From fc1dc4730ecda889e4a55afc6ec5df1be9950423 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Thu, 26 Dec 2024 11:23:49 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 272288 -> 272288 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../datalab/internal/adapter/imagelab.doctree | Bin 159126 -> 159126 bytes .../datalab/internal/adapter/index.doctree | Bin 3624 -> 3624 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4620 -> 4620 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 116536 -> 116536 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 17060987 -> 17060969 bytes master/.doctrees/index.doctree | Bin 44119 -> 44119 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1560 ++++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1386 +++---- .../tutorials/datalab/datalab_advanced.ipynb | 378 +- .../datalab/datalab_quickstart.ipynb | 144 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3518 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1305 +++--- .../nbsphinx/tutorials/dataset_health.ipynb | 50 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 458 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 598 +-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 950 ++--- .../tutorials/token_classification.ipynb | 179 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 64488 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 233886 -> 233886 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333645 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 145956 -> 145956 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 454840 -> 454840 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 121626 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 150907 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 413674 -> 413674 bytes .../tutorials/dataset_health.doctree | Bin 329657 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199353 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 224033 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 68223 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 107891 -> 107897 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 20514 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 110660 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176655 -> 176631 bytes .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 8 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1560 ++++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1386 +++---- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 378 +- .../datalab/datalab_quickstart.ipynb | 144 +- master/tutorials/datalab/image.html | 64 +- master/tutorials/datalab/image.ipynb | 3518 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 446 +-- master/tutorials/datalab/workflows.ipynb | 1305 +++--- master/tutorials/dataset_health.ipynb | 50 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 458 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 598 +-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 950 ++--- master/tutorials/token_classification.html | 18 +- master/tutorials/token_classification.ipynb | 179 +- versioning.js | 2 +- 182 files changed, 12199 insertions(+), 12651 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 12cf3b041..876ff8a65 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 106a2a1189f010a2180de6863846c2e4 +config: 2d7edb0d3a053227144167f1a2f47034 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 5715805ab0581e7c7c99cc05d135f1e752986795..2cacaa2e967a261859f638b72c256c19340a86b6 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^CnuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( YT9T2WL7JuM<_^XHPBOG{axZ5D0HWO=?EnA( delta 117 zcmdlWxj}M6IHO@=er0(^QE{<;imAD2VydAOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= Oh`cEDqBDw^m;3C+Tt3h5dC$D(J!fWeDSL7$ zd#aT=u7#^zy`k=i%~Mrb6|V8PI;-8Dkjq`&;i`0oD&6iXXQ#tyciY1qPKP~QZ^ejj!C1d0n3B9q7Sz66v(0Fb;lPg zqzvd?gYDR&x9fo$F(q-TR;bDjt*%V=MPnm&T^wO8;D)C~VVU5f^`s|P6Fn4Ns5!ROc z%7Qb$Th(E1!Jl)mcK6ySvQ3P2CLd!H$oAL}U+3&Dnwp-bFa;*>Ph*`h*_X*~!{ngK z9>L@>Gn)(enHG|5XC`n!Nl0ML!`L5{ub8%&-mVwYj^OffqQ zlOLC`7chCgjJ1JtpqXau?0X(I=$omqfem>9@&5<4jUsnga2RkAU3P-}nNph#6E{Ua ztfZ35EBS%TkXZ6& zF|q&QO=i~S;!+L;?