1Hi0kY*NRqXlxaYt)j8{DBBf{t)j6x8e&Cbt7vQ$jjf`wIf`OMW7|>B{Wmo>e9`;1 zXo%Qvv|K;AP3W!?@A1?Q>wi6vukY0p`q*}(rycKJljw<)5?9kCGH+r%h3#dvK?SX4j7rea~3G z+yBv*-x!+SXszF;v@LeGoEo$~|4S>JCsSuE(3-(5`IHy;))f7mcm)O6=C z_rr!$#pgXKeLte@ZerqD`PSlFd9~{x&W)Xv?*?;-*Wgx#`89Hk>a`>`m$PpEqR1@Sis9E)H0o@7EB@j})Uia(?A? z`L^P&$MU@!uHw|CZSn&FLF9Wj${XI=V~2V!2;~nIhYjXj;h{bq#ryK`_8NIhi~LDq zQD;gow8+0CW>ryoq-FkOv0-;gH0cjw&TvZ38@$qrCr|Cc;hrlZRU$HfdTa5UT{(A7 zFV3ylHGiUL-JjCLt%bhgpw?XIE1&EfJ}wWR_+i69v1r)FuEK1?VO4~yM?WyAt60{C z2KAPeFC4b9o7kf*S4W08ytZxrw_?H&O6RxSv!m$Lj{CML9CkYSq|QRA<}+W{j+=Y7 z;_W|cM+>^h_Bl_vyge7blnvU{KA#bv45hUEyN!KAyNFche2;bwyX+$K1d=Im@pojXrk@9I>MlYZ`Sl(0t6x8SQ&(|`Jp5r#t~&knxjdW}<&e(oAll!S7G$bKO~yEaCr2MTdKugz4+PfE#%c+`RBv~dr=zm*p_~xu{Rf< z>dT??IXm^?@SFi0Hoy6yA|xl*4I8%%5uN*TH7p1CxX-9#iae~9uho2WYw^82w~rhr zr}yIpyULDoZvMO<7oP6J;e!5o`mKh;Mmd3--=nqIEYBVE1E0kC#qYx$Hgx5dPunp; zUy+9)*-;;ATf^e`2!~g;=5X-uw$_NhaoF%QN86inM3g&rmrKU7DD&#m0r|Mtw?F6V zhH;Ko{7&?j-*x*h_8P#|ljLZ^eOlDYUr}9uc+NKf0UTjio2TW8>_{` zdve!mxh_Ta%HJqVIXE`#mA_nECTHNEhvqL3d&{2RbjdqOapW*=wtwUsFCUgaP8=gU z2q0nU6#I=r7g1bnk;=fegee>viO5Mxn7pqT|ntJS*n($zsS<= zvb0#16j^#mmiCvWr)23!S$bWTPL!pWWGO34Z_3hmS-MA-u8^hKvUII1t)n#IoH?@i zp*(rBEUl8IyJcyMEIlSm1zCDQmR^>nb+YuTEWIa78)fNBS^89#cDaz!SgIBSz0Pfx69Itvb0*3mdnzUvUIO3t(B#5zLTW~W$9sA`im@mB1^By(m!NrvnLE*C$dRLZ)%hC#2+E145m!%_Q>26v2y(~Q@OBq>OC`;pH=}B3- zT$cVWOLej&MX(9y2wD6$$EPWwM z8)WHcS^B3eb-aYqE3(vEmbS{$U|CusOS&w*=M18evUrO;d9*D3C`%{H(tKGuQMRn#VYYxXiG=?&i(T(T5LZS9EZh>T&UXqX+(aVcjrrkH+FQcGumalEo@}<&pX4+@h#GsL)ZoZRKmkip4EE*pD5R|BH9!<8!yVSL`*%Q-_KU~ozxR$`w(@(5(YN2(RjgUos*O-yDYUl-{Z2N{xjmZO z>^*4hKX$DWYoEHzdW)=%-H|E4))43@^5&*>2iqsA^M9=4_(^P zUYp9lQqqiDX+{h8<56S0h1fWEiy>yL+MFzE2giszZ{#z7aaR66Lb6yTb~}Og-*`pa zYH>rK5pCU1aMwBc$GyuFuFQ9|uRk~czIS}gAU^nqm*hL!i_VwLa-MPeTAoq&UE8o& zer~?XeqvnScCXlV7vwv(aBouH=VQuWinZsyyQesq+w6y~}x3;gDCI_y(ARaqtQ#Y~cqfTAK0dI8b zDi%iHZEr8RHvfQkdF_}@#8;pGUKcTOL#MuC^dStt71!qJMyJ4~D_k}9^rH1_7-jyFu-O|CHFY?>G zW4Focx(#qEd}FR03eL-n(RrD1ojUgyV_NiRE22X-wzof>m%rb;Jp3T4;BpT!rf264 z;)+*k(AV?x&w7_nJ1yVA-moy=p@sXjO_$`ocOTQIb35_V=&D{~<^KKJ*!wl*AN77C z+a_pRFMIgX;x{dx6kYVrt;C;Wo!i>`+>-w?ghI>WS0l!qQ>%*6%Qm(VSMN(-qR?W3 zyqy*1$NihT@w(gdJwx)it9{=c`LSNnSe8G+E6!Y=ALkXj-6fYK=iWIh^PhXgd3Vbj zK7W)6w&~P&5>i7rf#gFXlgRi{g>L<=fk}FXwOaE^Szwf7vT?iO=FRVa;oD1Ukj5-^l0PqTp=jSgkpIRjo?6J?;uX7ZYOXR?UZ}f^>XGw9IQUCY+yI%3y59O*S&x-dx%lB$bFK;cT4PI1bAN;Xg z8Jyey{)wD3PLX@Q^ok#TA(sZ{?EJ6fkamjy@io2W6vfaVc*D`(<$Kx-zRh3fUElA! z<}YA#eNqeeSC9UbKia+FzM4XFCoK&X*qfcF4sTg3KG>>QJfwADs&_-7O<}TEyr5m- zGPfvxZeO@cyxg(SuU$inX8XeU^IG&03)&V=6umkY&UGK(*sM zWX>G?F6-m=_3z6rg=55LA8hs3KdY+HJ0y?0+B3Qq7;UmBe(qLyF7%rHT=xRwz&Z0` zb>S7xEbLkMAte5|ibpyIpz1z6ZNz=ePrIg1;gXO%?rO6@AzjF#SZlE|9Q)fs53zP- zuP)+@i`Z8GIha-J&~V{F@19T3+0?*XV^k?C8+KnWYsdbDAsIuy=U{LqwNuz1z9(^0(mymU*Y`&9w{> zH&plDRU96r-S4XfL>%YKP|cN24c$eTlQy-p#~20n59gQ8E6upQceQ<5qJYrioa9Rm z65lWG-Ob%@F5Rb~c@3O#70YSgeue7Bt-V`|M~~~%Mm(~|9qsKe_bW{Iemv&*LR75z zsCOIj^S0g{#Od35w{^FrHxDS>@7*)<#H}6dWg`pY-N)K2{A;~S3w~1=EEfIg-Cf0| zXdm*7AJY65;*&f0l(KFy`k+F4aqN&jJ;a8QY!Me8RxrKx@u0!>mLm#xxKFcrT5Io8 z$nn#WasbYXl*9(T2QAyxuebjFp&~G<#w1z+V$;fpOz`G<~fZR*K_0cD{bu=miz?HmC+}bUJ*00h22D#UVRa-diQNB z9=-+{>&G(-PkMJRJVxF;1&U z$%WqH*i|(h#iA28R@qlgEWGGlUeSBw05S3Anr`B<&fz}d<(kfI+y*=~x$yUpxM<4O zn%Rrq9V)sUxuui%!#D3ZvSdFo{VJL>yv4iT2m0=+!i11K?kbkg-ME)nlkK;MICe{Q zTQTui%$z!j;j}B72FoXNTK~h1YHDYM*{x zflXIF*B&vwaBvIv&e0FL&)Bo^&2UxYnFHIbo>_R?yY1syg@e4?oT?UG7mnGB8VU%; zPV+8*so>PVrJIILd8CF_4xjXZv&eU?h z9!WFWh82`5?9I&lT5z;2v=lY|xrDADbM}iSVddzaTHR7uAfCa#;!#>Ha?e`U=TrnDdV?H zmpmLKlr3EHyO8Ov<7mimN@`QGETu0EbH(s67nW9E#PqGDoOU@g@~e~-eXv9|ZPe7e zDylBT)6)Rd$}+A*8A`fTLerwe>%x38l{-M>ka8$9OuBpX|4A0{umn!8Qqhs+?_|Qi z;&iBOG?@#9`AAsZ=vhgT_cJSN<&i*-(1Rx|nH}>`nOIB+IQGGzODxuQZgOU6g9t*8 z6!hSEh`ZA`gWR6m%Pwj?atI9-;M4+=E%?^`6(`%rORm!{2$53C~aj zDZT|f6yF$gC`F7eRg9j!E$K;-7hv79vNDeusC|~DIPHvfk}YLR<#!ld8hg)q`go+&yyy=(Cximy?M$8^e4XiD;{OsuS#<4Relfa4|6V~5`e zuRu^zU{@vBRjj+UoP3;&nY~KtI^+2<^Q5yNU)QCa*0YU2XJXN(r6#0~o>8hin}+cQ zb1p(svohtiZrhR941dO%zp(4|Qhp6{BXiBNZrbAXrmGox>N4~}ymk~9>2Ahi3Ht?F zOYd|yV<8SafLd*Ya~GN4+}=P}Mws0Vr>Kd$xj>#|7fSLhSq6sE#h>h+TIv9)p_jQt z9!@C5`QHSyvs_WZ+>WB7bzg__RWzp?{*m zbu=v>RL=|#fGIExoxWW_9HdSZ-M*6RS0-{~Gc%?i zW@mH8CG`s_r>pz!=FTi7WZ5$hjrYrp6KA{yX-I46(To6$K8*Ku1`!O9;@X%)@@PSL zOV6}ef}8biN>F)E=~=WHD+Iww==F+}UaNc=N?QoyRlAcJ#)~OX9ZalpxgdHfmn_Po zcTyKK>^$cHS>?4Ha*Rn`dN!!MW;-AEFk_x&F(^tk%9vcfl-79Ry+!Y68DQW_FhWIj zIZoFp45zr|0x6~ep0M~b`jTVKuuPng^)ar$P%y^7B#fR`KIE%beKb($u;39kg=UU4 zhf#t{`7mm{1u7IYM2zQ(XQ7vTMm}R0^zvke(+7Vx%#5`i@BqqLoYAw>&YAr8;pSBu zne7#17s#V=i{eOd0Z}hb?KHMw6x+N)Wp2p&V?=igsDikbHBP9JmR8ul zjNdDiV(aze1oH_eL5#t)2NlAhFft4JtJB~7fC2+zRQfQ8sIo!5bgUcDY%jZ1AI`AgcFZuoL8xiW_yS46|FAVrB?gR&9OEU!L$SB zmRgVmf6DGkb#+BQBxWDx!4jZ_&c5|%4m)DIePv%Ko)G<~l?IE8l-`vpQ%0vUUz>^3 zr^Faw7R--=r3%GYuITdBRONO?bW@HLO6yapzUHV#pA*)P%M*Uyd_*rZ)&pE|ER=^; zE-tnI!z>o$qDk09qDlNI_NU50QsO1^I0G#k1%rZ%Gq?b91#Q_U4vyTrE9Q9y5%iaq zUNr~j(SpaXo1^t$=q+;>JvjG{xt|_7D+$^3 zy9`Q_OVt1xF{6q*wP_9K`+?0#mOzfx#np3&S%eGp(?fGtJ?Qn=++7cje`;>81!?^O zbNIn*bC6C6|3`Ez=O-wXaaw8cl}f&UDMk`YzWdrdFb|EMfHfwr4-KGI(`4OO`sTeE zUMcVZ5*uNJjWFy!R*eXxs?Dpp(}gx>?3R8oFVc8;jXu@Qf{9^hglEc#2p8$jCy@&T z6r??Fb`Nq=iyio6f$bEM#r}qb{f#+!a!|3|0W18QQh*8tTl}T7t`^vE!7K@%Mq?xd z8`1hp5grs=2u!a$ESoUKc0CC3%(?hv%%WM1t-+Gn(~@6HCB65yr04>~bRl6c54*!$ zMKNCy{3lfLJw8wm4YA~x-UnEqr@6@~9@Q#I#R^$&>t%8&VhPkmimjHE&k^O5ccFRK zm4<-1ffg)loE6n-mQk--0SPtRu1iKusvZonJoyTxXJe}s)hgC4%mQznYmZHvLV8Z9 zM^(Y(OLcuLg{3W}EwCf2Zo)0Y?XKQ*@||MNSR$kakwHUrB`*490(mRS%}MHPAYHYFZBbi;`bj zTiXKPnPu|9)$kgYV&rG3?jh~2Yr*~rQ?P#)Oz~HgVCigq3#<)Ca;=g=Yk1M+D~cyo zsnyX;VFG+ zZh`Ijf5-=0T3qu`7dQFqP40YsU}X5pm$|j2CEe}=BNG*6nQIV1n4?}e>dk@&KMp{f+d1B zF$wa^(&gmZ9#Z&73;d59eyybDdo|spDsj#_IBQ%?DmU6$dWxP85le1iC;9Rta7T=_ z9M$Dq>52xr7mLC-;@Tf9`}IBrzSNV+VI7^>TwCt!Eo?PfK56U{ zS{{2)oN`eYYf(yASE~qR4Xou&(?8U8Cv#&oQ^D1_8aZV}Ef2|Wt>sTWN8YBsvJj=> z#O=~7?i4$=mY0^eWva7nB+MaLKZv{}>?U9_$JxS8<2<>sGkN>@wL+*-DmpJ?lXI*{ zm~CLonO!t6O5jUL$+g_cZvYrWwh4p8a&aUPpfkegV-U81+}Mq^D$=MUP2DxQgLnNu z4T_@s(W9Lx_52R7{*(6Psxs}&tnWw99@cl$^lIT=3l3hmJVLbzs$EQ)w%>9?k7RwG zX@OaN;8$1If=vf3yLEEk3`<~&Rq>S;O3pz{+VEV{z=Pth*K#Az-e~wuhb?>cBwt2< zWLQI2nxBEquT8%=RZ|<8SIj7Wy{6ch-+0WjM@uNiu>{Md=yINpz(OwmRL-Ch*-A;j zTJq+h?~lO#;-Yd<3OWZnc?YND4ENHmxjtrGbZG1-NuOmUOnU#Pu!w>psz9;*8{xu4q{EdmXEgGVyzX1zT!UJi zj#r01MKp4hlgeaT;4*8%+@NVJENoSyASv1+I+ZCoLqm$RS>VxX>_wb;C$)?$Kxt8t z1u3&uq&rQ00%cwH%XK{t zhd+RteBpe4AUNw64cC#7Uik!F6}8|h3muw=Zu04+$rU!82r2M zHT9q?4=|OpXZ5n1^=Dm}a~}5AR3lDC2V5v=#+ti_a}@KyyK<_f2d=|3b(1i~I@|Tj z=ugT<+b_w0AubbRh5O0{%~43Hcx;Zc{Yw|q3bt~Qs`R(QrA3AbbLh4C}CrO$N;+gLGhL@k8(CCv77E$8YRp4rInj>A>NABg(g^c zW8f`)REkO0#yE>hSO|L3r76}>DPvqt7H}JilI2>fB2;5DE|)%>ppUQO66&3;%M>Xk zq=W;XtFQr5_Ou*HPLCLMMTw;sGjaw*PR8`CWNTl#(hiP||EydCnbQce8%5V{?L)^8 z!QC!1J9o#Sxk4$eRO|fIW*^k5#@zph?Ax@pt5k8mbEp#5X+@+!lNEluD7uunz>2An zYa!-z3GOa#IWf+5;^|^5JZfhBl%y*->p&=l)<@xE2ab2A_Q~++DlfNUe&>`p#=xp5 z+3KP9dTDD}DVnTsU?VD--j2cOS06(W(%)NV^&)+p8^-w3*FzhO&Lnq3a_=! zT2VDYIGAe1QKJYEwplRNQ?0n3oYp1~^Evi^#-&*?VQ=0Hhwsa$Mm;wom$2PVukYMO zkqdBbw?gW@$%^HhzB z6K137;^`KZ)Er15)iE-fuNXq{&eL4Rtw5gP-M zAvO;RYudgtEjofGoN`DE2`1y}eIc?;jSi%fwc7_${2}z-`Xiz;f-K=$G|V7#E_s3* z;8WuqIEk^f50WyE=g8o@?Z;1A9lFf0beqnZ-mSf-^yIX4B+gS0z+uH#c}B8GPG7a# zS?dCHr38;u936i;XZ1&a0wtblBA!}(C^{>;IE}g)?MWYMD*n>g--VrK9$r(0k9E|S zmi%G8rAP7v6LQz;BPCt3;^2-sSqFDtvAXFvTWd6-2gPSZ7m}V`waR+(+!RV*-l4FT zZ><|bnZ9*kOBCM{hElm()|M$xWPd5)7V3ad09oEx%aUK^j(&7}dq;N)d5fkTc*nX< zql$t_C|IF9%*;n&(f6$-G*rx0(&9{OkcMIk#H#9@wU}hFVCv!&IdLM7K&iOhdRrri z+7W8!L-9>JhEcR^%}O z=8^Jehft}$i_OmQQbax*6wi7I?ms>u4WU`?ww9E2%jy0}A`hi{q8T zjOidlroVK_#|D3tGx|cYwC_@kMt0D1lb-t7psb!hKhVFyI2mAzA?0U$tlPAJE#0tP z`lo;mCg;Q_REEEOeO$=aj^^kmv+OQ~N3Ob}9 zJ&WjCfQmQh>PKg5pxD)eZ14k_%%c+ti_^2IT|=bkU>m$;rf8QeLTnhFjEftVQcRew zqJ~SWOWJTw!6e>*$0+fjlLgg66n4H_m{hNfZJdEp=EC&xhq~eAPI#vQdS>JbeCy?_?v%_uh+L?!^ zKy=Gz4VNGdTN{0=VmiSW!M&+U1h#IytBb-Qh;MXCXL?DgHEe4Pbf{XcBh_Oyp(^G& z&Lha9nHDz8YD~p(jV3Umr7hJ!ax3%0Y z(#6>)o>8`$2B5k+dG^H(#^^o0icnbRUho(kX!y)FwnNNBq<#f+rBRCz{kPYUbT%Z+yTl#w*r2Gb&>ivtH~Pe0B! zG~OJWmF(9ih>Fkbz|(zBU*@ zkuk&uQX2ItKtm5n3)$}_$2Vb)(d&g zWIp)*yH5dW*f869jexBqPpRE-8%&(wgDV1Or%()5WhYR95hJ0!Ou&U}Cg7{Fl@2#r z8HTBId|a-kEVj~7h!R@FxJrFT+y3}>zI(dG6p)6FwcTWb1e^9*3&l>fz0sKA9(&U8 ziQ8_b8+e?STL z%=%B!QhfUsAjJDizt0v%TXYGk`&yIE_6k+Qw_dgS7LhK@cXnw`e^Wwa-ym9Cy0@E@ zX|fso==KJy{wWPU*^i;doAiS+y0Y4Kjw+7AZX7<|FGxk#V)P}(JGbNJtc59kCe>VL zJ6eLe6@_Df5Bmqwi89W!(!WmF5@BS^;6xLeC@nf=6T7xRiT#nIzuLq_If3)i>(N$6 z1pC4b+QpZRbMHZc zK}+9+8{kZfnA65fN_t>R!fo8vC@S7Lh)Wru&!$w;g0?*_UAKs7>eemf$j<>>vLUmR z_nr2yu3c0Lc!2bWY{OQ&2vWukTNx?LVZ&hq0SM0)IIhnLM{v8a&D z9`^fKlU#ccRw(CuJ#k^aF@pw=A2V!)@g;3Yum?+CUiN>qRFa>M9UEanfK=7b9;OFl z1ME2Q9Z^X5A~{c-tSV^7lv!HW2g$XN9bE++A3qkhV>ECuzNr199-J9uf2##atiNb# zQ9JZ+(P&pHWW-6#xnMh{x|%Jq1Yt#r2!;6cj?Q(++E6=s4tM~ubqe}8Hbh%P4lQBF zM9LIi=(j6n&(d(IeHlA8D42u~GCisF#k9i!0bO zosr_0tLKQ06$p_5(wT74xXjLu>ef2rzM&-*aPsh>vK`J`&oem4=es~^Rg~TLcc+o+ z7-3I0T#)isvqLS9yJ7CdGaZA;FT^?dj;~=Ki-lPT7SdwJWyeVeY{1rWg(%vFFK}ws zv||Vgs&=5uWD7oG{UwYtS`EOQFcQXcC?57 z`_ty$4Tb)3A%rb#+}Msg@|=Wi;fN-7T$sqg2{_)ah@M!Ot~9`x&pVso1o3e*`$;_; zwwEKL?P34^^4X<@9lNOiDvJ30neh3uzf`fM=o2P$BXeaVmQO5&4;u5i(WfM2)3x<~ zvccspd<{+b8rokP)y9sY%Ob?rVq2oy+4X{pLP;nTwoGygAfYXA{jBgK%prI#Wl)O2 z*(-ax*x?cxFn7Tdz*0Wc4;Q}DN7)C_@E-P-21WZ=^L7vWBm;!PF@pIaWixWgOf%8Qos(-~%LmSJxCfRY) zAqa%KBA$X0lrn!tfP_kqH_+-;C@_O1HW5@{E^dOg@}2{cQKbtKtiv>jzfbD;Px3 zA75RIf^cxkI{RQfn4N0JI)!5gris?);L8nm?CvC$g}&ldo{`k6oTW6)+=M=~N)bPa zHm$b}<_b^rw5GmW&;TCWv32#w7JEg52>MeTk2R*CM4g+wBK+dPQ$} zi1hnTdpDg_ZMPU8BB^wLk9~=OTK$A^cXzLSD#h-0-glY2Psj(3+rgD(S55xI{r0YU zdW@Bdhl9?utOZ{d)|u%*R5 zL=T>{ig{Zw(6fSaMQM!Pe$7C6hnYpY<-DxqMb8!F`FX6 z2wdv%&`x?V&m;RPJ-F+!Fxt#8^Qj%@>>OJDoq-=X%El52|$YE0Xf9&7rq){*I z*car?E|!!_O50x9OX{QtuZ2xxS&!b@JL|y?@9ppPV9ZC@YK`I0Cp!*L1@D1NG6n_< zY*$V$F7?kNi%QRhE;=8NilK;P=Q^T_tDJ6lE16woj0o4(7X98Y-jwP|A?|WZ!&PlA zSl}*KGyuu|+Ya}?m{MJO=OMQjF+Xg#H=!Rq<%SgfD_%^y?I{=bNH#b>#a`+wx6xh- zxL<5mPx`}4Zih66F6IJKWpDYo5YS=fg96fLA9*PdX{n#wSHNt4d5j?bQc|uVQ2`VL zNI#Fv0`%mqy_^(ONNylv8kUo*NOKE|DxNF_*BLKhHKe?Oa!U%V;@t6w3q;Wcu8lbf zV;Vak0+%q{j_SceA@X@Wh>_M^52CyJ=|OalQ412fqk=TLG^(PBxmrdZt_RWPaM5}V zhBe<=L7qaFjm~k|x}x0JAn*WbO*ks21z`oI>cO2=LxlX39(1oRvf*SyYsk3Q z%fY{D%29f3^V%|O9>?CUBV%}SFutCQ;mN_^268DqS%*gQAU*bcV>wk1PHG~r(}U%j z$t(2WrEg^@I7^t+LdM;74oWR$On)3~+FJfz58jHBWA$Lmw(>$P2#>~EMEclHzNeG^ zj+QYYaN3?7<#?UTJV^GU9?dr3GxX{h>xDbZFow)Dql=6OP&l~08%rtcGK?O_mg(y(i}Y)(jH3jOecWH}q%(9FC{NRaD8?E+xNwM!k8qgx z!Z6YQ9BepThO@=N>Z9c4dhm9OM9Ckv$DqUeYqRL&Fy{m?ccNSc zx;hLK!1lFr9qHpFxu=Fp!=}hMoD?K!$21uhHFPdk40y23pMIMGjZPqVfOz|&IhH+y zYpfF!ajhS z$eDVu^-|fY1qs6P(S-F$m87`kGF(PZRUuivtOq?vv>(SFTq)1P9>5(;CC*3Y^3kW& zs6yKZ&Pm0%MzjO)0152?z2{*2R2dTm2N$Nv_&kJzmW}daogrb9d`XY(yG8z4k1exJ z{#%bNu~R;z$3EI6Ki6Zk(&ack7{6aMEz1o#ARo|U6-jQQ2kRV>-{=fYkIJR|*_aBN+_l{f1_6aaQg#1iM- z>!VykCoTRY!y6H#1L?|4J+et2C0P&tl~=*qkp;eXRVEu!W?{hLHN)jJYPNHAp5m@R zQGo|Yw>%W+p$O6hPo*zK$eDp&Ihzm0{h?(21&>mupS1*PQ{GT7Wghb%^j2`|o`rPu zRR-z7-~AN~8Gk#h1l~;SL}d#qEh$`anu=uwl?a2t1Ed>;6c|+wjwvE)vhn~r3ePLf zpuR_){gWq1!8`~2Yu|EAF$IQ`BiC-XM@V^#i{t{AR)i?0bdvBbCHR)x7{_PfB^CHN zbxxo;@M@!p{7yb7E!{7zp!qXSqxxw67E*j!rK^TZcgiVncm+v9AN1CPj*6naICg#| zWtkofucA!Xf`tC5B&k&u%-)%gVJ+|^6YMA5tu8V|(4S7cmA{ileIqht zJoS{UqkQ@4$tW*=cQPsuKROxZ&o53!Y0phYx$#?*NGBeejB?>uCZj6z z6O&*O?@J<5ye%0O$PY_K`S7cfQLg-?B+`lZB*F5Fcs>s)#8Z;s5${L>h({!&y!i#m zsJ#4qBrx%IB#I^;jzoI#Xe1)Vi;+kmo{Iz~-inO!G&KOhD~XNR&+$v9M$Bp;l~~!T0Ha!PVvekXyS=SMB;tNnIfTh-4PXiAb^|km;hnM zgBtc+00Y162p}GIM4iN|j^GqeIzo(i&k@PRV~$`EFF67e&p1M~c*7Bq;sHk_5U)2z z<>#jxkxo3@I1{B2k2Zowyx54=6VEjwp?IqiKs?k4ns}uVLiY*a!tXPJCLU)5O}xwq zns}BGH1Q^5ln1}Zhz1gmF@i&Gg{s7f}lF_9FU8JiLe$;?+fz zR6Mx|Al_Sys$^6JaN&m*(Fh*}R)n8eM1ory=PLm`_+>=^@vI_p5^pM^gyKO(VB$4J z8Dkbu)aG_Jj+I?f#PNTk6ic}J>a|*G~FSz1O zO#BSu9urXoTI9o9nc}Aieg+wj(q5$aR`d&}_yEca{0!pm5K+53y5U_?@v{#@iWM{ioBXDTMLSA5aiBBLFtB{LB_XqzBz2gI(pk&iRmC3Ac%X$(T0A@IQfxPUcabWX#Z`#F$SqUUOo!wS_W$rg#H3$>^Ft52w;Fw_KP< zF3d9*=A8@k&4u~r!V2WVnmI9HT#}5o zwfKSplXGE06-DiZY9_Hxe!+xJ3QSm)Bv#HZn9$NMn0Fry6Q(A~==&8mGs)=x6`Evx z4kZ=|g=QneT$oU4K@%1yiFNx6CY1aOCX`%Y!u}+&wtvBd+UH<+V0fQ~3WZHFuE~X^ zeuc3WNiuHuZ`7v$Ms4|T)b{^I?b_!ylZ(QGWt~>5|FZ4>Z`8s6Mjifd)Y1P&-TW#l z$#{F8-WFQr|I9_amkWE43p3}!thq3IE=E=(9V(e=XEC9##8`2{`P+?|PUnRql8b|M#cIu~{}7j`}ucKK^;{6g;`BjWn^ z#jCvI#ta%XcEyqv3#DRhl-dTv5$e=dsSB`3fOPsz1BP~t)feC%jn}}Qc1jb&CMmm} za>d}IPfN9VT3SPwqm{Cd@-kZKWLQnDIw;>3{0G$$hP~Sz7~~3n{tt%z18wM_^r@4^ z6n-2W6Vnq76NVjFwg$w5;J}3C1_*@d?q^J;S{;?ShP!mMqtec>l{`CP0kDDUby9-e z#mnDdJVP;^K)Xr11h`BeIw`H(Z)>#u)V8zI%CMZMv(m}^Pc8BhJr|LCsX-Scu+a}) zfMwFnE=qTIed4@MHM^o#W-@hE`Wv$7aaU!8;S}}grUV;y(1dQt;eaM=8U5BxDPfSM zhuxH72E%!B?V*JG2#bxPU4tR+XH2F>J&;4Xl-NUAZZK@2;9d~(6V>gdlr14#HgMjB z&FsgHn`pkl@NbND4!fZFE>S`+CET!!cJ{*b_%l7|rA#$sP>oY0BC zO+?i1lSGuT+NfR(j8i}M9Yx|yV8&Uq@bm2g!Ss;s#wx)xS82R|Ye4g2*qMX?;YBrxGi0tjCcK=_gXn>8SONnpZC0|;Ld;8jHpif6ikk_Ln` z2~0SX0K%CB*hB04DQ$T%W#YAziI-A|ypl5ULdwMJC=)NEOgt`4JSdV~Bx0y{qq_g zE1VQ+I|#cAYiRQzWdK0_!OAFr$%7SR*cu_UOc;JHm2wL0Q#wcJ5z0FR^Vkt;K168_ z@WT+;<0Eu)2)1L6P?@31cK{=Y!r~vHQ$v-G00oCBZ2Dus zwnM|-7@4Kba3uuO;PBx}eSj^)m2Uwa565J>n#zt)ngR?P0o%8lHjTih%xW@>RJs6k z8>w^y*fSDy(Q5iMk~y1bRFC$a$<_FcyTch%G+0(}=?hr6J_Z&rpT|w3?~( z0oXE=(|w$Y9JW$$0_wVzMr+_)f-(qLrCG{AfTgoQ+d%3p^y~(z`8{&qKuO;#Ljm4? zkK|{l=xlgBXK3zhWfH)r*~&zK33HTb0RPOv#^D(nJy)3l@N6!#44a32+cRX>K%e=_ zSYTJ@E29CLB{C)@D&v4vG9ibX6lGF|0PHt`c9Y62P{shPUI1Y?slX5LbZ*j;ADEVR zA=2HXNefYkoAgY>1}#Dp+@u?eP|lmwWHDpuiKWU8M8DntNInY{JlB4(M0IMk7Ng-ZB`j6O1H4*_vRtOPWy*LhK}ka% z{M89w#7R-AlVw2(yuo({U3{6kELTQqECt-bGSZz{QdTI{wbv7Z(t zLmBqd>twXVej1#Dme^0XQeZFlQ$11!QD2ARN}C8y?S67wsTj402`kYJ`zdp!G8~}w zD(K06N?(NrTuxV3DZK!~SA%6aEnlq+26(p`Exw$FtU)6!rw418)_g5;T~0r*MT;+| z;_D!6IhoceL%qaasj+xXl>AUFI+d!l(q4S3azt?hOP5r*p3CWADoVAS0@tIo%W3+0 z5q17ii3d3Q zBV%WY_H;s7BDy%++NEnwTZdnlv2Y|WsK&ZqbF!N)3?bawo!P9XIvmV`|7=e}Bs*D6k-YT$^ zZOT9|PVQ<%^7?V2S)dnkxnk6}WhqzMlL|H5OXtA{Pc!;e-H*xy*TO9#Yoz630YH6oydJkIZ%i0f~wf&p-yb{W12a`PgYzXbZ9AjP(j-(p3v+Fz-DgpTEV^_S zb7vM6KZlthi^iOTca=qdoWqopMWudYF!eX|ZWi6wK*RHxd9rBTc{ngx^zOXU!z)YF z`n&_R9{5=3F#g2ueMDv2^E-xi7D>PJ@;T^&(hu0Q3z)yM=-vgTo0e|eW2E!TrdW|K zwr@4uJ8xIby`ajLr%A>Qt@7gExuWRmpGsvi-c*Wc z(fy+k{UVAi7DS6Tlic-|lj)C}oJ)aQoOQQba5-gKdrN5nV84Yr$`o;1`BsxNxFh70 z>rDQ4AZOQYB>>cux49_!?r_06+=0%aV0XCCSsG~gr&E9u0|6O*DdZLe;H@DSI{qhm zTc&e=a=OBIxim3%Ir+}J=mweIYgns$aOq@PeUCFz?!ifwslk0txA4Bw#hY88(*)!Y zH8n4te4*fem3aOKFZlR>sc?e_nDAs;`2gxA)0+p-V6nHT_wG;{Xb z%}je|=EnHWqO{f;<5LoH`hErOn<-)9^&7fqfyI>RriD8t#LDe5(8?{k&C2cj#EO-P zOto#yl3+u(pQrUUNIp-GZ5XHLsfk_b;LZOK*KsE@D7Y&xm3XX#@H;ekW2P`=+R&aA0g$tQX3ssn_ zWO}c{cqUV<1Cx3({qEp&5r4s=CDX>gFiRwp*F&^>GWB@~(djhpA=E#eE7)?N|m`vmn%ry)<6^Y9a>LOQuUMPH;-*QY2;I&FE1&QGULT4dWSrL!jNu@8i8 zzz0E(AgpTPrum%Ro=(rfge2cR!yKAU8=i4V-)f*kHVaS7=B%D(GfT_ood4?Q%=!E| z+Ay7>{$cFLf4KIa{!u!6b1fEN@5b1wk_%ZCp>++dB`I=pQ!iTbKylZK)}sQvNZG44^E}eW|bBTt%hFYf6 zx!35VbgKM@OEm8d(=2beMQXq0S}uGGjY_9K-*TH*ddEF5?H$+hk9SHfjc4V1B^sE)%wVJ&He~Om`+zd zLbKDU=qHvw;uA+6`h+2yPI*6LaH9=Bb0mG{_I>zSlq$K7Dt_myUGV!r6-`~spo#)6 zFsOY1{xYaSwIcJVA=qKOz~HT z0kjW50W)Y+fZ875cmSF$g9;WUv4Wb}qs7eo`h zp?3vQh&R-=klGPoTOoB0K$XI%<{MgC80mIWdSMiBC%F`XBJHG3MUc@>+E#=kKNbPY zVG1s)Mga^h3Tz|IFACa5x>pnlHd4hvL_VNafk^j&)(4_059m#x+7+OE5X$m^(t@CE z59nnObngMRErtZgXhbm-_ZZ>P|7HO1i>ZwO>IFjukI|H1BsfM_g4GrPg^QzEk5No< zjH;DTn|VQru|2*Arvr=9sY4mH7$r3Aw zDjW@TnzF;u+NY^uB{be?T3iXuwH6mF(VuI{yE2qxElsSf4hG1q47FWLjjMp=BE?ie z@{4q^3TPLpcvaN!IQ6aynuVrTh1y!^PF2t>)Hni>?d5IO1=fIeyrj4qD8);(a@g*dB3X4F-y8ZOZ8x~TF!x>OemdXN0;q3HLhM?J{8M?ckr-rS?CdZ^YtYF;00 zbdOfohZ5YQHyY^LKyBwGuJ{=5Rl+e#^~%(tk%}dg_&{sdFii0G=zRmVyT-D)3Rw13 zrG5>-f)B6)K>e{HhUYzc-4JEFM=ct0R%;ufP%r40M(D8@Q<`OT&<72!ja7(@C^MRz)jjFz-9Ukpds&9rQx>A7Xjx=Vtu8F=RKkBz`sz} zH_D+tq7p42X)iSvz(#!p$fT(PT&Gn6m`MU?$Va{u4 zpUBV>l2%Zt0Gp_x0GFtj0J~_i06!A}G|Ui9zO9(+S8_Ur=Xd6^T~JTpu=h({PLzWI z*UIpQvW29b{BSi`DfQAWhjOMpOpFN{r1vpKgMdVs4-WuQ{)feD6^$@^9 z69F2EQ(fchj`_aIabl&M^5odkFXdrVs+H#{T@{jEQkDQK$vX<*F@+0ofm#W0kA?s= z6lcB06FBJoB4@5R|)H-~<(G1F)Xz3h*m+6W}3@ zZ=-%j!;EjM&NBQ#uiL5(L&QiLTF00Lf%8`^^y)uo)PSKQ`;8esY}Aky_#5Mn?bHc4 zV*0(E+6JI-dvy}PlJ@FU0MBT39>B6_btypU4(cL+eI3+N07wu*FFL?7AEB&nYB06$ zsD>gO*AYhH2%YW-@8}2xcY;AYLQ^`a0{}8RVJbL6^*XCV05*2U40eP(x?tuzLdGr} zd990T1lF)CN2YdF2LW^G#@L{4%yOxlS^|;Cv?Ydqo$hJ{fd1WKqgT`B?wI~p)2r@q zbyrjU9}npXCN=d_yM_e42YQiH-6N(6~@(g!4($jAL`Q^y7dpO>J78?4`ua6dCri3AIyj!XjC7yrn@*3LYsG? zJ_FT2itM9$QAQuNq;`_@%mQ6_W}*1LYIBbf{rV3YF?I#6khF>6^xI<4Vjsw@FM~mS zF&}-P;~FRu3(w&LO^k(0_JJt- zFJPdhyB`FT*I-P6uc`ZBbl__`F<337F}(8C<@pRz-Q75gUH;T$s9My`c)9@W>T7B+ zL~Zr2%=Zpa3qZ`-A!;1}xjI2Yc=TNoSzw%!-6cyq8OVX{OoEn8FPHw}{ zi%;m*Fts#I9;Vhrc+W7ktQOVH@E27v!lC<%;*4-S|DwG{^gaG3c7$4nB8EegK^d;r z0{~wzog0oxn7NA6tKrCzS(_QM$vji7Kr=>QF3hIT1hoV`9D&Rb9tm~Lrojnn1RWTO zxjUOYMyX=}rj3HqWz&OE=+$hhAID%-9J(x4`=mCJRIU| ziu@h}?VHgYKWQ{)kU3f%4NCMFtU0pjdG!ZZ)LSDTEc&!#bx z)&5#)xdR>m2rpceUQAY_wWunHs^(Fk7!8@Cw$-BUBWiDZaNU>!yOK@irgAOUOyy?v znFiyPO(PPaGbg4Z$4_HbZ+bdS^+s%ZqFR=|nTFV|)74--hb{&><%)05S58;^YEceE z#U3eKkt)nk+i6izxb408oI+0Oz7{ciLlGJWCl#>;p1TB~i>&#kEk?zb^{SbyK6eE{8 zY7vB?4t_7b-r3ci^@@iR`Z>i zStZ0kf(|s(MLK&v(4Q=Q5HnCJJz1!Z0_eR67CV)GTcnNyXs{TjHI;r` zj1itn1(slhr_#(N*v!BQ{t~A3PGZ`{B&O9_%Cy}}QN~pASjH^z%U~{2>DDq#yQx%t zIp)7qTD@Ey>ceia>jIc$@k7<7VJR4qqSkWf`Dg|1Bo17mjsW-76)-2M)HoUTD-{m{ zaHMyNIx>(&6j%xo;s?{D%fNo)`iZ2=Q^0jMg)lVk(szXN-KG76^4+BhE7fTLn^$5K z-=&~c>O_ELt1!IolGkbm^H!?~z}(irg}FwnE++iak|uX7!M+! zK)SUK<=aZNQ(?uo(u7nr%~n!VVI;OvkM-(ofCuZFf*@ z-m31uySfQr=nlqwcdA=}Njp*Jo0M@t zEkZWCia*ct4a=Wz%vd-xH|d96>M{^RcB>lzPVQFI0Q&7g`kUmQu5JU^m(H}#d)1A= zUhh?Z0$8_?vB>?X_)U7SUtJ9_>1W0Y9Z=VW+!Pi6_yXk?KhO-1f#c&x3>(mI+#r!J zN@K$Mspmo1%*(Xnpt>BOu>_%)$tEGg%QWW@ihr3Z9p=a@ht(f}jXi>*U8bO47(4!p zx(-UbPOvmOgE9B3>Y^ZCpV}H=MJj%Tr>hVD>v%8{PRXC-b4~3Y{3rSo z-fa15yn@I-a{P#K!*oXGC`zlZVaz_FV%OpGJi?zHpk|NA`v&y$5goaKk@1KI-&FSk z6urffXK$(Lz$V;QcL9{XgLZvH7w@P)dGXzas~u3Ls~xE79d!kL&QRS!4Z5pt)uGNYyY|>x-P6-G+@C9EUH)XwE;JS&D0+YZ>I`;yz z#uX~}5?~L{h1DN5;ERFLyego#_#^8#Z;~cOQcgHD!?jDXa0LAk& zX3p>U1=t!-$7z5VFUEqr9Y=xP_I8x#V$2d39f~??lO-sk0K%7i9Pt2+d>xYjBwxog zfN%U9QvuR7P|4ph2iRT>)CzFS26iOCkpNJ?fMYtq;R23%0Feb5{8rF07g*auj_(07 z3bC*@g;~l~4RkHSQtlREDZPq1!oZ1gwZ`>_--l|S#lX3PmKJji0(h-~KEaLwz)l4_MgUYP?id1)Qrs~Z z;A3&7^$T(I2X-dJF%+P3sAFg#->$HE;{00tzzn#I>o<1z3L`F4ggTmHM=m?mQ5hgK z%+VQOT$rOHz;7BBT*A>Z7`tz{!e0s!#1AC62^VYZAWYwDDWL>1mPsz*Xp~>pEXla) z`6;BF19u$ok5-^1lyrz={`)1FGqRMUKCo$}P(zv2QjUQDQKeA}nf8@-^wUoCueCsS z*IH0^DMx!6RmPDY)X8O7z=JYSLz!BY<&?Y2a%4a`w6IKL$~j^Iu9rhI$W*I5nn9-Z zj{;SA!#S;*CJ7Fn$lv#hJc`4}oQ%kawoSJzp` zSCM;vpQ0_rr9iQk;#xzCyF+o8#Rr$-aB(fr#e%!Lbh)^@!(xlG$V{Q=QWod=oRgXJ zg?;^={&COAJ15CWCdtgbog}7#TyE%4`NFs&cxR-r*;#vky*IqS-dpvpYGzfJi<-ge zP@w6h_GGA<5_S`dnBDao5=HyN4j(G0GWPm)3~|m`->QjW*eTGAfVdNA4uWVHgwFRw zT?#TsLevdrxAq2`y%5S5fU5u-KxfoYHusFKk6E(Lun|vv5Whne(?FVbaH{ld&Z{OtQZ%=A?U!ps2Z zkHU~UqmlR}ctmNlQOY^GJ0%R^8~#xBdwH`Z9jfC`uRxSRW6V*1l`&lq&C8k-As&^* zke{R4lr!f*yf0@?g&0-doB@%lf;kOhNd56SEwqWW0${1=ZiCUR6PM+f?VO zWQ+NzY*PoTF$}8CmMg29LjbeZU>H@y?5nfCoCLpRU&aZYEzQ=6JM@X5 z%=^@2A0E`i?6ytSuVoH|I8}>bvD#e5#@bv)<~kgTs>7Klt!oa_xqeNHT)(DOhr-R) z>Umu=B{KM2mow;A4|CBrb+aBP39s)sa?lS+4*F4&4oQED=-jzeKm0tnO@)P{qis{s z;at;#4a}hkt!=>NW@(5SaGP4(kn_sW2$u#;*9f!YHkG+C=25)t(b${}QJ{$#39-8g zTLw49W!t8cPKi_0*A8W*haQh3SQq zaV@wNI<@4QU2DlTtJuoykGNf}xTW*8#wgyVrnP31udOj$@On!dZrNLH(3Q8Ta&0k~ zx2a8SF^2H=L_16&+tlcGoJ(9ghV9#Py7TSLF4~*s2E1u*%x!NrP1>hlr;gn^U~b%o zv$LJ%%-$Ua*}G#yM6;pl)4@zdd3InY-gLnHzfA>pWYMQ1hWs}5tRpu<+fEFZcH+|0 zcE$~AoBF*ox4l;v+-SI?X2xO*46(IpaW~Uno#|o*LI2VPmu9UR*pc{=NpOc@)`0kGnDrs*bT_+XUQP3V#17PeKIlQRbGIG?I`x}v z98#CM;|4cdCF@}pO-c*w@E~c0Bvt;yG0Oc;)=j4d^)Q3+pO_6j%(@VtdcgNps&7yD z!O&mr>4}mqsHDBj$`JK>q5c=t2`$2U>@lX7s_VbV0@SG5sNs zE{h83Yqr8ac%u3utIg_BU-Y%js!KmK*Jky!A8y^7RoDLLhnrPwfArDKs^G)WexS7BxWLh> z&j@tHX!U3Wr)xQq6Wkby`72s=c5yBbTgFgjCj^}BkC!<5jK+n$toDpX zC%vq4jlqz)tQL$x2fnNljAhYdEGFB_DrzjQ^#=8DtXUQ!`#3YB4*96Ml)(`YqBd1~ESpX;#dgW_C=rf(mZj7FjoLtNOakOls-6 z7D)T7c|tX`2Xbj=HqRX2xTo6vZst{qr<47)QE~<*yL)QS40A~G zdz9UeUdRp~s{Rm+g#YFDWrkTqxz4vp2J7unXv%vk_;);iapoQIf5Q{Mn}JE`l@V0J z9hy|7T4a{sZQF69IiSL4qIVup>t>qa5T9qFMh8@#S?E#+)E~3V<`5}on=K%W*|?z} zQ0HgksqTRCpTp?}&oP_p_fh;8!$1GU>djmer%S7riB;^r)+u0FU@o2j4yeev=m!VX zQ!UCW{788~%~lv+fXZwLQF0zTF?AkWKADFp=zyv=p9@+tACG)+a6TufwE)8tUN7KW zzAxYeO&7A*wvaPRxX5e`liwDx^9L508SswF^+jgK1Rn2Hsb#oi?^NGq=%?@0lx1cq z{AcyVGBYUS8{JTuit-~u;-0-b^1re0TFi2@aAJDrWi6gIkE$VSF=rfA57wd&A64P& z;OkKpy$%EAsPbEn$CRUL)OyS=N7d8ym{vGl78S4oh#zs&tHm2Ik1bM{H((lBq#A9+ z^TQ(bbR!-r7ODQ5@c6Mvec6QB>b&Z;8DEahtLV)bzUNhuEtn_HtNmM0v4d*-?@zw+H_W>Z&oU`E@oKJCCgf{}qYXvXivSBzKc;7(Ng zmC7HDRIk*mXpG=jD#;(XcfL}C{=oF|NXw04||zZWxQoEpCubAFuqw%7Es9za!MRp0^Kmtxh>1F(!$ zmk*egAkrPg1QDxR9z>^$RXYx%N5v}dL%6!JI8zsmb5?CUWR`?@dI(wHQCm-!_;6fVqrRr?f5 zd#^T~GIQt{+JiXbXH)CT{K-+aal zO^H?PG-3D`<8jbXEk8H}{~tYzvEBO;&YG-w)@-F7lD6?ID!oI+KZmy6p~{>?`8(9& zbC^JOs6^-SaI`~pJCBZWNL@XTf)A;*7jV@Nsc{!Dl9#IL7cnjWd%-M_oECGV#L`?M z_PjSUU|S%HABfig4qZgsAH(TNXs}~AwHa9)!~6MY%otVsGQM@j;2<<~xETDZhRzYA z23>(A-nqGgGUuy;S8;QguZ*i^E{NZ+V+LJ!)yxL{)Kxr2%vatw%s^H3PqP+u*9{XV zk^E^EhyMMB8KxRu!xf*erd>l#=c^~z@HjMI`CNxboO4j}z7gFzbnic)eLp;;arVK8 zLC*f_>2)p<+4l!R&Lbg^X%7hGS6Z#TiHGO;%6${hFOSvzn`Q^k=QK*a_a{+NIdSrf z>z0|_d(1 zJw0xzk&nze5a%D^UUvms=Hd~A&4ZQaV>B|Sne0ic^NpwXlc;R&(fQQ-$0%^F%KpS` zoP=Zi&#UtHaT~pr(n_YbK0*F-)$1qbdY!KO-6ZPBtuc+%`=_{>%~f@unH~R=e4j|zK@2h^)7>wB}9TKpP)>ZRioce$*ju#Yo=DMKAMG+P_%K&YtD8nL>>ExsmZPSelsho zZlBDao*eltxu+^}Z+b=L_Zh!sAo{ymO6~cK3c1z2@94h`zu?Na)#5Lxj$0-DiYbT7 zZl_Zwy=&UWm7axD8Dw|ma9I|MRo4uO2~sK`Jgvg&nTOQ~dRTmGJ;V$ztFbDTz$y=Y zSOTj#M1`bQCiNt1HSUg%$33g)d@t zPgUVQp33H?u*z%HsHUenyl#)5`kulX0%Oc{ZB=9zD?N^9o}XNON@?ZShPkj2{nmZ+ z3nWDMtwP;5t+p7N%F2Uu7{9^lS}H3r372%XzUqU9P}x&k!H8{;+G?z`snf($dDL2* zNu5q@1tR8CYO50j{2ljeIm#!kmD!VaGciURcA5rht%hh@zl>HH^*F8N2R&grtFE^C zffKg4awoo+>C}VtmNyPMwsOG+(`S(SHys-0vFe`Q+6s}`$La=w>*uSM`dCGv7CPpnmMpObBG&PNmIc1wls%rPb(6 zRyOEJ*58wMWHIV5^i+#qF3zhe`Jx}JR6TsHE)dy+tcuDfvsD#(>&#YHh;uzf}c#dp``|mFlIRH3j0YqEd2rK zdDOCem~`_>S+?7bjx#Y5D&U@IkbTy|d-7i^`5j%$yvZ6TNmRw^`TA=N*` z$_gF5AY2zE*FIe+<~qLiVQOrsRRB6VKr;wj`$DQ{Q7a5OE+BPAbO7pfxNK!qL@_Hj zbaa3qb)lG54mx^42MAo@>JYf9lnt(AsH#?ijd3{}0O3kj{7?JkC~4);NG@HEl2&FI z`7J}B3-L^*B% zT+cZk&s2)?xXCwnojX4e!>d)OFDR z)~MQbFk-pfV(L&Gs~B_?UO^SFYgK~|52it&@T#g|J^0NY)KyRGp{>}B;;Ke{bOQFJ zgGv-`ML>r`yCL99B{ir4*Aou)QFR)ktFc#A)uo2$XzbcN2zXTrhX&vxu2BUVTg%X9 z=NnstASyS(%=JwzY+|_}GB>q;hj`G{s;u5NMPK};x^=T^tL4q$#5Wb&4Zepp#}x2Q z4Ku7p>PvHLV6tyC`Iflq880%tiMnFIq)&G%t-8{}GGKSPyVX$5Xo)%LoAPR9orbvD z%DMuvsRJ!nCcmk?JuyFhQ}=sf^5!a(P#bz-qU3s1QH6V3 zJ)om9-Bsc~=ycx{Dl|?d>x)|oSE{SJ(HAoq*Q}>n)6eRNDxrEwsY;0<44Q01aO1h5zKpc`DxaZNXXqn_BI6sXz$i>bRfk!

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'card_about_to_expire'}
+Classes: {'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1213,7 +1213,7 @@

4. Train a more robust model from noisy labels -{"state": {"499e72220e084b96a2fac6d7d24f3e36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d398c27b16594cdabb17dd18d91923db": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2eda31c15639409c917ce8f30f06fea9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_499e72220e084b96a2fac6d7d24f3e36", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d398c27b16594cdabb17dd18d91923db", "tabbable": null, "tooltip": null, "value": 391.0}}, "31829b18848e480eaf3d67d16a966abc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2d0af45a331440e91bb670c810aad25": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "40fe431dbc09475d9cc4e82668dce66c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31829b18848e480eaf3d67d16a966abc", "placeholder": "\u200b", "style": "IPY_MODEL_b2d0af45a331440e91bb670c810aad25", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "16cb8599d6034cd1b810cbf99f703579": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e1757765b51437c9c3576da0b2a84d2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "71c0454905f044549aa29c3961bc512b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_16cb8599d6034cd1b810cbf99f703579", "placeholder": "\u200b", "style": "IPY_MODEL_8e1757765b51437c9c3576da0b2a84d2", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200769.1kB/s]"}}, "c4843a0ecf8947089a56431c777139d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98baa2df749f4718a19b8ed6f6b64516": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_40fe431dbc09475d9cc4e82668dce66c", "IPY_MODEL_2eda31c15639409c917ce8f30f06fea9", "IPY_MODEL_71c0454905f044549aa29c3961bc512b"], "layout": "IPY_MODEL_c4843a0ecf8947089a56431c777139d7", "tabbable": null, "tooltip": null}}, "b1a6862286e144a5b4c7e3b53955c909": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9588d449e7b24e6db9e90daa5078369e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "20199ed9391b4fd3af9ffba1bd110646": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b1a6862286e144a5b4c7e3b53955c909", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9588d449e7b24e6db9e90daa5078369e", "tabbable": null, "tooltip": null, "value": 2211.0}}, "71581c894a0e453e992f58ce4ec00848": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d50a9bb17184cec871c72343c762cc2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dd67fec157b9489faa0dc3ddbd95ef35": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71581c894a0e453e992f58ce4ec00848", "placeholder": "\u200b", "style": "IPY_MODEL_8d50a9bb17184cec871c72343c762cc2", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "4e0a66ed3e51494baf8c4960957f2abc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2df28735813745f899e2ab60996be667": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "41c9e037f3074a5d9b33b7014d85cdfe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e0a66ed3e51494baf8c4960957f2abc", "placeholder": "\u200b", "style": "IPY_MODEL_2df28735813745f899e2ab60996be667", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007435kB/s]"}}, "b42bf80fe5274a5e908a3c39822c2629": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "697435a323a84bea9cc7bfb42e0a5e62": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dd67fec157b9489faa0dc3ddbd95ef35", "IPY_MODEL_20199ed9391b4fd3af9ffba1bd110646", "IPY_MODEL_41c9e037f3074a5d9b33b7014d85cdfe"], "layout": "IPY_MODEL_b42bf80fe5274a5e908a3c39822c2629", "tabbable": null, "tooltip": null}}, "31425907e4ff47c1a17ed0a9935430d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5042f028d3a24a99a3cb8dbb370a2d51": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d62a7bbd2b814718bdb6e5c898023432": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31425907e4ff47c1a17ed0a9935430d6", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5042f028d3a24a99a3cb8dbb370a2d51", "tabbable": null, "tooltip": null, "value": 665.0}}, "477e3bda05594962bd8ba0f1e3b7bb31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc42abfc89cd4333a4569bc9139f85a5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bb8dedc70e1e42f985ca245b4c1626d0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_477e3bda05594962bd8ba0f1e3b7bb31", "placeholder": "\u200b", "style": "IPY_MODEL_dc42abfc89cd4333a4569bc9139f85a5", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "ab29117829274449a8621cc4708da2b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6758addea6d44238157a9fee26b6f01": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d8b4c898e4d49c795640c857d8f9648": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab29117829274449a8621cc4708da2b1", "placeholder": "\u200b", "style": "IPY_MODEL_e6758addea6d44238157a9fee26b6f01", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007137kB/s]"}}, "787647896a374c4baef37ba555b3d758": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7905c4a4ded402ca686067d0aacc292": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bb8dedc70e1e42f985ca245b4c1626d0", "IPY_MODEL_d62a7bbd2b814718bdb6e5c898023432", "IPY_MODEL_4d8b4c898e4d49c795640c857d8f9648"], "layout": "IPY_MODEL_787647896a374c4baef37ba555b3d758", "tabbable": null, "tooltip": null}}, "7aa30d069f444999834643e94fe81c9b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8429e83ba7114915933be895d5f6fe3a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1643bc7cecb74bc190903adf9229b34d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7aa30d069f444999834643e94fe81c9b", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8429e83ba7114915933be895d5f6fe3a", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "a215428c7e0d4fdda219b836792e0bea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "967764ca5ac248399e557033cfdf7a08": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e7f2051c6f3e4cb4afa29879fc4e25d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a215428c7e0d4fdda219b836792e0bea", "placeholder": "\u200b", "style": "IPY_MODEL_967764ca5ac248399e557033cfdf7a08", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "21cc8aedfd874b128773266b548130c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "388e3769071b4755bf2c6825a5643904": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "161fe61da4db4f7e8074ff8edcdcb759": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_21cc8aedfd874b128773266b548130c0", "placeholder": "\u200b", "style": "IPY_MODEL_388e3769071b4755bf2c6825a5643904", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200727.7MB/s]"}}, "e1ad008614fb43fdb5e809f4d8511a82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4745e1e3131d4034bf9a596bc4fbddbf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e7f2051c6f3e4cb4afa29879fc4e25d7", "IPY_MODEL_1643bc7cecb74bc190903adf9229b34d", "IPY_MODEL_161fe61da4db4f7e8074ff8edcdcb759"], "layout": "IPY_MODEL_e1ad008614fb43fdb5e809f4d8511a82", "tabbable": null, "tooltip": null}}, "5dfa8539a6c948378badd6686cc253dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9d0db8230f34b468c783b24537b3a87": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f8acf7619d14a2494c2bd74f4c2d794": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5dfa8539a6c948378badd6686cc253dd", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c9d0db8230f34b468c783b24537b3a87", "tabbable": null, "tooltip": null, "value": 466062.0}}, "fe6d4bd14f1d4e9c889f127632dfd090": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1cd701a314345e8a946773e606e7e5e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cfe55f8de045405f86e66d60c9c1ce0c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fe6d4bd14f1d4e9c889f127632dfd090", "placeholder": "\u200b", "style": "IPY_MODEL_f1cd701a314345e8a946773e606e7e5e", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "1a2f8352992a4e8d8667c62f94d7e0e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc575b26e89c48eea0b3767999b7957a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ef11cb19d76d48a098b132ab8531c488": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a2f8352992a4e8d8667c62f94d7e0e0", "placeholder": "\u200b", "style": "IPY_MODEL_cc575b26e89c48eea0b3767999b7957a", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200735.2MB/s]"}}, "77ab3ba493da4bb68b8d39397523e2e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48016ee17d6b4133971e8d4b58046f98": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cfe55f8de045405f86e66d60c9c1ce0c", "IPY_MODEL_5f8acf7619d14a2494c2bd74f4c2d794", "IPY_MODEL_ef11cb19d76d48a098b132ab8531c488"], "layout": "IPY_MODEL_77ab3ba493da4bb68b8d39397523e2e4", "tabbable": null, "tooltip": null}}, "5b6cedd62c3b4e2dba4fb6cf6ac81919": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51e4ce1aa08a4875b0078386841ef6c6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f717bfe4b6324a74be7f067e29025df4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5b6cedd62c3b4e2dba4fb6cf6ac81919", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_51e4ce1aa08a4875b0078386841ef6c6", "tabbable": null, "tooltip": null, "value": 48.0}}, "3090f81fd63e47748b48b354dff579e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "229a059bf66a476caf93f93617098541": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c4ab79f47c1f4a5fa7a952d2f4243909": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3090f81fd63e47748b48b354dff579e6", "placeholder": "\u200b", "style": "IPY_MODEL_229a059bf66a476caf93f93617098541", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "b876cea56c70415bbe96c6d929472c03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "987bc5a0a5174818895b0e59be32726d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cfd42f9c1e5b4b6e957253d074ff0a96": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b876cea56c70415bbe96c6d929472c03", "placeholder": "\u200b", "style": "IPY_MODEL_987bc5a0a5174818895b0e59be32726d", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.30kB/s]"}}, "2059ff2a4cfe4817941404aaf9b91a27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3081197287a941cea971e1c24a1abd42": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c4ab79f47c1f4a5fa7a952d2f4243909", "IPY_MODEL_f717bfe4b6324a74be7f067e29025df4", "IPY_MODEL_cfd42f9c1e5b4b6e957253d074ff0a96"], "layout": "IPY_MODEL_2059ff2a4cfe4817941404aaf9b91a27", "tabbable": null, "tooltip": null}}, "4f6ef66a05864b318215d64d3df902a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b71a8e9e851b4881bb5145531e49ccd0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "66867813190846ab8aed312ab6908a43": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4f6ef66a05864b318215d64d3df902a8", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b71a8e9e851b4881bb5145531e49ccd0", "tabbable": null, "tooltip": null, "value": 231508.0}}, "8c2f5adef8594b9d94b856fe69ecef0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40a195a274ab4351b4d37e7880f857e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93b428a1e9984e3985970ffd82b85429": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c2f5adef8594b9d94b856fe69ecef0d", "placeholder": "\u200b", "style": "IPY_MODEL_40a195a274ab4351b4d37e7880f857e7", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "790e13d2858c4cf4bdf4bce6bda99ddb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "29ab7c4b24694381897b57b84ded9af9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ea06e6ec819142448a354fc1926e13af": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_790e13d2858c4cf4bdf4bce6bda99ddb", "placeholder": "\u200b", "style": "IPY_MODEL_29ab7c4b24694381897b57b84ded9af9", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200738.1MB/s]"}}, "1f83772d100c412884fc22f69ab7e498": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f451a7bbcccb4c0ebd05353c6b2b00d8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_93b428a1e9984e3985970ffd82b85429", "IPY_MODEL_66867813190846ab8aed312ab6908a43", "IPY_MODEL_ea06e6ec819142448a354fc1926e13af"], "layout": "IPY_MODEL_1f83772d100c412884fc22f69ab7e498", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"652c8598515c4ff0ba25b190d2c658f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae8354b7809c4713ab4f0675c0d9195f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cb0b812812f34ff993c5d7d34ac5314e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_652c8598515c4ff0ba25b190d2c658f5", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ae8354b7809c4713ab4f0675c0d9195f", "tabbable": null, "tooltip": null, "value": 391.0}}, "361bf5bf63c6429abeb6f7ea1e78394a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64f74b0c37dd4b8591640b78a0f2a3c1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "522d3e04b5734cfb8381c9548f340ba6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_361bf5bf63c6429abeb6f7ea1e78394a", "placeholder": "\u200b", "style": "IPY_MODEL_64f74b0c37dd4b8591640b78a0f2a3c1", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "eef1d9e382df4619845cd1b216744383": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4c865c8432d42b1afcc7f4a6a2a0fae": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9cefc7a3ebcc4f54bc2893672efc2356": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eef1d9e382df4619845cd1b216744383", "placeholder": "\u200b", "style": "IPY_MODEL_b4c865c8432d42b1afcc7f4a6a2a0fae", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200764.0kB/s]"}}, "0d3d8044c3df4193b09eaf3530f4937f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96b33b666e3c46f6b9781cdde2761fd6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_522d3e04b5734cfb8381c9548f340ba6", "IPY_MODEL_cb0b812812f34ff993c5d7d34ac5314e", "IPY_MODEL_9cefc7a3ebcc4f54bc2893672efc2356"], "layout": "IPY_MODEL_0d3d8044c3df4193b09eaf3530f4937f", "tabbable": null, "tooltip": null}}, "e7ff81f72c554eafa492ceab2c05e72b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab02e8f460364d7fbb700a39164b6dc7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "69e126a7731d4d0aa8b7e49669aeb593": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7ff81f72c554eafa492ceab2c05e72b", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ab02e8f460364d7fbb700a39164b6dc7", "tabbable": null, "tooltip": null, "value": 2211.0}}, "db32e755d8ee43c3a216e58a83fb3686": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0abf5a87748a4d8b93ec90d4161b8ad6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "edccf9a74e6f46d88cd01daf0a22367d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_db32e755d8ee43c3a216e58a83fb3686", "placeholder": "\u200b", "style": "IPY_MODEL_0abf5a87748a4d8b93ec90d4161b8ad6", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "e78935895ec84d3a9a960b4284d1b743": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7c7ebf33235488b942d828e5c4d1a6f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55fb7043ecef4dd58cdb37f37c9ecc99": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e78935895ec84d3a9a960b4284d1b743", "placeholder": "\u200b", "style": "IPY_MODEL_f7c7ebf33235488b942d828e5c4d1a6f", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007406kB/s]"}}, "ea07ab68a0f04a4ebc3eb488c2597ba9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac95ebe25b9b489c9ff3086df776500d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_edccf9a74e6f46d88cd01daf0a22367d", "IPY_MODEL_69e126a7731d4d0aa8b7e49669aeb593", "IPY_MODEL_55fb7043ecef4dd58cdb37f37c9ecc99"], "layout": "IPY_MODEL_ea07ab68a0f04a4ebc3eb488c2597ba9", "tabbable": null, "tooltip": null}}, "210ca7ab78d145ba86b7391b2e922013": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2525fa88ca114620b5ce00dc717754d7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0ea2ef4b7bc941d19a3a601c67d50be7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_210ca7ab78d145ba86b7391b2e922013", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2525fa88ca114620b5ce00dc717754d7", "tabbable": null, "tooltip": null, "value": 665.0}}, "a70e4cd4d18c4b85bd17897b371223a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d023557f263545bda8fab13fdd9307d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d66e8e57582e43bcb88b99da5336fe5f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a70e4cd4d18c4b85bd17897b371223a5", "placeholder": "\u200b", "style": "IPY_MODEL_d023557f263545bda8fab13fdd9307d7", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "e5bc4c4bcfb6470e9f7e1e874c8a6697": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2b67daf1de14d3d85d065799fa1e9f9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1c0000b9330e4ad0801e2672df041524": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e5bc4c4bcfb6470e9f7e1e874c8a6697", "placeholder": "\u200b", "style": "IPY_MODEL_c2b67daf1de14d3d85d065799fa1e9f9", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007122kB/s]"}}, "9f568a561f2343a2a8e5299f27acf7a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d19d7ef7d17d4c6a88f4f58ae81b6af0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d66e8e57582e43bcb88b99da5336fe5f", "IPY_MODEL_0ea2ef4b7bc941d19a3a601c67d50be7", "IPY_MODEL_1c0000b9330e4ad0801e2672df041524"], "layout": "IPY_MODEL_9f568a561f2343a2a8e5299f27acf7a3", "tabbable": null, "tooltip": null}}, "122aa2a5802f432d8e4cc4827dd836a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8c51f1728dc4299bb281709d3a68d15": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e9d9d0e285e4cfc836a7140475e0e6b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_122aa2a5802f432d8e4cc4827dd836a5", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d8c51f1728dc4299bb281709d3a68d15", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "5faa9c91d82e403bae01489fd2d095ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "be614c58b617423fbcbb0435e931836d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c82e08ed0e374016af781486e955baa4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5faa9c91d82e403bae01489fd2d095ba", "placeholder": "\u200b", "style": "IPY_MODEL_be614c58b617423fbcbb0435e931836d", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "ce24518dc0d94c76bdf24b6fc8862872": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5c40f01708e43638030304f9b0701b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "872b139dd6dc4fae9eb30552a8b680d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ce24518dc0d94c76bdf24b6fc8862872", "placeholder": "\u200b", "style": "IPY_MODEL_a5c40f01708e43638030304f9b0701b9", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007284MB/s]"}}, "8a2b355dbd4647a1809d03ae2b462c43": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b96c31d51e2b4ad99e474a7ea07abd29": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c82e08ed0e374016af781486e955baa4", "IPY_MODEL_0e9d9d0e285e4cfc836a7140475e0e6b", "IPY_MODEL_872b139dd6dc4fae9eb30552a8b680d8"], "layout": "IPY_MODEL_8a2b355dbd4647a1809d03ae2b462c43", "tabbable": null, "tooltip": null}}, "75db82dd8c6644b0adc847a6ec36d732": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f27ea43e060c4017a28f91217ae8416a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ebd984c385d44e899dcc943e4301b504": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_75db82dd8c6644b0adc847a6ec36d732", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f27ea43e060c4017a28f91217ae8416a", "tabbable": null, "tooltip": null, "value": 466062.0}}, "9d0647d74213433bbb2a49fb08f4eb0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "910791280aeb44fdad1736e5cb17bc24": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c39236bf3087456383a6687e8aa84c81": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d0647d74213433bbb2a49fb08f4eb0b", "placeholder": "\u200b", "style": "IPY_MODEL_910791280aeb44fdad1736e5cb17bc24", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "e530b35090c54d35b5dbe38f7726ece6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65fe8cac9c7745ee9e31de90786a5554": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9d7218696514a75affefc3ae6972435": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e530b35090c54d35b5dbe38f7726ece6", "placeholder": "\u200b", "style": "IPY_MODEL_65fe8cac9c7745ee9e31de90786a5554", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200713.2MB/s]"}}, "33f5e7684a6d4c7681cb52cd6677e8af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d8f8c97b3054485da1188b4d01ef1cb8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c39236bf3087456383a6687e8aa84c81", "IPY_MODEL_ebd984c385d44e899dcc943e4301b504", "IPY_MODEL_d9d7218696514a75affefc3ae6972435"], "layout": "IPY_MODEL_33f5e7684a6d4c7681cb52cd6677e8af", "tabbable": null, "tooltip": null}}, "9d26aafc86fa42cbae7b758ab01033c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "110a57bd3b5b4aedac223766245d52ad": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "801a5228c24a421d9a21b68737ff9c0e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d26aafc86fa42cbae7b758ab01033c4", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_110a57bd3b5b4aedac223766245d52ad", "tabbable": null, "tooltip": null, "value": 48.0}}, "89124874f2584031bca956251a4c0498": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6529200a755f456087521afe4340b7ac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3d50dfe1829f471486a5949b75511522": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_89124874f2584031bca956251a4c0498", "placeholder": "\u200b", "style": "IPY_MODEL_6529200a755f456087521afe4340b7ac", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "2d94c6a0b0064ee5a98594db60961118": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b74d70b4bb6b4d61985e09999a66a269": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d1be46bea20f4dc280c5c3dce5f1871a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2d94c6a0b0064ee5a98594db60961118", "placeholder": "\u200b", "style": "IPY_MODEL_b74d70b4bb6b4d61985e09999a66a269", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.51kB/s]"}}, "0257acc125514c298d61156f5d9df1d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc7278be013f4edc99e1845986748fb0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3d50dfe1829f471486a5949b75511522", "IPY_MODEL_801a5228c24a421d9a21b68737ff9c0e", "IPY_MODEL_d1be46bea20f4dc280c5c3dce5f1871a"], "layout": "IPY_MODEL_0257acc125514c298d61156f5d9df1d8", "tabbable": null, "tooltip": null}}, "a9af044b4a514c26bcecc8d95eb9890e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1544e75c18454850b3987979979791c2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "18a3e9b2463f47b5a8738fd276aa7310": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9af044b4a514c26bcecc8d95eb9890e", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1544e75c18454850b3987979979791c2", "tabbable": null, "tooltip": null, "value": 231508.0}}, "46aae12dcf2e4d8ab7020564dd45582f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9750425d1fc4805b77726c8c261b1e0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "190a5166e3db4dc8bbd2a7f5620669b8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46aae12dcf2e4d8ab7020564dd45582f", "placeholder": "\u200b", "style": "IPY_MODEL_d9750425d1fc4805b77726c8c261b1e0", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "2f157a7edd4748ddadf4f976c36b70ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2058a1fc7ee442df85835e3717774bc7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0bdd5df62b854ae6b19f524c34a3706e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f157a7edd4748ddadf4f976c36b70ea", "placeholder": "\u200b", "style": "IPY_MODEL_2058a1fc7ee442df85835e3717774bc7", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200718.8MB/s]"}}, "1bcea5f7f0bd4911ad5f9472fe3857b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ce8705b306f434cb921da886d13c5ad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_190a5166e3db4dc8bbd2a7f5620669b8", "IPY_MODEL_18a3e9b2463f47b5a8738fd276aa7310", "IPY_MODEL_0bdd5df62b854ae6b19f524c34a3706e"], "layout": "IPY_MODEL_1bcea5f7f0bd4911ad5f9472fe3857b7", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 5c8935803..db01f91de 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:59.158944Z", - "iopub.status.busy": "2024-07-02T15:24:59.158774Z", - "iopub.status.idle": "2024-07-02T15:25:01.944133Z", - "shell.execute_reply": "2024-07-02T15:25:01.943585Z" + "iopub.execute_input": "2024-07-05T13:41:35.348669Z", + "iopub.status.busy": "2024-07-05T13:41:35.348241Z", + "iopub.status.idle": "2024-07-05T13:41:38.386563Z", + "shell.execute_reply": "2024-07-05T13:41:38.386029Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:01.946518Z", - "iopub.status.busy": "2024-07-02T15:25:01.946245Z", - "iopub.status.idle": "2024-07-02T15:25:01.949591Z", - "shell.execute_reply": "2024-07-02T15:25:01.949140Z" + "iopub.execute_input": "2024-07-05T13:41:38.388944Z", + "iopub.status.busy": "2024-07-05T13:41:38.388658Z", + "iopub.status.idle": "2024-07-05T13:41:38.392071Z", + "shell.execute_reply": "2024-07-05T13:41:38.391628Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:01.951916Z", - "iopub.status.busy": "2024-07-02T15:25:01.951599Z", - "iopub.status.idle": "2024-07-02T15:25:01.954525Z", - "shell.execute_reply": "2024-07-02T15:25:01.954082Z" + "iopub.execute_input": "2024-07-05T13:41:38.394073Z", + "iopub.status.busy": "2024-07-05T13:41:38.393748Z", + "iopub.status.idle": "2024-07-05T13:41:38.396735Z", + "shell.execute_reply": "2024-07-05T13:41:38.396281Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:01.956541Z", - "iopub.status.busy": "2024-07-02T15:25:01.956225Z", - "iopub.status.idle": "2024-07-02T15:25:02.013993Z", - "shell.execute_reply": "2024-07-02T15:25:02.013542Z" + "iopub.execute_input": "2024-07-05T13:41:38.398776Z", + "iopub.status.busy": "2024-07-05T13:41:38.398462Z", + "iopub.status.idle": "2024-07-05T13:41:38.426479Z", + "shell.execute_reply": "2024-07-05T13:41:38.426034Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:02.015897Z", - "iopub.status.busy": "2024-07-02T15:25:02.015721Z", - "iopub.status.idle": "2024-07-02T15:25:02.019309Z", - "shell.execute_reply": "2024-07-02T15:25:02.018806Z" + "iopub.execute_input": "2024-07-05T13:41:38.428603Z", + "iopub.status.busy": "2024-07-05T13:41:38.428252Z", + "iopub.status.idle": "2024-07-05T13:41:38.431742Z", + "shell.execute_reply": "2024-07-05T13:41:38.431316Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:02.021419Z", - "iopub.status.busy": "2024-07-02T15:25:02.021114Z", - "iopub.status.idle": "2024-07-02T15:25:02.024406Z", - "shell.execute_reply": "2024-07-02T15:25:02.023893Z" + "iopub.execute_input": "2024-07-05T13:41:38.433661Z", + "iopub.status.busy": "2024-07-05T13:41:38.433331Z", + "iopub.status.idle": "2024-07-05T13:41:38.436793Z", + "shell.execute_reply": "2024-07-05T13:41:38.436321Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'cancel_transfer', 'supported_cards_and_currencies', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'card_about_to_expire'}\n" + "Classes: {'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:02.026552Z", - "iopub.status.busy": "2024-07-02T15:25:02.026250Z", - "iopub.status.idle": "2024-07-02T15:25:02.029388Z", - "shell.execute_reply": "2024-07-02T15:25:02.028932Z" + "iopub.execute_input": "2024-07-05T13:41:38.438703Z", + "iopub.status.busy": "2024-07-05T13:41:38.438381Z", + "iopub.status.idle": "2024-07-05T13:41:38.441510Z", + "shell.execute_reply": "2024-07-05T13:41:38.441057Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:02.031230Z", - "iopub.status.busy": "2024-07-02T15:25:02.031049Z", - "iopub.status.idle": "2024-07-02T15:25:02.034449Z", - "shell.execute_reply": "2024-07-02T15:25:02.034001Z" + "iopub.execute_input": "2024-07-05T13:41:38.443520Z", + "iopub.status.busy": "2024-07-05T13:41:38.443138Z", + "iopub.status.idle": "2024-07-05T13:41:38.446321Z", + "shell.execute_reply": "2024-07-05T13:41:38.445899Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:02.036228Z", - "iopub.status.busy": "2024-07-02T15:25:02.036061Z", - "iopub.status.idle": "2024-07-02T15:25:08.385948Z", - "shell.execute_reply": "2024-07-02T15:25:08.385389Z" + "iopub.execute_input": "2024-07-05T13:41:38.448235Z", + "iopub.status.busy": "2024-07-05T13:41:38.448056Z", + "iopub.status.idle": "2024-07-05T13:41:42.867134Z", + "shell.execute_reply": "2024-07-05T13:41:42.866488Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "98baa2df749f4718a19b8ed6f6b64516", + "model_id": "96b33b666e3c46f6b9781cdde2761fd6", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "697435a323a84bea9cc7bfb42e0a5e62", + "model_id": "ac95ebe25b9b489c9ff3086df776500d", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f7905c4a4ded402ca686067d0aacc292", + "model_id": "d19d7ef7d17d4c6a88f4f58ae81b6af0", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4745e1e3131d4034bf9a596bc4fbddbf", + "model_id": "b96c31d51e2b4ad99e474a7ea07abd29", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "48016ee17d6b4133971e8d4b58046f98", + "model_id": "d8f8c97b3054485da1188b4d01ef1cb8", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3081197287a941cea971e1c24a1abd42", + "model_id": "cc7278be013f4edc99e1845986748fb0", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f451a7bbcccb4c0ebd05353c6b2b00d8", + "model_id": "8ce8705b306f434cb921da886d13c5ad", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:08.388716Z", - "iopub.status.busy": "2024-07-02T15:25:08.388336Z", - "iopub.status.idle": "2024-07-02T15:25:08.391310Z", - "shell.execute_reply": "2024-07-02T15:25:08.390833Z" + "iopub.execute_input": "2024-07-05T13:41:42.870018Z", + "iopub.status.busy": "2024-07-05T13:41:42.869592Z", + "iopub.status.idle": "2024-07-05T13:41:42.872474Z", + "shell.execute_reply": "2024-07-05T13:41:42.871934Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:08.393273Z", - "iopub.status.busy": "2024-07-02T15:25:08.392947Z", - "iopub.status.idle": "2024-07-02T15:25:08.395525Z", - "shell.execute_reply": "2024-07-02T15:25:08.395074Z" + "iopub.execute_input": "2024-07-05T13:41:42.874483Z", + "iopub.status.busy": "2024-07-05T13:41:42.874305Z", + "iopub.status.idle": "2024-07-05T13:41:42.876858Z", + "shell.execute_reply": "2024-07-05T13:41:42.876418Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:08.397396Z", - "iopub.status.busy": "2024-07-02T15:25:08.397223Z", - "iopub.status.idle": "2024-07-02T15:25:11.020595Z", - "shell.execute_reply": "2024-07-02T15:25:11.019993Z" + "iopub.execute_input": "2024-07-05T13:41:42.878724Z", + "iopub.status.busy": "2024-07-05T13:41:42.878550Z", + "iopub.status.idle": "2024-07-05T13:41:45.541209Z", + "shell.execute_reply": "2024-07-05T13:41:45.540479Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.023619Z", - "iopub.status.busy": "2024-07-02T15:25:11.022845Z", - "iopub.status.idle": "2024-07-02T15:25:11.030391Z", - "shell.execute_reply": "2024-07-02T15:25:11.029947Z" + "iopub.execute_input": "2024-07-05T13:41:45.544143Z", + "iopub.status.busy": "2024-07-05T13:41:45.543563Z", + "iopub.status.idle": "2024-07-05T13:41:45.551115Z", + "shell.execute_reply": "2024-07-05T13:41:45.550659Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.032276Z", - "iopub.status.busy": "2024-07-02T15:25:11.032103Z", - "iopub.status.idle": "2024-07-02T15:25:11.035851Z", - "shell.execute_reply": "2024-07-02T15:25:11.035397Z" + "iopub.execute_input": "2024-07-05T13:41:45.553163Z", + "iopub.status.busy": "2024-07-05T13:41:45.552775Z", + "iopub.status.idle": "2024-07-05T13:41:45.556524Z", + "shell.execute_reply": "2024-07-05T13:41:45.556073Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.037827Z", - "iopub.status.busy": "2024-07-02T15:25:11.037491Z", - "iopub.status.idle": "2024-07-02T15:25:11.040763Z", - "shell.execute_reply": "2024-07-02T15:25:11.040318Z" + "iopub.execute_input": "2024-07-05T13:41:45.558563Z", + "iopub.status.busy": "2024-07-05T13:41:45.558173Z", + "iopub.status.idle": "2024-07-05T13:41:45.561411Z", + "shell.execute_reply": "2024-07-05T13:41:45.560966Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.042952Z", - "iopub.status.busy": "2024-07-02T15:25:11.042502Z", - "iopub.status.idle": "2024-07-02T15:25:11.045617Z", - "shell.execute_reply": "2024-07-02T15:25:11.045190Z" + "iopub.execute_input": "2024-07-05T13:41:45.563523Z", + "iopub.status.busy": "2024-07-05T13:41:45.563125Z", + "iopub.status.idle": "2024-07-05T13:41:45.566190Z", + "shell.execute_reply": "2024-07-05T13:41:45.565636Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.047754Z", - "iopub.status.busy": "2024-07-02T15:25:11.047338Z", - "iopub.status.idle": "2024-07-02T15:25:11.054029Z", - "shell.execute_reply": "2024-07-02T15:25:11.053482Z" + "iopub.execute_input": "2024-07-05T13:41:45.568340Z", + "iopub.status.busy": "2024-07-05T13:41:45.567810Z", + "iopub.status.idle": "2024-07-05T13:41:45.574783Z", + "shell.execute_reply": "2024-07-05T13:41:45.574256Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.056131Z", - "iopub.status.busy": "2024-07-02T15:25:11.055786Z", - "iopub.status.idle": "2024-07-02T15:25:11.280111Z", - "shell.execute_reply": "2024-07-02T15:25:11.279635Z" + "iopub.execute_input": "2024-07-05T13:41:45.576964Z", + "iopub.status.busy": "2024-07-05T13:41:45.576536Z", + "iopub.status.idle": "2024-07-05T13:41:45.829927Z", + "shell.execute_reply": "2024-07-05T13:41:45.829411Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.282450Z", - "iopub.status.busy": "2024-07-02T15:25:11.282132Z", - "iopub.status.idle": "2024-07-02T15:25:11.457525Z", - "shell.execute_reply": "2024-07-02T15:25:11.457055Z" + "iopub.execute_input": "2024-07-05T13:41:45.832501Z", + "iopub.status.busy": "2024-07-05T13:41:45.832122Z", + "iopub.status.idle": "2024-07-05T13:41:46.009174Z", + "shell.execute_reply": "2024-07-05T13:41:46.008663Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:11.459928Z", - "iopub.status.busy": "2024-07-02T15:25:11.459576Z", - "iopub.status.idle": "2024-07-02T15:25:11.463148Z", - "shell.execute_reply": "2024-07-02T15:25:11.462676Z" + "iopub.execute_input": "2024-07-05T13:41:46.012347Z", + "iopub.status.busy": "2024-07-05T13:41:46.011256Z", + "iopub.status.idle": "2024-07-05T13:41:46.016331Z", + "shell.execute_reply": "2024-07-05T13:41:46.015830Z" }, "nbsphinx": "hidden" }, @@ -1105,56 +1105,101 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "161fe61da4db4f7e8074ff8edcdcb759": { + "0257acc125514c298d61156f5d9df1d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0abf5a87748a4d8b93ec90d4161b8ad6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21cc8aedfd874b128773266b548130c0", - "placeholder": "​", - "style": "IPY_MODEL_388e3769071b4755bf2c6825a5643904", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 27.7MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1643bc7cecb74bc190903adf9229b34d": { + "0bdd5df62b854ae6b19f524c34a3706e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7aa30d069f444999834643e94fe81c9b", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8429e83ba7114915933be895d5f6fe3a", + "layout": "IPY_MODEL_2f157a7edd4748ddadf4f976c36b70ea", + "placeholder": "​", + "style": "IPY_MODEL_2058a1fc7ee442df85835e3717774bc7", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": " 232k/232k [00:00<00:00, 18.8MB/s]" } }, - "16cb8599d6034cd1b810cbf99f703579": { + "0d3d8044c3df4193b09eaf3530f4937f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1207,7 +1252,75 @@ "width": null } }, - "1a2f8352992a4e8d8667c62f94d7e0e0": { + "0e9d9d0e285e4cfc836a7140475e0e6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_122aa2a5802f432d8e4cc4827dd836a5", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d8c51f1728dc4299bb281709d3a68d15", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "0ea2ef4b7bc941d19a3a601c67d50be7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_210ca7ab78d145ba86b7391b2e922013", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2525fa88ca114620b5ce00dc717754d7", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "110a57bd3b5b4aedac223766245d52ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "122aa2a5802f432d8e4cc4827dd836a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1260,7 +1373,72 @@ "width": null } }, - "1f83772d100c412884fc22f69ab7e498": { + "1544e75c18454850b3987979979791c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "18a3e9b2463f47b5a8738fd276aa7310": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a9af044b4a514c26bcecc8d95eb9890e", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1544e75c18454850b3987979979791c2", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "190a5166e3db4dc8bbd2a7f5620669b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46aae12dcf2e4d8ab7020564dd45582f", + "placeholder": "​", + "style": "IPY_MODEL_d9750425d1fc4805b77726c8c261b1e0", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "1bcea5f7f0bd4911ad5f9472fe3857b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1313,33 +1491,48 @@ "width": null } }, - "20199ed9391b4fd3af9ffba1bd110646": { + "1c0000b9330e4ad0801e2672df041524": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b1a6862286e144a5b4c7e3b53955c909", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9588d449e7b24e6db9e90daa5078369e", + "layout": "IPY_MODEL_e5bc4c4bcfb6470e9f7e1e874c8a6697", + "placeholder": "​", + "style": "IPY_MODEL_c2b67daf1de14d3d85d065799fa1e9f9", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 665/665 [00:00<00:00, 122kB/s]" + } + }, + "2058a1fc7ee442df85835e3717774bc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2059ff2a4cfe4817941404aaf9b91a27": { + "210ca7ab78d145ba86b7391b2e922013": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1392,7 +1585,23 @@ "width": null } }, - "21cc8aedfd874b128773266b548130c0": { + "2525fa88ca114620b5ce00dc717754d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2d94c6a0b0064ee5a98594db60961118": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1445,118 +1654,14 @@ "width": null } }, - "229a059bf66a476caf93f93617098541": { - "model_module": "@jupyter-widgets/controls", + "2f157a7edd4748ddadf4f976c36b70ea": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "29ab7c4b24694381897b57b84ded9af9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2df28735813745f899e2ab60996be667": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2eda31c15639409c917ce8f30f06fea9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_499e72220e084b96a2fac6d7d24f3e36", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d398c27b16594cdabb17dd18d91923db", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "3081197287a941cea971e1c24a1abd42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c4ab79f47c1f4a5fa7a952d2f4243909", - "IPY_MODEL_f717bfe4b6324a74be7f067e29025df4", - "IPY_MODEL_cfd42f9c1e5b4b6e957253d074ff0a96" - ], - "layout": "IPY_MODEL_2059ff2a4cfe4817941404aaf9b91a27", - "tabbable": null, - "tooltip": null - } - }, - "3090f81fd63e47748b48b354dff579e6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1602,7 +1707,7 @@ "width": null } }, - "31425907e4ff47c1a17ed0a9935430d6": { + "33f5e7684a6d4c7681cb52cd6677e8af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1655,7 +1760,7 @@ "width": null } }, - "31829b18848e480eaf3d67d16a966abc": { + "361bf5bf63c6429abeb6f7ea1e78394a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1708,43 +1813,83 @@ "width": null } }, - "388e3769071b4755bf2c6825a5643904": { + "3d50dfe1829f471486a5949b75511522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_89124874f2584031bca956251a4c0498", + "placeholder": "​", + "style": "IPY_MODEL_6529200a755f456087521afe4340b7ac", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "40a195a274ab4351b4d37e7880f857e7": { - "model_module": "@jupyter-widgets/controls", + "46aae12dcf2e4d8ab7020564dd45582f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "40fe431dbc09475d9cc4e82668dce66c": { + "522d3e04b5734cfb8381c9548f340ba6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1759,15 +1904,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31829b18848e480eaf3d67d16a966abc", + "layout": "IPY_MODEL_361bf5bf63c6429abeb6f7ea1e78394a", "placeholder": "​", - "style": "IPY_MODEL_b2d0af45a331440e91bb670c810aad25", + "style": "IPY_MODEL_64f74b0c37dd4b8591640b78a0f2a3c1", "tabbable": null, "tooltip": null, "value": ".gitattributes: 100%" } }, - "41c9e037f3074a5d9b33b7014d85cdfe": { + "55fb7043ecef4dd58cdb37f37c9ecc99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1782,39 +1927,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e0a66ed3e51494baf8c4960957f2abc", + "layout": "IPY_MODEL_e78935895ec84d3a9a960b4284d1b743", "placeholder": "​", - "style": "IPY_MODEL_2df28735813745f899e2ab60996be667", + "style": "IPY_MODEL_f7c7ebf33235488b942d828e5c4d1a6f", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 435kB/s]" - } - }, - "4745e1e3131d4034bf9a596bc4fbddbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e7f2051c6f3e4cb4afa29879fc4e25d7", - "IPY_MODEL_1643bc7cecb74bc190903adf9229b34d", - "IPY_MODEL_161fe61da4db4f7e8074ff8edcdcb759" - ], - "layout": "IPY_MODEL_e1ad008614fb43fdb5e809f4d8511a82", - "tabbable": null, - "tooltip": null + "value": " 2.21k/2.21k [00:00<00:00, 406kB/s]" } }, - "477e3bda05594962bd8ba0f1e3b7bb31": { + "5faa9c91d82e403bae01489fd2d095ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1867,31 +1988,43 @@ "width": null } }, - "48016ee17d6b4133971e8d4b58046f98": { + "64f74b0c37dd4b8591640b78a0f2a3c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cfe55f8de045405f86e66d60c9c1ce0c", - "IPY_MODEL_5f8acf7619d14a2494c2bd74f4c2d794", - "IPY_MODEL_ef11cb19d76d48a098b132ab8531c488" - ], - "layout": "IPY_MODEL_77ab3ba493da4bb68b8d39397523e2e4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6529200a755f456087521afe4340b7ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "499e72220e084b96a2fac6d7d24f3e36": { + "652c8598515c4ff0ba25b190d2c658f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1944,30 +2077,51 @@ "width": null } }, - "4d8b4c898e4d49c795640c857d8f9648": { + "65fe8cac9c7745ee9e31de90786a5554": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69e126a7731d4d0aa8b7e49669aeb593": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ab29117829274449a8621cc4708da2b1", - "placeholder": "​", - "style": "IPY_MODEL_e6758addea6d44238157a9fee26b6f01", + "layout": "IPY_MODEL_e7ff81f72c554eafa492ceab2c05e72b", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab02e8f460364d7fbb700a39164b6dc7", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 137kB/s]" + "value": 2211.0 } }, - "4e0a66ed3e51494baf8c4960957f2abc": { + "75db82dd8c6644b0adc847a6ec36d732": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2020,92 +2174,56 @@ "width": null } }, - "4f6ef66a05864b318215d64d3df902a8": { - "model_module": "@jupyter-widgets/base", + "801a5228c24a421d9a21b68737ff9c0e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5042f028d3a24a99a3cb8dbb370a2d51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d26aafc86fa42cbae7b758ab01033c4", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_110a57bd3b5b4aedac223766245d52ad", + "tabbable": null, + "tooltip": null, + "value": 48.0 } }, - "51e4ce1aa08a4875b0078386841ef6c6": { + "872b139dd6dc4fae9eb30552a8b680d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ce24518dc0d94c76bdf24b6fc8862872", + "placeholder": "​", + "style": "IPY_MODEL_a5c40f01708e43638030304f9b0701b9", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 284MB/s]" } }, - "5b6cedd62c3b4e2dba4fb6cf6ac81919": { + "89124874f2584031bca956251a4c0498": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2276,7 @@ "width": null } }, - "5dfa8539a6c948378badd6686cc253dd": { + "8a2b355dbd4647a1809d03ae2b462c43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,59 +2329,49 @@ "width": null } }, - "5f8acf7619d14a2494c2bd74f4c2d794": { + "8ce8705b306f434cb921da886d13c5ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5dfa8539a6c948378badd6686cc253dd", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c9d0db8230f34b468c783b24537b3a87", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_190a5166e3db4dc8bbd2a7f5620669b8", + "IPY_MODEL_18a3e9b2463f47b5a8738fd276aa7310", + "IPY_MODEL_0bdd5df62b854ae6b19f524c34a3706e" + ], + "layout": "IPY_MODEL_1bcea5f7f0bd4911ad5f9472fe3857b7", "tabbable": null, - "tooltip": null, - "value": 466062.0 + "tooltip": null } }, - "66867813190846ab8aed312ab6908a43": { + "910791280aeb44fdad1736e5cb17bc24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4f6ef66a05864b318215d64d3df902a8", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b71a8e9e851b4881bb5145531e49ccd0", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "697435a323a84bea9cc7bfb42e0a5e62": { + "96b33b666e3c46f6b9781cdde2761fd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2278,69 +2386,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dd67fec157b9489faa0dc3ddbd95ef35", - "IPY_MODEL_20199ed9391b4fd3af9ffba1bd110646", - "IPY_MODEL_41c9e037f3074a5d9b33b7014d85cdfe" + "IPY_MODEL_522d3e04b5734cfb8381c9548f340ba6", + "IPY_MODEL_cb0b812812f34ff993c5d7d34ac5314e", + "IPY_MODEL_9cefc7a3ebcc4f54bc2893672efc2356" ], - "layout": "IPY_MODEL_b42bf80fe5274a5e908a3c39822c2629", + "layout": "IPY_MODEL_0d3d8044c3df4193b09eaf3530f4937f", "tabbable": null, "tooltip": null } }, - "71581c894a0e453e992f58ce4ec00848": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "71c0454905f044549aa29c3961bc512b": { + "9cefc7a3ebcc4f54bc2893672efc2356": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2355,15 +2410,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16cb8599d6034cd1b810cbf99f703579", + "layout": "IPY_MODEL_eef1d9e382df4619845cd1b216744383", "placeholder": "​", - "style": "IPY_MODEL_8e1757765b51437c9c3576da0b2a84d2", + "style": "IPY_MODEL_b4c865c8432d42b1afcc7f4a6a2a0fae", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 69.1kB/s]" + "value": " 391/391 [00:00<00:00, 64.0kB/s]" } }, - "77ab3ba493da4bb68b8d39397523e2e4": { + "9d0647d74213433bbb2a49fb08f4eb0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2416,7 +2471,7 @@ "width": null } }, - "787647896a374c4baef37ba555b3d758": { + "9d26aafc86fa42cbae7b758ab01033c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2469,7 +2524,7 @@ "width": null } }, - "790e13d2858c4cf4bdf4bce6bda99ddb": { + "9f568a561f2343a2a8e5299f27acf7a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2522,7 +2577,25 @@ "width": null } }, - "7aa30d069f444999834643e94fe81c9b": { + "a5c40f01708e43638030304f9b0701b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a70e4cd4d18c4b85bd17897b371223a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2575,23 +2648,7 @@ "width": null } }, - "8429e83ba7114915933be895d5f6fe3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8c2f5adef8594b9d94b856fe69ecef0d": { + "a9af044b4a514c26bcecc8d95eb9890e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2644,66 +2701,47 @@ "width": null } }, - "8d50a9bb17184cec871c72343c762cc2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8e1757765b51437c9c3576da0b2a84d2": { + "ab02e8f460364d7fbb700a39164b6dc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "93b428a1e9984e3985970ffd82b85429": { + "ac95ebe25b9b489c9ff3086df776500d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c2f5adef8594b9d94b856fe69ecef0d", - "placeholder": "​", - "style": "IPY_MODEL_40a195a274ab4351b4d37e7880f857e7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_edccf9a74e6f46d88cd01daf0a22367d", + "IPY_MODEL_69e126a7731d4d0aa8b7e49669aeb593", + "IPY_MODEL_55fb7043ecef4dd58cdb37f37c9ecc99" + ], + "layout": "IPY_MODEL_ea07ab68a0f04a4ebc3eb488c2597ba9", "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "tooltip": null } }, - "9588d449e7b24e6db9e90daa5078369e": { + "ae8354b7809c4713ab4f0675c0d9195f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2719,7 +2757,7 @@ "description_width": "" } }, - "967764ca5ac248399e557033cfdf7a08": { + "b4c865c8432d42b1afcc7f4a6a2a0fae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2737,7 +2775,7 @@ "text_color": null } }, - "987bc5a0a5174818895b0e59be32726d": { + "b74d70b4bb6b4d61985e09999a66a269": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2755,7 +2793,7 @@ "text_color": null } }, - "98baa2df749f4718a19b8ed6f6b64516": { + "b96c31d51e2b4ad99e474a7ea07abd29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2770,175 +2808,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_40fe431dbc09475d9cc4e82668dce66c", - "IPY_MODEL_2eda31c15639409c917ce8f30f06fea9", - "IPY_MODEL_71c0454905f044549aa29c3961bc512b" + "IPY_MODEL_c82e08ed0e374016af781486e955baa4", + "IPY_MODEL_0e9d9d0e285e4cfc836a7140475e0e6b", + "IPY_MODEL_872b139dd6dc4fae9eb30552a8b680d8" ], - "layout": "IPY_MODEL_c4843a0ecf8947089a56431c777139d7", + "layout": "IPY_MODEL_8a2b355dbd4647a1809d03ae2b462c43", "tabbable": null, "tooltip": null } }, - "a215428c7e0d4fdda219b836792e0bea": { - "model_module": "@jupyter-widgets/base", + "be614c58b617423fbcbb0435e931836d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ab29117829274449a8621cc4708da2b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b1a6862286e144a5b4c7e3b53955c909": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b2d0af45a331440e91bb670c810aad25": { + "c2b67daf1de14d3d85d065799fa1e9f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2956,152 +2853,103 @@ "text_color": null } }, - "b42bf80fe5274a5e908a3c39822c2629": { - "model_module": "@jupyter-widgets/base", + "c39236bf3087456383a6687e8aa84c81": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d0647d74213433bbb2a49fb08f4eb0b", + "placeholder": "​", + "style": "IPY_MODEL_910791280aeb44fdad1736e5cb17bc24", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "b71a8e9e851b4881bb5145531e49ccd0": { + "c82e08ed0e374016af781486e955baa4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5faa9c91d82e403bae01489fd2d095ba", + "placeholder": "​", + "style": "IPY_MODEL_be614c58b617423fbcbb0435e931836d", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "b876cea56c70415bbe96c6d929472c03": { - "model_module": "@jupyter-widgets/base", + "cb0b812812f34ff993c5d7d34ac5314e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_652c8598515c4ff0ba25b190d2c658f5", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae8354b7809c4713ab4f0675c0d9195f", + "tabbable": null, + "tooltip": null, + "value": 391.0 } }, - "bb8dedc70e1e42f985ca245b4c1626d0": { + "cc7278be013f4edc99e1845986748fb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_477e3bda05594962bd8ba0f1e3b7bb31", - "placeholder": "​", - "style": "IPY_MODEL_dc42abfc89cd4333a4569bc9139f85a5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3d50dfe1829f471486a5949b75511522", + "IPY_MODEL_801a5228c24a421d9a21b68737ff9c0e", + "IPY_MODEL_d1be46bea20f4dc280c5c3dce5f1871a" + ], + "layout": "IPY_MODEL_0257acc125514c298d61156f5d9df1d8", "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "tooltip": null } }, - "c4843a0ecf8947089a56431c777139d7": { + "ce24518dc0d94c76bdf24b6fc8862872": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3154,64 +3002,49 @@ "width": null } }, - "c4ab79f47c1f4a5fa7a952d2f4243909": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3090f81fd63e47748b48b354dff579e6", - "placeholder": "​", - "style": "IPY_MODEL_229a059bf66a476caf93f93617098541", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "c9d0db8230f34b468c783b24537b3a87": { + "d023557f263545bda8fab13fdd9307d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cc575b26e89c48eea0b3767999b7957a": { + "d19d7ef7d17d4c6a88f4f58ae81b6af0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d66e8e57582e43bcb88b99da5336fe5f", + "IPY_MODEL_0ea2ef4b7bc941d19a3a601c67d50be7", + "IPY_MODEL_1c0000b9330e4ad0801e2672df041524" + ], + "layout": "IPY_MODEL_9f568a561f2343a2a8e5299f27acf7a3", + "tabbable": null, + "tooltip": null } }, - "cfd42f9c1e5b4b6e957253d074ff0a96": { + "d1be46bea20f4dc280c5c3dce5f1871a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3226,15 +3059,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b876cea56c70415bbe96c6d929472c03", + "layout": "IPY_MODEL_2d94c6a0b0064ee5a98594db60961118", "placeholder": "​", - "style": "IPY_MODEL_987bc5a0a5174818895b0e59be32726d", + "style": "IPY_MODEL_b74d70b4bb6b4d61985e09999a66a269", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.30kB/s]" + "value": " 48.0/48.0 [00:00<00:00, 8.51kB/s]" } }, - "cfe55f8de045405f86e66d60c9c1ce0c": { + "d66e8e57582e43bcb88b99da5336fe5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3249,15 +3082,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fe6d4bd14f1d4e9c889f127632dfd090", + "layout": "IPY_MODEL_a70e4cd4d18c4b85bd17897b371223a5", "placeholder": "​", - "style": "IPY_MODEL_f1cd701a314345e8a946773e606e7e5e", + "style": "IPY_MODEL_d023557f263545bda8fab13fdd9307d7", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "config.json: 100%" } }, - "d398c27b16594cdabb17dd18d91923db": { + "d8c51f1728dc4299bb281709d3a68d15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3273,33 +3106,31 @@ "description_width": "" } }, - "d62a7bbd2b814718bdb6e5c898023432": { + "d8f8c97b3054485da1188b4d01ef1cb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31425907e4ff47c1a17ed0a9935430d6", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5042f028d3a24a99a3cb8dbb370a2d51", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c39236bf3087456383a6687e8aa84c81", + "IPY_MODEL_ebd984c385d44e899dcc943e4301b504", + "IPY_MODEL_d9d7218696514a75affefc3ae6972435" + ], + "layout": "IPY_MODEL_33f5e7684a6d4c7681cb52cd6677e8af", "tabbable": null, - "tooltip": null, - "value": 665.0 + "tooltip": null } }, - "dc42abfc89cd4333a4569bc9139f85a5": { + "d9750425d1fc4805b77726c8c261b1e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3317,7 +3148,7 @@ "text_color": null } }, - "dd67fec157b9489faa0dc3ddbd95ef35": { + "d9d7218696514a75affefc3ae6972435": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3332,15 +3163,174 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71581c894a0e453e992f58ce4ec00848", + "layout": "IPY_MODEL_e530b35090c54d35b5dbe38f7726ece6", "placeholder": "​", - "style": "IPY_MODEL_8d50a9bb17184cec871c72343c762cc2", + "style": "IPY_MODEL_65fe8cac9c7745ee9e31de90786a5554", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": " 466k/466k [00:00<00:00, 13.2MB/s]" + } + }, + "db32e755d8ee43c3a216e58a83fb3686": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e530b35090c54d35b5dbe38f7726ece6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5bc4c4bcfb6470e9f7e1e874c8a6697": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e1ad008614fb43fdb5e809f4d8511a82": { + "e78935895ec84d3a9a960b4284d1b743": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3393,136 +3383,113 @@ "width": null } }, - "e6758addea6d44238157a9fee26b6f01": { - "model_module": "@jupyter-widgets/controls", + "e7ff81f72c554eafa492ceab2c05e72b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e7f2051c6f3e4cb4afa29879fc4e25d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a215428c7e0d4fdda219b836792e0bea", - "placeholder": "​", - "style": "IPY_MODEL_967764ca5ac248399e557033cfdf7a08", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "ea06e6ec819142448a354fc1926e13af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_790e13d2858c4cf4bdf4bce6bda99ddb", - "placeholder": "​", - "style": "IPY_MODEL_29ab7c4b24694381897b57b84ded9af9", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 38.1MB/s]" - } - }, - "ef11cb19d76d48a098b132ab8531c488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a2f8352992a4e8d8667c62f94d7e0e0", - "placeholder": "​", - "style": "IPY_MODEL_cc575b26e89c48eea0b3767999b7957a", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 35.2MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f1cd701a314345e8a946773e606e7e5e": { - "model_module": "@jupyter-widgets/controls", + "ea07ab68a0f04a4ebc3eb488c2597ba9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f451a7bbcccb4c0ebd05353c6b2b00d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_93b428a1e9984e3985970ffd82b85429", - "IPY_MODEL_66867813190846ab8aed312ab6908a43", - "IPY_MODEL_ea06e6ec819142448a354fc1926e13af" - ], - "layout": "IPY_MODEL_1f83772d100c412884fc22f69ab7e498", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f717bfe4b6324a74be7f067e29025df4": { + "ebd984c385d44e899dcc943e4301b504": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3538,41 +3505,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5b6cedd62c3b4e2dba4fb6cf6ac81919", - "max": 48.0, + "layout": "IPY_MODEL_75db82dd8c6644b0adc847a6ec36d732", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_51e4ce1aa08a4875b0078386841ef6c6", + "style": "IPY_MODEL_f27ea43e060c4017a28f91217ae8416a", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 466062.0 } }, - "f7905c4a4ded402ca686067d0aacc292": { + "edccf9a74e6f46d88cd01daf0a22367d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb8dedc70e1e42f985ca245b4c1626d0", - "IPY_MODEL_d62a7bbd2b814718bdb6e5c898023432", - "IPY_MODEL_4d8b4c898e4d49c795640c857d8f9648" - ], - "layout": "IPY_MODEL_787647896a374c4baef37ba555b3d758", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_db32e755d8ee43c3a216e58a83fb3686", + "placeholder": "​", + "style": "IPY_MODEL_0abf5a87748a4d8b93ec90d4161b8ad6", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "README.md: 100%" } }, - "fe6d4bd14f1d4e9c889f127632dfd090": { + "eef1d9e382df4619845cd1b216744383": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3624,6 +3590,40 @@ "visibility": null, "width": null } + }, + "f27ea43e060c4017a28f91217ae8416a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f7c7ebf33235488b942d828e5c4d1a6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 3e2253eec..98f719f0c 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"65ccc00f12204532a50813004d34c322": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47c5d5c584084493b0861ab73b489d4c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d2c10c0d82484b1d9d529d2ef9dae7fb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_65ccc00f12204532a50813004d34c322", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_47c5d5c584084493b0861ab73b489d4c", "tabbable": null, "tooltip": null, "value": 2041.0}}, "969d2813a5c04cacb6fc3a37ed2dc5fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "191733153ce746d1a8ff2b837b57e9be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5b0eb572f4a44010b0414f2c88c3cd1e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_969d2813a5c04cacb6fc3a37ed2dc5fd", "placeholder": "\u200b", "style": "IPY_MODEL_191733153ce746d1a8ff2b837b57e9be", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "eacb5b752481476099c10dfacf56c89d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2d5653b2c4e48d493b970861348256b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0eca11d8b9ca420cb317292d15607da7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eacb5b752481476099c10dfacf56c89d", "placeholder": "\u200b", "style": "IPY_MODEL_f2d5653b2c4e48d493b970861348256b", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007483kB/s]"}}, "09f9a3d816be47d78e516de2e21980b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "869fc446c9a34743877fe8b5536872b1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5b0eb572f4a44010b0414f2c88c3cd1e", "IPY_MODEL_d2c10c0d82484b1d9d529d2ef9dae7fb", "IPY_MODEL_0eca11d8b9ca420cb317292d15607da7"], "layout": "IPY_MODEL_09f9a3d816be47d78e516de2e21980b0", "tabbable": null, "tooltip": null}}, "b911745838c24922badcd8ce2b74705c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41f5c12b350f4abbb8805e5d672190d7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1c477dd84702413bafd29643b995393b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b911745838c24922badcd8ce2b74705c", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_41f5c12b350f4abbb8805e5d672190d7", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "e617db8fadf64d708385495d20c7702e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8920ef4b3a4a44c59c581d700192ac74": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6d2f84d14e3a4939a1c606b1769f2052": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e617db8fadf64d708385495d20c7702e", "placeholder": "\u200b", "style": "IPY_MODEL_8920ef4b3a4a44c59c581d700192ac74", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "5ce0ad1c70004fae993ca54a47dea1ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b23757c53804abf826b76129c71f84f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "638ba26f976e403cb8fbdb569fd358cb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ce0ad1c70004fae993ca54a47dea1ac", "placeholder": "\u200b", "style": "IPY_MODEL_4b23757c53804abf826b76129c71f84f", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200762.7MB/s]"}}, "f0d5fce51b134affae64c7e5b3ff7cde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40119d252d344b50ada2deb76d102ba9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6d2f84d14e3a4939a1c606b1769f2052", "IPY_MODEL_1c477dd84702413bafd29643b995393b", "IPY_MODEL_638ba26f976e403cb8fbdb569fd358cb"], "layout": "IPY_MODEL_f0d5fce51b134affae64c7e5b3ff7cde", "tabbable": null, "tooltip": null}}, "4d42b878a1484c2a8c218ceb2a870ce6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3e86400f85a2412dab304636e64fc255": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6339c8e626034d7c9fa8cff1415bcad2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4d42b878a1484c2a8c218ceb2a870ce6", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3e86400f85a2412dab304636e64fc255", "tabbable": null, "tooltip": null, "value": 3201.0}}, "a687a32ad4e94ddab8899265482ec95e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee82152228b343f5bd122b8ee22d3ade": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20439df6f4ec4c92a86ed7db1713c94a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a687a32ad4e94ddab8899265482ec95e", "placeholder": "\u200b", "style": "IPY_MODEL_ee82152228b343f5bd122b8ee22d3ade", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "28bb50bd3b734769b604cbc0566fe965": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "035ed0ac88b843c7986fdcc6053c74ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3780dbf7cf624b0fbcc7e46393e604bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_28bb50bd3b734769b604cbc0566fe965", "placeholder": "\u200b", "style": "IPY_MODEL_035ed0ac88b843c7986fdcc6053c74ea", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007796kB/s]"}}, "968ea4aa03974c94a22690152df3a0b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd27c6867d9a407d8723ff685bd632f8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_20439df6f4ec4c92a86ed7db1713c94a", "IPY_MODEL_6339c8e626034d7c9fa8cff1415bcad2", "IPY_MODEL_3780dbf7cf624b0fbcc7e46393e604bd"], "layout": "IPY_MODEL_968ea4aa03974c94a22690152df3a0b0", "tabbable": null, "tooltip": null}}, "d749fc0d9649484f8df326a2bdb58a4f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a33cb48eeb1453993c6eaa84fc502fb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f9493a2b41bb4830b72c769a6924862e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d749fc0d9649484f8df326a2bdb58a4f", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1a33cb48eeb1453993c6eaa84fc502fb", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "2a8eef61906f4e02b64d2acfa416df0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79f5954a72a84d65be69edeb832c92fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "05ace592e52c4898960ac3a6834e81db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a8eef61906f4e02b64d2acfa416df0a", "placeholder": "\u200b", "style": "IPY_MODEL_79f5954a72a84d65be69edeb832c92fd", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "53edd2fc08c34cd28b365529e38e14de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3a43941544024cce8e00981fad13ea69": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f2e81acb0c846a1bd10715932ea462b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53edd2fc08c34cd28b365529e38e14de", "placeholder": "\u200b", "style": "IPY_MODEL_3a43941544024cce8e00981fad13ea69", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007164MB/s]"}}, "f65ea041bc1b48afa70ae6281b147089": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "baafd2ed9b6541319c792073a72f5e7d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_05ace592e52c4898960ac3a6834e81db", "IPY_MODEL_f9493a2b41bb4830b72c769a6924862e", "IPY_MODEL_0f2e81acb0c846a1bd10715932ea462b"], "layout": "IPY_MODEL_f65ea041bc1b48afa70ae6281b147089", "tabbable": null, "tooltip": null}}, "746cf50561de4f28aec72152e2a74e40": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ab4d21a4d204ce9aad54b4aa19ef440": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "76f9849e481f47fb9422fb236d93ee5c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_746cf50561de4f28aec72152e2a74e40", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9ab4d21a4d204ce9aad54b4aa19ef440", "tabbable": null, "tooltip": null, "value": 128619.0}}, "3af2e6f965024e0faef7da0c7564e4bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a1ecc93b0e124f82a9d890e1b8dc92fb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6de7c25d6d174a3e92ebb9f11d808ecc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3af2e6f965024e0faef7da0c7564e4bc", "placeholder": "\u200b", "style": "IPY_MODEL_a1ecc93b0e124f82a9d890e1b8dc92fb", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "fac867a2e6ae475dba8300fafb622e27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7d5493534b94ec28876947b06bbca4c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c41ac92cd3a44fa7b86ae4c7444f9d57": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fac867a2e6ae475dba8300fafb622e27", "placeholder": "\u200b", "style": "IPY_MODEL_d7d5493534b94ec28876947b06bbca4c", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200717.4MB/s]"}}, "a66d028f4eea4d9cb7a62da4d3f9af97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "306f5f497ce647e09871bff6b0c431fe": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6de7c25d6d174a3e92ebb9f11d808ecc", "IPY_MODEL_76f9849e481f47fb9422fb236d93ee5c", "IPY_MODEL_c41ac92cd3a44fa7b86ae4c7444f9d57"], "layout": "IPY_MODEL_a66d028f4eea4d9cb7a62da4d3f9af97", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"b79066cf9b704738b2efbcdd7698940e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "155d78af36574976bb94b2a9cf03176b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4b3641a7d36a41fba64b266119930d95": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b79066cf9b704738b2efbcdd7698940e", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_155d78af36574976bb94b2a9cf03176b", "tabbable": null, "tooltip": null, "value": 2041.0}}, "0ca92c743ec842ff92facbcc849bb3e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c183b6491494da7ad33357e7cae6771": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e880641d974044cbbfc13ba6eda40150": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0ca92c743ec842ff92facbcc849bb3e8", "placeholder": "\u200b", "style": "IPY_MODEL_5c183b6491494da7ad33357e7cae6771", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "1dbb86683ca9470b8df6d9d1c0f165d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d76f29f9f2c4abbb13c70ea1000c5d6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8b52d2f72da4d03b705f2bd28a6ba14": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1dbb86683ca9470b8df6d9d1c0f165d1", "placeholder": "\u200b", "style": "IPY_MODEL_8d76f29f9f2c4abbb13c70ea1000c5d6", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007449kB/s]"}}, "1f0e3b68321a4d338348fb13e0f6f8b2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bfd896d306144ef9bd39f4adfff2c7d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e880641d974044cbbfc13ba6eda40150", "IPY_MODEL_4b3641a7d36a41fba64b266119930d95", "IPY_MODEL_b8b52d2f72da4d03b705f2bd28a6ba14"], "layout": "IPY_MODEL_1f0e3b68321a4d338348fb13e0f6f8b2", "tabbable": null, "tooltip": null}}, "9d44f82e72e246b095fedfda914bf42b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aab9ad49dce44300858a40bc997b951f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0d6604e9b2004f23a5237ab7f80eea00": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d44f82e72e246b095fedfda914bf42b", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aab9ad49dce44300858a40bc997b951f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "d67b2b8407fb4fffbf7566dc96b9ebb9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec3bef5219a942afb9cd0a59d12a4b8b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "99a61dddd2f3401ba0a45acd6985e004": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d67b2b8407fb4fffbf7566dc96b9ebb9", "placeholder": "\u200b", "style": "IPY_MODEL_ec3bef5219a942afb9cd0a59d12a4b8b", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "534b555f1c3141f88a333aec5cce0872": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "24b60a361708442bbd633dc5c992dffe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ed87c4b59c5147df93d41f9c48524f2b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_534b555f1c3141f88a333aec5cce0872", "placeholder": "\u200b", "style": "IPY_MODEL_24b60a361708442bbd633dc5c992dffe", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007257MB/s]"}}, "5fadf40f73cb4c8795380f11a9f5b96a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3405ff81d504fe08fd208d8c4263685": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_99a61dddd2f3401ba0a45acd6985e004", "IPY_MODEL_0d6604e9b2004f23a5237ab7f80eea00", "IPY_MODEL_ed87c4b59c5147df93d41f9c48524f2b"], "layout": "IPY_MODEL_5fadf40f73cb4c8795380f11a9f5b96a", "tabbable": null, "tooltip": null}}, "86c1d5511b0540b58d9f3eb4eb1c0d12": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9020c5589932439583862ecdb9908578": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c488f272ed84402aa05522ef636c3a89": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_86c1d5511b0540b58d9f3eb4eb1c0d12", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9020c5589932439583862ecdb9908578", "tabbable": null, "tooltip": null, "value": 3201.0}}, "f6e6dcf0b8f64678b1be2c3b98b655e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4d6f8f3c2bd44758115f11122fec314": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ba574d19a934a67ac3c33e5546fd0d4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f6e6dcf0b8f64678b1be2c3b98b655e9", "placeholder": "\u200b", "style": "IPY_MODEL_e4d6f8f3c2bd44758115f11122fec314", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "436c88cadb16448097e78419a9a88312": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea1a0a9d30f748b4ba1326898f95a9df": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bdf833354e814bcb89d90d4debdccb93": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_436c88cadb16448097e78419a9a88312", "placeholder": "\u200b", "style": "IPY_MODEL_ea1a0a9d30f748b4ba1326898f95a9df", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007756kB/s]"}}, "2e1eff407cc0488993c9f2e1c8e96f4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3378da9f4d4843a29b68b9dd15260724": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1ba574d19a934a67ac3c33e5546fd0d4", "IPY_MODEL_c488f272ed84402aa05522ef636c3a89", "IPY_MODEL_bdf833354e814bcb89d90d4debdccb93"], "layout": "IPY_MODEL_2e1eff407cc0488993c9f2e1c8e96f4a", "tabbable": null, "tooltip": null}}, "231b9f11e4924b3d9500acdf85fc4fb5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e96b0a3835294d139a58f1b2eede5453": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1d3c548498c14a6cbe5f40966e5b0fd2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_231b9f11e4924b3d9500acdf85fc4fb5", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e96b0a3835294d139a58f1b2eede5453", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "440beb3a75d94f499bd3d432e3ff077c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a883a0da0cab449caf961179ef3c08bd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5e6b057f68f4bdba834dd5dc9c5b59a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_440beb3a75d94f499bd3d432e3ff077c", "placeholder": "\u200b", "style": "IPY_MODEL_a883a0da0cab449caf961179ef3c08bd", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "753249f25e6c4813a3c055371d0f66e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd5f4ac4797e4978b654c153814d6a47": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "411febc4f6624b5190ddd1785258d9c8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_753249f25e6c4813a3c055371d0f66e3", "placeholder": "\u200b", "style": "IPY_MODEL_fd5f4ac4797e4978b654c153814d6a47", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007247MB/s]"}}, "d250090c5cf54766a8d3a73ecfc4b89d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "757c748d08bc4031bf75f425df29c1d7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5e6b057f68f4bdba834dd5dc9c5b59a", "IPY_MODEL_1d3c548498c14a6cbe5f40966e5b0fd2", "IPY_MODEL_411febc4f6624b5190ddd1785258d9c8"], "layout": "IPY_MODEL_d250090c5cf54766a8d3a73ecfc4b89d", "tabbable": null, "tooltip": null}}, "50e5b7b7bd1948d18df670bae7140efd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d8f5e43eec6495bbcdd7f8b382d406b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7b319e0c26c846a9a5aba2d262bc4ba6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_50e5b7b7bd1948d18df670bae7140efd", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4d8f5e43eec6495bbcdd7f8b382d406b", "tabbable": null, "tooltip": null, "value": 128619.0}}, "0d3fab978db944b98d2092c86652c672": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca7f9981118047a984bd15388bcc4538": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "112b019a69084c6bb8e89dea9db544ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d3fab978db944b98d2092c86652c672", "placeholder": "\u200b", "style": "IPY_MODEL_ca7f9981118047a984bd15388bcc4538", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "51644422dfc74c23aa268bb2dd0eed11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "be79c949bdd74bc2a3480e64d4aefc02": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ef335a7a01c432ba4a8671130f85cf8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51644422dfc74c23aa268bb2dd0eed11", "placeholder": "\u200b", "style": "IPY_MODEL_be79c949bdd74bc2a3480e64d4aefc02", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20079.67MB/s]"}}, "7732d14c6c8c4950b7c792b854d8375e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aeb8d5bcd3714341b0ccbe73737d99ad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_112b019a69084c6bb8e89dea9db544ed", "IPY_MODEL_7b319e0c26c846a9a5aba2d262bc4ba6", "IPY_MODEL_1ef335a7a01c432ba4a8671130f85cf8"], "layout": "IPY_MODEL_7732d14c6c8c4950b7c792b854d8375e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index b77ccf17e..9c9bb33a5 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:14.546953Z", - "iopub.status.busy": "2024-07-02T15:25:14.546784Z", - "iopub.status.idle": "2024-07-02T15:25:19.407981Z", - "shell.execute_reply": "2024-07-02T15:25:19.407476Z" + "iopub.execute_input": "2024-07-05T13:41:50.029724Z", + "iopub.status.busy": "2024-07-05T13:41:50.029546Z", + "iopub.status.idle": "2024-07-05T13:41:55.302699Z", + "shell.execute_reply": "2024-07-05T13:41:55.302135Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:19.410926Z", - "iopub.status.busy": "2024-07-02T15:25:19.410231Z", - "iopub.status.idle": "2024-07-02T15:25:19.413722Z", - "shell.execute_reply": "2024-07-02T15:25:19.413173Z" + "iopub.execute_input": "2024-07-05T13:41:55.305594Z", + "iopub.status.busy": "2024-07-05T13:41:55.304925Z", + "iopub.status.idle": "2024-07-05T13:41:55.308262Z", + "shell.execute_reply": "2024-07-05T13:41:55.307804Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:19.415856Z", - "iopub.status.busy": "2024-07-02T15:25:19.415529Z", - "iopub.status.idle": "2024-07-02T15:25:19.419947Z", - "shell.execute_reply": "2024-07-02T15:25:19.419526Z" + "iopub.execute_input": "2024-07-05T13:41:55.310391Z", + "iopub.status.busy": "2024-07-05T13:41:55.309996Z", + "iopub.status.idle": "2024-07-05T13:41:55.314614Z", + "shell.execute_reply": "2024-07-05T13:41:55.314186Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:19.422117Z", - "iopub.status.busy": "2024-07-02T15:25:19.421696Z", - "iopub.status.idle": "2024-07-02T15:25:21.022232Z", - "shell.execute_reply": "2024-07-02T15:25:21.021605Z" + "iopub.execute_input": "2024-07-05T13:41:55.316865Z", + "iopub.status.busy": "2024-07-05T13:41:55.316414Z", + "iopub.status.idle": "2024-07-05T13:41:56.902643Z", + "shell.execute_reply": "2024-07-05T13:41:56.902004Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:21.024570Z", - "iopub.status.busy": "2024-07-02T15:25:21.024378Z", - "iopub.status.idle": "2024-07-02T15:25:21.034610Z", - "shell.execute_reply": "2024-07-02T15:25:21.034162Z" + "iopub.execute_input": "2024-07-05T13:41:56.905266Z", + "iopub.status.busy": "2024-07-05T13:41:56.905065Z", + "iopub.status.idle": "2024-07-05T13:41:56.915536Z", + "shell.execute_reply": "2024-07-05T13:41:56.915084Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:21.036772Z", - "iopub.status.busy": "2024-07-02T15:25:21.036453Z", - "iopub.status.idle": "2024-07-02T15:25:21.041969Z", - "shell.execute_reply": "2024-07-02T15:25:21.041413Z" + "iopub.execute_input": "2024-07-05T13:41:56.917512Z", + "iopub.status.busy": "2024-07-05T13:41:56.917324Z", + "iopub.status.idle": "2024-07-05T13:41:56.923057Z", + "shell.execute_reply": "2024-07-05T13:41:56.922580Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:21.044032Z", - "iopub.status.busy": "2024-07-02T15:25:21.043619Z", - "iopub.status.idle": "2024-07-02T15:25:21.448517Z", - "shell.execute_reply": "2024-07-02T15:25:21.447933Z" + "iopub.execute_input": "2024-07-05T13:41:56.925112Z", + "iopub.status.busy": "2024-07-05T13:41:56.924931Z", + "iopub.status.idle": "2024-07-05T13:41:57.443064Z", + "shell.execute_reply": "2024-07-05T13:41:57.442481Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:21.450756Z", - "iopub.status.busy": "2024-07-02T15:25:21.450428Z", - "iopub.status.idle": "2024-07-02T15:25:22.369181Z", - "shell.execute_reply": "2024-07-02T15:25:22.368692Z" + "iopub.execute_input": "2024-07-05T13:41:57.445532Z", + "iopub.status.busy": "2024-07-05T13:41:57.445087Z", + "iopub.status.idle": "2024-07-05T13:41:58.057761Z", + "shell.execute_reply": "2024-07-05T13:41:58.057242Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:22.371664Z", - "iopub.status.busy": "2024-07-02T15:25:22.371311Z", - "iopub.status.idle": "2024-07-02T15:25:22.389436Z", - "shell.execute_reply": "2024-07-02T15:25:22.388994Z" + "iopub.execute_input": "2024-07-05T13:41:58.060184Z", + "iopub.status.busy": "2024-07-05T13:41:58.059828Z", + "iopub.status.idle": "2024-07-05T13:41:58.078320Z", + "shell.execute_reply": "2024-07-05T13:41:58.077779Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:22.391511Z", - "iopub.status.busy": "2024-07-02T15:25:22.391097Z", - "iopub.status.idle": "2024-07-02T15:25:22.394237Z", - "shell.execute_reply": "2024-07-02T15:25:22.393731Z" + "iopub.execute_input": "2024-07-05T13:41:58.080300Z", + "iopub.status.busy": "2024-07-05T13:41:58.080115Z", + "iopub.status.idle": "2024-07-05T13:41:58.083398Z", + "shell.execute_reply": "2024-07-05T13:41:58.082929Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:22.396091Z", - "iopub.status.busy": "2024-07-02T15:25:22.395918Z", - "iopub.status.idle": "2024-07-02T15:25:36.049207Z", - "shell.execute_reply": "2024-07-02T15:25:36.048690Z" + "iopub.execute_input": "2024-07-05T13:41:58.085455Z", + "iopub.status.busy": "2024-07-05T13:41:58.085034Z", + "iopub.status.idle": "2024-07-05T13:42:12.538039Z", + "shell.execute_reply": "2024-07-05T13:42:12.537421Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.051828Z", - "iopub.status.busy": "2024-07-02T15:25:36.051442Z", - "iopub.status.idle": "2024-07-02T15:25:36.055485Z", - "shell.execute_reply": "2024-07-02T15:25:36.055009Z" + "iopub.execute_input": "2024-07-05T13:42:12.540669Z", + "iopub.status.busy": "2024-07-05T13:42:12.540411Z", + "iopub.status.idle": "2024-07-05T13:42:12.544261Z", + "shell.execute_reply": "2024-07-05T13:42:12.543705Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.057411Z", - "iopub.status.busy": "2024-07-02T15:25:36.057242Z", - "iopub.status.idle": "2024-07-02T15:25:36.769000Z", - "shell.execute_reply": "2024-07-02T15:25:36.768447Z" + "iopub.execute_input": "2024-07-05T13:42:12.546354Z", + "iopub.status.busy": "2024-07-05T13:42:12.545960Z", + "iopub.status.idle": "2024-07-05T13:42:13.270666Z", + "shell.execute_reply": "2024-07-05T13:42:13.269951Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.772680Z", - "iopub.status.busy": "2024-07-02T15:25:36.771734Z", - "iopub.status.idle": "2024-07-02T15:25:36.778368Z", - "shell.execute_reply": "2024-07-02T15:25:36.777878Z" + "iopub.execute_input": "2024-07-05T13:42:13.274578Z", + "iopub.status.busy": "2024-07-05T13:42:13.273467Z", + "iopub.status.idle": "2024-07-05T13:42:13.280452Z", + "shell.execute_reply": "2024-07-05T13:42:13.279944Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.781861Z", - "iopub.status.busy": "2024-07-02T15:25:36.780939Z", - "iopub.status.idle": "2024-07-02T15:25:36.879710Z", - "shell.execute_reply": "2024-07-02T15:25:36.879109Z" + "iopub.execute_input": "2024-07-05T13:42:13.284022Z", + "iopub.status.busy": "2024-07-05T13:42:13.283091Z", + "iopub.status.idle": "2024-07-05T13:42:13.388337Z", + "shell.execute_reply": "2024-07-05T13:42:13.387708Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.881988Z", - "iopub.status.busy": "2024-07-02T15:25:36.881620Z", - "iopub.status.idle": "2024-07-02T15:25:36.894208Z", - "shell.execute_reply": "2024-07-02T15:25:36.893742Z" + "iopub.execute_input": "2024-07-05T13:42:13.391134Z", + "iopub.status.busy": "2024-07-05T13:42:13.390545Z", + "iopub.status.idle": "2024-07-05T13:42:13.404225Z", + "shell.execute_reply": "2024-07-05T13:42:13.403750Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.896273Z", - "iopub.status.busy": "2024-07-02T15:25:36.895955Z", - "iopub.status.idle": "2024-07-02T15:25:36.903547Z", - "shell.execute_reply": "2024-07-02T15:25:36.903009Z" + "iopub.execute_input": "2024-07-05T13:42:13.406458Z", + "iopub.status.busy": "2024-07-05T13:42:13.406106Z", + "iopub.status.idle": "2024-07-05T13:42:13.414230Z", + "shell.execute_reply": "2024-07-05T13:42:13.413758Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.905350Z", - "iopub.status.busy": "2024-07-02T15:25:36.905182Z", - "iopub.status.idle": "2024-07-02T15:25:36.909462Z", - "shell.execute_reply": "2024-07-02T15:25:36.908923Z" + "iopub.execute_input": "2024-07-05T13:42:13.416332Z", + "iopub.status.busy": "2024-07-05T13:42:13.416023Z", + "iopub.status.idle": "2024-07-05T13:42:13.420522Z", + "shell.execute_reply": "2024-07-05T13:42:13.419954Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.911557Z", - "iopub.status.busy": "2024-07-02T15:25:36.911268Z", - "iopub.status.idle": "2024-07-02T15:25:36.916706Z", - "shell.execute_reply": "2024-07-02T15:25:36.916183Z" + "iopub.execute_input": "2024-07-05T13:42:13.422672Z", + "iopub.status.busy": "2024-07-05T13:42:13.422207Z", + "iopub.status.idle": "2024-07-05T13:42:13.428140Z", + "shell.execute_reply": "2024-07-05T13:42:13.427583Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:36.918893Z", - "iopub.status.busy": "2024-07-02T15:25:36.918579Z", - "iopub.status.idle": "2024-07-02T15:25:37.028414Z", - "shell.execute_reply": "2024-07-02T15:25:37.027859Z" + "iopub.execute_input": "2024-07-05T13:42:13.430119Z", + "iopub.status.busy": "2024-07-05T13:42:13.429936Z", + "iopub.status.idle": "2024-07-05T13:42:13.542428Z", + "shell.execute_reply": "2024-07-05T13:42:13.541820Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:37.030519Z", - "iopub.status.busy": "2024-07-02T15:25:37.030189Z", - "iopub.status.idle": "2024-07-02T15:25:37.129978Z", - "shell.execute_reply": "2024-07-02T15:25:37.129407Z" + "iopub.execute_input": "2024-07-05T13:42:13.544772Z", + "iopub.status.busy": "2024-07-05T13:42:13.544314Z", + "iopub.status.idle": "2024-07-05T13:42:13.653988Z", + "shell.execute_reply": "2024-07-05T13:42:13.653432Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-02T15:25:37.132132Z", - "iopub.status.busy": "2024-07-02T15:25:37.131812Z", - "iopub.status.idle": "2024-07-02T15:25:37.230271Z", - "shell.execute_reply": "2024-07-02T15:25:37.229796Z" + "iopub.execute_input": "2024-07-05T13:42:13.656084Z", + "iopub.status.busy": "2024-07-05T13:42:13.655893Z", + "iopub.status.idle": "2024-07-05T13:42:13.759598Z", + "shell.execute_reply": "2024-07-05T13:42:13.759009Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:37.232307Z", - "iopub.status.busy": "2024-07-02T15:25:37.231996Z", - "iopub.status.idle": "2024-07-02T15:25:37.334860Z", - "shell.execute_reply": "2024-07-02T15:25:37.334301Z" + "iopub.execute_input": "2024-07-05T13:42:13.761841Z", + "iopub.status.busy": "2024-07-05T13:42:13.761474Z", + "iopub.status.idle": "2024-07-05T13:42:13.866494Z", + "shell.execute_reply": "2024-07-05T13:42:13.865972Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:37.337103Z", - "iopub.status.busy": "2024-07-02T15:25:37.336778Z", - "iopub.status.idle": "2024-07-02T15:25:37.339748Z", - "shell.execute_reply": "2024-07-02T15:25:37.339340Z" + "iopub.execute_input": "2024-07-05T13:42:13.868566Z", + "iopub.status.busy": "2024-07-05T13:42:13.868365Z", + "iopub.status.idle": "2024-07-05T13:42:13.871815Z", + "shell.execute_reply": "2024-07-05T13:42:13.871348Z" }, "nbsphinx": "hidden" }, @@ -1392,48 +1392,60 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "035ed0ac88b843c7986fdcc6053c74ea": { - "model_module": "@jupyter-widgets/controls", + "0ca92c743ec842ff92facbcc849bb3e8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "05ace592e52c4898960ac3a6834e81db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a8eef61906f4e02b64d2acfa416df0a", - "placeholder": "​", - "style": "IPY_MODEL_79f5954a72a84d65be69edeb832c92fd", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "09f9a3d816be47d78e516de2e21980b0": { + "0d3fab978db944b98d2092c86652c672": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1486,30 +1498,33 @@ "width": null } }, - "0eca11d8b9ca420cb317292d15607da7": { + "0d6604e9b2004f23a5237ab7f80eea00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eacb5b752481476099c10dfacf56c89d", - "placeholder": "​", - "style": "IPY_MODEL_f2d5653b2c4e48d493b970861348256b", + "layout": "IPY_MODEL_9d44f82e72e246b095fedfda914bf42b", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aab9ad49dce44300858a40bc997b951f", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 483kB/s]" + "value": 16887676.0 } }, - "0f2e81acb0c846a1bd10715932ea462b": { + "112b019a69084c6bb8e89dea9db544ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1524,49 +1539,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53edd2fc08c34cd28b365529e38e14de", + "layout": "IPY_MODEL_0d3fab978db944b98d2092c86652c672", "placeholder": "​", - "style": "IPY_MODEL_3a43941544024cce8e00981fad13ea69", + "style": "IPY_MODEL_ca7f9981118047a984bd15388bcc4538", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 164MB/s]" + "value": "label_encoder.txt: 100%" } }, - "191733153ce746d1a8ff2b837b57e9be": { + "155d78af36574976bb94b2a9cf03176b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "1a33cb48eeb1453993c6eaa84fc502fb": { + "1ba574d19a934a67ac3c33e5546fd0d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f6e6dcf0b8f64678b1be2c3b98b655e9", + "placeholder": "​", + "style": "IPY_MODEL_e4d6f8f3c2bd44758115f11122fec314", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "1c477dd84702413bafd29643b995393b": { + "1d3c548498c14a6cbe5f40966e5b0fd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1582,17 +1602,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b911745838c24922badcd8ce2b74705c", - "max": 16887676.0, + "layout": "IPY_MODEL_231b9f11e4924b3d9500acdf85fc4fb5", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_41f5c12b350f4abbb8805e5d672190d7", + "style": "IPY_MODEL_e96b0a3835294d139a58f1b2eede5453", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 15856877.0 + } + }, + "1dbb86683ca9470b8df6d9d1c0f165d1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "20439df6f4ec4c92a86ed7db1713c94a": { + "1ef335a7a01c432ba4a8671130f85cf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1607,15 +1680,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a687a32ad4e94ddab8899265482ec95e", + "layout": "IPY_MODEL_51644422dfc74c23aa268bb2dd0eed11", "placeholder": "​", - "style": "IPY_MODEL_ee82152228b343f5bd122b8ee22d3ade", + "style": "IPY_MODEL_be79c949bdd74bc2a3480e64d4aefc02", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": " 129k/129k [00:00<00:00, 9.67MB/s]" } }, - "28bb50bd3b734769b604cbc0566fe965": { + "1f0e3b68321a4d338348fb13e0f6f8b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,7 +1741,7 @@ "width": null } }, - "2a8eef61906f4e02b64d2acfa416df0a": { + "231b9f11e4924b3d9500acdf85fc4fb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1721,54 +1794,7 @@ "width": null } }, - "306f5f497ce647e09871bff6b0c431fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6de7c25d6d174a3e92ebb9f11d808ecc", - "IPY_MODEL_76f9849e481f47fb9422fb236d93ee5c", - "IPY_MODEL_c41ac92cd3a44fa7b86ae4c7444f9d57" - ], - "layout": "IPY_MODEL_a66d028f4eea4d9cb7a62da4d3f9af97", - "tabbable": null, - "tooltip": null - } - }, - "3780dbf7cf624b0fbcc7e46393e604bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28bb50bd3b734769b604cbc0566fe965", - "placeholder": "​", - "style": "IPY_MODEL_035ed0ac88b843c7986fdcc6053c74ea", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 796kB/s]" - } - }, - "3a43941544024cce8e00981fad13ea69": { + "24b60a361708442bbd633dc5c992dffe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1786,7 +1812,7 @@ "text_color": null } }, - "3af2e6f965024e0faef7da0c7564e4bc": { + "2e1eff407cc0488993c9f2e1c8e96f4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1839,23 +1865,7 @@ "width": null } }, - "3e86400f85a2412dab304636e64fc255": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "40119d252d344b50ada2deb76d102ba9": { + "3378da9f4d4843a29b68b9dd15260724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1870,73 +1880,46 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d2f84d14e3a4939a1c606b1769f2052", - "IPY_MODEL_1c477dd84702413bafd29643b995393b", - "IPY_MODEL_638ba26f976e403cb8fbdb569fd358cb" + "IPY_MODEL_1ba574d19a934a67ac3c33e5546fd0d4", + "IPY_MODEL_c488f272ed84402aa05522ef636c3a89", + "IPY_MODEL_bdf833354e814bcb89d90d4debdccb93" ], - "layout": "IPY_MODEL_f0d5fce51b134affae64c7e5b3ff7cde", + "layout": "IPY_MODEL_2e1eff407cc0488993c9f2e1c8e96f4a", "tabbable": null, "tooltip": null } }, - "41f5c12b350f4abbb8805e5d672190d7": { + "411febc4f6624b5190ddd1785258d9c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_753249f25e6c4813a3c055371d0f66e3", + "placeholder": "​", + "style": "IPY_MODEL_fd5f4ac4797e4978b654c153814d6a47", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 247MB/s]" } }, - "47c5d5c584084493b0861ab73b489d4c": { - "model_module": "@jupyter-widgets/controls", + "436c88cadb16448097e78419a9a88312": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4b23757c53804abf826b76129c71f84f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4d42b878a1484c2a8c218ceb2a870ce6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1982,7 +1965,7 @@ "width": null } }, - "53edd2fc08c34cd28b365529e38e14de": { + "440beb3a75d94f499bd3d432e3ff077c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2035,30 +2018,49 @@ "width": null } }, - "5b0eb572f4a44010b0414f2c88c3cd1e": { + "4b3641a7d36a41fba64b266119930d95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_969d2813a5c04cacb6fc3a37ed2dc5fd", - "placeholder": "​", - "style": "IPY_MODEL_191733153ce746d1a8ff2b837b57e9be", + "layout": "IPY_MODEL_b79066cf9b704738b2efbcdd7698940e", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_155d78af36574976bb94b2a9cf03176b", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": 2041.0 + } + }, + "4d8f5e43eec6495bbcdd7f8b382d406b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5ce0ad1c70004fae993ca54a47dea1ac": { + "50e5b7b7bd1948d18df670bae7140efd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,56 +2113,7 @@ "width": null } }, - "6339c8e626034d7c9fa8cff1415bcad2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4d42b878a1484c2a8c218ceb2a870ce6", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3e86400f85a2412dab304636e64fc255", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "638ba26f976e403cb8fbdb569fd358cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ce0ad1c70004fae993ca54a47dea1ac", - "placeholder": "​", - "style": "IPY_MODEL_4b23757c53804abf826b76129c71f84f", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 62.7MB/s]" - } - }, - "65ccc00f12204532a50813004d34c322": { + "51644422dfc74c23aa268bb2dd0eed11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2213,53 +2166,7 @@ "width": null } }, - "6d2f84d14e3a4939a1c606b1769f2052": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e617db8fadf64d708385495d20c7702e", - "placeholder": "​", - "style": "IPY_MODEL_8920ef4b3a4a44c59c581d700192ac74", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "6de7c25d6d174a3e92ebb9f11d808ecc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3af2e6f965024e0faef7da0c7564e4bc", - "placeholder": "​", - "style": "IPY_MODEL_a1ecc93b0e124f82a9d890e1b8dc92fb", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "746cf50561de4f28aec72152e2a74e40": { + "534b555f1c3141f88a333aec5cce0872": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2312,75 +2219,7 @@ "width": null } }, - "76f9849e481f47fb9422fb236d93ee5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_746cf50561de4f28aec72152e2a74e40", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9ab4d21a4d204ce9aad54b4aa19ef440", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "79f5954a72a84d65be69edeb832c92fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "869fc446c9a34743877fe8b5536872b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5b0eb572f4a44010b0414f2c88c3cd1e", - "IPY_MODEL_d2c10c0d82484b1d9d529d2ef9dae7fb", - "IPY_MODEL_0eca11d8b9ca420cb317292d15607da7" - ], - "layout": "IPY_MODEL_09f9a3d816be47d78e516de2e21980b0", - "tabbable": null, - "tooltip": null - } - }, - "8920ef4b3a4a44c59c581d700192ac74": { + "5c183b6491494da7ad33357e7cae6771": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2398,7 +2237,7 @@ "text_color": null } }, - "968ea4aa03974c94a22690152df3a0b0": { + "5fadf40f73cb4c8795380f11a9f5b96a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2451,7 +2290,7 @@ "width": null } }, - "969d2813a5c04cacb6fc3a37ed2dc5fd": { + "753249f25e6c4813a3c055371d0f66e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2504,41 +2343,31 @@ "width": null } }, - "9ab4d21a4d204ce9aad54b4aa19ef440": { + "757c748d08bc4031bf75f425df29c1d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a1ecc93b0e124f82a9d890e1b8dc92fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5e6b057f68f4bdba834dd5dc9c5b59a", + "IPY_MODEL_1d3c548498c14a6cbe5f40966e5b0fd2", + "IPY_MODEL_411febc4f6624b5190ddd1785258d9c8" + ], + "layout": "IPY_MODEL_d250090c5cf54766a8d3a73ecfc4b89d", + "tabbable": null, + "tooltip": null } }, - "a66d028f4eea4d9cb7a62da4d3f9af97": { + "7732d14c6c8c4950b7c792b854d8375e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2591,37 +2420,87 @@ "width": null } }, - "a687a32ad4e94ddab8899265482ec95e": { - "model_module": "@jupyter-widgets/base", + "7b319e0c26c846a9a5aba2d262bc4ba6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50e5b7b7bd1948d18df670bae7140efd", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4d8f5e43eec6495bbcdd7f8b382d406b", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "7bfd896d306144ef9bd39f4adfff2c7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e880641d974044cbbfc13ba6eda40150", + "IPY_MODEL_4b3641a7d36a41fba64b266119930d95", + "IPY_MODEL_b8b52d2f72da4d03b705f2bd28a6ba14" + ], + "layout": "IPY_MODEL_1f0e3b68321a4d338348fb13e0f6f8b2", + "tabbable": null, + "tooltip": null + } + }, + "86c1d5511b0540b58d9f3eb4eb1c0d12": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, @@ -2644,7 +2523,64 @@ "width": null } }, - "b911745838c24922badcd8ce2b74705c": { + "8d76f29f9f2c4abbb13c70ea1000c5d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9020c5589932439583862ecdb9908578": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "99a61dddd2f3401ba0a45acd6985e004": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d67b2b8407fb4fffbf7566dc96b9ebb9", + "placeholder": "​", + "style": "IPY_MODEL_ec3bef5219a942afb9cd0a59d12a4b8b", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "9d44f82e72e246b095fedfda914bf42b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2697,31 +2633,41 @@ "width": null } }, - "baafd2ed9b6541319c792073a72f5e7d": { + "a883a0da0cab449caf961179ef3c08bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_05ace592e52c4898960ac3a6834e81db", - "IPY_MODEL_f9493a2b41bb4830b72c769a6924862e", - "IPY_MODEL_0f2e81acb0c846a1bd10715932ea462b" - ], - "layout": "IPY_MODEL_f65ea041bc1b48afa70ae6281b147089", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bd27c6867d9a407d8723ff685bd632f8": { + "aab9ad49dce44300858a40bc997b951f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aeb8d5bcd3714341b0ccbe73737d99ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2736,16 +2682,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20439df6f4ec4c92a86ed7db1713c94a", - "IPY_MODEL_6339c8e626034d7c9fa8cff1415bcad2", - "IPY_MODEL_3780dbf7cf624b0fbcc7e46393e604bd" + "IPY_MODEL_112b019a69084c6bb8e89dea9db544ed", + "IPY_MODEL_7b319e0c26c846a9a5aba2d262bc4ba6", + "IPY_MODEL_1ef335a7a01c432ba4a8671130f85cf8" ], - "layout": "IPY_MODEL_968ea4aa03974c94a22690152df3a0b0", + "layout": "IPY_MODEL_7732d14c6c8c4950b7c792b854d8375e", "tabbable": null, "tooltip": null } }, - "c41ac92cd3a44fa7b86ae4c7444f9d57": { + "b5e6b057f68f4bdba834dd5dc9c5b59a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2760,41 +2706,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fac867a2e6ae475dba8300fafb622e27", + "layout": "IPY_MODEL_440beb3a75d94f499bd3d432e3ff077c", "placeholder": "​", - "style": "IPY_MODEL_d7d5493534b94ec28876947b06bbca4c", + "style": "IPY_MODEL_a883a0da0cab449caf961179ef3c08bd", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 17.4MB/s]" - } - }, - "d2c10c0d82484b1d9d529d2ef9dae7fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_65ccc00f12204532a50813004d34c322", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_47c5d5c584084493b0861ab73b489d4c", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "value": "classifier.ckpt: 100%" } }, - "d749fc0d9649484f8df326a2bdb58a4f": { + "b79066cf9b704738b2efbcdd7698940e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2847,7 +2767,97 @@ "width": null } }, - "d7d5493534b94ec28876947b06bbca4c": { + "b8b52d2f72da4d03b705f2bd28a6ba14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1dbb86683ca9470b8df6d9d1c0f165d1", + "placeholder": "​", + "style": "IPY_MODEL_8d76f29f9f2c4abbb13c70ea1000c5d6", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 449kB/s]" + } + }, + "bdf833354e814bcb89d90d4debdccb93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_436c88cadb16448097e78419a9a88312", + "placeholder": "​", + "style": "IPY_MODEL_ea1a0a9d30f748b4ba1326898f95a9df", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 756kB/s]" + } + }, + "be79c949bdd74bc2a3480e64d4aefc02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c488f272ed84402aa05522ef636c3a89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_86c1d5511b0540b58d9f3eb4eb1c0d12", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9020c5589932439583862ecdb9908578", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "ca7f9981118047a984bd15388bcc4538": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2865,7 +2875,7 @@ "text_color": null } }, - "e617db8fadf64d708385495d20c7702e": { + "d250090c5cf54766a8d3a73ecfc4b89d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2918,7 +2928,7 @@ "width": null } }, - "eacb5b752481476099c10dfacf56c89d": { + "d67b2b8407fb4fffbf7566dc96b9ebb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2971,7 +2981,31 @@ "width": null } }, - "ee82152228b343f5bd122b8ee22d3ade": { + "e3405ff81d504fe08fd208d8c4263685": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99a61dddd2f3401ba0a45acd6985e004", + "IPY_MODEL_0d6604e9b2004f23a5237ab7f80eea00", + "IPY_MODEL_ed87c4b59c5147df93d41f9c48524f2b" + ], + "layout": "IPY_MODEL_5fadf40f73cb4c8795380f11a9f5b96a", + "tabbable": null, + "tooltip": null + } + }, + "e4d6f8f3c2bd44758115f11122fec314": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2989,60 +3023,46 @@ "text_color": null } }, - "f0d5fce51b134affae64c7e5b3ff7cde": { - "model_module": "@jupyter-widgets/base", + "e880641d974044cbbfc13ba6eda40150": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0ca92c743ec842ff92facbcc849bb3e8", + "placeholder": "​", + "style": "IPY_MODEL_5c183b6491494da7ad33357e7cae6771", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "e96b0a3835294d139a58f1b2eede5453": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f2d5653b2c4e48d493b970861348256b": { + "ea1a0a9d30f748b4ba1326898f95a9df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3060,86 +3080,48 @@ "text_color": null } }, - "f65ea041bc1b48afa70ae6281b147089": { - "model_module": "@jupyter-widgets/base", + "ec3bef5219a942afb9cd0a59d12a4b8b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f9493a2b41bb4830b72c769a6924862e": { + "ed87c4b59c5147df93d41f9c48524f2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d749fc0d9649484f8df326a2bdb58a4f", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a33cb48eeb1453993c6eaa84fc502fb", + "layout": "IPY_MODEL_534b555f1c3141f88a333aec5cce0872", + "placeholder": "​", + "style": "IPY_MODEL_24b60a361708442bbd633dc5c992dffe", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": " 16.9M/16.9M [00:00<00:00, 257MB/s]" } }, - "fac867a2e6ae475dba8300fafb622e27": { + "f6e6dcf0b8f64678b1be2c3b98b655e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3173,24 @@ "visibility": null, "width": null } + }, + "fd5f4ac4797e4978b654c153814d6a47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 151566cfc..1490c9026 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"6672342c648a498e8e29b58fe5564cd9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50f19109358b42a8bd1e48290795156f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3a0a9f8d4e1b42459e15f37672591429": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6672342c648a498e8e29b58fe5564cd9", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_50f19109358b42a8bd1e48290795156f", "tabbable": null, "tooltip": null, "value": 132.0}}, "d8843a6d5b2347648570fd72914f0670": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc282718b936425ab24a89562150ba2f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2b1e6fc670724ce38421474a588fa03c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8843a6d5b2347648570fd72914f0670", "placeholder": "\u200b", "style": "IPY_MODEL_dc282718b936425ab24a89562150ba2f", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "0d51225159934baaac34694b19a43d65": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5b5d4b4892e4c63a5e61e1415c83270": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4b2b2a28121d445c839398dd3d1fda37": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d51225159934baaac34694b19a43d65", "placeholder": "\u200b", "style": "IPY_MODEL_a5b5d4b4892e4c63a5e61e1415c83270", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713229.66\u2007examples/s]"}}, "cdee337a805b485c97ee06232ebd5b25": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffa60db8cf7d41c485a3bb13eb857c21": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2b1e6fc670724ce38421474a588fa03c", "IPY_MODEL_3a0a9f8d4e1b42459e15f37672591429", "IPY_MODEL_4b2b2a28121d445c839398dd3d1fda37"], "layout": "IPY_MODEL_cdee337a805b485c97ee06232ebd5b25", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"0a0470fa65a04a1db1fe6d7c68e63f5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f25fc0c6251848a084105a572bbff782": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "893f46642bbd491db670b70be9402d98": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a0470fa65a04a1db1fe6d7c68e63f5b", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f25fc0c6251848a084105a572bbff782", "tabbable": null, "tooltip": null, "value": 132.0}}, "ccbfd979aaaa4416a44c8d8f6b93daec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de2e5e4f53fc4d22aebb53ee3e339836": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fa18878a20c14fa1824e8b591d31ebe7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ccbfd979aaaa4416a44c8d8f6b93daec", "placeholder": "\u200b", "style": "IPY_MODEL_de2e5e4f53fc4d22aebb53ee3e339836", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "da7724611af240698eb4197731df2102": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7c761a6f75046dd80f642b7b3f44085": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3243a344f2d44872bf6c75b0d95b5c5c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da7724611af240698eb4197731df2102", "placeholder": "\u200b", "style": "IPY_MODEL_a7c761a6f75046dd80f642b7b3f44085", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711854.91\u2007examples/s]"}}, "865f355a1e57419da2e65e0bf50bf018": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6888bb07b43944a99a6d5a3a2719c0bc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fa18878a20c14fa1824e8b591d31ebe7", "IPY_MODEL_893f46642bbd491db670b70be9402d98", "IPY_MODEL_3243a344f2d44872bf6c75b0d95b5c5c"], "layout": "IPY_MODEL_865f355a1e57419da2e65e0bf50bf018", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 0f238c16e..e15ac5465 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:40.329888Z", - "iopub.status.busy": "2024-07-02T15:25:40.329681Z", - "iopub.status.idle": "2024-07-02T15:25:41.468704Z", - "shell.execute_reply": "2024-07-02T15:25:41.468091Z" + "iopub.execute_input": "2024-07-05T13:42:18.167558Z", + "iopub.status.busy": "2024-07-05T13:42:18.167080Z", + "iopub.status.idle": "2024-07-05T13:42:19.316260Z", + "shell.execute_reply": "2024-07-05T13:42:19.315748Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:41.471552Z", - "iopub.status.busy": "2024-07-02T15:25:41.471147Z", - "iopub.status.idle": "2024-07-02T15:25:41.474151Z", - "shell.execute_reply": "2024-07-02T15:25:41.473613Z" + "iopub.execute_input": "2024-07-05T13:42:19.318737Z", + "iopub.status.busy": "2024-07-05T13:42:19.318316Z", + "iopub.status.idle": "2024-07-05T13:42:19.321284Z", + "shell.execute_reply": "2024-07-05T13:42:19.320846Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:41.476320Z", - "iopub.status.busy": "2024-07-02T15:25:41.475903Z", - "iopub.status.idle": "2024-07-02T15:25:41.484450Z", - "shell.execute_reply": "2024-07-02T15:25:41.483895Z" + "iopub.execute_input": "2024-07-05T13:42:19.323332Z", + "iopub.status.busy": "2024-07-05T13:42:19.323035Z", + "iopub.status.idle": "2024-07-05T13:42:19.331679Z", + "shell.execute_reply": "2024-07-05T13:42:19.331146Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:41.486500Z", - "iopub.status.busy": "2024-07-02T15:25:41.486077Z", - "iopub.status.idle": "2024-07-02T15:25:41.490609Z", - "shell.execute_reply": "2024-07-02T15:25:41.490062Z" + "iopub.execute_input": "2024-07-05T13:42:19.333727Z", + "iopub.status.busy": "2024-07-05T13:42:19.333431Z", + "iopub.status.idle": "2024-07-05T13:42:19.338389Z", + "shell.execute_reply": "2024-07-05T13:42:19.337862Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:41.492643Z", - "iopub.status.busy": "2024-07-02T15:25:41.492320Z", - "iopub.status.idle": "2024-07-02T15:25:41.674964Z", - "shell.execute_reply": "2024-07-02T15:25:41.674459Z" + "iopub.execute_input": "2024-07-05T13:42:19.340615Z", + "iopub.status.busy": "2024-07-05T13:42:19.340186Z", + "iopub.status.idle": "2024-07-05T13:42:19.523111Z", + "shell.execute_reply": "2024-07-05T13:42:19.522480Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:41.677160Z", - "iopub.status.busy": "2024-07-02T15:25:41.676819Z", - "iopub.status.idle": "2024-07-02T15:25:42.040724Z", - "shell.execute_reply": "2024-07-02T15:25:42.040194Z" + "iopub.execute_input": "2024-07-05T13:42:19.525516Z", + "iopub.status.busy": "2024-07-05T13:42:19.525341Z", + "iopub.status.idle": "2024-07-05T13:42:19.893230Z", + "shell.execute_reply": "2024-07-05T13:42:19.892632Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:42.042978Z", - "iopub.status.busy": "2024-07-02T15:25:42.042640Z", - "iopub.status.idle": "2024-07-02T15:25:42.065518Z", - "shell.execute_reply": "2024-07-02T15:25:42.064981Z" + "iopub.execute_input": "2024-07-05T13:42:19.895601Z", + "iopub.status.busy": "2024-07-05T13:42:19.895174Z", + "iopub.status.idle": "2024-07-05T13:42:19.918370Z", + "shell.execute_reply": "2024-07-05T13:42:19.917801Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:42.067639Z", - "iopub.status.busy": "2024-07-02T15:25:42.067331Z", - "iopub.status.idle": "2024-07-02T15:25:42.078083Z", - "shell.execute_reply": "2024-07-02T15:25:42.077538Z" + "iopub.execute_input": "2024-07-05T13:42:19.920551Z", + "iopub.status.busy": "2024-07-05T13:42:19.920237Z", + "iopub.status.idle": "2024-07-05T13:42:19.931256Z", + "shell.execute_reply": "2024-07-05T13:42:19.930709Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:42.079921Z", - "iopub.status.busy": "2024-07-02T15:25:42.079754Z", - "iopub.status.idle": "2024-07-02T15:25:44.012829Z", - "shell.execute_reply": "2024-07-02T15:25:44.012212Z" + "iopub.execute_input": "2024-07-05T13:42:19.933454Z", + "iopub.status.busy": "2024-07-05T13:42:19.933152Z", + "iopub.status.idle": "2024-07-05T13:42:21.894305Z", + "shell.execute_reply": "2024-07-05T13:42:21.893734Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:44.015522Z", - "iopub.status.busy": "2024-07-02T15:25:44.014996Z", - "iopub.status.idle": "2024-07-02T15:25:44.035612Z", - "shell.execute_reply": "2024-07-02T15:25:44.035047Z" + "iopub.execute_input": "2024-07-05T13:42:21.896734Z", + "iopub.status.busy": "2024-07-05T13:42:21.896241Z", + "iopub.status.idle": "2024-07-05T13:42:21.916992Z", + "shell.execute_reply": "2024-07-05T13:42:21.916512Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:44.037621Z", - "iopub.status.busy": "2024-07-02T15:25:44.037319Z", - "iopub.status.idle": "2024-07-02T15:25:44.054645Z", - "shell.execute_reply": "2024-07-02T15:25:44.054093Z" + "iopub.execute_input": "2024-07-05T13:42:21.919080Z", + "iopub.status.busy": "2024-07-05T13:42:21.918748Z", + "iopub.status.idle": "2024-07-05T13:42:21.936781Z", + "shell.execute_reply": "2024-07-05T13:42:21.936321Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:44.056426Z", - "iopub.status.busy": "2024-07-02T15:25:44.056261Z", - "iopub.status.idle": "2024-07-02T15:25:44.070971Z", - "shell.execute_reply": "2024-07-02T15:25:44.070438Z" + "iopub.execute_input": "2024-07-05T13:42:21.938664Z", + "iopub.status.busy": "2024-07-05T13:42:21.938486Z", + "iopub.status.idle": "2024-07-05T13:42:21.952923Z", + "shell.execute_reply": "2024-07-05T13:42:21.952449Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:44.073135Z", - "iopub.status.busy": "2024-07-02T15:25:44.072826Z", - "iopub.status.idle": "2024-07-02T15:25:44.091424Z", - "shell.execute_reply": "2024-07-02T15:25:44.090905Z" + "iopub.execute_input": "2024-07-05T13:42:21.954792Z", + "iopub.status.busy": "2024-07-05T13:42:21.954624Z", + "iopub.status.idle": "2024-07-05T13:42:21.975061Z", + "shell.execute_reply": "2024-07-05T13:42:21.974521Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ffa60db8cf7d41c485a3bb13eb857c21", + "model_id": "6888bb07b43944a99a6d5a3a2719c0bc", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:44.093259Z", - "iopub.status.busy": "2024-07-02T15:25:44.093091Z", - "iopub.status.idle": "2024-07-02T15:25:44.107694Z", - "shell.execute_reply": "2024-07-02T15:25:44.107176Z" + "iopub.execute_input": "2024-07-05T13:42:21.977880Z", + "iopub.status.busy": "2024-07-05T13:42:21.977431Z", + "iopub.status.idle": "2024-07-05T13:42:21.991938Z", + "shell.execute_reply": "2024-07-05T13:42:21.991486Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:44.109743Z", - "iopub.status.busy": "2024-07-02T15:25:44.109410Z", - "iopub.status.idle": "2024-07-02T15:25:44.115034Z", - "shell.execute_reply": "2024-07-02T15:25:44.114606Z" + "iopub.execute_input": "2024-07-05T13:42:21.993993Z", + "iopub.status.busy": "2024-07-05T13:42:21.993667Z", + "iopub.status.idle": "2024-07-05T13:42:21.999417Z", + "shell.execute_reply": "2024-07-05T13:42:21.998865Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:44.117072Z", - "iopub.status.busy": "2024-07-02T15:25:44.116754Z", - "iopub.status.idle": "2024-07-02T15:25:44.134358Z", - "shell.execute_reply": "2024-07-02T15:25:44.133820Z" + "iopub.execute_input": "2024-07-05T13:42:22.001555Z", + "iopub.status.busy": "2024-07-05T13:42:22.001232Z", + "iopub.status.idle": "2024-07-05T13:42:22.018955Z", + "shell.execute_reply": "2024-07-05T13:42:22.018423Z" } }, "outputs": [ @@ -1447,7 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0d51225159934baaac34694b19a43d65": { + "0a0470fa65a04a1db1fe6d7c68e63f5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,7 +1500,7 @@ "width": null } }, - "2b1e6fc670724ce38421474a588fa03c": { + "3243a344f2d44872bf6c75b0d95b5c5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1515,80 +1515,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d8843a6d5b2347648570fd72914f0670", + "layout": "IPY_MODEL_da7724611af240698eb4197731df2102", "placeholder": "​", - "style": "IPY_MODEL_dc282718b936425ab24a89562150ba2f", + "style": "IPY_MODEL_a7c761a6f75046dd80f642b7b3f44085", "tabbable": null, "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "value": " 132/132 [00:00<00:00, 11854.91 examples/s]" } }, - "3a0a9f8d4e1b42459e15f37672591429": { + "6888bb07b43944a99a6d5a3a2719c0bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6672342c648a498e8e29b58fe5564cd9", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_50f19109358b42a8bd1e48290795156f", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "4b2b2a28121d445c839398dd3d1fda37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0d51225159934baaac34694b19a43d65", - "placeholder": "​", - "style": "IPY_MODEL_a5b5d4b4892e4c63a5e61e1415c83270", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa18878a20c14fa1824e8b591d31ebe7", + "IPY_MODEL_893f46642bbd491db670b70be9402d98", + "IPY_MODEL_3243a344f2d44872bf6c75b0d95b5c5c" + ], + "layout": "IPY_MODEL_865f355a1e57419da2e65e0bf50bf018", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13229.66 examples/s]" - } - }, - "50f19109358b42a8bd1e48290795156f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "6672342c648a498e8e29b58fe5564cd9": { + "865f355a1e57419da2e65e0bf50bf018": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1641,7 +1600,33 @@ "width": null } }, - "a5b5d4b4892e4c63a5e61e1415c83270": { + "893f46642bbd491db670b70be9402d98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a0470fa65a04a1db1fe6d7c68e63f5b", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f25fc0c6251848a084105a572bbff782", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "a7c761a6f75046dd80f642b7b3f44085": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1659,7 +1644,7 @@ "text_color": null } }, - "cdee337a805b485c97ee06232ebd5b25": { + "ccbfd979aaaa4416a44c8d8f6b93daec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1712,7 +1697,7 @@ "width": null } }, - "d8843a6d5b2347648570fd72914f0670": { + "da7724611af240698eb4197731df2102": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1765,7 +1750,7 @@ "width": null } }, - "dc282718b936425ab24a89562150ba2f": { + "de2e5e4f53fc4d22aebb53ee3e339836": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1783,28 +1768,43 @@ "text_color": null } }, - "ffa60db8cf7d41c485a3bb13eb857c21": { + "f25fc0c6251848a084105a572bbff782": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fa18878a20c14fa1824e8b591d31ebe7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2b1e6fc670724ce38421474a588fa03c", - "IPY_MODEL_3a0a9f8d4e1b42459e15f37672591429", - "IPY_MODEL_4b2b2a28121d445c839398dd3d1fda37" - ], - "layout": "IPY_MODEL_cdee337a805b485c97ee06232ebd5b25", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ccbfd979aaaa4416a44c8d8f6b93daec", + "placeholder": "​", + "style": "IPY_MODEL_de2e5e4f53fc4d22aebb53ee3e339836", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index f24727539..054f46bef 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:46.607904Z", - "iopub.status.busy": "2024-07-02T15:25:46.607488Z", - "iopub.status.idle": "2024-07-02T15:25:47.726756Z", - "shell.execute_reply": "2024-07-02T15:25:47.726167Z" + "iopub.execute_input": "2024-07-05T13:42:24.651357Z", + "iopub.status.busy": "2024-07-05T13:42:24.651188Z", + "iopub.status.idle": "2024-07-05T13:42:25.785475Z", + "shell.execute_reply": "2024-07-05T13:42:25.784918Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:47.729301Z", - "iopub.status.busy": "2024-07-02T15:25:47.728883Z", - "iopub.status.idle": "2024-07-02T15:25:47.731886Z", - "shell.execute_reply": "2024-07-02T15:25:47.731441Z" + "iopub.execute_input": "2024-07-05T13:42:25.787935Z", + "iopub.status.busy": "2024-07-05T13:42:25.787686Z", + "iopub.status.idle": "2024-07-05T13:42:25.790852Z", + "shell.execute_reply": "2024-07-05T13:42:25.790397Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:47.734139Z", - "iopub.status.busy": "2024-07-02T15:25:47.733736Z", - "iopub.status.idle": "2024-07-02T15:25:47.742361Z", - "shell.execute_reply": "2024-07-02T15:25:47.741931Z" + "iopub.execute_input": "2024-07-05T13:42:25.792984Z", + "iopub.status.busy": "2024-07-05T13:42:25.792656Z", + "iopub.status.idle": "2024-07-05T13:42:25.801484Z", + "shell.execute_reply": "2024-07-05T13:42:25.801051Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:47.744536Z", - "iopub.status.busy": "2024-07-02T15:25:47.744028Z", - "iopub.status.idle": "2024-07-02T15:25:47.748673Z", - "shell.execute_reply": "2024-07-02T15:25:47.748258Z" + "iopub.execute_input": "2024-07-05T13:42:25.803445Z", + "iopub.status.busy": "2024-07-05T13:42:25.803190Z", + "iopub.status.idle": "2024-07-05T13:42:25.808161Z", + "shell.execute_reply": "2024-07-05T13:42:25.807739Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:47.750739Z", - "iopub.status.busy": "2024-07-02T15:25:47.750428Z", - "iopub.status.idle": "2024-07-02T15:25:47.928460Z", - "shell.execute_reply": "2024-07-02T15:25:47.927961Z" + "iopub.execute_input": "2024-07-05T13:42:25.810313Z", + "iopub.status.busy": "2024-07-05T13:42:25.810000Z", + "iopub.status.idle": "2024-07-05T13:42:25.992338Z", + "shell.execute_reply": "2024-07-05T13:42:25.991736Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:47.930585Z", - "iopub.status.busy": "2024-07-02T15:25:47.930309Z", - "iopub.status.idle": "2024-07-02T15:25:48.243872Z", - "shell.execute_reply": "2024-07-02T15:25:48.243309Z" + "iopub.execute_input": "2024-07-05T13:42:25.994849Z", + "iopub.status.busy": "2024-07-05T13:42:25.994507Z", + "iopub.status.idle": "2024-07-05T13:42:26.362711Z", + "shell.execute_reply": "2024-07-05T13:42:26.362140Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:48.245977Z", - "iopub.status.busy": "2024-07-02T15:25:48.245615Z", - "iopub.status.idle": "2024-07-02T15:25:48.248189Z", - "shell.execute_reply": "2024-07-02T15:25:48.247774Z" + "iopub.execute_input": "2024-07-05T13:42:26.365053Z", + "iopub.status.busy": "2024-07-05T13:42:26.364644Z", + "iopub.status.idle": "2024-07-05T13:42:26.367398Z", + "shell.execute_reply": "2024-07-05T13:42:26.366971Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:48.250260Z", - "iopub.status.busy": "2024-07-02T15:25:48.249944Z", - "iopub.status.idle": "2024-07-02T15:25:48.283563Z", - "shell.execute_reply": "2024-07-02T15:25:48.283148Z" + "iopub.execute_input": "2024-07-05T13:42:26.369521Z", + "iopub.status.busy": "2024-07-05T13:42:26.369183Z", + "iopub.status.idle": "2024-07-05T13:42:26.403940Z", + "shell.execute_reply": "2024-07-05T13:42:26.403338Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:48.285612Z", - "iopub.status.busy": "2024-07-02T15:25:48.285304Z", - "iopub.status.idle": "2024-07-02T15:25:50.230973Z", - "shell.execute_reply": "2024-07-02T15:25:50.230329Z" + "iopub.execute_input": "2024-07-05T13:42:26.406334Z", + "iopub.status.busy": "2024-07-05T13:42:26.406148Z", + "iopub.status.idle": "2024-07-05T13:42:28.396887Z", + "shell.execute_reply": "2024-07-05T13:42:28.396307Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.233409Z", - "iopub.status.busy": "2024-07-02T15:25:50.233125Z", - "iopub.status.idle": "2024-07-02T15:25:50.251378Z", - "shell.execute_reply": "2024-07-02T15:25:50.250838Z" + "iopub.execute_input": "2024-07-05T13:42:28.399352Z", + "iopub.status.busy": "2024-07-05T13:42:28.398827Z", + "iopub.status.idle": "2024-07-05T13:42:28.418816Z", + "shell.execute_reply": "2024-07-05T13:42:28.418302Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.253418Z", - "iopub.status.busy": "2024-07-02T15:25:50.253081Z", - "iopub.status.idle": "2024-07-02T15:25:50.259217Z", - "shell.execute_reply": "2024-07-02T15:25:50.258792Z" + "iopub.execute_input": "2024-07-05T13:42:28.421303Z", + "iopub.status.busy": "2024-07-05T13:42:28.420952Z", + "iopub.status.idle": "2024-07-05T13:42:28.427396Z", + "shell.execute_reply": "2024-07-05T13:42:28.426907Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.261072Z", - "iopub.status.busy": "2024-07-02T15:25:50.260808Z", - "iopub.status.idle": "2024-07-02T15:25:50.266744Z", - "shell.execute_reply": "2024-07-02T15:25:50.266289Z" + "iopub.execute_input": "2024-07-05T13:42:28.429385Z", + "iopub.status.busy": "2024-07-05T13:42:28.429056Z", + "iopub.status.idle": "2024-07-05T13:42:28.434897Z", + "shell.execute_reply": "2024-07-05T13:42:28.434345Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.268802Z", - "iopub.status.busy": "2024-07-02T15:25:50.268478Z", - "iopub.status.idle": "2024-07-02T15:25:50.278692Z", - "shell.execute_reply": "2024-07-02T15:25:50.278234Z" + "iopub.execute_input": "2024-07-05T13:42:28.436976Z", + "iopub.status.busy": "2024-07-05T13:42:28.436641Z", + "iopub.status.idle": "2024-07-05T13:42:28.447168Z", + "shell.execute_reply": "2024-07-05T13:42:28.446714Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.280493Z", - "iopub.status.busy": "2024-07-02T15:25:50.280327Z", - "iopub.status.idle": "2024-07-02T15:25:50.289428Z", - "shell.execute_reply": "2024-07-02T15:25:50.288895Z" + "iopub.execute_input": "2024-07-05T13:42:28.449075Z", + "iopub.status.busy": "2024-07-05T13:42:28.448896Z", + "iopub.status.idle": "2024-07-05T13:42:28.458432Z", + "shell.execute_reply": "2024-07-05T13:42:28.457889Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.291436Z", - "iopub.status.busy": "2024-07-02T15:25:50.291131Z", - "iopub.status.idle": "2024-07-02T15:25:50.297777Z", - "shell.execute_reply": "2024-07-02T15:25:50.297230Z" + "iopub.execute_input": "2024-07-05T13:42:28.460567Z", + "iopub.status.busy": "2024-07-05T13:42:28.460249Z", + "iopub.status.idle": "2024-07-05T13:42:28.467176Z", + "shell.execute_reply": "2024-07-05T13:42:28.466718Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.299787Z", - "iopub.status.busy": "2024-07-02T15:25:50.299609Z", - "iopub.status.idle": "2024-07-02T15:25:50.308846Z", - "shell.execute_reply": "2024-07-02T15:25:50.308401Z" + "iopub.execute_input": "2024-07-05T13:42:28.469237Z", + "iopub.status.busy": "2024-07-05T13:42:28.468805Z", + "iopub.status.idle": "2024-07-05T13:42:28.478502Z", + "shell.execute_reply": "2024-07-05T13:42:28.477991Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:50.310782Z", - "iopub.status.busy": "2024-07-02T15:25:50.310611Z", - "iopub.status.idle": "2024-07-02T15:25:50.325913Z", - "shell.execute_reply": "2024-07-02T15:25:50.325466Z" + "iopub.execute_input": "2024-07-05T13:42:28.480782Z", + "iopub.status.busy": "2024-07-05T13:42:28.480348Z", + "iopub.status.idle": "2024-07-05T13:42:28.495849Z", + "shell.execute_reply": "2024-07-05T13:42:28.495418Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 2e195bdec..17a6057b9 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,49 +727,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1082,7 +1082,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1114,7 +1114,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1146,7 +1146,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2059,35 +2059,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2115,7 +2115,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 7aa81809c..d968a3768 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:52.913028Z", - "iopub.status.busy": "2024-07-02T15:25:52.912856Z", - "iopub.status.idle": "2024-07-02T15:25:55.694684Z", - "shell.execute_reply": "2024-07-02T15:25:55.694130Z" + "iopub.execute_input": "2024-07-05T13:42:31.267647Z", + "iopub.status.busy": "2024-07-05T13:42:31.267474Z", + "iopub.status.idle": "2024-07-05T13:42:34.169794Z", + "shell.execute_reply": "2024-07-05T13:42:34.169240Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:55.697195Z", - "iopub.status.busy": "2024-07-02T15:25:55.696837Z", - "iopub.status.idle": "2024-07-02T15:25:55.700483Z", - "shell.execute_reply": "2024-07-02T15:25:55.700023Z" + "iopub.execute_input": "2024-07-05T13:42:34.172457Z", + "iopub.status.busy": "2024-07-05T13:42:34.172011Z", + "iopub.status.idle": "2024-07-05T13:42:34.175465Z", + "shell.execute_reply": "2024-07-05T13:42:34.175043Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:25:55.702500Z", - "iopub.status.busy": "2024-07-02T15:25:55.702164Z", - "iopub.status.idle": "2024-07-02T15:26:07.555107Z", - "shell.execute_reply": "2024-07-02T15:26:07.554548Z" + "iopub.execute_input": "2024-07-05T13:42:34.177626Z", + "iopub.status.busy": "2024-07-05T13:42:34.177216Z", + "iopub.status.idle": "2024-07-05T13:42:45.033403Z", + "shell.execute_reply": "2024-07-05T13:42:45.032916Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2af7057d9f9e4382b8969af056a70b31", + "model_id": "8da8e373030e4dcd8241d5ae6d22438f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb1361d5c5c24b5c861d4294a90ba506", + "model_id": "0bbeebdbc79849b18f68f4aca95d139b", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f579184d87043939e2f168b2dd1baec", + "model_id": "04104c2b68d14463a30ff109175470df", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1ae5db8cbc4445e2b177cbb75cf548c7", + "model_id": "0d10f65f4e80496c903f7df1e463e200", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "954702277b7d4c54bdadf343528f7419", + "model_id": "4d74bce4b96e4d6f824cee69f823c981", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e7654577166b46889495c83a9b0ff4fb", + "model_id": "2c7fe3779c484f9a811bdd2e6dddaf7e", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c9a8ae89a73f4e29a42513776b40e081", + "model_id": "1f8b45dcac8b4f639490e28ab4cea2b7", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8b40f010ec8b45ae9bb41931dd82974f", + "model_id": "90ee69066d2a4a80b2c776fdd504bb64", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:07.557271Z", - "iopub.status.busy": "2024-07-02T15:26:07.556985Z", - "iopub.status.idle": "2024-07-02T15:26:07.560864Z", - "shell.execute_reply": "2024-07-02T15:26:07.560308Z" + "iopub.execute_input": "2024-07-05T13:42:45.035724Z", + "iopub.status.busy": "2024-07-05T13:42:45.035386Z", + "iopub.status.idle": "2024-07-05T13:42:45.039164Z", + "shell.execute_reply": "2024-07-05T13:42:45.038684Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:07.562941Z", - "iopub.status.busy": "2024-07-02T15:26:07.562622Z", - "iopub.status.idle": "2024-07-02T15:26:18.751429Z", - "shell.execute_reply": "2024-07-02T15:26:18.750809Z" + "iopub.execute_input": "2024-07-05T13:42:45.041396Z", + "iopub.status.busy": "2024-07-05T13:42:45.040884Z", + "iopub.status.idle": "2024-07-05T13:42:56.342988Z", + "shell.execute_reply": "2024-07-05T13:42:56.342465Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4b0baf8a26df47d59be9d019531cbf27", + "model_id": "6fd6832016c649dfb5267d6d2bb28018", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:18.753921Z", - "iopub.status.busy": "2024-07-02T15:26:18.753662Z", - "iopub.status.idle": "2024-07-02T15:26:36.659431Z", - "shell.execute_reply": "2024-07-02T15:26:36.658833Z" + "iopub.execute_input": "2024-07-05T13:42:56.345613Z", + "iopub.status.busy": "2024-07-05T13:42:56.345136Z", + "iopub.status.idle": "2024-07-05T13:43:14.560031Z", + "shell.execute_reply": "2024-07-05T13:43:14.559515Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:36.662110Z", - "iopub.status.busy": "2024-07-02T15:26:36.661747Z", - "iopub.status.idle": "2024-07-02T15:26:36.667344Z", - "shell.execute_reply": "2024-07-02T15:26:36.666923Z" + "iopub.execute_input": "2024-07-05T13:43:14.562609Z", + "iopub.status.busy": "2024-07-05T13:43:14.562233Z", + "iopub.status.idle": "2024-07-05T13:43:14.567894Z", + "shell.execute_reply": "2024-07-05T13:43:14.567466Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:36.669291Z", - "iopub.status.busy": "2024-07-02T15:26:36.668978Z", - "iopub.status.idle": "2024-07-02T15:26:36.673079Z", - "shell.execute_reply": "2024-07-02T15:26:36.672555Z" + "iopub.execute_input": "2024-07-05T13:43:14.569859Z", + "iopub.status.busy": "2024-07-05T13:43:14.569527Z", + "iopub.status.idle": "2024-07-05T13:43:14.573409Z", + "shell.execute_reply": "2024-07-05T13:43:14.572979Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:36.675451Z", - "iopub.status.busy": "2024-07-02T15:26:36.675030Z", - "iopub.status.idle": "2024-07-02T15:26:36.683889Z", - "shell.execute_reply": "2024-07-02T15:26:36.683372Z" + "iopub.execute_input": "2024-07-05T13:43:14.575443Z", + "iopub.status.busy": "2024-07-05T13:43:14.575123Z", + "iopub.status.idle": "2024-07-05T13:43:14.583745Z", + "shell.execute_reply": "2024-07-05T13:43:14.583314Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:36.685830Z", - "iopub.status.busy": "2024-07-02T15:26:36.685513Z", - "iopub.status.idle": "2024-07-02T15:26:36.712057Z", - "shell.execute_reply": "2024-07-02T15:26:36.711539Z" + "iopub.execute_input": "2024-07-05T13:43:14.585735Z", + "iopub.status.busy": "2024-07-05T13:43:14.585416Z", + "iopub.status.idle": "2024-07-05T13:43:14.612804Z", + "shell.execute_reply": "2024-07-05T13:43:14.612374Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:26:36.714189Z", - "iopub.status.busy": "2024-07-02T15:26:36.713888Z", - "iopub.status.idle": "2024-07-02T15:27:08.085740Z", - "shell.execute_reply": "2024-07-02T15:27:08.085120Z" + "iopub.execute_input": "2024-07-05T13:43:14.614713Z", + "iopub.status.busy": "2024-07-05T13:43:14.614537Z", + "iopub.status.idle": "2024-07-05T13:43:46.829497Z", + "shell.execute_reply": "2024-07-05T13:43:46.828884Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.590\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.725\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.391\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.517\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c1182fd93339476e85a73f0d08e7897c", + "model_id": "1ac6d3b7ee364a9a8334cf39f7c7c664", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cdc60c956874436f9c4e96ec9e00a78b", + "model_id": "9d1b1096ae10486db81df3a6bfa77724", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.769\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.694\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.425\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.629\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fbbd08fb2b71411b97e8aee71a57b844", + "model_id": "5f5133076af34d479056c0b635e2ac5e", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a55c388532e4805923cfc19ea79d6f9", + "model_id": "e7b9056bc7ce44979ee220717d0b4c9f", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.589\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.769\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.496\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.390\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "56a210c9781c496fb5787a5b0e41aae6", + "model_id": "ba1ae7ede3d1471bb02bc0f5448f6271", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c992da0389a7424a9e7d4fb9bcf57de1", + "model_id": "3ec6b75e603c45e7a3f156b1d53523cb", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:27:08.088336Z", - "iopub.status.busy": "2024-07-02T15:27:08.087813Z", - "iopub.status.idle": "2024-07-02T15:27:08.102193Z", - "shell.execute_reply": "2024-07-02T15:27:08.101748Z" + "iopub.execute_input": "2024-07-05T13:43:46.832025Z", + "iopub.status.busy": "2024-07-05T13:43:46.831626Z", + "iopub.status.idle": "2024-07-05T13:43:46.845478Z", + "shell.execute_reply": "2024-07-05T13:43:46.845050Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:27:08.104234Z", - "iopub.status.busy": "2024-07-02T15:27:08.103814Z", - "iopub.status.idle": "2024-07-02T15:27:08.570021Z", - "shell.execute_reply": "2024-07-02T15:27:08.569491Z" + "iopub.execute_input": "2024-07-05T13:43:46.847477Z", + "iopub.status.busy": "2024-07-05T13:43:46.847096Z", + "iopub.status.idle": "2024-07-05T13:43:47.310114Z", + "shell.execute_reply": "2024-07-05T13:43:47.309570Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:27:08.572683Z", - "iopub.status.busy": "2024-07-02T15:27:08.572172Z", - "iopub.status.idle": "2024-07-02T15:28:43.786883Z", - "shell.execute_reply": "2024-07-02T15:28:43.786321Z" + "iopub.execute_input": "2024-07-05T13:43:47.312533Z", + "iopub.status.busy": "2024-07-05T13:43:47.312181Z", + "iopub.status.idle": "2024-07-05T13:45:22.401814Z", + "shell.execute_reply": "2024-07-05T13:45:22.401208Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1f428038b90b4831b764456ae8104f11", + "model_id": "ca2e39aa72d84bd58b310d5a25a5220a", "version_major": 2, "version_minor": 0 }, @@ -1144,10 +1144,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:43.789396Z", - "iopub.status.busy": "2024-07-02T15:28:43.788846Z", - "iopub.status.idle": "2024-07-02T15:28:44.231298Z", - "shell.execute_reply": "2024-07-02T15:28:44.230774Z" + "iopub.execute_input": "2024-07-05T13:45:22.404434Z", + "iopub.status.busy": "2024-07-05T13:45:22.403874Z", + "iopub.status.idle": "2024-07-05T13:45:22.847260Z", + "shell.execute_reply": "2024-07-05T13:45:22.846705Z" } }, "outputs": [ @@ -1293,10 +1293,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:44.233896Z", - "iopub.status.busy": "2024-07-02T15:28:44.233519Z", - "iopub.status.idle": "2024-07-02T15:28:44.294651Z", - "shell.execute_reply": "2024-07-02T15:28:44.294159Z" + "iopub.execute_input": "2024-07-05T13:45:22.849994Z", + "iopub.status.busy": "2024-07-05T13:45:22.849598Z", + "iopub.status.idle": "2024-07-05T13:45:22.911360Z", + "shell.execute_reply": "2024-07-05T13:45:22.910804Z" } }, "outputs": [ @@ -1400,10 +1400,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:44.297029Z", - "iopub.status.busy": "2024-07-02T15:28:44.296671Z", - "iopub.status.idle": "2024-07-02T15:28:44.304958Z", - "shell.execute_reply": "2024-07-02T15:28:44.304515Z" + "iopub.execute_input": "2024-07-05T13:45:22.913629Z", + "iopub.status.busy": "2024-07-05T13:45:22.913306Z", + "iopub.status.idle": "2024-07-05T13:45:22.921711Z", + "shell.execute_reply": "2024-07-05T13:45:22.921294Z" } }, "outputs": [ @@ -1533,10 +1533,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:44.306975Z", - "iopub.status.busy": "2024-07-02T15:28:44.306659Z", - "iopub.status.idle": "2024-07-02T15:28:44.311193Z", - "shell.execute_reply": "2024-07-02T15:28:44.310773Z" + "iopub.execute_input": "2024-07-05T13:45:22.923608Z", + "iopub.status.busy": "2024-07-05T13:45:22.923424Z", + "iopub.status.idle": "2024-07-05T13:45:22.928214Z", + "shell.execute_reply": "2024-07-05T13:45:22.927747Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1582,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:44.313177Z", - "iopub.status.busy": "2024-07-02T15:28:44.312780Z", - "iopub.status.idle": "2024-07-02T15:28:44.809240Z", - "shell.execute_reply": "2024-07-02T15:28:44.808660Z" + "iopub.execute_input": "2024-07-05T13:45:22.930304Z", + "iopub.status.busy": "2024-07-05T13:45:22.929910Z", + "iopub.status.idle": "2024-07-05T13:45:23.405783Z", + "shell.execute_reply": "2024-07-05T13:45:23.405226Z" } }, "outputs": [ @@ -1620,10 +1620,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:44.811393Z", - "iopub.status.busy": "2024-07-02T15:28:44.811216Z", - "iopub.status.idle": "2024-07-02T15:28:44.819548Z", - "shell.execute_reply": "2024-07-02T15:28:44.819000Z" + "iopub.execute_input": "2024-07-05T13:45:23.408054Z", + "iopub.status.busy": "2024-07-05T13:45:23.407718Z", + "iopub.status.idle": "2024-07-05T13:45:23.416142Z", + "shell.execute_reply": "2024-07-05T13:45:23.415715Z" } }, "outputs": [ @@ -1790,10 +1790,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:44.821446Z", - "iopub.status.busy": "2024-07-02T15:28:44.821277Z", - "iopub.status.idle": "2024-07-02T15:28:44.828159Z", - "shell.execute_reply": "2024-07-02T15:28:44.827741Z" + "iopub.execute_input": "2024-07-05T13:45:23.418336Z", + "iopub.status.busy": "2024-07-05T13:45:23.418013Z", + "iopub.status.idle": "2024-07-05T13:45:23.425014Z", + "shell.execute_reply": "2024-07-05T13:45:23.424594Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1869,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:44.830046Z", - "iopub.status.busy": "2024-07-02T15:28:44.829875Z", - "iopub.status.idle": "2024-07-02T15:28:45.532924Z", - "shell.execute_reply": "2024-07-02T15:28:45.532367Z" + "iopub.execute_input": "2024-07-05T13:45:23.426884Z", + "iopub.status.busy": "2024-07-05T13:45:23.426636Z", + "iopub.status.idle": "2024-07-05T13:45:24.167438Z", + "shell.execute_reply": "2024-07-05T13:45:24.166865Z" } }, "outputs": [ @@ -1909,10 +1909,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:45.535268Z", - "iopub.status.busy": "2024-07-02T15:28:45.534928Z", - "iopub.status.idle": "2024-07-02T15:28:45.549825Z", - "shell.execute_reply": "2024-07-02T15:28:45.549359Z" + "iopub.execute_input": "2024-07-05T13:45:24.169866Z", + "iopub.status.busy": "2024-07-05T13:45:24.169527Z", + "iopub.status.idle": "2024-07-05T13:45:24.185297Z", + "shell.execute_reply": "2024-07-05T13:45:24.184748Z" } }, "outputs": [ @@ -2069,10 +2069,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:45.551906Z", - "iopub.status.busy": "2024-07-02T15:28:45.551577Z", - "iopub.status.idle": "2024-07-02T15:28:45.557082Z", - "shell.execute_reply": "2024-07-02T15:28:45.556637Z" + "iopub.execute_input": "2024-07-05T13:45:24.187652Z", + "iopub.status.busy": "2024-07-05T13:45:24.187224Z", + "iopub.status.idle": "2024-07-05T13:45:24.192862Z", + "shell.execute_reply": "2024-07-05T13:45:24.192396Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2117,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:45.558956Z", - "iopub.status.busy": "2024-07-02T15:28:45.558637Z", - "iopub.status.idle": "2024-07-02T15:28:45.945267Z", - "shell.execute_reply": "2024-07-02T15:28:45.944621Z" + "iopub.execute_input": "2024-07-05T13:45:24.194680Z", + "iopub.status.busy": "2024-07-05T13:45:24.194508Z", + "iopub.status.idle": "2024-07-05T13:45:24.652726Z", + "shell.execute_reply": "2024-07-05T13:45:24.651950Z" } }, "outputs": [ @@ -2202,10 +2202,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:45.947598Z", - "iopub.status.busy": "2024-07-02T15:28:45.947419Z", - "iopub.status.idle": "2024-07-02T15:28:45.956445Z", - "shell.execute_reply": "2024-07-02T15:28:45.955937Z" + "iopub.execute_input": "2024-07-05T13:45:24.655278Z", + "iopub.status.busy": "2024-07-05T13:45:24.655073Z", + "iopub.status.idle": "2024-07-05T13:45:24.665406Z", + "shell.execute_reply": "2024-07-05T13:45:24.664896Z" } }, "outputs": [ @@ -2333,10 +2333,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:45.958622Z", - "iopub.status.busy": "2024-07-02T15:28:45.958449Z", - "iopub.status.idle": "2024-07-02T15:28:45.963062Z", - "shell.execute_reply": "2024-07-02T15:28:45.962495Z" + "iopub.execute_input": "2024-07-05T13:45:24.667918Z", + "iopub.status.busy": "2024-07-05T13:45:24.667723Z", + "iopub.status.idle": "2024-07-05T13:45:24.673498Z", + "shell.execute_reply": "2024-07-05T13:45:24.672920Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2373,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:45.965091Z", - "iopub.status.busy": "2024-07-02T15:28:45.964919Z", - "iopub.status.idle": "2024-07-02T15:28:46.137736Z", - "shell.execute_reply": "2024-07-02T15:28:46.137194Z" + "iopub.execute_input": "2024-07-05T13:45:24.675797Z", + "iopub.status.busy": "2024-07-05T13:45:24.675607Z", + "iopub.status.idle": "2024-07-05T13:45:24.877622Z", + "shell.execute_reply": "2024-07-05T13:45:24.877090Z" } }, "outputs": [ @@ -2418,10 +2418,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:46.139960Z", - "iopub.status.busy": "2024-07-02T15:28:46.139791Z", - "iopub.status.idle": "2024-07-02T15:28:46.147323Z", - "shell.execute_reply": "2024-07-02T15:28:46.146797Z" + "iopub.execute_input": "2024-07-05T13:45:24.879773Z", + "iopub.status.busy": "2024-07-05T13:45:24.879606Z", + "iopub.status.idle": "2024-07-05T13:45:24.887361Z", + "shell.execute_reply": "2024-07-05T13:45:24.886882Z" } }, "outputs": [ @@ -2446,47 +2446,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:46.149214Z", - "iopub.status.busy": "2024-07-02T15:28:46.148915Z", - "iopub.status.idle": "2024-07-02T15:28:46.321937Z", - "shell.execute_reply": "2024-07-02T15:28:46.321507Z" + "iopub.execute_input": "2024-07-05T13:45:24.889238Z", + "iopub.status.busy": "2024-07-05T13:45:24.889068Z", + "iopub.status.idle": "2024-07-05T13:45:25.059543Z", + "shell.execute_reply": "2024-07-05T13:45:25.058961Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:46.324150Z", - "iopub.status.busy": "2024-07-02T15:28:46.323864Z", - "iopub.status.idle": "2024-07-02T15:28:46.328076Z", - "shell.execute_reply": "2024-07-02T15:28:46.327547Z" + "iopub.execute_input": "2024-07-05T13:45:25.061970Z", + "iopub.status.busy": "2024-07-05T13:45:25.061648Z", + "iopub.status.idle": "2024-07-05T13:45:25.066099Z", + "shell.execute_reply": "2024-07-05T13:45:25.065579Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2590,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06215a9cafbd487ab2aabd7e76896c2d": { + "017ed362d194481285ca0b7383d936e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2643,31 @@ "width": null } }, - "095395d6aa1b452fb58afcbbc125c095": { + "04104c2b68d14463a30ff109175470df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73eaeb7e288c443f817d36bb347483c8", + "IPY_MODEL_34e5b525e4584c6891d6c65f233ca868", + "IPY_MODEL_2f0f63079b214be6a49433578f36ab9c" + ], + "layout": "IPY_MODEL_27cc86e511744dcc9fd41b34e7fd45f3", + "tabbable": null, + "tooltip": null + } + }, + "04cfcebc38b44e918a85ec82ed600d52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,7 +2720,200 @@ "width": null } }, - "0ce0648da73f406bb87655fdbb7d5b96": { + "05023523a1c34319951655e6d51b127e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0598b19d2087490b8218ae28f5a48277": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ffe0261d1484e58926d7940fd6b90dc", + "placeholder": "​", + "style": "IPY_MODEL_2d0b180842a5445eab9b5196ec4c0861", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.95it/s]" + } + }, + "06045d912b654308a7a03133bddf6004": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0949b739aa7548d181317cef49252027": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5b952fde4fd486fb97500c88c0683aa", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_980fd6a0e4f944288991b26d43eb382e", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "0bbeebdbc79849b18f68f4aca95d139b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9aa276cccb4645dc84a12d59bb9b9d6a", + "IPY_MODEL_0949b739aa7548d181317cef49252027", + "IPY_MODEL_6b0aacd1af1c40aa973905f634e2597d" + ], + "layout": "IPY_MODEL_96a5ffca4a2747b69f3c7d018242dc00", + "tabbable": null, + "tooltip": null + } + }, + "0d10f65f4e80496c903f7df1e463e200": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3eea038a429a407783bfa898bd45c447", + "IPY_MODEL_ca7c2ebc9e4745f09697264e998cacc7", + "IPY_MODEL_ab6da36ebae347eb99b5dcd50d5d61eb" + ], + "layout": "IPY_MODEL_1808a4996a16488a86e9dd31b215214b", + "tabbable": null, + "tooltip": null + } + }, + "1405b92920ac43b2b6344a3ede3fa5e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c66b81637bd489a83475cc5288a6c21", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8aad63182524f3da77428dc3e976194", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "16e25c3381c245b5800e1030f3e4d0f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1722f8c6d8744344aaff9b7bc8054e2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1808a4996a16488a86e9dd31b215214b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2749,7 +2966,7 @@ "width": null } }, - "0df705c672fb43bbb9e3eda00edf190d": { + "182533a082294293bb0bda5a7b8af6a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2802,7 +3019,7 @@ "width": null } }, - "0eae775299c340c282f40d2c11b33d8f": { + "188ee6ec1852435abfbb424039c677ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2855,130 +3072,61 @@ "width": null } }, - "12840034e5794d6f899a765d58ab3d47": { - "model_module": "@jupyter-widgets/controls", + "19b93901612c414381cffdaa667cb677": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "128b18a312b94a7e8f83f6ecb1cf88ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec1c6ef5a124498093928eb1908e2659", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_892769ffede940149b9dd4ef371e6c6b", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "146f9e51cdfd42749198b0e0c23d202d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "15c4c2eccdef4d22a0be623db1c181f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "15f53de19f414e4b8e01003cfcdb4910": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a0b4e1286164abcb03053f6e5bbc01f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0a39fcda0744e718b1f43880054db22", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cb63a23d1fae4acc8bb3b9a248ed90dd", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "1a33cdc766a747aba50b7d78c6640621": { - "model_module": "@jupyter-widgets/base", + "1a8c92a55e984fad843b75db39969e45": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -3030,25 +3178,7 @@ "width": null } }, - "1a5455d51be94b3eaded7bfd47cc0457": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1ae5db8cbc4445e2b177cbb75cf548c7": { + "1ac6d3b7ee364a9a8334cf39f7c7c664": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3063,16 +3193,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b9f07a6e2a8343d4978b34e4580a3d43", - "IPY_MODEL_ea09ecc214a24d27ac4f9a9984295435", - "IPY_MODEL_492b6ce45b6d440ebaad497ad655ad65" + "IPY_MODEL_c36d49504766479c818a7e171441675c", + "IPY_MODEL_2e9476f4883a470a811448af95aa4751", + "IPY_MODEL_9f260bd2a5564eb2bf76c6cabd4e0cb9" ], - "layout": "IPY_MODEL_90fc60fcde7f4ac094170e750a73f244", + "layout": "IPY_MODEL_b535b9f70abd4f9c8dab94f13dc32e69", "tabbable": null, "tooltip": null } }, - "1bd4198065174e84ab1eca765b96c630": { + "1bfaf5ec73984283a0ef36a5a84c3a46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3088,7 +3218,7 @@ "description_width": "" } }, - "1c5296256b6443e3ba9e455d23cc69c1": { + "1c143aa077d841c187ab8a636e0834ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3104,40 +3234,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9ead80d683a6491081632b4f3b9c4a32", + "layout": "IPY_MODEL_6bf502b53d094bd2bb563d0e90fc5d73", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ed1c314562f64740a4bdcaef37ccc36b", + "style": "IPY_MODEL_cd12a6524d3c4c10960936b07de17d21", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "1d0de356a8a64954852f43aa35806ea0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86be3dd24db14a8898fdbb06836f6a72", - "placeholder": "​", - "style": "IPY_MODEL_95465de05450430197a0f59c479dd7a9", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6181.68 examples/s]" - } - }, - "1d5d7a8cecbf484c972e0942d6a03995": { + "1c5a0d1ed5a74a5292753caf94966aa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3190,7 +3297,79 @@ "width": null } }, - "1d6d3c5bfb63408ebbd5b2eeefef7d5b": { + "1c71b2fe740242c28cd6dcd648cfe674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff1e37c00034488fa75bac4d1c3544ca", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_820206c7e74e4bfbbfdcde05ca7056e9", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "1cc91f39fc584ba3b390ebcc891d5fe8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7ea44a47d124362897eabfd975496be", + "placeholder": "​", + "style": "IPY_MODEL_16e25c3381c245b5800e1030f3e4d0f3", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "1f1c80d8032f48f4a25fa9fee0870a4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50d2ad92cef24de3880c2ead00525c64", + "placeholder": "​", + "style": "IPY_MODEL_94d807683a16417e97bcc72efb3844d7", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.80it/s]" + } + }, + "1f794c720cca47b5b28c3306ec9cd95b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3243,30 +3422,31 @@ "width": null } }, - "1e6a5b63ab11465f9bbf613c7e547b87": { + "1f8b45dcac8b4f639490e28ab4cea2b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_558fdfb2b93b4227a1cb1db2b5e4c0c6", - "placeholder": "​", - "style": "IPY_MODEL_e8bde9b4ba7b4598a05bb9a50e01884d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c4cc6b87578424eb0ca88f87cac2db8", + "IPY_MODEL_1c143aa077d841c187ab8a636e0834ad", + "IPY_MODEL_2ff3d0dae5f245ae858d236a8ab02607" + ], + "layout": "IPY_MODEL_e06216040a4245dba44ea0a1f4b7481a", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.82it/s]" + "tooltip": null } }, - "1f0336efc4e541d2afd7b3eba8bb28f1": { + "1fbd3dfbdd40409aa9f1f2de11ab82e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3282,41 +3462,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2903dce2463449dd8f64d52f8dfc2e79", + "layout": "IPY_MODEL_54649ae127254e9890552474de64e57a", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1bd4198065174e84ab1eca765b96c630", + "style": "IPY_MODEL_1bfaf5ec73984283a0ef36a5a84c3a46", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "1f428038b90b4831b764456ae8104f11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b6247fabd3c9465980d7afeb4bbd7321", - "IPY_MODEL_1c5296256b6443e3ba9e455d23cc69c1", - "IPY_MODEL_d414eae569544ed99ff808903e53ca34" - ], - "layout": "IPY_MODEL_85c28b4798464f5a8417d3b2a042048a", - "tabbable": null, - "tooltip": null - } - }, - "20f24cbda083496a82c777048b6e35d9": { + "227885752e8a47da9829a535d91646fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3334,30 +3490,7 @@ "text_color": null } }, - "21cb86e6ca264dc18a3fc1d6ca53b8c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0ce0648da73f406bb87655fdbb7d5b96", - "placeholder": "​", - "style": "IPY_MODEL_6c3cb9635fc043b49f8d58655d66e4af", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "23558bd264264033b2d9782455420348": { + "239963bc11444e499efeec6e08bd7487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3410,20 +3543,36 @@ "width": null } }, - "27a10e327ddb4b9093bc5cd059dc47ea": { - "model_module": "@jupyter-widgets/base", + "24aeccfb74a14d60a7ee4d3f11c9c52e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "24dceccb7ff84e70b8b726bb0572d3b7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, @@ -3463,7 +3612,7 @@ "width": null } }, - "2903dce2463449dd8f64d52f8dfc2e79": { + "24e511314323457ea1c839ab1688e80b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3516,106 +3665,113 @@ "width": null } }, - "2ad38f3365374d2ebdcb347fecc7f7d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d6d3c5bfb63408ebbd5b2eeefef7d5b", - "placeholder": "​", - "style": "IPY_MODEL_93285482bf7a47948bfaf617e6560e62", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "2af7057d9f9e4382b8969af056a70b31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_21cb86e6ca264dc18a3fc1d6ca53b8c8", - "IPY_MODEL_6052bd16878a4d93852135e9889c44fa", - "IPY_MODEL_b54fa885be544149b2d737f701302ac2" - ], - "layout": "IPY_MODEL_772715de5a304144aa16418d39998969", - "tabbable": null, - "tooltip": null - } - }, - "2b7d5844fe304275909217722c7a1a24": { - "model_module": "@jupyter-widgets/controls", + "27cc86e511744dcc9fd41b34e7fd45f3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_50d4841ee3f9430bb8d68aa6756d0196", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_502bd5601d62495fb79895cb6330ab83", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2bb7e9eb83fe4497b90616077d472f4b": { - "model_module": "@jupyter-widgets/controls", + "2b8837d141dc430684ea292356eef06d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1526e2e5168453cbfbd347cf38ac67d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15c4c2eccdef4d22a0be623db1c181f8", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2c0b9d7bd4f0471997bca535de0865ad": { + "2c66b81637bd489a83475cc5288a6c21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3668,7 +3824,31 @@ "width": null } }, - "2cfc559f2c3f4eac9c1f78da68485085": { + "2c7fe3779c484f9a811bdd2e6dddaf7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9b78fa5d52f9419e9c30740aa0153376", + "IPY_MODEL_5af6c03ef8414e26874437308c83fe14", + "IPY_MODEL_765c62ac420c4f3c8007a96d11016fdc" + ], + "layout": "IPY_MODEL_d02e35d57631461d9c38335a297f89ea", + "tabbable": null, + "tooltip": null + } + }, + "2d0b180842a5445eab9b5196ec4c0861": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3686,7 +3866,7 @@ "text_color": null } }, - "2d67f6cc14674d09b09b18b656234458": { + "2e9476f4883a470a811448af95aa4751": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3702,40 +3882,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fedc3692795249689353eccb515a9530", - "max": 8845.0, + "layout": "IPY_MODEL_5743fb92a0224b938c6c4d7bd1c4aaf0", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_eb77dac7bc62412fbb597ff597b6c989", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "2dcfa01772b042d1a18560ea0ffe622b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dfb04d3a63764eebb3d552ee4ed183f2", - "placeholder": "​", - "style": "IPY_MODEL_ab47dc6735ee4fb097e7a3681e03b017", + "style": "IPY_MODEL_c74e23a7e5874497a957e2fb6532f581", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8758.15 examples/s]" + "value": 40.0 } }, - "2fe3b5eee64448a9ac18e339494c4892": { + "2f0f63079b214be6a49433578f36ab9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3750,15 +3907,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_374e196ced424d1c8ed2148c7cc59a33", + "layout": "IPY_MODEL_b21a4d74b1bc482595a8a94207c2258d", "placeholder": "​", - "style": "IPY_MODEL_4ed6c09296d547b6b724e0ff1423ae0f", + "style": "IPY_MODEL_f3b76188eedc4627bed4530cc242840d", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 109MB/s]" + "value": " 26.4M/26.4M [00:00<00:00, 115MB/s]" } }, - "305281fe64904e5e8ca2bc65aa7315dd": { + "2ff3d0dae5f245ae858d236a8ab02607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3773,15 +3930,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_90d02f25013745e0a5fab63dd3a30607", + "layout": "IPY_MODEL_34d93232c312468ebf60869a7d11fcc1", "placeholder": "​", - "style": "IPY_MODEL_6d30b5f8bd744ee9b5e0f9ace75f28e1", + "style": "IPY_MODEL_356b81410d974606b73eefd81608cafb", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 60000/60000 [00:07<00:00, 8485.86 examples/s]" } }, - "310f996b72454ddeb46aa59742828a71": { + "30b3a9431eb646ef96bdd321067a7cf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3834,7 +3991,7 @@ "width": null } }, - "3222da55bbd24fc9a61751756a156f00": { + "32e00a51f8524ed2aec27dc1e7d19a36": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3887,7 +4044,7 @@ "width": null } }, - "34f47aeaa29a4cd099d2f0993d0d6cd8": { + "349fc3b00a444d719977da71f8a57f6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3940,25 +4097,7 @@ "width": null } }, - "36e037e60520443395cc77903fbf80e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "374e196ced424d1c8ed2148c7cc59a33": { + "34d93232c312468ebf60869a7d11fcc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4011,28 +4150,56 @@ "width": null } }, - "39309087b22b46c9b493bf4992a41da3": { + "34e5b525e4584c6891d6c65f233ca868": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3a4b4cc3e84240c48bd636935fab2f51": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32e00a51f8524ed2aec27dc1e7d19a36", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_05023523a1c34319951655e6d51b127e", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "356b81410d974606b73eefd81608cafb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3a200865f83c41038b51273857a1062b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -4080,30 +4247,25 @@ "width": null } }, - "3aa133a9e18a4c55834c6b51537682de": { + "3a6905a218d84d8ea4bbe668c2cf39f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f9a76dcea2324e3a9d9de0674e2e43fa", - "placeholder": "​", - "style": "IPY_MODEL_dc09a5e9d9a34e4888bb48a8d57e87a7", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e820559a2b24284ba9afe2029142d45": { + "3dc4bec09e8e43fe866c6b3a2d19e5d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4156,7 +4318,7 @@ "width": null } }, - "3fcb5400e6364ce08bf65fad0810c61a": { + "3e665db397fb4e4dbe42d42fd2c58402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4209,7 +4371,54 @@ "width": null } }, - "4017e76298ac40b38081de747f8fc4cc": { + "3ec6b75e603c45e7a3f156b1d53523cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6ac3a2f2522b4041be575839659b3ee1", + "IPY_MODEL_e05f965311444618b11fb0779ffeed2d", + "IPY_MODEL_af30cb34e032460ba1f298149d91dbeb" + ], + "layout": "IPY_MODEL_2b8837d141dc430684ea292356eef06d", + "tabbable": null, + "tooltip": null + } + }, + "3eea038a429a407783bfa898bd45c447": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_51d779b61cf64cf09f01ddd389b629c2", + "placeholder": "​", + "style": "IPY_MODEL_b508530ac0c64e6282752fb8f852cc9f", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "3fad173efafd4cdb8aab502f67aea8fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4262,7 +4471,7 @@ "width": null } }, - "409e1ed6db8f49b18a518d7fdfad5fb6": { + "4242b1d50ca548a785af52459fb31e2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4315,30 +4524,7 @@ "width": null } }, - "492b6ce45b6d440ebaad497ad655ad65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d94f3c1fdf5c401e96d6819b4179d2ab", - "placeholder": "​", - "style": "IPY_MODEL_dda13c05045f458785bc68041fee393c", - "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.76MB/s]" - } - }, - "49a533c6ecaf487b84a0ff78339cc685": { + "438d3f2f1ade4e968786823f4f5a213e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4391,72 +4577,94 @@ "width": null } }, - "4b0baf8a26df47d59be9d019531cbf27": { + "451396188a144a57b2eabf3cb7c98268": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c4cd8eb28a8c41aeb4f5021bc0c08d3b", - "IPY_MODEL_be9b65965fab4cf7aa90e105e3881e8c", - "IPY_MODEL_1d0de356a8a64954852f43aa35806ea0" - ], - "layout": "IPY_MODEL_d52ca08d27924dd2b2bbe5ac7a54db61", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4b0eead14d324e12a33b2892275ebfac": { + "49239e7fa43b4eea9f69bc40015341e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9586a95094484deda56ab744317ea1da", - "placeholder": "​", - "style": "IPY_MODEL_885edcdabbbd4bc9b9f7adbbe49d7b71", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.14it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4ed6c09296d547b6b724e0ff1423ae0f": { - "model_module": "@jupyter-widgets/controls", + "4bc3c51efa9a4b478e4f6379bdb17f61": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4f579184d87043939e2f168b2dd1baec": { + "4bece941ee7b4270961503b3a4ff66c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4471,55 +4679,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d78de8b0f7b447dea71448f103aaeb26", - "IPY_MODEL_128b18a312b94a7e8f83f6ecb1cf88ae", - "IPY_MODEL_65791f080fad42fead67f26e5eb9754a" + "IPY_MODEL_cb85482c59cd432c96a046a0ff7b5a49", + "IPY_MODEL_1c71b2fe740242c28cd6dcd648cfe674", + "IPY_MODEL_86c0d4a67b86428588d32bcfe6ff82d5" ], - "layout": "IPY_MODEL_54ed5f61afce4a71a0c2578066595ba9", + "layout": "IPY_MODEL_1a8c92a55e984fad843b75db39969e45", "tabbable": null, "tooltip": null } }, - "502bd5601d62495fb79895cb6330ab83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "50853ac2e6cb46bda181bddbe208896e": { + "4d74bce4b96e4d6f824cee69f823c981": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49a533c6ecaf487b84a0ff78339cc685", - "placeholder": "​", - "style": "IPY_MODEL_7b4c55cd9513498aa91be74b3b85459f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1cc91f39fc584ba3b390ebcc891d5fe8", + "IPY_MODEL_ca32895b3b194720bed111d3be3b00d4", + "IPY_MODEL_c00a3bc6df694f1a8c77a58d2b7898c3" + ], + "layout": "IPY_MODEL_77be4fd8d118433dba81b2d4c681d4e8", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "50d4841ee3f9430bb8d68aa6756d0196": { + "4ffe0261d1484e58926d7940fd6b90dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4572,7 +4765,7 @@ "width": null } }, - "52facea6cf664b71b4519a25366ea06d": { + "50d2ad92cef24de3880c2ead00525c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4625,33 +4818,7 @@ "width": null } }, - "544f80d6b8bd416c90752e013a500795": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_73fd68751918467e89cc16c9e0562921", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86c4fe875d4b45fdae915826bfa54ee4", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "54ed5f61afce4a71a0c2578066595ba9": { + "51d779b61cf64cf09f01ddd389b629c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4704,7 +4871,7 @@ "width": null } }, - "54fdb625585a48d3a536a808c7c52093": { + "51e2bed8d4784f52aae7c7c50dc724fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4757,7 +4924,7 @@ "width": null } }, - "558fdfb2b93b4227a1cb1db2b5e4c0c6": { + "51ec5833c8ed4225a64e413c4c5606ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4810,31 +4977,25 @@ "width": null } }, - "56a210c9781c496fb5787a5b0e41aae6": { + "52da3cdc98da4c5faa33c72992911a03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_96640dfd8c924e69aea47a8e395b564a", - "IPY_MODEL_2bb7e9eb83fe4497b90616077d472f4b", - "IPY_MODEL_d3dd1e811fee428d9c87b01b54f9622a" - ], - "layout": "IPY_MODEL_d7867621beb2472ebd0b9a1429d5f921", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a1e3853e4354222b9159b4b5c75171e": { + "54649ae127254e9890552474de64e57a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4887,7 +5048,25 @@ "width": null } }, - "5a58bb79eb564c4899ea598ea50d0627": { + "56882a48243b422c936eee5fdbd07c82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5743fb92a0224b938c6c4d7bd1c4aaf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,7 +5119,186 @@ "width": null } }, - "5afff76b270f4649b9c0d802eb9618fb": { + "5845e7de96d84bf3861dcdcf23469501": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc6a820bf5ea4b9594a771b6c28b5f1e", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cd8cf5f4fcb744e08b5eae30fdc76b20", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5af6c03ef8414e26874437308c83fe14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3fad173efafd4cdb8aab502f67aea8fa", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c844f8f490b8433ab9978ccc3afdc475", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "5f5133076af34d479056c0b635e2ac5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d161a5fcc174d9b9488a87fdfe8ded6", + "IPY_MODEL_68f96c4903ed457f936c5ff879d057d6", + "IPY_MODEL_bc5b081d4ff9406a92f970cbef952a0a" + ], + "layout": "IPY_MODEL_ce9d7107b2b84cc3a4dff4f70cbfd9e0", + "tabbable": null, + "tooltip": null + } + }, + "67bb5e3267ea414e83d5667c0cac165e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67d42df51fee48519ada359bec71f719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "687dddd4e766481b8f5b39c16e9b229f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "68f96c4903ed457f936c5ff879d057d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_182533a082294293bb0bda5a7b8af6a3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_49239e7fa43b4eea9f69bc40015341e6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "695854dc44b54a1db4ce5b9dad2e60d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_017ed362d194481285ca0b7383d936e5", + "placeholder": "​", + "style": "IPY_MODEL_ce9addf5f8dd45eba3443aeb02bef978", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.15it/s]" + } + }, + "6a2103311ef948a28476df97b2e489c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4993,33 +5351,53 @@ "width": null } }, - "6052bd16878a4d93852135e9889c44fa": { + "6ac3a2f2522b4041be575839659b3ee1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a4b4cc3e84240c48bd636935fab2f51", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c4e444daf724ae993ae806d939ccea1", + "layout": "IPY_MODEL_789c33c2ff5e4aab94f6df2553794d92", + "placeholder": "​", + "style": "IPY_MODEL_d85b1416f3b2426bbb9cd72dd1ff072f", "tabbable": null, "tooltip": null, - "value": 4833.0 + "value": "100%" + } + }, + "6b0aacd1af1c40aa973905f634e2597d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_188ee6ec1852435abfbb424039c677ec", + "placeholder": "​", + "style": "IPY_MODEL_1722f8c6d8744344aaff9b7bc8054e2e", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.40MB/s]" } }, - "65791f080fad42fead67f26e5eb9754a": { + "6b1bc493b7ae463aa1e8184cfa5a8db9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5034,15 +5412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4229c1699a84c50b8786f96f822af38", + "layout": "IPY_MODEL_349fc3b00a444d719977da71f8a57f6b", "placeholder": "​", - "style": "IPY_MODEL_15f53de19f414e4b8e01003cfcdb4910", + "style": "IPY_MODEL_56882a48243b422c936eee5fdbd07c82", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" + "value": "Generating test split: 100%" } }, - "6b890c9f41c34c199f4422339b9a7115": { + "6bf502b53d094bd2bb563d0e90fc5d73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5095,7 +5473,7 @@ "width": null } }, - "6b978c7a0d62417fa0d91f45e66413c4": { + "6e2a11aba829468dbba6453d10706330": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5148,7 +5526,7 @@ "width": null } }, - "6c3cb9635fc043b49f8d58655d66e4af": { + "6f11f27000c34a93a2e56665452ae52a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5166,41 +5544,100 @@ "text_color": null } }, - "6c4e444daf724ae993ae806d939ccea1": { + "6fd6832016c649dfb5267d6d2bb28018": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f21c90c0f1b84e24b1de1c1e5ad3fab9", + "IPY_MODEL_1fbd3dfbdd40409aa9f1f2de11ab82e5", + "IPY_MODEL_c9c5981699df499bb5e0cc8bf4f270a0" + ], + "layout": "IPY_MODEL_24e511314323457ea1c839ab1688e80b", + "tabbable": null, + "tooltip": null } }, - "6d30b5f8bd744ee9b5e0f9ace75f28e1": { + "720dcd36de964790bfdcc44b0c140238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_239963bc11444e499efeec6e08bd7487", + "placeholder": "​", + "style": "IPY_MODEL_a2a7c580a6544b89aa1af9c1940fec43", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "73fd68751918467e89cc16c9e0562921": { + "73eaeb7e288c443f817d36bb347483c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_19b93901612c414381cffdaa667cb677", + "placeholder": "​", + "style": "IPY_MODEL_cecfc4ca142142edbd4165018407dd47", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "765c62ac420c4f3c8007a96d11016fdc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9fb5733fe98945f9929e1e3d703e1aa1", + "placeholder": "​", + "style": "IPY_MODEL_cfcd8ddf2e254b359b49d116dbe13bc6", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 880kB/s]" + } + }, + "77be4fd8d118433dba81b2d4c681d4e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5253,7 +5690,7 @@ "width": null } }, - "772715de5a304144aa16418d39998969": { + "789c33c2ff5e4aab94f6df2553794d92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5306,7 +5743,53 @@ "width": null } }, - "78f28a8c417d4930886931708429e1f3": { + "7a8727166e6446b78385d69806a03a13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7dd566c4632485c8644517efe32fd37", + "placeholder": "​", + "style": "IPY_MODEL_e76250affe494caca6ac07e4b7e5a194", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7d161a5fcc174d9b9488a87fdfe8ded6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a200865f83c41038b51273857a1062b", + "placeholder": "​", + "style": "IPY_MODEL_06045d912b654308a7a03133bddf6004", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7eae4dc6b6bf4c46b2faf29f98781268": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5324,7 +5807,7 @@ "text_color": null } }, - "799cd6b93e0f4d0286080d1655cd9063": { + "7f2a97fd895542c38aa37c51d5b9cf12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5377,60 +5860,65 @@ "width": null } }, - "79ad2adc81c04b66803bcf992b75007d": { - "model_module": "@jupyter-widgets/base", + "8007bfd841a7400295fe340b4584155b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d34e108adad64586ab22f7663c89b47f", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c41dbbe17e14473dbb4eb019853c1276", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "820206c7e74e4bfbbfdcde05ca7056e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "861c076180d34ba488cc07fcb0227a7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7aa6115a89d841d1b7d7edc93ac4abb6": { + "86c0d4a67b86428588d32bcfe6ff82d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5445,33 +5933,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1b8508edf42452ba2d2219aaffc4440", + "layout": "IPY_MODEL_30b3a9431eb646ef96bdd321067a7cf5", "placeholder": "​", - "style": "IPY_MODEL_78f28a8c417d4930886931708429e1f3", + "style": "IPY_MODEL_227885752e8a47da9829a535d91646fb", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 4/4 [00:00<00:00, 1201.46it/s]" } }, - "7b4c55cd9513498aa91be74b3b85459f": { + "8a995107d074403a8e9356d8a15a3f48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a6f64208e33f4e7c9046ea6a82705ebc", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8eb82c4a87bb4b108f12599c05fd15ab", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "7e3f05f2d52c45518e7fa6ec6779cb4c": { + "8bf5ccf242634dc3a2ca1614efa93d85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5486,15 +5982,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27a10e327ddb4b9093bc5cd059dc47ea", + "layout": "IPY_MODEL_de799bdb97734f87a2f5184e4bd311b7", "placeholder": "​", - "style": "IPY_MODEL_12840034e5794d6f899a765d58ab3d47", + "style": "IPY_MODEL_451396188a144a57b2eabf3cb7c98268", "tabbable": null, "tooltip": null, "value": "100%" } }, - "7f7f3f87082943e4a0df02dcd27f337a": { + "8c4cc6b87578424eb0ca88f87cac2db8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6e2a11aba829468dbba6453d10706330", + "placeholder": "​", + "style": "IPY_MODEL_cff1798bd64e48dd939b735457536500", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "8cb9e9cb8a0a4999819859dc0cfba0d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8d4e393957d442d8b15f2b464baf1a0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5547,7 +6084,7 @@ "width": null } }, - "827d7da7658b40f6857044407fdda547": { + "8da8e373030e4dcd8241d5ae6d22438f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5562,16 +6099,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_305281fe64904e5e8ca2bc65aa7315dd", - "IPY_MODEL_544f80d6b8bd416c90752e013a500795", - "IPY_MODEL_a1f4f066adc94df989e214551e96e664" + "IPY_MODEL_c468e2778f8344aa8cc2fca297a4d251", + "IPY_MODEL_8007bfd841a7400295fe340b4584155b", + "IPY_MODEL_f092424ffebd4c40835c12e8f0af796a" ], - "layout": "IPY_MODEL_3e820559a2b24284ba9afe2029142d45", + "layout": "IPY_MODEL_bcf07d358bc7401baeebabbffd2b443a", "tabbable": null, "tooltip": null } }, - "85c28b4798464f5a8417d3b2a042048a": { + "8e78bbcb46fe4c2cb9f5df37cc307e33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5624,41 +6161,76 @@ "width": null } }, - "8672ba9a0b95494e85eb4e493ebff06a": { + "8eb82c4a87bb4b108f12599c05fd15ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdad743f4a2e4284a382dfde60cd6ce3", - "placeholder": "​", - "style": "IPY_MODEL_ef9027846b204180af89c953b7afc317", - "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.56MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "86be3dd24db14a8898fdbb06836f6a72": { - "model_module": "@jupyter-widgets/base", + "90ee69066d2a4a80b2c776fdd504bb64": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b1bc493b7ae463aa1e8184cfa5a8db9", + "IPY_MODEL_8a995107d074403a8e9356d8a15a3f48", + "IPY_MODEL_f7a685c89a924b38970fa5431a6e8855" + ], + "layout": "IPY_MODEL_bbe56b0d71d94752bda2bd0b6b20828b", + "tabbable": null, + "tooltip": null + } + }, + "94d807683a16417e97bcc72efb3844d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96a5ffca4a2747b69f3c7d018242dc00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, @@ -5700,7 +6272,7 @@ "width": null } }, - "86c4fe875d4b45fdae915826bfa54ee4": { + "980fd6a0e4f944288991b26d43eb382e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5716,91 +6288,53 @@ "description_width": "" } }, - "885edcdabbbd4bc9b9f7adbbe49d7b71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "88d02b42470e4501bb3cd1e3e6ebf7eb": { + "9aa276cccb4645dc84a12d59bb9b9d6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3fcb5400e6364ce08bf65fad0810c61a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d0384f03015b4b29a2fb529874891acb", + "layout": "IPY_MODEL_a37fc8f1fdf64264af95dbcd09f83e11", + "placeholder": "​", + "style": "IPY_MODEL_cabee99e44c2443a95235a4ee6301623", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "892769ffede940149b9dd4ef371e6c6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Downloading readme: 100%" } }, - "8a55c388532e4805923cfc19ea79d6f9": { + "9b78fa5d52f9419e9c30740aa0153376": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e3f05f2d52c45518e7fa6ec6779cb4c", - "IPY_MODEL_88d02b42470e4501bb3cd1e3e6ebf7eb", - "IPY_MODEL_a27c3d6d92f64500b703f8534a213527" - ], - "layout": "IPY_MODEL_c6bf48673c474f28b05932dfba8d075f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e665db397fb4e4dbe42d42fd2c58402", + "placeholder": "​", + "style": "IPY_MODEL_52da3cdc98da4c5faa33c72992911a03", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "8b40f010ec8b45ae9bb41931dd82974f": { + "9d1b1096ae10486db81df3a6bfa77724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5815,42 +6349,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f87fe7987a7548d391653382cc0cac40", - "IPY_MODEL_c05105f4332440beb07521cc771bd4ab", - "IPY_MODEL_e46b79664a5b499091764978698553f1" + "IPY_MODEL_7a8727166e6446b78385d69806a03a13", + "IPY_MODEL_a6b3d13ff4954083b91dce886be60fd3", + "IPY_MODEL_0598b19d2087490b8218ae28f5a48277" ], - "layout": "IPY_MODEL_6b890c9f41c34c199f4422339b9a7115", + "layout": "IPY_MODEL_b666c3bb58dd424b90feb9510eda0493", "tabbable": null, "tooltip": null } }, - "8b8994fc668b4dceb9c06453fb39bc0e": { + "9f260bd2a5564eb2bf76c6cabd4e0cb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79ad2adc81c04b66803bcf992b75007d", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e8c7dbc5d3214dcb86aaab520f395f74", + "layout": "IPY_MODEL_8d4e393957d442d8b15f2b464baf1a0b", + "placeholder": "​", + "style": "IPY_MODEL_d812231beb9f4cbdafec966c4fdf2abc", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": " 40/40 [00:00<00:00, 63.51it/s]" } }, - "8c42c7196455418d88da9ac9a371e461": { + "9fb5733fe98945f9929e1e3d703e1aa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5903,56 +6434,76 @@ "width": null } }, - "8d585cf69b3f4724a623579d5335bfd9": { + "a1801af373fb4c3c8f32f7c74306a1d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4017e76298ac40b38081de747f8fc4cc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f457d8bcb4404971bf2ad18e7efff0e1", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8f5c14e14fcf4f388e2f257aa70609f8": { - "model_module": "@jupyter-widgets/controls", + "a1839d3ca50d4e979b9365fcb3453207": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34f47aeaa29a4cd099d2f0993d0d6cd8", - "placeholder": "​", - "style": "IPY_MODEL_dc5e03ce2bc744b4b89300005f223fa6", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 71.56it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8f6be0928cea469a9271f1c136a90fec": { + "a2a7c580a6544b89aa1af9c1940fec43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5970,7 +6521,7 @@ "text_color": null } }, - "90d02f25013745e0a5fab63dd3a30607": { + "a37fc8f1fdf64264af95dbcd09f83e11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6023,7 +6574,33 @@ "width": null } }, - "90fc60fcde7f4ac094170e750a73f244": { + "a6b3d13ff4954083b91dce886be60fd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4bc3c51efa9a4b478e4f6379bdb17f61", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1801af373fb4c3c8f32f7c74306a1d4", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "a6f64208e33f4e7c9046ea6a82705ebc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6076,43 +6653,7 @@ "width": null } }, - "93285482bf7a47948bfaf617e6560e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9517d2ba00ed4eb094644c417a85d507": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95465de05450430197a0f59c479dd7a9": { + "ab3ecbafa2434571b6662f7f5d2b1a91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6130,31 +6671,30 @@ "text_color": null } }, - "954702277b7d4c54bdadf343528f7419": { + "ab6da36ebae347eb99b5dcd50d5d61eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f1ced5ef687547f290b64d20124f82b3", - "IPY_MODEL_8b8994fc668b4dceb9c06453fb39bc0e", - "IPY_MODEL_2fe3b5eee64448a9ac18e339494c4892" - ], - "layout": "IPY_MODEL_799cd6b93e0f4d0286080d1655cd9063", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af2becaf82cc4478b2af24fb8c92da7b", + "placeholder": "​", + "style": "IPY_MODEL_f4df512f56144a1081754fe1d13155ae", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.44MB/s]" } }, - "9586a95094484deda56ab744317ea1da": { + "af2becaf82cc4478b2af24fb8c92da7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6207,7 +6747,7 @@ "width": null } }, - "96640dfd8c924e69aea47a8e395b564a": { + "af30cb34e032460ba1f298149d91dbeb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6222,15 +6762,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54fdb625585a48d3a536a808c7c52093", + "layout": "IPY_MODEL_fa8b4936d0ac47fb9530d1cd9496b791", "placeholder": "​", - "style": "IPY_MODEL_2cfc559f2c3f4eac9c1f78da68485085", + "style": "IPY_MODEL_8cb9e9cb8a0a4999819859dc0cfba0d9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 59.69it/s]" } }, - "96cfabb5484149d1adc2aa86092bc96d": { + "b21a4d74b1bc482595a8a94207c2258d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6283,7 +6823,25 @@ "width": null } }, - "9ead80d683a6491081632b4f3b9c4a32": { + "b508530ac0c64e6282752fb8f852cc9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b535b9f70abd4f9c8dab94f13dc32e69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6336,118 +6894,84 @@ "width": null } }, - "a100d982151c42ccbe4279f192b139bb": { - "model_module": "@jupyter-widgets/controls", + "b666c3bb58dd424b90feb9510eda0493": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a1f4f066adc94df989e214551e96e664": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_095395d6aa1b452fb58afcbbc125c095", - "placeholder": "​", - "style": "IPY_MODEL_af48e3d34e0b412c8ae2a4ca8e9215c2", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1251.75it/s]" - } - }, - "a27c3d6d92f64500b703f8534a213527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_baa7b6d1e7a243a095f0c691e7f0b5e4", - "placeholder": "​", - "style": "IPY_MODEL_1a5455d51be94b3eaded7bfd47cc0457", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.05it/s]" - } - }, - "a2a2ec56076b4b6c9ee933df0360e05b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acb03260aac345648a1ec54ab5a858f9", - "placeholder": "​", - "style": "IPY_MODEL_b1d1d60578f74d3582ef5ae972a07297", - "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 887kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a2c2386f0ec849418856d89ef28a3475": { + "ba1ae7ede3d1471bb02bc0f5448f6271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0df705c672fb43bbb9e3eda00edf190d", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b1b4a133d95946b4ad1d95acf055e6d9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bf5ccf242634dc3a2ca1614efa93d85", + "IPY_MODEL_5845e7de96d84bf3861dcdcf23469501", + "IPY_MODEL_695854dc44b54a1db4ce5b9dad2e60d2" + ], + "layout": "IPY_MODEL_7f2a97fd895542c38aa37c51d5b9cf12", "tabbable": null, - "tooltip": null, - "value": 5148.0 + "tooltip": null } }, - "a890ab18730f4331a1b512e514f1475a": { + "bbe56b0d71d94752bda2bd0b6b20828b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6500,7 +7024,30 @@ "width": null } }, - "a89ae7c0705f458f97f4e50751463686": { + "bc5b081d4ff9406a92f970cbef952a0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_438d3f2f1ade4e968786823f4f5a213e", + "placeholder": "​", + "style": "IPY_MODEL_e92d51cc3cb749319d344a144d05c21d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.01it/s]" + } + }, + "bc6a820bf5ea4b9594a771b6c28b5f1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6553,25 +7100,7 @@ "width": null } }, - "ab47dc6735ee4fb097e7a3681e03b017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "acb03260aac345648a1ec54ab5a858f9": { + "bcf07d358bc7401baeebabbffd2b443a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6624,7 +7153,7 @@ "width": null } }, - "acf5ba82150c4bf9b8924a6d1e39bfb6": { + "c00a3bc6df694f1a8c77a58d2b7898c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6639,69 +7168,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2c0b9d7bd4f0471997bca535de0865ad", + "layout": "IPY_MODEL_51ec5833c8ed4225a64e413c4c5606ce", "placeholder": "​", - "style": "IPY_MODEL_afcb83b39c2e4478ba9ade81cf3b2fb6", + "style": "IPY_MODEL_67bb5e3267ea414e83d5667c0cac165e", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.50it/s]" - } - }, - "af48e3d34e0b412c8ae2a4ca8e9215c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afcb83b39c2e4478ba9ade81cf3b2fb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b0214bcbe8044efda63d35e4fa778d43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 4.42M/4.42M [00:00<00:00, 81.8MB/s]" } }, - "b1526e2e5168453cbfbd347cf38ac67d": { + "c26448655cd447cc9b74db7af0f0e9dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6754,23 +7229,30 @@ "width": null } }, - "b1b4a133d95946b4ad1d95acf055e6d9": { + "c36d49504766479c818a7e171441675c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0ee9bf3be92437fac2a3024d91c7a4c", + "placeholder": "​", + "style": "IPY_MODEL_c3a3791e88cb4e58acebc0f24068e6c1", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "b1d1d60578f74d3582ef5ae972a07297": { + "c3a3791e88cb4e58acebc0f24068e6c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6788,7 +7270,7 @@ "text_color": null } }, - "b270b4b9160b4aa4bbad325928110497": { + "c41dbbe17e14473dbb4eb019853c1276": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6804,493 +7286,23 @@ "description_width": "" } }, - "b54fa885be544149b2d737f701302ac2": { + "c454475583ba43fe9a35d61cb78cbdee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0eae775299c340c282f40d2c11b33d8f", - "placeholder": "​", - "style": "IPY_MODEL_df797002b4914bef8001c5e05b7be0af", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 629kB/s]" - } - }, - "b6247fabd3c9465980d7afeb4bbd7321": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5a1e3853e4354222b9159b4b5c75171e", - "placeholder": "​", - "style": "IPY_MODEL_146f9e51cdfd42749198b0e0c23d202d", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b838c277255740a2b7434474c516e95e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b9f07a6e2a8343d4978b34e4580a3d43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c42c7196455418d88da9ac9a371e461", - "placeholder": "​", - "style": "IPY_MODEL_f92dff6949004ae1808eebd99ba98566", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "baa7b6d1e7a243a095f0c691e7f0b5e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bbb269d13d924b65a58b0cf5db1b2407": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe362277556a4cf0beffd4b12f3e9ffd", - "placeholder": "​", - "style": "IPY_MODEL_20f24cbda083496a82c777048b6e35d9", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "be9b65965fab4cf7aa90e105e3881e8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5afff76b270f4649b9c0d802eb9618fb", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f1266a3dc99447f193096776b9b427f1", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "bfe066abcd864943a83e96669cadf170": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c05105f4332440beb07521cc771bd4ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a890ab18730f4331a1b512e514f1475a", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a100d982151c42ccbe4279f192b139bb", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "c1182fd93339476e85a73f0d08e7897c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f36e7b0209f84d828549adece0524582", - "IPY_MODEL_dc304d6b46fb4dc592080af62f1c4444", - "IPY_MODEL_4b0eead14d324e12a33b2892275ebfac" - ], - "layout": "IPY_MODEL_52facea6cf664b71b4519a25366ea06d", - "tabbable": null, - "tooltip": null - } - }, - "c1b8508edf42452ba2d2219aaffc4440": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c31ca76550e249ca985f248853c71722": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c4b8fffb19594f58b1a2ba4aa8ec7d11": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c4cd8eb28a8c41aeb4f5021bc0c08d3b": { + "c468e2778f8344aa8cc2fca297a4d251": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7305,92 +7317,104 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b978c7a0d62417fa0d91f45e66413c4", + "layout": "IPY_MODEL_6a2103311ef948a28476df97b2e489c8", "placeholder": "​", - "style": "IPY_MODEL_e20bd95703544b4aad1922863bff7b0f", + "style": "IPY_MODEL_7eae4dc6b6bf4c46b2faf29f98781268", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": "Downloading builder script: 100%" } }, - "c6bf48673c474f28b05932dfba8d075f": { - "model_module": "@jupyter-widgets/base", + "c74e23a7e5874497a957e2fb6532f581": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c992da0389a7424a9e7d4fb9bcf57de1": { + "c78f89df5c7d4c8dbd0afb8b6cd0b35b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c844f8f490b8433ab9978ccc3afdc475": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8aad63182524f3da77428dc3e976194": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c9c5981699df499bb5e0cc8bf4f270a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_50853ac2e6cb46bda181bddbe208896e", - "IPY_MODEL_2b7d5844fe304275909217722c7a1a24", - "IPY_MODEL_acf5ba82150c4bf9b8924a6d1e39bfb6" - ], - "layout": "IPY_MODEL_409e1ed6db8f49b18a518d7fdfad5fb6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f794c720cca47b5b28c3306ec9cd95b", + "placeholder": "​", + "style": "IPY_MODEL_67d42df51fee48519ada359bec71f719", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5925.95 examples/s]" } }, - "c9a8ae89a73f4e29a42513776b40e081": { + "ca2e39aa72d84bd58b310d5a25a5220a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7405,16 +7429,125 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3aa133a9e18a4c55834c6b51537682de", - "IPY_MODEL_1f0336efc4e541d2afd7b3eba8bb28f1", - "IPY_MODEL_2dcfa01772b042d1a18560ea0ffe622b" + "IPY_MODEL_d64b7f76c84345748623ee56512c8e87", + "IPY_MODEL_1405b92920ac43b2b6344a3ede3fa5e0", + "IPY_MODEL_d9b31ce4690a4c54b734404235749bc6" ], - "layout": "IPY_MODEL_bfe066abcd864943a83e96669cadf170", + "layout": "IPY_MODEL_a1839d3ca50d4e979b9365fcb3453207", "tabbable": null, "tooltip": null } }, - "cb63a23d1fae4acc8bb3b9a248ed90dd": { + "ca32895b3b194720bed111d3be3b00d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_51e2bed8d4784f52aae7c7c50dc724fa", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_861c076180d34ba488cc07fcb0227a7f", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "ca7c2ebc9e4745f09697264e998cacc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f794b247354a45d4900fa74d2015a5ee", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f207557054394061b984921bd80797a9", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "cabee99e44c2443a95235a4ee6301623": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cb85482c59cd432c96a046a0ff7b5a49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3dc4bec09e8e43fe866c6b3a2d19e5d3", + "placeholder": "​", + "style": "IPY_MODEL_6f11f27000c34a93a2e56665452ae52a", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "cd12a6524d3c4c10960936b07de17d21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cd8cf5f4fcb744e08b5eae30fdc76b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7430,7 +7563,7 @@ "description_width": "" } }, - "cd957436866649e6a210ee9e7fcb8650": { + "ce9addf5f8dd45eba3443aeb02bef978": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7448,7 +7581,7 @@ "text_color": null } }, - "cdad743f4a2e4284a382dfde60cd6ce3": { + "ce9d7107b2b84cc3a4dff4f70cbfd9e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7481,113 +7614,81 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cdc60c956874436f9c4e96ec9e00a78b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bbb269d13d924b65a58b0cf5db1b2407", - "IPY_MODEL_8d585cf69b3f4724a623579d5335bfd9", - "IPY_MODEL_1e6a5b63ab11465f9bbf613c7e547b87" - ], - "layout": "IPY_MODEL_23558bd264264033b2d9782455420348", - "tabbable": null, - "tooltip": null + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d0384f03015b4b29a2fb529874891acb": { + "cecfc4ca142142edbd4165018407dd47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d3dd1e811fee428d9c87b01b54f9622a": { + "cfcd8ddf2e254b359b49d116dbe13bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5a58bb79eb564c4899ea598ea50d0627", - "placeholder": "​", - "style": "IPY_MODEL_f685e18fb6ca48bd8670c03342805ecf", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.34it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d414eae569544ed99ff808903e53ca34": { + "cff1798bd64e48dd939b735457536500": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_96cfabb5484149d1adc2aa86092bc96d", - "placeholder": "​", - "style": "IPY_MODEL_b0214bcbe8044efda63d35e4fa778d43", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:35<00:00, 1727.59it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d4229c1699a84c50b8786f96f822af38": { + "d02e35d57631461d9c38335a297f89ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7640,7 +7741,7 @@ "width": null } }, - "d52ca08d27924dd2b2bbe5ac7a54db61": { + "d1bf63c233104d1f85ae0e6a99f178da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7693,7 +7794,7 @@ "width": null } }, - "d7867621beb2472ebd0b9a1429d5f921": { + "d1c7d3fcc81a445ea7955e7d7bfcf654": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7746,30 +7847,7 @@ "width": null } }, - "d78de8b0f7b447dea71448f103aaeb26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c31ca76550e249ca985f248853c71722", - "placeholder": "​", - "style": "IPY_MODEL_36e037e60520443395cc77903fbf80e2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "d94f3c1fdf5c401e96d6819b4179d2ab": { + "d34e108adad64586ab22f7663c89b47f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7822,69 +7900,30 @@ "width": null } }, - "daf2ab05255e474d8859a35c484b2160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc09a5e9d9a34e4888bb48a8d57e87a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc304d6b46fb4dc592080af62f1c4444": { + "d64b7f76c84345748623ee56512c8e87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c4b8fffb19594f58b1a2ba4aa8ec7d11", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b270b4b9160b4aa4bbad325928110497", + "layout": "IPY_MODEL_24dceccb7ff84e70b8b726bb0572d3b7", + "placeholder": "​", + "style": "IPY_MODEL_687dddd4e766481b8f5b39c16e9b229f", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "dc5e03ce2bc744b4b89300005f223fa6": { + "d812231beb9f4cbdafec966c4fdf2abc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7902,7 +7941,7 @@ "text_color": null } }, - "dda13c05045f458785bc68041fee393c": { + "d85b1416f3b2426bbb9cd72dd1ff072f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7920,25 +7959,30 @@ "text_color": null } }, - "df797002b4914bef8001c5e05b7be0af": { + "d9b31ce4690a4c54b734404235749bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c5a0d1ed5a74a5292753caf94966aa7", + "placeholder": "​", + "style": "IPY_MODEL_ee3c67e4b0aa4028b60fd4ba5cb45da1", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1705.82it/s]" } }, - "dfb04d3a63764eebb3d552ee4ed183f2": { + "de799bdb97734f87a2f5184e4bd311b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7991,95 +8035,139 @@ "width": null } }, - "e20bd95703544b4aad1922863bff7b0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e2e98ad255df41788a76c3224436f2f7": { + "e05f965311444618b11fb0779ffeed2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e8b64de668f34ba6bedabb72cec29004", - "placeholder": "​", - "style": "IPY_MODEL_8f6be0928cea469a9271f1c136a90fec", + "layout": "IPY_MODEL_04cfcebc38b44e918a85ec82ed600d52", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24aeccfb74a14d60a7ee4d3f11c9c52e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 } }, - "e46b79664a5b499091764978698553f1": { - "model_module": "@jupyter-widgets/controls", + "e06216040a4245dba44ea0a1f4b7481a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b838c277255740a2b7434474c516e95e", - "placeholder": "​", - "style": "IPY_MODEL_fad6c2d0a0214e7780bca6c7a90edb1a", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8796.13 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e7654577166b46889495c83a9b0ff4fb": { - "model_module": "@jupyter-widgets/controls", + "e0ee9bf3be92437fac2a3024d91c7a4c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2e98ad255df41788a76c3224436f2f7", - "IPY_MODEL_a2c2386f0ec849418856d89ef28a3475", - "IPY_MODEL_a2a2ec56076b4b6c9ee933df0360e05b" - ], - "layout": "IPY_MODEL_1a33cdc766a747aba50b7d78c6640621", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e8b64de668f34ba6bedabb72cec29004": { + "e5b952fde4fd486fb97500c88c0683aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8132,7 +8220,7 @@ "width": null } }, - "e8bde9b4ba7b4598a05bb9a50e01884d": { + "e76250affe494caca6ac07e4b7e5a194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8150,65 +8238,31 @@ "text_color": null } }, - "e8c7dbc5d3214dcb86aaab520f395f74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea09ecc214a24d27ac4f9a9984295435": { + "e7b9056bc7ce44979ee220717d0b4c9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7f7f3f87082943e4a0df02dcd27f337a", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_39309087b22b46c9b493bf4992a41da3", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_720dcd36de964790bfdcc44b0c140238", + "IPY_MODEL_e8bcfe3d447449f581f5d285d3a59a52", + "IPY_MODEL_1f1c80d8032f48f4a25fa9fee0870a4b" + ], + "layout": "IPY_MODEL_4242b1d50ca548a785af52459fb31e2b", "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "eb77dac7bc62412fbb597ff597b6c989": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "ec1c6ef5a124498093928eb1908e2659": { + "e7dd566c4632485c8644517efe32fd37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8261,41 +8315,7 @@ "width": null } }, - "ed1c314562f64740a4bdcaef37ccc36b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef9027846b204180af89c953b7afc317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0a39fcda0744e718b1f43880054db22": { + "e7ea44a47d124362897eabfd975496be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8348,46 +8368,69 @@ "width": null } }, - "f1266a3dc99447f193096776b9b427f1": { + "e8bcfe3d447449f581f5d285d3a59a52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1c7d3fcc81a445ea7955e7d7bfcf654", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c454475583ba43fe9a35d61cb78cbdee", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e92d51cc3cb749319d344a144d05c21d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f1ced5ef687547f290b64d20124f82b3": { + "ee3c67e4b0aa4028b60fd4ba5cb45da1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_310f996b72454ddeb46aa59742828a71", - "placeholder": "​", - "style": "IPY_MODEL_9517d2ba00ed4eb094644c417a85d507", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f36e7b0209f84d828549adece0524582": { + "f092424ffebd4c40835c12e8f0af796a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8402,15 +8445,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1d5d7a8cecbf484c972e0942d6a03995", + "layout": "IPY_MODEL_8e78bbcb46fe4c2cb9f5df37cc307e33", "placeholder": "​", - "style": "IPY_MODEL_cd957436866649e6a210ee9e7fcb8650", + "style": "IPY_MODEL_ab3ecbafa2434571b6662f7f5d2b1a91", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4.83k/4.83k [00:00<00:00, 624kB/s]" } }, - "f457d8bcb4404971bf2ad18e7efff0e1": { + "f207557054394061b984921bd80797a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8426,25 +8469,7 @@ "description_width": "" } }, - "f685e18fb6ca48bd8670c03342805ecf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f87fe7987a7548d391653382cc0cac40": { + "f21c90c0f1b84e24b1de1c1e5ad3fab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8459,15 +8484,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_06215a9cafbd487ab2aabd7e76896c2d", + "layout": "IPY_MODEL_d1bf63c233104d1f85ae0e6a99f178da", "placeholder": "​", - "style": "IPY_MODEL_daf2ab05255e474d8859a35c484b2160", + "style": "IPY_MODEL_c78f89df5c7d4c8dbd0afb8b6cd0b35b", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": "Map (num_proc=4): 100%" + } + }, + "f3b76188eedc4627bed4530cc242840d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f92dff6949004ae1808eebd99ba98566": { + "f4df512f56144a1081754fe1d13155ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8485,7 +8528,7 @@ "text_color": null } }, - "f9a76dcea2324e3a9d9de0674e2e43fa": { + "f794b247354a45d4900fa74d2015a5ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8538,73 +8581,30 @@ "width": null } }, - "fad6c2d0a0214e7780bca6c7a90edb1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fb1361d5c5c24b5c861d4294a90ba506": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7aa6115a89d841d1b7d7edc93ac4abb6", - "IPY_MODEL_2d67f6cc14674d09b09b18b656234458", - "IPY_MODEL_8672ba9a0b95494e85eb4e493ebff06a" - ], - "layout": "IPY_MODEL_3222da55bbd24fc9a61751756a156f00", - "tabbable": null, - "tooltip": null - } - }, - "fbbd08fb2b71411b97e8aee71a57b844": { + "f7a685c89a924b38970fa5431a6e8855": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2ad38f3365374d2ebdcb347fecc7f7d9", - "IPY_MODEL_1a0b4e1286164abcb03053f6e5bbc01f", - "IPY_MODEL_8f5c14e14fcf4f388e2f257aa70609f8" - ], - "layout": "IPY_MODEL_a89ae7c0705f458f97f4e50751463686", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c26448655cd447cc9b74db7af0f0e9dd", + "placeholder": "​", + "style": "IPY_MODEL_3a6905a218d84d8ea4bbe668c2cf39f3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8501.83 examples/s]" } }, - "fe362277556a4cf0beffd4b12f3e9ffd": { + "fa8b4936d0ac47fb9530d1cd9496b791": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8657,7 +8657,7 @@ "width": null } }, - "fedc3692795249689353eccb515a9530": { + "ff1e37c00034488fa75bac4d1c3544ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index dc39d6bb4..7667c814d 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:49.899605Z", - "iopub.status.busy": "2024-07-02T15:28:49.899202Z", - "iopub.status.idle": "2024-07-02T15:28:50.991494Z", - "shell.execute_reply": "2024-07-02T15:28:50.990945Z" + "iopub.execute_input": "2024-07-05T13:45:28.639127Z", + "iopub.status.busy": "2024-07-05T13:45:28.638659Z", + "iopub.status.idle": "2024-07-05T13:45:29.715160Z", + "shell.execute_reply": "2024-07-05T13:45:29.714629Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:50.994031Z", - "iopub.status.busy": "2024-07-02T15:28:50.993599Z", - "iopub.status.idle": "2024-07-02T15:28:51.011326Z", - "shell.execute_reply": "2024-07-02T15:28:51.010872Z" + "iopub.execute_input": "2024-07-05T13:45:29.717775Z", + "iopub.status.busy": "2024-07-05T13:45:29.717342Z", + "iopub.status.idle": "2024-07-05T13:45:29.734563Z", + "shell.execute_reply": "2024-07-05T13:45:29.734021Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.013324Z", - "iopub.status.busy": "2024-07-02T15:28:51.012973Z", - "iopub.status.idle": "2024-07-02T15:28:51.039303Z", - "shell.execute_reply": "2024-07-02T15:28:51.038773Z" + "iopub.execute_input": "2024-07-05T13:45:29.736915Z", + "iopub.status.busy": "2024-07-05T13:45:29.736519Z", + "iopub.status.idle": "2024-07-05T13:45:29.760584Z", + "shell.execute_reply": "2024-07-05T13:45:29.760111Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.041327Z", - "iopub.status.busy": "2024-07-02T15:28:51.040919Z", - "iopub.status.idle": "2024-07-02T15:28:51.044291Z", - "shell.execute_reply": "2024-07-02T15:28:51.043776Z" + "iopub.execute_input": "2024-07-05T13:45:29.762505Z", + "iopub.status.busy": "2024-07-05T13:45:29.762208Z", + "iopub.status.idle": "2024-07-05T13:45:29.765557Z", + "shell.execute_reply": "2024-07-05T13:45:29.765034Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.046448Z", - "iopub.status.busy": "2024-07-02T15:28:51.046144Z", - "iopub.status.idle": "2024-07-02T15:28:51.053455Z", - "shell.execute_reply": "2024-07-02T15:28:51.052943Z" + "iopub.execute_input": "2024-07-05T13:45:29.767574Z", + "iopub.status.busy": "2024-07-05T13:45:29.767271Z", + "iopub.status.idle": "2024-07-05T13:45:29.774836Z", + "shell.execute_reply": "2024-07-05T13:45:29.774282Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.055596Z", - "iopub.status.busy": "2024-07-02T15:28:51.055273Z", - "iopub.status.idle": "2024-07-02T15:28:51.057820Z", - "shell.execute_reply": "2024-07-02T15:28:51.057306Z" + "iopub.execute_input": "2024-07-05T13:45:29.776954Z", + "iopub.status.busy": "2024-07-05T13:45:29.776681Z", + "iopub.status.idle": "2024-07-05T13:45:29.779310Z", + "shell.execute_reply": "2024-07-05T13:45:29.778773Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.059818Z", - "iopub.status.busy": "2024-07-02T15:28:51.059505Z", - "iopub.status.idle": "2024-07-02T15:28:54.001735Z", - "shell.execute_reply": "2024-07-02T15:28:54.001210Z" + "iopub.execute_input": "2024-07-05T13:45:29.781435Z", + "iopub.status.busy": "2024-07-05T13:45:29.781116Z", + "iopub.status.idle": "2024-07-05T13:45:32.738145Z", + "shell.execute_reply": "2024-07-05T13:45:32.737611Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:54.004479Z", - "iopub.status.busy": "2024-07-02T15:28:54.004049Z", - "iopub.status.idle": "2024-07-02T15:28:54.014544Z", - "shell.execute_reply": "2024-07-02T15:28:54.014111Z" + "iopub.execute_input": "2024-07-05T13:45:32.740855Z", + "iopub.status.busy": "2024-07-05T13:45:32.740367Z", + "iopub.status.idle": "2024-07-05T13:45:32.750224Z", + "shell.execute_reply": "2024-07-05T13:45:32.749806Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:54.016447Z", - "iopub.status.busy": "2024-07-02T15:28:54.016274Z", - "iopub.status.idle": "2024-07-02T15:28:55.858279Z", - "shell.execute_reply": "2024-07-02T15:28:55.857718Z" + "iopub.execute_input": "2024-07-05T13:45:32.752285Z", + "iopub.status.busy": "2024-07-05T13:45:32.751957Z", + "iopub.status.idle": "2024-07-05T13:45:34.608958Z", + "shell.execute_reply": "2024-07-05T13:45:34.608337Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.860474Z", - "iopub.status.busy": "2024-07-02T15:28:55.860182Z", - "iopub.status.idle": "2024-07-02T15:28:55.878763Z", - "shell.execute_reply": "2024-07-02T15:28:55.878229Z" + "iopub.execute_input": "2024-07-05T13:45:34.611373Z", + "iopub.status.busy": "2024-07-05T13:45:34.610897Z", + "iopub.status.idle": "2024-07-05T13:45:34.629141Z", + "shell.execute_reply": "2024-07-05T13:45:34.628589Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.880697Z", - "iopub.status.busy": "2024-07-02T15:28:55.880394Z", - "iopub.status.idle": "2024-07-02T15:28:55.888083Z", - "shell.execute_reply": "2024-07-02T15:28:55.887563Z" + "iopub.execute_input": "2024-07-05T13:45:34.631150Z", + "iopub.status.busy": "2024-07-05T13:45:34.630819Z", + "iopub.status.idle": "2024-07-05T13:45:34.638540Z", + "shell.execute_reply": "2024-07-05T13:45:34.638090Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.890072Z", - "iopub.status.busy": "2024-07-02T15:28:55.889768Z", - "iopub.status.idle": "2024-07-02T15:28:55.898858Z", - "shell.execute_reply": "2024-07-02T15:28:55.898441Z" + "iopub.execute_input": "2024-07-05T13:45:34.640558Z", + "iopub.status.busy": "2024-07-05T13:45:34.640229Z", + "iopub.status.idle": "2024-07-05T13:45:34.649783Z", + "shell.execute_reply": "2024-07-05T13:45:34.649325Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.900726Z", - "iopub.status.busy": "2024-07-02T15:28:55.900551Z", - "iopub.status.idle": "2024-07-02T15:28:55.908414Z", - "shell.execute_reply": "2024-07-02T15:28:55.907969Z" + "iopub.execute_input": "2024-07-05T13:45:34.651907Z", + "iopub.status.busy": "2024-07-05T13:45:34.651470Z", + "iopub.status.idle": "2024-07-05T13:45:34.659376Z", + "shell.execute_reply": "2024-07-05T13:45:34.658902Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.910406Z", - "iopub.status.busy": "2024-07-02T15:28:55.910090Z", - "iopub.status.idle": "2024-07-02T15:28:55.918338Z", - "shell.execute_reply": "2024-07-02T15:28:55.917916Z" + "iopub.execute_input": "2024-07-05T13:45:34.661475Z", + "iopub.status.busy": "2024-07-05T13:45:34.661081Z", + "iopub.status.idle": "2024-07-05T13:45:34.669916Z", + "shell.execute_reply": "2024-07-05T13:45:34.669389Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.920407Z", - "iopub.status.busy": "2024-07-02T15:28:55.920098Z", - "iopub.status.idle": "2024-07-02T15:28:55.927249Z", - "shell.execute_reply": "2024-07-02T15:28:55.926766Z" + "iopub.execute_input": "2024-07-05T13:45:34.671962Z", + "iopub.status.busy": "2024-07-05T13:45:34.671569Z", + "iopub.status.idle": "2024-07-05T13:45:34.679041Z", + "shell.execute_reply": "2024-07-05T13:45:34.678495Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.929330Z", - "iopub.status.busy": "2024-07-02T15:28:55.929026Z", - "iopub.status.idle": "2024-07-02T15:28:55.936059Z", - "shell.execute_reply": "2024-07-02T15:28:55.935601Z" + "iopub.execute_input": "2024-07-05T13:45:34.681094Z", + "iopub.status.busy": "2024-07-05T13:45:34.680780Z", + "iopub.status.idle": "2024-07-05T13:45:34.688348Z", + "shell.execute_reply": "2024-07-05T13:45:34.687786Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.938151Z", - "iopub.status.busy": "2024-07-02T15:28:55.937828Z", - "iopub.status.idle": "2024-07-02T15:28:55.946138Z", - "shell.execute_reply": "2024-07-02T15:28:55.945575Z" + "iopub.execute_input": "2024-07-05T13:45:34.690477Z", + "iopub.status.busy": "2024-07-05T13:45:34.690160Z", + "iopub.status.idle": "2024-07-05T13:45:34.697964Z", + "shell.execute_reply": "2024-07-05T13:45:34.697528Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 054fd75a3..cdf0c6a39 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard'}
+Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 551ba82cd..a7ff830eb 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:58.631257Z", - "iopub.status.busy": "2024-07-02T15:28:58.631091Z", - "iopub.status.idle": "2024-07-02T15:29:01.231065Z", - "shell.execute_reply": "2024-07-02T15:29:01.230522Z" + "iopub.execute_input": "2024-07-05T13:45:37.508206Z", + "iopub.status.busy": "2024-07-05T13:45:37.508033Z", + "iopub.status.idle": "2024-07-05T13:45:40.115540Z", + "shell.execute_reply": "2024-07-05T13:45:40.115000Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.233809Z", - "iopub.status.busy": "2024-07-02T15:29:01.233237Z", - "iopub.status.idle": "2024-07-02T15:29:01.236539Z", - "shell.execute_reply": "2024-07-02T15:29:01.236030Z" + "iopub.execute_input": "2024-07-05T13:45:40.118143Z", + "iopub.status.busy": "2024-07-05T13:45:40.117713Z", + "iopub.status.idle": "2024-07-05T13:45:40.120793Z", + "shell.execute_reply": "2024-07-05T13:45:40.120322Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.238509Z", - "iopub.status.busy": "2024-07-02T15:29:01.238205Z", - "iopub.status.idle": "2024-07-02T15:29:01.241273Z", - "shell.execute_reply": "2024-07-02T15:29:01.240730Z" + "iopub.execute_input": "2024-07-05T13:45:40.122767Z", + "iopub.status.busy": "2024-07-05T13:45:40.122434Z", + "iopub.status.idle": "2024-07-05T13:45:40.125376Z", + "shell.execute_reply": "2024-07-05T13:45:40.124927Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.243270Z", - "iopub.status.busy": "2024-07-02T15:29:01.242968Z", - "iopub.status.idle": "2024-07-02T15:29:01.265333Z", - "shell.execute_reply": "2024-07-02T15:29:01.264818Z" + "iopub.execute_input": "2024-07-05T13:45:40.127398Z", + "iopub.status.busy": "2024-07-05T13:45:40.127086Z", + "iopub.status.idle": "2024-07-05T13:45:40.150243Z", + "shell.execute_reply": "2024-07-05T13:45:40.149783Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.267342Z", - "iopub.status.busy": "2024-07-02T15:29:01.267008Z", - "iopub.status.idle": "2024-07-02T15:29:01.270863Z", - "shell.execute_reply": "2024-07-02T15:29:01.270395Z" + "iopub.execute_input": "2024-07-05T13:45:40.152305Z", + "iopub.status.busy": "2024-07-05T13:45:40.151972Z", + "iopub.status.idle": "2024-07-05T13:45:40.155458Z", + "shell.execute_reply": "2024-07-05T13:45:40.154955Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard'}\n" + "Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.272802Z", - "iopub.status.busy": "2024-07-02T15:29:01.272475Z", - "iopub.status.idle": "2024-07-02T15:29:01.275495Z", - "shell.execute_reply": "2024-07-02T15:29:01.274962Z" + "iopub.execute_input": "2024-07-05T13:45:40.157444Z", + "iopub.status.busy": "2024-07-05T13:45:40.157167Z", + "iopub.status.idle": "2024-07-05T13:45:40.160266Z", + "shell.execute_reply": "2024-07-05T13:45:40.159757Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.277490Z", - "iopub.status.busy": "2024-07-02T15:29:01.277167Z", - "iopub.status.idle": "2024-07-02T15:29:05.263507Z", - "shell.execute_reply": "2024-07-02T15:29:05.262875Z" + "iopub.execute_input": "2024-07-05T13:45:40.162307Z", + "iopub.status.busy": "2024-07-05T13:45:40.162131Z", + "iopub.status.idle": "2024-07-05T13:45:43.790271Z", + "shell.execute_reply": "2024-07-05T13:45:43.789624Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:05.266231Z", - "iopub.status.busy": "2024-07-02T15:29:05.265792Z", - "iopub.status.idle": "2024-07-02T15:29:06.185238Z", - "shell.execute_reply": "2024-07-02T15:29:06.184672Z" + "iopub.execute_input": "2024-07-05T13:45:43.793215Z", + "iopub.status.busy": "2024-07-05T13:45:43.792741Z", + "iopub.status.idle": "2024-07-05T13:45:44.668399Z", + "shell.execute_reply": "2024-07-05T13:45:44.667797Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:06.187923Z", - "iopub.status.busy": "2024-07-02T15:29:06.187416Z", - "iopub.status.idle": "2024-07-02T15:29:06.190514Z", - "shell.execute_reply": "2024-07-02T15:29:06.190036Z" + "iopub.execute_input": "2024-07-05T13:45:44.671209Z", + "iopub.status.busy": "2024-07-05T13:45:44.670822Z", + "iopub.status.idle": "2024-07-05T13:45:44.673678Z", + "shell.execute_reply": "2024-07-05T13:45:44.673198Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:06.192745Z", - "iopub.status.busy": "2024-07-02T15:29:06.192366Z", - "iopub.status.idle": "2024-07-02T15:29:08.085828Z", - "shell.execute_reply": "2024-07-02T15:29:08.085168Z" + "iopub.execute_input": "2024-07-05T13:45:44.675997Z", + "iopub.status.busy": "2024-07-05T13:45:44.675626Z", + "iopub.status.idle": "2024-07-05T13:45:46.570036Z", + "shell.execute_reply": "2024-07-05T13:45:46.569408Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.090050Z", - "iopub.status.busy": "2024-07-02T15:29:08.088906Z", - "iopub.status.idle": "2024-07-02T15:29:08.114316Z", - "shell.execute_reply": "2024-07-02T15:29:08.113817Z" + "iopub.execute_input": "2024-07-05T13:45:46.573869Z", + "iopub.status.busy": "2024-07-05T13:45:46.572728Z", + "iopub.status.idle": "2024-07-05T13:45:46.598218Z", + "shell.execute_reply": "2024-07-05T13:45:46.597717Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.117749Z", - "iopub.status.busy": "2024-07-02T15:29:08.116842Z", - "iopub.status.idle": "2024-07-02T15:29:08.126972Z", - "shell.execute_reply": "2024-07-02T15:29:08.126538Z" + "iopub.execute_input": "2024-07-05T13:45:46.601793Z", + "iopub.status.busy": "2024-07-05T13:45:46.600854Z", + "iopub.status.idle": "2024-07-05T13:45:46.611715Z", + "shell.execute_reply": "2024-07-05T13:45:46.611322Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.129068Z", - "iopub.status.busy": "2024-07-02T15:29:08.128673Z", - "iopub.status.idle": "2024-07-02T15:29:08.133020Z", - "shell.execute_reply": "2024-07-02T15:29:08.132584Z" + "iopub.execute_input": "2024-07-05T13:45:46.613922Z", + "iopub.status.busy": "2024-07-05T13:45:46.613740Z", + "iopub.status.idle": "2024-07-05T13:45:46.618309Z", + "shell.execute_reply": "2024-07-05T13:45:46.617868Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.135018Z", - "iopub.status.busy": "2024-07-02T15:29:08.134691Z", - "iopub.status.idle": "2024-07-02T15:29:08.140889Z", - "shell.execute_reply": "2024-07-02T15:29:08.140420Z" + "iopub.execute_input": "2024-07-05T13:45:46.620285Z", + "iopub.status.busy": "2024-07-05T13:45:46.619944Z", + "iopub.status.idle": "2024-07-05T13:45:46.626160Z", + "shell.execute_reply": "2024-07-05T13:45:46.625662Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.142906Z", - "iopub.status.busy": "2024-07-02T15:29:08.142588Z", - "iopub.status.idle": "2024-07-02T15:29:08.148868Z", - "shell.execute_reply": "2024-07-02T15:29:08.148318Z" + "iopub.execute_input": "2024-07-05T13:45:46.628231Z", + "iopub.status.busy": "2024-07-05T13:45:46.627911Z", + "iopub.status.idle": "2024-07-05T13:45:46.634365Z", + "shell.execute_reply": "2024-07-05T13:45:46.633946Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.150927Z", - "iopub.status.busy": "2024-07-02T15:29:08.150568Z", - "iopub.status.idle": "2024-07-02T15:29:08.156157Z", - "shell.execute_reply": "2024-07-02T15:29:08.155694Z" + "iopub.execute_input": "2024-07-05T13:45:46.636191Z", + "iopub.status.busy": "2024-07-05T13:45:46.636015Z", + "iopub.status.idle": "2024-07-05T13:45:46.641900Z", + "shell.execute_reply": "2024-07-05T13:45:46.641428Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.158158Z", - "iopub.status.busy": "2024-07-02T15:29:08.157833Z", - "iopub.status.idle": "2024-07-02T15:29:08.165960Z", - "shell.execute_reply": "2024-07-02T15:29:08.165500Z" + "iopub.execute_input": "2024-07-05T13:45:46.643848Z", + "iopub.status.busy": "2024-07-05T13:45:46.643675Z", + "iopub.status.idle": "2024-07-05T13:45:46.652016Z", + "shell.execute_reply": "2024-07-05T13:45:46.651484Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.168102Z", - "iopub.status.busy": "2024-07-02T15:29:08.167668Z", - "iopub.status.idle": "2024-07-02T15:29:08.173302Z", - "shell.execute_reply": "2024-07-02T15:29:08.172857Z" + "iopub.execute_input": "2024-07-05T13:45:46.654172Z", + "iopub.status.busy": "2024-07-05T13:45:46.653728Z", + "iopub.status.idle": "2024-07-05T13:45:46.659170Z", + "shell.execute_reply": "2024-07-05T13:45:46.658720Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.175232Z", - "iopub.status.busy": "2024-07-02T15:29:08.174914Z", - "iopub.status.idle": "2024-07-02T15:29:08.180090Z", - "shell.execute_reply": "2024-07-02T15:29:08.179632Z" + "iopub.execute_input": "2024-07-05T13:45:46.661195Z", + "iopub.status.busy": "2024-07-05T13:45:46.660774Z", + "iopub.status.idle": "2024-07-05T13:45:46.666133Z", + "shell.execute_reply": "2024-07-05T13:45:46.665608Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.182081Z", - "iopub.status.busy": "2024-07-02T15:29:08.181762Z", - "iopub.status.idle": "2024-07-02T15:29:08.185358Z", - "shell.execute_reply": "2024-07-02T15:29:08.184918Z" + "iopub.execute_input": "2024-07-05T13:45:46.668090Z", + "iopub.status.busy": "2024-07-05T13:45:46.667911Z", + "iopub.status.idle": "2024-07-05T13:45:46.671352Z", + "shell.execute_reply": "2024-07-05T13:45:46.670896Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.187396Z", - "iopub.status.busy": "2024-07-02T15:29:08.187074Z", - "iopub.status.idle": "2024-07-02T15:29:08.192050Z", - "shell.execute_reply": "2024-07-02T15:29:08.191599Z" + "iopub.execute_input": "2024-07-05T13:45:46.673299Z", + "iopub.status.busy": "2024-07-05T13:45:46.673115Z", + "iopub.status.idle": "2024-07-05T13:45:46.678327Z", + "shell.execute_reply": "2024-07-05T13:45:46.677877Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 18f04bcdc..1628b382e 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -879,7 +879,7 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3564,7 +3564,7 @@

1. Load the Dataset
-100%|██████████| 170498071/170498071 [00:02<00:00, 63370425.61it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 109678925.25it/s]
 
-
+
@@ -3896,7 +3896,7 @@

Image-specific property scores in the transformed dataset -{"state": {"3fe4d5f95a4b421ea7191cd652353f63": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "509a070ad7814351956da09fa31f6d3e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "975ecec9b0d240eebc17772cc26037e6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3fe4d5f95a4b421ea7191cd652353f63", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_509a070ad7814351956da09fa31f6d3e", "tabbable": null, "tooltip": null, "value": 200.0}}, "950c8017832643e59a584d9e5c14d158": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8356f3ec51974cf696a3e9692878bd4e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e8e5474f252f462bb6b93f09309db91a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_950c8017832643e59a584d9e5c14d158", "placeholder": "\u200b", "style": "IPY_MODEL_8356f3ec51974cf696a3e9692878bd4e", "tabbable": null, "tooltip": null, "value": "100%"}}, "cba826c457dc4039b375f27857c765ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbabf37f132843a38191f8b243f94ccd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "74d7c5cc1042451a8756f13a29013665": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cba826c457dc4039b375f27857c765ca", "placeholder": "\u200b", "style": "IPY_MODEL_fbabf37f132843a38191f8b243f94ccd", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007780.24it/s]"}}, "9e76293fc8c84697bab5d4b70a4497ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f24c55aaa3f2486eb049ea9140702ad3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e8e5474f252f462bb6b93f09309db91a", "IPY_MODEL_975ecec9b0d240eebc17772cc26037e6", "IPY_MODEL_74d7c5cc1042451a8756f13a29013665"], "layout": "IPY_MODEL_9e76293fc8c84697bab5d4b70a4497ed", "tabbable": null, "tooltip": null}}, "f737276f279444d0a64c6ae2d3596e26": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2a441d85bb54e8e87b2a9bd9ec7a1b7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a06fb116c7f54de8ace8c44aa9c3252a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f737276f279444d0a64c6ae2d3596e26", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f2a441d85bb54e8e87b2a9bd9ec7a1b7", "tabbable": null, "tooltip": null, "value": 200.0}}, "f1f35c30be0c46cea8172b99479542a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a67d709e70348c5a0788df8f06b7d00": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "16441724cc5d442083bc8dc57220bdb5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1f35c30be0c46cea8172b99479542a3", "placeholder": "\u200b", "style": "IPY_MODEL_5a67d709e70348c5a0788df8f06b7d00", "tabbable": null, "tooltip": null, "value": "100%"}}, "c65f07113a9243528835037ef624a06c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "140f94fffe9d41998f052b476411cdc5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "683dfd5472954d23960cee4af27b4942": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c65f07113a9243528835037ef624a06c", "placeholder": "\u200b", "style": "IPY_MODEL_140f94fffe9d41998f052b476411cdc5", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007725.42it/s]"}}, "c42e40a052b345028b0e318e573b39c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "29d1b664fe1d4701876841f59c318a5a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_16441724cc5d442083bc8dc57220bdb5", "IPY_MODEL_a06fb116c7f54de8ace8c44aa9c3252a", "IPY_MODEL_683dfd5472954d23960cee4af27b4942"], "layout": "IPY_MODEL_c42e40a052b345028b0e318e573b39c4", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"cd7a2389d25b4d298821ab829bfd1137": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35facc01925a46579c1a308ac51256e6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "60e320d5a0514e7988b671b18e5b1dd5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd7a2389d25b4d298821ab829bfd1137", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_35facc01925a46579c1a308ac51256e6", "tabbable": null, "tooltip": null, "value": 200.0}}, "69b1ca970e5748eaad47171495bc62db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc4a22c6f66142f381820162a6ab61ce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3df1f103eb6f47a78c4bfb4debcac81b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_69b1ca970e5748eaad47171495bc62db", "placeholder": "\u200b", "style": "IPY_MODEL_dc4a22c6f66142f381820162a6ab61ce", "tabbable": null, "tooltip": null, "value": "100%"}}, "423b2cfce6054ee39a1e6f1323644285": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78160bea25ee4d86bfd3618901427b7b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f0f7361539f740f9b5b84579894f5284": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_423b2cfce6054ee39a1e6f1323644285", "placeholder": "\u200b", "style": "IPY_MODEL_78160bea25ee4d86bfd3618901427b7b", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007756.44it/s]"}}, "4773a1b04e67457ca7b020b6822f4f7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "268115fbc59e47f4bbccfccdefe569d8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3df1f103eb6f47a78c4bfb4debcac81b", "IPY_MODEL_60e320d5a0514e7988b671b18e5b1dd5", "IPY_MODEL_f0f7361539f740f9b5b84579894f5284"], "layout": "IPY_MODEL_4773a1b04e67457ca7b020b6822f4f7d", "tabbable": null, "tooltip": null}}, "22a030233d8448d5a0bd14f6422f798a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa3695b33cdf48729ebd97ca7ac0c28c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b4be7ec6ad464eef8ec6b16b54ad0d57": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_22a030233d8448d5a0bd14f6422f798a", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa3695b33cdf48729ebd97ca7ac0c28c", "tabbable": null, "tooltip": null, "value": 200.0}}, "d0ef77849a6f4d5da2f6bce9b50a21f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "caef09ae7619440e9caca38798910cf8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cc741217e3f44aef9b4188665744e1e1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d0ef77849a6f4d5da2f6bce9b50a21f0", "placeholder": "\u200b", "style": "IPY_MODEL_caef09ae7619440e9caca38798910cf8", "tabbable": null, "tooltip": null, "value": "100%"}}, "ef5d6e10352544fb8bbd6759582d0ce6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd20b6c3784b48939a5dd8c2113f6a63": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2c82a248711451aaefd4dd9169d75ce": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef5d6e10352544fb8bbd6759582d0ce6", "placeholder": "\u200b", "style": "IPY_MODEL_bd20b6c3784b48939a5dd8c2113f6a63", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007812.00it/s]"}}, "b981597815bd43c3936c0e0d04d988fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38811633b37a4fb49bbd7e97f6973a45": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cc741217e3f44aef9b4188665744e1e1", "IPY_MODEL_b4be7ec6ad464eef8ec6b16b54ad0d57", "IPY_MODEL_d2c82a248711451aaefd4dd9169d75ce"], "layout": "IPY_MODEL_b981597815bd43c3936c0e0d04d988fd", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 0eaee2f6c..40f0702a2 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.148814Z", - "iopub.status.busy": "2024-07-02T15:29:11.148637Z", - "iopub.status.idle": "2024-07-02T15:29:11.562068Z", - "shell.execute_reply": "2024-07-02T15:29:11.561444Z" + "iopub.execute_input": "2024-07-05T13:45:50.006375Z", + "iopub.status.busy": "2024-07-05T13:45:50.006204Z", + "iopub.status.idle": "2024-07-05T13:45:50.422380Z", + "shell.execute_reply": "2024-07-05T13:45:50.421900Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.564831Z", - "iopub.status.busy": "2024-07-02T15:29:11.564466Z", - "iopub.status.idle": "2024-07-02T15:29:11.689877Z", - "shell.execute_reply": "2024-07-02T15:29:11.689330Z" + "iopub.execute_input": "2024-07-05T13:45:50.424924Z", + "iopub.status.busy": "2024-07-05T13:45:50.424637Z", + "iopub.status.idle": "2024-07-05T13:45:50.551766Z", + "shell.execute_reply": "2024-07-05T13:45:50.551206Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.692161Z", - "iopub.status.busy": "2024-07-02T15:29:11.691698Z", - "iopub.status.idle": "2024-07-02T15:29:11.710885Z", - "shell.execute_reply": "2024-07-02T15:29:11.710323Z" + "iopub.execute_input": "2024-07-05T13:45:50.554046Z", + "iopub.status.busy": "2024-07-05T13:45:50.553790Z", + "iopub.status.idle": "2024-07-05T13:45:50.577263Z", + "shell.execute_reply": "2024-07-05T13:45:50.576649Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.713082Z", - "iopub.status.busy": "2024-07-02T15:29:11.712899Z", - "iopub.status.idle": "2024-07-02T15:29:14.335786Z", - "shell.execute_reply": "2024-07-02T15:29:14.335126Z" + "iopub.execute_input": "2024-07-05T13:45:50.580465Z", + "iopub.status.busy": "2024-07-05T13:45:50.579968Z", + "iopub.status.idle": "2024-07-05T13:45:53.221079Z", + "shell.execute_reply": "2024-07-05T13:45:53.220422Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", + " 0.356959\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", + "2 outlier 0.356959 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:14.338194Z", - "iopub.status.busy": "2024-07-02T15:29:14.337838Z", - "iopub.status.idle": "2024-07-02T15:29:22.391410Z", - "shell.execute_reply": "2024-07-02T15:29:22.390817Z" + "iopub.execute_input": "2024-07-05T13:45:53.223634Z", + "iopub.status.busy": "2024-07-05T13:45:53.223292Z", + "iopub.status.idle": "2024-07-05T13:46:12.687787Z", + "shell.execute_reply": "2024-07-05T13:46:12.687283Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:22.393854Z", - "iopub.status.busy": "2024-07-02T15:29:22.393389Z", - "iopub.status.idle": "2024-07-02T15:29:22.535692Z", - "shell.execute_reply": "2024-07-02T15:29:22.535054Z" + "iopub.execute_input": "2024-07-05T13:46:12.689817Z", + "iopub.status.busy": "2024-07-05T13:46:12.689637Z", + "iopub.status.idle": "2024-07-05T13:46:12.830382Z", + "shell.execute_reply": "2024-07-05T13:46:12.829824Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:22.538266Z", - "iopub.status.busy": "2024-07-02T15:29:22.538089Z", - "iopub.status.idle": "2024-07-02T15:29:23.850373Z", - "shell.execute_reply": "2024-07-02T15:29:23.849867Z" + "iopub.execute_input": "2024-07-05T13:46:12.832770Z", + "iopub.status.busy": "2024-07-05T13:46:12.832534Z", + "iopub.status.idle": "2024-07-05T13:46:14.143374Z", + "shell.execute_reply": "2024-07-05T13:46:14.142774Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:23.852547Z", - "iopub.status.busy": "2024-07-02T15:29:23.852210Z", - "iopub.status.idle": "2024-07-02T15:29:24.256489Z", - "shell.execute_reply": "2024-07-02T15:29:24.255943Z" + "iopub.execute_input": "2024-07-05T13:46:14.145482Z", + "iopub.status.busy": "2024-07-05T13:46:14.145288Z", + "iopub.status.idle": "2024-07-05T13:46:14.614471Z", + "shell.execute_reply": "2024-07-05T13:46:14.613864Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.259129Z", - "iopub.status.busy": "2024-07-02T15:29:24.258483Z", - "iopub.status.idle": "2024-07-02T15:29:24.266937Z", - "shell.execute_reply": "2024-07-02T15:29:24.266488Z" + "iopub.execute_input": "2024-07-05T13:46:14.616830Z", + "iopub.status.busy": "2024-07-05T13:46:14.616292Z", + "iopub.status.idle": "2024-07-05T13:46:14.625383Z", + "shell.execute_reply": "2024-07-05T13:46:14.624938Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.268896Z", - "iopub.status.busy": "2024-07-02T15:29:24.268579Z", - "iopub.status.idle": "2024-07-02T15:29:24.287826Z", - "shell.execute_reply": "2024-07-02T15:29:24.287420Z" + "iopub.execute_input": "2024-07-05T13:46:14.627452Z", + "iopub.status.busy": "2024-07-05T13:46:14.627113Z", + "iopub.status.idle": "2024-07-05T13:46:14.647021Z", + "shell.execute_reply": "2024-07-05T13:46:14.646610Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.289629Z", - "iopub.status.busy": "2024-07-02T15:29:24.289459Z", - "iopub.status.idle": "2024-07-02T15:29:24.509373Z", - "shell.execute_reply": "2024-07-02T15:29:24.508832Z" + "iopub.execute_input": "2024-07-05T13:46:14.649061Z", + "iopub.status.busy": "2024-07-05T13:46:14.648737Z", + "iopub.status.idle": "2024-07-05T13:46:14.885765Z", + "shell.execute_reply": "2024-07-05T13:46:14.885237Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.511635Z", - "iopub.status.busy": "2024-07-02T15:29:24.511276Z", - "iopub.status.idle": "2024-07-02T15:29:24.530413Z", - "shell.execute_reply": "2024-07-02T15:29:24.529881Z" + "iopub.execute_input": "2024-07-05T13:46:14.888308Z", + "iopub.status.busy": "2024-07-05T13:46:14.887977Z", + "iopub.status.idle": "2024-07-05T13:46:14.906655Z", + "shell.execute_reply": "2024-07-05T13:46:14.906181Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.532504Z", - "iopub.status.busy": "2024-07-02T15:29:24.532105Z", - "iopub.status.idle": "2024-07-02T15:29:24.697579Z", - "shell.execute_reply": "2024-07-02T15:29:24.697155Z" + "iopub.execute_input": "2024-07-05T13:46:14.908794Z", + "iopub.status.busy": "2024-07-05T13:46:14.908380Z", + "iopub.status.idle": "2024-07-05T13:46:15.075562Z", + "shell.execute_reply": "2024-07-05T13:46:15.074966Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.699519Z", - "iopub.status.busy": "2024-07-02T15:29:24.699362Z", - "iopub.status.idle": "2024-07-02T15:29:24.710273Z", - "shell.execute_reply": "2024-07-02T15:29:24.709863Z" + "iopub.execute_input": "2024-07-05T13:46:15.077959Z", + "iopub.status.busy": "2024-07-05T13:46:15.077765Z", + "iopub.status.idle": "2024-07-05T13:46:15.087974Z", + "shell.execute_reply": "2024-07-05T13:46:15.087526Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.712113Z", - "iopub.status.busy": "2024-07-02T15:29:24.711959Z", - "iopub.status.idle": "2024-07-02T15:29:24.721478Z", - "shell.execute_reply": "2024-07-02T15:29:24.721032Z" + "iopub.execute_input": "2024-07-05T13:46:15.089886Z", + "iopub.status.busy": "2024-07-05T13:46:15.089710Z", + "iopub.status.idle": "2024-07-05T13:46:15.099461Z", + "shell.execute_reply": "2024-07-05T13:46:15.099022Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.723461Z", - "iopub.status.busy": "2024-07-02T15:29:24.723141Z", - "iopub.status.idle": "2024-07-02T15:29:24.749053Z", - "shell.execute_reply": "2024-07-02T15:29:24.748634Z" + "iopub.execute_input": "2024-07-05T13:46:15.101671Z", + "iopub.status.busy": "2024-07-05T13:46:15.101234Z", + "iopub.status.idle": "2024-07-05T13:46:15.127122Z", + "shell.execute_reply": "2024-07-05T13:46:15.126707Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.751055Z", - "iopub.status.busy": "2024-07-02T15:29:24.750756Z", - "iopub.status.idle": "2024-07-02T15:29:24.753280Z", - "shell.execute_reply": "2024-07-02T15:29:24.752846Z" + "iopub.execute_input": "2024-07-05T13:46:15.129023Z", + "iopub.status.busy": "2024-07-05T13:46:15.128853Z", + "iopub.status.idle": "2024-07-05T13:46:15.131530Z", + "shell.execute_reply": "2024-07-05T13:46:15.131081Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.755266Z", - "iopub.status.busy": "2024-07-02T15:29:24.754962Z", - "iopub.status.idle": "2024-07-02T15:29:24.773504Z", - "shell.execute_reply": "2024-07-02T15:29:24.773077Z" + "iopub.execute_input": "2024-07-05T13:46:15.133562Z", + "iopub.status.busy": "2024-07-05T13:46:15.133263Z", + "iopub.status.idle": "2024-07-05T13:46:15.152255Z", + "shell.execute_reply": "2024-07-05T13:46:15.151716Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.775512Z", - "iopub.status.busy": "2024-07-02T15:29:24.775219Z", - "iopub.status.idle": "2024-07-02T15:29:24.779215Z", - "shell.execute_reply": "2024-07-02T15:29:24.778781Z" + "iopub.execute_input": "2024-07-05T13:46:15.154153Z", + "iopub.status.busy": "2024-07-05T13:46:15.153982Z", + "iopub.status.idle": "2024-07-05T13:46:15.158189Z", + "shell.execute_reply": "2024-07-05T13:46:15.157756Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.781323Z", - "iopub.status.busy": "2024-07-02T15:29:24.780892Z", - "iopub.status.idle": "2024-07-02T15:29:24.814268Z", - "shell.execute_reply": "2024-07-02T15:29:24.813734Z" + "iopub.execute_input": "2024-07-05T13:46:15.160106Z", + "iopub.status.busy": "2024-07-05T13:46:15.159937Z", + "iopub.status.idle": "2024-07-05T13:46:15.187175Z", + "shell.execute_reply": "2024-07-05T13:46:15.186623Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.816285Z", - "iopub.status.busy": "2024-07-02T15:29:24.815990Z", - "iopub.status.idle": "2024-07-02T15:29:25.179432Z", - "shell.execute_reply": "2024-07-02T15:29:25.178873Z" + "iopub.execute_input": "2024-07-05T13:46:15.189119Z", + "iopub.status.busy": "2024-07-05T13:46:15.188945Z", + "iopub.status.idle": "2024-07-05T13:46:15.556540Z", + "shell.execute_reply": "2024-07-05T13:46:15.555949Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.181578Z", - "iopub.status.busy": "2024-07-02T15:29:25.181257Z", - "iopub.status.idle": "2024-07-02T15:29:25.184323Z", - "shell.execute_reply": "2024-07-02T15:29:25.183802Z" + "iopub.execute_input": "2024-07-05T13:46:15.558727Z", + "iopub.status.busy": "2024-07-05T13:46:15.558536Z", + "iopub.status.idle": "2024-07-05T13:46:15.561597Z", + "shell.execute_reply": "2024-07-05T13:46:15.561062Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.186452Z", - "iopub.status.busy": "2024-07-02T15:29:25.186047Z", - "iopub.status.idle": "2024-07-02T15:29:25.198843Z", - "shell.execute_reply": "2024-07-02T15:29:25.198320Z" + "iopub.execute_input": "2024-07-05T13:46:15.563532Z", + "iopub.status.busy": "2024-07-05T13:46:15.563357Z", + "iopub.status.idle": "2024-07-05T13:46:15.576523Z", + "shell.execute_reply": "2024-07-05T13:46:15.575975Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.200782Z", - "iopub.status.busy": "2024-07-02T15:29:25.200486Z", - "iopub.status.idle": "2024-07-02T15:29:25.213647Z", - "shell.execute_reply": "2024-07-02T15:29:25.213118Z" + "iopub.execute_input": "2024-07-05T13:46:15.578674Z", + "iopub.status.busy": "2024-07-05T13:46:15.578248Z", + "iopub.status.idle": "2024-07-05T13:46:15.591355Z", + "shell.execute_reply": "2024-07-05T13:46:15.590924Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.215595Z", - "iopub.status.busy": "2024-07-02T15:29:25.215421Z", - "iopub.status.idle": "2024-07-02T15:29:25.224854Z", - "shell.execute_reply": "2024-07-02T15:29:25.224443Z" + "iopub.execute_input": "2024-07-05T13:46:15.593168Z", + "iopub.status.busy": "2024-07-05T13:46:15.592995Z", + "iopub.status.idle": "2024-07-05T13:46:15.603154Z", + "shell.execute_reply": "2024-07-05T13:46:15.602745Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.226672Z", - "iopub.status.busy": "2024-07-02T15:29:25.226501Z", - "iopub.status.idle": "2024-07-02T15:29:25.235816Z", - "shell.execute_reply": "2024-07-02T15:29:25.235341Z" + "iopub.execute_input": "2024-07-05T13:46:15.605202Z", + "iopub.status.busy": "2024-07-05T13:46:15.604799Z", + "iopub.status.idle": "2024-07-05T13:46:15.613770Z", + "shell.execute_reply": "2024-07-05T13:46:15.613312Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.237869Z", - "iopub.status.busy": "2024-07-02T15:29:25.237457Z", - "iopub.status.idle": "2024-07-02T15:29:25.241007Z", - "shell.execute_reply": "2024-07-02T15:29:25.240556Z" + "iopub.execute_input": "2024-07-05T13:46:15.615567Z", + "iopub.status.busy": "2024-07-05T13:46:15.615399Z", + "iopub.status.idle": "2024-07-05T13:46:15.619097Z", + "shell.execute_reply": "2024-07-05T13:46:15.618656Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.242990Z", - "iopub.status.busy": "2024-07-02T15:29:25.242667Z", - "iopub.status.idle": "2024-07-02T15:29:25.292667Z", - "shell.execute_reply": "2024-07-02T15:29:25.292199Z" + "iopub.execute_input": "2024-07-05T13:46:15.620904Z", + "iopub.status.busy": "2024-07-05T13:46:15.620738Z", + "iopub.status.idle": "2024-07-05T13:46:15.671381Z", + "shell.execute_reply": "2024-07-05T13:46:15.670944Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.294886Z", - "iopub.status.busy": "2024-07-02T15:29:25.294483Z", - "iopub.status.idle": "2024-07-02T15:29:25.299817Z", - "shell.execute_reply": "2024-07-02T15:29:25.299395Z" + "iopub.execute_input": "2024-07-05T13:46:15.673439Z", + "iopub.status.busy": "2024-07-05T13:46:15.673166Z", + "iopub.status.idle": "2024-07-05T13:46:15.678680Z", + "shell.execute_reply": "2024-07-05T13:46:15.678256Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.301975Z", - "iopub.status.busy": "2024-07-02T15:29:25.301501Z", - "iopub.status.idle": "2024-07-02T15:29:25.311839Z", - "shell.execute_reply": "2024-07-02T15:29:25.311419Z" + "iopub.execute_input": "2024-07-05T13:46:15.680508Z", + "iopub.status.busy": "2024-07-05T13:46:15.680341Z", + "iopub.status.idle": "2024-07-05T13:46:15.690646Z", + "shell.execute_reply": "2024-07-05T13:46:15.690182Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.313796Z", - "iopub.status.busy": "2024-07-02T15:29:25.313590Z", - "iopub.status.idle": "2024-07-02T15:29:25.524327Z", - "shell.execute_reply": "2024-07-02T15:29:25.523840Z" + "iopub.execute_input": "2024-07-05T13:46:15.692509Z", + "iopub.status.busy": "2024-07-05T13:46:15.692340Z", + "iopub.status.idle": "2024-07-05T13:46:15.907287Z", + "shell.execute_reply": "2024-07-05T13:46:15.906738Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.526204Z", - "iopub.status.busy": "2024-07-02T15:29:25.526033Z", - "iopub.status.idle": "2024-07-02T15:29:25.533387Z", - "shell.execute_reply": "2024-07-02T15:29:25.532865Z" + "iopub.execute_input": "2024-07-05T13:46:15.909477Z", + "iopub.status.busy": "2024-07-05T13:46:15.909292Z", + "iopub.status.idle": "2024-07-05T13:46:15.916827Z", + "shell.execute_reply": "2024-07-05T13:46:15.916381Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.535412Z", - "iopub.status.busy": "2024-07-02T15:29:25.535090Z", - "iopub.status.idle": "2024-07-02T15:29:31.824715Z", - "shell.execute_reply": "2024-07-02T15:29:31.824156Z" + "iopub.execute_input": "2024-07-05T13:46:15.918920Z", + "iopub.status.busy": "2024-07-05T13:46:15.918607Z", + "iopub.status.idle": "2024-07-05T13:46:21.100386Z", + "shell.execute_reply": "2024-07-05T13:46:21.099823Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1769472/170498071 [00:00<00:09, 17569738.43it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 17707180.99it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9994240/170498071 [00:00<00:02, 55470141.49it/s]" + " 8%|▊ | 13402112/170498071 [00:00<00:02, 75006043.80it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18186240/170498071 [00:00<00:02, 67404805.75it/s]" + " 15%|█▍ | 25067520/170498071 [00:00<00:01, 93857810.24it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26476544/170498071 [00:00<00:01, 73445517.40it/s]" + " 22%|██▏ | 36667392/170498071 [00:00<00:01, 102554887.55it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34865152/170498071 [00:00<00:01, 77108513.90it/s]" + " 28%|██▊ | 48365568/170498071 [00:00<00:01, 107654909.34it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 43057152/170498071 [00:00<00:01, 78697943.81it/s]" + " 35%|███▌ | 59998208/170498071 [00:00<00:00, 110583418.90it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 51380224/170498071 [00:00<00:01, 79985067.48it/s]" + " 42%|████▏ | 71630848/170498071 [00:00<00:00, 112403046.66it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 59703296/170498071 [00:00<00:01, 80909156.17it/s]" + " 49%|████▉ | 83263488/170498071 [00:00<00:00, 113566420.34it/s]" ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67928064/170498071 [00:00<00:01, 81246537.89it/s]" + " 56%|█████▌ | 94896128/170498071 [00:00<00:00, 114383178.26it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 76251136/170498071 [00:01<00:01, 81748989.29it/s]" + " 62%|██████▏ | 106528768/170498071 [00:01<00:00, 114903480.60it/s]" ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 84574208/170498071 [00:01<00:01, 82134723.99it/s]" + " 69%|██████▉ | 118161408/170498071 [00:01<00:00, 115276254.08it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 92995584/170498071 [00:01<00:00, 82736426.96it/s]" + " 76%|███████▌ | 129794048/170498071 [00:01<00:00, 115565617.77it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 101580800/170498071 [00:01<00:00, 83638413.28it/s]" + " 83%|████████▎ | 141361152/170498071 [00:01<00:00, 115556867.68it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110067712/170498071 [00:01<00:00, 83992383.40it/s]" + " 90%|████████▉ | 152993792/170498071 [00:01<00:00, 115786020.76it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 118489088/170498071 [00:01<00:00, 81517971.25it/s]" + " 97%|█████████▋| 164626432/170498071 [00:01<00:00, 115930923.45it/s]" ] }, { @@ -3907,71 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 126681088/170498071 [00:01<00:00, 66165934.