@44y#^wErluECjNn=MamnJQyuxt`x`p|yZbPz#?Gtdm)HA&T$ z{z{9W0SSZlbU?hdC-b!0J={X23Lle`w$X%*m4X@kLRK9U!4F&{@Ri-rven`6kh*ec}!t$X;B)+Cm*o@&QAzlu4ukXV9!K=mXF jm`J?Gwu#mtGt z%*ht!4D|G0?+QmE_MofM6$m-2g0714V5r;~40X616`k$-1Azn8L04yam7}x5;i%S! z*+)PYy**#6t)ErQ(Q0$LzAQ$)@uRmrn6D3#H|VRr6@f{kt3K<)B~|Zl5lN6k^Xv96 zHc08yL;Y>oqPOY3n=v(hs+Mn3oLX&(;)%wF9J(?P0QfsiYA^MKJGu(W?0r{yjVJEb z+qTnVL%pZtFG@DhoA_1QR4xnYv!5f$n6_J=|N4NVT6L)qXjmh2w?6aZB+Q*$UVybl zzcS#=?^bn~oA>7etlhmfjBFEQoyo)47_vP!#5V-Hho+`yNlb;w2UA!OCVSG^9hmGl zvBxlZ#KPuavaqrjFuBIY+%P#Sn_ULTB%5R$hW^fDV*qqxe2{Z5`v#LI3)oedJYC3+ z!sI7K>?KT|D`BnR9B86x2m79b4f-a^uV({pK>YtfZKvM5%s&XY$SylY-gMq-$Ha}% z4=c&!a&s?mIWpR9)4+6?zuko=Flm-^T%|K!UJ4%8Mhp{4m*ZwI27T({KT}ZgkuZ;B zV`A^4Tg;-(F7Yh#-{)ja#O3`8Po`JT`N%QMrBREiER$rIFxn5B4l>AK8k)hq#!cGd zU%mhukThsZ1;kr>GDoY~Bdk=ciV-DY8%^5S$e$)IW+dW8GLi?Gk2{JgrTkpcfV>%L zQ>SGV3$r$ps#r)Aic#dUXxNanIf0Cetx^urdZl>UlE8A-QO&3j*D!}>l1s1;sGej2 iQwbHW$->Pvl&73GVcDG|KMw25;ujlV@g)BQ=(c~RAt1&8 diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index ca5616baa527982845dbcdc2b494ee6b68985ae7..352f4720a5133792c5dcd70fa0047607cbdd76ad 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZqDl74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1=So1po delta 3571 zcmX@QLh$Gc!3~~_hKc!=4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0a^;@?9 diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 34ea63c12c91e886f6225d767082f2c9c13cf11f..90667ece1c81b9b3d40daf35823b748732b8698d 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZpaMaM`X0M)S~5O z8*!v$uj{H5OV)WB>Ko)nk1OhRdnA|J8*$Y;rFyr!!5MWp?QXjqaXRdBql?`lKLAXT z!p&^aaLTlCqmC+z2Ah(#Bmr7WcQM6k*#e;vX195b04jys*~;!?-RXUZS|9iIqSlF|7q!N( zwV~FtgMQR{G?fCZOiTYojgcWAU{v&VaNoXX0M>!zqpV|i8M&EA{tA0H`V+~jqbJ91 zAX#-ZI4+~sU?z=PFK1^_>zw)owXQxgpy)`h4@Ji&ThOeDsrRULVH){SR`iu%GjCC= zb@nTY4!pPo96CnwL#VOpRR~2*uTKNbis=T}mp1`y9Rh4}{-71Qms(jN*u~=SGBEQ}>7xZhm8Fu6)vlB{hO6z*iItB`lD2JF0WJ!J zYC*O}BNxDltAaK2Ki^0m{Mvc}qiXvu;vZiop-r@5}Z#*-&#-6m#W02lkB%co5mO^*{34xp#(k(|=bUzP11W delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vV?x!xUEfRgfuCnwxO$y3=;RQZLNt*oHka{4)lDoM?)A$!E?Fh^`=b1S<^egK#( z1=`ty=A>@@MirG8G$uJ?7y#%}s)xx&!zKs~GPB8{1yCu_$(DB>sfN(AEYtV_X;=#M zu$4m{Es%8vpu}+HuF)DcEk%)jOQ|5sM!J!GQqgqu4=^-V@lt1q2Gt(P--)cQ<$j9OP7YEX16+mE6XxehdIeEL0Vou5H|lx1}#*z8-> zYRrE{(V-U?fkVegVFWeSz4D`|?)534SutHN`|`$%t%H~4=Jp$*d&$MxioKZCCASr; z*@4gV$m4|+Tr6IaP;^9ZF=$Rk#qmbC)oo9Uf;yn|glyN~L?FUUoNPdjkAR%vk3Dn4+WHf>-AS}v+2 zwnJ^Wxyet9*v;-%1iObPx@j$TblvHvb-X@IGg$clczcYl>enBgOG9)Lczh~?^YLpp hXx_Absp3ov_{n`51NMyzco^BWwLkJ(xnq|0(tmuLKLY>& diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index eadb1f08c8e46d7200e83b979a662a8e507b2df0..ddf4db1bd5ebf675050f6624ee188d7bc6781173 100644 GIT binary patch delta 62 zcmZotYEs(Z#$s5WW?`C>m{Fi_ZenbbW@&DkVqs>UXliDWWNK`bXl!O?Vw7TNWMF2H RmSkjTkY;JRxtyh&2LLWB5ibA$ delta 62 zcmZotYEs(Z#$uS5Us;|}R9vi|Vrp)hm}+Q|VrpWPl4@j_lA3I4V3L+(oS0~4nPQq| RWMPnIVqjpoxtyh&2LN$X69fPN diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 6ad756c6e1c6854c0fc69c7d9db8dcc831e78f7e..33a5c3afa074d00b800ce1e9d4aeda1ec0430f1f 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ TW(H|VMurAymZqB<8KWx!!=n?{ delta 64 zcmccfmGRD3#ti|ChKc!=@q{G^1g8nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM<{rk?x&UZC5_SLp delta 62 zcmdlUw>@q{G^1f+er0(^QE{<;imAD2VydABj6x23Zpl5RE!C z7=<7+hwLl8$#}y>Z#J?_R(Tq#e7CZE zR}pOVR8|D%dPN&e24E~+6cjTiET53MViIc0E-+(I7H~Sn_j&6<(@FSn{*NYHow>>< zidFV4paT(buC!#XF5*QGu*g1Su9IfLN)Ka(b@*RTe~Lw>!`IHtF#><8yxR!8-92EW z_Cn7EBkECa4>l%xbhc;bOw7Dp)Rb)z@p-edK2OtGiYJ_W8q<5~rw8GojSY~t;0Ls$r5;oSZ^(lcF=u(-Tq zKbBuu)O-*_8eLP3?OKPa?&Tjf(PS~YdtMHdby$q^^O$s4yw&*tC|Gnw#!y9nGyy0w zEn?f}k5JX0zvxF*14j;^suz!4M^!_;A7lOB#u71)Hh%eHyl)xEAri4s3(zq!Pst$_?{n1f?`*6wbEE+}{>9GkHR|Gcc%cI%IGJecb zCi6?E9<(9VnO-ZzGbrS{=F=4U#&fh8xeHRKAr;Fta42|Su?o?(m|Bp2P*bH7ys(6Z zbDw( z&S*n_L{OwVVYwfa%zXVI}N pes-D3Egefu#Xw>y5~)ZIVgu7GAH8JicR~dOnfjkCn_En7)8A9J4@Cd~ delta 6027 zcmb_g{clrM7|vVh)^+O!ZD9t-)?~7P4!V_<4l?FRrH3)YI{fb$pJS2f@O86tjKH5N?=}K&cMlk; zz0h;sh$3v1&gl87^>)tCICgI zMQq#m5LNx@KtHPLKe8WHz4+w~RJFPHQ>_2nSR&@p#xGxt_bmrGL?Skd+_~Bvl!%px z!zW9#p=NGl{{9lN=WH&r={0o?zGbiz8zpshe~~2yuDxIb%*Ts-{B9`~vg(mCaq+jS zNc1TVQ9W|rYRrR0^xmI_G;Yd+s>33h|LiEheYj+I77Zhf^vHyZD*~IGmq*Va%lHvX znanSt8qkJRXL`L5&!CX+c%G)nH=m;x{DM;w4E{(j9Eh(?+bk zIY`CYlS=w(X_LXStWvRo&!m4X$w`fL8@mHF5{HboQXTT;ryr1mE4*2%mw5n>Lnq;7 z+bN$9y-!y8^Ly0!f6)2hesSMtP7`nMrK$4C9{LdpQkh5+ z@R}GsA-_G2b^U)?M*8SGWZk4#r1J7E(p71K_7n8Ip)?eMSz1q%1^JfK)~0)irt_~a z&^XW-3NICY(2+ToSKg;>{Maa&`LW&fmYn@7xq;D0(^&Y_Kj@ADA2k>@nta2{-^ZvP zXavpvepxzBzW{fxRNzxU^XQ@jf6--N`DoysU-?Wg0^c}E?7>&_Op7wlTK%ZvqENrFQZ|3nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM<~qhzJODng5taY| delta 62 zcmZ1>vqENrFQZ{%er0(^QE{<;imAD2VydAwHnbSTYT7sr-B#<@+Es0= zW79EFTYWd);gt1vEj_n!BA6ULu0nNDYiEeZ_32ti9NA~Xr>_^Z;bAZM8olL zc26`C&Nj!yIL!g5^7?K3bI}YUsG;)SJ5(lo#vx2uxGO8T(sgwy46ouI_YTm!R*Su0xBe}WT;OQ|iK z->?(xn`mn-=38y!*r3xQ+36Esq-({)_S;wuob3G4fS`TCyWJzMXNTC|eG5pND6cP2 z@QXxKwV6YEfWuqd<%9_8z?Zmo7&1ZMq_9qG|k21 zE`IY^4h@85Brs{c4xSNzP5Q;Ejt&t%F@TrFfyp_ruRML~n_^IT`jo+coLhnhLc>M= zdy~&jT?1#qH{R|JVdnYlozMIjRM^H-AliH1BR_Aa)%^7jf1?R{%uylUuQT}QPo?ln z-S%ShJp0QaI0xaqZ*t9p*Ri{zPnZiP$Nt<728qpuNi4!WVz9=LZ#2^oAN#L*88lFv zqpFy&+ok|lXG&<)bRe(s6;f7FmjjNT)fABVcKTJl?5BP#nRYWYQ&1gPNhxfgi%3RR z(Jlv0lyyT}0}`aVJ|*VDrg;gF1%86Hd0mW>V`<&^ml83M4KycbbOrg|JDaCMlEp VE6}QJB delta 5702 zcmbtYUu;ul6wevlZqV+o>#}T(NC)W{ISvNlhd~O~6DF4Pnk`mKgsKzuQa9o_}9*Uw?nj zIlpu7$({eqHLsqX6iE(GzA`W}IvPqvw?vcaNJA=GUzbYPMN;X*(Qtj{&@;*8=EhVs zQ`ZpA)Q7{3VuBU`RB7!VzE?1Z2r8&`>s=}lKI15+EZpT~T<*HO5{6fBmwO**Ua42` z_Tqg7uzDpw%c!8EI<=rt8W{6QbS$LjIR<8N52QVs0`#8-iz<%YhzI~5sK#g zaTmXFEQ?_Zn`mPXEo;_vo?{BX_1EJs| zcgN&2GgrV_@U?e3LzsC!^X2D$3@RMsaS-jj@3FpUrFDG!?q6tv9&wb34{8ja{HYjz zsXJaAo~M8A2j?KX_f4*P@EUek^ayjwt{LOY~P6*6WQlz{mcrTm=o( z;ixDi?6%3nS7sxWMNQaePCVdtGZo1Un(hBhEOZiS zR^qY#4$?+>B}QA&fIYI~k(1r@M3KgHsyfNE&W5N)CVQzt$4;KBJTMED0@*Sby;Jz3R$GIWGZjLUIt2V6bBUCE0!<5GJ;*i+aOa5Yzv!gmIu#8R4 zjL}Q@GAv`VFCzKTgw9sv*?iVNK^4QnDV?ownB>+Iv=QHmJc&y#oTfp1AsiA*k(5~K VE6^T2X@;?o#HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq&uCblW?`C>m{Fi_ZenbbW@&DkVqs>UXliDWWNK`bXl!O?Vw7TNWMF2H fmSkjTkY;JRxq)#mvk}SK^d~2&uEyKUs;|}R9vi|Vrp)hm}+Q|VrpWPl4@j_lA3I4V3L+(oS0~4nPQq| fWMPnIVqjpoxq)#mvk}SK^d~2`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~1Z9zwkU delta 1125 zcmeBu&(!;#X+t=pVPbw|c}7ujv3`oFxoKjmp+$MqM2oi zX_}FRL7Ityf#v27MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0F$YZwv diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 72c612c3d4e13faecaaffd486d46a07af09744c5..54e3eaeea9c4a84d450b4fc44539a4653be0d6f4 100644 GIT binary patch delta 62 zcmew$^+9TbE0bY)nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM<}#*VTmWAH5@G-V delta 62 zcmew$^+9TbE0bYjer0(^QE{<;imAD2VydA diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 1476ca6f8d0e13827e3a74124ff6e13e10ef56ae..1f463e3f84902ef884c5484d8e1d00bfe32c1e92 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZpk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0JHr8Jpcdz delta 2628 zcmccdp5?}SmJQL2hKc!=k=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<04I)61ONa4 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index bb519101d459a2bba064a12f8e33feddefeef6be..c7a2e478d3ea6c54fa8080968478016a9a501e91 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7w&iISra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZthC`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OP}91YH0C delta 2632 zcmaERn&s_jmJNZ7wu$+blB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OOp(PkI0V diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 31e48ea69f821c6c58b1c01a449f0c4586f8209b..58f1fca308701b062e45919639455b08bfb48e4a 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7w&iISra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZthC`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NTGZsHjL delta 2506 zcmbRCjb++5mJN}NhKc!=)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQx?<;Ts diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 239cce4f8735eafafcbeb464408e3f92f724839c..a6bc83c53e2748fc472e68eb22819ca1c288d9f2 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZqDl7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>j%Abr;W delta 3034 zcmZ3sg>~5$)(xJFhKc!=h$65c%L(kb#v4xr+eBFp_b+kvg?cZ>kN_1ByL diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 0887b350839d30831b0aef4d914837f22c6f55b0..9d5890059f370b3eb155b13f34b547efb8a2817e 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#64nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM<`%|>JOEvt5>o&G delta 62 zcmaDV^HgR-Fr#5&er0(^QE{<;imAD2VydAJOH4@6es`y diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 16d55a7daf73eeec9862a496c4a7d5faae5a7f2d..55817c544779bf1b0f255e7856d76801f73d7ba2 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZqDl7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~#2`f0_UQ delta 3021 zcmdmUn03!