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 133791744/170498071 [00:01<00:00, 57474892.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 140017664/170498071 [00:02<00:00, 52870786.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 145686528/170498071 [00:02<00:00, 49446779.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 150896640/170498071 [00:02<00:00, 47089743.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████▏| 155779072/170498071 [00:02<00:00, 45996856.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 160497664/170498071 [00:02<00:00, 45255686.94it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165085184/170498071 [00:02<00:00, 44462626.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 63370425.61it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 109678925.25it/s]" ] }, { @@ -4045,10 +3981,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:31.827345Z", - "iopub.status.busy": "2024-07-02T15:29:31.826817Z", - "iopub.status.idle": "2024-07-02T15:29:31.894192Z", - "shell.execute_reply": "2024-07-02T15:29:31.893694Z" + "iopub.execute_input": "2024-07-05T13:46:21.103006Z", + "iopub.status.busy": "2024-07-05T13:46:21.102613Z", + "iopub.status.idle": "2024-07-05T13:46:21.169459Z", + "shell.execute_reply": "2024-07-05T13:46:21.168898Z" } }, "outputs": [], @@ -4070,10 +4006,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:31.896307Z", - "iopub.status.busy": "2024-07-02T15:29:31.895985Z", - "iopub.status.idle": "2024-07-02T15:29:31.935822Z", - "shell.execute_reply": "2024-07-02T15:29:31.935309Z" + "iopub.execute_input": "2024-07-05T13:46:21.171877Z", + "iopub.status.busy": "2024-07-05T13:46:21.171564Z", + "iopub.status.idle": "2024-07-05T13:46:21.212529Z", + "shell.execute_reply": "2024-07-05T13:46:21.212103Z" } }, "outputs": [], @@ -4107,10 +4043,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:31.938027Z", - "iopub.status.busy": "2024-07-02T15:29:31.937597Z", - "iopub.status.idle": "2024-07-02T15:29:33.356771Z", - "shell.execute_reply": "2024-07-02T15:29:33.356182Z" + "iopub.execute_input": "2024-07-05T13:46:21.214380Z", + "iopub.status.busy": "2024-07-05T13:46:21.214211Z", + "iopub.status.idle": "2024-07-05T13:46:22.602959Z", + "shell.execute_reply": "2024-07-05T13:46:22.602403Z" } }, "outputs": [ @@ -4184,10 +4120,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:33.359053Z", - "iopub.status.busy": "2024-07-02T15:29:33.358661Z", - "iopub.status.idle": "2024-07-02T15:29:34.163786Z", - "shell.execute_reply": "2024-07-02T15:29:34.163155Z" + "iopub.execute_input": "2024-07-05T13:46:22.605074Z", + "iopub.status.busy": "2024-07-05T13:46:22.604895Z", + "iopub.status.idle": "2024-07-05T13:46:23.385097Z", + "shell.execute_reply": "2024-07-05T13:46:23.384445Z" } }, "outputs": [ @@ -4202,7 +4138,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f24c55aaa3f2486eb049ea9140702ad3", + "model_id": "268115fbc59e47f4bbccfccdefe569d8", "version_major": 2, "version_minor": 0 }, @@ -4226,7 +4162,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29d1b664fe1d4701876841f59c318a5a", + "model_id": "38811633b37a4fb49bbd7e97f6973a45", "version_major": 2, "version_minor": 0 }, @@ -4476,72 +4412,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "140f94fffe9d41998f052b476411cdc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "16441724cc5d442083bc8dc57220bdb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1f35c30be0c46cea8172b99479542a3", - "placeholder": "​", - "style": "IPY_MODEL_5a67d709e70348c5a0788df8f06b7d00", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "29d1b664fe1d4701876841f59c318a5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16441724cc5d442083bc8dc57220bdb5", - "IPY_MODEL_a06fb116c7f54de8ace8c44aa9c3252a", - "IPY_MODEL_683dfd5472954d23960cee4af27b4942" - ], - "layout": "IPY_MODEL_c42e40a052b345028b0e318e573b39c4", - "tabbable": null, - "tooltip": null - } - }, - "3fe4d5f95a4b421ea7191cd652353f63": { + "22a030233d8448d5a0bd14f6422f798a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4594,64 +4465,71 @@ "width": null } }, - "509a070ad7814351956da09fa31f6d3e": { + "268115fbc59e47f4bbccfccdefe569d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3df1f103eb6f47a78c4bfb4debcac81b", + "IPY_MODEL_60e320d5a0514e7988b671b18e5b1dd5", + "IPY_MODEL_f0f7361539f740f9b5b84579894f5284" + ], + "layout": "IPY_MODEL_4773a1b04e67457ca7b020b6822f4f7d", + "tabbable": null, + "tooltip": null } }, - "5a67d709e70348c5a0788df8f06b7d00": { + "35facc01925a46579c1a308ac51256e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "683dfd5472954d23960cee4af27b4942": { + "38811633b37a4fb49bbd7e97f6973a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c65f07113a9243528835037ef624a06c", - "placeholder": "​", - "style": "IPY_MODEL_140f94fffe9d41998f052b476411cdc5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cc741217e3f44aef9b4188665744e1e1", + "IPY_MODEL_b4be7ec6ad464eef8ec6b16b54ad0d57", + "IPY_MODEL_d2c82a248711451aaefd4dd9169d75ce" + ], + "layout": "IPY_MODEL_b981597815bd43c3936c0e0d04d988fd", "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 725.42it/s]" + "tooltip": null } }, - "74d7c5cc1042451a8756f13a29013665": { + "3df1f103eb6f47a78c4bfb4debcac81b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4666,33 +4544,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cba826c457dc4039b375f27857c765ca", + "layout": "IPY_MODEL_69b1ca970e5748eaad47171495bc62db", "placeholder": "​", - "style": "IPY_MODEL_fbabf37f132843a38191f8b243f94ccd", + "style": "IPY_MODEL_dc4a22c6f66142f381820162a6ab61ce", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 780.24it/s]" - } - }, - "8356f3ec51974cf696a3e9692878bd4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "950c8017832643e59a584d9e5c14d158": { + "423b2cfce6054ee39a1e6f1323644285": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4745,33 +4605,7 @@ "width": null } }, - "975ecec9b0d240eebc17772cc26037e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3fe4d5f95a4b421ea7191cd652353f63", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_509a070ad7814351956da09fa31f6d3e", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "9e76293fc8c84697bab5d4b70a4497ed": { + "4773a1b04e67457ca7b020b6822f4f7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4824,7 +4658,7 @@ "width": null } }, - "a06fb116c7f54de8ace8c44aa9c3252a": { + "60e320d5a0514e7988b671b18e5b1dd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4840,17 +4674,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f737276f279444d0a64c6ae2d3596e26", + "layout": "IPY_MODEL_cd7a2389d25b4d298821ab829bfd1137", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f2a441d85bb54e8e87b2a9bd9ec7a1b7", + "style": "IPY_MODEL_35facc01925a46579c1a308ac51256e6", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "c42e40a052b345028b0e318e573b39c4": { + "69b1ca970e5748eaad47171495bc62db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4903,7 +4737,67 @@ "width": null } }, - "c65f07113a9243528835037ef624a06c": { + "78160bea25ee4d86bfd3618901427b7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa3695b33cdf48729ebd97ca7ac0c28c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b4be7ec6ad464eef8ec6b16b54ad0d57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22a030233d8448d5a0bd14f6422f798a", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa3695b33cdf48729ebd97ca7ac0c28c", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "b981597815bd43c3936c0e0d04d988fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4956,7 +4850,66 @@ "width": null } }, - "cba826c457dc4039b375f27857c765ca": { + "bd20b6c3784b48939a5dd8c2113f6a63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "caef09ae7619440e9caca38798910cf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cc741217e3f44aef9b4188665744e1e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d0ef77849a6f4d5da2f6bce9b50a21f0", + "placeholder": "​", + "style": "IPY_MODEL_caef09ae7619440e9caca38798910cf8", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "cd7a2389d25b4d298821ab829bfd1137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5009,30 +4962,7 @@ "width": null } }, - "e8e5474f252f462bb6b93f09309db91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_950c8017832643e59a584d9e5c14d158", - "placeholder": "​", - "style": "IPY_MODEL_8356f3ec51974cf696a3e9692878bd4e", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "f1f35c30be0c46cea8172b99479542a3": { + "d0ef77849a6f4d5da2f6bce9b50a21f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5085,47 +5015,48 @@ "width": null } }, - "f24c55aaa3f2486eb049ea9140702ad3": { + "d2c82a248711451aaefd4dd9169d75ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8e5474f252f462bb6b93f09309db91a", - "IPY_MODEL_975ecec9b0d240eebc17772cc26037e6", - "IPY_MODEL_74d7c5cc1042451a8756f13a29013665" - ], - "layout": "IPY_MODEL_9e76293fc8c84697bab5d4b70a4497ed", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef5d6e10352544fb8bbd6759582d0ce6", + "placeholder": "​", + "style": "IPY_MODEL_bd20b6c3784b48939a5dd8c2113f6a63", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 812.00it/s]" } }, - "f2a441d85bb54e8e87b2a9bd9ec7a1b7": { + "dc4a22c6f66142f381820162a6ab61ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f737276f279444d0a64c6ae2d3596e26": { + "ef5d6e10352544fb8bbd6759582d0ce6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5178,22 +5109,27 @@ "width": null } }, - "fbabf37f132843a38191f8b243f94ccd": { + "f0f7361539f740f9b5b84579894f5284": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_423b2cfce6054ee39a1e6f1323644285", + "placeholder": "​", + "style": "IPY_MODEL_78160bea25ee4d86bfd3618901427b7b", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 756.44it/s]" } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index c598eb866..69c90821f 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:38.938026Z", - "iopub.status.busy": "2024-07-02T15:29:38.937857Z", - "iopub.status.idle": "2024-07-02T15:29:40.022180Z", - "shell.execute_reply": "2024-07-02T15:29:40.021619Z" + "iopub.execute_input": "2024-07-05T13:46:27.447547Z", + "iopub.status.busy": "2024-07-05T13:46:27.447059Z", + "iopub.status.idle": "2024-07-05T13:46:28.537412Z", + "shell.execute_reply": "2024-07-05T13:46:28.536700Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:40.024706Z", - "iopub.status.busy": "2024-07-02T15:29:40.024284Z", - "iopub.status.idle": "2024-07-02T15:29:40.027131Z", - "shell.execute_reply": "2024-07-02T15:29:40.026613Z" + "iopub.execute_input": "2024-07-05T13:46:28.539835Z", + "iopub.status.busy": "2024-07-05T13:46:28.539573Z", + "iopub.status.idle": "2024-07-05T13:46:28.542481Z", + "shell.execute_reply": "2024-07-05T13:46:28.542024Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:40.029106Z", - "iopub.status.busy": "2024-07-02T15:29:40.028929Z", - "iopub.status.idle": "2024-07-02T15:29:40.040121Z", - "shell.execute_reply": "2024-07-02T15:29:40.039667Z" + "iopub.execute_input": "2024-07-05T13:46:28.544616Z", + "iopub.status.busy": "2024-07-05T13:46:28.544423Z", + "iopub.status.idle": "2024-07-05T13:46:28.555769Z", + "shell.execute_reply": "2024-07-05T13:46:28.555309Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:40.042199Z", - "iopub.status.busy": "2024-07-02T15:29:40.041874Z", - "iopub.status.idle": "2024-07-02T15:29:44.739408Z", - "shell.execute_reply": "2024-07-02T15:29:44.738930Z" + "iopub.execute_input": "2024-07-05T13:46:28.557725Z", + "iopub.status.busy": "2024-07-05T13:46:28.557554Z", + "iopub.status.idle": "2024-07-05T13:46:32.484987Z", + "shell.execute_reply": "2024-07-05T13:46:32.484472Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 9e03f53f4..ac1853ae2 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index fd037f7ef..d9d8abc88 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:46.799774Z", - "iopub.status.busy": "2024-07-02T15:29:46.799611Z", - "iopub.status.idle": "2024-07-02T15:29:47.868215Z", - "shell.execute_reply": "2024-07-02T15:29:47.867607Z" + "iopub.execute_input": "2024-07-05T13:46:34.516370Z", + "iopub.status.busy": "2024-07-05T13:46:34.515969Z", + "iopub.status.idle": "2024-07-05T13:46:35.600141Z", + "shell.execute_reply": "2024-07-05T13:46:35.599607Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:47.871043Z", - "iopub.status.busy": "2024-07-02T15:29:47.870781Z", - "iopub.status.idle": "2024-07-02T15:29:47.874130Z", - "shell.execute_reply": "2024-07-02T15:29:47.873594Z" + "iopub.execute_input": "2024-07-05T13:46:35.602935Z", + "iopub.status.busy": "2024-07-05T13:46:35.602521Z", + "iopub.status.idle": "2024-07-05T13:46:35.605907Z", + "shell.execute_reply": "2024-07-05T13:46:35.605342Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:47.876125Z", - "iopub.status.busy": "2024-07-02T15:29:47.875827Z", - "iopub.status.idle": "2024-07-02T15:29:50.933600Z", - "shell.execute_reply": "2024-07-02T15:29:50.932999Z" + "iopub.execute_input": "2024-07-05T13:46:35.607926Z", + "iopub.status.busy": "2024-07-05T13:46:35.607617Z", + "iopub.status.idle": "2024-07-05T13:46:38.753313Z", + "shell.execute_reply": "2024-07-05T13:46:38.752598Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:50.936675Z", - "iopub.status.busy": "2024-07-02T15:29:50.936022Z", - "iopub.status.idle": "2024-07-02T15:29:50.967828Z", - "shell.execute_reply": "2024-07-02T15:29:50.967284Z" + "iopub.execute_input": "2024-07-05T13:46:38.756228Z", + "iopub.status.busy": "2024-07-05T13:46:38.755658Z", + "iopub.status.idle": "2024-07-05T13:46:38.785281Z", + "shell.execute_reply": "2024-07-05T13:46:38.784618Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:50.970284Z", - "iopub.status.busy": "2024-07-02T15:29:50.969984Z", - "iopub.status.idle": "2024-07-02T15:29:50.996616Z", - "shell.execute_reply": "2024-07-02T15:29:50.996062Z" + "iopub.execute_input": "2024-07-05T13:46:38.787792Z", + "iopub.status.busy": "2024-07-05T13:46:38.787373Z", + "iopub.status.idle": "2024-07-05T13:46:38.816606Z", + "shell.execute_reply": "2024-07-05T13:46:38.816034Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:50.999234Z", - "iopub.status.busy": "2024-07-02T15:29:50.998784Z", - "iopub.status.idle": "2024-07-02T15:29:51.001903Z", - "shell.execute_reply": "2024-07-02T15:29:51.001337Z" + "iopub.execute_input": "2024-07-05T13:46:38.819284Z", + "iopub.status.busy": "2024-07-05T13:46:38.818789Z", + "iopub.status.idle": "2024-07-05T13:46:38.821871Z", + "shell.execute_reply": "2024-07-05T13:46:38.821410Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.004009Z", - "iopub.status.busy": "2024-07-02T15:29:51.003583Z", - "iopub.status.idle": "2024-07-02T15:29:51.006181Z", - "shell.execute_reply": "2024-07-02T15:29:51.005730Z" + "iopub.execute_input": "2024-07-05T13:46:38.823856Z", + "iopub.status.busy": "2024-07-05T13:46:38.823470Z", + "iopub.status.idle": "2024-07-05T13:46:38.826164Z", + "shell.execute_reply": "2024-07-05T13:46:38.825627Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.008311Z", - "iopub.status.busy": "2024-07-02T15:29:51.007960Z", - "iopub.status.idle": "2024-07-02T15:29:51.034036Z", - "shell.execute_reply": "2024-07-02T15:29:51.033489Z" + "iopub.execute_input": "2024-07-05T13:46:38.828223Z", + "iopub.status.busy": "2024-07-05T13:46:38.827926Z", + "iopub.status.idle": "2024-07-05T13:46:38.851198Z", + "shell.execute_reply": "2024-07-05T13:46:38.850651Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b61f3b61abad4a309bf86a1aa8f2b9c5", + "model_id": "e0e17c322ec54b3d9e88671775dab6b6", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "026a70ed918d454b979daad116575cd1", + "model_id": "9c5140d4e86849be9e512ca8d2ca89d0", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.037426Z", - "iopub.status.busy": "2024-07-02T15:29:51.037087Z", - "iopub.status.idle": "2024-07-02T15:29:51.043755Z", - "shell.execute_reply": "2024-07-02T15:29:51.043334Z" + "iopub.execute_input": "2024-07-05T13:46:38.857567Z", + "iopub.status.busy": "2024-07-05T13:46:38.857256Z", + "iopub.status.idle": "2024-07-05T13:46:38.863616Z", + "shell.execute_reply": "2024-07-05T13:46:38.863076Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.045741Z", - "iopub.status.busy": "2024-07-02T15:29:51.045399Z", - "iopub.status.idle": "2024-07-02T15:29:51.048655Z", - "shell.execute_reply": "2024-07-02T15:29:51.048231Z" + "iopub.execute_input": "2024-07-05T13:46:38.865886Z", + "iopub.status.busy": "2024-07-05T13:46:38.865560Z", + "iopub.status.idle": "2024-07-05T13:46:38.869012Z", + "shell.execute_reply": "2024-07-05T13:46:38.868521Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.050733Z", - "iopub.status.busy": "2024-07-02T15:29:51.050424Z", - "iopub.status.idle": "2024-07-02T15:29:51.056495Z", - "shell.execute_reply": "2024-07-02T15:29:51.056070Z" + "iopub.execute_input": "2024-07-05T13:46:38.871001Z", + "iopub.status.busy": "2024-07-05T13:46:38.870607Z", + "iopub.status.idle": "2024-07-05T13:46:38.877004Z", + "shell.execute_reply": "2024-07-05T13:46:38.876454Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.058351Z", - "iopub.status.busy": "2024-07-02T15:29:51.058061Z", - "iopub.status.idle": "2024-07-02T15:29:51.087891Z", - "shell.execute_reply": "2024-07-02T15:29:51.087337Z" + "iopub.execute_input": "2024-07-05T13:46:38.878890Z", + "iopub.status.busy": "2024-07-05T13:46:38.878713Z", + "iopub.status.idle": "2024-07-05T13:46:38.912615Z", + "shell.execute_reply": "2024-07-05T13:46:38.912056Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.090312Z", - "iopub.status.busy": "2024-07-02T15:29:51.090023Z", - "iopub.status.idle": "2024-07-02T15:29:51.114800Z", - "shell.execute_reply": "2024-07-02T15:29:51.114219Z" + "iopub.execute_input": "2024-07-05T13:46:38.914881Z", + "iopub.status.busy": "2024-07-05T13:46:38.914595Z", + "iopub.status.idle": "2024-07-05T13:46:38.944496Z", + "shell.execute_reply": "2024-07-05T13:46:38.943950Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.117401Z", - "iopub.status.busy": "2024-07-02T15:29:51.117043Z", - "iopub.status.idle": "2024-07-02T15:29:51.231817Z", - "shell.execute_reply": "2024-07-02T15:29:51.231206Z" + "iopub.execute_input": "2024-07-05T13:46:38.947084Z", + "iopub.status.busy": "2024-07-05T13:46:38.946618Z", + "iopub.status.idle": "2024-07-05T13:46:39.067011Z", + "shell.execute_reply": "2024-07-05T13:46:39.066439Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.234379Z", - "iopub.status.busy": "2024-07-02T15:29:51.233839Z", - "iopub.status.idle": "2024-07-02T15:29:54.239820Z", - "shell.execute_reply": "2024-07-02T15:29:54.239255Z" + "iopub.execute_input": "2024-07-05T13:46:39.069907Z", + "iopub.status.busy": "2024-07-05T13:46:39.069115Z", + "iopub.status.idle": "2024-07-05T13:46:42.105418Z", + "shell.execute_reply": "2024-07-05T13:46:42.104788Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.242175Z", - "iopub.status.busy": "2024-07-02T15:29:54.241796Z", - "iopub.status.idle": "2024-07-02T15:29:54.298692Z", - "shell.execute_reply": "2024-07-02T15:29:54.298201Z" + "iopub.execute_input": "2024-07-05T13:46:42.107820Z", + "iopub.status.busy": "2024-07-05T13:46:42.107428Z", + "iopub.status.idle": "2024-07-05T13:46:42.164923Z", + "shell.execute_reply": "2024-07-05T13:46:42.164432Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.300662Z", - "iopub.status.busy": "2024-07-02T15:29:54.300332Z", - "iopub.status.idle": "2024-07-02T15:29:54.341979Z", - "shell.execute_reply": "2024-07-02T15:29:54.341413Z" + "iopub.execute_input": "2024-07-05T13:46:42.167044Z", + "iopub.status.busy": "2024-07-05T13:46:42.166706Z", + "iopub.status.idle": "2024-07-05T13:46:42.206707Z", + "shell.execute_reply": "2024-07-05T13:46:42.206259Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "4848cf7c", + "id": "19b7ac4b", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "eaad044a", + "id": "e48ad5ae", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "0b523bbb", + "id": "531bf9c7", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "84320802", + "id": "6cd8b83c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.344243Z", - "iopub.status.busy": "2024-07-02T15:29:54.344071Z", - "iopub.status.idle": "2024-07-02T15:29:54.351389Z", - "shell.execute_reply": "2024-07-02T15:29:54.350841Z" + "iopub.execute_input": "2024-07-05T13:46:42.208898Z", + "iopub.status.busy": "2024-07-05T13:46:42.208537Z", + "iopub.status.idle": "2024-07-05T13:46:42.216358Z", + "shell.execute_reply": "2024-07-05T13:46:42.215909Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "1925ba8e", + "id": "72f61772", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "0829c387", + "id": "8db38abb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.353489Z", - "iopub.status.busy": "2024-07-02T15:29:54.353071Z", - "iopub.status.idle": "2024-07-02T15:29:54.371123Z", - "shell.execute_reply": "2024-07-02T15:29:54.370577Z" + "iopub.execute_input": "2024-07-05T13:46:42.218413Z", + "iopub.status.busy": "2024-07-05T13:46:42.217996Z", + "iopub.status.idle": "2024-07-05T13:46:42.236530Z", + "shell.execute_reply": "2024-07-05T13:46:42.235990Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b4df50e4", + "id": "50ef877c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.373055Z", - "iopub.status.busy": "2024-07-02T15:29:54.372731Z", - "iopub.status.idle": "2024-07-02T15:29:54.375873Z", - "shell.execute_reply": "2024-07-02T15:29:54.375357Z" + "iopub.execute_input": "2024-07-05T13:46:42.238504Z", + "iopub.status.busy": "2024-07-05T13:46:42.238196Z", + "iopub.status.idle": "2024-07-05T13:46:42.241280Z", + "shell.execute_reply": "2024-07-05T13:46:42.240761Z" } }, "outputs": [ @@ -1622,72 +1622,76 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "026a70ed918d454b979daad116575cd1": { - "model_module": "@jupyter-widgets/controls", + "15357d014f98486ba3b29d9083b7c34b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7c008af7a8e14f158b908bdea72be0c3", - "IPY_MODEL_5d93b4262fd54a69b71094aebc5ee106", - "IPY_MODEL_2534d227f7c84093a890aa8da483c8d4" - ], - "layout": "IPY_MODEL_8dff42b5c3474095ada1b975ed329e2d", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "02875877ae314d399c4c41bf46506420": { + "2c323430c8ba48eea5fc956a5312e270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0341ad6e27fb45b990863bbbb6424cf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d25e2c546e744e498c5589683f7a800", - "placeholder": "​", - "style": "IPY_MODEL_145cb1b61bd14b5a94afbfc522dce648", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1111132.78it/s]" + "bar_color": null, + "description_width": "" } }, - "0626a4c0233f4806987eae80b809ca9c": { + "339e31d99f614241820d669b9e976868": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1702,15 +1706,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ac08271c7a40448db2e9845998b12b94", + "layout": "IPY_MODEL_9437fd3686f0438c926f1826073e608e", "placeholder": "​", - "style": "IPY_MODEL_5a9f1856ee4548d29ac2fa74efba69da", + "style": "IPY_MODEL_aacbd23194ef4e7198fd020350b10173", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "12ba7ec803a94e239e6ab2e3faeb7c96": { + "37cf52c73f1e4781af6309df4feef981": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1728,64 +1732,33 @@ "text_color": null } }, - "145cb1b61bd14b5a94afbfc522dce648": { + "3cc2a42fec46466b920dfe99c06d7253": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2534d227f7c84093a890aa8da483c8d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce653676309345038faf46f6f089becc", - "placeholder": "​", - "style": "IPY_MODEL_12ba7ec803a94e239e6ab2e3faeb7c96", + "layout": "IPY_MODEL_d804b00981d345dd8333a15c986008d0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7742a83d3f16404ab5adfd89099eedea", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1115595.39it/s]" - } - }, - "25d058621d424fcdb7e9277a77685c68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 50.0 } }, - "2d25e2c546e744e498c5589683f7a800": { + "4deab504339f45e1a8bb107865390cfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,104 +1811,90 @@ "width": null } }, - "5a9f1856ee4548d29ac2fa74efba69da": { + "5a5c858359854b7798a0daf3b651d206": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15357d014f98486ba3b29d9083b7c34b", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2c323430c8ba48eea5fc956a5312e270", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "5d93b4262fd54a69b71094aebc5ee106": { + "6d00be3ded5b41a48e1cb7c403661812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6437b738ec874299a07051ee9e8445c0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_25d058621d424fcdb7e9277a77685c68", + "layout": "IPY_MODEL_d086dad07a5e44068a12d500eb24f589", + "placeholder": "​", + "style": "IPY_MODEL_37cf52c73f1e4781af6309df4feef981", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1073041.34it/s]" } }, - "6437b738ec874299a07051ee9e8445c0": { - "model_module": "@jupyter-widgets/base", + "7742a83d3f16404ab5adfd89099eedea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b2574bdfa604c3fab7148564af0b00e": { + "7e52ca8efa2d401b9a242a5f12af957a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9437fd3686f0438c926f1826073e608e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1988,7 +1947,67 @@ "width": null } }, - "6ca71fb821a542d6aa63710c2222debc": { + "9c5140d4e86849be9e512ca8d2ca89d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e964d104d4d64e908ed06fd918f621c0", + "IPY_MODEL_5a5c858359854b7798a0daf3b651d206", + "IPY_MODEL_e7bbe926be7f465781f230e89e7c42c7" + ], + "layout": "IPY_MODEL_f7a7964b42904719a2fdc0ca0ddb3a67", + "tabbable": null, + "tooltip": null + } + }, + "9f72fa061e6846b391cc96e96952cf44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aacbd23194ef4e7198fd020350b10173": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9c2b6d9e01e4e2db3f2c67e5c6695c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2041,72 +2060,7 @@ "width": null } }, - "71c281f097914f28957bc6a7866a0b4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ca71fb821a542d6aa63710c2222debc", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a2c46b59b8f4e74a0844c5242d93052", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "7a2c46b59b8f4e74a0844c5242d93052": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7c008af7a8e14f158b908bdea72be0c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b2574bdfa604c3fab7148564af0b00e", - "placeholder": "​", - "style": "IPY_MODEL_02875877ae314d399c4c41bf46506420", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "8dff42b5c3474095ada1b975ed329e2d": { + "d086dad07a5e44068a12d500eb24f589": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2159,7 +2113,7 @@ "width": null } }, - "ac08271c7a40448db2e9845998b12b94": { + "d804b00981d345dd8333a15c986008d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2212,7 +2166,7 @@ "width": null } }, - "b61f3b61abad4a309bf86a1aa8f2b9c5": { + "e0e17c322ec54b3d9e88671775dab6b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2227,16 +2181,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0626a4c0233f4806987eae80b809ca9c", - "IPY_MODEL_71c281f097914f28957bc6a7866a0b4b", - "IPY_MODEL_0341ad6e27fb45b990863bbbb6424cf0" + "IPY_MODEL_339e31d99f614241820d669b9e976868", + "IPY_MODEL_3cc2a42fec46466b920dfe99c06d7253", + "IPY_MODEL_6d00be3ded5b41a48e1cb7c403661812" ], - "layout": "IPY_MODEL_e819615fa807467fa92420d45a5f8e70", + "layout": "IPY_MODEL_4deab504339f45e1a8bb107865390cfc", "tabbable": null, "tooltip": null } }, - "ce653676309345038faf46f6f089becc": { + "e4cfda60c78b4af396fdfafd4548d8f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2289,7 +2243,53 @@ "width": null } }, - "e819615fa807467fa92420d45a5f8e70": { + "e7bbe926be7f465781f230e89e7c42c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4cfda60c78b4af396fdfafd4548d8f6", + "placeholder": "​", + "style": "IPY_MODEL_7e52ca8efa2d401b9a242a5f12af957a", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1599292.31it/s]" + } + }, + "e964d104d4d64e908ed06fd918f621c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9c2b6d9e01e4e2db3f2c67e5c6695c6", + "placeholder": "​", + "style": "IPY_MODEL_9f72fa061e6846b391cc96e96952cf44", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "f7a7964b42904719a2fdc0ca0ddb3a67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 5f593443c..89ea85125 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:57.626742Z", - "iopub.status.busy": "2024-07-02T15:29:57.626416Z", - "iopub.status.idle": "2024-07-02T15:29:58.762096Z", - "shell.execute_reply": "2024-07-02T15:29:58.761534Z" + "iopub.execute_input": "2024-07-05T13:46:45.321939Z", + "iopub.status.busy": "2024-07-05T13:46:45.321761Z", + "iopub.status.idle": "2024-07-05T13:46:46.459345Z", + "shell.execute_reply": "2024-07-05T13:46:46.458748Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:58.764661Z", - "iopub.status.busy": "2024-07-02T15:29:58.764264Z", - "iopub.status.idle": "2024-07-02T15:29:58.939017Z", - "shell.execute_reply": "2024-07-02T15:29:58.938508Z" + "iopub.execute_input": "2024-07-05T13:46:46.461836Z", + "iopub.status.busy": "2024-07-05T13:46:46.461585Z", + "iopub.status.idle": "2024-07-05T13:46:46.636266Z", + "shell.execute_reply": "2024-07-05T13:46:46.635677Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:58.941285Z", - "iopub.status.busy": "2024-07-02T15:29:58.940947Z", - "iopub.status.idle": "2024-07-02T15:29:58.951883Z", - "shell.execute_reply": "2024-07-02T15:29:58.951455Z" + "iopub.execute_input": "2024-07-05T13:46:46.638765Z", + "iopub.status.busy": "2024-07-05T13:46:46.638321Z", + "iopub.status.idle": "2024-07-05T13:46:46.649679Z", + "shell.execute_reply": "2024-07-05T13:46:46.649132Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:58.953883Z", - "iopub.status.busy": "2024-07-02T15:29:58.953561Z", - "iopub.status.idle": "2024-07-02T15:29:59.157566Z", - "shell.execute_reply": "2024-07-02T15:29:59.157003Z" + "iopub.execute_input": "2024-07-05T13:46:46.651815Z", + "iopub.status.busy": "2024-07-05T13:46:46.651476Z", + "iopub.status.idle": "2024-07-05T13:46:46.856304Z", + "shell.execute_reply": "2024-07-05T13:46:46.855794Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:59.159969Z", - "iopub.status.busy": "2024-07-02T15:29:59.159619Z", - "iopub.status.idle": "2024-07-02T15:29:59.185196Z", - "shell.execute_reply": "2024-07-02T15:29:59.184736Z" + "iopub.execute_input": "2024-07-05T13:46:46.858415Z", + "iopub.status.busy": "2024-07-05T13:46:46.858234Z", + "iopub.status.idle": "2024-07-05T13:46:46.884286Z", + "shell.execute_reply": "2024-07-05T13:46:46.883867Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:59.187290Z", - "iopub.status.busy": "2024-07-02T15:29:59.186969Z", - "iopub.status.idle": "2024-07-02T15:30:01.138208Z", - "shell.execute_reply": "2024-07-02T15:30:01.137568Z" + "iopub.execute_input": "2024-07-05T13:46:46.886244Z", + "iopub.status.busy": "2024-07-05T13:46:46.886064Z", + "iopub.status.idle": "2024-07-05T13:46:48.873493Z", + "shell.execute_reply": "2024-07-05T13:46:48.872815Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:01.140791Z", - "iopub.status.busy": "2024-07-02T15:30:01.140323Z", - "iopub.status.idle": "2024-07-02T15:30:01.158153Z", - "shell.execute_reply": "2024-07-02T15:30:01.157659Z" + "iopub.execute_input": "2024-07-05T13:46:48.875795Z", + "iopub.status.busy": "2024-07-05T13:46:48.875437Z", + "iopub.status.idle": "2024-07-05T13:46:48.893242Z", + "shell.execute_reply": "2024-07-05T13:46:48.892687Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:01.160172Z", - "iopub.status.busy": "2024-07-02T15:30:01.159839Z", - "iopub.status.idle": "2024-07-02T15:30:02.572670Z", - "shell.execute_reply": "2024-07-02T15:30:02.572048Z" + "iopub.execute_input": "2024-07-05T13:46:48.895195Z", + "iopub.status.busy": "2024-07-05T13:46:48.894894Z", + "iopub.status.idle": "2024-07-05T13:46:50.323695Z", + "shell.execute_reply": "2024-07-05T13:46:50.323083Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.575334Z", - "iopub.status.busy": "2024-07-02T15:30:02.574705Z", - "iopub.status.idle": "2024-07-02T15:30:02.588246Z", - "shell.execute_reply": "2024-07-02T15:30:02.587734Z" + "iopub.execute_input": "2024-07-05T13:46:50.326437Z", + "iopub.status.busy": "2024-07-05T13:46:50.325693Z", + "iopub.status.idle": "2024-07-05T13:46:50.339056Z", + "shell.execute_reply": "2024-07-05T13:46:50.338612Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.590333Z", - "iopub.status.busy": "2024-07-02T15:30:02.589893Z", - "iopub.status.idle": "2024-07-02T15:30:02.660087Z", - "shell.execute_reply": "2024-07-02T15:30:02.659495Z" + "iopub.execute_input": "2024-07-05T13:46:50.341230Z", + "iopub.status.busy": "2024-07-05T13:46:50.340816Z", + "iopub.status.idle": "2024-07-05T13:46:50.410925Z", + "shell.execute_reply": "2024-07-05T13:46:50.410390Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.662433Z", - "iopub.status.busy": "2024-07-02T15:30:02.662252Z", - "iopub.status.idle": "2024-07-02T15:30:02.869194Z", - "shell.execute_reply": "2024-07-02T15:30:02.868731Z" + "iopub.execute_input": "2024-07-05T13:46:50.413469Z", + "iopub.status.busy": "2024-07-05T13:46:50.413039Z", + "iopub.status.idle": "2024-07-05T13:46:50.620749Z", + "shell.execute_reply": "2024-07-05T13:46:50.620125Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.871113Z", - "iopub.status.busy": "2024-07-02T15:30:02.870940Z", - "iopub.status.idle": "2024-07-02T15:30:02.887264Z", - "shell.execute_reply": "2024-07-02T15:30:02.886836Z" + "iopub.execute_input": "2024-07-05T13:46:50.622951Z", + "iopub.status.busy": "2024-07-05T13:46:50.622762Z", + "iopub.status.idle": "2024-07-05T13:46:50.639430Z", + "shell.execute_reply": "2024-07-05T13:46:50.638909Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.889231Z", - "iopub.status.busy": "2024-07-02T15:30:02.888911Z", - "iopub.status.idle": "2024-07-02T15:30:02.898236Z", - "shell.execute_reply": "2024-07-02T15:30:02.897802Z" + "iopub.execute_input": "2024-07-05T13:46:50.641585Z", + "iopub.status.busy": "2024-07-05T13:46:50.641177Z", + "iopub.status.idle": "2024-07-05T13:46:50.650884Z", + "shell.execute_reply": "2024-07-05T13:46:50.650343Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.900052Z", - "iopub.status.busy": "2024-07-02T15:30:02.899882Z", - "iopub.status.idle": "2024-07-02T15:30:02.982013Z", - "shell.execute_reply": "2024-07-02T15:30:02.981469Z" + "iopub.execute_input": "2024-07-05T13:46:50.652824Z", + "iopub.status.busy": "2024-07-05T13:46:50.652644Z", + "iopub.status.idle": "2024-07-05T13:46:50.739612Z", + "shell.execute_reply": "2024-07-05T13:46:50.739083Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.984381Z", - "iopub.status.busy": "2024-07-02T15:30:02.984039Z", - "iopub.status.idle": "2024-07-02T15:30:03.089218Z", - "shell.execute_reply": "2024-07-02T15:30:03.088619Z" + "iopub.execute_input": "2024-07-05T13:46:50.741860Z", + "iopub.status.busy": "2024-07-05T13:46:50.741633Z", + "iopub.status.idle": "2024-07-05T13:46:50.862542Z", + "shell.execute_reply": "2024-07-05T13:46:50.861935Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.091652Z", - "iopub.status.busy": "2024-07-02T15:30:03.091361Z", - "iopub.status.idle": "2024-07-02T15:30:03.094989Z", - "shell.execute_reply": "2024-07-02T15:30:03.094462Z" + "iopub.execute_input": "2024-07-05T13:46:50.864886Z", + "iopub.status.busy": "2024-07-05T13:46:50.864686Z", + "iopub.status.idle": "2024-07-05T13:46:50.868689Z", + "shell.execute_reply": "2024-07-05T13:46:50.868233Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.096993Z", - "iopub.status.busy": "2024-07-02T15:30:03.096623Z", - "iopub.status.idle": "2024-07-02T15:30:03.100533Z", - "shell.execute_reply": "2024-07-02T15:30:03.100094Z" + "iopub.execute_input": "2024-07-05T13:46:50.870724Z", + "iopub.status.busy": "2024-07-05T13:46:50.870386Z", + "iopub.status.idle": "2024-07-05T13:46:50.874284Z", + "shell.execute_reply": "2024-07-05T13:46:50.873806Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.102469Z", - "iopub.status.busy": "2024-07-02T15:30:03.102207Z", - "iopub.status.idle": "2024-07-02T15:30:03.138746Z", - "shell.execute_reply": "2024-07-02T15:30:03.138321Z" + "iopub.execute_input": "2024-07-05T13:46:50.876353Z", + "iopub.status.busy": "2024-07-05T13:46:50.875925Z", + "iopub.status.idle": "2024-07-05T13:46:50.912993Z", + "shell.execute_reply": "2024-07-05T13:46:50.912517Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.140829Z", - "iopub.status.busy": "2024-07-02T15:30:03.140499Z", - "iopub.status.idle": "2024-07-02T15:30:03.180614Z", - "shell.execute_reply": "2024-07-02T15:30:03.180176Z" + "iopub.execute_input": "2024-07-05T13:46:50.915029Z", + "iopub.status.busy": "2024-07-05T13:46:50.914701Z", + "iopub.status.idle": "2024-07-05T13:46:50.955042Z", + "shell.execute_reply": "2024-07-05T13:46:50.954604Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.182585Z", - "iopub.status.busy": "2024-07-02T15:30:03.182265Z", - "iopub.status.idle": "2024-07-02T15:30:03.268381Z", - "shell.execute_reply": "2024-07-02T15:30:03.267837Z" + "iopub.execute_input": "2024-07-05T13:46:50.957164Z", + "iopub.status.busy": "2024-07-05T13:46:50.956841Z", + "iopub.status.idle": "2024-07-05T13:46:51.048836Z", + "shell.execute_reply": "2024-07-05T13:46:51.048161Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.271234Z", - "iopub.status.busy": "2024-07-02T15:30:03.270873Z", - "iopub.status.idle": "2024-07-02T15:30:03.344389Z", - "shell.execute_reply": "2024-07-02T15:30:03.343870Z" + "iopub.execute_input": "2024-07-05T13:46:51.051352Z", + "iopub.status.busy": "2024-07-05T13:46:51.051113Z", + "iopub.status.idle": "2024-07-05T13:46:51.138960Z", + "shell.execute_reply": "2024-07-05T13:46:51.138341Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.346546Z", - "iopub.status.busy": "2024-07-02T15:30:03.346316Z", - "iopub.status.idle": "2024-07-02T15:30:03.553893Z", - "shell.execute_reply": "2024-07-02T15:30:03.553327Z" + "iopub.execute_input": "2024-07-05T13:46:51.141248Z", + "iopub.status.busy": "2024-07-05T13:46:51.141013Z", + "iopub.status.idle": "2024-07-05T13:46:51.350706Z", + "shell.execute_reply": "2024-07-05T13:46:51.350119Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.555908Z", - "iopub.status.busy": "2024-07-02T15:30:03.555726Z", - "iopub.status.idle": "2024-07-02T15:30:03.721372Z", - "shell.execute_reply": "2024-07-02T15:30:03.720791Z" + "iopub.execute_input": "2024-07-05T13:46:51.353050Z", + "iopub.status.busy": "2024-07-05T13:46:51.352728Z", + "iopub.status.idle": "2024-07-05T13:46:51.523151Z", + "shell.execute_reply": "2024-07-05T13:46:51.522610Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.723778Z", - "iopub.status.busy": "2024-07-02T15:30:03.723338Z", - "iopub.status.idle": "2024-07-02T15:30:03.729507Z", - "shell.execute_reply": "2024-07-02T15:30:03.729058Z" + "iopub.execute_input": "2024-07-05T13:46:51.525653Z", + "iopub.status.busy": "2024-07-05T13:46:51.525200Z", + "iopub.status.idle": "2024-07-05T13:46:51.531246Z", + "shell.execute_reply": "2024-07-05T13:46:51.530698Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.731405Z", - "iopub.status.busy": "2024-07-02T15:30:03.731109Z", - "iopub.status.idle": "2024-07-02T15:30:03.945067Z", - "shell.execute_reply": "2024-07-02T15:30:03.944605Z" + "iopub.execute_input": "2024-07-05T13:46:51.533392Z", + "iopub.status.busy": "2024-07-05T13:46:51.532965Z", + "iopub.status.idle": "2024-07-05T13:46:51.747272Z", + "shell.execute_reply": "2024-07-05T13:46:51.746783Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.947155Z", - "iopub.status.busy": "2024-07-02T15:30:03.946841Z", - "iopub.status.idle": "2024-07-02T15:30:05.010426Z", - "shell.execute_reply": "2024-07-02T15:30:05.009870Z" + "iopub.execute_input": "2024-07-05T13:46:51.749424Z", + "iopub.status.busy": "2024-07-05T13:46:51.749084Z", + "iopub.status.idle": "2024-07-05T13:46:52.804348Z", + "shell.execute_reply": "2024-07-05T13:46:52.803795Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 00df8da7f..b90bc71a8 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:08.416538Z", - "iopub.status.busy": "2024-07-02T15:30:08.416373Z", - "iopub.status.idle": "2024-07-02T15:30:09.491929Z", - "shell.execute_reply": "2024-07-02T15:30:09.491393Z" + "iopub.execute_input": "2024-07-05T13:46:56.065789Z", + "iopub.status.busy": "2024-07-05T13:46:56.065606Z", + "iopub.status.idle": "2024-07-05T13:46:57.169427Z", + "shell.execute_reply": "2024-07-05T13:46:57.168879Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.494528Z", - "iopub.status.busy": "2024-07-02T15:30:09.494125Z", - "iopub.status.idle": "2024-07-02T15:30:09.497173Z", - "shell.execute_reply": "2024-07-02T15:30:09.496630Z" + "iopub.execute_input": "2024-07-05T13:46:57.171827Z", + "iopub.status.busy": "2024-07-05T13:46:57.171556Z", + "iopub.status.idle": "2024-07-05T13:46:57.174720Z", + "shell.execute_reply": "2024-07-05T13:46:57.174278Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.499370Z", - "iopub.status.busy": "2024-07-02T15:30:09.498949Z", - "iopub.status.idle": "2024-07-02T15:30:09.506499Z", - "shell.execute_reply": "2024-07-02T15:30:09.505969Z" + "iopub.execute_input": "2024-07-05T13:46:57.176652Z", + "iopub.status.busy": "2024-07-05T13:46:57.176465Z", + "iopub.status.idle": "2024-07-05T13:46:57.184201Z", + "shell.execute_reply": "2024-07-05T13:46:57.183750Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.508570Z", - "iopub.status.busy": "2024-07-02T15:30:09.508265Z", - "iopub.status.idle": "2024-07-02T15:30:09.554643Z", - "shell.execute_reply": "2024-07-02T15:30:09.554193Z" + "iopub.execute_input": "2024-07-05T13:46:57.186173Z", + "iopub.status.busy": "2024-07-05T13:46:57.185796Z", + "iopub.status.idle": "2024-07-05T13:46:57.232147Z", + "shell.execute_reply": "2024-07-05T13:46:57.231584Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.556758Z", - "iopub.status.busy": "2024-07-02T15:30:09.556425Z", - "iopub.status.idle": "2024-07-02T15:30:09.573109Z", - "shell.execute_reply": "2024-07-02T15:30:09.572615Z" + "iopub.execute_input": "2024-07-05T13:46:57.234312Z", + "iopub.status.busy": "2024-07-05T13:46:57.234004Z", + "iopub.status.idle": "2024-07-05T13:46:57.250876Z", + "shell.execute_reply": "2024-07-05T13:46:57.250353Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.575083Z", - "iopub.status.busy": "2024-07-02T15:30:09.574778Z", - "iopub.status.idle": "2024-07-02T15:30:09.578384Z", - "shell.execute_reply": "2024-07-02T15:30:09.577927Z" + "iopub.execute_input": "2024-07-05T13:46:57.252990Z", + "iopub.status.busy": "2024-07-05T13:46:57.252603Z", + "iopub.status.idle": "2024-07-05T13:46:57.256397Z", + "shell.execute_reply": "2024-07-05T13:46:57.255874Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.580410Z", - "iopub.status.busy": "2024-07-02T15:30:09.580081Z", - "iopub.status.idle": "2024-07-02T15:30:09.593572Z", - "shell.execute_reply": "2024-07-02T15:30:09.593159Z" + "iopub.execute_input": "2024-07-05T13:46:57.258532Z", + "iopub.status.busy": "2024-07-05T13:46:57.258200Z", + "iopub.status.idle": "2024-07-05T13:46:57.271768Z", + "shell.execute_reply": "2024-07-05T13:46:57.271219Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.595521Z", - "iopub.status.busy": "2024-07-02T15:30:09.595213Z", - "iopub.status.idle": "2024-07-02T15:30:09.620528Z", - "shell.execute_reply": "2024-07-02T15:30:09.620111Z" + "iopub.execute_input": "2024-07-05T13:46:57.273883Z", + "iopub.status.busy": "2024-07-05T13:46:57.273557Z", + "iopub.status.idle": "2024-07-05T13:46:57.301505Z", + "shell.execute_reply": "2024-07-05T13:46:57.300994Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.622444Z", - "iopub.status.busy": "2024-07-02T15:30:09.622151Z", - "iopub.status.idle": "2024-07-02T15:30:11.445778Z", - "shell.execute_reply": "2024-07-02T15:30:11.445137Z" + "iopub.execute_input": "2024-07-05T13:46:57.303620Z", + "iopub.status.busy": "2024-07-05T13:46:57.303313Z", + "iopub.status.idle": "2024-07-05T13:46:59.169714Z", + "shell.execute_reply": "2024-07-05T13:46:59.169168Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.448367Z", - "iopub.status.busy": "2024-07-02T15:30:11.448093Z", - "iopub.status.idle": "2024-07-02T15:30:11.454787Z", - "shell.execute_reply": "2024-07-02T15:30:11.454316Z" + "iopub.execute_input": "2024-07-05T13:46:59.172306Z", + "iopub.status.busy": "2024-07-05T13:46:59.171880Z", + "iopub.status.idle": "2024-07-05T13:46:59.178412Z", + "shell.execute_reply": "2024-07-05T13:46:59.177969Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.456765Z", - "iopub.status.busy": "2024-07-02T15:30:11.456466Z", - "iopub.status.idle": "2024-07-02T15:30:11.468719Z", - "shell.execute_reply": "2024-07-02T15:30:11.468282Z" + "iopub.execute_input": "2024-07-05T13:46:59.180399Z", + "iopub.status.busy": "2024-07-05T13:46:59.180074Z", + "iopub.status.idle": "2024-07-05T13:46:59.192633Z", + "shell.execute_reply": "2024-07-05T13:46:59.192163Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.470607Z", - "iopub.status.busy": "2024-07-02T15:30:11.470346Z", - "iopub.status.idle": "2024-07-02T15:30:11.476456Z", - "shell.execute_reply": "2024-07-02T15:30:11.476041Z" + "iopub.execute_input": "2024-07-05T13:46:59.194554Z", + "iopub.status.busy": "2024-07-05T13:46:59.194226Z", + "iopub.status.idle": "2024-07-05T13:46:59.200597Z", + "shell.execute_reply": "2024-07-05T13:46:59.200050Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.478572Z", - "iopub.status.busy": "2024-07-02T15:30:11.478242Z", - "iopub.status.idle": "2024-07-02T15:30:11.480735Z", - "shell.execute_reply": "2024-07-02T15:30:11.480310Z" + "iopub.execute_input": "2024-07-05T13:46:59.202693Z", + "iopub.status.busy": "2024-07-05T13:46:59.202353Z", + "iopub.status.idle": "2024-07-05T13:46:59.204916Z", + "shell.execute_reply": "2024-07-05T13:46:59.204479Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.482783Z", - "iopub.status.busy": "2024-07-02T15:30:11.482474Z", - "iopub.status.idle": "2024-07-02T15:30:11.485723Z", - "shell.execute_reply": "2024-07-02T15:30:11.485194Z" + "iopub.execute_input": "2024-07-05T13:46:59.206691Z", + "iopub.status.busy": "2024-07-05T13:46:59.206522Z", + "iopub.status.idle": "2024-07-05T13:46:59.210105Z", + "shell.execute_reply": "2024-07-05T13:46:59.209664Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.487566Z", - "iopub.status.busy": "2024-07-02T15:30:11.487397Z", - "iopub.status.idle": "2024-07-02T15:30:11.489827Z", - "shell.execute_reply": "2024-07-02T15:30:11.489391Z" + "iopub.execute_input": "2024-07-05T13:46:59.211921Z", + "iopub.status.busy": "2024-07-05T13:46:59.211753Z", + "iopub.status.idle": "2024-07-05T13:46:59.214229Z", + "shell.execute_reply": "2024-07-05T13:46:59.213803Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.491611Z", - "iopub.status.busy": "2024-07-02T15:30:11.491445Z", - "iopub.status.idle": "2024-07-02T15:30:11.495334Z", - "shell.execute_reply": "2024-07-02T15:30:11.494831Z" + "iopub.execute_input": "2024-07-05T13:46:59.216008Z", + "iopub.status.busy": "2024-07-05T13:46:59.215841Z", + "iopub.status.idle": "2024-07-05T13:46:59.219721Z", + "shell.execute_reply": "2024-07-05T13:46:59.219177Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.497182Z", - "iopub.status.busy": "2024-07-02T15:30:11.497014Z", - "iopub.status.idle": "2024-07-02T15:30:11.524806Z", - "shell.execute_reply": "2024-07-02T15:30:11.524260Z" + "iopub.execute_input": "2024-07-05T13:46:59.221744Z", + "iopub.status.busy": "2024-07-05T13:46:59.221444Z", + "iopub.status.idle": "2024-07-05T13:46:59.250010Z", + "shell.execute_reply": "2024-07-05T13:46:59.249592Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.527068Z", - "iopub.status.busy": "2024-07-02T15:30:11.526763Z", - "iopub.status.idle": "2024-07-02T15:30:11.531196Z", - "shell.execute_reply": "2024-07-02T15:30:11.530662Z" + "iopub.execute_input": "2024-07-05T13:46:59.252057Z", + "iopub.status.busy": "2024-07-05T13:46:59.251739Z", + "iopub.status.idle": "2024-07-05T13:46:59.256119Z", + "shell.execute_reply": "2024-07-05T13:46:59.255674Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index b8ac96c40..074c3d152 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:14.064593Z", - "iopub.status.busy": "2024-07-02T15:30:14.064421Z", - "iopub.status.idle": "2024-07-02T15:30:15.205978Z", - "shell.execute_reply": "2024-07-02T15:30:15.205327Z" + "iopub.execute_input": "2024-07-05T13:47:02.009431Z", + "iopub.status.busy": "2024-07-05T13:47:02.009133Z", + "iopub.status.idle": "2024-07-05T13:47:03.146288Z", + "shell.execute_reply": "2024-07-05T13:47:03.145757Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:15.208418Z", - "iopub.status.busy": "2024-07-02T15:30:15.208143Z", - "iopub.status.idle": "2024-07-02T15:30:15.398147Z", - "shell.execute_reply": "2024-07-02T15:30:15.397569Z" + "iopub.execute_input": "2024-07-05T13:47:03.148827Z", + "iopub.status.busy": "2024-07-05T13:47:03.148342Z", + "iopub.status.idle": "2024-07-05T13:47:03.339995Z", + "shell.execute_reply": "2024-07-05T13:47:03.339383Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:15.400536Z", - "iopub.status.busy": "2024-07-02T15:30:15.400274Z", - "iopub.status.idle": "2024-07-02T15:30:15.413403Z", - "shell.execute_reply": "2024-07-02T15:30:15.412862Z" + "iopub.execute_input": "2024-07-05T13:47:03.342527Z", + "iopub.status.busy": "2024-07-05T13:47:03.342243Z", + "iopub.status.idle": "2024-07-05T13:47:03.355729Z", + "shell.execute_reply": "2024-07-05T13:47:03.355180Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:15.415691Z", - "iopub.status.busy": "2024-07-02T15:30:15.415248Z", - "iopub.status.idle": "2024-07-02T15:30:18.012829Z", - "shell.execute_reply": "2024-07-02T15:30:18.012269Z" + "iopub.execute_input": "2024-07-05T13:47:03.357735Z", + "iopub.status.busy": "2024-07-05T13:47:03.357428Z", + "iopub.status.idle": "2024-07-05T13:47:05.947767Z", + "shell.execute_reply": "2024-07-05T13:47:05.947232Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:18.015230Z", - "iopub.status.busy": "2024-07-02T15:30:18.014790Z", - "iopub.status.idle": "2024-07-02T15:30:19.361340Z", - "shell.execute_reply": "2024-07-02T15:30:19.360749Z" + "iopub.execute_input": "2024-07-05T13:47:05.950102Z", + "iopub.status.busy": "2024-07-05T13:47:05.949669Z", + "iopub.status.idle": "2024-07-05T13:47:07.291483Z", + "shell.execute_reply": "2024-07-05T13:47:07.290935Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:19.363622Z", - "iopub.status.busy": "2024-07-02T15:30:19.363439Z", - "iopub.status.idle": "2024-07-02T15:30:19.367038Z", - "shell.execute_reply": "2024-07-02T15:30:19.366492Z" + "iopub.execute_input": "2024-07-05T13:47:07.293853Z", + "iopub.status.busy": "2024-07-05T13:47:07.293535Z", + "iopub.status.idle": "2024-07-05T13:47:07.297394Z", + "shell.execute_reply": "2024-07-05T13:47:07.296864Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:19.368905Z", - "iopub.status.busy": "2024-07-02T15:30:19.368736Z", - "iopub.status.idle": "2024-07-02T15:30:21.276657Z", - "shell.execute_reply": "2024-07-02T15:30:21.276026Z" + "iopub.execute_input": "2024-07-05T13:47:07.299452Z", + "iopub.status.busy": "2024-07-05T13:47:07.299070Z", + "iopub.status.idle": "2024-07-05T13:47:09.224450Z", + "shell.execute_reply": "2024-07-05T13:47:09.223843Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:21.278971Z", - "iopub.status.busy": "2024-07-02T15:30:21.278630Z", - "iopub.status.idle": "2024-07-02T15:30:21.286413Z", - "shell.execute_reply": "2024-07-02T15:30:21.285940Z" + "iopub.execute_input": "2024-07-05T13:47:09.226992Z", + "iopub.status.busy": "2024-07-05T13:47:09.226442Z", + "iopub.status.idle": "2024-07-05T13:47:09.233953Z", + "shell.execute_reply": "2024-07-05T13:47:09.233460Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:21.288416Z", - "iopub.status.busy": "2024-07-02T15:30:21.288115Z", - "iopub.status.idle": "2024-07-02T15:30:23.806595Z", - "shell.execute_reply": "2024-07-02T15:30:23.806033Z" + "iopub.execute_input": "2024-07-05T13:47:09.236127Z", + "iopub.status.busy": "2024-07-05T13:47:09.235707Z", + "iopub.status.idle": "2024-07-05T13:47:11.798040Z", + "shell.execute_reply": "2024-07-05T13:47:11.797441Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:23.808820Z", - "iopub.status.busy": "2024-07-02T15:30:23.808415Z", - "iopub.status.idle": "2024-07-02T15:30:23.812033Z", - "shell.execute_reply": "2024-07-02T15:30:23.811486Z" + "iopub.execute_input": "2024-07-05T13:47:11.800182Z", + "iopub.status.busy": "2024-07-05T13:47:11.799996Z", + "iopub.status.idle": "2024-07-05T13:47:11.803773Z", + "shell.execute_reply": "2024-07-05T13:47:11.803244Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:23.814126Z", - "iopub.status.busy": "2024-07-02T15:30:23.813830Z", - "iopub.status.idle": "2024-07-02T15:30:23.817286Z", - "shell.execute_reply": "2024-07-02T15:30:23.816829Z" + "iopub.execute_input": "2024-07-05T13:47:11.806147Z", + "iopub.status.busy": "2024-07-05T13:47:11.805641Z", + "iopub.status.idle": "2024-07-05T13:47:11.809274Z", + "shell.execute_reply": "2024-07-05T13:47:11.808738Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:23.819098Z", - "iopub.status.busy": "2024-07-02T15:30:23.818930Z", - "iopub.status.idle": "2024-07-02T15:30:23.822031Z", - "shell.execute_reply": "2024-07-02T15:30:23.821569Z" + "iopub.execute_input": "2024-07-05T13:47:11.811392Z", + "iopub.status.busy": "2024-07-05T13:47:11.811096Z", + "iopub.status.idle": "2024-07-05T13:47:11.814199Z", + "shell.execute_reply": "2024-07-05T13:47:11.813667Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 2a7fb3ea1..85c30ddc1 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:26.104900Z", - "iopub.status.busy": "2024-07-02T15:30:26.104494Z", - "iopub.status.idle": "2024-07-02T15:30:27.233572Z", - "shell.execute_reply": "2024-07-02T15:30:27.233026Z" + "iopub.execute_input": "2024-07-05T13:47:14.215091Z", + "iopub.status.busy": "2024-07-05T13:47:14.214671Z", + "iopub.status.idle": "2024-07-05T13:47:15.356258Z", + "shell.execute_reply": "2024-07-05T13:47:15.355646Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:27.236094Z", - "iopub.status.busy": "2024-07-02T15:30:27.235693Z", - "iopub.status.idle": "2024-07-02T15:30:28.702868Z", - "shell.execute_reply": "2024-07-02T15:30:28.702121Z" + "iopub.execute_input": "2024-07-05T13:47:15.359022Z", + "iopub.status.busy": "2024-07-05T13:47:15.358577Z", + "iopub.status.idle": "2024-07-05T13:47:16.465295Z", + "shell.execute_reply": "2024-07-05T13:47:16.464535Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:28.705594Z", - "iopub.status.busy": "2024-07-02T15:30:28.705186Z", - "iopub.status.idle": "2024-07-02T15:30:28.708303Z", - "shell.execute_reply": "2024-07-02T15:30:28.707887Z" + "iopub.execute_input": "2024-07-05T13:47:16.468138Z", + "iopub.status.busy": "2024-07-05T13:47:16.467748Z", + "iopub.status.idle": "2024-07-05T13:47:16.470920Z", + "shell.execute_reply": "2024-07-05T13:47:16.470483Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:28.710362Z", - "iopub.status.busy": "2024-07-02T15:30:28.710043Z", - "iopub.status.idle": "2024-07-02T15:30:28.715820Z", - "shell.execute_reply": "2024-07-02T15:30:28.715418Z" + "iopub.execute_input": "2024-07-05T13:47:16.473010Z", + "iopub.status.busy": "2024-07-05T13:47:16.472681Z", + "iopub.status.idle": "2024-07-05T13:47:16.478693Z", + "shell.execute_reply": "2024-07-05T13:47:16.478177Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:28.717761Z", - "iopub.status.busy": "2024-07-02T15:30:28.717422Z", - "iopub.status.idle": "2024-07-02T15:30:29.197115Z", - "shell.execute_reply": "2024-07-02T15:30:29.196591Z" + "iopub.execute_input": "2024-07-05T13:47:16.480624Z", + "iopub.status.busy": "2024-07-05T13:47:16.480346Z", + "iopub.status.idle": "2024-07-05T13:47:16.965163Z", + "shell.execute_reply": "2024-07-05T13:47:16.964596Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:29.199674Z", - "iopub.status.busy": "2024-07-02T15:30:29.199317Z", - "iopub.status.idle": "2024-07-02T15:30:29.204590Z", - "shell.execute_reply": "2024-07-02T15:30:29.204051Z" + "iopub.execute_input": "2024-07-05T13:47:16.967534Z", + "iopub.status.busy": "2024-07-05T13:47:16.967318Z", + "iopub.status.idle": "2024-07-05T13:47:16.972438Z", + "shell.execute_reply": "2024-07-05T13:47:16.971916Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:29.206585Z", - "iopub.status.busy": "2024-07-02T15:30:29.206292Z", - "iopub.status.idle": "2024-07-02T15:30:29.210100Z", - "shell.execute_reply": "2024-07-02T15:30:29.209552Z" + "iopub.execute_input": "2024-07-05T13:47:16.974620Z", + "iopub.status.busy": "2024-07-05T13:47:16.974128Z", + "iopub.status.idle": "2024-07-05T13:47:16.978049Z", + "shell.execute_reply": "2024-07-05T13:47:16.977524Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:29.212071Z", - "iopub.status.busy": "2024-07-02T15:30:29.211769Z", - "iopub.status.idle": "2024-07-02T15:30:30.046952Z", - "shell.execute_reply": "2024-07-02T15:30:30.046327Z" + "iopub.execute_input": "2024-07-05T13:47:16.980168Z", + "iopub.status.busy": "2024-07-05T13:47:16.979844Z", + "iopub.status.idle": "2024-07-05T13:47:17.832080Z", + "shell.execute_reply": "2024-07-05T13:47:17.831448Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.049474Z", - "iopub.status.busy": "2024-07-02T15:30:30.049003Z", - "iopub.status.idle": "2024-07-02T15:30:30.269472Z", - "shell.execute_reply": "2024-07-02T15:30:30.269024Z" + "iopub.execute_input": "2024-07-05T13:47:17.834444Z", + "iopub.status.busy": "2024-07-05T13:47:17.834073Z", + "iopub.status.idle": "2024-07-05T13:47:18.046151Z", + "shell.execute_reply": "2024-07-05T13:47:18.045559Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.271620Z", - "iopub.status.busy": "2024-07-02T15:30:30.271296Z", - "iopub.status.idle": "2024-07-02T15:30:30.275317Z", - "shell.execute_reply": "2024-07-02T15:30:30.274889Z" + "iopub.execute_input": "2024-07-05T13:47:18.048261Z", + "iopub.status.busy": "2024-07-05T13:47:18.047927Z", + "iopub.status.idle": "2024-07-05T13:47:18.052236Z", + "shell.execute_reply": "2024-07-05T13:47:18.051798Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.277283Z", - "iopub.status.busy": "2024-07-02T15:30:30.276960Z", - "iopub.status.idle": "2024-07-02T15:30:30.718015Z", - "shell.execute_reply": "2024-07-02T15:30:30.717439Z" + "iopub.execute_input": "2024-07-05T13:47:18.054268Z", + "iopub.status.busy": "2024-07-05T13:47:18.053965Z", + "iopub.status.idle": "2024-07-05T13:47:18.498098Z", + "shell.execute_reply": "2024-07-05T13:47:18.497506Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.721098Z", - "iopub.status.busy": "2024-07-02T15:30:30.720763Z", - "iopub.status.idle": "2024-07-02T15:30:31.050736Z", - "shell.execute_reply": "2024-07-02T15:30:31.050209Z" + "iopub.execute_input": "2024-07-05T13:47:18.501365Z", + "iopub.status.busy": "2024-07-05T13:47:18.500888Z", + "iopub.status.idle": "2024-07-05T13:47:18.832148Z", + "shell.execute_reply": "2024-07-05T13:47:18.831622Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:31.053203Z", - "iopub.status.busy": "2024-07-02T15:30:31.052800Z", - "iopub.status.idle": "2024-07-02T15:30:31.411935Z", - "shell.execute_reply": "2024-07-02T15:30:31.411382Z" + "iopub.execute_input": "2024-07-05T13:47:18.834660Z", + "iopub.status.busy": "2024-07-05T13:47:18.834312Z", + "iopub.status.idle": "2024-07-05T13:47:19.193818Z", + "shell.execute_reply": "2024-07-05T13:47:19.193281Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:31.414916Z", - "iopub.status.busy": "2024-07-02T15:30:31.414688Z", - "iopub.status.idle": "2024-07-02T15:30:31.848848Z", - "shell.execute_reply": "2024-07-02T15:30:31.848291Z" + "iopub.execute_input": "2024-07-05T13:47:19.196512Z", + "iopub.status.busy": "2024-07-05T13:47:19.196165Z", + "iopub.status.idle": "2024-07-05T13:47:19.635708Z", + "shell.execute_reply": "2024-07-05T13:47:19.635175Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:31.852793Z", - "iopub.status.busy": "2024-07-02T15:30:31.852402Z", - "iopub.status.idle": "2024-07-02T15:30:32.294906Z", - "shell.execute_reply": "2024-07-02T15:30:32.294313Z" + "iopub.execute_input": "2024-07-05T13:47:19.639975Z", + "iopub.status.busy": "2024-07-05T13:47:19.639571Z", + "iopub.status.idle": "2024-07-05T13:47:20.084169Z", + "shell.execute_reply": "2024-07-05T13:47:20.083575Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.297619Z", - "iopub.status.busy": "2024-07-02T15:30:32.297290Z", - "iopub.status.idle": "2024-07-02T15:30:32.486044Z", - "shell.execute_reply": "2024-07-02T15:30:32.485463Z" + "iopub.execute_input": "2024-07-05T13:47:20.086709Z", + "iopub.status.busy": "2024-07-05T13:47:20.086528Z", + "iopub.status.idle": "2024-07-05T13:47:20.276349Z", + "shell.execute_reply": "2024-07-05T13:47:20.275775Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.488589Z", - "iopub.status.busy": "2024-07-02T15:30:32.488111Z", - "iopub.status.idle": "2024-07-02T15:30:32.667785Z", - "shell.execute_reply": "2024-07-02T15:30:32.667290Z" + "iopub.execute_input": "2024-07-05T13:47:20.278634Z", + "iopub.status.busy": "2024-07-05T13:47:20.278439Z", + "iopub.status.idle": "2024-07-05T13:47:20.458407Z", + "shell.execute_reply": "2024-07-05T13:47:20.457839Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.670272Z", - "iopub.status.busy": "2024-07-02T15:30:32.669957Z", - "iopub.status.idle": "2024-07-02T15:30:32.672881Z", - "shell.execute_reply": "2024-07-02T15:30:32.672341Z" + "iopub.execute_input": "2024-07-05T13:47:20.460462Z", + "iopub.status.busy": "2024-07-05T13:47:20.460287Z", + "iopub.status.idle": "2024-07-05T13:47:20.463336Z", + "shell.execute_reply": "2024-07-05T13:47:20.462883Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.674835Z", - "iopub.status.busy": "2024-07-02T15:30:32.674531Z", - "iopub.status.idle": "2024-07-02T15:30:33.648630Z", - "shell.execute_reply": "2024-07-02T15:30:33.648115Z" + "iopub.execute_input": "2024-07-05T13:47:20.465110Z", + "iopub.status.busy": "2024-07-05T13:47:20.464940Z", + "iopub.status.idle": "2024-07-05T13:47:21.357863Z", + "shell.execute_reply": "2024-07-05T13:47:21.357397Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:33.651075Z", - "iopub.status.busy": "2024-07-02T15:30:33.650749Z", - "iopub.status.idle": "2024-07-02T15:30:33.832380Z", - "shell.execute_reply": "2024-07-02T15:30:33.831930Z" + "iopub.execute_input": "2024-07-05T13:47:21.359996Z", + "iopub.status.busy": "2024-07-05T13:47:21.359810Z", + "iopub.status.idle": "2024-07-05T13:47:21.506791Z", + "shell.execute_reply": "2024-07-05T13:47:21.506329Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:33.834350Z", - "iopub.status.busy": "2024-07-02T15:30:33.834178Z", - "iopub.status.idle": "2024-07-02T15:30:33.965756Z", - "shell.execute_reply": "2024-07-02T15:30:33.965334Z" + "iopub.execute_input": "2024-07-05T13:47:21.508826Z", + "iopub.status.busy": "2024-07-05T13:47:21.508482Z", + "iopub.status.idle": "2024-07-05T13:47:21.641437Z", + "shell.execute_reply": "2024-07-05T13:47:21.640973Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:33.967745Z", - "iopub.status.busy": "2024-07-02T15:30:33.967436Z", - "iopub.status.idle": "2024-07-02T15:30:34.624537Z", - "shell.execute_reply": "2024-07-02T15:30:34.623949Z" + "iopub.execute_input": "2024-07-05T13:47:21.643445Z", + "iopub.status.busy": "2024-07-05T13:47:21.643266Z", + "iopub.status.idle": "2024-07-05T13:47:22.329384Z", + "shell.execute_reply": "2024-07-05T13:47:22.328815Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:34.626893Z", - "iopub.status.busy": "2024-07-02T15:30:34.626704Z", - "iopub.status.idle": "2024-07-02T15:30:34.630276Z", - "shell.execute_reply": "2024-07-02T15:30:34.629829Z" + "iopub.execute_input": "2024-07-05T13:47:22.331880Z", + "iopub.status.busy": "2024-07-05T13:47:22.331430Z", + "iopub.status.idle": "2024-07-05T13:47:22.335182Z", + "shell.execute_reply": "2024-07-05T13:47:22.334724Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index a9863801c..ae303c066 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:02<00:00, 75087729.26it/s]
+100%|██████████| 170498071/170498071 [00:05<00:00, 30338964.83it/s]
 

-
+
@@ -1124,7 +1124,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index a01751703..54f416807 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:36.707833Z", - "iopub.status.busy": "2024-07-02T15:30:36.707432Z", - "iopub.status.idle": "2024-07-02T15:30:39.352386Z", - "shell.execute_reply": "2024-07-02T15:30:39.351837Z" + "iopub.execute_input": "2024-07-05T13:47:24.527137Z", + "iopub.status.busy": "2024-07-05T13:47:24.526961Z", + "iopub.status.idle": "2024-07-05T13:47:27.218760Z", + "shell.execute_reply": "2024-07-05T13:47:27.218229Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:39.355103Z", - "iopub.status.busy": "2024-07-02T15:30:39.354574Z", - "iopub.status.idle": "2024-07-02T15:30:39.661584Z", - "shell.execute_reply": "2024-07-02T15:30:39.660980Z" + "iopub.execute_input": "2024-07-05T13:47:27.221479Z", + "iopub.status.busy": "2024-07-05T13:47:27.221026Z", + "iopub.status.idle": "2024-07-05T13:47:27.537341Z", + "shell.execute_reply": "2024-07-05T13:47:27.536713Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:39.664187Z", - "iopub.status.busy": "2024-07-02T15:30:39.663844Z", - "iopub.status.idle": "2024-07-02T15:30:39.668417Z", - "shell.execute_reply": "2024-07-02T15:30:39.667891Z" + "iopub.execute_input": "2024-07-05T13:47:27.539971Z", + "iopub.status.busy": "2024-07-05T13:47:27.539520Z", + "iopub.status.idle": "2024-07-05T13:47:27.543702Z", + "shell.execute_reply": "2024-07-05T13:47:27.543277Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:39.670626Z", - "iopub.status.busy": "2024-07-02T15:30:39.670320Z", - "iopub.status.idle": "2024-07-02T15:30:44.460714Z", - "shell.execute_reply": "2024-07-02T15:30:44.460162Z" + "iopub.execute_input": "2024-07-05T13:47:27.545812Z", + "iopub.status.busy": "2024-07-05T13:47:27.545491Z", + "iopub.status.idle": "2024-07-05T13:47:35.729940Z", + "shell.execute_reply": "2024-07-05T13:47:35.729339Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1933312/170498071 [00:00<00:08, 19261178.24it/s]" + " 1%| | 1081344/170498071 [00:00<00:15, 10708567.98it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9666560/170498071 [00:00<00:03, 53300272.89it/s]" + " 3%|▎ | 4423680/170498071 [00:00<00:06, 23850218.64it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18022400/170498071 [00:00<00:02, 66766772.02it/s]" + " 4%|▍ | 7503872/170498071 [00:00<00:06, 26816651.59it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26017792/170498071 [00:00<00:02, 71799904.98it/s]" + " 6%|▌ | 10584064/170498071 [00:00<00:05, 28366091.38it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34111488/170498071 [00:00<00:01, 74851602.40it/s]" + " 8%|▊ | 13697024/170498071 [00:00<00:05, 29259026.25it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41615360/170498071 [00:00<00:01, 74050157.55it/s]" + " 10%|▉ | 16842752/170498071 [00:00<00:05, 29938735.92it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49414144/170498071 [00:00<00:01, 75240501.10it/s]" + " 12%|█▏ | 19988480/170498071 [00:00<00:04, 30330092.68it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 57802752/170498071 [00:00<00:01, 77927286.11it/s]" + " 14%|█▎ | 23035904/170498071 [00:00<00:04, 30338133.55it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65929216/170498071 [00:00<00:01, 78770128.23it/s]" + " 15%|█▌ | 26116096/170498071 [00:00<00:04, 30461768.00it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73826304/170498071 [00:01<00:01, 77447245.96it/s]" + " 17%|█▋ | 29163520/170498071 [00:01<00:04, 30317545.66it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 81887232/170498071 [00:01<00:01, 78343847.05it/s]" + " 19%|█▉ | 32210944/170498071 [00:01<00:04, 29955625.17it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 89751552/170498071 [00:01<00:01, 76411811.17it/s]" + " 21%|██ | 35291136/170498071 [00:01<00:04, 30044587.93it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 97452032/170498071 [00:01<00:00, 76559764.63it/s]" + " 22%|██▏ | 38305792/170498071 [00:01<00:04, 29859775.88it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 105119744/170498071 [00:01<00:00, 76377178.30it/s]" + " 24%|██▍ | 41353216/170498071 [00:01<00:04, 30028613.95it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 112787456/170498071 [00:01<00:00, 76223255.83it/s]" + " 26%|██▌ | 44367872/170498071 [00:01<00:04, 29666862.25it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121405440/170498071 [00:01<00:00, 79156566.53it/s]" + " 28%|██▊ | 47349760/170498071 [00:01<00:04, 28979706.66it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129335296/170498071 [00:01<00:00, 78370632.15it/s]" + " 29%|██▉ | 50266112/170498071 [00:01<00:04, 27587785.10it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 137232384/170498071 [00:01<00:00, 78523013.51it/s]" + " 31%|███ | 53051392/170498071 [00:01<00:04, 26692659.55it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 145096704/170498071 [00:01<00:00, 76246718.61it/s]" + " 33%|███▎ | 55738368/170498071 [00:01<00:04, 26016914.16it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 153026560/170498071 [00:02<00:00, 76949957.68it/s]" + " 34%|███▍ | 58359808/170498071 [00:02<00:04, 25757315.40it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 160825344/170498071 [00:02<00:00, 77200889.35it/s]" + " 36%|███▌ | 60948480/170498071 [00:02<00:04, 25456874.54it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 168558592/170498071 [00:02<00:00, 76174010.79it/s]" + " 37%|███▋ | 63504384/170498071 [00:02<00:04, 25260567.25it/s]" ] }, { @@ -428,7 +428,263 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 75087729.26it/s]" + " 39%|███▊ | 66060288/170498071 [00:02<00:04, 25144425.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 40%|████ | 68583424/170498071 [00:02<00:04, 25020258.35it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 71106560/170498071 [00:02<00:03, 24889369.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 43%|████▎ | 73596928/170498071 [00:02<00:03, 24836158.15it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▍ | 76087296/170498071 [00:02<00:03, 24820215.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 46%|████▌ | 78577664/170498071 [00:02<00:03, 24735975.57it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 81068032/170498071 [00:02<00:03, 24648888.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 49%|████▉ | 83558400/170498071 [00:03<00:03, 24358741.47it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 50%|█████ | 86016000/170498071 [00:03<00:03, 24292942.13it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▏ | 88473600/170498071 [00:03<00:03, 23995450.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 90996736/170498071 [00:03<00:03, 24247121.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 55%|█████▍ | 93487104/170498071 [00:03<00:03, 24287891.45it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 96108544/170498071 [00:03<00:03, 24740963.28it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 58%|█████▊ | 98664448/170498071 [00:03<00:02, 24966826.78it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 101253120/170498071 [00:03<00:02, 25171579.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 61%|██████ | 103874560/170498071 [00:03<00:02, 25376085.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 106430464/170498071 [00:04<00:02, 25267890.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▍ | 108986368/170498071 [00:04<00:02, 25311969.11it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▌ | 111542272/170498071 [00:04<00:02, 25349630.04it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 114393088/170498071 [00:04<00:02, 26276676.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117833728/170498071 [00:04<00:01, 28518989.81it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████ | 121339904/170498071 [00:04<00:01, 30452371.07it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 125042688/170498071 [00:04<00:01, 32404964.43it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 129171456/170498071 [00:04<00:01, 35030187.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 133431296/170498071 [00:04<00:00, 37122893.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████ | 138149888/170498071 [00:04<00:00, 40026806.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▎ | 142442496/170498071 [00:05<00:00, 40691324.98it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 146800640/170498071 [00:05<00:00, 41397613.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 89%|████████▊ | 150962176/170498071 [00:05<00:00, 41058158.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████ | 155189248/170498071 [00:05<00:00, 41393042.02it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 160792576/170498071 [00:05<00:00, 45651328.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 166035456/170498071 [00:05<00:00, 47635065.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:05<00:00, 30338964.83it/s]" ] }, { @@ -546,10 +802,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:44.462980Z", - "iopub.status.busy": "2024-07-02T15:30:44.462612Z", - "iopub.status.idle": "2024-07-02T15:30:44.467530Z", - "shell.execute_reply": "2024-07-02T15:30:44.467072Z" + "iopub.execute_input": "2024-07-05T13:47:35.732408Z", + "iopub.status.busy": "2024-07-05T13:47:35.732048Z", + "iopub.status.idle": "2024-07-05T13:47:35.736850Z", + "shell.execute_reply": "2024-07-05T13:47:35.736350Z" }, "nbsphinx": "hidden" }, @@ -600,10 +856,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:44.469606Z", - "iopub.status.busy": "2024-07-02T15:30:44.469261Z", - "iopub.status.idle": "2024-07-02T15:30:45.008289Z", - "shell.execute_reply": "2024-07-02T15:30:45.007683Z" + "iopub.execute_input": "2024-07-05T13:47:35.738790Z", + "iopub.status.busy": "2024-07-05T13:47:35.738469Z", + "iopub.status.idle": "2024-07-05T13:47:36.284379Z", + "shell.execute_reply": "2024-07-05T13:47:36.283902Z" } }, "outputs": [ @@ -636,10 +892,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:45.010647Z", - "iopub.status.busy": "2024-07-02T15:30:45.010334Z", - "iopub.status.idle": "2024-07-02T15:30:45.519231Z", - "shell.execute_reply": "2024-07-02T15:30:45.518726Z" + "iopub.execute_input": "2024-07-05T13:47:36.286478Z", + "iopub.status.busy": "2024-07-05T13:47:36.286284Z", + "iopub.status.idle": "2024-07-05T13:47:36.799704Z", + "shell.execute_reply": "2024-07-05T13:47:36.799058Z" } }, "outputs": [ @@ -677,10 +933,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:45.521432Z", - "iopub.status.busy": "2024-07-02T15:30:45.521094Z", - "iopub.status.idle": "2024-07-02T15:30:45.524584Z", - "shell.execute_reply": "2024-07-02T15:30:45.524036Z" + "iopub.execute_input": "2024-07-05T13:47:36.801975Z", + "iopub.status.busy": "2024-07-05T13:47:36.801619Z", + "iopub.status.idle": "2024-07-05T13:47:36.805610Z", + "shell.execute_reply": "2024-07-05T13:47:36.805181Z" } }, "outputs": [], @@ -703,17 +959,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:45.526495Z", - "iopub.status.busy": "2024-07-02T15:30:45.526191Z", - "iopub.status.idle": "2024-07-02T15:30:58.240257Z", - "shell.execute_reply": "2024-07-02T15:30:58.239689Z" + "iopub.execute_input": "2024-07-05T13:47:36.807576Z", + "iopub.status.busy": "2024-07-05T13:47:36.807406Z", + "iopub.status.idle": "2024-07-05T13:47:49.212132Z", + "shell.execute_reply": "2024-07-05T13:47:49.211548Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e5259ff69044f2d9040e07e24baf5d7", + "model_id": "58358b4135424d1cb6f1744e39b66b72", "version_major": 2, "version_minor": 0 }, @@ -772,10 +1028,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:58.242629Z", - "iopub.status.busy": "2024-07-02T15:30:58.242434Z", - "iopub.status.idle": "2024-07-02T15:31:00.298294Z", - "shell.execute_reply": "2024-07-02T15:31:00.297716Z" + "iopub.execute_input": "2024-07-05T13:47:49.214583Z", + "iopub.status.busy": "2024-07-05T13:47:49.214120Z", + "iopub.status.idle": "2024-07-05T13:47:51.355332Z", + "shell.execute_reply": "2024-07-05T13:47:51.354669Z" } }, "outputs": [ @@ -819,10 +1075,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:00.300955Z", - "iopub.status.busy": "2024-07-02T15:31:00.300659Z", - "iopub.status.idle": "2024-07-02T15:31:00.552803Z", - "shell.execute_reply": "2024-07-02T15:31:00.552236Z" + "iopub.execute_input": "2024-07-05T13:47:51.358268Z", + "iopub.status.busy": "2024-07-05T13:47:51.357773Z", + "iopub.status.idle": "2024-07-05T13:47:51.612668Z", + "shell.execute_reply": "2024-07-05T13:47:51.612041Z" } }, "outputs": [ @@ -858,10 +1114,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:00.555642Z", - "iopub.status.busy": "2024-07-02T15:31:00.555135Z", - "iopub.status.idle": "2024-07-02T15:31:01.217327Z", - "shell.execute_reply": "2024-07-02T15:31:01.216752Z" + "iopub.execute_input": "2024-07-05T13:47:51.615347Z", + "iopub.status.busy": "2024-07-05T13:47:51.615128Z", + "iopub.status.idle": "2024-07-05T13:47:52.271987Z", + "shell.execute_reply": "2024-07-05T13:47:52.271431Z" } }, "outputs": [ @@ -911,10 +1167,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.220258Z", - "iopub.status.busy": "2024-07-02T15:31:01.219756Z", - "iopub.status.idle": "2024-07-02T15:31:01.555237Z", - "shell.execute_reply": "2024-07-02T15:31:01.554707Z" + "iopub.execute_input": "2024-07-05T13:47:52.274906Z", + "iopub.status.busy": "2024-07-05T13:47:52.274593Z", + "iopub.status.idle": "2024-07-05T13:47:52.612095Z", + "shell.execute_reply": "2024-07-05T13:47:52.611556Z" } }, "outputs": [ @@ -962,10 +1218,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.557486Z", - "iopub.status.busy": "2024-07-02T15:31:01.557127Z", - "iopub.status.idle": "2024-07-02T15:31:01.796360Z", - "shell.execute_reply": "2024-07-02T15:31:01.795785Z" + "iopub.execute_input": "2024-07-05T13:47:52.614364Z", + "iopub.status.busy": "2024-07-05T13:47:52.614037Z", + "iopub.status.idle": "2024-07-05T13:47:52.841957Z", + "shell.execute_reply": "2024-07-05T13:47:52.841541Z" } }, "outputs": [ @@ -1021,10 +1277,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.798780Z", - "iopub.status.busy": "2024-07-02T15:31:01.798246Z", - "iopub.status.idle": "2024-07-02T15:31:01.878845Z", - "shell.execute_reply": "2024-07-02T15:31:01.878199Z" + "iopub.execute_input": "2024-07-05T13:47:52.844466Z", + "iopub.status.busy": "2024-07-05T13:47:52.844028Z", + "iopub.status.idle": "2024-07-05T13:47:52.922009Z", + "shell.execute_reply": "2024-07-05T13:47:52.921373Z" } }, "outputs": [], @@ -1045,10 +1301,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.881383Z", - "iopub.status.busy": "2024-07-02T15:31:01.881198Z", - "iopub.status.idle": "2024-07-02T15:31:12.064664Z", - "shell.execute_reply": "2024-07-02T15:31:12.064061Z" + "iopub.execute_input": "2024-07-05T13:47:52.924534Z", + "iopub.status.busy": "2024-07-05T13:47:52.924358Z", + "iopub.status.idle": "2024-07-05T13:48:03.240359Z", + "shell.execute_reply": "2024-07-05T13:48:03.239769Z" } }, "outputs": [ @@ -1085,10 +1341,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:12.067005Z", - "iopub.status.busy": "2024-07-02T15:31:12.066698Z", - "iopub.status.idle": "2024-07-02T15:31:14.192509Z", - "shell.execute_reply": "2024-07-02T15:31:14.192014Z" + "iopub.execute_input": "2024-07-05T13:48:03.242797Z", + "iopub.status.busy": "2024-07-05T13:48:03.242409Z", + "iopub.status.idle": "2024-07-05T13:48:05.389677Z", + "shell.execute_reply": "2024-07-05T13:48:05.389125Z" } }, "outputs": [ @@ -1119,10 +1375,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:14.195306Z", - "iopub.status.busy": "2024-07-02T15:31:14.194774Z", - "iopub.status.idle": "2024-07-02T15:31:14.398366Z", - "shell.execute_reply": "2024-07-02T15:31:14.397868Z" + "iopub.execute_input": "2024-07-05T13:48:05.392297Z", + "iopub.status.busy": "2024-07-05T13:48:05.391748Z", + "iopub.status.idle": "2024-07-05T13:48:05.597491Z", + "shell.execute_reply": "2024-07-05T13:48:05.596891Z" } }, "outputs": [], @@ -1136,10 +1392,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:14.400634Z", - "iopub.status.busy": "2024-07-02T15:31:14.400446Z", - "iopub.status.idle": "2024-07-02T15:31:14.403545Z", - "shell.execute_reply": "2024-07-02T15:31:14.403109Z" + "iopub.execute_input": "2024-07-05T13:48:05.600063Z", + "iopub.status.busy": "2024-07-05T13:48:05.599709Z", + "iopub.status.idle": "2024-07-05T13:48:05.602801Z", + "shell.execute_reply": "2024-07-05T13:48:05.602354Z" } }, "outputs": [], @@ -1161,10 +1417,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:14.405375Z", - "iopub.status.busy": "2024-07-02T15:31:14.405202Z", - "iopub.status.idle": "2024-07-02T15:31:14.413303Z", - "shell.execute_reply": "2024-07-02T15:31:14.412850Z" + "iopub.execute_input": "2024-07-05T13:48:05.604928Z", + "iopub.status.busy": "2024-07-05T13:48:05.604609Z", + "iopub.status.idle": "2024-07-05T13:48:05.612535Z", + "shell.execute_reply": "2024-07-05T13:48:05.612106Z" }, "nbsphinx": "hidden" }, @@ -1209,7 +1465,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a031667bcbf4ad0b0f0c1a2382f5f2e": { + "22991c52e1624f42a1efdc597d744fdb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1227,56 +1483,46 @@ "text_color": null } }, - "2f6020cef60b4bf8bac0b8389a1b6833": { + "39c2b9a8f20149d79c7db322ec212f7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fbf5a8d22db64f0eb01aa7fd53c1b68b", - "placeholder": "​", - "style": "IPY_MODEL_0a031667bcbf4ad0b0f0c1a2382f5f2e", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 152MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3cd1e403a7754c11922ba99ec3494a8e": { + "50522c99b3704c46b1f935531211ce3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e052a3ce162f4f6c9ff6c38cfe463797", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa0fb39e0a6040b5b93e4814da7189e3", + "layout": "IPY_MODEL_9cf0ef02f58e4fefb0e4a3022349d990", + "placeholder": "​", + "style": "IPY_MODEL_94a0c5224ea84f70a5c617c07a40856e", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": " 102M/102M [00:00<00:00, 355MB/s]" } }, - "3e5259ff69044f2d9040e07e24baf5d7": { + "58358b4135424d1cb6f1744e39b66b72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1291,34 +1537,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f83bdbe3f66c44e882ec5a547dc9c059", - "IPY_MODEL_3cd1e403a7754c11922ba99ec3494a8e", - "IPY_MODEL_2f6020cef60b4bf8bac0b8389a1b6833" + "IPY_MODEL_84b7bee42886402099c72cdc29abda56", + "IPY_MODEL_ca75ad4202a84bb19e32d7abd1a06f81", + "IPY_MODEL_50522c99b3704c46b1f935531211ce3b" ], - "layout": "IPY_MODEL_8343e5c5e9e14df4a633a441184012d4", + "layout": "IPY_MODEL_a087d28d1ed146d28a0e39c89d199c83", "tabbable": null, "tooltip": null } }, - "599e155eace340f792bf1521c812754d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8343e5c5e9e14df4a633a441184012d4": { + "69a985bcb8c246ae8be193eadf12d393": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,23 +1599,48 @@ "width": null } }, - "aa0fb39e0a6040b5b93e4814da7189e3": { + "84b7bee42886402099c72cdc29abda56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2139f0e687b4f67979bcb386dc08b22", + "placeholder": "​", + "style": "IPY_MODEL_22991c52e1624f42a1efdc597d744fdb", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "94a0c5224ea84f70a5c617c07a40856e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c8f58a32013f4bc7a0fcf152344559fe": { + "9cf0ef02f58e4fefb0e4a3022349d990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1440,7 +1693,7 @@ "width": null } }, - "e052a3ce162f4f6c9ff6c38cfe463797": { + "a087d28d1ed146d28a0e39c89d199c83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1493,30 +1746,33 @@ "width": null } }, - "f83bdbe3f66c44e882ec5a547dc9c059": { + "ca75ad4202a84bb19e32d7abd1a06f81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c8f58a32013f4bc7a0fcf152344559fe", - "placeholder": "​", - "style": "IPY_MODEL_599e155eace340f792bf1521c812754d", + "layout": "IPY_MODEL_69a985bcb8c246ae8be193eadf12d393", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_39c2b9a8f20149d79c7db322ec212f7c", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": 102469840.0 } }, - "fbf5a8d22db64f0eb01aa7fd53c1b68b": { + "e2139f0e687b4f67979bcb386dc08b22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index d85d0978d..363147c8f 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:18.468176Z", - "iopub.status.busy": "2024-07-02T15:31:18.467999Z", - "iopub.status.idle": "2024-07-02T15:31:19.595981Z", - "shell.execute_reply": "2024-07-02T15:31:19.595445Z" + "iopub.execute_input": "2024-07-05T13:48:09.970835Z", + "iopub.status.busy": "2024-07-05T13:48:09.970666Z", + "iopub.status.idle": "2024-07-05T13:48:11.102261Z", + "shell.execute_reply": "2024-07-05T13:48:11.101645Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.598444Z", - "iopub.status.busy": "2024-07-02T15:31:19.598201Z", - "iopub.status.idle": "2024-07-02T15:31:19.614971Z", - "shell.execute_reply": "2024-07-02T15:31:19.614441Z" + "iopub.execute_input": "2024-07-05T13:48:11.105054Z", + "iopub.status.busy": "2024-07-05T13:48:11.104633Z", + "iopub.status.idle": "2024-07-05T13:48:11.121454Z", + "shell.execute_reply": "2024-07-05T13:48:11.121016Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.617151Z", - "iopub.status.busy": "2024-07-02T15:31:19.616775Z", - "iopub.status.idle": "2024-07-02T15:31:19.619597Z", - "shell.execute_reply": "2024-07-02T15:31:19.619180Z" + "iopub.execute_input": "2024-07-05T13:48:11.123604Z", + "iopub.status.busy": "2024-07-05T13:48:11.123219Z", + "iopub.status.idle": "2024-07-05T13:48:11.126090Z", + "shell.execute_reply": "2024-07-05T13:48:11.125663Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.621728Z", - "iopub.status.busy": "2024-07-02T15:31:19.621281Z", - "iopub.status.idle": "2024-07-02T15:31:19.720173Z", - "shell.execute_reply": "2024-07-02T15:31:19.719650Z" + "iopub.execute_input": "2024-07-05T13:48:11.128019Z", + "iopub.status.busy": "2024-07-05T13:48:11.127708Z", + "iopub.status.idle": "2024-07-05T13:48:11.159626Z", + "shell.execute_reply": "2024-07-05T13:48:11.159116Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.722194Z", - "iopub.status.busy": "2024-07-02T15:31:19.721889Z", - "iopub.status.idle": "2024-07-02T15:31:19.898619Z", - "shell.execute_reply": "2024-07-02T15:31:19.898073Z" + "iopub.execute_input": "2024-07-05T13:48:11.161893Z", + "iopub.status.busy": "2024-07-05T13:48:11.161445Z", + "iopub.status.idle": "2024-07-05T13:48:11.339986Z", + "shell.execute_reply": "2024-07-05T13:48:11.339388Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.900830Z", - "iopub.status.busy": "2024-07-02T15:31:19.900644Z", - "iopub.status.idle": "2024-07-02T15:31:20.105363Z", - "shell.execute_reply": "2024-07-02T15:31:20.104893Z" + "iopub.execute_input": "2024-07-05T13:48:11.342348Z", + "iopub.status.busy": "2024-07-05T13:48:11.341956Z", + "iopub.status.idle": "2024-07-05T13:48:11.584081Z", + "shell.execute_reply": "2024-07-05T13:48:11.583511Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.107396Z", - "iopub.status.busy": "2024-07-02T15:31:20.107065Z", - "iopub.status.idle": "2024-07-02T15:31:20.111228Z", - "shell.execute_reply": "2024-07-02T15:31:20.110779Z" + "iopub.execute_input": "2024-07-05T13:48:11.586344Z", + "iopub.status.busy": "2024-07-05T13:48:11.585904Z", + "iopub.status.idle": "2024-07-05T13:48:11.590342Z", + "shell.execute_reply": "2024-07-05T13:48:11.589912Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.113042Z", - "iopub.status.busy": "2024-07-02T15:31:20.112776Z", - "iopub.status.idle": "2024-07-02T15:31:20.118755Z", - "shell.execute_reply": "2024-07-02T15:31:20.118338Z" + "iopub.execute_input": "2024-07-05T13:48:11.592315Z", + "iopub.status.busy": "2024-07-05T13:48:11.591996Z", + "iopub.status.idle": "2024-07-05T13:48:11.597759Z", + "shell.execute_reply": "2024-07-05T13:48:11.597346Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.120896Z", - "iopub.status.busy": "2024-07-02T15:31:20.120567Z", - "iopub.status.idle": "2024-07-02T15:31:20.123220Z", - "shell.execute_reply": "2024-07-02T15:31:20.122769Z" + "iopub.execute_input": "2024-07-05T13:48:11.599736Z", + "iopub.status.busy": "2024-07-05T13:48:11.599416Z", + "iopub.status.idle": "2024-07-05T13:48:11.602022Z", + "shell.execute_reply": "2024-07-05T13:48:11.601469Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.124968Z", - "iopub.status.busy": "2024-07-02T15:31:20.124802Z", - "iopub.status.idle": "2024-07-02T15:31:28.571097Z", - "shell.execute_reply": "2024-07-02T15:31:28.570451Z" + "iopub.execute_input": "2024-07-05T13:48:11.603925Z", + "iopub.status.busy": "2024-07-05T13:48:11.603601Z", + "iopub.status.idle": "2024-07-05T13:48:20.202387Z", + "shell.execute_reply": "2024-07-05T13:48:20.201841Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.573996Z", - "iopub.status.busy": "2024-07-02T15:31:28.573598Z", - "iopub.status.idle": "2024-07-02T15:31:28.580859Z", - "shell.execute_reply": "2024-07-02T15:31:28.580404Z" + "iopub.execute_input": "2024-07-05T13:48:20.205012Z", + "iopub.status.busy": "2024-07-05T13:48:20.204634Z", + "iopub.status.idle": "2024-07-05T13:48:20.211666Z", + "shell.execute_reply": "2024-07-05T13:48:20.211221Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.582717Z", - "iopub.status.busy": "2024-07-02T15:31:28.582538Z", - "iopub.status.idle": "2024-07-02T15:31:28.586218Z", - "shell.execute_reply": "2024-07-02T15:31:28.585630Z" + "iopub.execute_input": "2024-07-05T13:48:20.213706Z", + "iopub.status.busy": "2024-07-05T13:48:20.213365Z", + "iopub.status.idle": "2024-07-05T13:48:20.216890Z", + "shell.execute_reply": "2024-07-05T13:48:20.216472Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.588135Z", - "iopub.status.busy": "2024-07-02T15:31:28.587823Z", - "iopub.status.idle": "2024-07-02T15:31:28.590968Z", - "shell.execute_reply": "2024-07-02T15:31:28.590464Z" + "iopub.execute_input": "2024-07-05T13:48:20.218861Z", + "iopub.status.busy": "2024-07-05T13:48:20.218436Z", + "iopub.status.idle": "2024-07-05T13:48:20.221825Z", + "shell.execute_reply": "2024-07-05T13:48:20.221286Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.592960Z", - "iopub.status.busy": "2024-07-02T15:31:28.592655Z", - "iopub.status.idle": "2024-07-02T15:31:28.595547Z", - "shell.execute_reply": "2024-07-02T15:31:28.595114Z" + "iopub.execute_input": "2024-07-05T13:48:20.223886Z", + "iopub.status.busy": "2024-07-05T13:48:20.223464Z", + "iopub.status.idle": "2024-07-05T13:48:20.226446Z", + "shell.execute_reply": "2024-07-05T13:48:20.226012Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.597477Z", - "iopub.status.busy": "2024-07-02T15:31:28.597173Z", - "iopub.status.idle": "2024-07-02T15:31:28.605193Z", - "shell.execute_reply": "2024-07-02T15:31:28.604644Z" + "iopub.execute_input": "2024-07-05T13:48:20.228391Z", + "iopub.status.busy": "2024-07-05T13:48:20.228081Z", + "iopub.status.idle": "2024-07-05T13:48:20.235928Z", + "shell.execute_reply": "2024-07-05T13:48:20.235381Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.607149Z", - "iopub.status.busy": "2024-07-02T15:31:28.606833Z", - "iopub.status.idle": "2024-07-02T15:31:28.609520Z", - "shell.execute_reply": "2024-07-02T15:31:28.608976Z" + "iopub.execute_input": "2024-07-05T13:48:20.237961Z", + "iopub.status.busy": "2024-07-05T13:48:20.237635Z", + "iopub.status.idle": "2024-07-05T13:48:20.240086Z", + "shell.execute_reply": "2024-07-05T13:48:20.239663Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.611593Z", - "iopub.status.busy": "2024-07-02T15:31:28.611160Z", - "iopub.status.idle": "2024-07-02T15:31:28.728605Z", - "shell.execute_reply": "2024-07-02T15:31:28.728116Z" + "iopub.execute_input": "2024-07-05T13:48:20.242221Z", + "iopub.status.busy": "2024-07-05T13:48:20.241907Z", + "iopub.status.idle": "2024-07-05T13:48:20.365110Z", + "shell.execute_reply": "2024-07-05T13:48:20.364618Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.730718Z", - "iopub.status.busy": "2024-07-02T15:31:28.730363Z", - "iopub.status.idle": "2024-07-02T15:31:28.833994Z", - "shell.execute_reply": "2024-07-02T15:31:28.833479Z" + "iopub.execute_input": "2024-07-05T13:48:20.367238Z", + "iopub.status.busy": "2024-07-05T13:48:20.366936Z", + "iopub.status.idle": "2024-07-05T13:48:20.470181Z", + "shell.execute_reply": "2024-07-05T13:48:20.469627Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.836173Z", - "iopub.status.busy": "2024-07-02T15:31:28.835822Z", - "iopub.status.idle": "2024-07-02T15:31:29.318753Z", - "shell.execute_reply": "2024-07-02T15:31:29.318190Z" + "iopub.execute_input": "2024-07-05T13:48:20.472476Z", + "iopub.status.busy": "2024-07-05T13:48:20.472152Z", + "iopub.status.idle": "2024-07-05T13:48:20.960057Z", + "shell.execute_reply": "2024-07-05T13:48:20.959421Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.320805Z", - "iopub.status.busy": "2024-07-02T15:31:29.320632Z", - "iopub.status.idle": "2024-07-02T15:31:29.390828Z", - "shell.execute_reply": "2024-07-02T15:31:29.390329Z" + "iopub.execute_input": "2024-07-05T13:48:20.962617Z", + "iopub.status.busy": "2024-07-05T13:48:20.962295Z", + "iopub.status.idle": "2024-07-05T13:48:21.053080Z", + "shell.execute_reply": "2024-07-05T13:48:21.052502Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.392859Z", - "iopub.status.busy": "2024-07-02T15:31:29.392685Z", - "iopub.status.idle": "2024-07-02T15:31:29.401028Z", - "shell.execute_reply": "2024-07-02T15:31:29.400481Z" + "iopub.execute_input": "2024-07-05T13:48:21.057799Z", + "iopub.status.busy": "2024-07-05T13:48:21.057390Z", + "iopub.status.idle": "2024-07-05T13:48:21.068480Z", + "shell.execute_reply": "2024-07-05T13:48:21.067956Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.403035Z", - "iopub.status.busy": "2024-07-02T15:31:29.402726Z", - "iopub.status.idle": "2024-07-02T15:31:29.405418Z", - "shell.execute_reply": "2024-07-02T15:31:29.404957Z" + "iopub.execute_input": "2024-07-05T13:48:21.070858Z", + "iopub.status.busy": "2024-07-05T13:48:21.070486Z", + "iopub.status.idle": "2024-07-05T13:48:21.073966Z", + "shell.execute_reply": "2024-07-05T13:48:21.073404Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.407290Z", - "iopub.status.busy": "2024-07-02T15:31:29.407118Z", - "iopub.status.idle": "2024-07-02T15:31:34.727159Z", - "shell.execute_reply": "2024-07-02T15:31:34.726599Z" + "iopub.execute_input": "2024-07-05T13:48:21.076148Z", + "iopub.status.busy": "2024-07-05T13:48:21.075810Z", + "iopub.status.idle": "2024-07-05T13:48:26.520438Z", + "shell.execute_reply": "2024-07-05T13:48:26.519891Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:34.729487Z", - "iopub.status.busy": "2024-07-02T15:31:34.729099Z", - "iopub.status.idle": "2024-07-02T15:31:34.738133Z", - "shell.execute_reply": "2024-07-02T15:31:34.737687Z" + "iopub.execute_input": "2024-07-05T13:48:26.522794Z", + "iopub.status.busy": "2024-07-05T13:48:26.522426Z", + "iopub.status.idle": "2024-07-05T13:48:26.530706Z", + "shell.execute_reply": "2024-07-05T13:48:26.530283Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:34.740153Z", - "iopub.status.busy": "2024-07-02T15:31:34.739979Z", - "iopub.status.idle": "2024-07-02T15:31:34.810722Z", - "shell.execute_reply": "2024-07-02T15:31:34.810162Z" + "iopub.execute_input": "2024-07-05T13:48:26.532802Z", + "iopub.status.busy": "2024-07-05T13:48:26.532462Z", + "iopub.status.idle": "2024-07-05T13:48:26.600924Z", + "shell.execute_reply": "2024-07-05T13:48:26.600269Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 9d29e7511..dfe420e60 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"c7cbbf84083044978ab0df9b9c7126a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38ac20ffb13048faad531b95689a6281": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7631dd07857745e3b56461586f545318": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c7cbbf84083044978ab0df9b9c7126a9", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_38ac20ffb13048faad531b95689a6281", "tabbable": null, "tooltip": null, "value": 30.0}}, "fa73892e099842d1b9af380a12979792": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcc356830b094ef8b7bd62ea9d5f4d3c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fa4275e75f7d47ca9abfdd2ff25071a4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa73892e099842d1b9af380a12979792", "placeholder": "\u200b", "style": "IPY_MODEL_dcc356830b094ef8b7bd62ea9d5f4d3c", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "f50ec117ed814ac3820ed475371f1510": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4517d65ed66644b08c13686bca4ada61": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "79753d45ae124059908bf2ba3678d798": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f50ec117ed814ac3820ed475371f1510", "placeholder": "\u200b", "style": "IPY_MODEL_4517d65ed66644b08c13686bca4ada61", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007739.81it/s]"}}, "c7762dfaefbe498d9f7c6387900b93a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bad327a6dcab414c8e0a515458d75ccb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fa4275e75f7d47ca9abfdd2ff25071a4", "IPY_MODEL_7631dd07857745e3b56461586f545318", "IPY_MODEL_79753d45ae124059908bf2ba3678d798"], "layout": "IPY_MODEL_c7762dfaefbe498d9f7c6387900b93a0", "tabbable": null, "tooltip": null}}, "72ec7912eda94737b355f53c83796387": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "480f3b3335064465bea3b972128d431b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2daaa990afa74831ac228ef5af8c878a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72ec7912eda94737b355f53c83796387", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_480f3b3335064465bea3b972128d431b", "tabbable": null, "tooltip": null, "value": 30.0}}, "b39e7c191a2443ccae358aec72bf7220": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "848cf4dd8cda496e896c4d1cc4c769e4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "57447469206d4415aafdd42c03b73e58": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b39e7c191a2443ccae358aec72bf7220", "placeholder": "\u200b", "style": "IPY_MODEL_848cf4dd8cda496e896c4d1cc4c769e4", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "801025927d904866871b27bae4f3e30c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa0bbd1ddd3b47ed8606049facfac47d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "786fd79b6e614e9b814448b582543029": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_801025927d904866871b27bae4f3e30c", "placeholder": "\u200b", "style": "IPY_MODEL_fa0bbd1ddd3b47ed8606049facfac47d", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:20<00:00,\u2007\u20071.42it/s]"}}, "c83b606f3fdb4d6a8afcb5f78c107ac8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e0001601cd8466bb4509138ab4ebda8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_57447469206d4415aafdd42c03b73e58", "IPY_MODEL_2daaa990afa74831ac228ef5af8c878a", "IPY_MODEL_786fd79b6e614e9b814448b582543029"], "layout": "IPY_MODEL_c83b606f3fdb4d6a8afcb5f78c107ac8", "tabbable": null, "tooltip": null}}, "40ce6ec00dea4ff68934b9dba6caed1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b57ba400aba2414cb1bb173653025ebb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "abfa384596354665b60a79f482b668f3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_40ce6ec00dea4ff68934b9dba6caed1f", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b57ba400aba2414cb1bb173653025ebb", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "fdf4e3973a9c42018c8d1b704c592c6e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa85802912774b7988f19c20712f63ab": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f3b9945cd0f94d4aaf5d332693944660": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fdf4e3973a9c42018c8d1b704c592c6e", "placeholder": "\u200b", "style": "IPY_MODEL_aa85802912774b7988f19c20712f63ab", "tabbable": null, "tooltip": null, "value": "100%"}}, "451ab150dbda4bfbb629498f0e760dac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fd140538c574ca89150cf75b6f35521": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "44d19e8829934708a262462fd0c1bf75": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_451ab150dbda4bfbb629498f0e760dac", "placeholder": "\u200b", "style": "IPY_MODEL_0fd140538c574ca89150cf75b6f35521", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154921.47it/s]"}}, "50a714bd30054853846491d6d3f2c650": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88f1333cf1c544a5912e80ec16eb4ca6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f3b9945cd0f94d4aaf5d332693944660", "IPY_MODEL_abfa384596354665b60a79f482b668f3", "IPY_MODEL_44d19e8829934708a262462fd0c1bf75"], "layout": "IPY_MODEL_50a714bd30054853846491d6d3f2c650", "tabbable": null, "tooltip": null}}, "b0d9136bfec24979b7f2bdb45cc8a04b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1cda877c22e24a249a3adea1e5a3eaa6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ce881d19b69a46be8feb73a7b5a68d09": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b0d9136bfec24979b7f2bdb45cc8a04b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1cda877c22e24a249a3adea1e5a3eaa6", "tabbable": null, "tooltip": null, "value": 30.0}}, "81e58e1b155346b3b6e2d9d89fa60aac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65bd5ddda279485393f9c86d24ce9772": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a0a519ca6e5455ca09357a81c0d379e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_81e58e1b155346b3b6e2d9d89fa60aac", "placeholder": "\u200b", "style": "IPY_MODEL_65bd5ddda279485393f9c86d24ce9772", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "7a8940a833324ba29bb1e6f53e89dae1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f14050e5552461e9f897fe3737afc39": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aaa77b4b69364ba2ad48741d8b4141e7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a8940a833324ba29bb1e6f53e89dae1", "placeholder": "\u200b", "style": "IPY_MODEL_3f14050e5552461e9f897fe3737afc39", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200722.02it/s]"}}, "84554b6d7bf44226bf53416e4d0a2b71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7eccc0839691439e89d779fba47b562f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4a0a519ca6e5455ca09357a81c0d379e", "IPY_MODEL_ce881d19b69a46be8feb73a7b5a68d09", "IPY_MODEL_aaa77b4b69364ba2ad48741d8b4141e7"], "layout": "IPY_MODEL_84554b6d7bf44226bf53416e4d0a2b71", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"56c8781b70024916be5a1162b0a734af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0708e2625ff433ea7a4176a703c7242": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5963830793f1450ea7b1fb7ac0783b7e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56c8781b70024916be5a1162b0a734af", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b0708e2625ff433ea7a4176a703c7242", "tabbable": null, "tooltip": null, "value": 30.0}}, "536c4806c10646628cf0aa9e7d93efed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e398c70b818437a99d1b62b44a80137": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0a77d94362b14dc6bc0992e05db88861": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_536c4806c10646628cf0aa9e7d93efed", "placeholder": "\u200b", "style": "IPY_MODEL_0e398c70b818437a99d1b62b44a80137", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "4ad302ebed3c47d18e1035fd1cff123d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb9eb82879c342fab67111711c5ae4f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2fa44e23438f460e957201bba36aecf0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4ad302ebed3c47d18e1035fd1cff123d", "placeholder": "\u200b", "style": "IPY_MODEL_eb9eb82879c342fab67111711c5ae4f4", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007813.92it/s]"}}, "914072300b8a4689850987cd27450b53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b155ca2dd2c240a89dfd12b39698e341": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0a77d94362b14dc6bc0992e05db88861", "IPY_MODEL_5963830793f1450ea7b1fb7ac0783b7e", "IPY_MODEL_2fa44e23438f460e957201bba36aecf0"], "layout": "IPY_MODEL_914072300b8a4689850987cd27450b53", "tabbable": null, "tooltip": null}}, "e3876c8368ff482eb246a232f2c0f794": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed99f12beba34b11b03b90f781fd6b9b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "73398e9f8014414a85e4c97239523d6e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3876c8368ff482eb246a232f2c0f794", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ed99f12beba34b11b03b90f781fd6b9b", "tabbable": null, "tooltip": null, "value": 30.0}}, "fb7124b8507d49bdb02123d8a781b964": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "235d281a759d4778832becf9f07cbe0e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c17ec2a853d34769b2e60c303532fb60": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fb7124b8507d49bdb02123d8a781b964", "placeholder": "\u200b", "style": "IPY_MODEL_235d281a759d4778832becf9f07cbe0e", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "3f7dd7e5f1ef47758d8b7d8507b58cf3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "752c6f808f364d24bd0f9d9eb9bbe3f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "147dcdf4e1c14320a4e6de232496f0e4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3f7dd7e5f1ef47758d8b7d8507b58cf3", "placeholder": "\u200b", "style": "IPY_MODEL_752c6f808f364d24bd0f9d9eb9bbe3f4", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.38it/s]"}}, "9c4c4286bbc0497da969a1773265c47e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4eb02c4d7ac04c6faf0cb7950da00b38": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c17ec2a853d34769b2e60c303532fb60", "IPY_MODEL_73398e9f8014414a85e4c97239523d6e", "IPY_MODEL_147dcdf4e1c14320a4e6de232496f0e4"], "layout": "IPY_MODEL_9c4c4286bbc0497da969a1773265c47e", "tabbable": null, "tooltip": null}}, "bfcc780937bf499490912093596cf384": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0959576d8d854853822c2c0c85dbd82b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4a1b4eee36794f91a277074a6ff95b2d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bfcc780937bf499490912093596cf384", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0959576d8d854853822c2c0c85dbd82b", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "701a4f3524c848afb41228b1fecca7bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8072f93e079e4d7287853dd76bd68537": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "05a7ba0674d8404b9794b167cb30a429": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_701a4f3524c848afb41228b1fecca7bc", "placeholder": "\u200b", "style": "IPY_MODEL_8072f93e079e4d7287853dd76bd68537", "tabbable": null, "tooltip": null, "value": "100%"}}, "d23cf212aea34830a6ee24a357fd883d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "544697a9bab6405c866b476e42fb9aa1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fcbe8c0a17fe4c8a86f9399585779b73": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d23cf212aea34830a6ee24a357fd883d", "placeholder": "\u200b", "style": "IPY_MODEL_544697a9bab6405c866b476e42fb9aa1", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007155761.44it/s]"}}, "190bdd20bca142968b887125190c7f5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eea1625a26f64db89bfdfc0f4c787c00": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_05a7ba0674d8404b9794b167cb30a429", "IPY_MODEL_4a1b4eee36794f91a277074a6ff95b2d", "IPY_MODEL_fcbe8c0a17fe4c8a86f9399585779b73"], "layout": "IPY_MODEL_190bdd20bca142968b887125190c7f5f", "tabbable": null, "tooltip": null}}, "948ba0f67dd1426d8cfacc95040f74a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdaca55ff2324bf5bed087f5d455dccc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "209da16d24af41e1b3869e13fa263c31": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_948ba0f67dd1426d8cfacc95040f74a9", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bdaca55ff2324bf5bed087f5d455dccc", "tabbable": null, "tooltip": null, "value": 30.0}}, "f3fbba3675094f84b5be02164c7e868f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14e3cf14966b43908ebbb24a6931d903": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "321fba2098934dbb99cb1c14c3925ee4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3fbba3675094f84b5be02164c7e868f", "placeholder": "\u200b", "style": "IPY_MODEL_14e3cf14966b43908ebbb24a6931d903", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "282d805f1f814136a4159222042558b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0317cf64926347b5b1c4c52b635c1d34": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b4420e4aa1947978e614089fcea94fd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_282d805f1f814136a4159222042558b0", "placeholder": "\u200b", "style": "IPY_MODEL_0317cf64926347b5b1c4c52b635c1d34", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.89it/s]"}}, "770ebc2c046c4628aadd2f6e1c655dcd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad8c015ccb8045c7a83643beb4a0d95c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_321fba2098934dbb99cb1c14c3925ee4", "IPY_MODEL_209da16d24af41e1b3869e13fa263c31", "IPY_MODEL_6b4420e4aa1947978e614089fcea94fd"], "layout": "IPY_MODEL_770ebc2c046c4628aadd2f6e1c655dcd", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 4beae91e7..a1135fb22 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:37.724618Z", - "iopub.status.busy": "2024-07-02T15:31:37.724448Z", - "iopub.status.idle": "2024-07-02T15:31:39.632373Z", - "shell.execute_reply": "2024-07-02T15:31:39.631704Z" + "iopub.execute_input": "2024-07-05T13:48:29.612347Z", + "iopub.status.busy": "2024-07-05T13:48:29.612179Z", + "iopub.status.idle": "2024-07-05T13:48:30.931428Z", + "shell.execute_reply": "2024-07-05T13:48:30.930784Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:39.634734Z", - "iopub.status.busy": "2024-07-02T15:31:39.634549Z", - "iopub.status.idle": "2024-07-02T15:33:03.062922Z", - "shell.execute_reply": "2024-07-02T15:33:03.062276Z" + "iopub.execute_input": "2024-07-05T13:48:30.933748Z", + "iopub.status.busy": "2024-07-05T13:48:30.933561Z", + "iopub.status.idle": "2024-07-05T13:49:09.026022Z", + "shell.execute_reply": "2024-07-05T13:49:09.025403Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:03.065400Z", - "iopub.status.busy": "2024-07-02T15:33:03.065026Z", - "iopub.status.idle": "2024-07-02T15:33:04.151127Z", - "shell.execute_reply": "2024-07-02T15:33:04.150507Z" + "iopub.execute_input": "2024-07-05T13:49:09.028514Z", + "iopub.status.busy": "2024-07-05T13:49:09.028177Z", + "iopub.status.idle": "2024-07-05T13:49:10.118542Z", + "shell.execute_reply": "2024-07-05T13:49:10.117963Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.153507Z", - "iopub.status.busy": "2024-07-02T15:33:04.153220Z", - "iopub.status.idle": "2024-07-02T15:33:04.156468Z", - "shell.execute_reply": "2024-07-02T15:33:04.156013Z" + "iopub.execute_input": "2024-07-05T13:49:10.121115Z", + "iopub.status.busy": "2024-07-05T13:49:10.120833Z", + "iopub.status.idle": "2024-07-05T13:49:10.123951Z", + "shell.execute_reply": "2024-07-05T13:49:10.123519Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.158554Z", - "iopub.status.busy": "2024-07-02T15:33:04.158229Z", - "iopub.status.idle": "2024-07-02T15:33:04.162013Z", - "shell.execute_reply": "2024-07-02T15:33:04.161530Z" + "iopub.execute_input": "2024-07-05T13:49:10.125998Z", + "iopub.status.busy": "2024-07-05T13:49:10.125819Z", + "iopub.status.idle": "2024-07-05T13:49:10.129627Z", + "shell.execute_reply": "2024-07-05T13:49:10.129164Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.164308Z", - "iopub.status.busy": "2024-07-02T15:33:04.163807Z", - "iopub.status.idle": "2024-07-02T15:33:04.167471Z", - "shell.execute_reply": "2024-07-02T15:33:04.166951Z" + "iopub.execute_input": "2024-07-05T13:49:10.131521Z", + "iopub.status.busy": "2024-07-05T13:49:10.131273Z", + "iopub.status.idle": "2024-07-05T13:49:10.134852Z", + "shell.execute_reply": "2024-07-05T13:49:10.134411Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.169469Z", - "iopub.status.busy": "2024-07-02T15:33:04.169160Z", - "iopub.status.idle": "2024-07-02T15:33:04.171836Z", - "shell.execute_reply": "2024-07-02T15:33:04.171413Z" + "iopub.execute_input": "2024-07-05T13:49:10.136727Z", + "iopub.status.busy": "2024-07-05T13:49:10.136406Z", + "iopub.status.idle": "2024-07-05T13:49:10.139128Z", + "shell.execute_reply": "2024-07-05T13:49:10.138705Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.173818Z", - "iopub.status.busy": "2024-07-02T15:33:04.173482Z", - "iopub.status.idle": "2024-07-02T15:33:36.513602Z", - "shell.execute_reply": "2024-07-02T15:33:36.512999Z" + "iopub.execute_input": "2024-07-05T13:49:10.140950Z", + "iopub.status.busy": "2024-07-05T13:49:10.140774Z", + "iopub.status.idle": "2024-07-05T13:49:43.783209Z", + "shell.execute_reply": "2024-07-05T13:49:43.782546Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bad327a6dcab414c8e0a515458d75ccb", + "model_id": "b155ca2dd2c240a89dfd12b39698e341", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e0001601cd8466bb4509138ab4ebda8", + "model_id": "4eb02c4d7ac04c6faf0cb7950da00b38", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:36.516246Z", - "iopub.status.busy": "2024-07-02T15:33:36.515935Z", - "iopub.status.idle": "2024-07-02T15:33:37.144437Z", - "shell.execute_reply": "2024-07-02T15:33:37.143962Z" + "iopub.execute_input": "2024-07-05T13:49:43.785735Z", + "iopub.status.busy": "2024-07-05T13:49:43.785521Z", + "iopub.status.idle": "2024-07-05T13:49:44.452317Z", + "shell.execute_reply": "2024-07-05T13:49:44.451803Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:37.146787Z", - "iopub.status.busy": "2024-07-02T15:33:37.146361Z", - "iopub.status.idle": "2024-07-02T15:33:39.872510Z", - "shell.execute_reply": "2024-07-02T15:33:39.871932Z" + "iopub.execute_input": "2024-07-05T13:49:44.454625Z", + "iopub.status.busy": "2024-07-05T13:49:44.454202Z", + "iopub.status.idle": "2024-07-05T13:49:47.222725Z", + "shell.execute_reply": "2024-07-05T13:49:47.222138Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:39.874693Z", - "iopub.status.busy": "2024-07-02T15:33:39.874352Z", - "iopub.status.idle": "2024-07-02T15:34:12.280506Z", - "shell.execute_reply": "2024-07-02T15:34:12.280037Z" + "iopub.execute_input": "2024-07-05T13:49:47.224938Z", + "iopub.status.busy": "2024-07-05T13:49:47.224753Z", + "iopub.status.idle": "2024-07-05T13:50:19.601984Z", + "shell.execute_reply": "2024-07-05T13:50:19.601432Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88f1333cf1c544a5912e80ec16eb4ca6", + "model_id": "eea1625a26f64db89bfdfc0f4c787c00", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:12.282629Z", - "iopub.status.busy": "2024-07-02T15:34:12.282304Z", - "iopub.status.idle": "2024-07-02T15:34:26.864434Z", - "shell.execute_reply": "2024-07-02T15:34:26.863831Z" + "iopub.execute_input": "2024-07-05T13:50:19.604305Z", + "iopub.status.busy": "2024-07-05T13:50:19.603855Z", + "iopub.status.idle": "2024-07-05T13:50:34.002835Z", + "shell.execute_reply": "2024-07-05T13:50:34.002199Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:26.866952Z", - "iopub.status.busy": "2024-07-02T15:34:26.866651Z", - "iopub.status.idle": "2024-07-02T15:34:30.542698Z", - "shell.execute_reply": "2024-07-02T15:34:30.542163Z" + "iopub.execute_input": "2024-07-05T13:50:34.005312Z", + "iopub.status.busy": "2024-07-05T13:50:34.005121Z", + "iopub.status.idle": "2024-07-05T13:50:37.763251Z", + "shell.execute_reply": "2024-07-05T13:50:37.762629Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:30.544890Z", - "iopub.status.busy": "2024-07-02T15:34:30.544550Z", - "iopub.status.idle": "2024-07-02T15:34:31.919730Z", - "shell.execute_reply": "2024-07-02T15:34:31.919163Z" + "iopub.execute_input": "2024-07-05T13:50:37.765485Z", + "iopub.status.busy": "2024-07-05T13:50:37.765139Z", + "iopub.status.idle": "2024-07-05T13:50:39.154792Z", + "shell.execute_reply": "2024-07-05T13:50:39.154186Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7eccc0839691439e89d779fba47b562f", + "model_id": "ad8c015ccb8045c7a83643beb4a0d95c", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:31.922089Z", - "iopub.status.busy": "2024-07-02T15:34:31.921633Z", - "iopub.status.idle": "2024-07-02T15:34:31.951822Z", - "shell.execute_reply": "2024-07-02T15:34:31.951305Z" + "iopub.execute_input": "2024-07-05T13:50:39.156802Z", + "iopub.status.busy": "2024-07-05T13:50:39.156625Z", + "iopub.status.idle": "2024-07-05T13:50:39.184822Z", + "shell.execute_reply": "2024-07-05T13:50:39.184253Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:31.954212Z", - "iopub.status.busy": "2024-07-02T15:34:31.954007Z", - "iopub.status.idle": "2024-07-02T15:34:37.993152Z", - "shell.execute_reply": "2024-07-02T15:34:37.992712Z" + "iopub.execute_input": "2024-07-05T13:50:39.187341Z", + "iopub.status.busy": "2024-07-05T13:50:39.186880Z", + "iopub.status.idle": "2024-07-05T13:50:45.152899Z", + "shell.execute_reply": "2024-07-05T13:50:45.152291Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:37.995340Z", - "iopub.status.busy": "2024-07-02T15:34:37.995001Z", - "iopub.status.idle": "2024-07-02T15:34:38.050757Z", - "shell.execute_reply": "2024-07-02T15:34:38.050200Z" + "iopub.execute_input": "2024-07-05T13:50:45.155271Z", + "iopub.status.busy": "2024-07-05T13:50:45.154863Z", + "iopub.status.idle": "2024-07-05T13:50:45.210371Z", + "shell.execute_reply": "2024-07-05T13:50:45.209876Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0fd140538c574ca89150cf75b6f35521": { + "0317cf64926347b5b1c4c52b635c1d34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1056,7 +1056,30 @@ "text_color": null } }, - "1cda877c22e24a249a3adea1e5a3eaa6": { + "05a7ba0674d8404b9794b167cb30a429": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_701a4f3524c848afb41228b1fecca7bc", + "placeholder": "​", + "style": "IPY_MODEL_8072f93e079e4d7287853dd76bd68537", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0959576d8d854853822c2c0c85dbd82b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1072,49 +1095,71 @@ "description_width": "" } }, - "2daaa990afa74831ac228ef5af8c878a": { + "0a77d94362b14dc6bc0992e05db88861": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_72ec7912eda94737b355f53c83796387", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_480f3b3335064465bea3b972128d431b", + "layout": "IPY_MODEL_536c4806c10646628cf0aa9e7d93efed", + "placeholder": "​", + "style": "IPY_MODEL_0e398c70b818437a99d1b62b44a80137", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "38ac20ffb13048faad531b95689a6281": { + "0e398c70b818437a99d1b62b44a80137": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "147dcdf4e1c14320a4e6de232496f0e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f7dd7e5f1ef47758d8b7d8507b58cf3", + "placeholder": "​", + "style": "IPY_MODEL_752c6f808f364d24bd0f9d9eb9bbe3f4", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.38it/s]" } }, - "3f14050e5552461e9f897fe3737afc39": { + "14e3cf14966b43908ebbb24a6931d903": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1132,7 +1177,7 @@ "text_color": null } }, - "40ce6ec00dea4ff68934b9dba6caed1f": { + "190bdd20bca142968b887125190c7f5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1185,30 +1230,33 @@ "width": null } }, - "44d19e8829934708a262462fd0c1bf75": { + "209da16d24af41e1b3869e13fa263c31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_451ab150dbda4bfbb629498f0e760dac", - "placeholder": "​", - "style": "IPY_MODEL_0fd140538c574ca89150cf75b6f35521", + "layout": "IPY_MODEL_948ba0f67dd1426d8cfacc95040f74a9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bdaca55ff2324bf5bed087f5d455dccc", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154921.47it/s]" + "value": 30.0 } }, - "4517d65ed66644b08c13686bca4ada61": { + "235d281a759d4778832becf9f07cbe0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1226,7 +1274,7 @@ "text_color": null } }, - "451ab150dbda4bfbb629498f0e760dac": { + "282d805f1f814136a4159222042558b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1279,23 +1327,30 @@ "width": null } }, - "480f3b3335064465bea3b972128d431b": { + "2fa44e23438f460e957201bba36aecf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ad302ebed3c47d18e1035fd1cff123d", + "placeholder": "​", + "style": "IPY_MODEL_eb9eb82879c342fab67111711c5ae4f4", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 813.92it/s]" } }, - "4a0a519ca6e5455ca09357a81c0d379e": { + "321fba2098934dbb99cb1c14c3925ee4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1310,15 +1365,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81e58e1b155346b3b6e2d9d89fa60aac", + "layout": "IPY_MODEL_f3fbba3675094f84b5be02164c7e868f", "placeholder": "​", - "style": "IPY_MODEL_65bd5ddda279485393f9c86d24ce9772", + "style": "IPY_MODEL_14e3cf14966b43908ebbb24a6931d903", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "50a714bd30054853846491d6d3f2c650": { + "3f7dd7e5f1ef47758d8b7d8507b58cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,48 +1426,33 @@ "width": null } }, - "57447469206d4415aafdd42c03b73e58": { + "4a1b4eee36794f91a277074a6ff95b2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b39e7c191a2443ccae358aec72bf7220", - "placeholder": "​", - "style": "IPY_MODEL_848cf4dd8cda496e896c4d1cc4c769e4", + "layout": "IPY_MODEL_bfcc780937bf499490912093596cf384", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0959576d8d854853822c2c0c85dbd82b", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "65bd5ddda279485393f9c86d24ce9772": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 4997683.0 } }, - "72ec7912eda94737b355f53c83796387": { + "4ad302ebed3c47d18e1035fd1cff123d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1465,79 +1505,31 @@ "width": null } }, - "7631dd07857745e3b56461586f545318": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c7cbbf84083044978ab0df9b9c7126a9", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_38ac20ffb13048faad531b95689a6281", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "786fd79b6e614e9b814448b582543029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_801025927d904866871b27bae4f3e30c", - "placeholder": "​", - "style": "IPY_MODEL_fa0bbd1ddd3b47ed8606049facfac47d", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:20<00:00,  1.42it/s]" - } - }, - "79753d45ae124059908bf2ba3678d798": { + "4eb02c4d7ac04c6faf0cb7950da00b38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f50ec117ed814ac3820ed475371f1510", - "placeholder": "​", - "style": "IPY_MODEL_4517d65ed66644b08c13686bca4ada61", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c17ec2a853d34769b2e60c303532fb60", + "IPY_MODEL_73398e9f8014414a85e4c97239523d6e", + "IPY_MODEL_147dcdf4e1c14320a4e6de232496f0e4" + ], + "layout": "IPY_MODEL_9c4c4286bbc0497da969a1773265c47e", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 739.81it/s]" + "tooltip": null } }, - "7a8940a833324ba29bb1e6f53e89dae1": { + "536c4806c10646628cf0aa9e7d93efed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1590,55 +1582,25 @@ "width": null } }, - "7e0001601cd8466bb4509138ab4ebda8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_57447469206d4415aafdd42c03b73e58", - "IPY_MODEL_2daaa990afa74831ac228ef5af8c878a", - "IPY_MODEL_786fd79b6e614e9b814448b582543029" - ], - "layout": "IPY_MODEL_c83b606f3fdb4d6a8afcb5f78c107ac8", - "tabbable": null, - "tooltip": null - } - }, - "7eccc0839691439e89d779fba47b562f": { + "544697a9bab6405c866b476e42fb9aa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a0a519ca6e5455ca09357a81c0d379e", - "IPY_MODEL_ce881d19b69a46be8feb73a7b5a68d09", - "IPY_MODEL_aaa77b4b69364ba2ad48741d8b4141e7" - ], - "layout": "IPY_MODEL_84554b6d7bf44226bf53416e4d0a2b71", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "801025927d904866871b27bae4f3e30c": { + "56c8781b70024916be5a1162b0a734af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1653,56 @@ "width": null } }, - "81e58e1b155346b3b6e2d9d89fa60aac": { + "5963830793f1450ea7b1fb7ac0783b7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_56c8781b70024916be5a1162b0a734af", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0708e2625ff433ea7a4176a703c7242", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6b4420e4aa1947978e614089fcea94fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_282d805f1f814136a4159222042558b0", + "placeholder": "​", + "style": "IPY_MODEL_0317cf64926347b5b1c4c52b635c1d34", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.89it/s]" + } + }, + "701a4f3524c848afb41228b1fecca7bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1744,8 +1755,52 @@ "width": null } }, - "84554b6d7bf44226bf53416e4d0a2b71": { - "model_module": "@jupyter-widgets/base", + "73398e9f8014414a85e4c97239523d6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3876c8368ff482eb246a232f2c0f794", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ed99f12beba34b11b03b90f781fd6b9b", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "752c6f808f364d24bd0f9d9eb9bbe3f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "770ebc2c046c4628aadd2f6e1c655dcd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -1797,7 +1852,7 @@ "width": null } }, - "848cf4dd8cda496e896c4d1cc4c769e4": { + "8072f93e079e4d7287853dd76bd68537": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1815,98 +1870,60 @@ "text_color": null } }, - "88f1333cf1c544a5912e80ec16eb4ca6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3b9945cd0f94d4aaf5d332693944660", - "IPY_MODEL_abfa384596354665b60a79f482b668f3", - "IPY_MODEL_44d19e8829934708a262462fd0c1bf75" - ], - "layout": "IPY_MODEL_50a714bd30054853846491d6d3f2c650", - "tabbable": null, - "tooltip": null - } - }, - "aa85802912774b7988f19c20712f63ab": { - "model_module": "@jupyter-widgets/controls", + "914072300b8a4689850987cd27450b53": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aaa77b4b69364ba2ad48741d8b4141e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a8940a833324ba29bb1e6f53e89dae1", - "placeholder": "​", - "style": "IPY_MODEL_3f14050e5552461e9f897fe3737afc39", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.02it/s]" - } - }, - "abfa384596354665b60a79f482b668f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_40ce6ec00dea4ff68934b9dba6caed1f", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b57ba400aba2414cb1bb173653025ebb", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b0d9136bfec24979b7f2bdb45cc8a04b": { + "948ba0f67dd1426d8cfacc95040f74a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1959,7 +1976,7 @@ "width": null } }, - "b39e7c191a2443ccae358aec72bf7220": { + "9c4c4286bbc0497da969a1773265c47e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2012,7 +2029,31 @@ "width": null } }, - "b57ba400aba2414cb1bb173653025ebb": { + "ad8c015ccb8045c7a83643beb4a0d95c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_321fba2098934dbb99cb1c14c3925ee4", + "IPY_MODEL_209da16d24af41e1b3869e13fa263c31", + "IPY_MODEL_6b4420e4aa1947978e614089fcea94fd" + ], + "layout": "IPY_MODEL_770ebc2c046c4628aadd2f6e1c655dcd", + "tabbable": null, + "tooltip": null + } + }, + "b0708e2625ff433ea7a4176a703c7242": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2028,7 +2069,7 @@ "description_width": "" } }, - "bad327a6dcab414c8e0a515458d75ccb": { + "b155ca2dd2c240a89dfd12b39698e341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2043,16 +2084,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fa4275e75f7d47ca9abfdd2ff25071a4", - "IPY_MODEL_7631dd07857745e3b56461586f545318", - "IPY_MODEL_79753d45ae124059908bf2ba3678d798" + "IPY_MODEL_0a77d94362b14dc6bc0992e05db88861", + "IPY_MODEL_5963830793f1450ea7b1fb7ac0783b7e", + "IPY_MODEL_2fa44e23438f460e957201bba36aecf0" ], - "layout": "IPY_MODEL_c7762dfaefbe498d9f7c6387900b93a0", + "layout": "IPY_MODEL_914072300b8a4689850987cd27450b53", "tabbable": null, "tooltip": null } }, - "c7762dfaefbe498d9f7c6387900b93a0": { + "bdaca55ff2324bf5bed087f5d455dccc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bfcc780937bf499490912093596cf384": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2105,7 +2162,30 @@ "width": null } }, - "c7cbbf84083044978ab0df9b9c7126a9": { + "c17ec2a853d34769b2e60c303532fb60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb7124b8507d49bdb02123d8a781b964", + "placeholder": "​", + "style": "IPY_MODEL_235d281a759d4778832becf9f07cbe0e", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "d23cf212aea34830a6ee24a357fd883d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2238,7 @@ "width": null } }, - "c83b606f3fdb4d6a8afcb5f78c107ac8": { + "e3876c8368ff482eb246a232f2c0f794": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,33 +2291,7 @@ "width": null } }, - "ce881d19b69a46be8feb73a7b5a68d09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b0d9136bfec24979b7f2bdb45cc8a04b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1cda877c22e24a249a3adea1e5a3eaa6", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "dcc356830b094ef8b7bd62ea9d5f4d3c": { + "eb9eb82879c342fab67111711c5ae4f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2255,124 +2309,47 @@ "text_color": null } }, - "f3b9945cd0f94d4aaf5d332693944660": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fdf4e3973a9c42018c8d1b704c592c6e", - "placeholder": "​", - "style": "IPY_MODEL_aa85802912774b7988f19c20712f63ab", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "f50ec117ed814ac3820ed475371f1510": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fa0bbd1ddd3b47ed8606049facfac47d": { + "ed99f12beba34b11b03b90f781fd6b9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "fa4275e75f7d47ca9abfdd2ff25071a4": { + "eea1625a26f64db89bfdfc0f4c787c00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa73892e099842d1b9af380a12979792", - "placeholder": "​", - "style": "IPY_MODEL_dcc356830b094ef8b7bd62ea9d5f4d3c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_05a7ba0674d8404b9794b167cb30a429", + "IPY_MODEL_4a1b4eee36794f91a277074a6ff95b2d", + "IPY_MODEL_fcbe8c0a17fe4c8a86f9399585779b73" + ], + "layout": "IPY_MODEL_190bdd20bca142968b887125190c7f5f", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "tooltip": null } }, - "fa73892e099842d1b9af380a12979792": { + "f3fbba3675094f84b5be02164c7e868f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,7 +2402,7 @@ "width": null } }, - "fdf4e3973a9c42018c8d1b704c592c6e": { + "fb7124b8507d49bdb02123d8a781b964": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2454,29 @@ "visibility": null, "width": null } + }, + "fcbe8c0a17fe4c8a86f9399585779b73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d23cf212aea34830a6ee24a357fd883d", + "placeholder": "​", + "style": "IPY_MODEL_544697a9bab6405c866b476e42fb9aa1", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 155761.44it/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 0453d122a..a4c0a2dab 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 4c5c0ea36..1d15d10d6 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:40.409044Z", - "iopub.status.busy": "2024-07-02T15:34:40.408876Z", - "iopub.status.idle": "2024-07-02T15:34:41.504750Z", - "shell.execute_reply": "2024-07-02T15:34:41.504249Z" + "iopub.execute_input": "2024-07-05T13:50:47.424699Z", + "iopub.status.busy": "2024-07-05T13:50:47.423287Z", + "iopub.status.idle": "2024-07-05T13:50:48.576339Z", + "shell.execute_reply": "2024-07-05T13:50:48.575652Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-02 15:34:40-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-05 13:50:47-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.98, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "169.150.236.100, 2400:52e0:1a00::1069:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-02 15:34:40 (83.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-05 13:50:47 (7.02 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -124,16 +138,23 @@ " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", " inflating: data/train.txt \r\n", - " inflating: data/valid.txt \r\n" + " inflating: data/valid.txt " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-02 15:34:40-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.173.201, 3.5.25.44, 3.5.8.134, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.173.201|:443... connected.\r\n", + "--2024-07-05 13:50:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.30.217, 52.216.36.217, 3.5.22.36, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.30.217|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -154,10 +175,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 64.7MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 66.3MB/s in 0.2s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-02 15:34:41 (66.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-05 13:50:48 (123 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -174,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:41.507000Z", - "iopub.status.busy": "2024-07-02T15:34:41.506807Z", - "iopub.status.idle": "2024-07-02T15:34:42.679990Z", - "shell.execute_reply": "2024-07-02T15:34:42.679463Z" + "iopub.execute_input": "2024-07-05T13:50:48.578988Z", + "iopub.status.busy": "2024-07-05T13:50:48.578806Z", + "iopub.status.idle": "2024-07-05T13:50:49.824808Z", + "shell.execute_reply": "2024-07-05T13:50:49.824194Z" }, "nbsphinx": "hidden" }, @@ -188,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -214,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:42.682422Z", - "iopub.status.busy": "2024-07-02T15:34:42.682072Z", - "iopub.status.idle": "2024-07-02T15:34:42.685351Z", - "shell.execute_reply": "2024-07-02T15:34:42.684925Z" + "iopub.execute_input": "2024-07-05T13:50:49.827373Z", + "iopub.status.busy": "2024-07-05T13:50:49.826968Z", + "iopub.status.idle": "2024-07-05T13:50:49.830262Z", + "shell.execute_reply": "2024-07-05T13:50:49.829823Z" } }, "outputs": [], @@ -267,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:42.687222Z", - "iopub.status.busy": "2024-07-02T15:34:42.687046Z", - "iopub.status.idle": "2024-07-02T15:34:42.690100Z", - "shell.execute_reply": "2024-07-02T15:34:42.689584Z" + "iopub.execute_input": "2024-07-05T13:50:49.832354Z", + "iopub.status.busy": "2024-07-05T13:50:49.831962Z", + "iopub.status.idle": "2024-07-05T13:50:49.835090Z", + "shell.execute_reply": "2024-07-05T13:50:49.834552Z" }, "nbsphinx": "hidden" }, @@ -288,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:42.692165Z", - "iopub.status.busy": "2024-07-02T15:34:42.691989Z", - "iopub.status.idle": "2024-07-02T15:34:51.762665Z", - "shell.execute_reply": "2024-07-02T15:34:51.762051Z" + "iopub.execute_input": "2024-07-05T13:50:49.837043Z", + "iopub.status.busy": "2024-07-05T13:50:49.836745Z", + "iopub.status.idle": "2024-07-05T13:50:58.816136Z", + "shell.execute_reply": "2024-07-05T13:50:58.815590Z" } }, "outputs": [], @@ -365,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:51.765158Z", - "iopub.status.busy": "2024-07-02T15:34:51.764935Z", - "iopub.status.idle": "2024-07-02T15:34:51.770723Z", - "shell.execute_reply": "2024-07-02T15:34:51.770154Z" + "iopub.execute_input": "2024-07-05T13:50:58.818576Z", + "iopub.status.busy": "2024-07-05T13:50:58.818239Z", + "iopub.status.idle": "2024-07-05T13:50:58.823617Z", + "shell.execute_reply": "2024-07-05T13:50:58.823177Z" }, "nbsphinx": "hidden" }, @@ -408,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:51.772692Z", - "iopub.status.busy": "2024-07-02T15:34:51.772305Z", - "iopub.status.idle": "2024-07-02T15:34:52.114037Z", - "shell.execute_reply": "2024-07-02T15:34:52.113540Z" + "iopub.execute_input": "2024-07-05T13:50:58.825740Z", + "iopub.status.busy": "2024-07-05T13:50:58.825326Z", + "iopub.status.idle": "2024-07-05T13:50:59.160120Z", + "shell.execute_reply": "2024-07-05T13:50:59.159567Z" } }, "outputs": [], @@ -448,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:52.116302Z", - "iopub.status.busy": "2024-07-02T15:34:52.116116Z", - "iopub.status.idle": "2024-07-02T15:34:52.120622Z", - "shell.execute_reply": "2024-07-02T15:34:52.120168Z" + "iopub.execute_input": "2024-07-05T13:50:59.162617Z", + "iopub.status.busy": "2024-07-05T13:50:59.162168Z", + "iopub.status.idle": "2024-07-05T13:50:59.166715Z", + "shell.execute_reply": "2024-07-05T13:50:59.166164Z" } }, "outputs": [ @@ -523,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:52.122595Z", - "iopub.status.busy": "2024-07-02T15:34:52.122423Z", - "iopub.status.idle": "2024-07-02T15:34:54.590782Z", - "shell.execute_reply": "2024-07-02T15:34:54.590025Z" + "iopub.execute_input": "2024-07-05T13:50:59.168793Z", + "iopub.status.busy": "2024-07-05T13:50:59.168481Z", + "iopub.status.idle": "2024-07-05T13:51:01.666604Z", + "shell.execute_reply": "2024-07-05T13:51:01.665783Z" } }, "outputs": [], @@ -548,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.593625Z", - "iopub.status.busy": "2024-07-02T15:34:54.593066Z", - "iopub.status.idle": "2024-07-02T15:34:54.597171Z", - "shell.execute_reply": "2024-07-02T15:34:54.596636Z" + "iopub.execute_input": "2024-07-05T13:51:01.670206Z", + "iopub.status.busy": "2024-07-05T13:51:01.669310Z", + "iopub.status.idle": "2024-07-05T13:51:01.673571Z", + "shell.execute_reply": "2024-07-05T13:51:01.673026Z" } }, "outputs": [ @@ -587,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.599260Z", - "iopub.status.busy": "2024-07-02T15:34:54.598873Z", - "iopub.status.idle": "2024-07-02T15:34:54.604418Z", - "shell.execute_reply": "2024-07-02T15:34:54.603888Z" + "iopub.execute_input": "2024-07-05T13:51:01.675684Z", + "iopub.status.busy": "2024-07-05T13:51:01.675250Z", + "iopub.status.idle": "2024-07-05T13:51:01.681011Z", + "shell.execute_reply": "2024-07-05T13:51:01.680444Z" } }, "outputs": [ @@ -768,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.606602Z", - "iopub.status.busy": "2024-07-02T15:34:54.606277Z", - "iopub.status.idle": "2024-07-02T15:34:54.632296Z", - "shell.execute_reply": "2024-07-02T15:34:54.631839Z" + "iopub.execute_input": "2024-07-05T13:51:01.683362Z", + "iopub.status.busy": "2024-07-05T13:51:01.682853Z", + "iopub.status.idle": "2024-07-05T13:51:01.709650Z", + "shell.execute_reply": "2024-07-05T13:51:01.709102Z" } }, "outputs": [ @@ -873,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.634344Z", - "iopub.status.busy": "2024-07-02T15:34:54.634025Z", - "iopub.status.idle": "2024-07-02T15:34:54.638206Z", - "shell.execute_reply": "2024-07-02T15:34:54.637727Z" + "iopub.execute_input": "2024-07-05T13:51:01.711902Z", + "iopub.status.busy": "2024-07-05T13:51:01.711375Z", + "iopub.status.idle": "2024-07-05T13:51:01.716085Z", + "shell.execute_reply": "2024-07-05T13:51:01.715558Z" } }, "outputs": [ @@ -950,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.640053Z", - "iopub.status.busy": "2024-07-02T15:34:54.639878Z", - "iopub.status.idle": "2024-07-02T15:34:56.027864Z", - "shell.execute_reply": "2024-07-02T15:34:56.027377Z" + "iopub.execute_input": "2024-07-05T13:51:01.718213Z", + "iopub.status.busy": "2024-07-05T13:51:01.717915Z", + "iopub.status.idle": "2024-07-05T13:51:03.129689Z", + "shell.execute_reply": "2024-07-05T13:51:03.129095Z" } }, "outputs": [ @@ -1125,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:56.030025Z", - "iopub.status.busy": "2024-07-02T15:34:56.029651Z", - "iopub.status.idle": "2024-07-02T15:34:56.033503Z", - "shell.execute_reply": "2024-07-02T15:34:56.033077Z" + "iopub.execute_input": "2024-07-05T13:51:03.131903Z", + "iopub.status.busy": "2024-07-05T13:51:03.131524Z", + "iopub.status.idle": "2024-07-05T13:51:03.135618Z", + "shell.execute_reply": "2024-07-05T13:51:03.135063Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 38a21b122..93f08afc0 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "c915f776420f13284807e915043326eda337d0c4", + commit_hash: "21c46c9cea788d86c6112b2f7642a8835eec55ce", }; \ No newline at end of file

G<6r<_#7QQI4; z)MyOy6~nFK(4$7<-uZR7RRj9n(U>QOj$j*<*+vx{32(TVr4T5=4S~$VRl-r2zqkbQ z44F@ZK)#J3kYz0h^-G?gaSuL0y@GSw8DTJOX@Bep9X7YRW`B z_WfFv*CY&2E~A&n3AJ^S^_%Bb^5uLVFBQJ~kG!hFWXl%@D5|qgI?BUKjd=Z}ib^>J z(>0ek7y^aWg+MvOkx^KbRZiWVYUPCP5ovWyLR-NZV-u<6>o6qOL}EJU(!x~eG_>gn zHF6qiaYDVChM|4}zZ6>~)S~H_-cG1b)6tPms9`fOE>EZjGtds4{{WAzYFiXS-&L~T zQD08g4+06QsEjk=HmAy^n$5(M7AMW47R|)>3xyqTtXit#EO4dT&VuJkZJA~Dh47n= z2MC4VbkXQ{XInU*LY0|=uNzA3nP=6&>y`Mr!Rc`n2c-#CJ_`30P8g_qDBK=6^*9J5 z3|9l^;rk1x{=?&>>OCJ*!bue~AGeE>%6k!d(x3&nLMPS11y+bB?U85X5Ajl0(mt)B zDlSA1;WQ1^qlK8pI7L%!Tu4PN!Uedc3M|8OSIWhBEWD)(FScsypBf6Q^@}kt^6w4# zRmvskO1ISZW$4}4msoZF^F6=SQnceOwR@@64+0sE*T!=psxP+|dVeRs+P3qG7a5{P z``k{i`UK-8@*FGhZQ#4Ay25Igge?kT&ZG-$uE1U4JKndn26}Qt({^@u@=Ro^(|riS#lcg#K|tPV@%? zyt^Fsq>BfOPY&o>0--NX$Y_*|qrVA=P08SgfbVG-cocRyS?0^aBtc;Za$6D0ZSV&$ROZD zV+NT7ylcfEvw#6@7-SXjQiJRQnzv&Me*l-RO276@0>s3#1A|-w!iF%&BjEB-2KfZo z%~6m5FHKrHiYHLIa9{z0k^+*fVh|>v z!FmQ|1l-)lpqzljdl^(Ye7FfZNY69%K)gaX|P$Bdz2TJ z(Ul&rOPP;6T)%j}NOHA(T`B;+Qm!im*siV?V7t0bfbHr=0k*4K2)ram%KNxD*X<7B z7Tf8B5YN%O2=K=L)iW~K;{dkb=Y$MjoQMD?4+?0e!4U!Fbq2>B;4YG4XTuai6%a7=@j0(O_?Jl+V1@6zNSA=@igv`Gp9SbRknH?@Gq)fl7`FkXWU0zz~W zUjZ*Q$SS~vwON#_pAf9fA`l>8l(xt%U~)aS$S2^>x(o^m7_BXe2*A=U$~0I&VGWA9 zgkaqknUoOVtvgkifUXVMqO5@P8dMO_xe;4b7I0RBY61#3W{a8*a2fb-HI-Y(AqJLq z5vVU>=R#O^7`NItj3cKvx0w5a=$z9s<1t z*cZI70DA}w5MU31K{mkni?4h9P%*KGzz6~M5Ev!E9s*+p*h64~0DA~b7GMv7NCA2X zxQrP>>>)5yfIS4}2(X91JOTC)SSY|A0!swgJ$|_WyTh;20NY|4c8^~xCU%eCAi(bN zn+4cCewzTh$L|zi_xN1`>>j^I0C#vif9)4y_xM8s>>htqfZgLy2(WwnX#sYRKPSNM z@fQWy9sUXfe*Ut1{53JLd;CoSc8|YJ;OBe)JqPfN|G)_u!~5|F`CGsy4W0_PuYt=F zVyAf_z)tf@fSu+ofhBY!qWwBBRNp&*z4+jSjJ^Xo`lEnigBW}k5arV3tB}hYd>2q+ zFsF$Z=oA{GL3{y~hOk9K0b?~tEZ~I(o&x-bagwBgH2-r|hG~*aO!jGzLO{T9PLoQ2 z?>Gi&1U%Froq$>6*}_Laj>!x%3UJY~PBfvfklh+&5wJdzEwTxq{hg7-Pe8fp3~~qv zjAD>e0ImE)lH3C9E0@njVFgz|B$L2^k)nIl6&>OwkM)3Fzu(&_uxI-3*!updwV& zgH|3Fy%%gG#4AcDu>-{~C$QoaC+O?|cA={iGI|`~XhXpGBMf>7czKdRF9CLreF^;Z zEzD&Ma0r(%&zDFjTrnNFWPvk0K4`(co6Vf+`r=3eU0d|sS|4HI9VjRLv{=y0I4(rJBr2zjlT*hkwrUq{XtV+uk{|IQGjzOG&t?3#3 zE5J3{hsh@)Nis0_B4C;Z-vp%0#1=mU^zmijfkm>qIr3&!bd>L5Eqk-LVAQU z@D)JY#l!O~0!|lWkWD}etjmUlpMb#{tWH?0o)w@oe(ceM|6Y$+I}Bkkbs$k84Lk%=`1G>VKPiiXh}NKj1W+BI0Kh}K_eK9 z7LaiigRuf=vwq|;Ucl}#3?>SgGFFej$wFw?ex#Wyz^?3c0{5vi(8m3+_}u|q`&mxN zIE;P%5j{r$Eq4b{0={Z6p82A#+w zn!qIjZS`d1b^tfn9txeMv!RT5-#Ed3B0tYghaA8OjyNGBVhNXcOhA)03{D8RrNJoy zwCo-}oe_{{9fNZ`{E#3*3e4fF30aGqA_#j~FWdXMJ_24nWsp%o=VyBS`3kuJ0>82d2sIgG6F^5yz`{?! zg69l!2uSmSK~4cfG{`OBp$2&gxVSy&01D)qUrgw<34nqE4r)+XKrWmz0gFHZbnFB` zumHP}ixS}dM-7}W0gDn2phkBYrJSH~<{ihE7SQe^gR%nXmV%B_DLL8@ zkTboDNe>}EvNPxB_(y}` z4EX+cr!bq06qAXS7>p87uQG!%0#0c#PC(BpY%xIqZBhZpCka?noxv0VbO;E2|BDnt z=YIf97m%oAxppk-YKvjtSH$6&62GxZtF6L377!2$v%mygOG=9*<_P|PVE_N5#ZIC z!8QRSx-i%wAhsKWXaQZiGuS1dbWaAm0bIHd(ViS=fW2a}sxO260%$i5SR52U2bcgH z7SM7SgQEiK>CSyzz`tYI;-r9(3EJeekUNvualNp@;8{j(#Pe!bS#f1khE8_e1lW}gARs$*;~M040M|aR6Eapm;|%fxxO4*AIRyy{ib>`e z289JA{>~s!K*Apkf&~oMAXGq(c>Jq!F#!`j7?cpuG6Cj)lv_$jlY|UP3!rmvU{O}U z9u3M1plw-TQBgoDF9wwbeA1w*fRWy8Q9Xp7|G345Bx6!jOfn~DP+I_gc z0xoK>K>+Qw16MZ**ssAB0kqi;EVkJI<8OX%COgEWbYBM10`B)?uuH(#{tR{txG;dh zUI9S^8SEEOa}a}r0+J0T;4%&i*))btjtUqsnZa=Zbn*e5KSf|I-xhjOtPe2*h3Gn7V-SFNmz%2)G8MmE~abht?-xaVP|5S$k zeF4*!GI%J!dn<##0bIHa+B*noo{-5Qs@O@K3=d!u`1xOi&mF*C#8PM#*>}?aL4551 zj(+Qe_{1n=_m2SE{sWJ{3zWlx1MI>lG9kb@d~rfXaeReD4&MaaJI3ILfI24`c!b&+ z7;VomNFabtokAXo1Wfo--+z(_vAsx2U^BUO3jdEmn&b{(w^BMGKAZ~CsRc~G%l2sn zEWO7dy@34>7-V38^6{$|HWNW6nZ)GkBLIi7#!=Rpk>=_w^3$U+CBLbJ{LeaS^;F0GF}9Hj`-%;VrCSGDCn}#!LcxsBt_S za*{a?;6jxXGS2Df`2<#w{ogIvevt#%ehG(o{3mb4@ynce-tP)7tRR5t1Ls$DV2jlb z;2hREAtSC6N3R#~unU8Y0-knfuvq}@fkjQbRmg?DOtuTCH;}6iVO!xGJ>g7TV*An4Dk6;7)^X7VDUBvF#-l`XYfKm{~Zio zb{Dc`CzIC#!vA3KRzS~P4E_-?+07tM!0J5={uNMUFN04ERMg+rn)HzE9w=p5T;b^zOF<&b;AW2}#K9VN5rFW9UaMG#=K8cxVq_?n|@ z3Apo}K^+0#J^9DYdIIL8U=S|gMOp?81?#|sphU{1(j2K6zY}tz2NJ;JN<3qnwjZK_a~~Tf@ms5Lej^0XW@$9z5Wuq=W;Pc;V~!#4nLtY% zNC=DZ4qz81Iw9juLyn$IU_aSs#fgQmj|9Lx4#Ekh|2O`30(jivBMm9RYzMIYTqk5? zZ^!w~6Og|Pg9QRMc4M$eKx}^oOSo2CMxl{RmWfIJ$qZHyz{5{GqlNwt>1qeC7i*o6 zu_%h|*9-7f3^od&a}-gH%>w!?cQM&2owWXhecz0+yU*a6&+Z%M4BlppzPrW=bxhkORO9s~jRC>eUhJbhP8Qc;Gy$aR9sh%n2DS<8f130+JUz0d!Ix z>{AnXnvh=R{~FFDohEi?^l?JQcO0gN1Q`izp%M?`xJ!V{4&V~AIw2?8j{v^iVvAs$ zhY9-t2e5rE9isAQHsbg^PP}oc6@z>P@C7@bQQ3pX7j!AOW^#Lj~BLjSygaHcEi)*;oO#XA=aFXY_x}$wF+`A_?G^gLp=<9-eej zW)OHz0DB@5nCSq%D6^fA(bCP)O2GL&3>FBuyO+UY8({v=zK_W=F-f4ySSi3Rbd3PJ znDqkeVm1k|i`go`E@g)RU5d;2g9v^%iDz`s*KMy8a-t6qI865IPqX8P9l-WS zoshBa5J#U7knJdg(*nvK)AQdsA)QaK$wdLnbs1L#*o9sraErW1U&4#7$V~xD!x-Eq zaD^-;)S`}Mh;WYl}aUU&+~_>_US1~mV6w3wt26Kn!WS*8~7JdQy+0oZtwEHVhNi}4j;7n4`WhnsNia}&5qb?cslK|Tj?-3mA%W7S9YqOgDypBV%Rz)q3mXQ+T< zUl|m4fXgWKgGnie7&Se(&@uwPBw$cpKnLwsB>}ddRR!3d)evBNR$GAWnX8@<+qDJ) zY|k1Cusv%g!1k=A0Nb-R1l-hu8-3aL_730{?BIlqTP`n-?<^#5at7T5U_VM~!X5(h zq+-xpz)D?4KLM39vPFb|h1z1U0Nbr$#cBNAAV>WzPBT(WY)3{5upJpEz;=ub5 z@QFGVcI%{u|L6ejLZ6+G6a9?eLB@%$WJE;Iq0s4++ zcniR$on(yr3Ba)zKj6dt?~lS zb>~bgxrEq{dQ}D3p4SjyJ5pPK?MOWVcCHNwtfa1iJs_!ejUB+XZ|a1Mp8fUsYat|0 zFHX=}K#txF+6kDaK?eby`m;r60j)LYCZPCWw&)=sZUBScC20Jyqaz}i^b-?oDM_A3 z2q>a687yGwaJCpGAi)p@BLxi6V6=eO8jKUL)HRILOcbJYu2Tdg8^adU1YkQ-@+?Zg zVGU*pXgrE7<_bup^O!H-=>)b|RD$k5+yHmA$x<=tF^)}E2)L)ytQOF4I$Nw0fK5!v zvyB3<`z3)b0{Ty3uw8&FAd*S6kaHTi1z z86uAyfJtp1=u*bwd0_-v2`XI#a0iOieW8$j-drbTg zV2_FTC7oVmkBLMA>@ndf!0xQxHo*9^2So}ov3qN30rr?kC%_&P83fop-dBL#!Ltgm zyR)AF-JM-VfDpSs=N4dhiF^X={#;Oi-JgpHu)A}x0J}RE6<~Mg5*pC=54%5yiHY5x z%L=gja|Ho*f37UR?$6Z(*uA%=0K50r5x~6{-#_XLvAb_W0e1IoBEasx%?UiC3BKee z?yRjGz!Q8MCuF=|%+c)yOkKjDqXS$wpc2lfUf-t0d{k&7GO8P zx{@^i|J(o@#l&uaEduNY*e<|sfM@}B1Goj)4X{^$-2ev!xT@&-9u{IZz%c=K1Dq6K zH^3PIb_1LjU^l=e0^EfXJmDs~>HzK!*AR03(#38%@kW8OoZz;AMdumZ6A*Ke!9xL$ zG3a;m3kcP~qZIXjZlG}w*d$>or^SYAkVL?jhis8lKt)|lasjLVW{Xq;N@1Hlmiuyk{fZgyxVq!OZ zr~td+iwm$DzLWsF;mZiH8@{{%yWuMdaM=xCRfyg2H3ZlVUt56P@bv`P4c|b3-SCYC z*bU!|z+##pH|ln8>2e5KuaK4hu*m=ceq@3bzyj84FjT+EdY>oiivv~q+&lVEEn`*qXGXMU*#39_K%bbug`7_skrGO#d z7_1TCj?X`at{3o6JO-NtU|(cv!L0&5Xt2Wu82^oRCVz;@RtR zCxoq?Ir@$O+t2#~TrsKGfJQpxPTf7u-N4xb#fbHi$1h{?7 zj-1B_9)I7d#p+=nW3<>ONn@A$Re)XY4*_<$@xz?vu**$E0B;P(GjaxVrk)Pq_DSl5 zj7b45j!!OReI5p>1T5Det$-ti*}_La7F|Xr0d}ET1WXFxB-sVnrQ`^s`wu&67n4g& z>|*i?u!|``;3U;8UQy1qumiYmflkP{7Q)dX0zQT^NQh)Q1MFzc<~uxKaMX{o8vn>@kWDi2HgZ;w`|Ixhkyr78T1x_ zy{yTip8)KXO&~&m-N^?FaM^whBf=vi*5EWF#l$XVv;e!9aRTgOCQ2Te`f?sq9Ke;0 zbV7zb_+|jOekpXOm|&-Q@_defhrJlg6L7dUgM|W)>m*AAq}E<67ht=!O2ETjg*cP7 zLhM{O2(WYA%s{2{jw!|aZ?~S!+iFAX#aMt?pv6C0eAQx^7XNDTQVYD%O$pv=fmfs{ zbWMvTTHMxRoffCGSgyrBx@988aV@TEaZ!t#TI|#Us~E`gFD+hZv0aP5wYaavB`yBc z;(->gwZIGfl*>jf{-9Sj5S*!lczc~fr?ptG#T+eYebStZg+1cYABLxa=zR;s(Mu8#^pAcB`ky!i{dX8*t`_*0tBZp4?@0)^7W6L+ zgy_Ek5cDHH#A7Y!$2EkWX+hsL5u!(K2znHSpa)C{dMJXR8#@Hu79ePy|(-u z^iLD&WQTX_{^xP_S-tjqlEdqMrrBn_*~ituTXt-_Qq@lrlS8#l4VR;TVd+DH+KQ*{ zU!v5TCd)aO9lzp*Ei~T#D-KJ8%>VeA753Wob1;{B=pU1qoW;9-?AAARFilJ-4n%32 zHpYLJ>!_E?nl{GU3I904rSBJGSQScn&<@gtkBTgyrhVU8Fb(p=dybr^<^^Z9WhVd;a5wGDEv$%S8{ zRMPY?Kk+lmp(>=0NsFU9P)d$;A^%Hx^jE9R>0`XTj{VFEd0qTDm=kBGp|70#m5qA2 ziyQXj&)7eGXz2e6!po4{KJ0?OY8~k2ik|uvzwv?R*KDR#`wTIeRJIIYSAS)-iQ#oh z&XVnNd0qKA=&ROeK!rKVSKa(cPn7Y0{BDjIPZgFi#ybg()u_m*(2KsA zVzR1o&u_Ay5A4h}P9IeAe>Hpjb5u6<38}sCq9(h>=Gjz%OeoXVTW3Q2y`STQbd+Bj zxt@5d^MA?x(gZu#`Pr{L#NmGn_sAUM_rIb4@E5M8`r^_(`i0GXe2cH#?O&*RO_q0l zW`$hkE8=md4Sgi1k82h1@tr^QY3ZW|eZ&$wN*{;lBMY&{^x;7tndl=4eLSPs z?4;$Ok5cr}g+5MDgh5&iX&)=lQ(sjI@1gKJ`Us_9ZTe_WAG?V4BrPF*oTFeW(t_xt z41E-!k7o2ym_Az4#}%^kA?-G4NlDvJS{!|xrjL90C~90JwKzrBqmN4T(SSZ~Qp6Yf z$VNK7}R$lU79Ju|nbzAr@vP{>yudSZG3(Q84GS=I6wGb=)L zr;5ahL9fib2+<8IGQSG?Xy!+V?pv@-bu=nF&SpH6Ehcwjx@$#dQOj|xB@F2173r_q z2jKikeGiMwrjC@evLQsbvdFaRQB5l?LUc!q^i%##aH7%D>@hhK)8rMIPaPU#6-Z1o z79zusMdwIJ_chgaw<~iJzNtm}s?>}5%$e4HF#&YoieF4MAFAUBT{#G<5X4n=-!G;% z?sf(IV=Cd+)Z0I%m@nOI5l3!AkiR2v3tWS?Qx#I`68A)hWLhK?qV{i zOrN%8Rz-5eB=NkV`3F@tM@&UbY=|z2;l3|NOc0LRd6^?71f$A7Af_nXYZ?%fH78}H z-@ckl8a1Q-7D46fSC^D~UO>#Os`(ZYNt_BFtYu8=Xq9k!i)Q8gNOLzbV*a{XjUH!> z)ur*ln!B!}-M~33ngus>v`oz$&9Akit;EqO#@>ko$~<=uDDz@+8rK5KaXii`(MO#0 z#sMW-yNQ!YwC2Cc(R$!463yP?5E8BV;q(!$B|GkDOL5$YX1+LQgtZ8x?c{jz2F#Ak z(4j}C_Pu(v|E+Mx_5<3h)}NAlyC>FvQ6aO(KkhT#Uwj|g`762f~e6W?V*3OBhu$wWn2;<^x4^=MvtAeV2;Vho+rM+V}7ferIJd82ejaYAN zd?yAAPqm0y4(8w+x+(O-1$Qp;vt!ZF*MH+yw@_yjCzfeF-x17Xe{yNU)=g49f<9Bcn`p5Z016vb6}~_j2*$4N&dR2WM5=%H&P&4s^dfS0y`ri!zq9fE8;| zogD3GXVToh-(G(A&rV;mj5fnSSc@9&XemaL<}RN7Rh{7U^c~C?6$QfDXKVmy+;`6p ze|0%m2z?_no?_QKy~SRk4UU!t`_E|>fQ{!^i!in?C0~EPnlY=Y|DjNT`|hAu6N`n= z*E!?QGq7SU(K$!Egq`0s%XrDrg07I}p1b8$Tw1-!SVQcPrng_aAzA}$lBU@lY<;G+ zucCd&W@nmJz?NlNTPNBEY+9z-OKeW2wMN*4jI{{kGxl)9Aojx`b|*dds-1s&`T}aK z!JcAzJF+-zCT1LQyPmw7l*)&`l^W#}C(zr7MHt(@Q)(4-AT+HzFz!`>w%KQrMcMSQ zU@eoMqdmqBS;kEF&_=HlrShZiu|~dvAgm=RVrvn`p9K<7j*kwO32-0n_XP<*-4H)>3V8w7J+K$2jd?Hu3emY2oz6*eHqZXY}4RPqFWe)+S)X z8Lh>;?P%4p!;EGlv9*lWq8>O}PHZM)%yCan|K@1PPV`ON_>8?^>}_PQ35?c8WA_)W zwQG~m*2Wu-W{Fm-yTiWrcC@IzwiaQ;L)HV-m77m9sq$@Wr*+@0_oj8K^t_Y8Z@8c8 zJr&mA>#MQWUANtvQXA8+CXaIA2PM5v!HgZGxfgrCy^_IWmAiMq+s36r=sUmh?=i%% z*5#z54Z#gpGk?TrZ5c*_al!p>>$jWBm!Y2tjP9ziQ?m5~G^l;5y;=8=oV(~>< zYmIT2Ha5E-EqUwN&PBg57=OM6VJ+^Rqb2;;(X!#k866w=-O+Gi{fXD!0W zpDht}!|(--(y2FrP13jrqX#(XSu#)vG4gY26Z zbZ1`q?s!01v^egdSgowrImheaXuiE2&BD559cy4gGHVe=cxPRW{cSS2i=BG6C&G1r za`MLlW4)d?#S}+thZV(|?Z#4Ktrf=_Vy*4N;$f{Fz^Y-b-NJHVt?j`&VXcK>eX!O{ zEDYA#8mtJ`TBj8*M-9LtU=4F%^{>_vt#!1ISnjJ?7p(KOH7xMe+B~f6)!M_Yj^@T% zUd^Us5wF&!VfC)oPGi+BYekIiSg)($L@d^4_C=KPJXWjfb*|U3 zOjT`lLo8Tqi@)Hv_%JT@*ck2l6tJfkSqgBlOr%QwXJsO$0Bo#Ip6 zvEyawM>3-_mR;%vn^5?`^k=5vEI_x8j8Ms%)DKkFG8o`SG821^jN)*5RMwU#W-(Z*r5p=QBY zX2@EEQ37ADQKKWr24rzh$@B5l!dCR-pfNRh5_^qZ!3>VpAd{o@&*o@payy!LUPpVJ z-_ep{kstrq7-6J}pM=UOe`|1N_vvFFr)Tqc?{50{$NhOcp1RW|{S=))<8CT9rWI0< z7GY#)LMiB**{-44+}}e#B`TR7^Kv|+3YM$sg>E^qPR-ci&e-cy=5!v1+@WJW4GQ$e p42`E4EDtk|xp(dOl&(b17$V6Rg0Pl$wXH=M*Jn`~5fQ%?{(l~XNgn_J diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index c4e059cdae6f7737f6ec8656b660d74c028eef33..eacbcb92cb4a39d6bf2a0defec2740f0bac80a04 100644 GIT binary patch delta 64 zcmeA<%hYq0X+sO6p{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| UYO+zPd7_1hdD7;sjMtX{0Hfg)*Z=?k delta 64 zcmeA<%hYq0X+sO6VSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W Uxn+`Znn`l1Ve;m!jMtX{0I7==6aWAK diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index aa947ee925428e07bb6ed5390bddf84db6d444f5..3ec57b1b12bfc5b4a686f0820136cb6000e6aa9a 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# TQj?8R%@Zw5%##*hVax#lzCskC delta 63 zcmca|oAJtR#tn-Z4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} T%`KCR(@c_64U-pNVax#l!>|\n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:46.149214Z", - "iopub.status.busy": "2024-07-02T15:28:46.148915Z", - "iopub.status.idle": "2024-07-02T15:28:46.321937Z", - "shell.execute_reply": "2024-07-02T15:28:46.321507Z" + "iopub.execute_input": "2024-07-05T13:45:24.889238Z", + "iopub.status.busy": "2024-07-05T13:45:24.889068Z", + "iopub.status.idle": "2024-07-05T13:45:25.059543Z", + "shell.execute_reply": "2024-07-05T13:45:25.058961Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:46.324150Z", - "iopub.status.busy": "2024-07-02T15:28:46.323864Z", - "iopub.status.idle": "2024-07-02T15:28:46.328076Z", - "shell.execute_reply": "2024-07-02T15:28:46.327547Z" + "iopub.execute_input": "2024-07-05T13:45:25.061970Z", + "iopub.status.busy": "2024-07-05T13:45:25.061648Z", + "iopub.status.idle": "2024-07-05T13:45:25.066099Z", + "shell.execute_reply": "2024-07-05T13:45:25.065579Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2590,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "06215a9cafbd487ab2aabd7e76896c2d": { + "017ed362d194481285ca0b7383d936e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2643,31 @@ "width": null } }, - "095395d6aa1b452fb58afcbbc125c095": { + "04104c2b68d14463a30ff109175470df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73eaeb7e288c443f817d36bb347483c8", + "IPY_MODEL_34e5b525e4584c6891d6c65f233ca868", + "IPY_MODEL_2f0f63079b214be6a49433578f36ab9c" + ], + "layout": "IPY_MODEL_27cc86e511744dcc9fd41b34e7fd45f3", + "tabbable": null, + "tooltip": null + } + }, + "04cfcebc38b44e918a85ec82ed600d52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,7 +2720,200 @@ "width": null } }, - "0ce0648da73f406bb87655fdbb7d5b96": { + "05023523a1c34319951655e6d51b127e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0598b19d2087490b8218ae28f5a48277": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ffe0261d1484e58926d7940fd6b90dc", + "placeholder": "​", + "style": "IPY_MODEL_2d0b180842a5445eab9b5196ec4c0861", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.95it/s]" + } + }, + "06045d912b654308a7a03133bddf6004": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0949b739aa7548d181317cef49252027": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5b952fde4fd486fb97500c88c0683aa", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_980fd6a0e4f944288991b26d43eb382e", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "0bbeebdbc79849b18f68f4aca95d139b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9aa276cccb4645dc84a12d59bb9b9d6a", + "IPY_MODEL_0949b739aa7548d181317cef49252027", + "IPY_MODEL_6b0aacd1af1c40aa973905f634e2597d" + ], + "layout": "IPY_MODEL_96a5ffca4a2747b69f3c7d018242dc00", + "tabbable": null, + "tooltip": null + } + }, + "0d10f65f4e80496c903f7df1e463e200": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3eea038a429a407783bfa898bd45c447", + "IPY_MODEL_ca7c2ebc9e4745f09697264e998cacc7", + "IPY_MODEL_ab6da36ebae347eb99b5dcd50d5d61eb" + ], + "layout": "IPY_MODEL_1808a4996a16488a86e9dd31b215214b", + "tabbable": null, + "tooltip": null + } + }, + "1405b92920ac43b2b6344a3ede3fa5e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c66b81637bd489a83475cc5288a6c21", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8aad63182524f3da77428dc3e976194", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "16e25c3381c245b5800e1030f3e4d0f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1722f8c6d8744344aaff9b7bc8054e2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1808a4996a16488a86e9dd31b215214b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2749,7 +2966,7 @@ "width": null } }, - "0df705c672fb43bbb9e3eda00edf190d": { + "182533a082294293bb0bda5a7b8af6a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2802,7 +3019,7 @@ "width": null } }, - "0eae775299c340c282f40d2c11b33d8f": { + "188ee6ec1852435abfbb424039c677ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2855,130 +3072,61 @@ "width": null } }, - "12840034e5794d6f899a765d58ab3d47": { - "model_module": "@jupyter-widgets/controls", + "19b93901612c414381cffdaa667cb677": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "128b18a312b94a7e8f83f6ecb1cf88ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec1c6ef5a124498093928eb1908e2659", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_892769ffede940149b9dd4ef371e6c6b", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "146f9e51cdfd42749198b0e0c23d202d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "15c4c2eccdef4d22a0be623db1c181f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "15f53de19f414e4b8e01003cfcdb4910": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a0b4e1286164abcb03053f6e5bbc01f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0a39fcda0744e718b1f43880054db22", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cb63a23d1fae4acc8bb3b9a248ed90dd", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "1a33cdc766a747aba50b7d78c6640621": { - "model_module": "@jupyter-widgets/base", + "1a8c92a55e984fad843b75db39969e45": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -3030,25 +3178,7 @@ "width": null } }, - "1a5455d51be94b3eaded7bfd47cc0457": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1ae5db8cbc4445e2b177cbb75cf548c7": { + "1ac6d3b7ee364a9a8334cf39f7c7c664": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3063,16 +3193,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b9f07a6e2a8343d4978b34e4580a3d43", - "IPY_MODEL_ea09ecc214a24d27ac4f9a9984295435", - "IPY_MODEL_492b6ce45b6d440ebaad497ad655ad65" + "IPY_MODEL_c36d49504766479c818a7e171441675c", + "IPY_MODEL_2e9476f4883a470a811448af95aa4751", + "IPY_MODEL_9f260bd2a5564eb2bf76c6cabd4e0cb9" ], - "layout": "IPY_MODEL_90fc60fcde7f4ac094170e750a73f244", + "layout": "IPY_MODEL_b535b9f70abd4f9c8dab94f13dc32e69", "tabbable": null, "tooltip": null } }, - "1bd4198065174e84ab1eca765b96c630": { + "1bfaf5ec73984283a0ef36a5a84c3a46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3088,7 +3218,7 @@ "description_width": "" } }, - "1c5296256b6443e3ba9e455d23cc69c1": { + "1c143aa077d841c187ab8a636e0834ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3104,40 +3234,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9ead80d683a6491081632b4f3b9c4a32", + "layout": "IPY_MODEL_6bf502b53d094bd2bb563d0e90fc5d73", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ed1c314562f64740a4bdcaef37ccc36b", + "style": "IPY_MODEL_cd12a6524d3c4c10960936b07de17d21", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "1d0de356a8a64954852f43aa35806ea0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86be3dd24db14a8898fdbb06836f6a72", - "placeholder": "​", - "style": "IPY_MODEL_95465de05450430197a0f59c479dd7a9", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6181.68 examples/s]" - } - }, - "1d5d7a8cecbf484c972e0942d6a03995": { + "1c5a0d1ed5a74a5292753caf94966aa7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3190,7 +3297,79 @@ "width": null } }, - "1d6d3c5bfb63408ebbd5b2eeefef7d5b": { + "1c71b2fe740242c28cd6dcd648cfe674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff1e37c00034488fa75bac4d1c3544ca", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_820206c7e74e4bfbbfdcde05ca7056e9", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "1cc91f39fc584ba3b390ebcc891d5fe8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7ea44a47d124362897eabfd975496be", + "placeholder": "​", + "style": "IPY_MODEL_16e25c3381c245b5800e1030f3e4d0f3", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "1f1c80d8032f48f4a25fa9fee0870a4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50d2ad92cef24de3880c2ead00525c64", + "placeholder": "​", + "style": "IPY_MODEL_94d807683a16417e97bcc72efb3844d7", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.80it/s]" + } + }, + "1f794c720cca47b5b28c3306ec9cd95b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3243,30 +3422,31 @@ "width": null } }, - "1e6a5b63ab11465f9bbf613c7e547b87": { + "1f8b45dcac8b4f639490e28ab4cea2b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_558fdfb2b93b4227a1cb1db2b5e4c0c6", - "placeholder": "​", - "style": "IPY_MODEL_e8bde9b4ba7b4598a05bb9a50e01884d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c4cc6b87578424eb0ca88f87cac2db8", + "IPY_MODEL_1c143aa077d841c187ab8a636e0834ad", + "IPY_MODEL_2ff3d0dae5f245ae858d236a8ab02607" + ], + "layout": "IPY_MODEL_e06216040a4245dba44ea0a1f4b7481a", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.82it/s]" + "tooltip": null } }, - "1f0336efc4e541d2afd7b3eba8bb28f1": { + "1fbd3dfbdd40409aa9f1f2de11ab82e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3282,41 +3462,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2903dce2463449dd8f64d52f8dfc2e79", + "layout": "IPY_MODEL_54649ae127254e9890552474de64e57a", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1bd4198065174e84ab1eca765b96c630", + "style": "IPY_MODEL_1bfaf5ec73984283a0ef36a5a84c3a46", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "1f428038b90b4831b764456ae8104f11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b6247fabd3c9465980d7afeb4bbd7321", - "IPY_MODEL_1c5296256b6443e3ba9e455d23cc69c1", - "IPY_MODEL_d414eae569544ed99ff808903e53ca34" - ], - "layout": "IPY_MODEL_85c28b4798464f5a8417d3b2a042048a", - "tabbable": null, - "tooltip": null - } - }, - "20f24cbda083496a82c777048b6e35d9": { + "227885752e8a47da9829a535d91646fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3334,30 +3490,7 @@ "text_color": null } }, - "21cb86e6ca264dc18a3fc1d6ca53b8c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0ce0648da73f406bb87655fdbb7d5b96", - "placeholder": "​", - "style": "IPY_MODEL_6c3cb9635fc043b49f8d58655d66e4af", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "23558bd264264033b2d9782455420348": { + "239963bc11444e499efeec6e08bd7487": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3410,20 +3543,36 @@ "width": null } }, - "27a10e327ddb4b9093bc5cd059dc47ea": { - "model_module": "@jupyter-widgets/base", + "24aeccfb74a14d60a7ee4d3f11c9c52e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "24dceccb7ff84e70b8b726bb0572d3b7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, @@ -3463,7 +3612,7 @@ "width": null } }, - "2903dce2463449dd8f64d52f8dfc2e79": { + "24e511314323457ea1c839ab1688e80b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3516,106 +3665,113 @@ "width": null } }, - "2ad38f3365374d2ebdcb347fecc7f7d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d6d3c5bfb63408ebbd5b2eeefef7d5b", - "placeholder": "​", - "style": "IPY_MODEL_93285482bf7a47948bfaf617e6560e62", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "2af7057d9f9e4382b8969af056a70b31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_21cb86e6ca264dc18a3fc1d6ca53b8c8", - "IPY_MODEL_6052bd16878a4d93852135e9889c44fa", - "IPY_MODEL_b54fa885be544149b2d737f701302ac2" - ], - "layout": "IPY_MODEL_772715de5a304144aa16418d39998969", - "tabbable": null, - "tooltip": null - } - }, - "2b7d5844fe304275909217722c7a1a24": { - "model_module": "@jupyter-widgets/controls", + "27cc86e511744dcc9fd41b34e7fd45f3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_50d4841ee3f9430bb8d68aa6756d0196", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_502bd5601d62495fb79895cb6330ab83", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2bb7e9eb83fe4497b90616077d472f4b": { - "model_module": "@jupyter-widgets/controls", + "2b8837d141dc430684ea292356eef06d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b1526e2e5168453cbfbd347cf38ac67d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15c4c2eccdef4d22a0be623db1c181f8", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2c0b9d7bd4f0471997bca535de0865ad": { + "2c66b81637bd489a83475cc5288a6c21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3668,7 +3824,31 @@ "width": null } }, - "2cfc559f2c3f4eac9c1f78da68485085": { + "2c7fe3779c484f9a811bdd2e6dddaf7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9b78fa5d52f9419e9c30740aa0153376", + "IPY_MODEL_5af6c03ef8414e26874437308c83fe14", + "IPY_MODEL_765c62ac420c4f3c8007a96d11016fdc" + ], + "layout": "IPY_MODEL_d02e35d57631461d9c38335a297f89ea", + "tabbable": null, + "tooltip": null + } + }, + "2d0b180842a5445eab9b5196ec4c0861": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3686,7 +3866,7 @@ "text_color": null } }, - "2d67f6cc14674d09b09b18b656234458": { + "2e9476f4883a470a811448af95aa4751": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3702,40 +3882,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fedc3692795249689353eccb515a9530", - "max": 8845.0, + "layout": "IPY_MODEL_5743fb92a0224b938c6c4d7bd1c4aaf0", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_eb77dac7bc62412fbb597ff597b6c989", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "2dcfa01772b042d1a18560ea0ffe622b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dfb04d3a63764eebb3d552ee4ed183f2", - "placeholder": "​", - "style": "IPY_MODEL_ab47dc6735ee4fb097e7a3681e03b017", + "style": "IPY_MODEL_c74e23a7e5874497a957e2fb6532f581", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8758.15 examples/s]" + "value": 40.0 } }, - "2fe3b5eee64448a9ac18e339494c4892": { + "2f0f63079b214be6a49433578f36ab9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3750,15 +3907,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_374e196ced424d1c8ed2148c7cc59a33", + "layout": "IPY_MODEL_b21a4d74b1bc482595a8a94207c2258d", "placeholder": "​", - "style": "IPY_MODEL_4ed6c09296d547b6b724e0ff1423ae0f", + "style": "IPY_MODEL_f3b76188eedc4627bed4530cc242840d", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 109MB/s]" + "value": " 26.4M/26.4M [00:00<00:00, 115MB/s]" } }, - "305281fe64904e5e8ca2bc65aa7315dd": { + "2ff3d0dae5f245ae858d236a8ab02607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3773,15 +3930,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_90d02f25013745e0a5fab63dd3a30607", + "layout": "IPY_MODEL_34d93232c312468ebf60869a7d11fcc1", "placeholder": "​", - "style": "IPY_MODEL_6d30b5f8bd744ee9b5e0f9ace75f28e1", + "style": "IPY_MODEL_356b81410d974606b73eefd81608cafb", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 60000/60000 [00:07<00:00, 8485.86 examples/s]" } }, - "310f996b72454ddeb46aa59742828a71": { + "30b3a9431eb646ef96bdd321067a7cf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3834,7 +3991,7 @@ "width": null } }, - "3222da55bbd24fc9a61751756a156f00": { + "32e00a51f8524ed2aec27dc1e7d19a36": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3887,7 +4044,7 @@ "width": null } }, - "34f47aeaa29a4cd099d2f0993d0d6cd8": { + "349fc3b00a444d719977da71f8a57f6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3940,25 +4097,7 @@ "width": null } }, - "36e037e60520443395cc77903fbf80e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "374e196ced424d1c8ed2148c7cc59a33": { + "34d93232c312468ebf60869a7d11fcc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4011,28 +4150,56 @@ "width": null } }, - "39309087b22b46c9b493bf4992a41da3": { + "34e5b525e4584c6891d6c65f233ca868": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3a4b4cc3e84240c48bd636935fab2f51": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32e00a51f8524ed2aec27dc1e7d19a36", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_05023523a1c34319951655e6d51b127e", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "356b81410d974606b73eefd81608cafb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3a200865f83c41038b51273857a1062b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -4080,30 +4247,25 @@ "width": null } }, - "3aa133a9e18a4c55834c6b51537682de": { + "3a6905a218d84d8ea4bbe668c2cf39f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f9a76dcea2324e3a9d9de0674e2e43fa", - "placeholder": "​", - "style": "IPY_MODEL_dc09a5e9d9a34e4888bb48a8d57e87a7", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e820559a2b24284ba9afe2029142d45": { + "3dc4bec09e8e43fe866c6b3a2d19e5d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4156,7 +4318,7 @@ "width": null } }, - "3fcb5400e6364ce08bf65fad0810c61a": { + "3e665db397fb4e4dbe42d42fd2c58402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4209,7 +4371,54 @@ "width": null } }, - "4017e76298ac40b38081de747f8fc4cc": { + "3ec6b75e603c45e7a3f156b1d53523cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6ac3a2f2522b4041be575839659b3ee1", + "IPY_MODEL_e05f965311444618b11fb0779ffeed2d", + "IPY_MODEL_af30cb34e032460ba1f298149d91dbeb" + ], + "layout": "IPY_MODEL_2b8837d141dc430684ea292356eef06d", + "tabbable": null, + "tooltip": null + } + }, + "3eea038a429a407783bfa898bd45c447": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_51d779b61cf64cf09f01ddd389b629c2", + "placeholder": "​", + "style": "IPY_MODEL_b508530ac0c64e6282752fb8f852cc9f", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "3fad173efafd4cdb8aab502f67aea8fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4262,7 +4471,7 @@ "width": null } }, - "409e1ed6db8f49b18a518d7fdfad5fb6": { + "4242b1d50ca548a785af52459fb31e2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4315,30 +4524,7 @@ "width": null } }, - "492b6ce45b6d440ebaad497ad655ad65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d94f3c1fdf5c401e96d6819b4179d2ab", - "placeholder": "​", - "style": "IPY_MODEL_dda13c05045f458785bc68041fee393c", - "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.76MB/s]" - } - }, - "49a533c6ecaf487b84a0ff78339cc685": { + "438d3f2f1ade4e968786823f4f5a213e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4391,72 +4577,94 @@ "width": null } }, - "4b0baf8a26df47d59be9d019531cbf27": { + "451396188a144a57b2eabf3cb7c98268": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c4cd8eb28a8c41aeb4f5021bc0c08d3b", - "IPY_MODEL_be9b65965fab4cf7aa90e105e3881e8c", - "IPY_MODEL_1d0de356a8a64954852f43aa35806ea0" - ], - "layout": "IPY_MODEL_d52ca08d27924dd2b2bbe5ac7a54db61", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4b0eead14d324e12a33b2892275ebfac": { + "49239e7fa43b4eea9f69bc40015341e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9586a95094484deda56ab744317ea1da", - "placeholder": "​", - "style": "IPY_MODEL_885edcdabbbd4bc9b9f7adbbe49d7b71", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.14it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4ed6c09296d547b6b724e0ff1423ae0f": { - "model_module": "@jupyter-widgets/controls", + "4bc3c51efa9a4b478e4f6379bdb17f61": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "4f579184d87043939e2f168b2dd1baec": { + "4bece941ee7b4270961503b3a4ff66c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4471,55 +4679,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d78de8b0f7b447dea71448f103aaeb26", - "IPY_MODEL_128b18a312b94a7e8f83f6ecb1cf88ae", - "IPY_MODEL_65791f080fad42fead67f26e5eb9754a" + "IPY_MODEL_cb85482c59cd432c96a046a0ff7b5a49", + "IPY_MODEL_1c71b2fe740242c28cd6dcd648cfe674", + "IPY_MODEL_86c0d4a67b86428588d32bcfe6ff82d5" ], - "layout": "IPY_MODEL_54ed5f61afce4a71a0c2578066595ba9", + "layout": "IPY_MODEL_1a8c92a55e984fad843b75db39969e45", "tabbable": null, "tooltip": null } }, - "502bd5601d62495fb79895cb6330ab83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "50853ac2e6cb46bda181bddbe208896e": { + "4d74bce4b96e4d6f824cee69f823c981": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49a533c6ecaf487b84a0ff78339cc685", - "placeholder": "​", - "style": "IPY_MODEL_7b4c55cd9513498aa91be74b3b85459f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1cc91f39fc584ba3b390ebcc891d5fe8", + "IPY_MODEL_ca32895b3b194720bed111d3be3b00d4", + "IPY_MODEL_c00a3bc6df694f1a8c77a58d2b7898c3" + ], + "layout": "IPY_MODEL_77be4fd8d118433dba81b2d4c681d4e8", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "50d4841ee3f9430bb8d68aa6756d0196": { + "4ffe0261d1484e58926d7940fd6b90dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4572,7 +4765,7 @@ "width": null } }, - "52facea6cf664b71b4519a25366ea06d": { + "50d2ad92cef24de3880c2ead00525c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4625,33 +4818,7 @@ "width": null } }, - "544f80d6b8bd416c90752e013a500795": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_73fd68751918467e89cc16c9e0562921", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86c4fe875d4b45fdae915826bfa54ee4", - "tabbable": null, - "tooltip": null, - "value": 4.0 - } - }, - "54ed5f61afce4a71a0c2578066595ba9": { + "51d779b61cf64cf09f01ddd389b629c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4704,7 +4871,7 @@ "width": null } }, - "54fdb625585a48d3a536a808c7c52093": { + "51e2bed8d4784f52aae7c7c50dc724fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4757,7 +4924,7 @@ "width": null } }, - "558fdfb2b93b4227a1cb1db2b5e4c0c6": { + "51ec5833c8ed4225a64e413c4c5606ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4810,31 +4977,25 @@ "width": null } }, - "56a210c9781c496fb5787a5b0e41aae6": { + "52da3cdc98da4c5faa33c72992911a03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_96640dfd8c924e69aea47a8e395b564a", - "IPY_MODEL_2bb7e9eb83fe4497b90616077d472f4b", - "IPY_MODEL_d3dd1e811fee428d9c87b01b54f9622a" - ], - "layout": "IPY_MODEL_d7867621beb2472ebd0b9a1429d5f921", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a1e3853e4354222b9159b4b5c75171e": { + "54649ae127254e9890552474de64e57a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4887,7 +5048,25 @@ "width": null } }, - "5a58bb79eb564c4899ea598ea50d0627": { + "56882a48243b422c936eee5fdbd07c82": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5743fb92a0224b938c6c4d7bd1c4aaf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,7 +5119,186 @@ "width": null } }, - "5afff76b270f4649b9c0d802eb9618fb": { + "5845e7de96d84bf3861dcdcf23469501": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc6a820bf5ea4b9594a771b6c28b5f1e", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cd8cf5f4fcb744e08b5eae30fdc76b20", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5af6c03ef8414e26874437308c83fe14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3fad173efafd4cdb8aab502f67aea8fa", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c844f8f490b8433ab9978ccc3afdc475", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "5f5133076af34d479056c0b635e2ac5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d161a5fcc174d9b9488a87fdfe8ded6", + "IPY_MODEL_68f96c4903ed457f936c5ff879d057d6", + "IPY_MODEL_bc5b081d4ff9406a92f970cbef952a0a" + ], + "layout": "IPY_MODEL_ce9d7107b2b84cc3a4dff4f70cbfd9e0", + "tabbable": null, + "tooltip": null + } + }, + "67bb5e3267ea414e83d5667c0cac165e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67d42df51fee48519ada359bec71f719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "687dddd4e766481b8f5b39c16e9b229f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "68f96c4903ed457f936c5ff879d057d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_182533a082294293bb0bda5a7b8af6a3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_49239e7fa43b4eea9f69bc40015341e6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "695854dc44b54a1db4ce5b9dad2e60d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_017ed362d194481285ca0b7383d936e5", + "placeholder": "​", + "style": "IPY_MODEL_ce9addf5f8dd45eba3443aeb02bef978", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.15it/s]" + } + }, + "6a2103311ef948a28476df97b2e489c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4993,33 +5351,53 @@ "width": null } }, - "6052bd16878a4d93852135e9889c44fa": { + "6ac3a2f2522b4041be575839659b3ee1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a4b4cc3e84240c48bd636935fab2f51", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c4e444daf724ae993ae806d939ccea1", + "layout": "IPY_MODEL_789c33c2ff5e4aab94f6df2553794d92", + "placeholder": "​", + "style": "IPY_MODEL_d85b1416f3b2426bbb9cd72dd1ff072f", "tabbable": null, "tooltip": null, - "value": 4833.0 + "value": "100%" + } + }, + "6b0aacd1af1c40aa973905f634e2597d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_188ee6ec1852435abfbb424039c677ec", + "placeholder": "​", + "style": "IPY_MODEL_1722f8c6d8744344aaff9b7bc8054e2e", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.40MB/s]" } }, - "65791f080fad42fead67f26e5eb9754a": { + "6b1bc493b7ae463aa1e8184cfa5a8db9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5034,15 +5412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4229c1699a84c50b8786f96f822af38", + "layout": "IPY_MODEL_349fc3b00a444d719977da71f8a57f6b", "placeholder": "​", - "style": "IPY_MODEL_15f53de19f414e4b8e01003cfcdb4910", + "style": "IPY_MODEL_56882a48243b422c936eee5fdbd07c82", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" + "value": "Generating test split: 100%" } }, - "6b890c9f41c34c199f4422339b9a7115": { + "6bf502b53d094bd2bb563d0e90fc5d73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5095,7 +5473,7 @@ "width": null } }, - "6b978c7a0d62417fa0d91f45e66413c4": { + "6e2a11aba829468dbba6453d10706330": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5148,7 +5526,7 @@ "width": null } }, - "6c3cb9635fc043b49f8d58655d66e4af": { + "6f11f27000c34a93a2e56665452ae52a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5166,41 +5544,100 @@ "text_color": null } }, - "6c4e444daf724ae993ae806d939ccea1": { + "6fd6832016c649dfb5267d6d2bb28018": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f21c90c0f1b84e24b1de1c1e5ad3fab9", + "IPY_MODEL_1fbd3dfbdd40409aa9f1f2de11ab82e5", + "IPY_MODEL_c9c5981699df499bb5e0cc8bf4f270a0" + ], + "layout": "IPY_MODEL_24e511314323457ea1c839ab1688e80b", + "tabbable": null, + "tooltip": null } }, - "6d30b5f8bd744ee9b5e0f9ace75f28e1": { + "720dcd36de964790bfdcc44b0c140238": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_239963bc11444e499efeec6e08bd7487", + "placeholder": "​", + "style": "IPY_MODEL_a2a7c580a6544b89aa1af9c1940fec43", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "73fd68751918467e89cc16c9e0562921": { + "73eaeb7e288c443f817d36bb347483c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_19b93901612c414381cffdaa667cb677", + "placeholder": "​", + "style": "IPY_MODEL_cecfc4ca142142edbd4165018407dd47", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "765c62ac420c4f3c8007a96d11016fdc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9fb5733fe98945f9929e1e3d703e1aa1", + "placeholder": "​", + "style": "IPY_MODEL_cfcd8ddf2e254b359b49d116dbe13bc6", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 880kB/s]" + } + }, + "77be4fd8d118433dba81b2d4c681d4e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5253,7 +5690,7 @@ "width": null } }, - "772715de5a304144aa16418d39998969": { + "789c33c2ff5e4aab94f6df2553794d92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5306,7 +5743,53 @@ "width": null } }, - "78f28a8c417d4930886931708429e1f3": { + "7a8727166e6446b78385d69806a03a13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7dd566c4632485c8644517efe32fd37", + "placeholder": "​", + "style": "IPY_MODEL_e76250affe494caca6ac07e4b7e5a194", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7d161a5fcc174d9b9488a87fdfe8ded6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a200865f83c41038b51273857a1062b", + "placeholder": "​", + "style": "IPY_MODEL_06045d912b654308a7a03133bddf6004", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7eae4dc6b6bf4c46b2faf29f98781268": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5324,7 +5807,7 @@ "text_color": null } }, - "799cd6b93e0f4d0286080d1655cd9063": { + "7f2a97fd895542c38aa37c51d5b9cf12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5377,60 +5860,65 @@ "width": null } }, - "79ad2adc81c04b66803bcf992b75007d": { - "model_module": "@jupyter-widgets/base", + "8007bfd841a7400295fe340b4584155b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d34e108adad64586ab22f7663c89b47f", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c41dbbe17e14473dbb4eb019853c1276", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "820206c7e74e4bfbbfdcde05ca7056e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "861c076180d34ba488cc07fcb0227a7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7aa6115a89d841d1b7d7edc93ac4abb6": { + "86c0d4a67b86428588d32bcfe6ff82d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5445,33 +5933,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1b8508edf42452ba2d2219aaffc4440", + "layout": "IPY_MODEL_30b3a9431eb646ef96bdd321067a7cf5", "placeholder": "​", - "style": "IPY_MODEL_78f28a8c417d4930886931708429e1f3", + "style": "IPY_MODEL_227885752e8a47da9829a535d91646fb", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 4/4 [00:00<00:00, 1201.46it/s]" } }, - "7b4c55cd9513498aa91be74b3b85459f": { + "8a995107d074403a8e9356d8a15a3f48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a6f64208e33f4e7c9046ea6a82705ebc", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8eb82c4a87bb4b108f12599c05fd15ab", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "7e3f05f2d52c45518e7fa6ec6779cb4c": { + "8bf5ccf242634dc3a2ca1614efa93d85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5486,15 +5982,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27a10e327ddb4b9093bc5cd059dc47ea", + "layout": "IPY_MODEL_de799bdb97734f87a2f5184e4bd311b7", "placeholder": "​", - "style": "IPY_MODEL_12840034e5794d6f899a765d58ab3d47", + "style": "IPY_MODEL_451396188a144a57b2eabf3cb7c98268", "tabbable": null, "tooltip": null, "value": "100%" } }, - "7f7f3f87082943e4a0df02dcd27f337a": { + "8c4cc6b87578424eb0ca88f87cac2db8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6e2a11aba829468dbba6453d10706330", + "placeholder": "​", + "style": "IPY_MODEL_cff1798bd64e48dd939b735457536500", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "8cb9e9cb8a0a4999819859dc0cfba0d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8d4e393957d442d8b15f2b464baf1a0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5547,7 +6084,7 @@ "width": null } }, - "827d7da7658b40f6857044407fdda547": { + "8da8e373030e4dcd8241d5ae6d22438f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5562,16 +6099,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_305281fe64904e5e8ca2bc65aa7315dd", - "IPY_MODEL_544f80d6b8bd416c90752e013a500795", - "IPY_MODEL_a1f4f066adc94df989e214551e96e664" + "IPY_MODEL_c468e2778f8344aa8cc2fca297a4d251", + "IPY_MODEL_8007bfd841a7400295fe340b4584155b", + "IPY_MODEL_f092424ffebd4c40835c12e8f0af796a" ], - "layout": "IPY_MODEL_3e820559a2b24284ba9afe2029142d45", + "layout": "IPY_MODEL_bcf07d358bc7401baeebabbffd2b443a", "tabbable": null, "tooltip": null } }, - "85c28b4798464f5a8417d3b2a042048a": { + "8e78bbcb46fe4c2cb9f5df37cc307e33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5624,41 +6161,76 @@ "width": null } }, - "8672ba9a0b95494e85eb4e493ebff06a": { + "8eb82c4a87bb4b108f12599c05fd15ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdad743f4a2e4284a382dfde60cd6ce3", - "placeholder": "​", - "style": "IPY_MODEL_ef9027846b204180af89c953b7afc317", - "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.56MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "86be3dd24db14a8898fdbb06836f6a72": { - "model_module": "@jupyter-widgets/base", + "90ee69066d2a4a80b2c776fdd504bb64": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b1bc493b7ae463aa1e8184cfa5a8db9", + "IPY_MODEL_8a995107d074403a8e9356d8a15a3f48", + "IPY_MODEL_f7a685c89a924b38970fa5431a6e8855" + ], + "layout": "IPY_MODEL_bbe56b0d71d94752bda2bd0b6b20828b", + "tabbable": null, + "tooltip": null + } + }, + "94d807683a16417e97bcc72efb3844d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "96a5ffca4a2747b69f3c7d018242dc00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, @@ -5700,7 +6272,7 @@ "width": null } }, - "86c4fe875d4b45fdae915826bfa54ee4": { + "980fd6a0e4f944288991b26d43eb382e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5716,91 +6288,53 @@ "description_width": "" } }, - "885edcdabbbd4bc9b9f7adbbe49d7b71": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "88d02b42470e4501bb3cd1e3e6ebf7eb": { + "9aa276cccb4645dc84a12d59bb9b9d6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3fcb5400e6364ce08bf65fad0810c61a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d0384f03015b4b29a2fb529874891acb", + "layout": "IPY_MODEL_a37fc8f1fdf64264af95dbcd09f83e11", + "placeholder": "​", + "style": "IPY_MODEL_cabee99e44c2443a95235a4ee6301623", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "892769ffede940149b9dd4ef371e6c6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Downloading readme: 100%" } }, - "8a55c388532e4805923cfc19ea79d6f9": { + "9b78fa5d52f9419e9c30740aa0153376": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e3f05f2d52c45518e7fa6ec6779cb4c", - "IPY_MODEL_88d02b42470e4501bb3cd1e3e6ebf7eb", - "IPY_MODEL_a27c3d6d92f64500b703f8534a213527" - ], - "layout": "IPY_MODEL_c6bf48673c474f28b05932dfba8d075f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e665db397fb4e4dbe42d42fd2c58402", + "placeholder": "​", + "style": "IPY_MODEL_52da3cdc98da4c5faa33c72992911a03", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "8b40f010ec8b45ae9bb41931dd82974f": { + "9d1b1096ae10486db81df3a6bfa77724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5815,42 +6349,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f87fe7987a7548d391653382cc0cac40", - "IPY_MODEL_c05105f4332440beb07521cc771bd4ab", - "IPY_MODEL_e46b79664a5b499091764978698553f1" + "IPY_MODEL_7a8727166e6446b78385d69806a03a13", + "IPY_MODEL_a6b3d13ff4954083b91dce886be60fd3", + "IPY_MODEL_0598b19d2087490b8218ae28f5a48277" ], - "layout": "IPY_MODEL_6b890c9f41c34c199f4422339b9a7115", + "layout": "IPY_MODEL_b666c3bb58dd424b90feb9510eda0493", "tabbable": null, "tooltip": null } }, - "8b8994fc668b4dceb9c06453fb39bc0e": { + "9f260bd2a5564eb2bf76c6cabd4e0cb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79ad2adc81c04b66803bcf992b75007d", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e8c7dbc5d3214dcb86aaab520f395f74", + "layout": "IPY_MODEL_8d4e393957d442d8b15f2b464baf1a0b", + "placeholder": "​", + "style": "IPY_MODEL_d812231beb9f4cbdafec966c4fdf2abc", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": " 40/40 [00:00<00:00, 63.51it/s]" } }, - "8c42c7196455418d88da9ac9a371e461": { + "9fb5733fe98945f9929e1e3d703e1aa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5903,56 +6434,76 @@ "width": null } }, - "8d585cf69b3f4724a623579d5335bfd9": { + "a1801af373fb4c3c8f32f7c74306a1d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4017e76298ac40b38081de747f8fc4cc", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f457d8bcb4404971bf2ad18e7efff0e1", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8f5c14e14fcf4f388e2f257aa70609f8": { - "model_module": "@jupyter-widgets/controls", + "a1839d3ca50d4e979b9365fcb3453207": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34f47aeaa29a4cd099d2f0993d0d6cd8", - "placeholder": "​", - "style": "IPY_MODEL_dc5e03ce2bc744b4b89300005f223fa6", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 71.56it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8f6be0928cea469a9271f1c136a90fec": { + "a2a7c580a6544b89aa1af9c1940fec43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5970,7 +6521,7 @@ "text_color": null } }, - "90d02f25013745e0a5fab63dd3a30607": { + "a37fc8f1fdf64264af95dbcd09f83e11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6023,7 +6574,33 @@ "width": null } }, - "90fc60fcde7f4ac094170e750a73f244": { + "a6b3d13ff4954083b91dce886be60fd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4bc3c51efa9a4b478e4f6379bdb17f61", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1801af373fb4c3c8f32f7c74306a1d4", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "a6f64208e33f4e7c9046ea6a82705ebc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6076,43 +6653,7 @@ "width": null } }, - "93285482bf7a47948bfaf617e6560e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9517d2ba00ed4eb094644c417a85d507": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95465de05450430197a0f59c479dd7a9": { + "ab3ecbafa2434571b6662f7f5d2b1a91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6130,31 +6671,30 @@ "text_color": null } }, - "954702277b7d4c54bdadf343528f7419": { + "ab6da36ebae347eb99b5dcd50d5d61eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f1ced5ef687547f290b64d20124f82b3", - "IPY_MODEL_8b8994fc668b4dceb9c06453fb39bc0e", - "IPY_MODEL_2fe3b5eee64448a9ac18e339494c4892" - ], - "layout": "IPY_MODEL_799cd6b93e0f4d0286080d1655cd9063", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af2becaf82cc4478b2af24fb8c92da7b", + "placeholder": "​", + "style": "IPY_MODEL_f4df512f56144a1081754fe1d13155ae", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.44MB/s]" } }, - "9586a95094484deda56ab744317ea1da": { + "af2becaf82cc4478b2af24fb8c92da7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6207,7 +6747,7 @@ "width": null } }, - "96640dfd8c924e69aea47a8e395b564a": { + "af30cb34e032460ba1f298149d91dbeb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6222,15 +6762,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54fdb625585a48d3a536a808c7c52093", + "layout": "IPY_MODEL_fa8b4936d0ac47fb9530d1cd9496b791", "placeholder": "​", - "style": "IPY_MODEL_2cfc559f2c3f4eac9c1f78da68485085", + "style": "IPY_MODEL_8cb9e9cb8a0a4999819859dc0cfba0d9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 59.69it/s]" } }, - "96cfabb5484149d1adc2aa86092bc96d": { + "b21a4d74b1bc482595a8a94207c2258d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6283,7 +6823,25 @@ "width": null } }, - "9ead80d683a6491081632b4f3b9c4a32": { + "b508530ac0c64e6282752fb8f852cc9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b535b9f70abd4f9c8dab94f13dc32e69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6336,118 +6894,84 @@ "width": null } }, - "a100d982151c42ccbe4279f192b139bb": { - "model_module": "@jupyter-widgets/controls", + "b666c3bb58dd424b90feb9510eda0493": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a1f4f066adc94df989e214551e96e664": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_095395d6aa1b452fb58afcbbc125c095", - "placeholder": "​", - "style": "IPY_MODEL_af48e3d34e0b412c8ae2a4ca8e9215c2", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1251.75it/s]" - } - }, - "a27c3d6d92f64500b703f8534a213527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_baa7b6d1e7a243a095f0c691e7f0b5e4", - "placeholder": "​", - "style": "IPY_MODEL_1a5455d51be94b3eaded7bfd47cc0457", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.05it/s]" - } - }, - "a2a2ec56076b4b6c9ee933df0360e05b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acb03260aac345648a1ec54ab5a858f9", - "placeholder": "​", - "style": "IPY_MODEL_b1d1d60578f74d3582ef5ae972a07297", - "tabbable": null, - "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 887kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a2c2386f0ec849418856d89ef28a3475": { + "ba1ae7ede3d1471bb02bc0f5448f6271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0df705c672fb43bbb9e3eda00edf190d", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b1b4a133d95946b4ad1d95acf055e6d9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bf5ccf242634dc3a2ca1614efa93d85", + "IPY_MODEL_5845e7de96d84bf3861dcdcf23469501", + "IPY_MODEL_695854dc44b54a1db4ce5b9dad2e60d2" + ], + "layout": "IPY_MODEL_7f2a97fd895542c38aa37c51d5b9cf12", "tabbable": null, - "tooltip": null, - "value": 5148.0 + "tooltip": null } }, - "a890ab18730f4331a1b512e514f1475a": { + "bbe56b0d71d94752bda2bd0b6b20828b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6500,7 +7024,30 @@ "width": null } }, - "a89ae7c0705f458f97f4e50751463686": { + "bc5b081d4ff9406a92f970cbef952a0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_438d3f2f1ade4e968786823f4f5a213e", + "placeholder": "​", + "style": "IPY_MODEL_e92d51cc3cb749319d344a144d05c21d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.01it/s]" + } + }, + "bc6a820bf5ea4b9594a771b6c28b5f1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6553,25 +7100,7 @@ "width": null } }, - "ab47dc6735ee4fb097e7a3681e03b017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "acb03260aac345648a1ec54ab5a858f9": { + "bcf07d358bc7401baeebabbffd2b443a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6624,7 +7153,7 @@ "width": null } }, - "acf5ba82150c4bf9b8924a6d1e39bfb6": { + "c00a3bc6df694f1a8c77a58d2b7898c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6639,69 +7168,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2c0b9d7bd4f0471997bca535de0865ad", + "layout": "IPY_MODEL_51ec5833c8ed4225a64e413c4c5606ce", "placeholder": "​", - "style": "IPY_MODEL_afcb83b39c2e4478ba9ade81cf3b2fb6", + "style": "IPY_MODEL_67bb5e3267ea414e83d5667c0cac165e", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.50it/s]" - } - }, - "af48e3d34e0b412c8ae2a4ca8e9215c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "afcb83b39c2e4478ba9ade81cf3b2fb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b0214bcbe8044efda63d35e4fa778d43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 4.42M/4.42M [00:00<00:00, 81.8MB/s]" } }, - "b1526e2e5168453cbfbd347cf38ac67d": { + "c26448655cd447cc9b74db7af0f0e9dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6754,23 +7229,30 @@ "width": null } }, - "b1b4a133d95946b4ad1d95acf055e6d9": { + "c36d49504766479c818a7e171441675c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0ee9bf3be92437fac2a3024d91c7a4c", + "placeholder": "​", + "style": "IPY_MODEL_c3a3791e88cb4e58acebc0f24068e6c1", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "b1d1d60578f74d3582ef5ae972a07297": { + "c3a3791e88cb4e58acebc0f24068e6c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6788,7 +7270,7 @@ "text_color": null } }, - "b270b4b9160b4aa4bbad325928110497": { + "c41dbbe17e14473dbb4eb019853c1276": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6804,493 +7286,23 @@ "description_width": "" } }, - "b54fa885be544149b2d737f701302ac2": { + "c454475583ba43fe9a35d61cb78cbdee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0eae775299c340c282f40d2c11b33d8f", - "placeholder": "​", - "style": "IPY_MODEL_df797002b4914bef8001c5e05b7be0af", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 629kB/s]" - } - }, - "b6247fabd3c9465980d7afeb4bbd7321": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5a1e3853e4354222b9159b4b5c75171e", - "placeholder": "​", - "style": "IPY_MODEL_146f9e51cdfd42749198b0e0c23d202d", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b838c277255740a2b7434474c516e95e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b9f07a6e2a8343d4978b34e4580a3d43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c42c7196455418d88da9ac9a371e461", - "placeholder": "​", - "style": "IPY_MODEL_f92dff6949004ae1808eebd99ba98566", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "baa7b6d1e7a243a095f0c691e7f0b5e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bbb269d13d924b65a58b0cf5db1b2407": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe362277556a4cf0beffd4b12f3e9ffd", - "placeholder": "​", - "style": "IPY_MODEL_20f24cbda083496a82c777048b6e35d9", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "be9b65965fab4cf7aa90e105e3881e8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5afff76b270f4649b9c0d802eb9618fb", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f1266a3dc99447f193096776b9b427f1", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "bfe066abcd864943a83e96669cadf170": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c05105f4332440beb07521cc771bd4ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a890ab18730f4331a1b512e514f1475a", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a100d982151c42ccbe4279f192b139bb", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "c1182fd93339476e85a73f0d08e7897c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f36e7b0209f84d828549adece0524582", - "IPY_MODEL_dc304d6b46fb4dc592080af62f1c4444", - "IPY_MODEL_4b0eead14d324e12a33b2892275ebfac" - ], - "layout": "IPY_MODEL_52facea6cf664b71b4519a25366ea06d", - "tabbable": null, - "tooltip": null - } - }, - "c1b8508edf42452ba2d2219aaffc4440": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c31ca76550e249ca985f248853c71722": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c4b8fffb19594f58b1a2ba4aa8ec7d11": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c4cd8eb28a8c41aeb4f5021bc0c08d3b": { + "c468e2778f8344aa8cc2fca297a4d251": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7305,92 +7317,104 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b978c7a0d62417fa0d91f45e66413c4", + "layout": "IPY_MODEL_6a2103311ef948a28476df97b2e489c8", "placeholder": "​", - "style": "IPY_MODEL_e20bd95703544b4aad1922863bff7b0f", + "style": "IPY_MODEL_7eae4dc6b6bf4c46b2faf29f98781268", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": "Downloading builder script: 100%" } }, - "c6bf48673c474f28b05932dfba8d075f": { - "model_module": "@jupyter-widgets/base", + "c74e23a7e5874497a957e2fb6532f581": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c992da0389a7424a9e7d4fb9bcf57de1": { + "c78f89df5c7d4c8dbd0afb8b6cd0b35b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c844f8f490b8433ab9978ccc3afdc475": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8aad63182524f3da77428dc3e976194": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c9c5981699df499bb5e0cc8bf4f270a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_50853ac2e6cb46bda181bddbe208896e", - "IPY_MODEL_2b7d5844fe304275909217722c7a1a24", - "IPY_MODEL_acf5ba82150c4bf9b8924a6d1e39bfb6" - ], - "layout": "IPY_MODEL_409e1ed6db8f49b18a518d7fdfad5fb6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f794c720cca47b5b28c3306ec9cd95b", + "placeholder": "​", + "style": "IPY_MODEL_67d42df51fee48519ada359bec71f719", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5925.95 examples/s]" } }, - "c9a8ae89a73f4e29a42513776b40e081": { + "ca2e39aa72d84bd58b310d5a25a5220a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7405,16 +7429,125 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3aa133a9e18a4c55834c6b51537682de", - "IPY_MODEL_1f0336efc4e541d2afd7b3eba8bb28f1", - "IPY_MODEL_2dcfa01772b042d1a18560ea0ffe622b" + "IPY_MODEL_d64b7f76c84345748623ee56512c8e87", + "IPY_MODEL_1405b92920ac43b2b6344a3ede3fa5e0", + "IPY_MODEL_d9b31ce4690a4c54b734404235749bc6" ], - "layout": "IPY_MODEL_bfe066abcd864943a83e96669cadf170", + "layout": "IPY_MODEL_a1839d3ca50d4e979b9365fcb3453207", "tabbable": null, "tooltip": null } }, - "cb63a23d1fae4acc8bb3b9a248ed90dd": { + "ca32895b3b194720bed111d3be3b00d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_51e2bed8d4784f52aae7c7c50dc724fa", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_861c076180d34ba488cc07fcb0227a7f", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "ca7c2ebc9e4745f09697264e998cacc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f794b247354a45d4900fa74d2015a5ee", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f207557054394061b984921bd80797a9", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "cabee99e44c2443a95235a4ee6301623": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cb85482c59cd432c96a046a0ff7b5a49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3dc4bec09e8e43fe866c6b3a2d19e5d3", + "placeholder": "​", + "style": "IPY_MODEL_6f11f27000c34a93a2e56665452ae52a", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "cd12a6524d3c4c10960936b07de17d21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cd8cf5f4fcb744e08b5eae30fdc76b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7430,7 +7563,7 @@ "description_width": "" } }, - "cd957436866649e6a210ee9e7fcb8650": { + "ce9addf5f8dd45eba3443aeb02bef978": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7448,7 +7581,7 @@ "text_color": null } }, - "cdad743f4a2e4284a382dfde60cd6ce3": { + "ce9d7107b2b84cc3a4dff4f70cbfd9e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7481,113 +7614,81 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cdc60c956874436f9c4e96ec9e00a78b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bbb269d13d924b65a58b0cf5db1b2407", - "IPY_MODEL_8d585cf69b3f4724a623579d5335bfd9", - "IPY_MODEL_1e6a5b63ab11465f9bbf613c7e547b87" - ], - "layout": "IPY_MODEL_23558bd264264033b2d9782455420348", - "tabbable": null, - "tooltip": null + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d0384f03015b4b29a2fb529874891acb": { + "cecfc4ca142142edbd4165018407dd47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d3dd1e811fee428d9c87b01b54f9622a": { + "cfcd8ddf2e254b359b49d116dbe13bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5a58bb79eb564c4899ea598ea50d0627", - "placeholder": "​", - "style": "IPY_MODEL_f685e18fb6ca48bd8670c03342805ecf", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.34it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d414eae569544ed99ff808903e53ca34": { + "cff1798bd64e48dd939b735457536500": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_96cfabb5484149d1adc2aa86092bc96d", - "placeholder": "​", - "style": "IPY_MODEL_b0214bcbe8044efda63d35e4fa778d43", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:35<00:00, 1727.59it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d4229c1699a84c50b8786f96f822af38": { + "d02e35d57631461d9c38335a297f89ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7640,7 +7741,7 @@ "width": null } }, - "d52ca08d27924dd2b2bbe5ac7a54db61": { + "d1bf63c233104d1f85ae0e6a99f178da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7693,7 +7794,7 @@ "width": null } }, - "d7867621beb2472ebd0b9a1429d5f921": { + "d1c7d3fcc81a445ea7955e7d7bfcf654": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7746,30 +7847,7 @@ "width": null } }, - "d78de8b0f7b447dea71448f103aaeb26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c31ca76550e249ca985f248853c71722", - "placeholder": "​", - "style": "IPY_MODEL_36e037e60520443395cc77903fbf80e2", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "d94f3c1fdf5c401e96d6819b4179d2ab": { + "d34e108adad64586ab22f7663c89b47f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7822,69 +7900,30 @@ "width": null } }, - "daf2ab05255e474d8859a35c484b2160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc09a5e9d9a34e4888bb48a8d57e87a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc304d6b46fb4dc592080af62f1c4444": { + "d64b7f76c84345748623ee56512c8e87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c4b8fffb19594f58b1a2ba4aa8ec7d11", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b270b4b9160b4aa4bbad325928110497", + "layout": "IPY_MODEL_24dceccb7ff84e70b8b726bb0572d3b7", + "placeholder": "​", + "style": "IPY_MODEL_687dddd4e766481b8f5b39c16e9b229f", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "dc5e03ce2bc744b4b89300005f223fa6": { + "d812231beb9f4cbdafec966c4fdf2abc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7902,7 +7941,7 @@ "text_color": null } }, - "dda13c05045f458785bc68041fee393c": { + "d85b1416f3b2426bbb9cd72dd1ff072f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7920,25 +7959,30 @@ "text_color": null } }, - "df797002b4914bef8001c5e05b7be0af": { + "d9b31ce4690a4c54b734404235749bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c5a0d1ed5a74a5292753caf94966aa7", + "placeholder": "​", + "style": "IPY_MODEL_ee3c67e4b0aa4028b60fd4ba5cb45da1", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1705.82it/s]" } }, - "dfb04d3a63764eebb3d552ee4ed183f2": { + "de799bdb97734f87a2f5184e4bd311b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7991,95 +8035,139 @@ "width": null } }, - "e20bd95703544b4aad1922863bff7b0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e2e98ad255df41788a76c3224436f2f7": { + "e05f965311444618b11fb0779ffeed2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e8b64de668f34ba6bedabb72cec29004", - "placeholder": "​", - "style": "IPY_MODEL_8f6be0928cea469a9271f1c136a90fec", + "layout": "IPY_MODEL_04cfcebc38b44e918a85ec82ed600d52", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24aeccfb74a14d60a7ee4d3f11c9c52e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 } }, - "e46b79664a5b499091764978698553f1": { - "model_module": "@jupyter-widgets/controls", + "e06216040a4245dba44ea0a1f4b7481a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b838c277255740a2b7434474c516e95e", - "placeholder": "​", - "style": "IPY_MODEL_fad6c2d0a0214e7780bca6c7a90edb1a", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8796.13 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e7654577166b46889495c83a9b0ff4fb": { - "model_module": "@jupyter-widgets/controls", + "e0ee9bf3be92437fac2a3024d91c7a4c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e2e98ad255df41788a76c3224436f2f7", - "IPY_MODEL_a2c2386f0ec849418856d89ef28a3475", - "IPY_MODEL_a2a2ec56076b4b6c9ee933df0360e05b" - ], - "layout": "IPY_MODEL_1a33cdc766a747aba50b7d78c6640621", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e8b64de668f34ba6bedabb72cec29004": { + "e5b952fde4fd486fb97500c88c0683aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8132,7 +8220,7 @@ "width": null } }, - "e8bde9b4ba7b4598a05bb9a50e01884d": { + "e76250affe494caca6ac07e4b7e5a194": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8150,65 +8238,31 @@ "text_color": null } }, - "e8c7dbc5d3214dcb86aaab520f395f74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ea09ecc214a24d27ac4f9a9984295435": { + "e7b9056bc7ce44979ee220717d0b4c9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7f7f3f87082943e4a0df02dcd27f337a", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_39309087b22b46c9b493bf4992a41da3", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_720dcd36de964790bfdcc44b0c140238", + "IPY_MODEL_e8bcfe3d447449f581f5d285d3a59a52", + "IPY_MODEL_1f1c80d8032f48f4a25fa9fee0870a4b" + ], + "layout": "IPY_MODEL_4242b1d50ca548a785af52459fb31e2b", "tabbable": null, - "tooltip": null, - "value": 29515.0 - } - }, - "eb77dac7bc62412fbb597ff597b6c989": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "ec1c6ef5a124498093928eb1908e2659": { + "e7dd566c4632485c8644517efe32fd37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8261,41 +8315,7 @@ "width": null } }, - "ed1c314562f64740a4bdcaef37ccc36b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef9027846b204180af89c953b7afc317": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f0a39fcda0744e718b1f43880054db22": { + "e7ea44a47d124362897eabfd975496be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8348,46 +8368,69 @@ "width": null } }, - "f1266a3dc99447f193096776b9b427f1": { + "e8bcfe3d447449f581f5d285d3a59a52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1c7d3fcc81a445ea7955e7d7bfcf654", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c454475583ba43fe9a35d61cb78cbdee", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e92d51cc3cb749319d344a144d05c21d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f1ced5ef687547f290b64d20124f82b3": { + "ee3c67e4b0aa4028b60fd4ba5cb45da1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_310f996b72454ddeb46aa59742828a71", - "placeholder": "​", - "style": "IPY_MODEL_9517d2ba00ed4eb094644c417a85d507", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f36e7b0209f84d828549adece0524582": { + "f092424ffebd4c40835c12e8f0af796a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8402,15 +8445,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1d5d7a8cecbf484c972e0942d6a03995", + "layout": "IPY_MODEL_8e78bbcb46fe4c2cb9f5df37cc307e33", "placeholder": "​", - "style": "IPY_MODEL_cd957436866649e6a210ee9e7fcb8650", + "style": "IPY_MODEL_ab3ecbafa2434571b6662f7f5d2b1a91", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4.83k/4.83k [00:00<00:00, 624kB/s]" } }, - "f457d8bcb4404971bf2ad18e7efff0e1": { + "f207557054394061b984921bd80797a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -8426,25 +8469,7 @@ "description_width": "" } }, - "f685e18fb6ca48bd8670c03342805ecf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f87fe7987a7548d391653382cc0cac40": { + "f21c90c0f1b84e24b1de1c1e5ad3fab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8459,15 +8484,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_06215a9cafbd487ab2aabd7e76896c2d", + "layout": "IPY_MODEL_d1bf63c233104d1f85ae0e6a99f178da", "placeholder": "​", - "style": "IPY_MODEL_daf2ab05255e474d8859a35c484b2160", + "style": "IPY_MODEL_c78f89df5c7d4c8dbd0afb8b6cd0b35b", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": "Map (num_proc=4): 100%" + } + }, + "f3b76188eedc4627bed4530cc242840d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f92dff6949004ae1808eebd99ba98566": { + "f4df512f56144a1081754fe1d13155ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8485,7 +8528,7 @@ "text_color": null } }, - "f9a76dcea2324e3a9d9de0674e2e43fa": { + "f794b247354a45d4900fa74d2015a5ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8538,73 +8581,30 @@ "width": null } }, - "fad6c2d0a0214e7780bca6c7a90edb1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fb1361d5c5c24b5c861d4294a90ba506": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7aa6115a89d841d1b7d7edc93ac4abb6", - "IPY_MODEL_2d67f6cc14674d09b09b18b656234458", - "IPY_MODEL_8672ba9a0b95494e85eb4e493ebff06a" - ], - "layout": "IPY_MODEL_3222da55bbd24fc9a61751756a156f00", - "tabbable": null, - "tooltip": null - } - }, - "fbbd08fb2b71411b97e8aee71a57b844": { + "f7a685c89a924b38970fa5431a6e8855": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2ad38f3365374d2ebdcb347fecc7f7d9", - "IPY_MODEL_1a0b4e1286164abcb03053f6e5bbc01f", - "IPY_MODEL_8f5c14e14fcf4f388e2f257aa70609f8" - ], - "layout": "IPY_MODEL_a89ae7c0705f458f97f4e50751463686", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c26448655cd447cc9b74db7af0f0e9dd", + "placeholder": "​", + "style": "IPY_MODEL_3a6905a218d84d8ea4bbe668c2cf39f3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8501.83 examples/s]" } }, - "fe362277556a4cf0beffd4b12f3e9ffd": { + "fa8b4936d0ac47fb9530d1cd9496b791": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8657,7 +8657,7 @@ "width": null } }, - "fedc3692795249689353eccb515a9530": { + "ff1e37c00034488fa75bac4d1c3544ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index dc39d6bb4..7667c814d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:49.899605Z", - "iopub.status.busy": "2024-07-02T15:28:49.899202Z", - "iopub.status.idle": "2024-07-02T15:28:50.991494Z", - "shell.execute_reply": "2024-07-02T15:28:50.990945Z" + "iopub.execute_input": "2024-07-05T13:45:28.639127Z", + "iopub.status.busy": "2024-07-05T13:45:28.638659Z", + "iopub.status.idle": "2024-07-05T13:45:29.715160Z", + "shell.execute_reply": "2024-07-05T13:45:29.714629Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:50.994031Z", - "iopub.status.busy": "2024-07-02T15:28:50.993599Z", - "iopub.status.idle": "2024-07-02T15:28:51.011326Z", - "shell.execute_reply": "2024-07-02T15:28:51.010872Z" + "iopub.execute_input": "2024-07-05T13:45:29.717775Z", + "iopub.status.busy": "2024-07-05T13:45:29.717342Z", + "iopub.status.idle": "2024-07-05T13:45:29.734563Z", + "shell.execute_reply": "2024-07-05T13:45:29.734021Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.013324Z", - "iopub.status.busy": "2024-07-02T15:28:51.012973Z", - "iopub.status.idle": "2024-07-02T15:28:51.039303Z", - "shell.execute_reply": "2024-07-02T15:28:51.038773Z" + "iopub.execute_input": "2024-07-05T13:45:29.736915Z", + "iopub.status.busy": "2024-07-05T13:45:29.736519Z", + "iopub.status.idle": "2024-07-05T13:45:29.760584Z", + "shell.execute_reply": "2024-07-05T13:45:29.760111Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.041327Z", - "iopub.status.busy": "2024-07-02T15:28:51.040919Z", - "iopub.status.idle": "2024-07-02T15:28:51.044291Z", - "shell.execute_reply": "2024-07-02T15:28:51.043776Z" + "iopub.execute_input": "2024-07-05T13:45:29.762505Z", + "iopub.status.busy": "2024-07-05T13:45:29.762208Z", + "iopub.status.idle": "2024-07-05T13:45:29.765557Z", + "shell.execute_reply": "2024-07-05T13:45:29.765034Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.046448Z", - "iopub.status.busy": "2024-07-02T15:28:51.046144Z", - "iopub.status.idle": "2024-07-02T15:28:51.053455Z", - "shell.execute_reply": "2024-07-02T15:28:51.052943Z" + "iopub.execute_input": "2024-07-05T13:45:29.767574Z", + "iopub.status.busy": "2024-07-05T13:45:29.767271Z", + "iopub.status.idle": "2024-07-05T13:45:29.774836Z", + "shell.execute_reply": "2024-07-05T13:45:29.774282Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.055596Z", - "iopub.status.busy": "2024-07-02T15:28:51.055273Z", - "iopub.status.idle": "2024-07-02T15:28:51.057820Z", - "shell.execute_reply": "2024-07-02T15:28:51.057306Z" + "iopub.execute_input": "2024-07-05T13:45:29.776954Z", + "iopub.status.busy": "2024-07-05T13:45:29.776681Z", + "iopub.status.idle": "2024-07-05T13:45:29.779310Z", + "shell.execute_reply": "2024-07-05T13:45:29.778773Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:51.059818Z", - "iopub.status.busy": "2024-07-02T15:28:51.059505Z", - "iopub.status.idle": "2024-07-02T15:28:54.001735Z", - "shell.execute_reply": "2024-07-02T15:28:54.001210Z" + "iopub.execute_input": "2024-07-05T13:45:29.781435Z", + "iopub.status.busy": "2024-07-05T13:45:29.781116Z", + "iopub.status.idle": "2024-07-05T13:45:32.738145Z", + "shell.execute_reply": "2024-07-05T13:45:32.737611Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:54.004479Z", - "iopub.status.busy": "2024-07-02T15:28:54.004049Z", - "iopub.status.idle": "2024-07-02T15:28:54.014544Z", - "shell.execute_reply": "2024-07-02T15:28:54.014111Z" + "iopub.execute_input": "2024-07-05T13:45:32.740855Z", + "iopub.status.busy": "2024-07-05T13:45:32.740367Z", + "iopub.status.idle": "2024-07-05T13:45:32.750224Z", + "shell.execute_reply": "2024-07-05T13:45:32.749806Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:54.016447Z", - "iopub.status.busy": "2024-07-02T15:28:54.016274Z", - "iopub.status.idle": "2024-07-02T15:28:55.858279Z", - "shell.execute_reply": "2024-07-02T15:28:55.857718Z" + "iopub.execute_input": "2024-07-05T13:45:32.752285Z", + "iopub.status.busy": "2024-07-05T13:45:32.751957Z", + "iopub.status.idle": "2024-07-05T13:45:34.608958Z", + "shell.execute_reply": "2024-07-05T13:45:34.608337Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.860474Z", - "iopub.status.busy": "2024-07-02T15:28:55.860182Z", - "iopub.status.idle": "2024-07-02T15:28:55.878763Z", - "shell.execute_reply": "2024-07-02T15:28:55.878229Z" + "iopub.execute_input": "2024-07-05T13:45:34.611373Z", + "iopub.status.busy": "2024-07-05T13:45:34.610897Z", + "iopub.status.idle": "2024-07-05T13:45:34.629141Z", + "shell.execute_reply": "2024-07-05T13:45:34.628589Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.880697Z", - "iopub.status.busy": "2024-07-02T15:28:55.880394Z", - "iopub.status.idle": "2024-07-02T15:28:55.888083Z", - "shell.execute_reply": "2024-07-02T15:28:55.887563Z" + "iopub.execute_input": "2024-07-05T13:45:34.631150Z", + "iopub.status.busy": "2024-07-05T13:45:34.630819Z", + "iopub.status.idle": "2024-07-05T13:45:34.638540Z", + "shell.execute_reply": "2024-07-05T13:45:34.638090Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.890072Z", - "iopub.status.busy": "2024-07-02T15:28:55.889768Z", - "iopub.status.idle": "2024-07-02T15:28:55.898858Z", - "shell.execute_reply": "2024-07-02T15:28:55.898441Z" + "iopub.execute_input": "2024-07-05T13:45:34.640558Z", + "iopub.status.busy": "2024-07-05T13:45:34.640229Z", + "iopub.status.idle": "2024-07-05T13:45:34.649783Z", + "shell.execute_reply": "2024-07-05T13:45:34.649325Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.900726Z", - "iopub.status.busy": "2024-07-02T15:28:55.900551Z", - "iopub.status.idle": "2024-07-02T15:28:55.908414Z", - "shell.execute_reply": "2024-07-02T15:28:55.907969Z" + "iopub.execute_input": "2024-07-05T13:45:34.651907Z", + "iopub.status.busy": "2024-07-05T13:45:34.651470Z", + "iopub.status.idle": "2024-07-05T13:45:34.659376Z", + "shell.execute_reply": "2024-07-05T13:45:34.658902Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.910406Z", - "iopub.status.busy": "2024-07-02T15:28:55.910090Z", - "iopub.status.idle": "2024-07-02T15:28:55.918338Z", - "shell.execute_reply": "2024-07-02T15:28:55.917916Z" + "iopub.execute_input": "2024-07-05T13:45:34.661475Z", + "iopub.status.busy": "2024-07-05T13:45:34.661081Z", + "iopub.status.idle": "2024-07-05T13:45:34.669916Z", + "shell.execute_reply": "2024-07-05T13:45:34.669389Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.920407Z", - "iopub.status.busy": "2024-07-02T15:28:55.920098Z", - "iopub.status.idle": "2024-07-02T15:28:55.927249Z", - "shell.execute_reply": "2024-07-02T15:28:55.926766Z" + "iopub.execute_input": "2024-07-05T13:45:34.671962Z", + "iopub.status.busy": "2024-07-05T13:45:34.671569Z", + "iopub.status.idle": "2024-07-05T13:45:34.679041Z", + "shell.execute_reply": "2024-07-05T13:45:34.678495Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.929330Z", - "iopub.status.busy": "2024-07-02T15:28:55.929026Z", - "iopub.status.idle": "2024-07-02T15:28:55.936059Z", - "shell.execute_reply": "2024-07-02T15:28:55.935601Z" + "iopub.execute_input": "2024-07-05T13:45:34.681094Z", + "iopub.status.busy": "2024-07-05T13:45:34.680780Z", + "iopub.status.idle": "2024-07-05T13:45:34.688348Z", + "shell.execute_reply": "2024-07-05T13:45:34.687786Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:55.938151Z", - "iopub.status.busy": "2024-07-02T15:28:55.937828Z", - "iopub.status.idle": "2024-07-02T15:28:55.946138Z", - "shell.execute_reply": "2024-07-02T15:28:55.945575Z" + "iopub.execute_input": "2024-07-05T13:45:34.690477Z", + "iopub.status.busy": "2024-07-05T13:45:34.690160Z", + "iopub.status.idle": "2024-07-05T13:45:34.697964Z", + "shell.execute_reply": "2024-07-05T13:45:34.697528Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 551ba82cd..a7ff830eb 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:28:58.631257Z", - "iopub.status.busy": "2024-07-02T15:28:58.631091Z", - "iopub.status.idle": "2024-07-02T15:29:01.231065Z", - "shell.execute_reply": "2024-07-02T15:29:01.230522Z" + "iopub.execute_input": "2024-07-05T13:45:37.508206Z", + "iopub.status.busy": "2024-07-05T13:45:37.508033Z", + "iopub.status.idle": "2024-07-05T13:45:40.115540Z", + "shell.execute_reply": "2024-07-05T13:45:40.115000Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.233809Z", - "iopub.status.busy": "2024-07-02T15:29:01.233237Z", - "iopub.status.idle": "2024-07-02T15:29:01.236539Z", - "shell.execute_reply": "2024-07-02T15:29:01.236030Z" + "iopub.execute_input": "2024-07-05T13:45:40.118143Z", + "iopub.status.busy": "2024-07-05T13:45:40.117713Z", + "iopub.status.idle": "2024-07-05T13:45:40.120793Z", + "shell.execute_reply": "2024-07-05T13:45:40.120322Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.238509Z", - "iopub.status.busy": "2024-07-02T15:29:01.238205Z", - "iopub.status.idle": "2024-07-02T15:29:01.241273Z", - "shell.execute_reply": "2024-07-02T15:29:01.240730Z" + "iopub.execute_input": "2024-07-05T13:45:40.122767Z", + "iopub.status.busy": "2024-07-05T13:45:40.122434Z", + "iopub.status.idle": "2024-07-05T13:45:40.125376Z", + "shell.execute_reply": "2024-07-05T13:45:40.124927Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.243270Z", - "iopub.status.busy": "2024-07-02T15:29:01.242968Z", - "iopub.status.idle": "2024-07-02T15:29:01.265333Z", - "shell.execute_reply": "2024-07-02T15:29:01.264818Z" + "iopub.execute_input": "2024-07-05T13:45:40.127398Z", + "iopub.status.busy": "2024-07-05T13:45:40.127086Z", + "iopub.status.idle": "2024-07-05T13:45:40.150243Z", + "shell.execute_reply": "2024-07-05T13:45:40.149783Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.267342Z", - "iopub.status.busy": "2024-07-02T15:29:01.267008Z", - "iopub.status.idle": "2024-07-02T15:29:01.270863Z", - "shell.execute_reply": "2024-07-02T15:29:01.270395Z" + "iopub.execute_input": "2024-07-05T13:45:40.152305Z", + "iopub.status.busy": "2024-07-05T13:45:40.151972Z", + "iopub.status.idle": "2024-07-05T13:45:40.155458Z", + "shell.execute_reply": "2024-07-05T13:45:40.154955Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard'}\n" + "Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.272802Z", - "iopub.status.busy": "2024-07-02T15:29:01.272475Z", - "iopub.status.idle": "2024-07-02T15:29:01.275495Z", - "shell.execute_reply": "2024-07-02T15:29:01.274962Z" + "iopub.execute_input": "2024-07-05T13:45:40.157444Z", + "iopub.status.busy": "2024-07-05T13:45:40.157167Z", + "iopub.status.idle": "2024-07-05T13:45:40.160266Z", + "shell.execute_reply": "2024-07-05T13:45:40.159757Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:01.277490Z", - "iopub.status.busy": "2024-07-02T15:29:01.277167Z", - "iopub.status.idle": "2024-07-02T15:29:05.263507Z", - "shell.execute_reply": "2024-07-02T15:29:05.262875Z" + "iopub.execute_input": "2024-07-05T13:45:40.162307Z", + "iopub.status.busy": "2024-07-05T13:45:40.162131Z", + "iopub.status.idle": "2024-07-05T13:45:43.790271Z", + "shell.execute_reply": "2024-07-05T13:45:43.789624Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:05.266231Z", - "iopub.status.busy": "2024-07-02T15:29:05.265792Z", - "iopub.status.idle": "2024-07-02T15:29:06.185238Z", - "shell.execute_reply": "2024-07-02T15:29:06.184672Z" + "iopub.execute_input": "2024-07-05T13:45:43.793215Z", + "iopub.status.busy": "2024-07-05T13:45:43.792741Z", + "iopub.status.idle": "2024-07-05T13:45:44.668399Z", + "shell.execute_reply": "2024-07-05T13:45:44.667797Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:06.187923Z", - "iopub.status.busy": "2024-07-02T15:29:06.187416Z", - "iopub.status.idle": "2024-07-02T15:29:06.190514Z", - "shell.execute_reply": "2024-07-02T15:29:06.190036Z" + "iopub.execute_input": "2024-07-05T13:45:44.671209Z", + "iopub.status.busy": "2024-07-05T13:45:44.670822Z", + "iopub.status.idle": "2024-07-05T13:45:44.673678Z", + "shell.execute_reply": "2024-07-05T13:45:44.673198Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:06.192745Z", - "iopub.status.busy": "2024-07-02T15:29:06.192366Z", - "iopub.status.idle": "2024-07-02T15:29:08.085828Z", - "shell.execute_reply": "2024-07-02T15:29:08.085168Z" + "iopub.execute_input": "2024-07-05T13:45:44.675997Z", + "iopub.status.busy": "2024-07-05T13:45:44.675626Z", + "iopub.status.idle": "2024-07-05T13:45:46.570036Z", + "shell.execute_reply": "2024-07-05T13:45:46.569408Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.090050Z", - "iopub.status.busy": "2024-07-02T15:29:08.088906Z", - "iopub.status.idle": "2024-07-02T15:29:08.114316Z", - "shell.execute_reply": "2024-07-02T15:29:08.113817Z" + "iopub.execute_input": "2024-07-05T13:45:46.573869Z", + "iopub.status.busy": "2024-07-05T13:45:46.572728Z", + "iopub.status.idle": "2024-07-05T13:45:46.598218Z", + "shell.execute_reply": "2024-07-05T13:45:46.597717Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.117749Z", - "iopub.status.busy": "2024-07-02T15:29:08.116842Z", - "iopub.status.idle": "2024-07-02T15:29:08.126972Z", - "shell.execute_reply": "2024-07-02T15:29:08.126538Z" + "iopub.execute_input": "2024-07-05T13:45:46.601793Z", + "iopub.status.busy": "2024-07-05T13:45:46.600854Z", + "iopub.status.idle": "2024-07-05T13:45:46.611715Z", + "shell.execute_reply": "2024-07-05T13:45:46.611322Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.129068Z", - "iopub.status.busy": "2024-07-02T15:29:08.128673Z", - "iopub.status.idle": "2024-07-02T15:29:08.133020Z", - "shell.execute_reply": "2024-07-02T15:29:08.132584Z" + "iopub.execute_input": "2024-07-05T13:45:46.613922Z", + "iopub.status.busy": "2024-07-05T13:45:46.613740Z", + "iopub.status.idle": "2024-07-05T13:45:46.618309Z", + "shell.execute_reply": "2024-07-05T13:45:46.617868Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.135018Z", - "iopub.status.busy": "2024-07-02T15:29:08.134691Z", - "iopub.status.idle": "2024-07-02T15:29:08.140889Z", - "shell.execute_reply": "2024-07-02T15:29:08.140420Z" + "iopub.execute_input": "2024-07-05T13:45:46.620285Z", + "iopub.status.busy": "2024-07-05T13:45:46.619944Z", + "iopub.status.idle": "2024-07-05T13:45:46.626160Z", + "shell.execute_reply": "2024-07-05T13:45:46.625662Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.142906Z", - "iopub.status.busy": "2024-07-02T15:29:08.142588Z", - "iopub.status.idle": "2024-07-02T15:29:08.148868Z", - "shell.execute_reply": "2024-07-02T15:29:08.148318Z" + "iopub.execute_input": "2024-07-05T13:45:46.628231Z", + "iopub.status.busy": "2024-07-05T13:45:46.627911Z", + "iopub.status.idle": "2024-07-05T13:45:46.634365Z", + "shell.execute_reply": "2024-07-05T13:45:46.633946Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.150927Z", - "iopub.status.busy": "2024-07-02T15:29:08.150568Z", - "iopub.status.idle": "2024-07-02T15:29:08.156157Z", - "shell.execute_reply": "2024-07-02T15:29:08.155694Z" + "iopub.execute_input": "2024-07-05T13:45:46.636191Z", + "iopub.status.busy": "2024-07-05T13:45:46.636015Z", + "iopub.status.idle": "2024-07-05T13:45:46.641900Z", + "shell.execute_reply": "2024-07-05T13:45:46.641428Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.158158Z", - "iopub.status.busy": "2024-07-02T15:29:08.157833Z", - "iopub.status.idle": "2024-07-02T15:29:08.165960Z", - "shell.execute_reply": "2024-07-02T15:29:08.165500Z" + "iopub.execute_input": "2024-07-05T13:45:46.643848Z", + "iopub.status.busy": "2024-07-05T13:45:46.643675Z", + "iopub.status.idle": "2024-07-05T13:45:46.652016Z", + "shell.execute_reply": "2024-07-05T13:45:46.651484Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.168102Z", - "iopub.status.busy": "2024-07-02T15:29:08.167668Z", - "iopub.status.idle": "2024-07-02T15:29:08.173302Z", - "shell.execute_reply": "2024-07-02T15:29:08.172857Z" + "iopub.execute_input": "2024-07-05T13:45:46.654172Z", + "iopub.status.busy": "2024-07-05T13:45:46.653728Z", + "iopub.status.idle": "2024-07-05T13:45:46.659170Z", + "shell.execute_reply": "2024-07-05T13:45:46.658720Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.175232Z", - "iopub.status.busy": "2024-07-02T15:29:08.174914Z", - "iopub.status.idle": "2024-07-02T15:29:08.180090Z", - "shell.execute_reply": "2024-07-02T15:29:08.179632Z" + "iopub.execute_input": "2024-07-05T13:45:46.661195Z", + "iopub.status.busy": "2024-07-05T13:45:46.660774Z", + "iopub.status.idle": "2024-07-05T13:45:46.666133Z", + "shell.execute_reply": "2024-07-05T13:45:46.665608Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.182081Z", - "iopub.status.busy": "2024-07-02T15:29:08.181762Z", - "iopub.status.idle": "2024-07-02T15:29:08.185358Z", - "shell.execute_reply": "2024-07-02T15:29:08.184918Z" + "iopub.execute_input": "2024-07-05T13:45:46.668090Z", + "iopub.status.busy": "2024-07-05T13:45:46.667911Z", + "iopub.status.idle": "2024-07-05T13:45:46.671352Z", + "shell.execute_reply": "2024-07-05T13:45:46.670896Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:08.187396Z", - "iopub.status.busy": "2024-07-02T15:29:08.187074Z", - "iopub.status.idle": "2024-07-02T15:29:08.192050Z", - "shell.execute_reply": "2024-07-02T15:29:08.191599Z" + "iopub.execute_input": "2024-07-05T13:45:46.673299Z", + "iopub.status.busy": "2024-07-05T13:45:46.673115Z", + "iopub.status.idle": "2024-07-05T13:45:46.678327Z", + "shell.execute_reply": "2024-07-05T13:45:46.677877Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 0eaee2f6c..40f0702a2 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.148814Z", - "iopub.status.busy": "2024-07-02T15:29:11.148637Z", - "iopub.status.idle": "2024-07-02T15:29:11.562068Z", - "shell.execute_reply": "2024-07-02T15:29:11.561444Z" + "iopub.execute_input": "2024-07-05T13:45:50.006375Z", + "iopub.status.busy": "2024-07-05T13:45:50.006204Z", + "iopub.status.idle": "2024-07-05T13:45:50.422380Z", + "shell.execute_reply": "2024-07-05T13:45:50.421900Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.564831Z", - "iopub.status.busy": "2024-07-02T15:29:11.564466Z", - "iopub.status.idle": "2024-07-02T15:29:11.689877Z", - "shell.execute_reply": "2024-07-02T15:29:11.689330Z" + "iopub.execute_input": "2024-07-05T13:45:50.424924Z", + "iopub.status.busy": "2024-07-05T13:45:50.424637Z", + "iopub.status.idle": "2024-07-05T13:45:50.551766Z", + "shell.execute_reply": "2024-07-05T13:45:50.551206Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.692161Z", - "iopub.status.busy": "2024-07-02T15:29:11.691698Z", - "iopub.status.idle": "2024-07-02T15:29:11.710885Z", - "shell.execute_reply": "2024-07-02T15:29:11.710323Z" + "iopub.execute_input": "2024-07-05T13:45:50.554046Z", + "iopub.status.busy": "2024-07-05T13:45:50.553790Z", + "iopub.status.idle": "2024-07-05T13:45:50.577263Z", + "shell.execute_reply": "2024-07-05T13:45:50.576649Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:11.713082Z", - "iopub.status.busy": "2024-07-02T15:29:11.712899Z", - "iopub.status.idle": "2024-07-02T15:29:14.335786Z", - "shell.execute_reply": "2024-07-02T15:29:14.335126Z" + "iopub.execute_input": "2024-07-05T13:45:50.580465Z", + "iopub.status.busy": "2024-07-05T13:45:50.579968Z", + "iopub.status.idle": "2024-07-05T13:45:53.221079Z", + "shell.execute_reply": "2024-07-05T13:45:53.220422Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", + " 0.356959\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", + "2 outlier 0.356959 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:14.338194Z", - "iopub.status.busy": "2024-07-02T15:29:14.337838Z", - "iopub.status.idle": "2024-07-02T15:29:22.391410Z", - "shell.execute_reply": "2024-07-02T15:29:22.390817Z" + "iopub.execute_input": "2024-07-05T13:45:53.223634Z", + "iopub.status.busy": "2024-07-05T13:45:53.223292Z", + "iopub.status.idle": "2024-07-05T13:46:12.687787Z", + "shell.execute_reply": "2024-07-05T13:46:12.687283Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:22.393854Z", - "iopub.status.busy": "2024-07-02T15:29:22.393389Z", - "iopub.status.idle": "2024-07-02T15:29:22.535692Z", - "shell.execute_reply": "2024-07-02T15:29:22.535054Z" + "iopub.execute_input": "2024-07-05T13:46:12.689817Z", + "iopub.status.busy": "2024-07-05T13:46:12.689637Z", + "iopub.status.idle": "2024-07-05T13:46:12.830382Z", + "shell.execute_reply": "2024-07-05T13:46:12.829824Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:22.538266Z", - "iopub.status.busy": "2024-07-02T15:29:22.538089Z", - "iopub.status.idle": "2024-07-02T15:29:23.850373Z", - "shell.execute_reply": "2024-07-02T15:29:23.849867Z" + "iopub.execute_input": "2024-07-05T13:46:12.832770Z", + "iopub.status.busy": "2024-07-05T13:46:12.832534Z", + "iopub.status.idle": "2024-07-05T13:46:14.143374Z", + "shell.execute_reply": "2024-07-05T13:46:14.142774Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:23.852547Z", - "iopub.status.busy": "2024-07-02T15:29:23.852210Z", - "iopub.status.idle": "2024-07-02T15:29:24.256489Z", - "shell.execute_reply": "2024-07-02T15:29:24.255943Z" + "iopub.execute_input": "2024-07-05T13:46:14.145482Z", + "iopub.status.busy": "2024-07-05T13:46:14.145288Z", + "iopub.status.idle": "2024-07-05T13:46:14.614471Z", + "shell.execute_reply": "2024-07-05T13:46:14.613864Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.259129Z", - "iopub.status.busy": "2024-07-02T15:29:24.258483Z", - "iopub.status.idle": "2024-07-02T15:29:24.266937Z", - "shell.execute_reply": "2024-07-02T15:29:24.266488Z" + "iopub.execute_input": "2024-07-05T13:46:14.616830Z", + "iopub.status.busy": "2024-07-05T13:46:14.616292Z", + "iopub.status.idle": "2024-07-05T13:46:14.625383Z", + "shell.execute_reply": "2024-07-05T13:46:14.624938Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.268896Z", - "iopub.status.busy": "2024-07-02T15:29:24.268579Z", - "iopub.status.idle": "2024-07-02T15:29:24.287826Z", - "shell.execute_reply": "2024-07-02T15:29:24.287420Z" + "iopub.execute_input": "2024-07-05T13:46:14.627452Z", + "iopub.status.busy": "2024-07-05T13:46:14.627113Z", + "iopub.status.idle": "2024-07-05T13:46:14.647021Z", + "shell.execute_reply": "2024-07-05T13:46:14.646610Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.289629Z", - "iopub.status.busy": "2024-07-02T15:29:24.289459Z", - "iopub.status.idle": "2024-07-02T15:29:24.509373Z", - "shell.execute_reply": "2024-07-02T15:29:24.508832Z" + "iopub.execute_input": "2024-07-05T13:46:14.649061Z", + "iopub.status.busy": "2024-07-05T13:46:14.648737Z", + "iopub.status.idle": "2024-07-05T13:46:14.885765Z", + "shell.execute_reply": "2024-07-05T13:46:14.885237Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.511635Z", - "iopub.status.busy": "2024-07-02T15:29:24.511276Z", - "iopub.status.idle": "2024-07-02T15:29:24.530413Z", - "shell.execute_reply": "2024-07-02T15:29:24.529881Z" + "iopub.execute_input": "2024-07-05T13:46:14.888308Z", + "iopub.status.busy": "2024-07-05T13:46:14.887977Z", + "iopub.status.idle": "2024-07-05T13:46:14.906655Z", + "shell.execute_reply": "2024-07-05T13:46:14.906181Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.532504Z", - "iopub.status.busy": "2024-07-02T15:29:24.532105Z", - "iopub.status.idle": "2024-07-02T15:29:24.697579Z", - "shell.execute_reply": "2024-07-02T15:29:24.697155Z" + "iopub.execute_input": "2024-07-05T13:46:14.908794Z", + "iopub.status.busy": "2024-07-05T13:46:14.908380Z", + "iopub.status.idle": "2024-07-05T13:46:15.075562Z", + "shell.execute_reply": "2024-07-05T13:46:15.074966Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.699519Z", - "iopub.status.busy": "2024-07-02T15:29:24.699362Z", - "iopub.status.idle": "2024-07-02T15:29:24.710273Z", - "shell.execute_reply": "2024-07-02T15:29:24.709863Z" + "iopub.execute_input": "2024-07-05T13:46:15.077959Z", + "iopub.status.busy": "2024-07-05T13:46:15.077765Z", + "iopub.status.idle": "2024-07-05T13:46:15.087974Z", + "shell.execute_reply": "2024-07-05T13:46:15.087526Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.712113Z", - "iopub.status.busy": "2024-07-02T15:29:24.711959Z", - "iopub.status.idle": "2024-07-02T15:29:24.721478Z", - "shell.execute_reply": "2024-07-02T15:29:24.721032Z" + "iopub.execute_input": "2024-07-05T13:46:15.089886Z", + "iopub.status.busy": "2024-07-05T13:46:15.089710Z", + "iopub.status.idle": "2024-07-05T13:46:15.099461Z", + "shell.execute_reply": "2024-07-05T13:46:15.099022Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.723461Z", - "iopub.status.busy": "2024-07-02T15:29:24.723141Z", - "iopub.status.idle": "2024-07-02T15:29:24.749053Z", - "shell.execute_reply": "2024-07-02T15:29:24.748634Z" + "iopub.execute_input": "2024-07-05T13:46:15.101671Z", + "iopub.status.busy": "2024-07-05T13:46:15.101234Z", + "iopub.status.idle": "2024-07-05T13:46:15.127122Z", + "shell.execute_reply": "2024-07-05T13:46:15.126707Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.751055Z", - "iopub.status.busy": "2024-07-02T15:29:24.750756Z", - "iopub.status.idle": "2024-07-02T15:29:24.753280Z", - "shell.execute_reply": "2024-07-02T15:29:24.752846Z" + "iopub.execute_input": "2024-07-05T13:46:15.129023Z", + "iopub.status.busy": "2024-07-05T13:46:15.128853Z", + "iopub.status.idle": "2024-07-05T13:46:15.131530Z", + "shell.execute_reply": "2024-07-05T13:46:15.131081Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.755266Z", - "iopub.status.busy": "2024-07-02T15:29:24.754962Z", - "iopub.status.idle": "2024-07-02T15:29:24.773504Z", - "shell.execute_reply": "2024-07-02T15:29:24.773077Z" + "iopub.execute_input": "2024-07-05T13:46:15.133562Z", + "iopub.status.busy": "2024-07-05T13:46:15.133263Z", + "iopub.status.idle": "2024-07-05T13:46:15.152255Z", + "shell.execute_reply": "2024-07-05T13:46:15.151716Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.775512Z", - "iopub.status.busy": "2024-07-02T15:29:24.775219Z", - "iopub.status.idle": "2024-07-02T15:29:24.779215Z", - "shell.execute_reply": "2024-07-02T15:29:24.778781Z" + "iopub.execute_input": "2024-07-05T13:46:15.154153Z", + "iopub.status.busy": "2024-07-05T13:46:15.153982Z", + "iopub.status.idle": "2024-07-05T13:46:15.158189Z", + "shell.execute_reply": "2024-07-05T13:46:15.157756Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.781323Z", - "iopub.status.busy": "2024-07-02T15:29:24.780892Z", - "iopub.status.idle": "2024-07-02T15:29:24.814268Z", - "shell.execute_reply": "2024-07-02T15:29:24.813734Z" + "iopub.execute_input": "2024-07-05T13:46:15.160106Z", + "iopub.status.busy": "2024-07-05T13:46:15.159937Z", + "iopub.status.idle": "2024-07-05T13:46:15.187175Z", + "shell.execute_reply": "2024-07-05T13:46:15.186623Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:24.816285Z", - "iopub.status.busy": "2024-07-02T15:29:24.815990Z", - "iopub.status.idle": "2024-07-02T15:29:25.179432Z", - "shell.execute_reply": "2024-07-02T15:29:25.178873Z" + "iopub.execute_input": "2024-07-05T13:46:15.189119Z", + "iopub.status.busy": "2024-07-05T13:46:15.188945Z", + "iopub.status.idle": "2024-07-05T13:46:15.556540Z", + "shell.execute_reply": "2024-07-05T13:46:15.555949Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.181578Z", - "iopub.status.busy": "2024-07-02T15:29:25.181257Z", - "iopub.status.idle": "2024-07-02T15:29:25.184323Z", - "shell.execute_reply": "2024-07-02T15:29:25.183802Z" + "iopub.execute_input": "2024-07-05T13:46:15.558727Z", + "iopub.status.busy": "2024-07-05T13:46:15.558536Z", + "iopub.status.idle": "2024-07-05T13:46:15.561597Z", + "shell.execute_reply": "2024-07-05T13:46:15.561062Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.186452Z", - "iopub.status.busy": "2024-07-02T15:29:25.186047Z", - "iopub.status.idle": "2024-07-02T15:29:25.198843Z", - "shell.execute_reply": "2024-07-02T15:29:25.198320Z" + "iopub.execute_input": "2024-07-05T13:46:15.563532Z", + "iopub.status.busy": "2024-07-05T13:46:15.563357Z", + "iopub.status.idle": "2024-07-05T13:46:15.576523Z", + "shell.execute_reply": "2024-07-05T13:46:15.575975Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.200782Z", - "iopub.status.busy": "2024-07-02T15:29:25.200486Z", - "iopub.status.idle": "2024-07-02T15:29:25.213647Z", - "shell.execute_reply": "2024-07-02T15:29:25.213118Z" + "iopub.execute_input": "2024-07-05T13:46:15.578674Z", + "iopub.status.busy": "2024-07-05T13:46:15.578248Z", + "iopub.status.idle": "2024-07-05T13:46:15.591355Z", + "shell.execute_reply": "2024-07-05T13:46:15.590924Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.215595Z", - "iopub.status.busy": "2024-07-02T15:29:25.215421Z", - "iopub.status.idle": "2024-07-02T15:29:25.224854Z", - "shell.execute_reply": "2024-07-02T15:29:25.224443Z" + "iopub.execute_input": "2024-07-05T13:46:15.593168Z", + "iopub.status.busy": "2024-07-05T13:46:15.592995Z", + "iopub.status.idle": "2024-07-05T13:46:15.603154Z", + "shell.execute_reply": "2024-07-05T13:46:15.602745Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.226672Z", - "iopub.status.busy": "2024-07-02T15:29:25.226501Z", - "iopub.status.idle": "2024-07-02T15:29:25.235816Z", - "shell.execute_reply": "2024-07-02T15:29:25.235341Z" + "iopub.execute_input": "2024-07-05T13:46:15.605202Z", + "iopub.status.busy": "2024-07-05T13:46:15.604799Z", + "iopub.status.idle": "2024-07-05T13:46:15.613770Z", + "shell.execute_reply": "2024-07-05T13:46:15.613312Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.237869Z", - "iopub.status.busy": "2024-07-02T15:29:25.237457Z", - "iopub.status.idle": "2024-07-02T15:29:25.241007Z", - "shell.execute_reply": "2024-07-02T15:29:25.240556Z" + "iopub.execute_input": "2024-07-05T13:46:15.615567Z", + "iopub.status.busy": "2024-07-05T13:46:15.615399Z", + "iopub.status.idle": "2024-07-05T13:46:15.619097Z", + "shell.execute_reply": "2024-07-05T13:46:15.618656Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.242990Z", - "iopub.status.busy": "2024-07-02T15:29:25.242667Z", - "iopub.status.idle": "2024-07-02T15:29:25.292667Z", - "shell.execute_reply": "2024-07-02T15:29:25.292199Z" + "iopub.execute_input": "2024-07-05T13:46:15.620904Z", + "iopub.status.busy": "2024-07-05T13:46:15.620738Z", + "iopub.status.idle": "2024-07-05T13:46:15.671381Z", + "shell.execute_reply": "2024-07-05T13:46:15.670944Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.294886Z", - "iopub.status.busy": "2024-07-02T15:29:25.294483Z", - "iopub.status.idle": "2024-07-02T15:29:25.299817Z", - "shell.execute_reply": "2024-07-02T15:29:25.299395Z" + "iopub.execute_input": "2024-07-05T13:46:15.673439Z", + "iopub.status.busy": "2024-07-05T13:46:15.673166Z", + "iopub.status.idle": "2024-07-05T13:46:15.678680Z", + "shell.execute_reply": "2024-07-05T13:46:15.678256Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.301975Z", - "iopub.status.busy": "2024-07-02T15:29:25.301501Z", - "iopub.status.idle": "2024-07-02T15:29:25.311839Z", - "shell.execute_reply": "2024-07-02T15:29:25.311419Z" + "iopub.execute_input": "2024-07-05T13:46:15.680508Z", + "iopub.status.busy": "2024-07-05T13:46:15.680341Z", + "iopub.status.idle": "2024-07-05T13:46:15.690646Z", + "shell.execute_reply": "2024-07-05T13:46:15.690182Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.313796Z", - "iopub.status.busy": "2024-07-02T15:29:25.313590Z", - "iopub.status.idle": "2024-07-02T15:29:25.524327Z", - "shell.execute_reply": "2024-07-02T15:29:25.523840Z" + "iopub.execute_input": "2024-07-05T13:46:15.692509Z", + "iopub.status.busy": "2024-07-05T13:46:15.692340Z", + "iopub.status.idle": "2024-07-05T13:46:15.907287Z", + "shell.execute_reply": "2024-07-05T13:46:15.906738Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.526204Z", - "iopub.status.busy": "2024-07-02T15:29:25.526033Z", - "iopub.status.idle": "2024-07-02T15:29:25.533387Z", - "shell.execute_reply": "2024-07-02T15:29:25.532865Z" + "iopub.execute_input": "2024-07-05T13:46:15.909477Z", + "iopub.status.busy": "2024-07-05T13:46:15.909292Z", + "iopub.status.idle": "2024-07-05T13:46:15.916827Z", + "shell.execute_reply": "2024-07-05T13:46:15.916381Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:25.535412Z", - "iopub.status.busy": "2024-07-02T15:29:25.535090Z", - "iopub.status.idle": "2024-07-02T15:29:31.824715Z", - "shell.execute_reply": "2024-07-02T15:29:31.824156Z" + "iopub.execute_input": "2024-07-05T13:46:15.918920Z", + "iopub.status.busy": "2024-07-05T13:46:15.918607Z", + "iopub.status.idle": "2024-07-05T13:46:21.100386Z", + "shell.execute_reply": "2024-07-05T13:46:21.099823Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1769472/170498071 [00:00<00:09, 17569738.43it/s]" + " 1%| | 1802240/170498071 [00:00<00:09, 17707180.99it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9994240/170498071 [00:00<00:02, 55470141.49it/s]" + " 8%|▊ | 13402112/170498071 [00:00<00:02, 75006043.80it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18186240/170498071 [00:00<00:02, 67404805.75it/s]" + " 15%|█▍ | 25067520/170498071 [00:00<00:01, 93857810.24it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26476544/170498071 [00:00<00:01, 73445517.40it/s]" + " 22%|██▏ | 36667392/170498071 [00:00<00:01, 102554887.55it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34865152/170498071 [00:00<00:01, 77108513.90it/s]" + " 28%|██▊ | 48365568/170498071 [00:00<00:01, 107654909.34it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 43057152/170498071 [00:00<00:01, 78697943.81it/s]" + " 35%|███▌ | 59998208/170498071 [00:00<00:00, 110583418.90it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 51380224/170498071 [00:00<00:01, 79985067.48it/s]" + " 42%|████▏ | 71630848/170498071 [00:00<00:00, 112403046.66it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 59703296/170498071 [00:00<00:01, 80909156.17it/s]" + " 49%|████▉ | 83263488/170498071 [00:00<00:00, 113566420.34it/s]" ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67928064/170498071 [00:00<00:01, 81246537.89it/s]" + " 56%|█████▌ | 94896128/170498071 [00:00<00:00, 114383178.26it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 76251136/170498071 [00:01<00:01, 81748989.29it/s]" + " 62%|██████▏ | 106528768/170498071 [00:01<00:00, 114903480.60it/s]" ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 84574208/170498071 [00:01<00:01, 82134723.99it/s]" + " 69%|██████▉ | 118161408/170498071 [00:01<00:00, 115276254.08it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 92995584/170498071 [00:01<00:00, 82736426.96it/s]" + " 76%|███████▌ | 129794048/170498071 [00:01<00:00, 115565617.77it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 101580800/170498071 [00:01<00:00, 83638413.28it/s]" + " 83%|████████▎ | 141361152/170498071 [00:01<00:00, 115556867.68it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110067712/170498071 [00:01<00:00, 83992383.40it/s]" + " 90%|████████▉ | 152993792/170498071 [00:01<00:00, 115786020.76it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 118489088/170498071 [00:01<00:00, 81517971.25it/s]" + " 97%|█████████▋| 164626432/170498071 [00:01<00:00, 115930923.45it/s]" ] }, { @@ -3907,71 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 126681088/170498071 [00:01<00:00, 66165934.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 133791744/170498071 [00:01<00:00, 57474892.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 140017664/170498071 [00:02<00:00, 52870786.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 145686528/170498071 [00:02<00:00, 49446779.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 150896640/170498071 [00:02<00:00, 47089743.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████▏| 155779072/170498071 [00:02<00:00, 45996856.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 160497664/170498071 [00:02<00:00, 45255686.94it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165085184/170498071 [00:02<00:00, 44462626.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 63370425.61it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 109678925.25it/s]" ] }, { @@ -4045,10 +3981,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:31.827345Z", - "iopub.status.busy": "2024-07-02T15:29:31.826817Z", - "iopub.status.idle": "2024-07-02T15:29:31.894192Z", - "shell.execute_reply": "2024-07-02T15:29:31.893694Z" + "iopub.execute_input": "2024-07-05T13:46:21.103006Z", + "iopub.status.busy": "2024-07-05T13:46:21.102613Z", + "iopub.status.idle": "2024-07-05T13:46:21.169459Z", + "shell.execute_reply": "2024-07-05T13:46:21.168898Z" } }, "outputs": [], @@ -4070,10 +4006,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:31.896307Z", - "iopub.status.busy": "2024-07-02T15:29:31.895985Z", - "iopub.status.idle": "2024-07-02T15:29:31.935822Z", - "shell.execute_reply": "2024-07-02T15:29:31.935309Z" + "iopub.execute_input": "2024-07-05T13:46:21.171877Z", + "iopub.status.busy": "2024-07-05T13:46:21.171564Z", + "iopub.status.idle": "2024-07-05T13:46:21.212529Z", + "shell.execute_reply": "2024-07-05T13:46:21.212103Z" } }, "outputs": [], @@ -4107,10 +4043,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:31.938027Z", - "iopub.status.busy": "2024-07-02T15:29:31.937597Z", - "iopub.status.idle": "2024-07-02T15:29:33.356771Z", - "shell.execute_reply": "2024-07-02T15:29:33.356182Z" + "iopub.execute_input": "2024-07-05T13:46:21.214380Z", + "iopub.status.busy": "2024-07-05T13:46:21.214211Z", + "iopub.status.idle": "2024-07-05T13:46:22.602959Z", + "shell.execute_reply": "2024-07-05T13:46:22.602403Z" } }, "outputs": [ @@ -4184,10 +4120,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:33.359053Z", - "iopub.status.busy": "2024-07-02T15:29:33.358661Z", - "iopub.status.idle": "2024-07-02T15:29:34.163786Z", - "shell.execute_reply": "2024-07-02T15:29:34.163155Z" + "iopub.execute_input": "2024-07-05T13:46:22.605074Z", + "iopub.status.busy": "2024-07-05T13:46:22.604895Z", + "iopub.status.idle": "2024-07-05T13:46:23.385097Z", + "shell.execute_reply": "2024-07-05T13:46:23.384445Z" } }, "outputs": [ @@ -4202,7 +4138,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f24c55aaa3f2486eb049ea9140702ad3", + "model_id": "268115fbc59e47f4bbccfccdefe569d8", "version_major": 2, "version_minor": 0 }, @@ -4226,7 +4162,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29d1b664fe1d4701876841f59c318a5a", + "model_id": "38811633b37a4fb49bbd7e97f6973a45", "version_major": 2, "version_minor": 0 }, @@ -4476,72 +4412,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "140f94fffe9d41998f052b476411cdc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "16441724cc5d442083bc8dc57220bdb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1f35c30be0c46cea8172b99479542a3", - "placeholder": "​", - "style": "IPY_MODEL_5a67d709e70348c5a0788df8f06b7d00", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "29d1b664fe1d4701876841f59c318a5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16441724cc5d442083bc8dc57220bdb5", - "IPY_MODEL_a06fb116c7f54de8ace8c44aa9c3252a", - "IPY_MODEL_683dfd5472954d23960cee4af27b4942" - ], - "layout": "IPY_MODEL_c42e40a052b345028b0e318e573b39c4", - "tabbable": null, - "tooltip": null - } - }, - "3fe4d5f95a4b421ea7191cd652353f63": { + "22a030233d8448d5a0bd14f6422f798a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4594,64 +4465,71 @@ "width": null } }, - "509a070ad7814351956da09fa31f6d3e": { + "268115fbc59e47f4bbccfccdefe569d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3df1f103eb6f47a78c4bfb4debcac81b", + "IPY_MODEL_60e320d5a0514e7988b671b18e5b1dd5", + "IPY_MODEL_f0f7361539f740f9b5b84579894f5284" + ], + "layout": "IPY_MODEL_4773a1b04e67457ca7b020b6822f4f7d", + "tabbable": null, + "tooltip": null } }, - "5a67d709e70348c5a0788df8f06b7d00": { + "35facc01925a46579c1a308ac51256e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "683dfd5472954d23960cee4af27b4942": { + "38811633b37a4fb49bbd7e97f6973a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c65f07113a9243528835037ef624a06c", - "placeholder": "​", - "style": "IPY_MODEL_140f94fffe9d41998f052b476411cdc5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cc741217e3f44aef9b4188665744e1e1", + "IPY_MODEL_b4be7ec6ad464eef8ec6b16b54ad0d57", + "IPY_MODEL_d2c82a248711451aaefd4dd9169d75ce" + ], + "layout": "IPY_MODEL_b981597815bd43c3936c0e0d04d988fd", "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 725.42it/s]" + "tooltip": null } }, - "74d7c5cc1042451a8756f13a29013665": { + "3df1f103eb6f47a78c4bfb4debcac81b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4666,33 +4544,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cba826c457dc4039b375f27857c765ca", + "layout": "IPY_MODEL_69b1ca970e5748eaad47171495bc62db", "placeholder": "​", - "style": "IPY_MODEL_fbabf37f132843a38191f8b243f94ccd", + "style": "IPY_MODEL_dc4a22c6f66142f381820162a6ab61ce", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 780.24it/s]" - } - }, - "8356f3ec51974cf696a3e9692878bd4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "950c8017832643e59a584d9e5c14d158": { + "423b2cfce6054ee39a1e6f1323644285": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4745,33 +4605,7 @@ "width": null } }, - "975ecec9b0d240eebc17772cc26037e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3fe4d5f95a4b421ea7191cd652353f63", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_509a070ad7814351956da09fa31f6d3e", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "9e76293fc8c84697bab5d4b70a4497ed": { + "4773a1b04e67457ca7b020b6822f4f7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4824,7 +4658,7 @@ "width": null } }, - "a06fb116c7f54de8ace8c44aa9c3252a": { + "60e320d5a0514e7988b671b18e5b1dd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4840,17 +4674,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f737276f279444d0a64c6ae2d3596e26", + "layout": "IPY_MODEL_cd7a2389d25b4d298821ab829bfd1137", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f2a441d85bb54e8e87b2a9bd9ec7a1b7", + "style": "IPY_MODEL_35facc01925a46579c1a308ac51256e6", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "c42e40a052b345028b0e318e573b39c4": { + "69b1ca970e5748eaad47171495bc62db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4903,7 +4737,67 @@ "width": null } }, - "c65f07113a9243528835037ef624a06c": { + "78160bea25ee4d86bfd3618901427b7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aa3695b33cdf48729ebd97ca7ac0c28c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b4be7ec6ad464eef8ec6b16b54ad0d57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22a030233d8448d5a0bd14f6422f798a", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa3695b33cdf48729ebd97ca7ac0c28c", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "b981597815bd43c3936c0e0d04d988fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4956,7 +4850,66 @@ "width": null } }, - "cba826c457dc4039b375f27857c765ca": { + "bd20b6c3784b48939a5dd8c2113f6a63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "caef09ae7619440e9caca38798910cf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cc741217e3f44aef9b4188665744e1e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d0ef77849a6f4d5da2f6bce9b50a21f0", + "placeholder": "​", + "style": "IPY_MODEL_caef09ae7619440e9caca38798910cf8", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "cd7a2389d25b4d298821ab829bfd1137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5009,30 +4962,7 @@ "width": null } }, - "e8e5474f252f462bb6b93f09309db91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_950c8017832643e59a584d9e5c14d158", - "placeholder": "​", - "style": "IPY_MODEL_8356f3ec51974cf696a3e9692878bd4e", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "f1f35c30be0c46cea8172b99479542a3": { + "d0ef77849a6f4d5da2f6bce9b50a21f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5085,47 +5015,48 @@ "width": null } }, - "f24c55aaa3f2486eb049ea9140702ad3": { + "d2c82a248711451aaefd4dd9169d75ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8e5474f252f462bb6b93f09309db91a", - "IPY_MODEL_975ecec9b0d240eebc17772cc26037e6", - "IPY_MODEL_74d7c5cc1042451a8756f13a29013665" - ], - "layout": "IPY_MODEL_9e76293fc8c84697bab5d4b70a4497ed", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef5d6e10352544fb8bbd6759582d0ce6", + "placeholder": "​", + "style": "IPY_MODEL_bd20b6c3784b48939a5dd8c2113f6a63", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 200/200 [00:00<00:00, 812.00it/s]" } }, - "f2a441d85bb54e8e87b2a9bd9ec7a1b7": { + "dc4a22c6f66142f381820162a6ab61ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f737276f279444d0a64c6ae2d3596e26": { + "ef5d6e10352544fb8bbd6759582d0ce6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5178,22 +5109,27 @@ "width": null } }, - "fbabf37f132843a38191f8b243f94ccd": { + "f0f7361539f740f9b5b84579894f5284": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_423b2cfce6054ee39a1e6f1323644285", + "placeholder": "​", + "style": "IPY_MODEL_78160bea25ee4d86bfd3618901427b7b", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 756.44it/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index c598eb866..69c90821f 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:38.938026Z", - "iopub.status.busy": "2024-07-02T15:29:38.937857Z", - "iopub.status.idle": "2024-07-02T15:29:40.022180Z", - "shell.execute_reply": "2024-07-02T15:29:40.021619Z" + "iopub.execute_input": "2024-07-05T13:46:27.447547Z", + "iopub.status.busy": "2024-07-05T13:46:27.447059Z", + "iopub.status.idle": "2024-07-05T13:46:28.537412Z", + "shell.execute_reply": "2024-07-05T13:46:28.536700Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:40.024706Z", - "iopub.status.busy": "2024-07-02T15:29:40.024284Z", - "iopub.status.idle": "2024-07-02T15:29:40.027131Z", - "shell.execute_reply": "2024-07-02T15:29:40.026613Z" + "iopub.execute_input": "2024-07-05T13:46:28.539835Z", + "iopub.status.busy": "2024-07-05T13:46:28.539573Z", + "iopub.status.idle": "2024-07-05T13:46:28.542481Z", + "shell.execute_reply": "2024-07-05T13:46:28.542024Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:40.029106Z", - "iopub.status.busy": "2024-07-02T15:29:40.028929Z", - "iopub.status.idle": "2024-07-02T15:29:40.040121Z", - "shell.execute_reply": "2024-07-02T15:29:40.039667Z" + "iopub.execute_input": "2024-07-05T13:46:28.544616Z", + "iopub.status.busy": "2024-07-05T13:46:28.544423Z", + "iopub.status.idle": "2024-07-05T13:46:28.555769Z", + "shell.execute_reply": "2024-07-05T13:46:28.555309Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:40.042199Z", - "iopub.status.busy": "2024-07-02T15:29:40.041874Z", - "iopub.status.idle": "2024-07-02T15:29:44.739408Z", - "shell.execute_reply": "2024-07-02T15:29:44.738930Z" + "iopub.execute_input": "2024-07-05T13:46:28.557725Z", + "iopub.status.busy": "2024-07-05T13:46:28.557554Z", + "iopub.status.idle": "2024-07-05T13:46:32.484987Z", + "shell.execute_reply": "2024-07-05T13:46:32.484472Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index fd037f7ef..d9d8abc88 