#)(zf_hKc!=3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~#Es*NOlD diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 996697f2bf6f7865c499bd9d6fb41dfc6b6d7a12..98400689788c6307c7a3820e5b8241dc680a5569 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wb1XBFT+p0CbE9qN?3``N5XDMygCs9oI(fTLCTjAMlnYJULoUe6 z4a$YhPvT0e-MDduB9d!vge!SF`3rpa2YmW`zt8XaJ~n~A#jXZKhh6o^HddSNWLs8_4s{)zrA5>_FQ1`S-m?c->9MjY9qjqyT>y-~+smk` zb{y?FQD27!o^JG^=wj0y5;zf`WZqT_NiE&T9sb41+Zskr`OjQJ>+Pp_@DeKP^rvEP z>w>mO>%Gytl#2N?5KpD|lxhVB#x@2_)HAe?Ja^jAgrJF%W5-5dDK-2-$syOQ%?#q^ zl`JZbJR`5YX4mlK>O1mHY53M=HU+omP`id7?jB`8-RG$&76fh_CF19Wka3d5Mhz@{ yX{3gWCuH7{`zXEN3;}N%MeYqIFtqT(k?$#v&barLr-Qcw189$Z@f7;F&He%DvL(d; delta 2688 zcmbuA%_~Gv7{(jsj%zYTBn#pe8XL{$#VCU)rW6|_`MBJfFbgsxH1d&@g+}9$1&y&m zS(uquVkKo`V}&A;_1Fk2`MUWFJo5+q`aREi&wI}Gs``3W9cfTmq~Xc&fl;s5D2wHy z1CX?OBYLjg&Y~U!S>fp@(=Gjx_5L-{p zq~nx&6^ze9WPon8X=(^%w4=|%>iSuYz>zoG$wOuZ=V>Ir2sFeA~rgjyHGQ`E}a_W&zBRW>DqJzpG)fbn;G8CBJe zqdh0;>(Ib6jZPF@YPv@PpGBvbqcxwbE#1f+{>91B8bD6@&s<2G?I(EfLMrZ*60x^+ zL0hEs4)rc4V*c!lCenM_Z2$+xLW4T$@$4hdoia4Rr=#<+BQ3C$3jSD@LFIEsJ&5bq z(x@Q#jJ)=WUBS=S-;r-h!NXhWpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6grQ<_ delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6bkV#v diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index ffd5f2277b3d580c6dd5ab54cdca0b1fb9592058..06507cf598bac8b1c2d2b4d290ba7dbae94c5a7b 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#64nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM<`%|>JOEvt5>o&G delta 62 zcmaDV^HgR-Fr#5&er0(^QE{<;imAD2VydAJOH4@6es`y diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 99989c4e61e3086b9fb8fc65163ad8be24f49d0a..6646d3fee6adeac94634b41e50bb8954032d6eed 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIjTiY^4)RkRT!|&wicFi^8jcLOD#tlBnrei}lNe3o2~r0x7ld zW$dCFt5paETRpfJBJ!f>N^&>R&7u)>(M@awby1AY@g{Hg-5>CIzR&mjJkNVL)iq;v z&6w+Bwktu8>zqGysoU*zID{4s(s@h`c_%VRgMoZ~_Gm?@%n}jch z*wxX$gC%sVZ-?hlRrR<5yMR1(om@gybEm4P*TncNs%i+n22`mMI*eX<>xBh0-P@5O z(5$xkDc*aui4Vjr+7o4_@n{-p{(l)O{krBw65m*&d+K+6W~|gcJz7T>G!Qo$vo4UIy`9H%z>|D$(Wl50TG;9-mf%%Bw@D0WE#r`_V*uJ_#(s2*pb8u>FtlSZP05 zzU53%d^+BdC^DJmel9lQC64GoB#j- delta 3483 zcmbuC-%C?r7{_^QXIjTiY^4)RkRT!|&(^l|qVQ^z!Ek=nOF8YBDT_B|v z9>y-Jv08;tu+@WmAtEn|t|WI8-7FeG7v020P#4AMyx!#PzWW0{&-eL$pXYfGr@CgW zt{HRv%;p`xayb}|M7mYyVW-z`>rtH!yXv>wRKL%uI0EMmdA+V))fuq&C;^9}^wL#U z0Wggz(^{t?R=c1e7i9~n(su(!zm(@U17s!mLQ4;r=z8-QB3udP>CN^jBrAdLZu_$d zYC2C+$6X0PnUbLkUFXfUqr{Zwh)bsH*Fv0lR=ab)8;9RdZ*msMmyV7F9I_UIVIB2_8kSy!Fxon(pmz z5olK5{FK&ryh$63Tl6Q&OulFuY5sp1EB(6WMiSpxqI>FheP*oGK0Q`P7c>|*Ba_%@ z!ZUlYjt=yRSZU(ck9u<$TF8O}rGiEcz>_F4D1?kOdOy<$;%74!`uwDd;)>fuJR9Bu zsta6tH7|qst{Wz;yed)T{X^ulAmY$#SLjV8( diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index dfa76b031ef22ad88fea4e0357b9b576918e51ed..23b46eaa045853256f8e92e364d7036193cc6bd4 100644 GIT binary patch delta 3789 zcmbuB?MqW(7{+dhBR1~rNhn)o4-UPLJhS$z+Zw(3h?FaLnw{kxv)+|M~@W>_&ZtVpym zA>eaZ+dZwF<#vnN;;XP*y$+k*W3@S&t!9(QY_nNRUcqFv8GX$r!RV{7^4n|$prXzQ z?~!TgM1Bh*{fmbnagsjEcgrC31u>0?p%1v*D5HMe-HnhrhbyNIDy*y=t>e`O70Jr{ z3OK+ih)mL`@C7R^MHd_)?8qtlzJE0j3Y?;)>IiD}9@?1?S_f(;QR|kYM*u5Dop!XM zr*)lxkw={=+I9Radd}d<64V-L7(%V8(+g-#3unfG!1So4s{q_0ecLA_tPq~%qe3C& z`TcUhEQIH%tLG}xa1Q<1dl0CJ=g`XjLDc&E;$hUPxZI7kJVyhAR{$#s;TqJ~8!-aL zKkZK5IFGhl!Z)K){zaUwJ-JxxpYGK3GE&GfqYhlaGaM;X-IxQql7M9{ANuN zEj^B{!)R(s9sp6Ec)6YKylw<@b62;TmgnEC1)unE4GmwuqUG+4jLN>+u}2=~*%9Q< z>?^{W=O05l>R5Fk|3$g2$>P#T0sEx|^>2o@@#XnV(zu?@V(iKXJ*$kQq^DKz!E6wu*1-S)t@^U=NWu&;L`>jqJS! z=;PlMgA{CMF{IG!04aNz$~}NQyO6i;F}buj#_G_8PFKk!?G&pAd9i7lDJ55eeJlPA DwHRGz delta 3789 zcmbuB?MqW(7{+aC}j0LNZP6|eZBkxe)sQsu5&-S0hv&rEWEH0DL;Bp%Tm)mL58$D-sI~;pzTqcjfqW2i}`Wk+lEdf-_ z8s*&*H61H zR`j&#JYeK8YlgNRJ&m3-bi4w!Mq36@tK#GwTGQOAQ6Mlqa(0%0TcqvygoG6$(|lMc zr6R9a3Ydk+40U#2MH()kKYR8AHSq#k+uM&?pIC^K-3q=QwVL7rYHc4{gIa@$SIDIkB2Q@N$PeVRDnydJazaJY`#Cvu>5?}a z%4p$nViiVHTY4Xe^3==Cbmw&|n48=DN?M$Kw-S8p!!&hTa(Adp%V5>4eH+vY~qWv>%>tlo5tSvNuHk}o~vYA%E1i2 z>q;?XW~5vJuWe)jbP2L`()j!lwtDQ6jUh8))hJEK4AT<_C!R!_@8oi1|A#3{?gOYsDDiKN28v+vJib>@yX&mZ0kIfI)cuuu4@vZ zzGxPH+x`xNpJn5w0^q9o;g&XR*)^QH)s300;T>5cfLW=6D*02c9m`||wH0b;gFl(S z7Kqr)72H zyPn=3+iZVotg3KFe*gTcq_F2a=|nAQz8~ksm6w3ba@g|}$!pkC$GJz}0*aF9DstDw z(v(+fv`szy>;y$Y!&BZo^x4TS3>e@0CZt{Ntg-!nX z+s+5i~&f;H6Nvf18>7lki)gpAGl*|PZkr~yg5Ok?1JCn8cB5}b|A6NqwqmzQ$R z$%WDK>^e?i;N>0AJ5qLF;APK|o+Sy+j+a*8%DKI31b|73)pRSYqT=ue;7VrDJlee< zxsnLH?F$8*-3AsGbw+?9u$p!NVHPRAckCXBzwe@34E+3jeRxrcx zXlwvE`dNJyT^w%)_V*WohJJm^#z}a1VhwWeGahJoLQnZwN)G=p{|}nhpWugwGtd+( zq&#*ARiKRs-WY072vCJc>yQbq%oD&b4rfSmkcHI2jCca2)NTunYlS5siF6gZK%-vx z49962uA$D$*`Z7ELL7cux~s8*Dv+Nj^y6M46jXFACzP~YScPKkj|cH~;_u delta 4920 zcmb_gTS!v@80Og2xz$!pZJ`w*f@Qg*IcL&^AW)Q2ksg`~UbdN~rOmQ3TI)h-(#&64 zSL&^oa_UbGBrin~QZF+I(=sffGzlq#kZxxl33~Kf4}1JB|9`&!JBQ7TDQ3nLZM%iU z;sZx(_Z+m_4Hl!xSZqy9wHT9=EY_q%i?!4!CfiCj6c?v#v>0tksiG}e6gP5%pafvl zzO9I37VKRxe?>o(R)(I0kQL<6=y<2HB^ZOVLsN>4TfvUSw}UWM$@DUQp?e7`&%z5M zuLq)jcloJ6)Zaz90#T1$m4`mCh*(nywsjtlpG0R?r0B@7PQ|W-K~S9(DfyW1*@$aR zLxC*(X4)GJeufQOa)GPn_HBLGvgyJsV`4Wn_RK{ zDc6L}T*-ZT1E4yKW-F*lqFKe83sg!Vm_B-|K|OwB%l2pX-yhZf2-rA)fa)xvd`X)CTQ45}MtupaF@2^RHAO?=vYxTybkrD4^{0)XjFrwL7Pg(Vdt}Nf*9!0sH%hKutftX5b_|F})T!_&E6{h|>fK@#aIwC+}& z@Bxm~EL=_fO&Q*c5kfeATiVNEg3_H6B@E+U{1jAhCDR+TLRgJ-jGS?u_j8OetOk6@ Ne?Dow<)W}8=nuo;UM&Cs diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 0ffac752572d9cee11ccdaac8523aae2aa7dddae..6ef54db3c6ec47b4d73ca9a4506ec56b9e311d5f 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-Se|BKnv%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je5d>te;|PZkm{CXpv%SVw93%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je+&s1)O@c`OuZP;3Z^AYEhx z(Q_HXh)6_X%0svty%~WwhF3xexpiR>#ICw4=)9tT!1?+IeBRIVuhtKx`Q{ueN+Z#FjD5KQA>j0#-A6kDrBl+aPp|dLzf~Nj9V3n%rZ~ zQf+!;-h8Jt1F#rxQTc(6H>?Md_*zE!0#xiYf4=4ij3lx!c6}JNCi`IPuUmQ4`Y#zr zd)>SJ5Vh_Obfea{L$LMr$RHBJTKYK^l>ooG8)VMaB06)Y=H}3!FMjj(*9c8f2s(4W&i*H delta 3077 zcmbuA-%C?r7{^)Dp_7(Qb|W+hj13Zc&vD0{8I{4vEHX}vVJVZNXGcXbmc^Ek2+~DH z5IvU>jEE!(mOMziv6~Teqj)8RP+J!Ug6zt>g3c@X2b`~ez~}uuKfdq#?o_-x74N5h zk7C|?l%KpmH+SCB;+mONbW4k=R#sK4?6@Xk_E@)R_9QILR&`;=gh+6~^V91dBO^LU z+l@txyre-;p%y3Oxf-XLOApXT4E8X5ts5gpHcAD2N_yHryEDT?~iCU9=uyyZB9<}~W z#?W3ju8yMCZv$PZ^~DX?`fTtz62e;gAr;jCKfN7kaGxlyrRzYi?78y;nQkpT&&wmL zfRQA+n;Ai^`(`_UvSPJkOPS~TL^s;!##A3r?BR&YGuMz9D7i78`}8=*6jc*`qFjjM z1wuX==Lo*F@DV6l+Iewl7MpU47MEIh;mMg0*!QJmkb7QbP`kv>z0P6(ouKNzSVIgD*tgRm7A$^{Vata`#A7ffHOF3q*VTc-0!1G y>R+0;bN%jdDsYYfvri`n0=!&-?DFDDJpZ*HNub2VR;%0s7dF9nF2!Q&L)$;ET-ntC diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index f8c020f2a6e12c0ead5d1fde7e2b5e9b1c1e83e5..97d27b07d33d51f906bc11acd08cb87882b9c90e 100644 GIT binary patch delta 62 zcmew@^;>E~3zK1anuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM=B-S}xBzn562brg delta 62 zcmew@^;>E~3zK1Der0(^QE{<;imAD2VydAAI7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$NI+VR delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$GXQ@v diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index f034f7aa9480f0afa0d2d115258bd197de55cea3..c85bc25e1db981ab8ff9cb418e2d63329c9361ef 100644 GIT binary patch delta 13101 zcmbuG`*VzE6vyYhm#~q|=IVZFLuBHXmDnV-BoR%G5(z?-L=Y(v5)>7eHf;!6A~rl~ zXi;TQBeiXhATGnCI@*-cL=7U+3yDj$aj7uTXLmazzvjDt!1wz(=RD^*&-*^_?y-jU z#~Rv~B+}r;8IhK(sWWpzA_jyF$QT%5NskPVm}&`+oMs6Nof;M%J|Hx`f2cX!oG~r5 zzd2)|B_ut2`ht)J*$d}SpJC1G_p0>}o$23V7pY9JH7IU6CKc5|ZYJxR*7GpAZK>ga zib<_Y4ZhZ#G|hIxcvXQc60IQ}TUj6Y`HDN^$Ev4E0N-mx!|(Kar&+y~NU*?4?Bk~5`b z*>)w*Kw8W$-94!fK($fIWt6xuZ4^MX+Jl`kZ750|GGiYq&7V02l`fe50?pMlcLGXP z=f$DaKj*`_RxV6JsoyW2g64WAHwTqoSYCiiAAXRC=34vVFqC>`{QVTzQj8X%(rK8mDpPNwW&pVf)(%ZXdp}F4Q zvk0Zqet%SI`wFI(AA+gx9fo(#=x-a)3g6%%Xqk>4g=bUA@$D$J{^Ukf+TqMuRGM23 zpLAL0)}mDF`77wU8Y<>KRH+y|N9ZifeaJYPTD+P-tGUw}RNKo)eNpX06Wv3#D|{&&t#hJ3RiNDC?I{hpJ(4f& zT-t?JqulCOXg!**p*!WF+@PMc1=UUtrgg|goxN78`qDU*yVy)eQ0j&e=0WI?$%hfyrbJ^dz)MYUg#pdwUzV-%sU z1Y9|q(B~<>I)-w9{U>7Hrfim%xPgF}r5O28V28fTMX3Q2gQ@Q zY8FMo;$3q{ZQb&la(mcG+GfTWD>?| zErV-6A`hf|ju@oPqBdv@8CLoU)bcmQw6h&37LA9=DB{XAFY&%n3FqL0lmL9!b1WlE zuX%6}+-14}Ccz_1Db)`UJ37}~K^C}oGB3;W9T=v@@xV$d0nQR<<)lpsvh^Ihr|BlS zi!W>FSD*rp&Xor7Mo=uwkEnIC2I};HiqRfm>D3$VzH5zi5Z$~&iVf`hf-b;y$n{m) zaJErd3nw5QMj&E)7YkDwdGPoSiU-=t{98BWBHX~10A&a8mDM@^DrXKNf z$>DmE>g7rq+=O&+=M@vwnzpV4B0kPhjp8v=plFw^-gCu@rPai)m_v#)1W~A#w%mZ_ z%qO@C-O4lrd+b%O0rwHkli%(jq=OIV?^mnQu^=2a%a5rB@u*a7YIzx62E)=Nv!