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:46.799774Z", - "iopub.status.busy": "2024-07-02T15:29:46.799611Z", - "iopub.status.idle": "2024-07-02T15:29:47.868215Z", - "shell.execute_reply": "2024-07-02T15:29:47.867607Z" + "iopub.execute_input": "2024-07-05T13:46:34.516370Z", + "iopub.status.busy": "2024-07-05T13:46:34.515969Z", + "iopub.status.idle": "2024-07-05T13:46:35.600141Z", + "shell.execute_reply": "2024-07-05T13:46:35.599607Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:47.871043Z", - "iopub.status.busy": "2024-07-02T15:29:47.870781Z", - "iopub.status.idle": "2024-07-02T15:29:47.874130Z", - "shell.execute_reply": "2024-07-02T15:29:47.873594Z" + "iopub.execute_input": "2024-07-05T13:46:35.602935Z", + "iopub.status.busy": "2024-07-05T13:46:35.602521Z", + "iopub.status.idle": "2024-07-05T13:46:35.605907Z", + "shell.execute_reply": "2024-07-05T13:46:35.605342Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:47.876125Z", - "iopub.status.busy": "2024-07-02T15:29:47.875827Z", - "iopub.status.idle": "2024-07-02T15:29:50.933600Z", - "shell.execute_reply": "2024-07-02T15:29:50.932999Z" + "iopub.execute_input": "2024-07-05T13:46:35.607926Z", + "iopub.status.busy": "2024-07-05T13:46:35.607617Z", + "iopub.status.idle": "2024-07-05T13:46:38.753313Z", + "shell.execute_reply": "2024-07-05T13:46:38.752598Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:50.936675Z", - "iopub.status.busy": "2024-07-02T15:29:50.936022Z", - "iopub.status.idle": "2024-07-02T15:29:50.967828Z", - "shell.execute_reply": "2024-07-02T15:29:50.967284Z" + "iopub.execute_input": "2024-07-05T13:46:38.756228Z", + "iopub.status.busy": "2024-07-05T13:46:38.755658Z", + "iopub.status.idle": "2024-07-05T13:46:38.785281Z", + "shell.execute_reply": "2024-07-05T13:46:38.784618Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:50.970284Z", - "iopub.status.busy": "2024-07-02T15:29:50.969984Z", - "iopub.status.idle": "2024-07-02T15:29:50.996616Z", - "shell.execute_reply": "2024-07-02T15:29:50.996062Z" + "iopub.execute_input": "2024-07-05T13:46:38.787792Z", + "iopub.status.busy": "2024-07-05T13:46:38.787373Z", + "iopub.status.idle": "2024-07-05T13:46:38.816606Z", + "shell.execute_reply": "2024-07-05T13:46:38.816034Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:50.999234Z", - "iopub.status.busy": "2024-07-02T15:29:50.998784Z", - "iopub.status.idle": "2024-07-02T15:29:51.001903Z", - "shell.execute_reply": "2024-07-02T15:29:51.001337Z" + "iopub.execute_input": "2024-07-05T13:46:38.819284Z", + "iopub.status.busy": "2024-07-05T13:46:38.818789Z", + "iopub.status.idle": "2024-07-05T13:46:38.821871Z", + "shell.execute_reply": "2024-07-05T13:46:38.821410Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.004009Z", - "iopub.status.busy": "2024-07-02T15:29:51.003583Z", - "iopub.status.idle": "2024-07-02T15:29:51.006181Z", - "shell.execute_reply": "2024-07-02T15:29:51.005730Z" + "iopub.execute_input": "2024-07-05T13:46:38.823856Z", + "iopub.status.busy": "2024-07-05T13:46:38.823470Z", + "iopub.status.idle": "2024-07-05T13:46:38.826164Z", + "shell.execute_reply": "2024-07-05T13:46:38.825627Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.008311Z", - "iopub.status.busy": "2024-07-02T15:29:51.007960Z", - "iopub.status.idle": "2024-07-02T15:29:51.034036Z", - "shell.execute_reply": "2024-07-02T15:29:51.033489Z" + "iopub.execute_input": "2024-07-05T13:46:38.828223Z", + "iopub.status.busy": "2024-07-05T13:46:38.827926Z", + "iopub.status.idle": "2024-07-05T13:46:38.851198Z", + "shell.execute_reply": "2024-07-05T13:46:38.850651Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b61f3b61abad4a309bf86a1aa8f2b9c5", + "model_id": "e0e17c322ec54b3d9e88671775dab6b6", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "026a70ed918d454b979daad116575cd1", + "model_id": "9c5140d4e86849be9e512ca8d2ca89d0", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.037426Z", - "iopub.status.busy": "2024-07-02T15:29:51.037087Z", - "iopub.status.idle": "2024-07-02T15:29:51.043755Z", - "shell.execute_reply": "2024-07-02T15:29:51.043334Z" + "iopub.execute_input": "2024-07-05T13:46:38.857567Z", + "iopub.status.busy": "2024-07-05T13:46:38.857256Z", + "iopub.status.idle": "2024-07-05T13:46:38.863616Z", + "shell.execute_reply": "2024-07-05T13:46:38.863076Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.045741Z", - "iopub.status.busy": "2024-07-02T15:29:51.045399Z", - "iopub.status.idle": "2024-07-02T15:29:51.048655Z", - "shell.execute_reply": "2024-07-02T15:29:51.048231Z" + "iopub.execute_input": "2024-07-05T13:46:38.865886Z", + "iopub.status.busy": "2024-07-05T13:46:38.865560Z", + "iopub.status.idle": "2024-07-05T13:46:38.869012Z", + "shell.execute_reply": "2024-07-05T13:46:38.868521Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.050733Z", - "iopub.status.busy": "2024-07-02T15:29:51.050424Z", - "iopub.status.idle": "2024-07-02T15:29:51.056495Z", - "shell.execute_reply": "2024-07-02T15:29:51.056070Z" + "iopub.execute_input": "2024-07-05T13:46:38.871001Z", + "iopub.status.busy": "2024-07-05T13:46:38.870607Z", + "iopub.status.idle": "2024-07-05T13:46:38.877004Z", + "shell.execute_reply": "2024-07-05T13:46:38.876454Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.058351Z", - "iopub.status.busy": "2024-07-02T15:29:51.058061Z", - "iopub.status.idle": "2024-07-02T15:29:51.087891Z", - "shell.execute_reply": "2024-07-02T15:29:51.087337Z" + "iopub.execute_input": "2024-07-05T13:46:38.878890Z", + "iopub.status.busy": "2024-07-05T13:46:38.878713Z", + "iopub.status.idle": "2024-07-05T13:46:38.912615Z", + "shell.execute_reply": "2024-07-05T13:46:38.912056Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.090312Z", - "iopub.status.busy": "2024-07-02T15:29:51.090023Z", - "iopub.status.idle": "2024-07-02T15:29:51.114800Z", - "shell.execute_reply": "2024-07-02T15:29:51.114219Z" + "iopub.execute_input": "2024-07-05T13:46:38.914881Z", + "iopub.status.busy": "2024-07-05T13:46:38.914595Z", + "iopub.status.idle": "2024-07-05T13:46:38.944496Z", + "shell.execute_reply": "2024-07-05T13:46:38.943950Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.117401Z", - "iopub.status.busy": "2024-07-02T15:29:51.117043Z", - "iopub.status.idle": "2024-07-02T15:29:51.231817Z", - "shell.execute_reply": "2024-07-02T15:29:51.231206Z" + "iopub.execute_input": "2024-07-05T13:46:38.947084Z", + "iopub.status.busy": "2024-07-05T13:46:38.946618Z", + "iopub.status.idle": "2024-07-05T13:46:39.067011Z", + "shell.execute_reply": "2024-07-05T13:46:39.066439Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:51.234379Z", - "iopub.status.busy": "2024-07-02T15:29:51.233839Z", - "iopub.status.idle": "2024-07-02T15:29:54.239820Z", - "shell.execute_reply": "2024-07-02T15:29:54.239255Z" + "iopub.execute_input": "2024-07-05T13:46:39.069907Z", + "iopub.status.busy": "2024-07-05T13:46:39.069115Z", + "iopub.status.idle": "2024-07-05T13:46:42.105418Z", + "shell.execute_reply": "2024-07-05T13:46:42.104788Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.242175Z", - "iopub.status.busy": "2024-07-02T15:29:54.241796Z", - "iopub.status.idle": "2024-07-02T15:29:54.298692Z", - "shell.execute_reply": "2024-07-02T15:29:54.298201Z" + "iopub.execute_input": "2024-07-05T13:46:42.107820Z", + "iopub.status.busy": "2024-07-05T13:46:42.107428Z", + "iopub.status.idle": "2024-07-05T13:46:42.164923Z", + "shell.execute_reply": "2024-07-05T13:46:42.164432Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.300662Z", - "iopub.status.busy": "2024-07-02T15:29:54.300332Z", - "iopub.status.idle": "2024-07-02T15:29:54.341979Z", - "shell.execute_reply": "2024-07-02T15:29:54.341413Z" + "iopub.execute_input": "2024-07-05T13:46:42.167044Z", + "iopub.status.busy": "2024-07-05T13:46:42.166706Z", + "iopub.status.idle": "2024-07-05T13:46:42.206707Z", + "shell.execute_reply": "2024-07-05T13:46:42.206259Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "4848cf7c", + "id": "19b7ac4b", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "eaad044a", + "id": "e48ad5ae", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "0b523bbb", + "id": "531bf9c7", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "84320802", + "id": "6cd8b83c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.344243Z", - "iopub.status.busy": "2024-07-02T15:29:54.344071Z", - "iopub.status.idle": "2024-07-02T15:29:54.351389Z", - "shell.execute_reply": "2024-07-02T15:29:54.350841Z" + "iopub.execute_input": "2024-07-05T13:46:42.208898Z", + "iopub.status.busy": "2024-07-05T13:46:42.208537Z", + "iopub.status.idle": "2024-07-05T13:46:42.216358Z", + "shell.execute_reply": "2024-07-05T13:46:42.215909Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "1925ba8e", + "id": "72f61772", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "0829c387", + "id": "8db38abb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.353489Z", - "iopub.status.busy": "2024-07-02T15:29:54.353071Z", - "iopub.status.idle": "2024-07-02T15:29:54.371123Z", - "shell.execute_reply": "2024-07-02T15:29:54.370577Z" + "iopub.execute_input": "2024-07-05T13:46:42.218413Z", + "iopub.status.busy": "2024-07-05T13:46:42.217996Z", + "iopub.status.idle": "2024-07-05T13:46:42.236530Z", + "shell.execute_reply": "2024-07-05T13:46:42.235990Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "b4df50e4", + "id": "50ef877c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:54.373055Z", - "iopub.status.busy": "2024-07-02T15:29:54.372731Z", - "iopub.status.idle": "2024-07-02T15:29:54.375873Z", - "shell.execute_reply": "2024-07-02T15:29:54.375357Z" + "iopub.execute_input": "2024-07-05T13:46:42.238504Z", + "iopub.status.busy": "2024-07-05T13:46:42.238196Z", + "iopub.status.idle": "2024-07-05T13:46:42.241280Z", + "shell.execute_reply": "2024-07-05T13:46:42.240761Z" } }, "outputs": [ @@ -1622,72 +1622,76 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "026a70ed918d454b979daad116575cd1": { - "model_module": "@jupyter-widgets/controls", + "15357d014f98486ba3b29d9083b7c34b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7c008af7a8e14f158b908bdea72be0c3", - "IPY_MODEL_5d93b4262fd54a69b71094aebc5ee106", - "IPY_MODEL_2534d227f7c84093a890aa8da483c8d4" - ], - "layout": "IPY_MODEL_8dff42b5c3474095ada1b975ed329e2d", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "02875877ae314d399c4c41bf46506420": { + "2c323430c8ba48eea5fc956a5312e270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0341ad6e27fb45b990863bbbb6424cf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d25e2c546e744e498c5589683f7a800", - "placeholder": "​", - "style": "IPY_MODEL_145cb1b61bd14b5a94afbfc522dce648", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1111132.78it/s]" + "bar_color": null, + "description_width": "" } }, - "0626a4c0233f4806987eae80b809ca9c": { + "339e31d99f614241820d669b9e976868": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1702,15 +1706,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ac08271c7a40448db2e9845998b12b94", + "layout": "IPY_MODEL_9437fd3686f0438c926f1826073e608e", "placeholder": "​", - "style": "IPY_MODEL_5a9f1856ee4548d29ac2fa74efba69da", + "style": "IPY_MODEL_aacbd23194ef4e7198fd020350b10173", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "12ba7ec803a94e239e6ab2e3faeb7c96": { + "37cf52c73f1e4781af6309df4feef981": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1728,64 +1732,33 @@ "text_color": null } }, - "145cb1b61bd14b5a94afbfc522dce648": { + "3cc2a42fec46466b920dfe99c06d7253": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2534d227f7c84093a890aa8da483c8d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce653676309345038faf46f6f089becc", - "placeholder": "​", - "style": "IPY_MODEL_12ba7ec803a94e239e6ab2e3faeb7c96", + "layout": "IPY_MODEL_d804b00981d345dd8333a15c986008d0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7742a83d3f16404ab5adfd89099eedea", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1115595.39it/s]" - } - }, - "25d058621d424fcdb7e9277a77685c68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 50.0 } }, - "2d25e2c546e744e498c5589683f7a800": { + "4deab504339f45e1a8bb107865390cfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,104 +1811,90 @@ "width": null } }, - "5a9f1856ee4548d29ac2fa74efba69da": { + "5a5c858359854b7798a0daf3b651d206": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15357d014f98486ba3b29d9083b7c34b", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2c323430c8ba48eea5fc956a5312e270", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "5d93b4262fd54a69b71094aebc5ee106": { + "6d00be3ded5b41a48e1cb7c403661812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6437b738ec874299a07051ee9e8445c0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_25d058621d424fcdb7e9277a77685c68", + "layout": "IPY_MODEL_d086dad07a5e44068a12d500eb24f589", + "placeholder": "​", + "style": "IPY_MODEL_37cf52c73f1e4781af6309df4feef981", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1073041.34it/s]" } }, - "6437b738ec874299a07051ee9e8445c0": { - "model_module": "@jupyter-widgets/base", + "7742a83d3f16404ab5adfd89099eedea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6b2574bdfa604c3fab7148564af0b00e": { + "7e52ca8efa2d401b9a242a5f12af957a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9437fd3686f0438c926f1826073e608e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1988,7 +1947,67 @@ "width": null } }, - "6ca71fb821a542d6aa63710c2222debc": { + "9c5140d4e86849be9e512ca8d2ca89d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e964d104d4d64e908ed06fd918f621c0", + "IPY_MODEL_5a5c858359854b7798a0daf3b651d206", + "IPY_MODEL_e7bbe926be7f465781f230e89e7c42c7" + ], + "layout": "IPY_MODEL_f7a7964b42904719a2fdc0ca0ddb3a67", + "tabbable": null, + "tooltip": null + } + }, + "9f72fa061e6846b391cc96e96952cf44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aacbd23194ef4e7198fd020350b10173": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9c2b6d9e01e4e2db3f2c67e5c6695c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2041,72 +2060,7 @@ "width": null } }, - "71c281f097914f28957bc6a7866a0b4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ca71fb821a542d6aa63710c2222debc", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a2c46b59b8f4e74a0844c5242d93052", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "7a2c46b59b8f4e74a0844c5242d93052": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7c008af7a8e14f158b908bdea72be0c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b2574bdfa604c3fab7148564af0b00e", - "placeholder": "​", - "style": "IPY_MODEL_02875877ae314d399c4c41bf46506420", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "8dff42b5c3474095ada1b975ed329e2d": { + "d086dad07a5e44068a12d500eb24f589": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2159,7 +2113,7 @@ "width": null } }, - "ac08271c7a40448db2e9845998b12b94": { + "d804b00981d345dd8333a15c986008d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2212,7 +2166,7 @@ "width": null } }, - "b61f3b61abad4a309bf86a1aa8f2b9c5": { + "e0e17c322ec54b3d9e88671775dab6b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2227,16 +2181,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0626a4c0233f4806987eae80b809ca9c", - "IPY_MODEL_71c281f097914f28957bc6a7866a0b4b", - "IPY_MODEL_0341ad6e27fb45b990863bbbb6424cf0" + "IPY_MODEL_339e31d99f614241820d669b9e976868", + "IPY_MODEL_3cc2a42fec46466b920dfe99c06d7253", + "IPY_MODEL_6d00be3ded5b41a48e1cb7c403661812" ], - "layout": "IPY_MODEL_e819615fa807467fa92420d45a5f8e70", + "layout": "IPY_MODEL_4deab504339f45e1a8bb107865390cfc", "tabbable": null, "tooltip": null } }, - "ce653676309345038faf46f6f089becc": { + "e4cfda60c78b4af396fdfafd4548d8f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2289,7 +2243,53 @@ "width": null } }, - "e819615fa807467fa92420d45a5f8e70": { + "e7bbe926be7f465781f230e89e7c42c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4cfda60c78b4af396fdfafd4548d8f6", + "placeholder": "​", + "style": "IPY_MODEL_7e52ca8efa2d401b9a242a5f12af957a", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1599292.31it/s]" + } + }, + "e964d104d4d64e908ed06fd918f621c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9c2b6d9e01e4e2db3f2c67e5c6695c6", + "placeholder": "​", + "style": "IPY_MODEL_9f72fa061e6846b391cc96e96952cf44", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "f7a7964b42904719a2fdc0ca0ddb3a67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 5f593443c..89ea85125 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:57.626742Z", - "iopub.status.busy": "2024-07-02T15:29:57.626416Z", - "iopub.status.idle": "2024-07-02T15:29:58.762096Z", - "shell.execute_reply": "2024-07-02T15:29:58.761534Z" + "iopub.execute_input": "2024-07-05T13:46:45.321939Z", + "iopub.status.busy": "2024-07-05T13:46:45.321761Z", + "iopub.status.idle": "2024-07-05T13:46:46.459345Z", + "shell.execute_reply": "2024-07-05T13:46:46.458748Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:58.764661Z", - "iopub.status.busy": "2024-07-02T15:29:58.764264Z", - "iopub.status.idle": "2024-07-02T15:29:58.939017Z", - "shell.execute_reply": "2024-07-02T15:29:58.938508Z" + "iopub.execute_input": "2024-07-05T13:46:46.461836Z", + "iopub.status.busy": "2024-07-05T13:46:46.461585Z", + "iopub.status.idle": "2024-07-05T13:46:46.636266Z", + "shell.execute_reply": "2024-07-05T13:46:46.635677Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:58.941285Z", - "iopub.status.busy": "2024-07-02T15:29:58.940947Z", - "iopub.status.idle": "2024-07-02T15:29:58.951883Z", - "shell.execute_reply": "2024-07-02T15:29:58.951455Z" + "iopub.execute_input": "2024-07-05T13:46:46.638765Z", + "iopub.status.busy": "2024-07-05T13:46:46.638321Z", + "iopub.status.idle": "2024-07-05T13:46:46.649679Z", + "shell.execute_reply": "2024-07-05T13:46:46.649132Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:58.953883Z", - "iopub.status.busy": "2024-07-02T15:29:58.953561Z", - "iopub.status.idle": "2024-07-02T15:29:59.157566Z", - "shell.execute_reply": "2024-07-02T15:29:59.157003Z" + "iopub.execute_input": "2024-07-05T13:46:46.651815Z", + "iopub.status.busy": "2024-07-05T13:46:46.651476Z", + "iopub.status.idle": "2024-07-05T13:46:46.856304Z", + "shell.execute_reply": "2024-07-05T13:46:46.855794Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:59.159969Z", - "iopub.status.busy": "2024-07-02T15:29:59.159619Z", - "iopub.status.idle": "2024-07-02T15:29:59.185196Z", - "shell.execute_reply": "2024-07-02T15:29:59.184736Z" + "iopub.execute_input": "2024-07-05T13:46:46.858415Z", + "iopub.status.busy": "2024-07-05T13:46:46.858234Z", + "iopub.status.idle": "2024-07-05T13:46:46.884286Z", + "shell.execute_reply": "2024-07-05T13:46:46.883867Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:29:59.187290Z", - "iopub.status.busy": "2024-07-02T15:29:59.186969Z", - "iopub.status.idle": "2024-07-02T15:30:01.138208Z", - "shell.execute_reply": "2024-07-02T15:30:01.137568Z" + "iopub.execute_input": "2024-07-05T13:46:46.886244Z", + "iopub.status.busy": "2024-07-05T13:46:46.886064Z", + "iopub.status.idle": "2024-07-05T13:46:48.873493Z", + "shell.execute_reply": "2024-07-05T13:46:48.872815Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:01.140791Z", - "iopub.status.busy": "2024-07-02T15:30:01.140323Z", - "iopub.status.idle": "2024-07-02T15:30:01.158153Z", - "shell.execute_reply": "2024-07-02T15:30:01.157659Z" + "iopub.execute_input": "2024-07-05T13:46:48.875795Z", + "iopub.status.busy": "2024-07-05T13:46:48.875437Z", + "iopub.status.idle": "2024-07-05T13:46:48.893242Z", + "shell.execute_reply": "2024-07-05T13:46:48.892687Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:01.160172Z", - "iopub.status.busy": "2024-07-02T15:30:01.159839Z", - "iopub.status.idle": "2024-07-02T15:30:02.572670Z", - "shell.execute_reply": "2024-07-02T15:30:02.572048Z" + "iopub.execute_input": "2024-07-05T13:46:48.895195Z", + "iopub.status.busy": "2024-07-05T13:46:48.894894Z", + "iopub.status.idle": "2024-07-05T13:46:50.323695Z", + "shell.execute_reply": "2024-07-05T13:46:50.323083Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.575334Z", - "iopub.status.busy": "2024-07-02T15:30:02.574705Z", - "iopub.status.idle": "2024-07-02T15:30:02.588246Z", - "shell.execute_reply": "2024-07-02T15:30:02.587734Z" + "iopub.execute_input": "2024-07-05T13:46:50.326437Z", + "iopub.status.busy": "2024-07-05T13:46:50.325693Z", + "iopub.status.idle": "2024-07-05T13:46:50.339056Z", + "shell.execute_reply": "2024-07-05T13:46:50.338612Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.590333Z", - "iopub.status.busy": "2024-07-02T15:30:02.589893Z", - "iopub.status.idle": "2024-07-02T15:30:02.660087Z", - "shell.execute_reply": "2024-07-02T15:30:02.659495Z" + "iopub.execute_input": "2024-07-05T13:46:50.341230Z", + "iopub.status.busy": "2024-07-05T13:46:50.340816Z", + "iopub.status.idle": "2024-07-05T13:46:50.410925Z", + "shell.execute_reply": "2024-07-05T13:46:50.410390Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.662433Z", - "iopub.status.busy": "2024-07-02T15:30:02.662252Z", - "iopub.status.idle": "2024-07-02T15:30:02.869194Z", - "shell.execute_reply": "2024-07-02T15:30:02.868731Z" + "iopub.execute_input": "2024-07-05T13:46:50.413469Z", + "iopub.status.busy": "2024-07-05T13:46:50.413039Z", + "iopub.status.idle": "2024-07-05T13:46:50.620749Z", + "shell.execute_reply": "2024-07-05T13:46:50.620125Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.871113Z", - "iopub.status.busy": "2024-07-02T15:30:02.870940Z", - "iopub.status.idle": "2024-07-02T15:30:02.887264Z", - "shell.execute_reply": "2024-07-02T15:30:02.886836Z" + "iopub.execute_input": "2024-07-05T13:46:50.622951Z", + "iopub.status.busy": "2024-07-05T13:46:50.622762Z", + "iopub.status.idle": "2024-07-05T13:46:50.639430Z", + "shell.execute_reply": "2024-07-05T13:46:50.638909Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.889231Z", - "iopub.status.busy": "2024-07-02T15:30:02.888911Z", - "iopub.status.idle": "2024-07-02T15:30:02.898236Z", - "shell.execute_reply": "2024-07-02T15:30:02.897802Z" + "iopub.execute_input": "2024-07-05T13:46:50.641585Z", + "iopub.status.busy": "2024-07-05T13:46:50.641177Z", + "iopub.status.idle": "2024-07-05T13:46:50.650884Z", + "shell.execute_reply": "2024-07-05T13:46:50.650343Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.900052Z", - "iopub.status.busy": "2024-07-02T15:30:02.899882Z", - "iopub.status.idle": "2024-07-02T15:30:02.982013Z", - "shell.execute_reply": "2024-07-02T15:30:02.981469Z" + "iopub.execute_input": "2024-07-05T13:46:50.652824Z", + "iopub.status.busy": "2024-07-05T13:46:50.652644Z", + "iopub.status.idle": "2024-07-05T13:46:50.739612Z", + "shell.execute_reply": "2024-07-05T13:46:50.739083Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:02.984381Z", - "iopub.status.busy": "2024-07-02T15:30:02.984039Z", - "iopub.status.idle": "2024-07-02T15:30:03.089218Z", - "shell.execute_reply": "2024-07-02T15:30:03.088619Z" + "iopub.execute_input": "2024-07-05T13:46:50.741860Z", + "iopub.status.busy": "2024-07-05T13:46:50.741633Z", + "iopub.status.idle": "2024-07-05T13:46:50.862542Z", + "shell.execute_reply": "2024-07-05T13:46:50.861935Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.091652Z", - "iopub.status.busy": "2024-07-02T15:30:03.091361Z", - "iopub.status.idle": "2024-07-02T15:30:03.094989Z", - "shell.execute_reply": "2024-07-02T15:30:03.094462Z" + "iopub.execute_input": "2024-07-05T13:46:50.864886Z", + "iopub.status.busy": "2024-07-05T13:46:50.864686Z", + "iopub.status.idle": "2024-07-05T13:46:50.868689Z", + "shell.execute_reply": "2024-07-05T13:46:50.868233Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.096993Z", - "iopub.status.busy": "2024-07-02T15:30:03.096623Z", - "iopub.status.idle": "2024-07-02T15:30:03.100533Z", - "shell.execute_reply": "2024-07-02T15:30:03.100094Z" + "iopub.execute_input": "2024-07-05T13:46:50.870724Z", + "iopub.status.busy": "2024-07-05T13:46:50.870386Z", + "iopub.status.idle": "2024-07-05T13:46:50.874284Z", + "shell.execute_reply": "2024-07-05T13:46:50.873806Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.102469Z", - "iopub.status.busy": "2024-07-02T15:30:03.102207Z", - "iopub.status.idle": "2024-07-02T15:30:03.138746Z", - "shell.execute_reply": "2024-07-02T15:30:03.138321Z" + "iopub.execute_input": "2024-07-05T13:46:50.876353Z", + "iopub.status.busy": "2024-07-05T13:46:50.875925Z", + "iopub.status.idle": "2024-07-05T13:46:50.912993Z", + "shell.execute_reply": "2024-07-05T13:46:50.912517Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.140829Z", - "iopub.status.busy": "2024-07-02T15:30:03.140499Z", - "iopub.status.idle": "2024-07-02T15:30:03.180614Z", - "shell.execute_reply": "2024-07-02T15:30:03.180176Z" + "iopub.execute_input": "2024-07-05T13:46:50.915029Z", + "iopub.status.busy": "2024-07-05T13:46:50.914701Z", + "iopub.status.idle": "2024-07-05T13:46:50.955042Z", + "shell.execute_reply": "2024-07-05T13:46:50.954604Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.182585Z", - "iopub.status.busy": "2024-07-02T15:30:03.182265Z", - "iopub.status.idle": "2024-07-02T15:30:03.268381Z", - "shell.execute_reply": "2024-07-02T15:30:03.267837Z" + "iopub.execute_input": "2024-07-05T13:46:50.957164Z", + "iopub.status.busy": "2024-07-05T13:46:50.956841Z", + "iopub.status.idle": "2024-07-05T13:46:51.048836Z", + "shell.execute_reply": "2024-07-05T13:46:51.048161Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.271234Z", - "iopub.status.busy": "2024-07-02T15:30:03.270873Z", - "iopub.status.idle": "2024-07-02T15:30:03.344389Z", - "shell.execute_reply": "2024-07-02T15:30:03.343870Z" + "iopub.execute_input": "2024-07-05T13:46:51.051352Z", + "iopub.status.busy": "2024-07-05T13:46:51.051113Z", + "iopub.status.idle": "2024-07-05T13:46:51.138960Z", + "shell.execute_reply": "2024-07-05T13:46:51.138341Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.346546Z", - "iopub.status.busy": "2024-07-02T15:30:03.346316Z", - "iopub.status.idle": "2024-07-02T15:30:03.553893Z", - "shell.execute_reply": "2024-07-02T15:30:03.553327Z" + "iopub.execute_input": "2024-07-05T13:46:51.141248Z", + "iopub.status.busy": "2024-07-05T13:46:51.141013Z", + "iopub.status.idle": "2024-07-05T13:46:51.350706Z", + "shell.execute_reply": "2024-07-05T13:46:51.350119Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.555908Z", - "iopub.status.busy": "2024-07-02T15:30:03.555726Z", - "iopub.status.idle": "2024-07-02T15:30:03.721372Z", - "shell.execute_reply": "2024-07-02T15:30:03.720791Z" + "iopub.execute_input": "2024-07-05T13:46:51.353050Z", + "iopub.status.busy": "2024-07-05T13:46:51.352728Z", + "iopub.status.idle": "2024-07-05T13:46:51.523151Z", + "shell.execute_reply": "2024-07-05T13:46:51.522610Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.723778Z", - "iopub.status.busy": "2024-07-02T15:30:03.723338Z", - "iopub.status.idle": "2024-07-02T15:30:03.729507Z", - "shell.execute_reply": "2024-07-02T15:30:03.729058Z" + "iopub.execute_input": "2024-07-05T13:46:51.525653Z", + "iopub.status.busy": "2024-07-05T13:46:51.525200Z", + "iopub.status.idle": "2024-07-05T13:46:51.531246Z", + "shell.execute_reply": "2024-07-05T13:46:51.530698Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.731405Z", - "iopub.status.busy": "2024-07-02T15:30:03.731109Z", - "iopub.status.idle": "2024-07-02T15:30:03.945067Z", - "shell.execute_reply": "2024-07-02T15:30:03.944605Z" + "iopub.execute_input": "2024-07-05T13:46:51.533392Z", + "iopub.status.busy": "2024-07-05T13:46:51.532965Z", + "iopub.status.idle": "2024-07-05T13:46:51.747272Z", + "shell.execute_reply": "2024-07-05T13:46:51.746783Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:03.947155Z", - "iopub.status.busy": "2024-07-02T15:30:03.946841Z", - "iopub.status.idle": "2024-07-02T15:30:05.010426Z", - "shell.execute_reply": "2024-07-02T15:30:05.009870Z" + "iopub.execute_input": "2024-07-05T13:46:51.749424Z", + "iopub.status.busy": "2024-07-05T13:46:51.749084Z", + "iopub.status.idle": "2024-07-05T13:46:52.804348Z", + "shell.execute_reply": "2024-07-05T13:46:52.803795Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 00df8da7f..b90bc71a8 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:08.416538Z", - "iopub.status.busy": "2024-07-02T15:30:08.416373Z", - "iopub.status.idle": "2024-07-02T15:30:09.491929Z", - "shell.execute_reply": "2024-07-02T15:30:09.491393Z" + "iopub.execute_input": "2024-07-05T13:46:56.065789Z", + "iopub.status.busy": "2024-07-05T13:46:56.065606Z", + "iopub.status.idle": "2024-07-05T13:46:57.169427Z", + "shell.execute_reply": "2024-07-05T13:46:57.168879Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.494528Z", - "iopub.status.busy": "2024-07-02T15:30:09.494125Z", - "iopub.status.idle": "2024-07-02T15:30:09.497173Z", - "shell.execute_reply": "2024-07-02T15:30:09.496630Z" + "iopub.execute_input": "2024-07-05T13:46:57.171827Z", + "iopub.status.busy": "2024-07-05T13:46:57.171556Z", + "iopub.status.idle": "2024-07-05T13:46:57.174720Z", + "shell.execute_reply": "2024-07-05T13:46:57.174278Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.499370Z", - "iopub.status.busy": "2024-07-02T15:30:09.498949Z", - "iopub.status.idle": "2024-07-02T15:30:09.506499Z", - "shell.execute_reply": "2024-07-02T15:30:09.505969Z" + "iopub.execute_input": "2024-07-05T13:46:57.176652Z", + "iopub.status.busy": "2024-07-05T13:46:57.176465Z", + "iopub.status.idle": "2024-07-05T13:46:57.184201Z", + "shell.execute_reply": "2024-07-05T13:46:57.183750Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.508570Z", - "iopub.status.busy": "2024-07-02T15:30:09.508265Z", - "iopub.status.idle": "2024-07-02T15:30:09.554643Z", - "shell.execute_reply": "2024-07-02T15:30:09.554193Z" + "iopub.execute_input": "2024-07-05T13:46:57.186173Z", + "iopub.status.busy": "2024-07-05T13:46:57.185796Z", + "iopub.status.idle": "2024-07-05T13:46:57.232147Z", + "shell.execute_reply": "2024-07-05T13:46:57.231584Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.556758Z", - "iopub.status.busy": "2024-07-02T15:30:09.556425Z", - "iopub.status.idle": "2024-07-02T15:30:09.573109Z", - "shell.execute_reply": "2024-07-02T15:30:09.572615Z" + "iopub.execute_input": "2024-07-05T13:46:57.234312Z", + "iopub.status.busy": "2024-07-05T13:46:57.234004Z", + "iopub.status.idle": "2024-07-05T13:46:57.250876Z", + "shell.execute_reply": "2024-07-05T13:46:57.250353Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.575083Z", - "iopub.status.busy": "2024-07-02T15:30:09.574778Z", - "iopub.status.idle": "2024-07-02T15:30:09.578384Z", - "shell.execute_reply": "2024-07-02T15:30:09.577927Z" + "iopub.execute_input": "2024-07-05T13:46:57.252990Z", + "iopub.status.busy": "2024-07-05T13:46:57.252603Z", + "iopub.status.idle": "2024-07-05T13:46:57.256397Z", + "shell.execute_reply": "2024-07-05T13:46:57.255874Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.580410Z", - "iopub.status.busy": "2024-07-02T15:30:09.580081Z", - "iopub.status.idle": "2024-07-02T15:30:09.593572Z", - "shell.execute_reply": "2024-07-02T15:30:09.593159Z" + "iopub.execute_input": "2024-07-05T13:46:57.258532Z", + "iopub.status.busy": "2024-07-05T13:46:57.258200Z", + "iopub.status.idle": "2024-07-05T13:46:57.271768Z", + "shell.execute_reply": "2024-07-05T13:46:57.271219Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.595521Z", - "iopub.status.busy": "2024-07-02T15:30:09.595213Z", - "iopub.status.idle": "2024-07-02T15:30:09.620528Z", - "shell.execute_reply": "2024-07-02T15:30:09.620111Z" + "iopub.execute_input": "2024-07-05T13:46:57.273883Z", + "iopub.status.busy": "2024-07-05T13:46:57.273557Z", + "iopub.status.idle": "2024-07-05T13:46:57.301505Z", + "shell.execute_reply": "2024-07-05T13:46:57.300994Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:09.622444Z", - "iopub.status.busy": "2024-07-02T15:30:09.622151Z", - "iopub.status.idle": "2024-07-02T15:30:11.445778Z", - "shell.execute_reply": "2024-07-02T15:30:11.445137Z" + "iopub.execute_input": "2024-07-05T13:46:57.303620Z", + "iopub.status.busy": "2024-07-05T13:46:57.303313Z", + "iopub.status.idle": "2024-07-05T13:46:59.169714Z", + "shell.execute_reply": "2024-07-05T13:46:59.169168Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.448367Z", - "iopub.status.busy": "2024-07-02T15:30:11.448093Z", - "iopub.status.idle": "2024-07-02T15:30:11.454787Z", - "shell.execute_reply": "2024-07-02T15:30:11.454316Z" + "iopub.execute_input": "2024-07-05T13:46:59.172306Z", + "iopub.status.busy": "2024-07-05T13:46:59.171880Z", + "iopub.status.idle": "2024-07-05T13:46:59.178412Z", + "shell.execute_reply": "2024-07-05T13:46:59.177969Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.456765Z", - "iopub.status.busy": "2024-07-02T15:30:11.456466Z", - "iopub.status.idle": "2024-07-02T15:30:11.468719Z", - "shell.execute_reply": "2024-07-02T15:30:11.468282Z" + "iopub.execute_input": "2024-07-05T13:46:59.180399Z", + "iopub.status.busy": "2024-07-05T13:46:59.180074Z", + "iopub.status.idle": "2024-07-05T13:46:59.192633Z", + "shell.execute_reply": "2024-07-05T13:46:59.192163Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.470607Z", - "iopub.status.busy": "2024-07-02T15:30:11.470346Z", - "iopub.status.idle": "2024-07-02T15:30:11.476456Z", - "shell.execute_reply": "2024-07-02T15:30:11.476041Z" + "iopub.execute_input": "2024-07-05T13:46:59.194554Z", + "iopub.status.busy": "2024-07-05T13:46:59.194226Z", + "iopub.status.idle": "2024-07-05T13:46:59.200597Z", + "shell.execute_reply": "2024-07-05T13:46:59.200050Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.478572Z", - "iopub.status.busy": "2024-07-02T15:30:11.478242Z", - "iopub.status.idle": "2024-07-02T15:30:11.480735Z", - "shell.execute_reply": "2024-07-02T15:30:11.480310Z" + "iopub.execute_input": "2024-07-05T13:46:59.202693Z", + "iopub.status.busy": "2024-07-05T13:46:59.202353Z", + "iopub.status.idle": "2024-07-05T13:46:59.204916Z", + "shell.execute_reply": "2024-07-05T13:46:59.204479Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.482783Z", - "iopub.status.busy": "2024-07-02T15:30:11.482474Z", - "iopub.status.idle": "2024-07-02T15:30:11.485723Z", - "shell.execute_reply": "2024-07-02T15:30:11.485194Z" + "iopub.execute_input": "2024-07-05T13:46:59.206691Z", + "iopub.status.busy": "2024-07-05T13:46:59.206522Z", + "iopub.status.idle": "2024-07-05T13:46:59.210105Z", + "shell.execute_reply": "2024-07-05T13:46:59.209664Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.487566Z", - "iopub.status.busy": "2024-07-02T15:30:11.487397Z", - "iopub.status.idle": "2024-07-02T15:30:11.489827Z", - "shell.execute_reply": "2024-07-02T15:30:11.489391Z" + "iopub.execute_input": "2024-07-05T13:46:59.211921Z", + "iopub.status.busy": "2024-07-05T13:46:59.211753Z", + "iopub.status.idle": "2024-07-05T13:46:59.214229Z", + "shell.execute_reply": "2024-07-05T13:46:59.213803Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.491611Z", - "iopub.status.busy": "2024-07-02T15:30:11.491445Z", - "iopub.status.idle": "2024-07-02T15:30:11.495334Z", - "shell.execute_reply": "2024-07-02T15:30:11.494831Z" + "iopub.execute_input": "2024-07-05T13:46:59.216008Z", + "iopub.status.busy": "2024-07-05T13:46:59.215841Z", + "iopub.status.idle": "2024-07-05T13:46:59.219721Z", + "shell.execute_reply": "2024-07-05T13:46:59.219177Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.497182Z", - "iopub.status.busy": "2024-07-02T15:30:11.497014Z", - "iopub.status.idle": "2024-07-02T15:30:11.524806Z", - "shell.execute_reply": "2024-07-02T15:30:11.524260Z" + "iopub.execute_input": "2024-07-05T13:46:59.221744Z", + "iopub.status.busy": "2024-07-05T13:46:59.221444Z", + "iopub.status.idle": "2024-07-05T13:46:59.250010Z", + "shell.execute_reply": "2024-07-05T13:46:59.249592Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:11.527068Z", - "iopub.status.busy": "2024-07-02T15:30:11.526763Z", - "iopub.status.idle": "2024-07-02T15:30:11.531196Z", - "shell.execute_reply": "2024-07-02T15:30:11.530662Z" + "iopub.execute_input": "2024-07-05T13:46:59.252057Z", + "iopub.status.busy": "2024-07-05T13:46:59.251739Z", + "iopub.status.idle": "2024-07-05T13:46:59.256119Z", + "shell.execute_reply": "2024-07-05T13:46:59.255674Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index b8ac96c40..074c3d152 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:14.064593Z", - "iopub.status.busy": "2024-07-02T15:30:14.064421Z", - "iopub.status.idle": "2024-07-02T15:30:15.205978Z", - "shell.execute_reply": "2024-07-02T15:30:15.205327Z" + "iopub.execute_input": "2024-07-05T13:47:02.009431Z", + "iopub.status.busy": "2024-07-05T13:47:02.009133Z", + "iopub.status.idle": "2024-07-05T13:47:03.146288Z", + "shell.execute_reply": "2024-07-05T13:47:03.145757Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:15.208418Z", - "iopub.status.busy": "2024-07-02T15:30:15.208143Z", - "iopub.status.idle": "2024-07-02T15:30:15.398147Z", - "shell.execute_reply": "2024-07-02T15:30:15.397569Z" + "iopub.execute_input": "2024-07-05T13:47:03.148827Z", + "iopub.status.busy": "2024-07-05T13:47:03.148342Z", + "iopub.status.idle": "2024-07-05T13:47:03.339995Z", + "shell.execute_reply": "2024-07-05T13:47:03.339383Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:15.400536Z", - "iopub.status.busy": "2024-07-02T15:30:15.400274Z", - "iopub.status.idle": "2024-07-02T15:30:15.413403Z", - "shell.execute_reply": "2024-07-02T15:30:15.412862Z" + "iopub.execute_input": "2024-07-05T13:47:03.342527Z", + "iopub.status.busy": "2024-07-05T13:47:03.342243Z", + "iopub.status.idle": "2024-07-05T13:47:03.355729Z", + "shell.execute_reply": "2024-07-05T13:47:03.355180Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:15.415691Z", - "iopub.status.busy": "2024-07-02T15:30:15.415248Z", - "iopub.status.idle": "2024-07-02T15:30:18.012829Z", - "shell.execute_reply": "2024-07-02T15:30:18.012269Z" + "iopub.execute_input": "2024-07-05T13:47:03.357735Z", + "iopub.status.busy": "2024-07-05T13:47:03.357428Z", + "iopub.status.idle": "2024-07-05T13:47:05.947767Z", + "shell.execute_reply": "2024-07-05T13:47:05.947232Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:18.015230Z", - "iopub.status.busy": "2024-07-02T15:30:18.014790Z", - "iopub.status.idle": "2024-07-02T15:30:19.361340Z", - "shell.execute_reply": "2024-07-02T15:30:19.360749Z" + "iopub.execute_input": "2024-07-05T13:47:05.950102Z", + "iopub.status.busy": "2024-07-05T13:47:05.949669Z", + "iopub.status.idle": "2024-07-05T13:47:07.291483Z", + "shell.execute_reply": "2024-07-05T13:47:07.290935Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:19.363622Z", - "iopub.status.busy": "2024-07-02T15:30:19.363439Z", - "iopub.status.idle": "2024-07-02T15:30:19.367038Z", - "shell.execute_reply": "2024-07-02T15:30:19.366492Z" + "iopub.execute_input": "2024-07-05T13:47:07.293853Z", + "iopub.status.busy": "2024-07-05T13:47:07.293535Z", + "iopub.status.idle": "2024-07-05T13:47:07.297394Z", + "shell.execute_reply": "2024-07-05T13:47:07.296864Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:19.368905Z", - "iopub.status.busy": "2024-07-02T15:30:19.368736Z", - "iopub.status.idle": "2024-07-02T15:30:21.276657Z", - "shell.execute_reply": "2024-07-02T15:30:21.276026Z" + "iopub.execute_input": "2024-07-05T13:47:07.299452Z", + "iopub.status.busy": "2024-07-05T13:47:07.299070Z", + "iopub.status.idle": "2024-07-05T13:47:09.224450Z", + "shell.execute_reply": "2024-07-05T13:47:09.223843Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:21.278971Z", - "iopub.status.busy": "2024-07-02T15:30:21.278630Z", - "iopub.status.idle": "2024-07-02T15:30:21.286413Z", - "shell.execute_reply": "2024-07-02T15:30:21.285940Z" + "iopub.execute_input": "2024-07-05T13:47:09.226992Z", + "iopub.status.busy": "2024-07-05T13:47:09.226442Z", + "iopub.status.idle": "2024-07-05T13:47:09.233953Z", + "shell.execute_reply": "2024-07-05T13:47:09.233460Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:21.288416Z", - "iopub.status.busy": "2024-07-02T15:30:21.288115Z", - "iopub.status.idle": "2024-07-02T15:30:23.806595Z", - "shell.execute_reply": "2024-07-02T15:30:23.806033Z" + "iopub.execute_input": "2024-07-05T13:47:09.236127Z", + "iopub.status.busy": "2024-07-05T13:47:09.235707Z", + "iopub.status.idle": "2024-07-05T13:47:11.798040Z", + "shell.execute_reply": "2024-07-05T13:47:11.797441Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:23.808820Z", - "iopub.status.busy": "2024-07-02T15:30:23.808415Z", - "iopub.status.idle": "2024-07-02T15:30:23.812033Z", - "shell.execute_reply": "2024-07-02T15:30:23.811486Z" + "iopub.execute_input": "2024-07-05T13:47:11.800182Z", + "iopub.status.busy": "2024-07-05T13:47:11.799996Z", + "iopub.status.idle": "2024-07-05T13:47:11.803773Z", + "shell.execute_reply": "2024-07-05T13:47:11.803244Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:23.814126Z", - "iopub.status.busy": "2024-07-02T15:30:23.813830Z", - "iopub.status.idle": "2024-07-02T15:30:23.817286Z", - "shell.execute_reply": "2024-07-02T15:30:23.816829Z" + "iopub.execute_input": "2024-07-05T13:47:11.806147Z", + "iopub.status.busy": "2024-07-05T13:47:11.805641Z", + "iopub.status.idle": "2024-07-05T13:47:11.809274Z", + "shell.execute_reply": "2024-07-05T13:47:11.808738Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:23.819098Z", - "iopub.status.busy": "2024-07-02T15:30:23.818930Z", - "iopub.status.idle": "2024-07-02T15:30:23.822031Z", - "shell.execute_reply": "2024-07-02T15:30:23.821569Z" + "iopub.execute_input": "2024-07-05T13:47:11.811392Z", + "iopub.status.busy": "2024-07-05T13:47:11.811096Z", + "iopub.status.idle": "2024-07-05T13:47:11.814199Z", + "shell.execute_reply": "2024-07-05T13:47:11.813667Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 2a7fb3ea1..85c30ddc1 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:26.104900Z", - "iopub.status.busy": "2024-07-02T15:30:26.104494Z", - "iopub.status.idle": "2024-07-02T15:30:27.233572Z", - "shell.execute_reply": "2024-07-02T15:30:27.233026Z" + "iopub.execute_input": "2024-07-05T13:47:14.215091Z", + "iopub.status.busy": "2024-07-05T13:47:14.214671Z", + "iopub.status.idle": "2024-07-05T13:47:15.356258Z", + "shell.execute_reply": "2024-07-05T13:47:15.355646Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:27.236094Z", - "iopub.status.busy": "2024-07-02T15:30:27.235693Z", - "iopub.status.idle": "2024-07-02T15:30:28.702868Z", - "shell.execute_reply": "2024-07-02T15:30:28.702121Z" + "iopub.execute_input": "2024-07-05T13:47:15.359022Z", + "iopub.status.busy": "2024-07-05T13:47:15.358577Z", + "iopub.status.idle": "2024-07-05T13:47:16.465295Z", + "shell.execute_reply": "2024-07-05T13:47:16.464535Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:28.705594Z", - "iopub.status.busy": "2024-07-02T15:30:28.705186Z", - "iopub.status.idle": "2024-07-02T15:30:28.708303Z", - "shell.execute_reply": "2024-07-02T15:30:28.707887Z" + "iopub.execute_input": "2024-07-05T13:47:16.468138Z", + "iopub.status.busy": "2024-07-05T13:47:16.467748Z", + "iopub.status.idle": "2024-07-05T13:47:16.470920Z", + "shell.execute_reply": "2024-07-05T13:47:16.470483Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:28.710362Z", - "iopub.status.busy": "2024-07-02T15:30:28.710043Z", - "iopub.status.idle": "2024-07-02T15:30:28.715820Z", - "shell.execute_reply": "2024-07-02T15:30:28.715418Z" + "iopub.execute_input": "2024-07-05T13:47:16.473010Z", + "iopub.status.busy": "2024-07-05T13:47:16.472681Z", + "iopub.status.idle": "2024-07-05T13:47:16.478693Z", + "shell.execute_reply": "2024-07-05T13:47:16.478177Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:28.717761Z", - "iopub.status.busy": "2024-07-02T15:30:28.717422Z", - "iopub.status.idle": "2024-07-02T15:30:29.197115Z", - "shell.execute_reply": "2024-07-02T15:30:29.196591Z" + "iopub.execute_input": "2024-07-05T13:47:16.480624Z", + "iopub.status.busy": "2024-07-05T13:47:16.480346Z", + "iopub.status.idle": "2024-07-05T13:47:16.965163Z", + "shell.execute_reply": "2024-07-05T13:47:16.964596Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:29.199674Z", - "iopub.status.busy": "2024-07-02T15:30:29.199317Z", - "iopub.status.idle": "2024-07-02T15:30:29.204590Z", - "shell.execute_reply": "2024-07-02T15:30:29.204051Z" + "iopub.execute_input": "2024-07-05T13:47:16.967534Z", + "iopub.status.busy": "2024-07-05T13:47:16.967318Z", + "iopub.status.idle": "2024-07-05T13:47:16.972438Z", + "shell.execute_reply": "2024-07-05T13:47:16.971916Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:29.206585Z", - "iopub.status.busy": "2024-07-02T15:30:29.206292Z", - "iopub.status.idle": "2024-07-02T15:30:29.210100Z", - "shell.execute_reply": "2024-07-02T15:30:29.209552Z" + "iopub.execute_input": "2024-07-05T13:47:16.974620Z", + "iopub.status.busy": "2024-07-05T13:47:16.974128Z", + "iopub.status.idle": "2024-07-05T13:47:16.978049Z", + "shell.execute_reply": "2024-07-05T13:47:16.977524Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:29.212071Z", - "iopub.status.busy": "2024-07-02T15:30:29.211769Z", - "iopub.status.idle": "2024-07-02T15:30:30.046952Z", - "shell.execute_reply": "2024-07-02T15:30:30.046327Z" + "iopub.execute_input": "2024-07-05T13:47:16.980168Z", + "iopub.status.busy": "2024-07-05T13:47:16.979844Z", + "iopub.status.idle": "2024-07-05T13:47:17.832080Z", + "shell.execute_reply": "2024-07-05T13:47:17.831448Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.049474Z", - "iopub.status.busy": "2024-07-02T15:30:30.049003Z", - "iopub.status.idle": "2024-07-02T15:30:30.269472Z", - "shell.execute_reply": "2024-07-02T15:30:30.269024Z" + "iopub.execute_input": "2024-07-05T13:47:17.834444Z", + "iopub.status.busy": "2024-07-05T13:47:17.834073Z", + "iopub.status.idle": "2024-07-05T13:47:18.046151Z", + "shell.execute_reply": "2024-07-05T13:47:18.045559Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.271620Z", - "iopub.status.busy": "2024-07-02T15:30:30.271296Z", - "iopub.status.idle": "2024-07-02T15:30:30.275317Z", - "shell.execute_reply": "2024-07-02T15:30:30.274889Z" + "iopub.execute_input": "2024-07-05T13:47:18.048261Z", + "iopub.status.busy": "2024-07-05T13:47:18.047927Z", + "iopub.status.idle": "2024-07-05T13:47:18.052236Z", + "shell.execute_reply": "2024-07-05T13:47:18.051798Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.277283Z", - "iopub.status.busy": "2024-07-02T15:30:30.276960Z", - "iopub.status.idle": "2024-07-02T15:30:30.718015Z", - "shell.execute_reply": "2024-07-02T15:30:30.717439Z" + "iopub.execute_input": "2024-07-05T13:47:18.054268Z", + "iopub.status.busy": "2024-07-05T13:47:18.053965Z", + "iopub.status.idle": "2024-07-05T13:47:18.498098Z", + "shell.execute_reply": "2024-07-05T13:47:18.497506Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:30.721098Z", - "iopub.status.busy": "2024-07-02T15:30:30.720763Z", - "iopub.status.idle": "2024-07-02T15:30:31.050736Z", - "shell.execute_reply": "2024-07-02T15:30:31.050209Z" + "iopub.execute_input": "2024-07-05T13:47:18.501365Z", + "iopub.status.busy": "2024-07-05T13:47:18.500888Z", + "iopub.status.idle": "2024-07-05T13:47:18.832148Z", + "shell.execute_reply": "2024-07-05T13:47:18.831622Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:31.053203Z", - "iopub.status.busy": "2024-07-02T15:30:31.052800Z", - "iopub.status.idle": "2024-07-02T15:30:31.411935Z", - "shell.execute_reply": "2024-07-02T15:30:31.411382Z" + "iopub.execute_input": "2024-07-05T13:47:18.834660Z", + "iopub.status.busy": "2024-07-05T13:47:18.834312Z", + "iopub.status.idle": "2024-07-05T13:47:19.193818Z", + "shell.execute_reply": "2024-07-05T13:47:19.193281Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:31.414916Z", - "iopub.status.busy": "2024-07-02T15:30:31.414688Z", - "iopub.status.idle": "2024-07-02T15:30:31.848848Z", - "shell.execute_reply": "2024-07-02T15:30:31.848291Z" + "iopub.execute_input": "2024-07-05T13:47:19.196512Z", + "iopub.status.busy": "2024-07-05T13:47:19.196165Z", + "iopub.status.idle": "2024-07-05T13:47:19.635708Z", + "shell.execute_reply": "2024-07-05T13:47:19.635175Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:31.852793Z", - "iopub.status.busy": "2024-07-02T15:30:31.852402Z", - "iopub.status.idle": "2024-07-02T15:30:32.294906Z", - "shell.execute_reply": "2024-07-02T15:30:32.294313Z" + "iopub.execute_input": "2024-07-05T13:47:19.639975Z", + "iopub.status.busy": "2024-07-05T13:47:19.639571Z", + "iopub.status.idle": "2024-07-05T13:47:20.084169Z", + "shell.execute_reply": "2024-07-05T13:47:20.083575Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.297619Z", - "iopub.status.busy": "2024-07-02T15:30:32.297290Z", - "iopub.status.idle": "2024-07-02T15:30:32.486044Z", - "shell.execute_reply": "2024-07-02T15:30:32.485463Z" + "iopub.execute_input": "2024-07-05T13:47:20.086709Z", + "iopub.status.busy": "2024-07-05T13:47:20.086528Z", + "iopub.status.idle": "2024-07-05T13:47:20.276349Z", + "shell.execute_reply": "2024-07-05T13:47:20.275775Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.488589Z", - "iopub.status.busy": "2024-07-02T15:30:32.488111Z", - "iopub.status.idle": "2024-07-02T15:30:32.667785Z", - "shell.execute_reply": "2024-07-02T15:30:32.667290Z" + "iopub.execute_input": "2024-07-05T13:47:20.278634Z", + "iopub.status.busy": "2024-07-05T13:47:20.278439Z", + "iopub.status.idle": "2024-07-05T13:47:20.458407Z", + "shell.execute_reply": "2024-07-05T13:47:20.457839Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.670272Z", - "iopub.status.busy": "2024-07-02T15:30:32.669957Z", - "iopub.status.idle": "2024-07-02T15:30:32.672881Z", - "shell.execute_reply": "2024-07-02T15:30:32.672341Z" + "iopub.execute_input": "2024-07-05T13:47:20.460462Z", + "iopub.status.busy": "2024-07-05T13:47:20.460287Z", + "iopub.status.idle": "2024-07-05T13:47:20.463336Z", + "shell.execute_reply": "2024-07-05T13:47:20.462883Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:32.674835Z", - "iopub.status.busy": "2024-07-02T15:30:32.674531Z", - "iopub.status.idle": "2024-07-02T15:30:33.648630Z", - "shell.execute_reply": "2024-07-02T15:30:33.648115Z" + "iopub.execute_input": "2024-07-05T13:47:20.465110Z", + "iopub.status.busy": "2024-07-05T13:47:20.464940Z", + "iopub.status.idle": "2024-07-05T13:47:21.357863Z", + "shell.execute_reply": "2024-07-05T13:47:21.357397Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:33.651075Z", - "iopub.status.busy": "2024-07-02T15:30:33.650749Z", - "iopub.status.idle": "2024-07-02T15:30:33.832380Z", - "shell.execute_reply": "2024-07-02T15:30:33.831930Z" + "iopub.execute_input": "2024-07-05T13:47:21.359996Z", + "iopub.status.busy": "2024-07-05T13:47:21.359810Z", + "iopub.status.idle": "2024-07-05T13:47:21.506791Z", + "shell.execute_reply": "2024-07-05T13:47:21.506329Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:33.834350Z", - "iopub.status.busy": "2024-07-02T15:30:33.834178Z", - "iopub.status.idle": "2024-07-02T15:30:33.965756Z", - "shell.execute_reply": "2024-07-02T15:30:33.965334Z" + "iopub.execute_input": "2024-07-05T13:47:21.508826Z", + "iopub.status.busy": "2024-07-05T13:47:21.508482Z", + "iopub.status.idle": "2024-07-05T13:47:21.641437Z", + "shell.execute_reply": "2024-07-05T13:47:21.640973Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:33.967745Z", - "iopub.status.busy": "2024-07-02T15:30:33.967436Z", - "iopub.status.idle": "2024-07-02T15:30:34.624537Z", - "shell.execute_reply": "2024-07-02T15:30:34.623949Z" + "iopub.execute_input": "2024-07-05T13:47:21.643445Z", + "iopub.status.busy": "2024-07-05T13:47:21.643266Z", + "iopub.status.idle": "2024-07-05T13:47:22.329384Z", + "shell.execute_reply": "2024-07-05T13:47:22.328815Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:34.626893Z", - "iopub.status.busy": "2024-07-02T15:30:34.626704Z", - "iopub.status.idle": "2024-07-02T15:30:34.630276Z", - "shell.execute_reply": "2024-07-02T15:30:34.629829Z" + "iopub.execute_input": "2024-07-05T13:47:22.331880Z", + "iopub.status.busy": "2024-07-05T13:47:22.331430Z", + "iopub.status.idle": "2024-07-05T13:47:22.335182Z", + "shell.execute_reply": "2024-07-05T13:47:22.334724Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index a01751703..54f416807 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:36.707833Z", - "iopub.status.busy": "2024-07-02T15:30:36.707432Z", - "iopub.status.idle": "2024-07-02T15:30:39.352386Z", - "shell.execute_reply": "2024-07-02T15:30:39.351837Z" + "iopub.execute_input": "2024-07-05T13:47:24.527137Z", + "iopub.status.busy": "2024-07-05T13:47:24.526961Z", + "iopub.status.idle": "2024-07-05T13:47:27.218760Z", + "shell.execute_reply": "2024-07-05T13:47:27.218229Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:39.355103Z", - "iopub.status.busy": "2024-07-02T15:30:39.354574Z", - "iopub.status.idle": "2024-07-02T15:30:39.661584Z", - "shell.execute_reply": "2024-07-02T15:30:39.660980Z" + "iopub.execute_input": "2024-07-05T13:47:27.221479Z", + "iopub.status.busy": "2024-07-05T13:47:27.221026Z", + "iopub.status.idle": "2024-07-05T13:47:27.537341Z", + "shell.execute_reply": "2024-07-05T13:47:27.536713Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:39.664187Z", - "iopub.status.busy": "2024-07-02T15:30:39.663844Z", - "iopub.status.idle": "2024-07-02T15:30:39.668417Z", - "shell.execute_reply": "2024-07-02T15:30:39.667891Z" + "iopub.execute_input": "2024-07-05T13:47:27.539971Z", + "iopub.status.busy": "2024-07-05T13:47:27.539520Z", + "iopub.status.idle": "2024-07-05T13:47:27.543702Z", + "shell.execute_reply": "2024-07-05T13:47:27.543277Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:39.670626Z", - "iopub.status.busy": "2024-07-02T15:30:39.670320Z", - "iopub.status.idle": "2024-07-02T15:30:44.460714Z", - "shell.execute_reply": "2024-07-02T15:30:44.460162Z" + "iopub.execute_input": "2024-07-05T13:47:27.545812Z", + "iopub.status.busy": "2024-07-05T13:47:27.545491Z", + "iopub.status.idle": "2024-07-05T13:47:35.729940Z", + "shell.execute_reply": "2024-07-05T13:47:35.729339Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1933312/170498071 [00:00<00:08, 19261178.24it/s]" + " 1%| | 1081344/170498071 [00:00<00:15, 10708567.98it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9666560/170498071 [00:00<00:03, 53300272.89it/s]" + " 3%|▎ | 4423680/170498071 [00:00<00:06, 23850218.64it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18022400/170498071 [00:00<00:02, 66766772.02it/s]" + " 4%|▍ | 7503872/170498071 [00:00<00:06, 26816651.59it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26017792/170498071 [00:00<00:02, 71799904.98it/s]" + " 6%|▌ | 10584064/170498071 [00:00<00:05, 28366091.38it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34111488/170498071 [00:00<00:01, 74851602.40it/s]" + " 8%|▊ | 13697024/170498071 [00:00<00:05, 29259026.25it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41615360/170498071 [00:00<00:01, 74050157.55it/s]" + " 10%|▉ | 16842752/170498071 [00:00<00:05, 29938735.92it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49414144/170498071 [00:00<00:01, 75240501.10it/s]" + " 12%|█▏ | 19988480/170498071 [00:00<00:04, 30330092.68it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 57802752/170498071 [00:00<00:01, 77927286.11it/s]" + " 14%|█▎ | 23035904/170498071 [00:00<00:04, 30338133.55it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65929216/170498071 [00:00<00:01, 78770128.23it/s]" + " 15%|█▌ | 26116096/170498071 [00:00<00:04, 30461768.00it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73826304/170498071 [00:01<00:01, 77447245.96it/s]" + " 17%|█▋ | 29163520/170498071 [00:01<00:04, 30317545.66it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 81887232/170498071 [00:01<00:01, 78343847.05it/s]" + " 19%|█▉ | 32210944/170498071 [00:01<00:04, 29955625.17it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 89751552/170498071 [00:01<00:01, 76411811.17it/s]" + " 21%|██ | 35291136/170498071 [00:01<00:04, 30044587.93it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 97452032/170498071 [00:01<00:00, 76559764.63it/s]" + " 22%|██▏ | 38305792/170498071 [00:01<00:04, 29859775.88it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 105119744/170498071 [00:01<00:00, 76377178.30it/s]" + " 24%|██▍ | 41353216/170498071 [00:01<00:04, 30028613.95it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 112787456/170498071 [00:01<00:00, 76223255.83it/s]" + " 26%|██▌ | 44367872/170498071 [00:01<00:04, 29666862.25it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121405440/170498071 [00:01<00:00, 79156566.53it/s]" + " 28%|██▊ | 47349760/170498071 [00:01<00:04, 28979706.66it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129335296/170498071 [00:01<00:00, 78370632.15it/s]" + " 29%|██▉ | 50266112/170498071 [00:01<00:04, 27587785.10it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 137232384/170498071 [00:01<00:00, 78523013.51it/s]" + " 31%|███ | 53051392/170498071 [00:01<00:04, 26692659.55it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 145096704/170498071 [00:01<00:00, 76246718.61it/s]" + " 33%|███▎ | 55738368/170498071 [00:01<00:04, 26016914.16it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 153026560/170498071 [00:02<00:00, 76949957.68it/s]" + " 34%|███▍ | 58359808/170498071 [00:02<00:04, 25757315.40it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 160825344/170498071 [00:02<00:00, 77200889.35it/s]" + " 36%|███▌ | 60948480/170498071 [00:02<00:04, 25456874.54it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 168558592/170498071 [00:02<00:00, 76174010.79it/s]" + " 37%|███▋ | 63504384/170498071 [00:02<00:04, 25260567.25it/s]" ] }, { @@ -428,7 +428,263 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 75087729.26it/s]" + " 39%|███▊ | 66060288/170498071 [00:02<00:04, 25144425.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 40%|████ | 68583424/170498071 [00:02<00:04, 25020258.35it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 42%|████▏ | 71106560/170498071 [00:02<00:03, 24889369.41it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 43%|████▎ | 73596928/170498071 [00:02<00:03, 24836158.15it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▍ | 76087296/170498071 [00:02<00:03, 24820215.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 46%|████▌ | 78577664/170498071 [00:02<00:03, 24735975.57it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 48%|████▊ | 81068032/170498071 [00:02<00:03, 24648888.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 49%|████▉ | 83558400/170498071 [00:03<00:03, 24358741.47it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 50%|█████ | 86016000/170498071 [00:03<00:03, 24292942.13it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▏ | 88473600/170498071 [00:03<00:03, 23995450.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 90996736/170498071 [00:03<00:03, 24247121.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 55%|█████▍ | 93487104/170498071 [00:03<00:03, 24287891.45it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▋ | 96108544/170498071 [00:03<00:03, 24740963.28it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 58%|█████▊ | 98664448/170498071 [00:03<00:02, 24966826.78it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 101253120/170498071 [00:03<00:02, 25171579.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 61%|██████ | 103874560/170498071 [00:03<00:02, 25376085.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 106430464/170498071 [00:04<00:02, 25267890.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▍ | 108986368/170498071 [00:04<00:02, 25311969.11it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▌ | 111542272/170498071 [00:04<00:02, 25349630.04it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 114393088/170498071 [00:04<00:02, 26276676.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 117833728/170498071 [00:04<00:01, 28518989.81it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████ | 121339904/170498071 [00:04<00:01, 30452371.07it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 125042688/170498071 [00:04<00:01, 32404964.43it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 129171456/170498071 [00:04<00:01, 35030187.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 133431296/170498071 [00:04<00:00, 37122893.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████ | 138149888/170498071 [00:04<00:00, 40026806.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▎ | 142442496/170498071 [00:05<00:00, 40691324.98it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 146800640/170498071 [00:05<00:00, 41397613.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 89%|████████▊ | 150962176/170498071 [00:05<00:00, 41058158.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████ | 155189248/170498071 [00:05<00:00, 41393042.02it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 160792576/170498071 [00:05<00:00, 45651328.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 166035456/170498071 [00:05<00:00, 47635065.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:05<00:00, 30338964.83it/s]" ] }, { @@ -546,10 +802,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:44.462980Z", - "iopub.status.busy": "2024-07-02T15:30:44.462612Z", - "iopub.status.idle": "2024-07-02T15:30:44.467530Z", - "shell.execute_reply": "2024-07-02T15:30:44.467072Z" + "iopub.execute_input": "2024-07-05T13:47:35.732408Z", + "iopub.status.busy": "2024-07-05T13:47:35.732048Z", + "iopub.status.idle": "2024-07-05T13:47:35.736850Z", + "shell.execute_reply": "2024-07-05T13:47:35.736350Z" }, "nbsphinx": "hidden" }, @@ -600,10 +856,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:44.469606Z", - "iopub.status.busy": "2024-07-02T15:30:44.469261Z", - "iopub.status.idle": "2024-07-02T15:30:45.008289Z", - "shell.execute_reply": "2024-07-02T15:30:45.007683Z" + "iopub.execute_input": "2024-07-05T13:47:35.738790Z", + "iopub.status.busy": "2024-07-05T13:47:35.738469Z", + "iopub.status.idle": "2024-07-05T13:47:36.284379Z", + "shell.execute_reply": "2024-07-05T13:47:36.283902Z" } }, "outputs": [ @@ -636,10 +892,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:45.010647Z", - "iopub.status.busy": "2024-07-02T15:30:45.010334Z", - "iopub.status.idle": "2024-07-02T15:30:45.519231Z", - "shell.execute_reply": "2024-07-02T15:30:45.518726Z" + "iopub.execute_input": "2024-07-05T13:47:36.286478Z", + "iopub.status.busy": "2024-07-05T13:47:36.286284Z", + "iopub.status.idle": "2024-07-05T13:47:36.799704Z", + "shell.execute_reply": "2024-07-05T13:47:36.799058Z" } }, "outputs": [ @@ -677,10 +933,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:45.521432Z", - "iopub.status.busy": "2024-07-02T15:30:45.521094Z", - "iopub.status.idle": "2024-07-02T15:30:45.524584Z", - "shell.execute_reply": "2024-07-02T15:30:45.524036Z" + "iopub.execute_input": "2024-07-05T13:47:36.801975Z", + "iopub.status.busy": "2024-07-05T13:47:36.801619Z", + "iopub.status.idle": "2024-07-05T13:47:36.805610Z", + "shell.execute_reply": "2024-07-05T13:47:36.805181Z" } }, "outputs": [], @@ -703,17 +959,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:45.526495Z", - "iopub.status.busy": "2024-07-02T15:30:45.526191Z", - "iopub.status.idle": "2024-07-02T15:30:58.240257Z", - "shell.execute_reply": "2024-07-02T15:30:58.239689Z" + "iopub.execute_input": "2024-07-05T13:47:36.807576Z", + "iopub.status.busy": "2024-07-05T13:47:36.807406Z", + "iopub.status.idle": "2024-07-05T13:47:49.212132Z", + "shell.execute_reply": "2024-07-05T13:47:49.211548Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e5259ff69044f2d9040e07e24baf5d7", + "model_id": "58358b4135424d1cb6f1744e39b66b72", "version_major": 2, "version_minor": 0 }, @@ -772,10 +1028,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:30:58.242629Z", - "iopub.status.busy": "2024-07-02T15:30:58.242434Z", - "iopub.status.idle": "2024-07-02T15:31:00.298294Z", - "shell.execute_reply": "2024-07-02T15:31:00.297716Z" + "iopub.execute_input": "2024-07-05T13:47:49.214583Z", + "iopub.status.busy": "2024-07-05T13:47:49.214120Z", + "iopub.status.idle": "2024-07-05T13:47:51.355332Z", + "shell.execute_reply": "2024-07-05T13:47:51.354669Z" } }, "outputs": [ @@ -819,10 +1075,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:00.300955Z", - "iopub.status.busy": "2024-07-02T15:31:00.300659Z", - "iopub.status.idle": "2024-07-02T15:31:00.552803Z", - "shell.execute_reply": "2024-07-02T15:31:00.552236Z" + "iopub.execute_input": "2024-07-05T13:47:51.358268Z", + "iopub.status.busy": "2024-07-05T13:47:51.357773Z", + "iopub.status.idle": "2024-07-05T13:47:51.612668Z", + "shell.execute_reply": "2024-07-05T13:47:51.612041Z" } }, "outputs": [ @@ -858,10 +1114,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:00.555642Z", - "iopub.status.busy": "2024-07-02T15:31:00.555135Z", - "iopub.status.idle": "2024-07-02T15:31:01.217327Z", - "shell.execute_reply": "2024-07-02T15:31:01.216752Z" + "iopub.execute_input": "2024-07-05T13:47:51.615347Z", + "iopub.status.busy": "2024-07-05T13:47:51.615128Z", + "iopub.status.idle": "2024-07-05T13:47:52.271987Z", + "shell.execute_reply": "2024-07-05T13:47:52.271431Z" } }, "outputs": [ @@ -911,10 +1167,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.220258Z", - "iopub.status.busy": "2024-07-02T15:31:01.219756Z", - "iopub.status.idle": "2024-07-02T15:31:01.555237Z", - "shell.execute_reply": "2024-07-02T15:31:01.554707Z" + "iopub.execute_input": "2024-07-05T13:47:52.274906Z", + "iopub.status.busy": "2024-07-05T13:47:52.274593Z", + "iopub.status.idle": "2024-07-05T13:47:52.612095Z", + "shell.execute_reply": "2024-07-05T13:47:52.611556Z" } }, "outputs": [ @@ -962,10 +1218,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.557486Z", - "iopub.status.busy": "2024-07-02T15:31:01.557127Z", - "iopub.status.idle": "2024-07-02T15:31:01.796360Z", - "shell.execute_reply": "2024-07-02T15:31:01.795785Z" + "iopub.execute_input": "2024-07-05T13:47:52.614364Z", + "iopub.status.busy": "2024-07-05T13:47:52.614037Z", + "iopub.status.idle": "2024-07-05T13:47:52.841957Z", + "shell.execute_reply": "2024-07-05T13:47:52.841541Z" } }, "outputs": [ @@ -1021,10 +1277,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.798780Z", - "iopub.status.busy": "2024-07-02T15:31:01.798246Z", - "iopub.status.idle": "2024-07-02T15:31:01.878845Z", - "shell.execute_reply": "2024-07-02T15:31:01.878199Z" + "iopub.execute_input": "2024-07-05T13:47:52.844466Z", + "iopub.status.busy": "2024-07-05T13:47:52.844028Z", + "iopub.status.idle": "2024-07-05T13:47:52.922009Z", + "shell.execute_reply": "2024-07-05T13:47:52.921373Z" } }, "outputs": [], @@ -1045,10 +1301,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:01.881383Z", - "iopub.status.busy": "2024-07-02T15:31:01.881198Z", - "iopub.status.idle": "2024-07-02T15:31:12.064664Z", - "shell.execute_reply": "2024-07-02T15:31:12.064061Z" + "iopub.execute_input": "2024-07-05T13:47:52.924534Z", + "iopub.status.busy": "2024-07-05T13:47:52.924358Z", + "iopub.status.idle": "2024-07-05T13:48:03.240359Z", + "shell.execute_reply": "2024-07-05T13:48:03.239769Z" } }, "outputs": [ @@ -1085,10 +1341,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:12.067005Z", - "iopub.status.busy": "2024-07-02T15:31:12.066698Z", - "iopub.status.idle": "2024-07-02T15:31:14.192509Z", - "shell.execute_reply": "2024-07-02T15:31:14.192014Z" + "iopub.execute_input": "2024-07-05T13:48:03.242797Z", + "iopub.status.busy": "2024-07-05T13:48:03.242409Z", + "iopub.status.idle": "2024-07-05T13:48:05.389677Z", + "shell.execute_reply": "2024-07-05T13:48:05.389125Z" } }, "outputs": [ @@ -1119,10 +1375,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:14.195306Z", - "iopub.status.busy": "2024-07-02T15:31:14.194774Z", - "iopub.status.idle": "2024-07-02T15:31:14.398366Z", - "shell.execute_reply": "2024-07-02T15:31:14.397868Z" + "iopub.execute_input": "2024-07-05T13:48:05.392297Z", + "iopub.status.busy": "2024-07-05T13:48:05.391748Z", + "iopub.status.idle": "2024-07-05T13:48:05.597491Z", + "shell.execute_reply": "2024-07-05T13:48:05.596891Z" } }, "outputs": [], @@ -1136,10 +1392,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:14.400634Z", - "iopub.status.busy": "2024-07-02T15:31:14.400446Z", - "iopub.status.idle": "2024-07-02T15:31:14.403545Z", - "shell.execute_reply": "2024-07-02T15:31:14.403109Z" + "iopub.execute_input": "2024-07-05T13:48:05.600063Z", + "iopub.status.busy": "2024-07-05T13:48:05.599709Z", + "iopub.status.idle": "2024-07-05T13:48:05.602801Z", + "shell.execute_reply": "2024-07-05T13:48:05.602354Z" } }, "outputs": [], @@ -1161,10 +1417,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:14.405375Z", - "iopub.status.busy": "2024-07-02T15:31:14.405202Z", - "iopub.status.idle": "2024-07-02T15:31:14.413303Z", - "shell.execute_reply": "2024-07-02T15:31:14.412850Z" + "iopub.execute_input": "2024-07-05T13:48:05.604928Z", + "iopub.status.busy": "2024-07-05T13:48:05.604609Z", + "iopub.status.idle": "2024-07-05T13:48:05.612535Z", + "shell.execute_reply": "2024-07-05T13:48:05.612106Z" }, "nbsphinx": "hidden" }, @@ -1209,7 +1465,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a031667bcbf4ad0b0f0c1a2382f5f2e": { + "22991c52e1624f42a1efdc597d744fdb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1227,56 +1483,46 @@ "text_color": null } }, - "2f6020cef60b4bf8bac0b8389a1b6833": { + "39c2b9a8f20149d79c7db322ec212f7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fbf5a8d22db64f0eb01aa7fd53c1b68b", - "placeholder": "​", - "style": "IPY_MODEL_0a031667bcbf4ad0b0f0c1a2382f5f2e", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 152MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3cd1e403a7754c11922ba99ec3494a8e": { + "50522c99b3704c46b1f935531211ce3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e052a3ce162f4f6c9ff6c38cfe463797", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa0fb39e0a6040b5b93e4814da7189e3", + "layout": "IPY_MODEL_9cf0ef02f58e4fefb0e4a3022349d990", + "placeholder": "​", + "style": "IPY_MODEL_94a0c5224ea84f70a5c617c07a40856e", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": " 102M/102M [00:00<00:00, 355MB/s]" } }, - "3e5259ff69044f2d9040e07e24baf5d7": { + "58358b4135424d1cb6f1744e39b66b72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1291,34 +1537,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f83bdbe3f66c44e882ec5a547dc9c059", - "IPY_MODEL_3cd1e403a7754c11922ba99ec3494a8e", - "IPY_MODEL_2f6020cef60b4bf8bac0b8389a1b6833" + "IPY_MODEL_84b7bee42886402099c72cdc29abda56", + "IPY_MODEL_ca75ad4202a84bb19e32d7abd1a06f81", + "IPY_MODEL_50522c99b3704c46b1f935531211ce3b" ], - "layout": "IPY_MODEL_8343e5c5e9e14df4a633a441184012d4", + "layout": "IPY_MODEL_a087d28d1ed146d28a0e39c89d199c83", "tabbable": null, "tooltip": null } }, - "599e155eace340f792bf1521c812754d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8343e5c5e9e14df4a633a441184012d4": { + "69a985bcb8c246ae8be193eadf12d393": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,23 +1599,48 @@ "width": null } }, - "aa0fb39e0a6040b5b93e4814da7189e3": { + "84b7bee42886402099c72cdc29abda56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2139f0e687b4f67979bcb386dc08b22", + "placeholder": "​", + "style": "IPY_MODEL_22991c52e1624f42a1efdc597d744fdb", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "94a0c5224ea84f70a5c617c07a40856e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c8f58a32013f4bc7a0fcf152344559fe": { + "9cf0ef02f58e4fefb0e4a3022349d990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1440,7 +1693,7 @@ "width": null } }, - "e052a3ce162f4f6c9ff6c38cfe463797": { + "a087d28d1ed146d28a0e39c89d199c83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1493,30 +1746,33 @@ "width": null } }, - "f83bdbe3f66c44e882ec5a547dc9c059": { + "ca75ad4202a84bb19e32d7abd1a06f81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c8f58a32013f4bc7a0fcf152344559fe", - "placeholder": "​", - "style": "IPY_MODEL_599e155eace340f792bf1521c812754d", + "layout": "IPY_MODEL_69a985bcb8c246ae8be193eadf12d393", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_39c2b9a8f20149d79c7db322ec212f7c", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": 102469840.0 } }, - "fbf5a8d22db64f0eb01aa7fd53c1b68b": { + "e2139f0e687b4f67979bcb386dc08b22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index d85d0978d..363147c8f 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:18.468176Z", - "iopub.status.busy": "2024-07-02T15:31:18.467999Z", - "iopub.status.idle": "2024-07-02T15:31:19.595981Z", - "shell.execute_reply": "2024-07-02T15:31:19.595445Z" + "iopub.execute_input": "2024-07-05T13:48:09.970835Z", + "iopub.status.busy": "2024-07-05T13:48:09.970666Z", + "iopub.status.idle": "2024-07-05T13:48:11.102261Z", + "shell.execute_reply": "2024-07-05T13:48:11.101645Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.598444Z", - "iopub.status.busy": "2024-07-02T15:31:19.598201Z", - "iopub.status.idle": "2024-07-02T15:31:19.614971Z", - "shell.execute_reply": "2024-07-02T15:31:19.614441Z" + "iopub.execute_input": "2024-07-05T13:48:11.105054Z", + "iopub.status.busy": "2024-07-05T13:48:11.104633Z", + "iopub.status.idle": "2024-07-05T13:48:11.121454Z", + "shell.execute_reply": "2024-07-05T13:48:11.121016Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.617151Z", - "iopub.status.busy": "2024-07-02T15:31:19.616775Z", - "iopub.status.idle": "2024-07-02T15:31:19.619597Z", - "shell.execute_reply": "2024-07-02T15:31:19.619180Z" + "iopub.execute_input": "2024-07-05T13:48:11.123604Z", + "iopub.status.busy": "2024-07-05T13:48:11.123219Z", + "iopub.status.idle": "2024-07-05T13:48:11.126090Z", + "shell.execute_reply": "2024-07-05T13:48:11.125663Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.621728Z", - "iopub.status.busy": "2024-07-02T15:31:19.621281Z", - "iopub.status.idle": "2024-07-02T15:31:19.720173Z", - "shell.execute_reply": "2024-07-02T15:31:19.719650Z" + "iopub.execute_input": "2024-07-05T13:48:11.128019Z", + "iopub.status.busy": "2024-07-05T13:48:11.127708Z", + "iopub.status.idle": "2024-07-05T13:48:11.159626Z", + "shell.execute_reply": "2024-07-05T13:48:11.159116Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.722194Z", - "iopub.status.busy": "2024-07-02T15:31:19.721889Z", - "iopub.status.idle": "2024-07-02T15:31:19.898619Z", - "shell.execute_reply": "2024-07-02T15:31:19.898073Z" + "iopub.execute_input": "2024-07-05T13:48:11.161893Z", + "iopub.status.busy": "2024-07-05T13:48:11.161445Z", + "iopub.status.idle": "2024-07-05T13:48:11.339986Z", + "shell.execute_reply": "2024-07-05T13:48:11.339388Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:19.900830Z", - "iopub.status.busy": "2024-07-02T15:31:19.900644Z", - "iopub.status.idle": "2024-07-02T15:31:20.105363Z", - "shell.execute_reply": "2024-07-02T15:31:20.104893Z" + "iopub.execute_input": "2024-07-05T13:48:11.342348Z", + "iopub.status.busy": "2024-07-05T13:48:11.341956Z", + "iopub.status.idle": "2024-07-05T13:48:11.584081Z", + "shell.execute_reply": "2024-07-05T13:48:11.583511Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.107396Z", - "iopub.status.busy": "2024-07-02T15:31:20.107065Z", - "iopub.status.idle": "2024-07-02T15:31:20.111228Z", - "shell.execute_reply": "2024-07-02T15:31:20.110779Z" + "iopub.execute_input": "2024-07-05T13:48:11.586344Z", + "iopub.status.busy": "2024-07-05T13:48:11.585904Z", + "iopub.status.idle": "2024-07-05T13:48:11.590342Z", + "shell.execute_reply": "2024-07-05T13:48:11.589912Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.113042Z", - "iopub.status.busy": "2024-07-02T15:31:20.112776Z", - "iopub.status.idle": "2024-07-02T15:31:20.118755Z", - "shell.execute_reply": "2024-07-02T15:31:20.118338Z" + "iopub.execute_input": "2024-07-05T13:48:11.592315Z", + "iopub.status.busy": "2024-07-05T13:48:11.591996Z", + "iopub.status.idle": "2024-07-05T13:48:11.597759Z", + "shell.execute_reply": "2024-07-05T13:48:11.597346Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.120896Z", - "iopub.status.busy": "2024-07-02T15:31:20.120567Z", - "iopub.status.idle": "2024-07-02T15:31:20.123220Z", - "shell.execute_reply": "2024-07-02T15:31:20.122769Z" + "iopub.execute_input": "2024-07-05T13:48:11.599736Z", + "iopub.status.busy": "2024-07-05T13:48:11.599416Z", + "iopub.status.idle": "2024-07-05T13:48:11.602022Z", + "shell.execute_reply": "2024-07-05T13:48:11.601469Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:20.124968Z", - "iopub.status.busy": "2024-07-02T15:31:20.124802Z", - "iopub.status.idle": "2024-07-02T15:31:28.571097Z", - "shell.execute_reply": "2024-07-02T15:31:28.570451Z" + "iopub.execute_input": "2024-07-05T13:48:11.603925Z", + "iopub.status.busy": "2024-07-05T13:48:11.603601Z", + "iopub.status.idle": "2024-07-05T13:48:20.202387Z", + "shell.execute_reply": "2024-07-05T13:48:20.201841Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.573996Z", - "iopub.status.busy": "2024-07-02T15:31:28.573598Z", - "iopub.status.idle": "2024-07-02T15:31:28.580859Z", - "shell.execute_reply": "2024-07-02T15:31:28.580404Z" + "iopub.execute_input": "2024-07-05T13:48:20.205012Z", + "iopub.status.busy": "2024-07-05T13:48:20.204634Z", + "iopub.status.idle": "2024-07-05T13:48:20.211666Z", + "shell.execute_reply": "2024-07-05T13:48:20.211221Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.582717Z", - "iopub.status.busy": "2024-07-02T15:31:28.582538Z", - "iopub.status.idle": "2024-07-02T15:31:28.586218Z", - "shell.execute_reply": "2024-07-02T15:31:28.585630Z" + "iopub.execute_input": "2024-07-05T13:48:20.213706Z", + "iopub.status.busy": "2024-07-05T13:48:20.213365Z", + "iopub.status.idle": "2024-07-05T13:48:20.216890Z", + "shell.execute_reply": "2024-07-05T13:48:20.216472Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.588135Z", - "iopub.status.busy": "2024-07-02T15:31:28.587823Z", - "iopub.status.idle": "2024-07-02T15:31:28.590968Z", - "shell.execute_reply": "2024-07-02T15:31:28.590464Z" + "iopub.execute_input": "2024-07-05T13:48:20.218861Z", + "iopub.status.busy": "2024-07-05T13:48:20.218436Z", + "iopub.status.idle": "2024-07-05T13:48:20.221825Z", + "shell.execute_reply": "2024-07-05T13:48:20.221286Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.592960Z", - "iopub.status.busy": "2024-07-02T15:31:28.592655Z", - "iopub.status.idle": "2024-07-02T15:31:28.595547Z", - "shell.execute_reply": "2024-07-02T15:31:28.595114Z" + "iopub.execute_input": "2024-07-05T13:48:20.223886Z", + "iopub.status.busy": "2024-07-05T13:48:20.223464Z", + "iopub.status.idle": "2024-07-05T13:48:20.226446Z", + "shell.execute_reply": "2024-07-05T13:48:20.226012Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.597477Z", - "iopub.status.busy": "2024-07-02T15:31:28.597173Z", - "iopub.status.idle": "2024-07-02T15:31:28.605193Z", - "shell.execute_reply": "2024-07-02T15:31:28.604644Z" + "iopub.execute_input": "2024-07-05T13:48:20.228391Z", + "iopub.status.busy": "2024-07-05T13:48:20.228081Z", + "iopub.status.idle": "2024-07-05T13:48:20.235928Z", + "shell.execute_reply": "2024-07-05T13:48:20.235381Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.607149Z", - "iopub.status.busy": "2024-07-02T15:31:28.606833Z", - "iopub.status.idle": "2024-07-02T15:31:28.609520Z", - "shell.execute_reply": "2024-07-02T15:31:28.608976Z" + "iopub.execute_input": "2024-07-05T13:48:20.237961Z", + "iopub.status.busy": "2024-07-05T13:48:20.237635Z", + "iopub.status.idle": "2024-07-05T13:48:20.240086Z", + "shell.execute_reply": "2024-07-05T13:48:20.239663Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.611593Z", - "iopub.status.busy": "2024-07-02T15:31:28.611160Z", - "iopub.status.idle": "2024-07-02T15:31:28.728605Z", - "shell.execute_reply": "2024-07-02T15:31:28.728116Z" + "iopub.execute_input": "2024-07-05T13:48:20.242221Z", + "iopub.status.busy": "2024-07-05T13:48:20.241907Z", + "iopub.status.idle": "2024-07-05T13:48:20.365110Z", + "shell.execute_reply": "2024-07-05T13:48:20.364618Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.730718Z", - "iopub.status.busy": "2024-07-02T15:31:28.730363Z", - "iopub.status.idle": "2024-07-02T15:31:28.833994Z", - "shell.execute_reply": "2024-07-02T15:31:28.833479Z" + "iopub.execute_input": "2024-07-05T13:48:20.367238Z", + "iopub.status.busy": "2024-07-05T13:48:20.366936Z", + "iopub.status.idle": "2024-07-05T13:48:20.470181Z", + "shell.execute_reply": "2024-07-05T13:48:20.469627Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:28.836173Z", - "iopub.status.busy": "2024-07-02T15:31:28.835822Z", - "iopub.status.idle": "2024-07-02T15:31:29.318753Z", - "shell.execute_reply": "2024-07-02T15:31:29.318190Z" + "iopub.execute_input": "2024-07-05T13:48:20.472476Z", + "iopub.status.busy": "2024-07-05T13:48:20.472152Z", + "iopub.status.idle": "2024-07-05T13:48:20.960057Z", + "shell.execute_reply": "2024-07-05T13:48:20.959421Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.320805Z", - "iopub.status.busy": "2024-07-02T15:31:29.320632Z", - "iopub.status.idle": "2024-07-02T15:31:29.390828Z", - "shell.execute_reply": "2024-07-02T15:31:29.390329Z" + "iopub.execute_input": "2024-07-05T13:48:20.962617Z", + "iopub.status.busy": "2024-07-05T13:48:20.962295Z", + "iopub.status.idle": "2024-07-05T13:48:21.053080Z", + "shell.execute_reply": "2024-07-05T13:48:21.052502Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.392859Z", - "iopub.status.busy": "2024-07-02T15:31:29.392685Z", - "iopub.status.idle": "2024-07-02T15:31:29.401028Z", - "shell.execute_reply": "2024-07-02T15:31:29.400481Z" + "iopub.execute_input": "2024-07-05T13:48:21.057799Z", + "iopub.status.busy": "2024-07-05T13:48:21.057390Z", + "iopub.status.idle": "2024-07-05T13:48:21.068480Z", + "shell.execute_reply": "2024-07-05T13:48:21.067956Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.403035Z", - "iopub.status.busy": "2024-07-02T15:31:29.402726Z", - "iopub.status.idle": "2024-07-02T15:31:29.405418Z", - "shell.execute_reply": "2024-07-02T15:31:29.404957Z" + "iopub.execute_input": "2024-07-05T13:48:21.070858Z", + "iopub.status.busy": "2024-07-05T13:48:21.070486Z", + "iopub.status.idle": "2024-07-05T13:48:21.073966Z", + "shell.execute_reply": "2024-07-05T13:48:21.073404Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:29.407290Z", - "iopub.status.busy": "2024-07-02T15:31:29.407118Z", - "iopub.status.idle": "2024-07-02T15:31:34.727159Z", - "shell.execute_reply": "2024-07-02T15:31:34.726599Z" + "iopub.execute_input": "2024-07-05T13:48:21.076148Z", + "iopub.status.busy": "2024-07-05T13:48:21.075810Z", + "iopub.status.idle": "2024-07-05T13:48:26.520438Z", + "shell.execute_reply": "2024-07-05T13:48:26.519891Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:34.729487Z", - "iopub.status.busy": "2024-07-02T15:31:34.729099Z", - "iopub.status.idle": "2024-07-02T15:31:34.738133Z", - "shell.execute_reply": "2024-07-02T15:31:34.737687Z" + "iopub.execute_input": "2024-07-05T13:48:26.522794Z", + "iopub.status.busy": "2024-07-05T13:48:26.522426Z", + "iopub.status.idle": "2024-07-05T13:48:26.530706Z", + "shell.execute_reply": "2024-07-05T13:48:26.530283Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:34.740153Z", - "iopub.status.busy": "2024-07-02T15:31:34.739979Z", - "iopub.status.idle": "2024-07-02T15:31:34.810722Z", - "shell.execute_reply": "2024-07-02T15:31:34.810162Z" + "iopub.execute_input": "2024-07-05T13:48:26.532802Z", + "iopub.status.busy": "2024-07-05T13:48:26.532462Z", + "iopub.status.idle": "2024-07-05T13:48:26.600924Z", + "shell.execute_reply": "2024-07-05T13:48:26.600269Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 4beae91e7..a1135fb22 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:37.724618Z", - "iopub.status.busy": "2024-07-02T15:31:37.724448Z", - "iopub.status.idle": "2024-07-02T15:31:39.632373Z", - "shell.execute_reply": "2024-07-02T15:31:39.631704Z" + "iopub.execute_input": "2024-07-05T13:48:29.612347Z", + "iopub.status.busy": "2024-07-05T13:48:29.612179Z", + "iopub.status.idle": "2024-07-05T13:48:30.931428Z", + "shell.execute_reply": "2024-07-05T13:48:30.930784Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:31:39.634734Z", - "iopub.status.busy": "2024-07-02T15:31:39.634549Z", - "iopub.status.idle": "2024-07-02T15:33:03.062922Z", - "shell.execute_reply": "2024-07-02T15:33:03.062276Z" + "iopub.execute_input": "2024-07-05T13:48:30.933748Z", + "iopub.status.busy": "2024-07-05T13:48:30.933561Z", + "iopub.status.idle": "2024-07-05T13:49:09.026022Z", + "shell.execute_reply": "2024-07-05T13:49:09.025403Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:03.065400Z", - "iopub.status.busy": "2024-07-02T15:33:03.065026Z", - "iopub.status.idle": "2024-07-02T15:33:04.151127Z", - "shell.execute_reply": "2024-07-02T15:33:04.150507Z" + "iopub.execute_input": "2024-07-05T13:49:09.028514Z", + "iopub.status.busy": "2024-07-05T13:49:09.028177Z", + "iopub.status.idle": "2024-07-05T13:49:10.118542Z", + "shell.execute_reply": "2024-07-05T13:49:10.117963Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.153507Z", - "iopub.status.busy": "2024-07-02T15:33:04.153220Z", - "iopub.status.idle": "2024-07-02T15:33:04.156468Z", - "shell.execute_reply": "2024-07-02T15:33:04.156013Z" + "iopub.execute_input": "2024-07-05T13:49:10.121115Z", + "iopub.status.busy": "2024-07-05T13:49:10.120833Z", + "iopub.status.idle": "2024-07-05T13:49:10.123951Z", + "shell.execute_reply": "2024-07-05T13:49:10.123519Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.158554Z", - "iopub.status.busy": "2024-07-02T15:33:04.158229Z", - "iopub.status.idle": "2024-07-02T15:33:04.162013Z", - "shell.execute_reply": "2024-07-02T15:33:04.161530Z" + "iopub.execute_input": "2024-07-05T13:49:10.125998Z", + "iopub.status.busy": "2024-07-05T13:49:10.125819Z", + "iopub.status.idle": "2024-07-05T13:49:10.129627Z", + "shell.execute_reply": "2024-07-05T13:49:10.129164Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.164308Z", - "iopub.status.busy": "2024-07-02T15:33:04.163807Z", - "iopub.status.idle": "2024-07-02T15:33:04.167471Z", - "shell.execute_reply": "2024-07-02T15:33:04.166951Z" + "iopub.execute_input": "2024-07-05T13:49:10.131521Z", + "iopub.status.busy": "2024-07-05T13:49:10.131273Z", + "iopub.status.idle": "2024-07-05T13:49:10.134852Z", + "shell.execute_reply": "2024-07-05T13:49:10.134411Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.169469Z", - "iopub.status.busy": "2024-07-02T15:33:04.169160Z", - "iopub.status.idle": "2024-07-02T15:33:04.171836Z", - "shell.execute_reply": "2024-07-02T15:33:04.171413Z" + "iopub.execute_input": "2024-07-05T13:49:10.136727Z", + "iopub.status.busy": "2024-07-05T13:49:10.136406Z", + "iopub.status.idle": "2024-07-05T13:49:10.139128Z", + "shell.execute_reply": "2024-07-05T13:49:10.138705Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:04.173818Z", - "iopub.status.busy": "2024-07-02T15:33:04.173482Z", - "iopub.status.idle": "2024-07-02T15:33:36.513602Z", - "shell.execute_reply": "2024-07-02T15:33:36.512999Z" + "iopub.execute_input": "2024-07-05T13:49:10.140950Z", + "iopub.status.busy": "2024-07-05T13:49:10.140774Z", + "iopub.status.idle": "2024-07-05T13:49:43.783209Z", + "shell.execute_reply": "2024-07-05T13:49:43.782546Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bad327a6dcab414c8e0a515458d75ccb", + "model_id": "b155ca2dd2c240a89dfd12b39698e341", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e0001601cd8466bb4509138ab4ebda8", + "model_id": "4eb02c4d7ac04c6faf0cb7950da00b38", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:36.516246Z", - "iopub.status.busy": "2024-07-02T15:33:36.515935Z", - "iopub.status.idle": "2024-07-02T15:33:37.144437Z", - "shell.execute_reply": "2024-07-02T15:33:37.143962Z" + "iopub.execute_input": "2024-07-05T13:49:43.785735Z", + "iopub.status.busy": "2024-07-05T13:49:43.785521Z", + "iopub.status.idle": "2024-07-05T13:49:44.452317Z", + "shell.execute_reply": "2024-07-05T13:49:44.451803Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:37.146787Z", - "iopub.status.busy": "2024-07-02T15:33:37.146361Z", - "iopub.status.idle": "2024-07-02T15:33:39.872510Z", - "shell.execute_reply": "2024-07-02T15:33:39.871932Z" + "iopub.execute_input": "2024-07-05T13:49:44.454625Z", + "iopub.status.busy": "2024-07-05T13:49:44.454202Z", + "iopub.status.idle": "2024-07-05T13:49:47.222725Z", + "shell.execute_reply": "2024-07-05T13:49:47.222138Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:33:39.874693Z", - "iopub.status.busy": "2024-07-02T15:33:39.874352Z", - "iopub.status.idle": "2024-07-02T15:34:12.280506Z", - "shell.execute_reply": "2024-07-02T15:34:12.280037Z" + "iopub.execute_input": "2024-07-05T13:49:47.224938Z", + "iopub.status.busy": "2024-07-05T13:49:47.224753Z", + "iopub.status.idle": "2024-07-05T13:50:19.601984Z", + "shell.execute_reply": "2024-07-05T13:50:19.601432Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88f1333cf1c544a5912e80ec16eb4ca6", + "model_id": "eea1625a26f64db89bfdfc0f4c787c00", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:12.282629Z", - "iopub.status.busy": "2024-07-02T15:34:12.282304Z", - "iopub.status.idle": "2024-07-02T15:34:26.864434Z", - "shell.execute_reply": "2024-07-02T15:34:26.863831Z" + "iopub.execute_input": "2024-07-05T13:50:19.604305Z", + "iopub.status.busy": "2024-07-05T13:50:19.603855Z", + "iopub.status.idle": "2024-07-05T13:50:34.002835Z", + "shell.execute_reply": "2024-07-05T13:50:34.002199Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:26.866952Z", - "iopub.status.busy": "2024-07-02T15:34:26.866651Z", - "iopub.status.idle": "2024-07-02T15:34:30.542698Z", - "shell.execute_reply": "2024-07-02T15:34:30.542163Z" + "iopub.execute_input": "2024-07-05T13:50:34.005312Z", + "iopub.status.busy": "2024-07-05T13:50:34.005121Z", + "iopub.status.idle": "2024-07-05T13:50:37.763251Z", + "shell.execute_reply": "2024-07-05T13:50:37.762629Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:30.544890Z", - "iopub.status.busy": "2024-07-02T15:34:30.544550Z", - "iopub.status.idle": "2024-07-02T15:34:31.919730Z", - "shell.execute_reply": "2024-07-02T15:34:31.919163Z" + "iopub.execute_input": "2024-07-05T13:50:37.765485Z", + "iopub.status.busy": "2024-07-05T13:50:37.765139Z", + "iopub.status.idle": "2024-07-05T13:50:39.154792Z", + "shell.execute_reply": "2024-07-05T13:50:39.154186Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7eccc0839691439e89d779fba47b562f", + "model_id": "ad8c015ccb8045c7a83643beb4a0d95c", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:31.922089Z", - "iopub.status.busy": "2024-07-02T15:34:31.921633Z", - "iopub.status.idle": "2024-07-02T15:34:31.951822Z", - "shell.execute_reply": "2024-07-02T15:34:31.951305Z" + "iopub.execute_input": "2024-07-05T13:50:39.156802Z", + "iopub.status.busy": "2024-07-05T13:50:39.156625Z", + "iopub.status.idle": "2024-07-05T13:50:39.184822Z", + "shell.execute_reply": "2024-07-05T13:50:39.184253Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:31.954212Z", - "iopub.status.busy": "2024-07-02T15:34:31.954007Z", - "iopub.status.idle": "2024-07-02T15:34:37.993152Z", - "shell.execute_reply": "2024-07-02T15:34:37.992712Z" + "iopub.execute_input": "2024-07-05T13:50:39.187341Z", + "iopub.status.busy": "2024-07-05T13:50:39.186880Z", + "iopub.status.idle": "2024-07-05T13:50:45.152899Z", + "shell.execute_reply": "2024-07-05T13:50:45.152291Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:37.995340Z", - "iopub.status.busy": "2024-07-02T15:34:37.995001Z", - "iopub.status.idle": "2024-07-02T15:34:38.050757Z", - "shell.execute_reply": "2024-07-02T15:34:38.050200Z" + "iopub.execute_input": "2024-07-05T13:50:45.155271Z", + "iopub.status.busy": "2024-07-05T13:50:45.154863Z", + "iopub.status.idle": "2024-07-05T13:50:45.210371Z", + "shell.execute_reply": "2024-07-05T13:50:45.209876Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0fd140538c574ca89150cf75b6f35521": { + "0317cf64926347b5b1c4c52b635c1d34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1056,7 +1056,30 @@ "text_color": null } }, - "1cda877c22e24a249a3adea1e5a3eaa6": { + "05a7ba0674d8404b9794b167cb30a429": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_701a4f3524c848afb41228b1fecca7bc", + "placeholder": "​", + "style": "IPY_MODEL_8072f93e079e4d7287853dd76bd68537", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0959576d8d854853822c2c0c85dbd82b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1072,49 +1095,71 @@ "description_width": "" } }, - "2daaa990afa74831ac228ef5af8c878a": { + "0a77d94362b14dc6bc0992e05db88861": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_72ec7912eda94737b355f53c83796387", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_480f3b3335064465bea3b972128d431b", + "layout": "IPY_MODEL_536c4806c10646628cf0aa9e7d93efed", + "placeholder": "​", + "style": "IPY_MODEL_0e398c70b818437a99d1b62b44a80137", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "38ac20ffb13048faad531b95689a6281": { + "0e398c70b818437a99d1b62b44a80137": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "147dcdf4e1c14320a4e6de232496f0e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f7dd7e5f1ef47758d8b7d8507b58cf3", + "placeholder": "​", + "style": "IPY_MODEL_752c6f808f364d24bd0f9d9eb9bbe3f4", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.38it/s]" } }, - "3f14050e5552461e9f897fe3737afc39": { + "14e3cf14966b43908ebbb24a6931d903": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1132,7 +1177,7 @@ "text_color": null } }, - "40ce6ec00dea4ff68934b9dba6caed1f": { + "190bdd20bca142968b887125190c7f5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1185,30 +1230,33 @@ "width": null } }, - "44d19e8829934708a262462fd0c1bf75": { + "209da16d24af41e1b3869e13fa263c31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_451ab150dbda4bfbb629498f0e760dac", - "placeholder": "​", - "style": "IPY_MODEL_0fd140538c574ca89150cf75b6f35521", + "layout": "IPY_MODEL_948ba0f67dd1426d8cfacc95040f74a9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bdaca55ff2324bf5bed087f5d455dccc", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154921.47it/s]" + "value": 30.0 } }, - "4517d65ed66644b08c13686bca4ada61": { + "235d281a759d4778832becf9f07cbe0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1226,7 +1274,7 @@ "text_color": null } }, - "451ab150dbda4bfbb629498f0e760dac": { + "282d805f1f814136a4159222042558b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1279,23 +1327,30 @@ "width": null } }, - "480f3b3335064465bea3b972128d431b": { + "2fa44e23438f460e957201bba36aecf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4ad302ebed3c47d18e1035fd1cff123d", + "placeholder": "​", + "style": "IPY_MODEL_eb9eb82879c342fab67111711c5ae4f4", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 813.92it/s]" } }, - "4a0a519ca6e5455ca09357a81c0d379e": { + "321fba2098934dbb99cb1c14c3925ee4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1310,15 +1365,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81e58e1b155346b3b6e2d9d89fa60aac", + "layout": "IPY_MODEL_f3fbba3675094f84b5be02164c7e868f", "placeholder": "​", - "style": "IPY_MODEL_65bd5ddda279485393f9c86d24ce9772", + "style": "IPY_MODEL_14e3cf14966b43908ebbb24a6931d903", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "50a714bd30054853846491d6d3f2c650": { + "3f7dd7e5f1ef47758d8b7d8507b58cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,48 +1426,33 @@ "width": null } }, - "57447469206d4415aafdd42c03b73e58": { + "4a1b4eee36794f91a277074a6ff95b2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b39e7c191a2443ccae358aec72bf7220", - "placeholder": "​", - "style": "IPY_MODEL_848cf4dd8cda496e896c4d1cc4c769e4", + "layout": "IPY_MODEL_bfcc780937bf499490912093596cf384", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0959576d8d854853822c2c0c85dbd82b", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "65bd5ddda279485393f9c86d24ce9772": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 4997683.0 } }, - "72ec7912eda94737b355f53c83796387": { + "4ad302ebed3c47d18e1035fd1cff123d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1465,79 +1505,31 @@ "width": null } }, - "7631dd07857745e3b56461586f545318": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c7cbbf84083044978ab0df9b9c7126a9", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_38ac20ffb13048faad531b95689a6281", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "786fd79b6e614e9b814448b582543029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_801025927d904866871b27bae4f3e30c", - "placeholder": "​", - "style": "IPY_MODEL_fa0bbd1ddd3b47ed8606049facfac47d", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:20<00:00,  1.42it/s]" - } - }, - "79753d45ae124059908bf2ba3678d798": { + "4eb02c4d7ac04c6faf0cb7950da00b38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f50ec117ed814ac3820ed475371f1510", - "placeholder": "​", - "style": "IPY_MODEL_4517d65ed66644b08c13686bca4ada61", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c17ec2a853d34769b2e60c303532fb60", + "IPY_MODEL_73398e9f8014414a85e4c97239523d6e", + "IPY_MODEL_147dcdf4e1c14320a4e6de232496f0e4" + ], + "layout": "IPY_MODEL_9c4c4286bbc0497da969a1773265c47e", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 739.81it/s]" + "tooltip": null } }, - "7a8940a833324ba29bb1e6f53e89dae1": { + "536c4806c10646628cf0aa9e7d93efed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1590,55 +1582,25 @@ "width": null } }, - "7e0001601cd8466bb4509138ab4ebda8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_57447469206d4415aafdd42c03b73e58", - "IPY_MODEL_2daaa990afa74831ac228ef5af8c878a", - "IPY_MODEL_786fd79b6e614e9b814448b582543029" - ], - "layout": "IPY_MODEL_c83b606f3fdb4d6a8afcb5f78c107ac8", - "tabbable": null, - "tooltip": null - } - }, - "7eccc0839691439e89d779fba47b562f": { + "544697a9bab6405c866b476e42fb9aa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a0a519ca6e5455ca09357a81c0d379e", - "IPY_MODEL_ce881d19b69a46be8feb73a7b5a68d09", - "IPY_MODEL_aaa77b4b69364ba2ad48741d8b4141e7" - ], - "layout": "IPY_MODEL_84554b6d7bf44226bf53416e4d0a2b71", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "801025927d904866871b27bae4f3e30c": { + "56c8781b70024916be5a1162b0a734af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1653,56 @@ "width": null } }, - "81e58e1b155346b3b6e2d9d89fa60aac": { + "5963830793f1450ea7b1fb7ac0783b7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_56c8781b70024916be5a1162b0a734af", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0708e2625ff433ea7a4176a703c7242", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "6b4420e4aa1947978e614089fcea94fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_282d805f1f814136a4159222042558b0", + "placeholder": "​", + "style": "IPY_MODEL_0317cf64926347b5b1c4c52b635c1d34", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.89it/s]" + } + }, + "701a4f3524c848afb41228b1fecca7bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1744,8 +1755,52 @@ "width": null } }, - "84554b6d7bf44226bf53416e4d0a2b71": { - "model_module": "@jupyter-widgets/base", + "73398e9f8014414a85e4c97239523d6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3876c8368ff482eb246a232f2c0f794", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ed99f12beba34b11b03b90f781fd6b9b", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "752c6f808f364d24bd0f9d9eb9bbe3f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "770ebc2c046c4628aadd2f6e1c655dcd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -1797,7 +1852,7 @@ "width": null } }, - "848cf4dd8cda496e896c4d1cc4c769e4": { + "8072f93e079e4d7287853dd76bd68537": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1815,98 +1870,60 @@ "text_color": null } }, - "88f1333cf1c544a5912e80ec16eb4ca6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3b9945cd0f94d4aaf5d332693944660", - "IPY_MODEL_abfa384596354665b60a79f482b668f3", - "IPY_MODEL_44d19e8829934708a262462fd0c1bf75" - ], - "layout": "IPY_MODEL_50a714bd30054853846491d6d3f2c650", - "tabbable": null, - "tooltip": null - } - }, - "aa85802912774b7988f19c20712f63ab": { - "model_module": "@jupyter-widgets/controls", + "914072300b8a4689850987cd27450b53": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aaa77b4b69364ba2ad48741d8b4141e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a8940a833324ba29bb1e6f53e89dae1", - "placeholder": "​", - "style": "IPY_MODEL_3f14050e5552461e9f897fe3737afc39", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.02it/s]" - } - }, - "abfa384596354665b60a79f482b668f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_40ce6ec00dea4ff68934b9dba6caed1f", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b57ba400aba2414cb1bb173653025ebb", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b0d9136bfec24979b7f2bdb45cc8a04b": { + "948ba0f67dd1426d8cfacc95040f74a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1959,7 +1976,7 @@ "width": null } }, - "b39e7c191a2443ccae358aec72bf7220": { + "9c4c4286bbc0497da969a1773265c47e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2012,7 +2029,31 @@ "width": null } }, - "b57ba400aba2414cb1bb173653025ebb": { + "ad8c015ccb8045c7a83643beb4a0d95c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_321fba2098934dbb99cb1c14c3925ee4", + "IPY_MODEL_209da16d24af41e1b3869e13fa263c31", + "IPY_MODEL_6b4420e4aa1947978e614089fcea94fd" + ], + "layout": "IPY_MODEL_770ebc2c046c4628aadd2f6e1c655dcd", + "tabbable": null, + "tooltip": null + } + }, + "b0708e2625ff433ea7a4176a703c7242": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2028,7 +2069,7 @@ "description_width": "" } }, - "bad327a6dcab414c8e0a515458d75ccb": { + "b155ca2dd2c240a89dfd12b39698e341": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2043,16 +2084,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fa4275e75f7d47ca9abfdd2ff25071a4", - "IPY_MODEL_7631dd07857745e3b56461586f545318", - "IPY_MODEL_79753d45ae124059908bf2ba3678d798" + "IPY_MODEL_0a77d94362b14dc6bc0992e05db88861", + "IPY_MODEL_5963830793f1450ea7b1fb7ac0783b7e", + "IPY_MODEL_2fa44e23438f460e957201bba36aecf0" ], - "layout": "IPY_MODEL_c7762dfaefbe498d9f7c6387900b93a0", + "layout": "IPY_MODEL_914072300b8a4689850987cd27450b53", "tabbable": null, "tooltip": null } }, - "c7762dfaefbe498d9f7c6387900b93a0": { + "bdaca55ff2324bf5bed087f5d455dccc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bfcc780937bf499490912093596cf384": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2105,7 +2162,30 @@ "width": null } }, - "c7cbbf84083044978ab0df9b9c7126a9": { + "c17ec2a853d34769b2e60c303532fb60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fb7124b8507d49bdb02123d8a781b964", + "placeholder": "​", + "style": "IPY_MODEL_235d281a759d4778832becf9f07cbe0e", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "d23cf212aea34830a6ee24a357fd883d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2238,7 @@ "width": null } }, - "c83b606f3fdb4d6a8afcb5f78c107ac8": { + "e3876c8368ff482eb246a232f2c0f794": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,33 +2291,7 @@ "width": null } }, - "ce881d19b69a46be8feb73a7b5a68d09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b0d9136bfec24979b7f2bdb45cc8a04b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1cda877c22e24a249a3adea1e5a3eaa6", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "dcc356830b094ef8b7bd62ea9d5f4d3c": { + "eb9eb82879c342fab67111711c5ae4f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2255,124 +2309,47 @@ "text_color": null } }, - "f3b9945cd0f94d4aaf5d332693944660": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fdf4e3973a9c42018c8d1b704c592c6e", - "placeholder": "​", - "style": "IPY_MODEL_aa85802912774b7988f19c20712f63ab", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "f50ec117ed814ac3820ed475371f1510": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fa0bbd1ddd3b47ed8606049facfac47d": { + "ed99f12beba34b11b03b90f781fd6b9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "fa4275e75f7d47ca9abfdd2ff25071a4": { + "eea1625a26f64db89bfdfc0f4c787c00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa73892e099842d1b9af380a12979792", - "placeholder": "​", - "style": "IPY_MODEL_dcc356830b094ef8b7bd62ea9d5f4d3c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_05a7ba0674d8404b9794b167cb30a429", + "IPY_MODEL_4a1b4eee36794f91a277074a6ff95b2d", + "IPY_MODEL_fcbe8c0a17fe4c8a86f9399585779b73" + ], + "layout": "IPY_MODEL_190bdd20bca142968b887125190c7f5f", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "tooltip": null } }, - "fa73892e099842d1b9af380a12979792": { + "f3fbba3675094f84b5be02164c7e868f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,7 +2402,7 @@ "width": null } }, - "fdf4e3973a9c42018c8d1b704c592c6e": { + "fb7124b8507d49bdb02123d8a781b964": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2454,29 @@ "visibility": null, "width": null } + }, + "fcbe8c0a17fe4c8a86f9399585779b73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d23cf212aea34830a6ee24a357fd883d", + "placeholder": "​", + "style": "IPY_MODEL_544697a9bab6405c866b476e42fb9aa1", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 155761.44it/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 4c5c0ea36..1d15d10d6 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:40.409044Z", - "iopub.status.busy": "2024-07-02T15:34:40.408876Z", - "iopub.status.idle": "2024-07-02T15:34:41.504750Z", - "shell.execute_reply": "2024-07-02T15:34:41.504249Z" + "iopub.execute_input": "2024-07-05T13:50:47.424699Z", + "iopub.status.busy": "2024-07-05T13:50:47.423287Z", + "iopub.status.idle": "2024-07-05T13:50:48.576339Z", + "shell.execute_reply": "2024-07-05T13:50:48.575652Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-02 15:34:40-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-05 13:50:47-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.98, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "169.150.236.100, 2400:52e0:1a00::1069:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-02 15:34:40 (83.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-05 13:50:47 (7.02 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -124,16 +138,23 @@ " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", " inflating: data/train.txt \r\n", - " inflating: data/valid.txt \r\n" + " inflating: data/valid.txt " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-02 15:34:40-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.173.201, 3.5.25.44, 3.5.8.134, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.173.201|:443... connected.\r\n", + "--2024-07-05 13:50:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.30.217, 52.216.36.217, 3.5.22.36, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.30.217|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -154,10 +175,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 64.7MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 66.3MB/s in 0.2s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-02 15:34:41 (66.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-05 13:50:48 (123 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -174,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:41.507000Z", - "iopub.status.busy": "2024-07-02T15:34:41.506807Z", - "iopub.status.idle": "2024-07-02T15:34:42.679990Z", - "shell.execute_reply": "2024-07-02T15:34:42.679463Z" + "iopub.execute_input": "2024-07-05T13:50:48.578988Z", + "iopub.status.busy": "2024-07-05T13:50:48.578806Z", + "iopub.status.idle": "2024-07-05T13:50:49.824808Z", + "shell.execute_reply": "2024-07-05T13:50:49.824194Z" }, "nbsphinx": "hidden" }, @@ -188,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -214,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:42.682422Z", - "iopub.status.busy": "2024-07-02T15:34:42.682072Z", - "iopub.status.idle": "2024-07-02T15:34:42.685351Z", - "shell.execute_reply": "2024-07-02T15:34:42.684925Z" + "iopub.execute_input": "2024-07-05T13:50:49.827373Z", + "iopub.status.busy": "2024-07-05T13:50:49.826968Z", + "iopub.status.idle": "2024-07-05T13:50:49.830262Z", + "shell.execute_reply": "2024-07-05T13:50:49.829823Z" } }, "outputs": [], @@ -267,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:42.687222Z", - "iopub.status.busy": "2024-07-02T15:34:42.687046Z", - "iopub.status.idle": "2024-07-02T15:34:42.690100Z", - "shell.execute_reply": "2024-07-02T15:34:42.689584Z" + "iopub.execute_input": "2024-07-05T13:50:49.832354Z", + "iopub.status.busy": "2024-07-05T13:50:49.831962Z", + "iopub.status.idle": "2024-07-05T13:50:49.835090Z", + "shell.execute_reply": "2024-07-05T13:50:49.834552Z" }, "nbsphinx": "hidden" }, @@ -288,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:42.692165Z", - "iopub.status.busy": "2024-07-02T15:34:42.691989Z", - "iopub.status.idle": "2024-07-02T15:34:51.762665Z", - "shell.execute_reply": "2024-07-02T15:34:51.762051Z" + "iopub.execute_input": "2024-07-05T13:50:49.837043Z", + "iopub.status.busy": "2024-07-05T13:50:49.836745Z", + "iopub.status.idle": "2024-07-05T13:50:58.816136Z", + "shell.execute_reply": "2024-07-05T13:50:58.815590Z" } }, "outputs": [], @@ -365,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:51.765158Z", - "iopub.status.busy": "2024-07-02T15:34:51.764935Z", - "iopub.status.idle": "2024-07-02T15:34:51.770723Z", - "shell.execute_reply": "2024-07-02T15:34:51.770154Z" + "iopub.execute_input": "2024-07-05T13:50:58.818576Z", + "iopub.status.busy": "2024-07-05T13:50:58.818239Z", + "iopub.status.idle": "2024-07-05T13:50:58.823617Z", + "shell.execute_reply": "2024-07-05T13:50:58.823177Z" }, "nbsphinx": "hidden" }, @@ -408,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:51.772692Z", - "iopub.status.busy": "2024-07-02T15:34:51.772305Z", - "iopub.status.idle": "2024-07-02T15:34:52.114037Z", - "shell.execute_reply": "2024-07-02T15:34:52.113540Z" + "iopub.execute_input": "2024-07-05T13:50:58.825740Z", + "iopub.status.busy": "2024-07-05T13:50:58.825326Z", + "iopub.status.idle": "2024-07-05T13:50:59.160120Z", + "shell.execute_reply": "2024-07-05T13:50:59.159567Z" } }, "outputs": [], @@ -448,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:52.116302Z", - "iopub.status.busy": "2024-07-02T15:34:52.116116Z", - "iopub.status.idle": "2024-07-02T15:34:52.120622Z", - "shell.execute_reply": "2024-07-02T15:34:52.120168Z" + "iopub.execute_input": "2024-07-05T13:50:59.162617Z", + "iopub.status.busy": "2024-07-05T13:50:59.162168Z", + "iopub.status.idle": "2024-07-05T13:50:59.166715Z", + "shell.execute_reply": "2024-07-05T13:50:59.166164Z" } }, "outputs": [ @@ -523,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:52.122595Z", - "iopub.status.busy": "2024-07-02T15:34:52.122423Z", - "iopub.status.idle": "2024-07-02T15:34:54.590782Z", - "shell.execute_reply": "2024-07-02T15:34:54.590025Z" + "iopub.execute_input": "2024-07-05T13:50:59.168793Z", + "iopub.status.busy": "2024-07-05T13:50:59.168481Z", + "iopub.status.idle": "2024-07-05T13:51:01.666604Z", + "shell.execute_reply": "2024-07-05T13:51:01.665783Z" } }, "outputs": [], @@ -548,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.593625Z", - "iopub.status.busy": "2024-07-02T15:34:54.593066Z", - "iopub.status.idle": "2024-07-02T15:34:54.597171Z", - "shell.execute_reply": "2024-07-02T15:34:54.596636Z" + "iopub.execute_input": "2024-07-05T13:51:01.670206Z", + "iopub.status.busy": "2024-07-05T13:51:01.669310Z", + "iopub.status.idle": "2024-07-05T13:51:01.673571Z", + "shell.execute_reply": "2024-07-05T13:51:01.673026Z" } }, "outputs": [ @@ -587,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.599260Z", - "iopub.status.busy": "2024-07-02T15:34:54.598873Z", - "iopub.status.idle": "2024-07-02T15:34:54.604418Z", - "shell.execute_reply": "2024-07-02T15:34:54.603888Z" + "iopub.execute_input": "2024-07-05T13:51:01.675684Z", + "iopub.status.busy": "2024-07-05T13:51:01.675250Z", + "iopub.status.idle": "2024-07-05T13:51:01.681011Z", + "shell.execute_reply": "2024-07-05T13:51:01.680444Z" } }, "outputs": [ @@ -768,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.606602Z", - "iopub.status.busy": "2024-07-02T15:34:54.606277Z", - "iopub.status.idle": "2024-07-02T15:34:54.632296Z", - "shell.execute_reply": "2024-07-02T15:34:54.631839Z" + "iopub.execute_input": "2024-07-05T13:51:01.683362Z", + "iopub.status.busy": "2024-07-05T13:51:01.682853Z", + "iopub.status.idle": "2024-07-05T13:51:01.709650Z", + "shell.execute_reply": "2024-07-05T13:51:01.709102Z" } }, "outputs": [ @@ -873,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.634344Z", - "iopub.status.busy": "2024-07-02T15:34:54.634025Z", - "iopub.status.idle": "2024-07-02T15:34:54.638206Z", - "shell.execute_reply": "2024-07-02T15:34:54.637727Z" + "iopub.execute_input": "2024-07-05T13:51:01.711902Z", + "iopub.status.busy": "2024-07-05T13:51:01.711375Z", + "iopub.status.idle": "2024-07-05T13:51:01.716085Z", + "shell.execute_reply": "2024-07-05T13:51:01.715558Z" } }, "outputs": [ @@ -950,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:54.640053Z", - "iopub.status.busy": "2024-07-02T15:34:54.639878Z", - "iopub.status.idle": "2024-07-02T15:34:56.027864Z", - "shell.execute_reply": "2024-07-02T15:34:56.027377Z" + "iopub.execute_input": "2024-07-05T13:51:01.718213Z", + "iopub.status.busy": "2024-07-05T13:51:01.717915Z", + "iopub.status.idle": "2024-07-05T13:51:03.129689Z", + "shell.execute_reply": "2024-07-05T13:51:03.129095Z" } }, "outputs": [ @@ -1125,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:34:56.030025Z", - "iopub.status.busy": "2024-07-02T15:34:56.029651Z", - "iopub.status.idle": "2024-07-02T15:34:56.033503Z", - "shell.execute_reply": "2024-07-02T15:34:56.033077Z" + "iopub.execute_input": "2024-07-05T13:51:03.131903Z", + "iopub.status.busy": "2024-07-05T13:51:03.131524Z", + "iopub.status.idle": "2024-07-05T13:51:03.135618Z", + "shell.execute_reply": "2024-07-05T13:51:03.135063Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index e4147df35a4e26186176d90e054c8e8ef30b2d00..01a20486fa1a3bf965e0b13eb00ce294ebb26f1a 100644 GIT binary patch delta 62 zcmX>tep-A(E~BBTVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796=6Q^|TmWD%5_A9n delta 62 zcmX>tep-A(E~8<7rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS=6Q^|TmWU+60iUO diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 2d6b0ce870dde5ba4fce73d8ae164f767f99ee49..2d8a3b7a9db4f72763f1956f5ca9aa230035532f 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# UQj?8R%@Zw5%#$|%rzRER75jjSUjb5-lu} U%`KCR(@c_64U;$jCGw#L$Gs7cPGL>?xfi>DdqZc&4}MWX<~5 zzt;bK|M&m@JapHx2k%<8_vIy2(tN}AaLbmBh6J94On{WKuw*HD;U;3ZE|Nh$!_IK}I-G63ob^o2)SM>ijSM~3no9RElyXs%K z`^d(IkO%(CW7 z3oc~m9`%3P>bXbneEytis-`qcik(?kMBj3O|aT? zB84zAI!cZ4A`+T14c;`{RUM0-+jwy4@x2f<)5a%40jd-OPDYK8)+jAZ_N||ti<*O- z^4i+tdnP2KiNwKF7F+~x8I8C+6)6wWwXe{*sM&7m-_JU|*!#l9V(A0Lll5mGC^l6} zvS4sDNo5c@6Yuca)RM@8k|x)e{kT~1^Jj}|7WMElRy-&H8uQ7kjDVm?8*YUgxbK$R7F9}QEj%bs$0$6!r%Dhw=169ahryvY z%9n~tG8TCv!b^=y&)#qV$x6H+$7(m&eRcWkqQ^T-)~}P2bXlw~I9$;B-lvMHmk?|b zL~K~hLQ#vj36Xk65j%n#-n!89A{Zru5u8QAJarlIl!a4{!3#IM z4G|)6_(d)E#3q-ypVE{bh&*|2Yc1H^Ob`iyik0vnCo~RwFX8vU3%5#i!S-X zg6_ul_J1$GDxo$)K&UCq|*X30cn(NjMFCgih4b7SbDFs}2!m^N@XMxD1>qC#0 zD~C9%oF^=S85QA5M4i3YggD*=saG-7yZ4nV2ESW5br0|ZVqwZ@4H^VdIcL01!YXB5 z^3w8!SQ~Gj`TB-^#U-7_5B$C$^@;ldwdgrift1mtBzWKsA(}wuhG)-}8SFoQYWt#! zH~`Wa4dQbm8gF?DAQwRa8{=a0psN>zX%B1}vUOS{aGi?A1n_S}Zg7ktTH^rh@vEZO zVO+Iw+F@KZuS4n&ep{T@13_3W4bmMj6}hv{D&hshf2h~u2<);BI{C~wAR~|+tYFbF zlfa#kI+dFXAAy~e8P6x+b;=?}34c7Io$Fvz2zGF2M?)fA)*E+d)nyx~Q}yu&i?csX z)B@zS`A{|NMuZa}0FVF?#t3snnS%L@U-glbweqiP3TbEWw|bfF)=}M6i~I z0mvRo2XSqqlboxZkk>DGA2C{uw<_B_*I}`S7qq_Nt>TO-Ngo8xkHo43_O{5=6gmfa z&4Is$7dYg@>A*a0)gdh=3TQ@1GoqxnHY2aw!K+)R_7xQk1RtOmj>~b87^pUe>=qI8 zRI+;ixd`1GUo3wDu#LB@hn{p;t$TB&sc$)4tosaO3$SLhL_A6;ZN>#C(cxklPRg_k z8QHf9G-SE)I=H^f>MvJ?zl1mnDy$z)8)!umsi6qw{D0u zgrI}l(hvr%3UWlK24NVKmf>n7I88wLNi{PuK&x5rp&2!?AYTQT4#T)ja{!x-Hj>1Q z#CAC}J83G2&@z#v>O=1qE9MnthkaRZI~+RY$1$(bXL{XO2R!%c~&-TcN4pJE{l7xKaXTj*E~q+Nl%}hq`|C^&|Nn ztdtz22~h;kOtoVsTgvcBG7xC4E$F6`kElWd2k#1z3{nGx3%*Togn+D{Jq41y&2-}} zb5_5yzPzm0Wwr(1*Uv7OR(LtQVFaQm=#+bK1Y|QRXvpK_$pFBI#nxq6^17o>^pzzMpURW zC&-Xs1C+B&fD{ydvP2u@q?9c?3|*QAGipYSvPx2PKcveUB^?4@S%AgQMhXVvaVF-e^WMA!jX9iE_rV;Ra*6oMIm z0<0uMGXmt$bW~jUNZ#Yn$1$TH#%x9x2^r5xD=aQa(nhE)e+zW-)x}d!7rl-Xm^SZq zp5U>|%PT6@q&nq@Ct#G6q(jHcis%)wic;EmbJLFDyR55ss-g z+o6f+lTaS|ADxScE(&mrrbd8LrbbgYK$Qf!JlnZe zn8f7<%5ZBUFl%sJDpi&UY6#`_ajK3MW2-a2|3ZNz*YPZD6lh(6Il8**#^&oebW_HA zWrjFwD>@YDQ1$}o8D4<$0p+xbO}p9}OVWHrN72eflOio2CU=IihXu9QrHmWwm*(%Xt0bR^+)3+pNXfRX3DNdjdAl$%!FD zWJa)sCX7gQf1;2m%Z|{d)shG%Bh8T1Xb9^jX9Um#nkh83Cv5W^8o0QaW(W`w%E5T_ z!<|NPf}xJGzGc|99O|;&qAZTLO&VuNeaW}V(|RmZ1gB0oJi0y+=@?yptI?}R)r}Hm z{%PQ#aqvW=eS|JbHWKY+h+)*)XwHWD;*@waO=4CIg)W#+TLvEj#-#n;`xW%-qp;lX5h zFc}^k8EK88Z!$bM*5qQ?!<-BcCc}e{AtO{bmA z?Ad$mz1I4^Z>=>CJ+R{82UZ;T!_scWAC-W3Z^b=pnqO}%PCsM)hI;*t z>Gs=q?7VTywmrMt?zClFaJyss^=8HO#fN%__8s4QXZEz-^ZQOMx7^ix@QpKiU%%(t z|G~~H|5Ei%y!XB}M_;BjBDkF)-MsDg-EQZeoObt)yZ@Zt6Zfue9{(I{``dk0@5lG8 z?xp+JG|${voIE`+`|!oZDZRb-ssGMS2OqotC+E!=?;ML+3!84{iYhCwgrvRO zesq5|eu?UlS5_T7_rTn-wX#}p={V!g2%nq{LHq0lOT@{fSnusa_jWI8x0`$RwPWk7 zEs;Su5mOX|1*eQ6N=M>c2+R(*>s-`s_vB%0hX|I5CQdoUc3k*uowUjak$sFl53K84 z)NZ%+#g)g^!Vs!bqB<%sDCbtwWTNoW5TUX)?RHhiqJx`WS$<*G<=vTN9Y} zR7opBbl&5oA~n%c%Xsw7gR9Duo0oQ!tDD&$7X9XivV5*)DLPIAm5N(IY_L>^WHKk2 zsEl_R{80bU7s}rib%!acdH0cGbGI31&X${+?>t(ZP*KCIr^X1A;I`y4j|euZoK?#C z&_8@(xpTVm4DpB8bDUElNV3#>rAaUpVHsI7cceI_f6p;fKY)cKCxKw|fmoqsL^_CM zm{KN&q*UnR34UJGyyM{J<-1E#cbqF5T!b{=c(SN!s)9Gt+NcoaAyN<90;1h!O}Nx{ zbQ6Qvm0Bz5B^6u;8}LmP9cgi1#OAgu%2S&Iw@j_*!$A)fwWfgxDUg$yi1rfz2Y$vX z>Vu@rkFL{o`tUj(hqLxNs(JW8arOmvBfaU9oAzv7d)HkX>a{@_!5v8<8$2p8$YF&? z4q9u;YeRKa|69)#UoB?49JLnbUVQmA+b+HAQ=k6qwyq#uyt?bv z)^6R<>^V}bt~)NKo5wFI&#gUeQIIjC62i|(WVlY;OKznMmdyLsN&_qsNLJ58QqkLF zNpwyUZMd?{+{48wOOmf*gd)46>c%yQli8lw@10xWkqw#q2jW-!-&-S zcvEx2VdS2s($D~p!m~p1WG&0mgd|cRK$`yC=BZn!D-$JgwnY+Zpg4lT<7&nQ4_dJh zmPTw9k-#|tPPDhe*z6pMfdlKKl_>+QkgE-Hb-KA{b-Ap6`4hz>ZJ3WW#SG$iX1poQ zAFrRH%|Bi!POk;HPpK4nLY7(KT{b~jMXc1B9fcK8Fz}z_Xbze}Y}Va}~)p4!n zqIZgQ%`BffrUD5tX^BoELq7%Ts7@dVYq=Dh#G`~*Ng`M#%pkGA?AGF)youg(O(4Kz zbH(@mB_(H~Vl9(L1_*D}nU7v2i99g`Vc+bk@N7di?65;Muf7g8?683jGxAG+Dvqy& zZgB-{Ai>{OF&`lVNrry%u!s-L9Web&3<9B=VO5BNbMAyx)`Ppb%|ZU7z5=9C!Za3+2DsLet=g=n3SL=+YU5EuvoK4yn8_3%fkEIIqTsDQAmUcRZh&XT+-GR?W*-O`TV3he|XOh4KZiwbpO}J&>%( z35;U>yx0-UCd0kc6fjJs1#l)~Wt17pk~bG^htC$P(TZXtAD}>kNAVjd=#_96vtTwuKp2+M<~9{ZDM4 z+BIES1^Fg|lMcm#;ouA@A@O*~DCis+1mZCDW)j$jNE#Gmx^gWDyB+5a1U6~5(XyJMsMHOY48q!>2#rQ59TYfNL_kcla(B6EKzLy}kO5V>f!yFIXS8HIu_Q*`>gdS~QS+P66kjW5yS%kHt-2z0 z@#>D(dyfX|u4@eoL+MpWNIMp|2c$>5L&le~a%fGU=Q6sygz`eK7L|~3!obsjF~f~A zf~Ks(K(8*%z^p0Scu9D~y>NhUU=#XqiCMysaf>ss!;I#lOUg^@4lC4<2w%OVTvl(|LKzbPuaUF9;D}Kv~?^S*sMwsT=o69S@jTrP|uD+#QUZHK9rHcv08~PPC;vXX+l9f#% zWwLd~$ zr!dXuXUlaPx!Fh;@EZk#Yt14hBnU`o0|OY#s@)E;Gz_a?Ik~ z86S~?FJ9gCUh|n&bzG_~^42#u-8m&!?mz#?2L^w(AG`J2+gDya8A*&dy<;>m8A(h= z5{m{Hlaa*x%|#|72`G&DN#|rFF&Ym}MiNIy^plaqzZr&1MiP^e#9+`e8A(h=5|fd{ z@YiG}BZCE74~>`iMOpbp*Mnp_ncm1EhIJnWBo5dd{!t}+tNuzL;A1(;RUH_>cmM% z!9fOfW@Hb7uTf^PE#d~nT8AQ4I@5s?M@55>;yn88yH9S;9eDqdvvUu3a4(y)_FC(E zthN4hWBctJ+pqmplvnrKS&dvrONR;8kXS#29 zJJOi!e5~3UN5NUPN*RI{Ihg+S zKg=H<1^T#CgyCx_p?(Y-la7Vibp$ia~yO3XD$ja*8OB%~1oviQxc8MHrf zdoG$W`*$vO&n{(V_SSlhM92yDx!N4EOrlC_vRozL(VD744OJzI%q(?sqC_c#NG97= z0_@qStg2IZ<194VYpUX`e6$=TtrBPjof2rp?BngZ?YI9pf9wo}Z++qHch2ozx^!l_ zE2}6dw%1DHCA9XMe8meFQEm0y$2;@wU%og0dbi`aW*=aJUN&-4BN|VAVn6+miK+(` zRZ(PF1XD|{IRblJN%5+qF>;8RLQaK93*n6i$T)@IIDqlPBa80Gz*@FePzkJrpsI8< zO1sFedQnOgVx3s6$o)V5I)8523OuHAwtw|+^M@AMI#%pSxXOf{aCOGooPy<0nEPjC zH+6DZlIBv4k^wMQv2sXRL<1nJNT~7(pCLpmGk#RnU=&9Y$;6Z)JEkDP6+Rnr!-UUP z%n_fWf8}cT=#C~f##EWKggSX2LH}5iNvR0$?jdrah^>g)N+&#_S)8rb84re_fXd;m zH@e@>7A1R^@RcDMNiNr*Grl$?@GinLr7Go z6I1do80{e!GKOk6*#2k74%&h$n_9ih2IxVqH7nt>Po%82-VE=3qx;e9a;q(eNz;Pl z;int5;sc5`vWoi@JGDyQnE1MjPW^CJvtymH?zFg&t(t_`e;0CNRbZ4Yj0Ia znL_~MoS#^>K<9i_U~ER$g^E!aqu_}sQqs}y1AXOQjo9jkFT%W9VJD6~FzX&zR9nEP z3gxestn)0nD6lDbw#Jloj!}kwR-GW|M9z3A0ck0fs-ObIeKIky3T~Z8CTfb-#iWzg z#Tc?Ri+q=3jktF?)`&TA>_1!GCl`cTd7oltX^FfDuvbsxYeet$dQ)IqAbx=CS4W-+ z&ZL#~!Pj8$?|RqFa`mH4Q}K|_#6IMJ_s@lMN*we`EE;hqo-GrU=l*-~rgq4AY6dD2k@7$Aq7rBPNmMJuMY znsb;t4OoW5PjjPQ2TVIUDVmrznVHg(13*?NK&dn)IU%6e)tj2AvRRoKiouXguZ_Zd zC3T3#SBa^zts-$;FAP26BmQp25XC9QHK}q%>Ol8wnFy*-0hxQwjxdp z`~JtfhZbNo7uM0490=p{IAvtgs_0sUbA$YM_fq#UU^I#xF;Fs5NU;V?uPzkuP5Az` zNc`70QO)Wqm+w#LoTR69C-Nv8T=JZ2y5TcOP7ctSjbNNFO#sf@fj8z&?hB z#;9c12CHR?u7&{1k{%mp3?9@O(TV0J2!x;DxqzFofM;0PGbJpXzMy;suD}Kx!tna> zaZhW6U5!?)kdt@a`D(YjG^1sa!iWdRB}~~7e#ESD#+04qY71L%aUlh)me`cxNGf8p z5ye9DW2s5(&mH~eZg$-y6-#&r{0r-*kO_jrk)pRwN*JF9^!*^OjatzNK5?xPTTNU$ z{(N`p@$f0TPBw>IL6)dy!rTV|XYeXutT$-1hWy=t{4HX^>S+Ko2n%V#WCf2cPUDj? z9`-2w$^Pam-Gjr2?!WKS>~f<~`7n`MAU*tat853fJ32EAPvchBfAf6jk6$0&xBs(u z?A+D86VGq%Ae%eLta*Hyn76ru&;jE%caY5;WOE0ZPK}#8$PqV~%^hTO2ie>~Hg}N5 i@nv%d+1x=kcaY5;WOE1EKi2)f?;vit_TYWLxc|Q@n&&J4 delta 8845 zcmeHLO^97r9ryW82oo!5Xj+Qkyqjrl1#9Mf{Lh!WiWMrYZOA4fVLYEklr)V9f|L{OWJn`%#If^3ttfkMgRG&k! zwSV#E{N!-yRrZ%zGkSmV0(+(%{2#B)Kh}AJAUJ!_iBk$GnwnHlwq%);u6fF2A-u3k z39VAGWU>gZRvDeLQQP9aBP^R?l| zQ|t$`X7K*RojGsC?jPS`AL_rZ**z~`W~V+_kb{m^ql|*A;ohUJxrS7=NyDu-*z;^r zW!6TkC=(TOdF+h0V{a5Wsm)aDTW8s;vyPV(gvc)X6iD(Em9WywEVSV^2RopJznOK1 zMn$i8GU*y|V;}C!O@Hs#*oQyr)E7U#`Q`H)FTC(rx50h&L1iaQEM&8FMGKRQEK+z3 zG9R1t99tM)6Ol=H7DKL_wY9jYwKC4iD2C_%iK1^enp8Fr@X2RCv-R{dpLpV_t;Sf! z{ZF^5wQ>Hj{=S>@2f9{9J%;n){?1$TBVF`DSkg|pB*{w|Lr&SHBBLeCb=t+6s5%K5 zmF5_~7^8Ds7oCkok$ARCti8^@HCs<)ZO#r~mn2jSHA`;@L*TXYYA@7U!TUG=Hb2`@ zD>ky(?63ZPetc1kusOOKay67ObjoS+I%Bjfjx&UFV<#PWsZ@$8j7Un_gF^(K=EBR6 zY=7#z?7`vIjrl7egDk6~EU4gNuY3^6a1({aG)S)H?tmU1w@d@th)d&u@_zdz_Q)a? z9%A_bP!~1IDui5#H%al*($*pmH2tsZN?`jgUTBfn(RcD0hl$)6?b8_Xk;`} z=c5k+@01B_Ze0)%p9FPGQUGG3PFkLdS*n04&JbkJ=>Xu!9HQc6ltGX9rq`(rcqzV!gA3((_C z#Z$%so%3EA4PGzF51%{7F0n-^P6{ohbWxG2I%ep2bfrl2G~}h2LD`iDN-LE_3Al5n zWMEfVp^~TJ)SofA-QfZCgsWD>yAsyFy~ZA0;9wZ6m=&x7G|Wc>ZH|d+V`}kcK%GGn zT&Y!S1x$v9)P4+M>cb^(9Jp-o1~ z+W-Dj?EYUJJMzuhcB4aKKg3!Sx&P@_#daYE4|8}{dz36&f})gkt=GW+S07@>7r;X))j(TEgn;=VXV9h^2-c+Xar#aU|GhK+EbFYV z+Cv*GzC+pQSd1^AOs6Dp1&=w20M`NJ>t)gKWzIWqFx(0NQ&gaSdqtoTJWPYyin~;^ zzp`$jRml+2#Nkva!4XGgGz@rAt_a$tekiQ+U@(|lNhuXqIQLFK%!Mi_`jp5zuM!7_ z59P^`2?G4Wt{TtwUN*su;H2l%MZ#Fx!?}sLP>Cf8lE|T9ElGneln71h!|TD@COuIdsAdE6L8C0nB>DJy)2$)M2!BRWZ1D{%k$C)ktM5kyI8ykiz2!7VcQ>^we1mq(OM@R=?(xI0+r zb%tfJ6jTA`V)S*q=WvI&EajjTctTkt?#`u#_y74c+vso$1Fr{U6L62wIRPp_iO_9ao z!C4U@Yv2e{qJQ=pdtef^R&VypRBI;pKi#U>JEGP~YQkCFV(#9b4)59dxp4ISOBYU@ zTP;Xd3zF4>WVIkU mWG}N?knC=JRtu8Vf@HNI*|W6U?=t`Y3lckAyXVL+kNpoNsrq~X diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index f725b5748918cebe1ad25ce7a082727e64664ad8..98ae7024f243aee56e8515c240cb710f1f1881e4 100644 GIT binary patch delta 1977 zcmeHIJ!@1!6y?nZ#C1_YNeYX71S<_@KJJ~l(};o=f*MOjCCn#Uh>e9d3flPb10FX1 zhHb*Dw6L@=tBv4RSppW?NJ@)1F%i_}rLoIn-Y~-)X3m*&53{i{*jO2i#`^_|eCKYs ze`}F=P#J7eS{fy-Q<9_PI{PS+hZJNoj==aQRllwJ)zwe6CL-^-@t`b#v)1W|PC03W z4cv$3!CLjW6V)D@R!d)M?l>5poyIb7B6^XNjwWbIT4nUj*(p2H9^PcvXX-352OhLU zK|qcZ2#yYo^gd@pavOW{J$q5rWQ!`Tp{zx)WnXQ$FD+T%GFtkDZQhO9Y`eM2-d5d2 z);_SyyPz;(i_OE2tY3%VbF{{~@&O24x$_r<3hGeZ-M7EWh_9CVDt^Og_B7e{~-{wtey?{&m$&p{U`t>pXqJc=KwVo!BP`;gl84>N=aNNn=)sP9!u% zS#&aKOx$NIKNs5tvr~wj2`Ge*w&OwXS@o#HDKo!N&tJH5ZTZsDx$_s7yUO-&bl1hr r-&|-$U)k&~#7)@orvHsS?askoAol{f7s%i5$o~$cX>T9uJwNah3j9aM delta 1975 zcmeH|y=zoK6vcV70dWl~C`ngJPF&Ggy)<^|5BHwm+;f<%wdt+3>DA#uac5cHxA)B5 z1p?&=HF|J{dzTWoz@6kyIb(vhUSj@hq(1R+8~p z?D{AY8n9ej5~T7(d-^?lQPt9MXS0czMA0JIBq&Q=wviPGlex{iA)9Hp*V)^u+sMWT zc6ARHMr@&Z_>uMNXbeiHBKZQS3m<8oqlU6RbEWxivKYXC7RFnt5XgBzXDlfYRBi&l z$Yz_fKiJ`Rwby%D4Zw?}awuaol=Db~Aj%OP8Iv8C?YS{~Qw_QteE-bEpmX(zt<*e{ z04T3)twisf3lfz@FRViu75#y^H8mhl5j`3U34@Z3k`hUvpkO3SxOcPEC3+=%U<8PW zxTCVtniypiIXbD^5`ouMw}nE(YuCAb#CY>+lbt#s0qhy2n)OXKTZfpEl)7|)iggNB zmnJBXko?XC{{ogAb{3!*KHd(ed(Wyz9ft~Y^Yz@NYd4mzEMB;Hd8sS4|EjwlZtnJc ov-*|I>;Z1XPB#5->}hum_WQWs$NfJ3{zd+GA9cHYr1$*LPc9QS(*OVf diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 4761eb080c8c90f51f96c30d570c8cfd5eb44192..bacc731d5c7f30bd80f690e4ff711f5201bca635 100644 GIT binary patch delta 72 zcmaELjpNldjty5h4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# cQj?8R%@Zw5%#)f~x!PH|7`L->F{LU30FSN}od5s; delta 72 zcmaELjpNldjty5h4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} c%`KCR(@c_64U?N$x!PH|7`L->F{LU30GBuw*#H0l diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 86d2ef333dd404eaa889a258393c8368fac7c234..f84cba181e4124c3c23d4f13bc2562783a96b367 100644 GIT binary patch delta 32655 zcmeI5Yp`Tjd7kO%K7B?vgru3#2r=C~0|+FIMtj}Y5>7=pI2CSTjHqyv3f5YC?@|&j zQV5CT1PkGExsYA9&=7W6Hdv~V*v5{7n3Nk|5E{poYZ*|bl5$*$qrrbj9B%rNR7{b| zvwQbBbIuXk`=9b7t5YA{ht9v| zuG!&*E}c%f(kWQ>%GT^vt|}Y&jmp6bKI$ju1J9hl@oqjzW>>T8E@bU>9ikT^m8E3Y z%QDukTD{cJL+8I&@=>DpNt-gq%>UO`1s#e?`j~jPD3fbHYCiDLIq}G`^WS;@8xPO< zSr$}Sjz8+?i^NMfTbHFNbV|0l|Ju<{E(RXb=fD4VKJ?NBKV?0aPuOgADC=aTbtNC1 zlJte}t2GWibY4F47vDX0(lqf^qa)|u_w32B5$@c>&z?N@hu_T4_l?8N&tEaR?A)in z^{0EExc=O4e*22`kI&Bi@wfkR-#2H?Gk1OuP@tp6T zfB4ydb!aYPwxvq0!V7iee3jC3>KsFB^~Y_Sgp9?&EdM!&i-tH$QRp=<>0ZVZEC-H^;6X-O>NdYGeP$ zzGq&({)l!*tL8OVj_!QkZ+CmzeDA8!XZJm`?^U|J9e9^pm%nxO=$8&HOl^cxg|o3% zy3{Td#^xefWhxo7>HKKuq2-b5Mz6ebQMuIqIN=Ky*TIFVlCp5Zl?A>Ox|lQc(DHk8 zHo7@`_2^jhj?<%4V-{Nl}{E7m{XZSHM1 zkM4Z_@2_|Fo41TU`y3;yO?}&Q{`l7AubytVF+~w8SCy3_+&Ym`AyY1Dqct&Hx;C(V zZ1ADwv}m_cRoNzIDqEE?aM#`ETx|23L6uRAtA)x7wbLuZ=bJ~lqu zeErz?+UD|$hi+@Gx}GoX^*dkw$#vr+&Bu4Y{O9d=|I6-|hmVhsZWm`n;f-j1^x~mc zHBbHd=!WLLM-FW-zj0)I_vnSOcxw6nXT1B@X5+)n-}>dz(WZE0w6%44Foc8$e{*!*R*<$3&4u>KtLHrVl9S^} zbM^%P^YzCLb&od}7u`1wchCLoHx9kHaW7-9{vTLA+vo4aN#@~iXl zi5Ftk-}tjb$IjjNf2PeZ%*Xx(H$89M$#Ht2H~gAU-n)IzC-1%H9j_m~=tYb6pC-O+ zeEkb}*_OpC#_zapa@!jYz3AMx@4T(~^9Q$Xn3qbE6@4sYX|?e-CMj!Yt;#+m?V1aJ zG(NI?@1v8uCo`&A%2VMg>Pe^gy{=Lrf;TD)>6&X^%af1&%kj^SW<}vrO}r7&>7tOq zP^oEBfZ>k}b;x9LWckd0AOF#4F<`!K9(ri&E%Q8J`sv5Fi(54n!kOYDA341^Wup{@ zQbJU9&^}6Pbz9cKC0S`7vR^*&#P|b~g{xv)u-il>ptH6~*0GkM4&HeotzTX^H-2(7 z<2$~R&iUFatz+~#%bJiGT-2p(#K*RdE{iXYKQ~$o*=;WV;iMQe+la4Bists&^qS_j zPj0sWF8Y~A;mh||RC$s(rtG%N~mx~9sK0bP&|E!ES#qD_g*>}F@&2M?#kG$zUzW<`8{ZH2eyLIZG z)6FYBFgdmuT2=Gl_op{6DwBedby?}Uq$;gbaHc4-_qm|xkFmR?^WY1*fJke}UDne3 z5JZx;)T&C#%jStsZLi$!XWG-GXLPGdiyQjYqNH|s9c?WE$XtiT2i;yG_EO^1r466#PYk2L+oE&60o!Vi z^L_ERwyvKG?|H8(3vci#6H`sxle$nLTj#1~^j5aNb3Wk+ou016J66?3in``JQuc+> z)#{|y%Q}1S_!mZVn~E57DPk?~y%+;WR~Y(F9yY->V!3^M`L)L;zcQNlzeH|6aV;L$ zZ+>-Hwt4c)TQ}dTi#K2LLHyj*#52t7N-r zK%LopQv3aB;JUi~PY>)?x#NAa{`E9Z{DbkWb0w>yh~Pc#sa7=VU^=eMqH?7G?pcz{ zxTh3zH*HU%6K2|$PYZ=#Pu(>-P>4XOCdloP1|1nkNsOCr5=sVX%^ItiJ` zsEZ{o^X1W8*1%Qd#=wW_RN1J5R?3jT74=P6;zK&0s zJuW55&E8f<2qHn5>3rE|cCd2%#?*T=_5cF6H@CTgliBYtLpO5&(*s+Ucf4ycur#&G zZF8yzog`JF(UFi1o>qXhP%RaLzO(8)XB9P1)Eu!fjt~j%R#=f*c@D67?5opb zZBa>f%aN;4rA*#%Y$AA0aHJR#i3hpM-7UZKKTrPCXx?wVYK}j$e%|-K=)goC-Hp zIRdz5{F};B@+X@2%R!dWEx-G{t=7?W2`(gSV=49{4MGbW*OdT;rh<>{0q)CXG1)RI zOZ7&j@2V6+B2xo-mZr3#THgP!DI^yIwo|v50o&_D_R-%N-+Wr@Jzgg~eT)voe_^%v zgxxA|I#f%-5D2=J&HBOYhIDsy`QCrC{m|%v{xi}C^3%ZeJn;0uex)6MqyFe!RP*%P zCa-M1{Ke^XE-DVT^gwvv;YLQ_C~!DVAUn=?rMkVUb8gRN6^ry~6<7uHB5rqow#@6=+UZ83o zPg82hUehbrbIp&uYI@V{UYzlJoX?SqX=La+C?*u>0EA4Ebd?scoi(hxnF0Q1dGYOI z>d2up+Ml~J{9MmP)d!yL-z~M{d5fVHHR6Z2Z=Jveu6;8?`*r)KDr@Q2RB$!mjxIS;j*uQzw$4&?32tu46DpU`b!FuG z)-iIeoeV(+A!2c`eVcI&>u5@nV9+8|p@l8leur8>Dc3yy2jD07eQWYLfQDZ4>s&Wr zey`I77&E8Xyx;>RL;Hr60HJs6vY^9Wx1%+jZCTcmK%$ePv4m?A0-mT6_*M6UAN|7C zua9QdWD6@oS(-I%Qi~tNV0oD0yDq!Jaxq}FYeeT1;=NYEv|RJl>!&xLF7^N>WdWSe zUOKCUwxVP+2`a$(9GMT*4rnmId$u8D2Qi^T?K>X3-+Kn`=mB4I{rh#PsvKHYhnT=$ z!}t>J3c730TRW3DjFR>Yo+a<3IG_$9s;eAVxNX;Qva%`+2^wyyYVN-o6r@XWA_I}h znkNeyh%9}ET;-ScxvprORw-^(QrH#H29)2)e{?n7KAY(tgnF@1!*ju_C%vkeixA3Rakc(jtPba-{3DHgGm!zpD*g&I7LI zNgaJ#wwu<5R@60cAmZe)WE9XHv>}26WBGj*3hJiPbr%yz;hxC}A)^IFDcf46W!Z}W zTmYN^Q&7s~{a>2?GEGbdmLTFg*RleDX)cm0Ee!*hvyKhj{Z1`8U|BVTU!@s-r8+4&MZT>}fodXFv&a9I&4$xp<9ic1I-3DifM z@X#0p53vI-#6Kp`^YExwx8NxhlTv4^yF_%x%wdq~1`)5Xo2UDq# z=9Q%;gu#FW=r2k3Bj+LtP1e% zz&kj)v#$M|wahi@K?AL$GwxGD?2uf{W<$!`MuEEE8nEtkkj?L&#wszRHeyeGXjPx2^ zp~bLkKQ}$v{O^B1y>{Ecxt
4z15oD8L2Kv5~;3DJlph4^5i{!4OStx2{38=MoO- z)1wFK{_{EDZ$sB}zrPJ^TCwYI11q}ZZ!i2LV|s&2-|Sn6np5YDS87{di>N|x51288X08PE|9D|WHqaa z8ECPf!h+JTT9j{Bf6-CESwZ9nguy6okX~kz9J?SK3lkP#XvI`fAoW?-xr5CKOntUj zC2`UGv#Yl+p92yj3RLVe=?!6E5>$aLyN+}O1gE`^_f2MKU?k`{U_R;?(nO6L(#(MJ z)si^CyRE~4O3*ZP0|FT2L2duAXZBX)F!@6VJR-V>stLUfT&6rXkARrMf$#Jcu z2dQ+~)%Q=meCzJX36gP3_Gmna6+?GGp$Wz$Xl4rEaDtSazY7S7EP+l{1jtmPWs50O zd`9^C8hnSoVfmw1L2oYxEU$xx?6u0_L4v;hcH>E9d;JXHiBcc3g{r3w>jet3wydj4 z(5BGcj+gw`wrlBE)$gq%8L8cemiC#qUigR5zc zK-a+*LRk>0yGJ{p8+ZY{gakJqvb`!Kzck&xYz~@OfF>AJS|~^$rn!2IK7rN2{aU#$ zyb7B17OP{Zh?WIj(&0J`4^aC8Mil!U?$HrvZw1<-oRLA4XjE3DED{KC&ax`^0{{Ky z*9l?3{64o+AcnOhnIW&M0#phb97*$wk4T|**)}dHtha%0LROD6A@YG2h47|>1u>SQ zRg^qMF=-MMI5`ChgMbmBG8{<_pcCY^h|BxmMAtU&H(Ir6S`6501tsse-Jm$wo7cb= z>DLg|N=ovUH-epKE$u77iB@e91P#cZ-c|;AJM44#R_YSTT^Y&X`Q*0!-E09yjSO$s8lxnzA zp3zBJ#j;>v60U50JON|`)d6)oI6t`@C3dFGt7;GsJZ%YfN5>}6L843W1&N-i8T5#7 zi-9d7&jBiR8j?AJhCYkU(|04=8Zg-E&fa-OpYg?>q(&k`B#mSxlYohBG}Fi^w1Lip z*I38ES^xA>gSzL~T8c~?+jAz$@6Trg*HZ3(dSI(A$wvkjwcDp{%@7cPI&yO;J;>+` zwJ;oqfE-pVnR*%TZ7WD9OV}JjPa7?%>-iRHLBtk_OaPD?0?`h)24UR#DHjr8jMfSD z2iuWRL~2XN(|}hWS$=1+g%pl(g64IRpUw;8yT2c`qK zrhS_wcN5vbf?9BSrP11&Gm%}lkN^c1?h~lnJt!kEVM+Z2uenkX0vDl2&NVK^jpRE( z0*Emf0tA@LW}oCAUYnxPaHUBp+~EWn1o`FyeFwVcU1AL{>o?7GK%2}4Os|vKs!>B+ z1USbi3=sn;r){*6AW36rJ1O_pYr!!Re3S({X+0+)+Rr7!h@h2>e#j-W8!g@+TYut* zB`^e%STJfwGG}FhxsqxLZbC~lU~#Pv8L+t4Law?qB$sGCNSmlNHJX=zZj+=BFb;w3 z!kSZ~glJVO)b?bdfZVj5c?ug0vJeF95G-|J*9z)^vC*}Vf8ab0 zILg2!Jiwq0?9`>)HL#$zR9?H4WFQ>c6Tk!9hhhm%*%7M^8umy6+tK+DXi9W5G;atZ z72K2q+b5D!kJt_`*hyYgO#~x$ue})DT*jeE4fJId5IFkfRi5iwu>sp+%~$u^UiB_3 zzWPeMAEbq07f0&{B}jjt&^gm$8r(+h&0I738uZ5iY%P3<-VO)=Wdb5Wz)C4Qsqq|6 zo6iD_L%Tp*39Th@DP!sI5F`2yE*P}>SenXtuelwSaqC$#kxj&vDkhDIVuqcBNk?_u zdKL|Gd~muV&{|qkF-SvNMi54+3M)Y|0S;*ZP)&)@_yA%`AE^Y><*;t8_>84-GKJ=v z)4uJ9wLX7#{A(~Xz3+h7we82|{q|P?$QsxG`+u-~?yAyE76 z2e)3bnJC>%lx`+UHxs4(x|t|loEjRvTu->k{{P(WUUA80 zqI5G+`UA&VHxs2y2@lO*ZYD}M6Q!Gp(n&GjOq8~hxSNU6%|z*DqIBQ%?|})o%|vO> zIO}GjbTd)<{C|JQW};nXrJIS;=O1<6OqBLbvu-9zCqo0Cn~Bmly=OB~`aH9&n~Bo?+0M;GY2TRd{*ju^ wMCtPmvu-9zHxs4&ZKa!u($(KyGcc*QnJE1M1FV~g(*Lg}N|#KO{=KXIFPWje)Bpeg delta 32501 zcmeI5ZLDQidEYs6?mgGz7sfX8W}G?a*aYms`qvE3@FVn>Ocf$mf(*lr-T0*yS3loO!Es3{!($w08 z#??YPUC0=c>NbApq4VmO{_eZR+KJZRG&*|r1JB+tE}T63(6cw3{ey4B@AiYs+F!h4 zbolHizxn6uPnjj_&j_jl-_^VdDMd*wXVu@ceg%9^q) zs^ntXxT=Y+5yBhW-ISq+7Kg{9xYPdlO{3%OLsyMXwjVn(x_rzh`dG{;JWZU;L%JeeAJ)%i=eWjQ;f@LQ7!p zQc%IjQp(^=!<}!8^x6blmP>aTdT4R8eXRdD)rK?Jx3!?oPH3+&ud8)lbi~zjAtX#p-vvt-SU0 z=#KC9)75T%UKBall#0OK5C~InfmmwlW-rwAKeYJ94~*_HbD2tId8t5lC~YBwsff=N zkxYs*$?mm=9{Lw&J~CRI`N*M9e6oH2@$rrAea8>&w68lpp0*DjAOHRKkrRhbv~Pad z_(=Qw$wSw*SDhFi>%RBO6MNtLvzLvJcHjG%{Jmc}G2YEz9&f*LVtjS`m9HOqd3*R| z_sH>fc9QR%er|O0;(r|-zkBqzYV(Hn&Hv-j;l&3}jz4 z&mNhrKihuodcJpYe(-zSTUN`eJ^g*-`S;NLgQv!yZ6EzNhql_cO~)tNug%8S{q1hR zS^2u}YyZ`3Y`?ef;^Mbwt+`KeyyNwwm%L=&{qsF}Gs|na z5Z^z3$IG_Pyy4JG&VK8TTifUF-@a~E_%f6+7L6rViCEfDS4HItoqSM9FYbKr_J_8n z75NloSc8L!XpM6PAxKo@ZWm+IK6A(9*y7RO9X~jlRzj;#14E7VB|o=X$wD^{^ai$U z@B51}PhLCulhJ&@vTPrGVEZkze#^dVz=?Ay3n2Feks*(U49~-}Gix(|oa21P;Am>oJWNU4Cx~{6G^owUcu>Is{rhs6!YN`l2E9)q& zFGztkU+V&_ym)G7`^%&GfZ3|`C%5FR-(YIbon#qeI=QCZ{rL9x&qU)JW3+NE7MzL# zCzYaBfT2(nwOu@8#vj_6)yX&`gkk}*3{A2^$fz5kg9(jTEn^yVnJ8*>XmnZ1(or9n z!cfr2LMY!p`Zy;tFSb8Bn)Mq^?ZdykBWL|KS1Y;tA8bw9zj^EU^sC)J`g^y1_&qn? zbI+Oijm9V=b=_zRE#67#y{t-U>%uu_-Quz5CUW={pPRRiPy1Ka-v8H=TV|=L zBc7#<(+Z4X@v)+bF=(khcz+=u-r`J~U`*|!39(Y8RKPXuOiKI_s_1MhKgKOyy4pQ~^q8ueo!~qf1{Kur1o-{|;Xpvi~$HkJ|`HK7lA6* zm6SD2AbPr@2`P!Hz5g#bmeo@F%@(aZvLmPcR@;l$ZkzVWC$~@EqN_K(;B19bz)-Cz z3RIaWZ7XRs|5je=DlMM=$QWlEAR4-DpWnOv!06tA6RP%m&cNL~;FSYg<}dkK|DxJ+ z|8#uItcfyKP10VfvUFCEqm*reblg-`>CS_ed0=kw#>yqUqj9CkvC-9a*`&fq!hRJN zqus4XMpI?+D_=+z;AtqTk}VR&Wsosh>)WUP;5DwIH1Y(<{D5!IS+UIEfw$;+n<^#6XrPTJS8AO+IQC1Ez25Lx< zp)Iv!m8>G_7YhOwi;+6%f;!11azs-G+d#I6Tz=L$(Y3_My~R|S087G(c z)!=c?=yKiF25j4IF$19VPHswA-h3_;aR-lmKcRi&K{Ae9`s zyL&f8$}Rjy$DbVCJ8)J9Tu%01(`LVe4s6{emzxbOi=^<%_Ms0?wr609R3ykqc(Afy z4@8}Ws$;GAeqj~_zI<0n0l1q{zjG_Z?l2;)Y zBGo>B!RDFld^Y+#!v)Xow5t*$yh>Rc|kB#f^bsAhOjav+3M!OhlW5WZZn z;xCgn`pvd?zI|KH2dq}>&gRNgM49TOBe4xStgftNyCn>c@{2oub&CX0ds#%GMX3|- z$AA)JWl3(SX*eh_?%6T#t#k_X!8;CBT|$@!kH0yCyJ^iI?GF``y_8n>n++X^95B1) zX7_z@eEN)8Pi#&k$UdS$W60N0I94PYqapeVVq<&FZ|v;h`~k+gC1LNwk^?7I?02Do z>#6rYJ+Oy5=eSq?RzNV}MUeJFn0oQd{{*s3 z;qL1YbzR^@buMST_kk>t$Pvjb*sDjldgvJ(TjW&&PZ2yLm6RrX6tGreJ;4o`ZGZXb z-9Ho0n6NWr_V0(GS>>l&!UTLkTb!a$8?|t;Gs?B^e39O``Zjgh&d~jKWO`fB-2btQ>8?;?mJ(0|qnbk{Lg~YF3z%T!nX# zVai%Y;4pj52E?d|85ug>y)|uskw{E9A@3|Km)js>$Wl>Bi@ky~HAT=()3CVG=Aa{O zlgV+%TCMBS_}xE0`Rr)gZ?t_MHRqgs)Ms?PRD0b`lbddp!mXtLBs7U&v|w&u$%GFV+T5=zxO_+{*(Qjr`xYdzXr}*}%$LQbCu|rX(h-eCtEdWa zPZp3kSqYe{YU`R@B^9MvWwn0OqHeD@lebL!&9)DbGukhh$rUpoAFj~g;b?KeSAk_f zjHuW|+(fJe&ACndl)GwU<4a^tFtX&_kS)tOt9v9lG zTog3UC@+k1UCfw!MadU+C9)KlOYEjWkOH_A6~dqni-(^c|A*0hz^+@u$03tlsdnGr zK#Q0)T15JyK$|iZYI13OmVtBmYl+7t_2QjB1G(1mRs&k+;(Z?-e`<8^z{!~Xd1>G} z9>`)t+m*A}kJLNIXZ?$!&iLxq%E`#uAQNiStYue}S5S&F9|ZEca_h^tkb$Y;(HhPY zW{<;^9BUO4T7J{4vKcHFMGv71DznTlBp}kLAqw_Y7`KNSd#x(jw(p$0DYK6~2A6rv z%p8)XN=jqGAf5}Kxznns>jIvuqGou2>T7v`)2c2+(1~}3PRUIp+LQi#1is+@?cHzO zzHV{f(Vc$_J4!8QfngN@v!tN0u#jLg?Lj$kXmxil2W?;c9Vokgt4%%&*}fu9PR|5v zhJyu#nPZ2EdfHOXgb=0D}E?ZPiiZr(Q9?#lM*pW8Y)3yJ-&e2BFr ze3b=tFRory@K@j_5YEFH68CrHd8gV>$+Zu}1L0L6h_7*W5Jaglj+dfH%i0emMFHI& zqlgeZ-J{EFFzq+pKK;Z*&XFYhEUy?leC(R`4UbP|vtSDw=}zOFno^Jhp#332@pf4? zPA{JN-`jU@or2V0ZNdu@6+#>>g3(ve0Dzl1v=?8yb!aHx>Z~nsM#0;$C=w1Pb zgNo_W;crl_RE~itCFNR58|qA3Tzq?mkOPM#_Pfu}72W^zz?R8NnQUNHt4yX*n-bt% z8Jvy1&*VjIg@VPXq)m$_&Jq8oQW22Ic<>xB1GMW2SLNr+`8Dwph z@mm=aiU;S7^EEU=Nf6k|)dnnvoWJgxrGAs0aGetvr^kiia)DWq{0yJJk(ZAHJEJ43!fF9!JPO(3_~=wE>ZU-dvYrzqOn^*CBSaKnNVB;A>B*C$`GC<*o`A^dHwt}i zS`yf?_W3`WT)V@Sk-L@c+zLPxJv&BNW@+$GDj=dG&QfmFVUGzO=+4aW{{@oqW21Wq z4rjl!3|-0nPs`qY^8(kJx6l3Q(mso}^Jypm59y~|lN?r!^1 zwVn;wZomGetvAnxOvBWP_Q}c4;Tc`mTr+45I%`Qxbo)^jIuKGtx1L)SH&4XzySJv< z$KWw6prv%pvN@1y4Z=B7s7Qz}NKgsTi{~jp4+(isSu|f?H}s;Q^3(aal-@eEcfh`G zf9Ur!66`fC+WU{}+|I3r$#t4{&q8Xr9DIdLR-&snUe+DLn309i&@<6P?hZ&Tj+lmH zB1QwwO@>$}SLG&`xIsRHB+ejODkur!2eHMVr6nI%m~p_a?`V)AyVRTS5S84OlB@%Hbf*_yotR5^H3KwrolBu)1|Lj z?qQ-~zgiA2KoCf4;FS((kAqzHgCGd?T5T_WY3ofC+P!AG6qa3U4)sc9LB|sJ zkjx28O^GW<{|d;Tzvfl^B)vTXfhIB$AgHVy;T@sPP*Ouq67HApaCISP+*wt*TEeI@ zCjsw4=n-_#l3^&@#fn}Wu)Bna(|)U&BvtL~^6e{5K_F5Tq4Lub#%etMU$W+FFl|;r ze)XU|vKU2XkI@KprUeAl)@QF?)61^@+}4e|Zr7?c*Wwzmdo^8b{7acm2N;Nh@T5y6 z3Ixcd?mo~Szake0&gB5PIB+H1e$VRPFl(}BeP*_Ed_J%s+m&GndDWp4Lia+p8Cs)2 zRX{lb0^wLYR5FkGgj7+>uENQZ6&^aL5x*ibPd2(E2TnDU=Ckn`(+y%nH zMR|qQPo|M zGY=vc5gt5+MgjTHT37ip9N^8iuLOH0R><&prk_NxbQ6+MfF{%pq zlx6#7M<`k(ZR#@0=?JsPi8A;^s|D03bgN6N#>@e;wo{_}t*!+1C7Fn4-EfHKRZ#$^v?#R}TV=5*?2RKXmW9Bku<$FIF_@ve$~}-gia^-KPI;ru|MfuzB`U z`Wjdo!UQ_>l$Kb!BvHgzE)#QtiLVH!1xxc@5g^T2+&MfY(u<~m z>!rbnNejY1(|I*RFEzCZ_W@yN9JzZBMCHuVV{ZkbdhJ0|FBRwy{im(VXLMsADYH?As8!H2qZ3>2 z_?kqloAvsUQ6Sz}ttE9u2|Wu^1qqU>QLE_zS<#?gnOG2ZoPrfbGzrw3iIy|kaOmY$ ztK2(eHrJ2HK)nX@D&DzU?22`Q9?BJb4$H~zm&hXUN(34*GjuJUwQ7DI7(U7j_Nwf9 z^8ap8b`6}(0Vf%_iTj@(*sq+o=IyV|c8<*lmX?-2H4l>URM=}MDVl9*Rfl^cL`OoM z=Q7m`|GCV$L9fBpM;c)e=;@#Xb%FQ*NVE;e)OPK^xha26-D)UbprI0N{In7y;8Uv6 zXBgbXK9QRv=s|I-wpvANA9_quG0$ew zX+_r(U5cK?=l0@`y}Ix7+vF}v1BCI~MnGYMHjP3}MMtZW4v4|+3$3-Zt@WDjIwS@x zQ|SHh&TFO_dP4Fw*+lNcU`%hd2dGNiAFmhRY%qvpuY{2OHt$@E{$@| zT)~CW6s80=N#-6aeo(teGaSK=ckBSs`xY@^I;(s00i)|}9vK|oDt3$Yx(lJXqW&Nv zfUBv9nIQ!JAcavlq)LjN$QM+qL#ZxMi{f zYIFnRK_N|MQCXFt=<%>9mza+KGMe?&>amjQ*K~VJ31r2QvY0vOy7JrO| z5svitt?|KA3K*P^mLA5T>6V7_3}1tHv9I-L+ZJ zrN^1>Y$~0!njKh4(NvJ65hM*podOjZ6bE&31{sbh+a2_ht(grN@6?9@(+A*VF3hx8 zLysl>t&%P+M(^o>%}wTjh8lGl0L9hn-p-PdI@LQ=ni~i9DbWK5c0eo}xTpvC51N|# z_OQAHAO}|00mvEA6uKUNL;R$@8{AkGfI!X;W|;oDWrzD58I)FdI({-F$-)hvD-eC| z)Q=3Wb)EW;j!pq8NjDX}PBb7FTm*2Wu9;m155;v2dcdk$a`=N*mvULBLNjiFOu$4B zpL76u0Er+O=Fgw-kf$yd54{{&X+}}NCrF_8k;8}xEZ2c<8XCn5+7#8|LbY>Ybc(%1&0A4;ZaGUqj5pCP|1m2t6oi)crsZwQZ(8Gg--}P;90?_l8ZE!)TkSPd>t9U@CII$kF>@hWi_`_ym#7)aPdEb2Ih1 z`iP#*)aPdEb2Ih1nfl!Ksacz;&$Thr&D7^+>T~@w4K`Dso2k!k)^s!VxtaRhOnq*q zJ~vaJc`$i@*Vbn0GY^_>ram`QpL}fDcaG%lcb3i6=Xakt-AsLMralk;pJFyspPQ-A z7p6@&Q=iLEZW$Po+)RCLram`QpD#LVdZ2B8GxhnxKv5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796=1GiGxdBdO5`zE$ delta 62 zcmZ23wOndLBBNn`rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS=1GiGxdBuT62AZd diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 778f3f11d6bb4bac7df8ae661d2cc02539eb07b7..49189aeb4eac3f529017a98c99d923b6472b78a1 100644 GIT binary patch delta 68 zcmcb(j{V{~_6_?u4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# YQj?8R%@Zw5%#)hmb8dgn$(VE&03b>h<^TWy delta 68 zcmcb(j{V{~_6_?u4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} Y%`KCR(@c_64U?PSb8dgn$(VE&04C%YA^-pY diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 02cd8169deefb5ce848160ed12c1d585d1543b5d..b950b04d3408b34cc11a6a6acd3f6d20f04f8641 100644 GIT binary patch delta 510 zcmZ2EnRDf2&J8;_4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# zQj?8R%@Zw5%#$|1ElqXB2 zI85G=EHn8;iW|{tJ<`qzmt__w#>D3r#l+_(7MG+JB_|e5zL+7!mywv4o*ENhkeR2h zqo6+Bpp;RX1y=GI?K?%;e^5iOD+IrnE7+**|Bye-2~RT>!Z~x&;6L delta 450 zcmZ2EnRDf2&J8;_4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} z%`KCR(@c_64U;#&&P^^zSDnn1AtkJ%pq`wVmzTYTP|3(Sd3R>>n`5Mu9TwhjS~Z7wDX zU`U#Vq!37Kb<{Qxqe`?DA+bxVBQ>F+eQKpZ$U~*HQVVGx+6SOPeQ9pcIlFWIbIDQ8 zV;_1REYJD(oB#X%|DS($#>YoLnKt;zw2|M9Z8CAVJ>~E1ZeY4^gw)}NMQnpOu0eE@ z=vL?jn0u7_gxfBow$~7({GAOuQ@i_oKG-{E_PJT(9$uet&aLYFC5nDsPn^5KZ&u0i z)$U^n`KxE^bopuUYWMwvn=g$Y+`r>JG4jlqI|lb`znU|j+rQ(I1WVNK2WxtN9goDd z530t!aH{X6Q+)~fQP6Az_#CQvwMz~#jDI{Q-ndZ(Y-rq?Cstm`ba;Sx4d z!e*4P(GoT@-!_oy$0dj(TLCcDPfFk-TM^DEfs1TKIGVwY&x=^>-HhtBD0p#ZGioc! z4a?W9WZNZdMYu>}5iYV7;Ub9zIGLNsSOko87XVZJk*x@4X5uTtMYbZGRRR~;28w`o z31DO^!m$##$X0}NO5h@!!VP4XCXUu-Q7Eyo$R&;zPBAhv79&g51s4=%o9Ybw_0q`l zmnsb|Rh!sYOkZ3b(e)Hs9524X4zEW1<|)*y)?%U)EmOnQooJ;Rp6oUA_n&AP_3i4?;+TBxl1LvZkZh~_Eltq{#u!?!T-zVRL4?I8IP5|P-Lk!;8amv^I? zVvpF(C!-KZCL<=&|x+F+^08c3Z~My$#)`eBZRt{JgM6UzTA>Og3T1Y*5j= z9aPLwzkK&;vg1?aeQU85cz2vjsWT3r)495k$Pv2oA0`f{4p~ zXh|+oON?%nkq$SZhg1|7n_$+&=KQ2saZ-Ak(ZdS*W;4nbY2PkTaA_APxO+GF>evkm z&g_PD+O+^JQqG$9Krs&OK?`#d?U+|zDAV)LJy48&Erp<{i6hXn{b;UodZr)E%l8zu zZUh>)7ZP2+7o;8D3(}evp+&i=EN-FUMZn+nEW|dU71r&IXCWnTwn9p7wn9qu#rZj9 zViaf6zevXR@N>vivM((L8Sgv?8FH7P1q#r(4`{A00rHDE>w%>}et9X7-?J>A+=buWw37_KY$jGhs^@(nIudVJqP84FAt!k5;JQ6wHBac^C;Aj0mxT!1!`3j zZV#X}YIuGHYE;8pD^N>;8=0Cc*+Eb@yb{!1Uzv;i5X!E^1FKL=u5MU-%F#42d`L>( z_dJNXw++Pn>v<4!whhGGXe;zGg0o((y#QK{uLdoDSq)mwe;3NMZ4J<@d=Yv-(GJ$D zF9P|=b|Amfj#^Yw-u)iD4G(po<;wbD2e7^K5=7qh7))zCjF#r*(ujAA32ULtKROJ= z$JPSz<+b49t(SrL&R2l=!a5)xeg%j-*2A>9-!CAhG4bv7KwP&0h!1W6;@@rn4=0WQ z@n=VXc=T}~e(fmacfm%OHvQECVzo!!*oeNZayESv5cg~X;?Ygu;pj2+m{|Su5>t(@$PU zm&RwGnR>Hu->#Y=emIEM6<8G&k_M9wEyM5( z+ohpL9nTAF?%1K_*oI5ZjKk;4qSDgi>84sguw7y>Cm^Or1L817ux(lVU$GU_tKV%BL*PnO~3nMic; z_6ZpYC5A`jg5j2KQqB#>#oP+9K@5vh!pu05q|LCUd)y@^=QLoJET3Uv=IAmm+miqJ&5yLdB||;5CCW6M(58Cmc&5jwEG%J)P*D#Rv&$Xa}lLWtvFL`mh+d$F8?xEIR^@bh{x(0ORvj5@CD zoWKlR5?Y?mAF=Lk8lPKkwW3_I}5y$Jc46n>(wijpe&fZ)juFm(FV^63K5?BDcb5n<=Bh$b_~DGfe7rJ+CJ{hhfu^{cL&xHGIP{ zEMMn(pwmF^;-TuvvTvBomQy3{sj0r}YfV|MfQ4;VX7SpE=rZ}_(3EAujGOYw%i7_} lOS1Bkth^*EFUjaETzN^BcsW;IlK<~7NjrUca`pN9{tE$IxCQ_K delta 10561 zcmeHMTX0p?8J-i@5rOf-NQFU>W1MPBL$cRxueC7=1j1b)$Q{IF@3r?fB632w1V7Q%E|+7W6f9ZyF~L7(~{6kj^_p(V_8rhO19kFB?^v(G;Nxp+GJ(U^4uV>9AdfDa&1>i zB^-~2Oa)lA_*u2RWqWpKzY2!7-PU;ip>fk!r{wvRe($+3ux=$nbY$evI}W zO_?8kn;$U7q0!#^hc;drKeTu2AN0txw~ZOv_1tL5e17lND+X*(e;S&&?ft??fA(?1 zxR*}#zj~@aW&SnfPW9jR$s4K0-1Za-A0AWz6>fKbcEIXZ*)3L6=HXS{l{Q?%Mrzn- z4I8Ur;SGo9N8*>*#S}m7ul+Cv<5D+RpD43H@+-ly?Y~SPDjD(cQ&G>Rk@Mn zx?|a*hOG)0Nvy&}wkljCu>xmu6B(<3k?sm$b|A7<;dnm2DqLi%!r3)&k!`RFC~5#B zTNO^$z(uwyoKpiA*<##aacSacZB~U+Fjl$5(ZZ=lM#gGnt-9cf!fc5<1An_Tru?-^ zgKO2MV63LEu8!_`3e77lzM&P~ME%F7PmIZ=9%g@p=EuV>7d;UVCp4jfczC1<09!rO7F$P3!zX8e^+ahnYKG%VyM^vp ziSE;b%_yxuRcLDYmyv{>v?BcF7CYZ!SWU zbhCvXj%R%q6cee3Ei@;#?hV1g#SqPmtzU;|Ry;g|f%omFfp-NdkC5opy1Zm+B3#sq z9vlm?>ut-8is-}PUNkNCIns;fm824VprbJR(fE7EGa%{)1yM~5MD;Nc)w3BbC`#Q7 z({65tWrClDY1cTU;Nr88fSsz3qcKMAs7G6 zf{KxusIBDcC+m!-YmXVWU-dy1KJEh__iQUK2rm@G;EM%0wGEnTQ!9vgyA>Rawt|SO z{b+tEQd^(fY$6?QLqCY4xZDP_CbX9)#V#bJuN_T~p(op+NPBjGf-5^f!JRw7*NUB> z;GLbYPJ3pfxv{hMT~LezyU?7HL{Z?i=9u*SYZnw_Pe&yvYT^j=`~aE}JAG#W%`Ep6 zwQd9&w;K}Oyc?vwwi~3i%|&xdQ)QurhUWr*&+`!5U7fIQZ$1wxIoSy*xz!0NvF4TM zRO)j$pZ>Wfw&^b*9?QNm4`jUi0%XXYk7mb!);&OTV?K~yE?M_20P?E~fc)--<>XF* z{L)@SK6W3FpIr$1_OX3v-gww7u$523B;B{)O!#si%EV$G8bqBHDAPPK>hK`sE3+7N z#uL67M9bshg~g~f9)7(TbyT=9sVS1}2X(_sK;4ZcrN|FJKK4D1I!blJ`ttxy*24#k z~Ix)MB`IS9meybi>dRsr$w>p;9>HB6gvsDhXkh`(74#7%2}c>fw8{%{R= z_}O6~{?B0`KDQQ#-#h~OoxKjGJ@7^aalA*~T!(%b=j?&?K-{+;h|jGD4@ZuoC-kBX z=#i=mblFuK9vt<@Md9I9eLbvkHLi7wt#yg5xWmR**l*up>yL}#?Y{oFh#R~9xNvp- zadD>pxPS{r{c#bPT~gN{7xl+Q{c#bsLj7@3`2X?m>T!`XkBdtUceo+(Y%G~x{T7;E z`t9d$p)2Ey-?-JT-QP4!)khoBGxXvi^k~JW3IA-ErY9XogQe*wjw1@c<^Fmc^@XXY z^#@;|&L;B6mK~2-)=bMhVr)u<#RzY<@iRMGwr?8O+S1n_v>)#sv*~#6gu{gyQ~v)9 zeQsgHy?Vx%Na^4I7R}H-U!hqON$a=0>j__>M!n&D66Sure|2iC{`4!fHnmoN_yuZj ztmQ5eTU1%V)uhe+<7+grJrfe9ICou_nvt{v&tgvCI+$6)BCb#MN|(h_vKFhF8xs|QG-74UV2%wgzFd6E&9P+dR)fgmXa10 zk`kNIfIBXi%y$B=F!M2&aZr+SJEVa!;RvQe+p%35IJQHike<&1eXHU2Nx5S`O`lF> z0vY80A{i1+LS_@svpt7~mP0Ma_Z;lz4EBPFJ%L%jc`ALUEg|82Q|1o>^Rs zIU;!PbUKR?J0Ty`#P_bG52gl_D${5<7j>=gUb?(<-s9a#i?b4)l&{83P5Ra^()UeE z2uhEhO;68+f(jyRQ$vR_=9@ofGiAF0@hNxgfY`-?5|at+OYV7`ndqc2e+PFwvwoFu zu_vPbiF?hp?9jv5RwCrg52ULCsTgxzvlp19>PFb|UQ5zY=(R9OLaEn698#{Ruj98L- zO8SZmLM+esimNn}0&?d~}SjD9=`?YDRFbo67 zXV`I!d`>(jY=+IIsd#x5wxoXOn@xk5MEHa{wxxoAnG;ob%weS1YYEJSC=!YDy=HR8 zn;9wVHN{B4EH^KbGHwy+S%Ent0xqaW9mVotWl_>mQPylprKxP6q}5r8PD)s@*)mB{ z>Fa0Hk7)mD`jy0^C9Z4zc&i_8rGvG8yv5gnV#n2wxBBr`KiJ|u8%jK`^)!k HzcA&0@ho-1 diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 838326a9bb84b0cef207b07c051ab7993c0e463b..f9884ee9c1b531bad16aa58fef252d0e978d3cef 100644 GIT binary patch delta 80 zcmbR9NqEjD;SGB@4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# hQj?8R%@Zw5%#)hma<;$aWCUU+AZFhFmXk&QJpfxo8-)M> delta 80 zcmbR9NqEjD;SGB@4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} h%`KCR(@c_64U?PSa<;$aWCUU+AZFhFmXk&QJpg2`8^Hho diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 7a71a9a749a36b6faf66bee6c74587665de83374..1c0f604575676ff4dbf52b5776162cd8a837316f 100644 GIT binary patch delta 3842 zcmeHKzl&W(6y^?FWFaacuG;9kyV@DDXJ*d)I9S+dAsAgt(GX_l%%FutG57-v3&vti zL?SUFm;T(>QZf>OF?;KgVy0}QO2PB^hZrWW z8Z3fK3#Ya&_gj~nuYVh{2aEvZC2KUyUTYnsN#ren=Pq0q5BKdS;t{$4<($PcRl}+(TJIJld{nV3_F-W70V~|+<_WxQ4te(UDeUu-|tri z-~Lj(KKDe;5sey>k7M<6FeQ<(!Dy+na#Ocf3x3u-9!&DaYeT-Kj&tM#a40%jBU$xl zZ;7p@-5VF<*m_4sY5?@Wx`1xwqL?2gN-El#a8Oq zWv)?Xqb8XW*-W)grGnjof5cVRml+gWDMl?A)I zdT56Cd^pH$?8EN%PhxF$3}?r1b`1Caa@%df*)hET0?&@&_%m$#55w#j{%?<=>-YUD Ht~~G`F^yWP delta 3858 zcmeHJzl)tk6y*&m5?HY?t2X9+y966U_Rh?mnLAk6Xd!44OVJSS{DM@*pCA|(jYTvf zkr+M|wlZuX1Pu`%DNGRmftW^1E3sK@(2@=-|(EwXu&qO)IWEx;iU+7AYAWb3#SjZ~(b~Jxio`(LRGqb}%dNH>rMH8w-hg_Nat@}41Kn!ozb&+3oSa0mC_SI5SC z*EapihN6x$kdfMf5fG^)QzM~^k&+g!abC9jSiQEda~zu{=W7)vshG&wG!9r>VlT8# z1o+KS2VOYG493b}34EkbxytAXV&*vG=ZVS1Pu1pVxcqZ>6bu%gLRsrCoKtCRigDFs zhhFH$ijlH&6g}A%M1K97KMLb>I2v6}T4a`r#w6g7TWT^LQ*!l4b2wwLsJZxRLQCjU zj6mKdIUWt>HhpoqKlYninjHU7ZH&5s4xpbw8Y(`Abn}jS#%ej%91V2(owc`5uAV)6 zq+6||qt~tpq<}s&j-n|Lg|ll^!%mn(W|~g;;N;ft>XXs>(CAjB^ou86J@xYO=U;f~ z)R1I%-yYx*R!<)3uia9QAKDvRKi*JJAD)rm(S{T()l30Rj0^#st~FM1nagt$&U`68 z9J>OJywOEw)^bUqMiT;u;K^lAbCrt`KN~$I&P-^$X~m()I*GMK8RBbKtDao^Q*DjL zLzVA||2i{NbY?)GjFa718hgNO8%seHlZhB10n~YGGsTX|pI~L&4O7&-Nc| zs+CS071^BUTKVP@ZOrAhA#w$!6K`Q?|Bu%U}z0Bko;HnFQ+Y7Y5)KL diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 44fa44b70cd78a71ead2dc6f18486572eca37637..8d5b371945f818265fd5f18facaad04134c16abf 100644 GIT binary patch delta 76 zcmZ3wlXvM(-VFyh4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# fQj?8R%@Zw5%#)fwa<+fuWCUWS?H@Urw*&zI)2kVj delta 76 zcmZ3wlXvM(-VFyh4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} f%`KCR(@c_64U?Nca<+fuWCUWS?H@Urw*&zI+$9;% diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 15688f158b29ce36a3da8541640dd122efdc850d..5e89301a135162d1716c94a474e965f7ab7ce336 100644 GIT binary patch delta 62 zcmX>saadwQAfutFVOnl}az%!|g+a1$nu%qqv6+#%v5{q>v5|qPk%3uSQi@?}l1XZ^ RQL1^Og^796<|f92TmV;762brg delta 62 zcmX>saadwQAfsV^rg5odkwt;NsgYTtsfoEsl2M|CK~iFBs)41EL87riqFJJaMY6eN Rl5v_za;jnS<|f92TmW4C68-=H diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index d6ee0383bf1fa852a9966b368c8bd18abfb4ff20..5464abe993be4d095ed2df368c4b6d573a799699 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# cQj?8R%@Zw5%#)hma<;$aWZeFilc|#r0Fyo#7XSbN delta 72 zcmeyif#cf-jtzS_4f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} c%`KCR(@c_64U?PSa<;$aWZeFilc|#r0Gh}cQvd(} diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 6b67f1427a0d63d1d9b116614168a28d14e28229..3fd50d1203003cb0a5379bd51054c3ee21aefa79 100644 GIT binary patch delta 80 zcmaFyo%zLg<_(uPZA}f+a`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# kQj?8R%@Zw5%#-v}@{^18i}Op1l2a!aGHY$NrzRER75jjSUjb5-lu} k%`KCR(@c_64U_d#@{^18i}Op1l2a!aGHY$NrzRER75jjSUjb5-lu} c%`KCR(@c_64U?Nca<+fuWZeFdlWB=00CR;G^#A|> diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 61e44daff38b86a39dfc19c89777990cedea9fea..39cfcb9d2a96d700fb4b0e98f9ed2adc4becc806 100644 GIT binary patch delta 2168 zcmeH|O-of#6o%Omf+P`TIw?F|qDhzQ-fMp@b5u4cycAJ{n8^MtK{Lof4NM9eL=B=l zI2cVTnk5)Qmj)3uizfbpKA^v0v^51K>x`N?JFwo(TF<-I%UN0ISXt;;Tsr5|o+p8kE6^O!a-b5ZN-nVIMD!4~HA1_k@10LC_sV0FGbbn=ptN3a%DF)$8iu!? z*pa{1cDWxta`4Yb6Em$ZuZq?oKiR!qx%JGy+rBUnhPN#&eF`rJ3u(ACPB1P7h`_v4 ziD@AsN2iq2(0cUzUZrTM@nT@UP-xLe=biB&l#RwkhCJGk7zB>IJaU~JXfHR(=`=-eLbtajU0UptDO@$ZAv4mVo&VVr=xm#zd9AS;AqIoPgn7Yabx5@EFZqz*4 ze{-xhJ6kVmmKq(vESam?T`doA z=KRQb^W4zs;qj_t-m0$hur^jNmoJf?qLMKC^SU}2I|(2_0=8zDvFx F`~@bOUHt$6 delta 2174 zcmeH`%}bR*6vmkdL6QhE-4woEs!f;cnVB8XcGy7(4|F0?V^o;K_&EW7|m4zBja7RaW#u`X6E@l=R9kR9czmnOG}+}YJ%T1 z*Y$M2VA2Xy=$O^uY>Z$SSPoWNt-UgiC-jl}<<-uomwVZf$(dsS0|50x3D8P0(_pgs z#E$&4w!{7CVS|5PnwV*ReN{B~`^oOD%FSo~-PVPPFtlZ1`Ez(VSnw#AFeym`h>3-K zKm-*TI-5jL%}3AgRW>a*UJNW05d^b5(@T~xN#B0ebL~?^$(2#%!E0o1Yh{>>?(DM` zlH(?3Itgt#1DXfyyvp)@qJnWmk?q?MvB6e| zERG5ht&bcbDZ^a5m3mECMhI=ey=8Hh>~2k8APb~On!Dg4Pf~iss5OgTwAUEg#%gnO^`fRZ=2iD1=GkD#2$FM)NU27kEZ}C=s!X(dyUQ!{q^tG#Hkl*y zRRgSL0cXySj1QkXb$V#LYN7w^uJDo9#_HwDCDKz=5@vtiRHtJ*q}w6g4(b04>1gY~ IUGjb3FIxF(O8@`> diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 2044044e927f9b9329b4675b4981c38b0dff3ffb..f9fd9b719801ab3fc6b760227b3cdc1832903ef9 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213p{Ze7Zhmq_hQ5VCvT>S;Wva26k-4#vWumc>fvJ&!Sz1zxVQP{| TYO+zPd7_1hdD7-=Mq?)ccSI7@ delta 64 zcmbQ&&N#1~af213VSc7@sb!HxfxfAcS)!?lxk-{yqJ=?HVrr^^rIA6Ru|c9)qJ>4W Txn+`Znn`l1Ve;l|Mq?)ceC`tv diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index a2f2b8e407872c97dd3fcf12a31abb2c827ddd00..40db1e4315d1aee6af23fd0bce905ce75215d662 100644 GIT binary patch delta 68 zcmdmUm~GEtwhdc24NVQxa`TfbGW0DBl8w_$EK`lmjLeOVEEA253`~s-%+iul3{#U# YQj?8R%@Zw5%#)g*a&CXh$#{J_03B}^1poj5 delta 68 zcmdmUm~GEtwhdc24f8XNOD&5m3iM5l%o0sa%uSMv5-kjp5>rzRER75jjSUjb5-lu} Y%`KCR(@c_64U?Ona&CXh$#{J_03-<)K>z>% diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 11bffe26ae2e2e3fa253102f9a4f5586e013945c..e12feb0b4ac2ddd019152eec42db1541007fee2d 100644 GIT binary patch delta 7680 zcmeHLO^c*g6{fXKX7Z`YWF|WOR=w$%D5RY}_ug~A%wj|o2_%|iF+ns;?k5vaC&5I` zVi0v9$;uJQo0Z~11QpE2ln83(4@k0+*~|}UArK*J@u_;N+p2-|#eFT#&^>*-&OPUz z=XuW42RB|hxbe!He?BR+sNcSvesF2uQBswCQAS!NeNd9LBvWG+C2~o!*x=a4pB$Y0 z>A}e@#77VxMQkHJhPVZBE8+xVe&#mB?T9-NcOvdW+>Q7+;uDB_5ceWZA?`z*Mw~(1 zkN70wQ;4&(gOfYwzc>|Iryz5dNiqfJbIn3V<&Aemu^66uedou0Y@ND#VduWte;(g? z_e9Snl1!X!NW{t1P$@<0HRV7Qm0Nt`v~gok61^VIwk-`eZmd!W}QIqO8U zM3TKQvFIRh=}5sU4s~|zh3-4s(@2(Fktn8CR;mOWSXdJ*sbnP&FMf4$YS{l?cY1dB zgOiuHdhLyJimX>vuqK?3qQ-eoty9sK0Uvwstp9#@9cLR?7^aU+p6DAlki)wdI@fDu z5<4kx;|ce{}cH-h5{A z+pQjL!0$4KKMKyt#6;f9LK@HMoDs9DuXcY$4UN3R+m|}(>G-^MUc>(I+MSa}hrQ>z zM|uufku0%fmDpzCiXf#i;i*<3RURLwFVUCiq_aLLmNi6Ug%F6OL*dE;?s#UbXNn&) z7pYje%7%*9R+5M@C=*Jm!?o?nsoDEx^82l6Bl%cTGxwsT^Ursm6;7ygUOxZQ{&%0< zy>ex*-}QpYN(ETCz{Yu}$paTzT8vE8YFSiTh`5^$G>s7Tm+oG!| z75CIGyJ+*gx~Rb_hr?;Lgh)7Y6-1m-f2Qg)@aSVK(9M-{dI1clT)BuO7&02Tm<%j} zcul3kOD<_;9!qH^J_O$BuSoImw_bXb=<`H--+WmT+3{a-PPtV$CQdA!iQqW)HV24k z5Ei0uH0Y92x9+B4Z)tcY+)2)vF4~>o57HAy)_NVTaX-!aP^2$bR zJ)S*zA@MC}0=GA|06HWCl-T~!B0LXF+buQ^9llm zr-)USVhVz#Hx4@nXiek)ldbx28EY(zBQ3sjcJdme@c2jb>u_of?E2|e?~cINDr*70 z2gj9w9cHW=a4$Lle5D#v!uHJ&I-b3My?bH1k2$2Ev5C&9GggiLh#dNpS?ioqnr*$& z{c@`ZYBTn4kaDOjioo)2d=aW*A6H323mmqF`&w0!HyByAB+PqW3AzWh5yt zbve?G+Q>X2ubFtE9e;Rwa(*hE%#NUf)d?0@5?N?3r6iVGyEwzXczL@gC2WGn@#rk9 zpvKiWX&H^uNkF?-D?zO+p>{x`XX~vi2793MHI;yFkN#KYe&b)ud3Pz28m|N6${ zo_%r7`4zl@j!T^LHp4Z*EQA2`RReuC^GP}+l(wC^N%C5cwT`3KoUWg4weJXZt>Q+> z+fNfa{OEf3RMUnn6{F$9HcoKk1V6-u9%6Ch1lMiu#tCkm;Km6?vvGopKZkCd;LR>{ j;{-QOaN`7*f5G24!J91T#tD9ik^cXj;0#XiFSq{}0g0*n delta 7640 zcmeHLON(V!73ON0beqIS(vN7@x%Z?eLNM?LTm-UOn1%)?Rz9 z@B7wQ``2ICzy89je?Kn2e@Q97$60MX-^EjL*)b6o*HDz5SCuwoYBWxP5Z|zX!M9 zKGwS;gpgLqls#D+BN-8-_V|8@nf>C6v&O0U&o6HO{#@^Um0IgmWimu;f>gzelB6w> z65HkNnx_`GJ2q_J^()*ir6jx#Hb~N;_>i3oH8Qzqtg6c|HcyRTd~LV;&t22xQjFCT zzA1=;L!Bbm5JPfO+4(zv>n?Bgs6HuCYm_+TD|0ql#$c=uY?YVu$t&G&CcU#-<}92y z&XFk^HzF&Iw-pW1(hqN5?(UfPKkBYc8hMBA{Pf{w+Trbso$o6o zELCv$QFCPd-d3Me(zvh|Q3NX0M;EhIg+n%#vQER*m%7vQSHC^|<78HulrzPd>N2^+ zfn&{C)vAnel7~09rYGj_+3BAq&FsS)-|0j?Lv1 zUWtO680}=0Mv7HUWTea1lx(dfioz$Ut+z2Tab_zI)zsrHjLu}ZNJYYgAbhMUvbGLb z34V_H|ABfMnV0o66EEsHcd7fbbUK{%^3rpAKYVKE%9Y)ICpl+Tu3Ty?6nqZVC9Ay) zLd2l?ptd$2qxz9iH_|p$P{Ecru_;hPlKXkhBcsoz+ z4*&f{cdBm{H;(Mx_blGQsRH%{BV-Qbw2Ru9YIO42h4DQOdhA8j5iDW^dTdQBtYdIW zDxV1`oIm?|_uI)VGc$V1Km&O#fmh{AHC%o20QDj0^{vFi?ELhho*H?V;EUiOmt>Hv zh;&L^wDF9>RIE;^RWoOvd;-d{PnjuL(3VY6L7 z%zz%LBy@DTn1eZOC0@>HBQK3bEO7Ts?}Ze~1m$u7$64#0jLJdpsOq9cTDAk!AY#m* zxvV3N__V?b3Y8Q7ksGf5tGjc_BE19g0a?)&E2)GCC=>Z;yfUPP3QNSz8i|K@{?JL# z%#msHvJe37)VGwl_q)$MAjDUM*nRSOC4^i4FVB)X3`4IY?p}4xkutQLYlb0mHi&FeH(RElG%6m}-TjX^J67wixCt z=kH&G0!|GkfrQ|QImen2WsG1pYtTni;%l#r5QIpu_GExwgU!LsLHIs*vPyDV>9o8`rSNyEllrM6coVc4uQ{LG9<;U zg)rn%0a*$%+pMcf)*NVHdo%nH_*!jShf`x<_4?`73*G=9CQ2jrB16zs5N__8e5nm(*)@bAftrnF-_7DXyz>R4IA!GyHVCBNt z^Pp=;-ev{&6r59s;5Q>4ZA^egC|I3MViB})>}3)e>%s8;W1u5C94ZF9 z!_GxQTeKZN$(g((nf>V4WN|AlX=Pq=Ni*>Q_D&D)J~6$0Pn{KqRS)!RaFgs}B~l8b zhn~TXQ5LMCTa^cUccjf4APOhuZ=IRGJbAIvss$Q6 czGc2PuJ7YL=f?GIT%VH**Efgjd;OOG1Ep!I=l}o! diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index e6f247c188b40034375905de7038a4ad282ec9c9..c189697d8eeea3d5bbab0d46fc25c23fbc8420f5 100644 GIT binary patch delta 1438 zcmZ4ZgscAv7fS={RECW#M>q{l4byV-lPfaxEew*4(@ZQ=jm?bAjg2f5jg1UUjSS4v zl2Qy)lT1>RjZ)1MElkXlHvi=OZ7OfV%D`Y#P?T!NrK@XXU}U0eV6JOms$ghrWolq$ zVm^6qKT~yKJZ=U>b*eMx;5yRDkn-3)T%%9BnPmq0T SIx`~!14F9{<5m@>zZ(IhnQm18 delta 1529 zcmeBw!nN=T7fS={RK|@gM>q}hGmT3vi!2KCO^wVFO-;;Al8h2943ZL4Qw=PQ3=)kE z63r4VERxMFlZ?|$l2Z+nH~-}PZ7Ofh%D`Y#P?T!NrK@XXU}U0eV6JOmq+n=jWo%+) zVlY|OJ9P4yFadE(3mpX`69WS)Q=?P^E5k$}%gWNkaPmY4dnQYZ$&K;eljR(HHqo847tYlvCG>lqms>L?iNnd%vt>Y128m==15 z#wL^H<0JS`6#{MCYonH4VjZiXU}&aiWag`&U}mOg?CYdotN;X=c?t%4MpzwVsGtE< zIr)u?#|ZYlj@KH-zR3jvR><)o>zzd?qSuCmPCggdMRG*DPCgKvL|kOA_lrf3?6o1+ zbV-Zd^`QZi^LMikb3d+^R0if>igWI|m`;)-l#-l#lElb-<6@yWC4)V7N`_#>Nb&II dbqPN6*{4=8GcqtROb-07(W=R~Rg>x2MgaKEdm#V- diff --git a/master/_sources/index.rst b/master/_sources/index.rst index 1b629b4ce..6381f4ad3 100644 --- a/master/_sources/index.rst +++ b/master/_sources/index.rst @@ -1,5 +1,5 @@ -:og:title: Cleanlab Open-Source Documentation -:og:description: Get started, learn about capabilities, and follow tutorials to improve your own Data and Models. +:og:title: Open-Source Documentation | Cleanlab +:og:description: Get started with Cleanlab Open-Source, learn about capabilities, and follow tutorials to improve your own Data and Models. cleanlab open-source documentation ================================== diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 828649547..77fbb34b0 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index f1f31cf72..8b2030536 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index e823f64a1..93aca6803 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 4d748d34d..c80e8eec9 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index a73e18182..2b8a9037e 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 42b41bfef..702717f0c 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index ee1f8403b..293c04326 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index d032d6e58..91cd320b0 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 3be3a80a0..f05f46057 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 4c772eda2..0c0bf6609 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 40a6de3be..f18440290 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 4724bd561..8b523c79e 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 3e0188c7e..a8c3ccace 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 0b98b27bd..857ab32f1 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 3f71203b8..ab6d89ef6 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index b7d1965d7..e479f3461 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/index.html b/master/index.html index 3613f01e0..1e432f4c5 100644 --- a/master/index.html +++ b/master/index.html @@ -13,11 +13,11 @@ gtag('config', 'G-EV8RVEFX82'); - + - + diff --git a/master/searchindex.js b/master/searchindex.js index c313406d3..86f754cbf 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 96, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 90, 91, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 90, 91, 96, 97, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 95, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 96, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 90, 92, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 90, 91, 92, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 91, 92, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 96, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 96, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 96, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 94, 96], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 92, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 96, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 96, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 96, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 91, 92, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 96, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 97], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 96, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 96, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 96, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 96, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 96, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92, 96], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 96, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92, 96], "cleanvis": [5, 10, 96], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 90, 95], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 96, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 97, 98, 106, 108], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 96, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 96, 108], "blurri": [10, 92, 96], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": [10, 96], "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": [10, 96], "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 96, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92, 96], "odd_aspect_ratio": [10, 92, 96], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92, 96], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 96, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 96, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": [37, 96], "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 96, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92, 96], "tensor": [38, 39, 42, 89, 92, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42, 96], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 96, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 96, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103, 108], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 92, 98, 103], "thread": [44, 64], "window": [44, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 96, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 96, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": [62, 96], "analyz": [62, 84, 96, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 96, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": 62, "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 96, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": [74, 96], "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103, 104, 108], "03": [82, 94, 96, 97, 99, 103, 108], "04": [82, 94, 96, 103], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95, 96], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 96, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "change_pin": [88, 95], "supported_cards_and_curr": [88, 95], "visa_or_mastercard": [88, 95], "beneficiary_not_allow": [88, 95], "apple_pay_or_google_pai": [88, 95], "getting_spare_card": [88, 95], "lost_or_stolen_phon": [88, 95], "card_payment_fee_charg": [88, 95], "card_about_to_expir": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 95, 97], "runner": [88, 95], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103, 108], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": 88, "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 96, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 96, 104], "gz": [89, 96, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": [89, 96], "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 96, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 96, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 96, 104], "set_titl": [90, 91, 92, 96, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 96, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97, 108], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106, 108], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "54": [90, 96, 97, 99, 103], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "thoroughli": 91, "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 96, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "num_row": [92, 96], "60000": 92, "transformed_dataset": [92, 96], "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": [92, 96], "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "590": 92, "329": [92, 94, 103], "88": [92, 97, 99, 102, 103, 106], "195": 92, "391": 92, "493": 92, "060": 92, "769": 92, "330": [92, 103], "505": 92, "425": 92, "476": 92, "340": 92, "589": 92, "328": [92, 103], "310": 92, "496": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": [92, 96], "max_preval": [92, 96], "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 96, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": [92, 96], "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": [92, 96], "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": [94, 108], "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 97, 103], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95, 96], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": [95, 96], "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "sort_graph_by_row_valu": 96, "warn_when_not_sort": 96, "50000": 96, "523": 96, "991400": 96, "356958": 96, "362": 96, "619565": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "34": [96, 97, 99, 101, 103, 108], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97, 108], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "aspect": 96, "anomali": [96, 103], "enhanc": [96, 99, 101, 103], "artifici": 96, "alter": [96, 98], "darken": 96, "blurry_scor": 96, "odd_aspect_ratio_scor": 96, "setup": 96, "cifar10": 96, "markdown": 96, "root": [96, 104], "selected_class": 96, "convert_to_png_imag": 96, "bytesio": [96, 97], "seek": 96, "max_num_imag": 96, "list_imag": 96, "list_label": 96, "num_imag": 96, "img": [96, 104, 106], "toronto": [96, 104], "edu": [96, 104], "kriz": [96, 104], "170498071": [96, 104], "63370425": 96, "61it": 96, "dataset_dict": 96, "from_dict": [96, 98], "apply_dark": 96, "transformed_list_imag": 96, "transformed_dataset_dict": 96, "plot_imag": [96, 104], "num_images_to_plot": 96, "num_col": 96, "hide": 96, "get_property_scor": 96, "_spurious_correl": 96, "get_specific_property_scor": 96, "property_scores_df": 96, "property_nam": 96, "standard_property_scor": 96, "transformed_property_scor": 96, "295": [96, 103], "light_scor": 96, "415": 96, "325": 96, "odd_size_scor": 96, "grayscale_scor": 96, "015": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103, 108], "174": 99, "163": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": [103, 108], "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "75087729": 104, "26it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "134": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "3mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 96, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 96, 104], "specif": [10, 22, 96, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 96, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": [92, 96], "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "spuriou": 96, "correl": 96, "pass": 96, "relat": 96, "transform": 96, "imageenh": 96, "induc": 96, "properti": 96, "origin": 96, "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"], [96, "id8"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[96, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[96, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[96, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[96, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[96, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[96, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[96, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 96, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 90, 91, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 90, 91, 96, 97, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103, 104, 108], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 95, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 96, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 90, 92, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 90, 91, 92, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 91, 92, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 96, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 96, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 96, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 94, 96], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 92, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 96, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 96, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 96, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 91, 92, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 96, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 97], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 96, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 96, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 96, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 96, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 96, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92, 96], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 96, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92, 96], "cleanvis": [5, 10, 96], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91, 108], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 90, 95], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 96, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 96, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 96, 108], "blurri": [10, 92, 96], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": [10, 96], "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": [10, 96], "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 96, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92, 96], "odd_aspect_ratio": [10, 92, 96], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92, 96], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106, 108], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 96, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 96, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": [37, 96], "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 96, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92, 96], "tensor": [38, 39, 42, 89, 92, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42, 96], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 96, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 96, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 92, 98, 103], "thread": [44, 64], "window": [44, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 96, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 96, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": [62, 96], "analyz": [62, 84, 96, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 96, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": 62, "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 96, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": [74, 96], "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103, 108], "03": [82, 94, 96, 97, 99, 103, 108], "04": [82, 94, 96, 103], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95, 96], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103, 108], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 96, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "getting_spare_card": [88, 95], "visa_or_mastercard": [88, 95], "apple_pay_or_google_pai": [88, 95], "supported_cards_and_curr": [88, 95], "card_payment_fee_charg": [88, 95], "beneficiary_not_allow": [88, 95], "lost_or_stolen_phon": [88, 95], "card_about_to_expir": [88, 95], "change_pin": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 95, 97], "runner": [88, 95], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": [88, 92], "628": 88, "121": [88, 99], "702": 88, "863": 88, "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 96, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 96, 104], "gz": [89, 96, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": [89, 96], "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 96, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 96, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 96, 104], "set_titl": [90, 91, 92, 96, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 96, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106, 108], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "54": [90, 96, 97, 99, 103], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "thoroughli": 91, "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 96, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "num_row": [92, 96], "60000": 92, "transformed_dataset": [92, 96], "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": [92, 96], "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "725": 92, "329": [92, 94, 103], "88": [92, 97, 99, 102, 103, 106], "195": 92, "517": 92, "493": 92, "060": 92, "694": 92, "330": [92, 103], "505": 92, "629": 92, "476": 92, "340": 92, "769": 92, "328": [92, 103], "310": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": [92, 96], "max_preval": [92, 96], "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 96, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": [92, 96], "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": [92, 96], "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 97, 103], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95, 96], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": [95, 96], "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "sort_graph_by_row_valu": 96, "warn_when_not_sort": 96, "50000": 96, "523": 96, "991400": 96, "356959": 96, "362": 96, "619565": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": [96, 108], "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "34": [96, 97, 99, 101, 103, 108], "63": [96, 99, 103, 106], "47": [96, 97, 103, 108], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "aspect": 96, "anomali": [96, 103], "enhanc": [96, 99, 101, 103], "artifici": 96, "alter": [96, 98], "darken": 96, "blurry_scor": 96, "odd_aspect_ratio_scor": 96, "setup": 96, "cifar10": 96, "markdown": 96, "root": [96, 104], "selected_class": 96, "convert_to_png_imag": 96, "bytesio": [96, 97], "seek": 96, "max_num_imag": 96, "list_imag": 96, "list_label": 96, "num_imag": 96, "img": [96, 104, 106], "toronto": [96, 104], "edu": [96, 104], "kriz": [96, 104], "170498071": [96, 104], "109678925": 96, "25it": 96, "dataset_dict": 96, "from_dict": [96, 98], "apply_dark": 96, "transformed_list_imag": 96, "transformed_dataset_dict": 96, "plot_imag": [96, 104], "num_images_to_plot": 96, "num_col": 96, "hide": 96, "get_property_scor": 96, "_spurious_correl": 96, "get_specific_property_scor": 96, "property_scores_df": 96, "property_nam": 96, "standard_property_scor": 96, "transformed_property_scor": 96, "295": [96, 103], "light_scor": 96, "415": 96, "325": 96, "odd_size_scor": 96, "grayscale_scor": 96, "015": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103, 108], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "30338964": 104, "83it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 96, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 96, 104], "specif": [10, 22, 96, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 96, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": [92, 96], "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "spuriou": 96, "correl": 96, "pass": 96, "relat": 96, "transform": 96, "imageenh": 96, "induc": 96, "properti": 96, "origin": 96, "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"], [96, "id8"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[96, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[96, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[96, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[96, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[96, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[96, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[96, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 3c2c0a9bd..95aac38c2 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:50.264127Z", - "iopub.status.busy": "2024-07-02T15:24:50.263741Z", - "iopub.status.idle": "2024-07-02T15:24:51.435602Z", - "shell.execute_reply": "2024-07-02T15:24:51.435065Z" + "iopub.execute_input": "2024-07-05T13:41:26.106288Z", + "iopub.status.busy": "2024-07-05T13:41:26.106112Z", + "iopub.status.idle": "2024-07-05T13:41:27.346466Z", + "shell.execute_reply": "2024-07-05T13:41:27.345878Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@c915f776420f13284807e915043326eda337d0c4\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@21c46c9cea788d86c6112b2f7642a8835eec55ce\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:51.438162Z", - "iopub.status.busy": "2024-07-02T15:24:51.437743Z", - "iopub.status.idle": "2024-07-02T15:24:51.455082Z", - "shell.execute_reply": "2024-07-02T15:24:51.454668Z" + "iopub.execute_input": "2024-07-05T13:41:27.349199Z", + "iopub.status.busy": "2024-07-05T13:41:27.348720Z", + "iopub.status.idle": "2024-07-05T13:41:27.367291Z", + "shell.execute_reply": "2024-07-05T13:41:27.366731Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:51.457364Z", - "iopub.status.busy": "2024-07-02T15:24:51.456857Z", - "iopub.status.idle": "2024-07-02T15:24:51.773985Z", - "shell.execute_reply": "2024-07-02T15:24:51.773375Z" + "iopub.execute_input": "2024-07-05T13:41:27.369715Z", + "iopub.status.busy": "2024-07-05T13:41:27.369286Z", + "iopub.status.idle": "2024-07-05T13:41:27.503666Z", + "shell.execute_reply": "2024-07-05T13:41:27.503105Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:51.803385Z", - "iopub.status.busy": "2024-07-02T15:24:51.802942Z", - "iopub.status.idle": "2024-07-02T15:24:51.806575Z", - "shell.execute_reply": "2024-07-02T15:24:51.806033Z" + "iopub.execute_input": "2024-07-05T13:41:27.534913Z", + "iopub.status.busy": "2024-07-05T13:41:27.534484Z", + "iopub.status.idle": "2024-07-05T13:41:27.538588Z", + "shell.execute_reply": "2024-07-05T13:41:27.538108Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:51.808623Z", - "iopub.status.busy": "2024-07-02T15:24:51.808291Z", - "iopub.status.idle": "2024-07-02T15:24:51.816291Z", - "shell.execute_reply": "2024-07-02T15:24:51.815728Z" + "iopub.execute_input": "2024-07-05T13:41:27.540503Z", + "iopub.status.busy": "2024-07-05T13:41:27.540315Z", + "iopub.status.idle": "2024-07-05T13:41:27.548936Z", + "shell.execute_reply": "2024-07-05T13:41:27.548474Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:51.818342Z", - "iopub.status.busy": "2024-07-02T15:24:51.818171Z", - "iopub.status.idle": "2024-07-02T15:24:51.820601Z", - "shell.execute_reply": "2024-07-02T15:24:51.820168Z" + "iopub.execute_input": "2024-07-05T13:41:27.550941Z", + "iopub.status.busy": "2024-07-05T13:41:27.550758Z", + "iopub.status.idle": "2024-07-05T13:41:27.553505Z", + "shell.execute_reply": "2024-07-05T13:41:27.553053Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:51.822635Z", - "iopub.status.busy": "2024-07-02T15:24:51.822329Z", - "iopub.status.idle": "2024-07-02T15:24:52.333801Z", - "shell.execute_reply": "2024-07-02T15:24:52.333291Z" + "iopub.execute_input": "2024-07-05T13:41:27.555341Z", + "iopub.status.busy": "2024-07-05T13:41:27.555170Z", + "iopub.status.idle": "2024-07-05T13:41:28.079617Z", + "shell.execute_reply": "2024-07-05T13:41:28.079059Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:52.336000Z", - "iopub.status.busy": "2024-07-02T15:24:52.335683Z", - "iopub.status.idle": "2024-07-02T15:24:54.133804Z", - "shell.execute_reply": "2024-07-02T15:24:54.133179Z" + "iopub.execute_input": "2024-07-05T13:41:28.082094Z", + "iopub.status.busy": "2024-07-05T13:41:28.081853Z", + "iopub.status.idle": "2024-07-05T13:41:29.963728Z", + "shell.execute_reply": "2024-07-05T13:41:29.963081Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:54.136490Z", - "iopub.status.busy": "2024-07-02T15:24:54.135807Z", - "iopub.status.idle": "2024-07-02T15:24:54.145523Z", - "shell.execute_reply": "2024-07-02T15:24:54.145014Z" + "iopub.execute_input": "2024-07-05T13:41:29.966278Z", + "iopub.status.busy": "2024-07-05T13:41:29.965736Z", + "iopub.status.idle": "2024-07-05T13:41:29.975697Z", + "shell.execute_reply": "2024-07-05T13:41:29.975159Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:54.147631Z", - "iopub.status.busy": "2024-07-02T15:24:54.147304Z", - "iopub.status.idle": "2024-07-02T15:24:54.151216Z", - "shell.execute_reply": "2024-07-02T15:24:54.150782Z" + "iopub.execute_input": "2024-07-05T13:41:29.977816Z", + "iopub.status.busy": "2024-07-05T13:41:29.977485Z", + "iopub.status.idle": "2024-07-05T13:41:29.981426Z", + "shell.execute_reply": "2024-07-05T13:41:29.980905Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:54.153210Z", - "iopub.status.busy": "2024-07-02T15:24:54.152897Z", - "iopub.status.idle": "2024-07-02T15:24:54.159804Z", - "shell.execute_reply": "2024-07-02T15:24:54.159399Z" + "iopub.execute_input": "2024-07-05T13:41:29.983422Z", + "iopub.status.busy": "2024-07-05T13:41:29.983115Z", + "iopub.status.idle": "2024-07-05T13:41:29.990671Z", + "shell.execute_reply": "2024-07-05T13:41:29.990131Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:54.161777Z", - "iopub.status.busy": "2024-07-02T15:24:54.161437Z", - "iopub.status.idle": "2024-07-02T15:24:54.271636Z", - "shell.execute_reply": "2024-07-02T15:24:54.271152Z" + "iopub.execute_input": "2024-07-05T13:41:29.992836Z", + "iopub.status.busy": "2024-07-05T13:41:29.992505Z", + "iopub.status.idle": "2024-07-05T13:41:30.104636Z", + "shell.execute_reply": "2024-07-05T13:41:30.104044Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:54.273415Z", - "iopub.status.busy": "2024-07-02T15:24:54.273245Z", - "iopub.status.idle": "2024-07-02T15:24:54.276027Z", - "shell.execute_reply": "2024-07-02T15:24:54.275583Z" + "iopub.execute_input": "2024-07-05T13:41:30.106899Z", + "iopub.status.busy": "2024-07-05T13:41:30.106545Z", + "iopub.status.idle": "2024-07-05T13:41:30.109802Z", + "shell.execute_reply": "2024-07-05T13:41:30.109366Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:54.277845Z", - "iopub.status.busy": "2024-07-02T15:24:54.277663Z", - "iopub.status.idle": "2024-07-02T15:24:56.177124Z", - "shell.execute_reply": "2024-07-02T15:24:56.176537Z" + "iopub.execute_input": "2024-07-05T13:41:30.111816Z", + "iopub.status.busy": "2024-07-05T13:41:30.111642Z", + "iopub.status.idle": "2024-07-05T13:41:32.113993Z", + "shell.execute_reply": "2024-07-05T13:41:32.113324Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:56.179941Z", - "iopub.status.busy": "2024-07-02T15:24:56.179406Z", - "iopub.status.idle": "2024-07-02T15:24:56.190491Z", - "shell.execute_reply": "2024-07-02T15:24:56.190044Z" + "iopub.execute_input": "2024-07-05T13:41:32.117073Z", + "iopub.status.busy": "2024-07-05T13:41:32.116324Z", + "iopub.status.idle": "2024-07-05T13:41:32.127911Z", + "shell.execute_reply": "2024-07-05T13:41:32.127446Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-02T15:24:56.192341Z", - "iopub.status.busy": "2024-07-02T15:24:56.192169Z", - "iopub.status.idle": "2024-07-02T15:24:56.274113Z", - "shell.execute_reply": "2024-07-02T15:24:56.273673Z" + "iopub.execute_input": "2024-07-05T13:41:32.130087Z", + "iopub.status.busy": "2024-07-05T13:41:32.129748Z", + "iopub.status.idle": "2024-07-05T13:41:32.151372Z", + "shell.execute_reply": "2024-07-05T13:41:32.150871Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 2bf9854d9..438237f4c 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@