^Q# zq9#~tEk3AMHC|q;-a@C9GpCncjd#?o7FXl)7d7iNFOCh+e1TsNHmj11YfE33qKQt? z+KH}vRWI>iotDC@k~K5>+TbV^OT%X&u7>0(qKjllh6HGSEaTegQbILu=kYab9SE+AC2LP|Wtp~%6A9_!}5A1kOe4;-^a+bPe zzVu9Qf-kiCdbxRWn!DRbbj4XZbOiot;P{{*;%CSkxvI`?1@0~HR{K9xSpLoAy7zyd Csg^bX delta 13101 zcmbuG`%{!<6vyYh7i5uTxq818iVWUZ(N(k*6eGtFK}9hIL4g!6prj^Vib7Ef5f^>T z(NZ%VHAix*BiBP`sU zF~Dpd9GaFjBPTQ`YvFDIiyuUZe%nSL#Hk;*t*gW{%RQgI{L&17BUJ|C0YmKye} znAEz|;AhQF(QGG-R~5)2-WuAWm9^gAPu!hIUbZNo?pP=eA6vcuaSaQ@7TRHBD@Z!o z78|H|wp?n<>zhw4m&sn4YMnZwwQZX@%m3dOW{>*WxG-vh;G*{ESNhnpF zAB|G~Tma`yYY_(43HYwd?4QRbYElRbXzk;r-p#tvVP8YAD)RIdZ(Ok=`o}tv_D_c>jxONw%cCDU;QiEz^P^#DO z`%r4aE%>DCU$+INX5NcHbB%s*9HnmmdmKtFYB-NlpFD=25&!tN3Z*7Khr4Nb(-V-& zl|&Q35_7pq|DfE2R^*FnH4j>YYI_=~52}4=qWh?Jg&z$>>l`0I6)5*uJ4!)rkK{`` zmvyGqDEG!Iv<}VJ(2ep?Zg3CUjB2NbP$6xYr_j4LFWO-g-4oBrc->@jREV0(83pOM?GWLW7ZP|M$x(2lmCSTr6YqliAPd5iar%0Lb|Kyko#J;yS# z^qLR%z&)mFFbR$+qhx&4Vkc6gW$qm6JB5$kuc0o~E1R zA-=4kUx5lZI#(LR8bPrzKO*;L4b-uoO3)r)>D3GFzH5zi0NuPoiVf`df-b;y$n{fN zbCywA3nw5QMk8W-7YkDgdGf^eiYMC2{99M$BHX~1KxI4dmDM@^D+Vd1W-YYeqU?kN zkzRM;5)6(|)*&n4*hQn>P@++>xG+=EMCY-xg}S_@0#B8z25h6ZZ>EaTeYQb`H4id!Gi zbJ3y+DK@g-Dg8Y9_{Y;O>ILu=kYW#>U#V|G2LP|Wt%tykA9i1V0PJ{{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Ljz#S^xk5 delta 1676 zcmeDE&D8swX+tohZDM|9c}7ujv3`oFxoKjmp+$MqM2oi zX_}FRL7Ityfu(**esZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90ELn#-~a#s diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index c2d2611e07d76c9b268bd180a640943f99834fca..c57a2a5cd3cb77258c16c5645f5b95745123f240 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^CnuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( YT9T2WL7JuM<_<9YcP3cG6q=sVZXGDVSLAu$^Zn8q5MG-^~Eh-9vl8|mhDh-Gc0@5@P zL6B%2bku?(K?}B^c7#DNZT$!eMWvVGwFg1)q>!lK!P(}J^S=8BJkRg9GxN@DVXdRE z*6}Z)G}jwDsIFQx)D$6nwroIBdVq%s$wWsQjI8}JG-1GZlE=}*n&gJd?-Nr!ZK3>BdusfkVS%kZxCeb+oH&HHXmBRC8xM6o$=PVbWthGDm?81-8Qpm$+N{~g|P)))2ThN0Q@Gp1Z zA{O4L-#Y_)TnPdX;i@Y^rVLwL3C_&I8&`t*9GHmbt+|D5FQ9@L@}}TEgTIoSQ+S?3 z8aa0*ezO9f5RZ;szeEM>;k&EQj`%sU4LPcO1s|QOgP%UGK$4$W1qInA$AxPJ@$@!| zWPU(^zxoDV9YcP3cG6q=sVZXGDVSLAu#wV^=7&D1zvrMMXhSQg=5ZN{YdV0cjeD zAV{?bml@j-DhaKwS*bzH?){)m}P)lYfZ)0sMH*5Hjf-fp%bKi{tA-R z7hdB?Hodq9H^mc-yw!1No{TR|I`7MdDhIHE1MlxS4-^+po?ZKJ!*Gt$$pT#D^SfZ! zhlO7bz;DFR)ssi|fjo#zrk(%7reha#=0{-O= zq_OZ?{q8B);YtvA2v=PR#!9fkmEhzwym2L{&47-0-Wprj@&d|;A#VuoGx#gHIfZ9A zB$0DhFLEWbTo}gNar>C1xj*3LPin9q8(%k+{=u;>T!#!jzflU&+hy?c<@Hh( zxeXaEG>6wY@4$cVl+Iz+PjE%PIVzQc&O^n6nWT#&lFZFR(mTXGU<Lmb_{ zKS8SH%)83}j06WB;*bLhWcTHc>fkOwX0HxjYd5V{9FvE~Vfnh`;Uni@IlJVRCtI<_ z%6IG?y9Jeg^5Z@)_bV+*mhDK5YR9PA_SC51j!SWWM92wwi|v*q#W5kV2%)>=w}6yg zN-sMlzvqEkoskBqS33q~+%rScQpcW!X-H!yf z5*^E-&Fjqb*vbPyuy&_ZEzU)yL8}MQTX zz>hZn8l_I%It$Hp%3Cj?)cEbtVC3xK#2pzZb^6YSXs-X{Gg0c*%1J1-e$OhD`c+i| zO8raqY?ONDci*7Y+}c-B>ZUq>R2qM<0+s&qNFJK&wqtLg)cWH=sI=?@n0o94Of5bI z@0`5T_t6S#XH(HKN$23RNo_ccQWrIqqtdsVFQQU&3w+a=zubdTGg~jC>-zOqa1Wc> z+feGRj#@O=o7et>QY)?>La8^px&bN=Tg28l*4-*av3u{#1hD#OTG?|FrLtc5s=NKo zA5iMFzIZg(r~8{x>i&T&kV=Ob`x?Yjw8GFaks>vA6XpKd$k2|eJvoRWuQOuCq@^Y{ z2Q9PB%nT?uD43biQhgr6cB9&m5iAVVc80P6R9i8MMWb~t9K$+LZr?bz2z$*bCFLnr ziE>jctOCt{C=*m&j^>I@5;d*m;!sFo|UV zOy}iC{V5E2fYP;NUSxYwZgDD`hvr+7#;hoJZaPaxxpOnv^QbmCi|s|Vd;vo~7m%2# zdQs--C2SS2_ju2Gmd_6svH-fWl*M@B5JC;hSu*NCB8H!%VrK#&bodqagl7&LO4ugQ zp^$3Uuwjb(&)_6hU=8qfgLCDUyuXDl1a2o@JxZFx7j9=k{9y&V>VD9=0SSY%Dk|R3 z8AocZhc3ka)Uulu`ha-;!~y2Tn`>DkXh6ciF$5IzH_tI&ZcCS@Q{8Dc59k`#0tlN; z@bZ6mo*DUXnphi{1POyz0|BwKarvJL#0myqW2tZhb$79$z-j5~eIfRxUAI^jvh(y7 z{HT}R1d@NOHS*(}nfa8>N;we-Sig+K4cp;4mmogEt-nQ+;dSTdmR!U>I_3_-V1y>%dp7uAaa0g5*#0 zXGo7=ym0syPJDj4^bS&Yea8r~kv3*YFCh-IN~H{1oFnZ<8dVpUzbsV(M;!_AMr2T`t6aGVdSx z0^)hbc=2`mk-oH#nul7VbFjaYC8Q$ zoWYywPs#V-u~T=5|5)xoH#pZF4t^&4A`9^UEVyv+=F4*=Gc9S6V}69Lhlpk{S^8w7 zw?_^aWJ8t}bRZGKTn!XE%Na^_35N8iJa8~lMWLYqx#u4*h>;72VCw&cp>(1rfjDh^ zx#^_Ai-zqpGRHUdqcM<85w0w=-oqw02`;{`I48Wr^cywjgIsrbjE zt%0f!Iz7?w(P}QR&aU?pA@(D4xatSI)zK`gx*mBt`K(u+PYa$=V}spqa;}RW2> zuZvsfs68t{G8f_ip7*hugc+3D2WI$D{u#9qSuzoR8U3R{jX`cWUEI{Du0SSzU3~Me zY9dT-yPzV!Tz0N^8C`2p>tXWji|Twh=LMJ56quaRrtW~rmF;Q^OdfevMSiB?s`k=O z75Q%4C7yX*T@UB{T9;Z3+!!wMZ*QyD;DSZmRgvF5xX6d@tM>phiQXO$r+eU`x(~SO z_$*mlLEVp3WH2QmUJYCo&N5~1>QR+l=T(Ikn6yv8w7)kw6{uZABcV~FG#OYhJq>b< z)~XP4LY9`xZ&FZ(t%9e;>5+Be_}_zw@jXPV5;C{GY1Jg@nrvApakP z5x|>LwV|%Bi%VbBJ^&WuhkhjdrWxI@EQ!i`15=-qPNJx5$GOjZ9CM<vL*$QmxczYY13ONEAbZSgA_UDq3QsM0(~6;?39~-(1tBm zfqmcjt*G>)AN6~O^jeT(DeG?=tv+rG$iZph7ewn>0yA)|^hxC+n5=yn@tplj``26!I z(Y_qoypBANuRI6@Yja4|5-TbVTr-H~+EAL0Qd`Srpwx4(!@0JWr=ir=jm2oLci(^m ze!S&ZD0SMl*=Vj)fB6bZjoSeYMvfj%*qM$}XY6`}=K3!_3#DGGdKRTN>|KRYzo?E! zsei4RgHq4__A8WXt$P)vZm#!3rE!NUQRy#^=A*f8KmI04Z8#B#O3UAesmD*k)RNQi z&dERX0IjfgE(I-tV46Xb^X66werSclzOwf2cYuM#cZv8{p~UoyYKES0IQFtRlTQBD(i!nN6v1pL_l$*YN3~zauxhlQr%hprDA)2l`xw>MC$L(e&b09bb^&ERN@VE( z({cIHKr%xfpmgoHm)Sm)Tav=&qxqJmG7HL`m&Vdi?!0vNBC1WwWcyGpU&xTp1teyw zK9qSThphtk9`D`23izQS=1*6bvS@c4f~j#iOF|t;#PBmz>_{M(j;v-+x#zI4lx+qb zil}xi8=<)V3{GMN)&gHQI94v_y{&8!a69puG16SVXa@`Ak1E+U*Mrs#NEn<`QSkxJ zI8tjpbRqVm);+Aq8^rUc4l)nkQpcJ=0}=-IVW615b)Na~yfkSB)t_PWfv#~bfUwyN zFaI|em>2(bGiwKvAYt%o03dcWF8_0(Sizv{ECp_$o^CcAI4zyMFT_5y`!=gacAnmX zf9zwofaITOz4!^vOnmAVC5_&B$nFn8y*7AB9yCmmy3j@-;qU_7g2_hdEV_+pXMoh< z<9gyGiueGGcoB^YlQIyo-nJbjqHjVbOBT3o+bq&eU>I_4_~|jy8^Bks&Yr*elH^AV zW=fA?ym0s$PJBU{^bS&Yea8r~7j4RvUO^mYmr3cgBwN~pG^#GH$d#&qqmG1l6S6Ob zZW$GpOP7)RO^^7(Ht7(WE*D~78oEPzEztGN$$JkAf&{&QL&Hyi%S|wx7zwkz-94M^BNDjRML1PNwY5*Uy)`Km!s6$BmfS zN|A-~5Fl?7d9OsKSG`^Z74moh%60LGH|5k2AYFZHE;}Im@WEQB*!saB3>uL`O{X7? zHF#3PY56`pcIpmsAIhER2IsoNp-*HVWC8x41s4vUe0jEHqMTMa`iJOxh-ikAxnK73 zbj#tQY{;~L4kTijr-5QeIYX#E-jMdR8xCGnS!8HL?)fJR;>CqS5Dom?P&V0}KpZwc z+<401K_m7Xn%xfRTd%G4h6!PA#N|nGpBehl8&U6hE*wIrv(3;n5)6dQeTH(lB0?NM ziT#Fq=uqIyqJGfeb>gC8bFUV{#hV5UN-z9bKtD#-1}hWYJ4S><5FfqYVB&?J8D65= z5lSU`63_?Z6brmOLhMf!Vaj@7N_UQ3Z%tKBqIhadP~JtyF1j~M83p%)5D%qyQ%u}?mDKX@s`a>D<-9hTa>zFOv?+}lp$O^+Zw6(Q)M+! zKu7Q-T&@7~o1S>j9mUfb!9Ti{O+XXq5eS!Ez)5i8n7RY#c!A8ICPjS+@AMaqD*o|k zTY&0~PERy)tZD_;+4+7V#J*$-Q+yK)n3}A zBHwL0#j|dx8{nK@?^a8I8^cNd%^meRT(IzaD)QS0C;9LL^*%r*(c2T@bPqmK_XAfQ zpDk-EsOPbY45lQ+Yk;f5QKqcjy{fYNf~wF$qxKP)_IDCIbtmr$P3y zS~WtB&(y5^rdhiNTpbQAWkqQJ0VZq)Bga+#Nn0z diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 13ee8bd2453c14a233b2df408685fced0c50b9ba..780db3cf778b2e37bf04d9065f742a0aaacea8e7 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZqDhG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb77wsB- delta 976 zcmX>#f$7u)rVXi#hKc!=LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3+Hpsp delta 1139 zcmeBrz}oeIb%QsfVPbw|c}7ujv3`oFxoKjmp+$MqM2oi zX_}FRL7Ityf#u{H#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3q^M|_ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 8a95453f56d472150e46cd20802d19246a72559f..0f1ff9ca2f623cb0343d852f0ae17c7ad4ae8487 100644 GIT binary patch delta 117 zcmdm@yhV9~KciuJnuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( YT9T2WL7JuM<_5-YW-_$duvYK@0Jd8oHvj+t delta 117 zcmdm@yhV9~Kcit{er0(^QE{<;imAD2VydA%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi58vg!r^ delta 1690 zcmaDdi}lGY)(z2&hKc!=mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi7{yd7Zx diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 7ea1c927e46432f0b8ce68c215f85192a7099adf..658789509142c7792468b071f8d83a5ce038d250 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZqC$FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$gHa>sjX>JQ7-LK!1foq$i}pgjFqU@CVj%6^KIZD?DZ&`A z0x)?!sC-w$GKwxY-9ScC2@cAG%FIvuGm)`Wf+1cXm_s_OqkkX%3aM8|OS{6TYxsx; zxN;>}4q!|V+jJbdgmiRFy^Gel{nVFe;NTe->Kf?pKwYm6?f|wq&kdbS1`ZY_=;vj_ z8$p!iG;QD+-#bj0GdnhJVoPH$F`6G6-}D}avcNA!UOpATme(J_t7rbmh~AyIFWy01 z+ZU_2cpRS?y(4R1tl*A6k7BMBJoni}*)Gd9|OA}QtQLlU!b*KfAbIE zs!hg`F72^K^F<#eNr1VK3SZlSwGH_`W5fB0V%AN5H^#v4E+v;!Fk zDv6p9ql!^{S4*I=k-b>Wk}4+Z$U#etS@y=ji_uo%L>?onWk`WE_Lo(*wT;Xox5-#o=VOSHtx18ED0SUr64)W~T^CuKY%$S83}(EoCe7DLj9T9UNf+G%Bmp^@-ey^m z66-_cC=f{daT{$B+b$6caCJstZTK!Riun=p4RBzrDx`{>QS!tVeMeUnfFajezjkY0 zuEg9!IT`ZpEN)JbpMc5uuar#`{7T}1S^vMx(|hFGcObL#0YUy<*3t;spIl(;ttsdo zwux)Mkycbj$c4%SXDqVHCegn@?iXM)=GQD%x^66m_5pi!r472kPzp7O!Zcc$9eoTT z$MqiAfB{kJpj96LrjvVULsImdCb=##?W0*6qlfi#RvbD(Gk|I%Y)UW9O^@DJ551pl b_vVWQjg|oBYXU!qX$AHYsul8gxRm}29|*8p delta 5860 zcmb`L>r0bS9LG6FXVdA{taN5zRuUEErd#EUGy>^G7tqqo%JJwXIV&$it!9_U%I?HC z(Zh(Oh+cF7s{YCMvU*Xyh_cQzL#cQBu0P=O{eFMH^E(&Li;(F> z$aGmDi)ADPL6XPYD^N5o_XJw1;!2Exrb6Wzd8ODy)No5dtrc>uVU_{| zPb*5p>J8&;?rJmZFYd$xNQF{}Zsqop1K2K9xv#tpt6Jq9>u&?I#e;4WfXVAYptij1Wa2=a>hKBU7s`m=EtQm>BYH-}Ky&{hp_1daF7p-&g-fd{$!2Vp+wf>+Vbv<`v8L-WHW^hj;aIh!=A1~;b3Zg8-JB6oQ zbeJ$_wxip`hPu9DG~dxZZ9Imu`bS2-)3IT zJF=5~`3$IPO=xHSeGu~E{=58WJt$lz@5-o>G9C9-K$uc4(CI`uOAdq%t z9<34cP7@1ob%tTB<1R6Z{!8RIaA1roB#Vqr^2QcCvoy{l$@Hs}X+u1tVR@Q`X-;BBfxfwku}PYxxoL`pnR%kAnMIPRu~DM2nVE@EilLE# znL%2Tk)c7FrRn4ej6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmgrcwL= delta 1199 zcmey>$@Hs}X+u1tVPbw|c}7ujv3`oFxoKjmp+$MqM2oi zX_}FRL7Ityf#u{0j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmbjCP;^ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 6b1390a5e87a351e6ee6a27f27516e8e6ab71d37..3855518a452e5237aac6dc33b8bb3f753bad3f37 100644 GIT binary patch delta 122 zcmX?Va@1slKciuJnuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( fT9T2WL7JuM<_5;oJVqpI)1Ry$Aia48-&$?}jSnJg delta 122 zcmX?Va@1slKcit{er0(^QE{<;imAD2VydAWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~wteE{*^I delta 1928 zcmbRJif#5Qwhe)dwu$+bWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~tIRWrP3# diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 5b92a8b75d3b42f38219b0b4de11e24827e01e92..05b5f10f960802b393425a44273c41c89b53f9e8 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVR@Q`X-;BBfxfwku}PYxxoL`pnR%kAnMIPRu~DM2nVE@EilLE# znL%2Tk)c7FrRnAx#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ05QBLEdT%j delta 1023 zcmZo!!_=~dX@fVTVPbw|c}7ujv3`oFxoKjmp+$MqM2oi zX_}FRL7Ityf#v2J#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ064=&QUCw| diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index df9f060e678438931cd9813927b0af057f399242..ec88723ed4eb38f81fabcde7a3a20f5e9533aff3 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZqC)7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d09C$}5&!@I delta 527 zcmX@{m+{13#tq(#hKc!=0u kYW*hWCr*~u)%*mT?RlQ>d0P$a>j{pDw diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 86213cf5effb2b39516d9db2f5321b922e8a6eda..9375eeb3df6e28ad19b3ab7325eb4ee5c937258f 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZp>I81IpxD_+!P^F^jPg=ATrGg=ATrGw&iISra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZthC`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dcSh=9>Tj delta 1705 zcmdlyhh_5|mJP*>wu$+bW4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5df8?8TJ4G diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 70763970551d245478c11e0bc2865b17f81584a4..3beb285dbab93176f1d8432129e734d06a7a88bc 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyND=idQCaudHl4fj3MkWrhtm^=wjBQbdk~vYb zB?}pR#hbn0%r+LX7dCfU&M+8_lVvV}pbkxNDqv##L4?FPOCrQ?%iJIE@CQ84=Q-!z zbG|q2*rIW4(Ri(hWxwgq&u#G5?p>FcY?XL|Dm4=O#oX+K)$;O1>8^;~fqK$WGQ8I<^Ki31>p zyL*1yK9qW+4Ek1t=JeEdS4go^Po`sh8gxK&cCDoha3M z_)~x?E$xFS(busDAgb4)Uiyy|YoWJbK$djAgi^DQ-(Lk%FZc9d)PS549cYKOrxs9Z zZ*L_^J@N5PlsbR59;GhyT|}uH`(di*Qa?)VzEXhJT7T^?RQj)MMx{oA@34EQ3Za%( zG|9r@lM&F+mCNdpclDT5sUFeF#?km#NbXWzn~Ij&nL2D+EX(JAn=pfP+Zuy(2X#;2 za>X6g(rv~n<1r6$#>0$sCXxM$ot-OeAXEb_X)@Rst5*`kwUPC%D28f~O#3`6P6x&~ zew(jS(j8_pyv*#_zHo{EO+@V^kEMw+W;Q`_+~RXDi=)?fu{7)(`p6)vj=hcDP`B9H z!cr-rl?`GO^2lJvA(n;xB;*olAF>$Icd-jt0vD+UQ3=oixRlW%GhMpEnz8;b>rYG8 zk51>@-%KaweqhleYL1!d{$18<#7Yq%D^jiWaVs!TeknCl%PcdYvk^)WG7&q2>eWu4 zV+L&TyF&G(iq=_X6+b>?|KK&HQdN+ZuONl)MkZgol794L@+ZZeyDV0y{m|1NjK_dm zkeVX-)8Jhdsy2aA%={c^pj_Q;qUYmz3AlX2`p7iif)4B61A5Wq;96SB;rVD0k4>(x z=O?1DYo&xtJ}cn{8ZG7r!MznSA=M-$5)NUYvRC*qoNu6tD&CFi#}7tRU>A=7M?(qe zgFb#V8LU6+P^x&YkH=BQJA4W)LN%ez_j#cK3qc#Y_)+u#JKrJ8{T?R>gydKnw zBa)j$M

^Z?g^!$hjfMNq30o=l*jA^rf|%wc`bm;5@&553|nqHdDMQ0pDu2%dk~ zg=+8dHXw%Z&hT<-nB-ppJs?#)4nWmkZI)lK;?H>=BUHMDzW$wm0z`OhMXFT;m__Lw zP(O~vJf3DB@~h~lMKz(MCB6oIgl1Ya$>Nqt1HLmz)qezL7mI0{q~%fcCTg<4Hj?Uc PED>5_g{1x;{Js7^M2`hA delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaH|PHSD@WsnY1obY?`ql8JRf1j=}(;2rLRHnG+>j zvXH@7yx9wG*~UWl!saf^83v$pENrd=qnfn7C{($HCJm=hd z&iAGrUows_8L#EDOm9Q$Th&d?%^Q7=%?@v6W{%Hc&+=7fW%?>B95#E^zHF~|Q?AcZ zm6cD77lB7^S|tem6jsGuB~1rp#FVGBP784!yVwrJi%Q15{b)nMH};7Gwj& zPra86I|Ms86k@HcyQ0=3G*l4-QgiPCa_7z#UH?nSBN`?^u;vTrX+ zUEJS^Qd4WQ0IEDxcMl~#@VfwF=wQBUEJUfdnm3}ey$hvU z4}A(yrKMvCCHgw|14Q*Y)XJ*EZY}f{^vi;-mr!cvvHNR4>gC>EjOv%uq7&_~_T(Z; z?dvN=smIUUM5zmBYf~OuE!}3UG#2v^r#;L_r{meL*x5Nl20}H^k|vFPv34~voZDF6s$!@HiPYp_F*-2D zvDo`x>BCca3p%WC9MFq~Y_6qcJI_Ijcx-Zg z3qKx#T`MJM@>u~l(3qRIf_p1yLaIqpI2^)2MX&IqINv}eWxNN~Pqapozk-K>qoD-# z0Utk-2-cr*Fj+j?&toXkv%Hw3W>NYE z)sLf_$I{$Geii++s3w%K%-5lh&~%F?QQR_Vz;_0z`j5fvVkt$Furi9?cufY_Mp9jl P#zRXikJSHzzt{fRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V@40PevcdH?_b delta 117 zcmaE(_C{@kH=|)@40NLXtBme*a diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 0d73f08c475a702bbb596bea8aa1bce7ac8d2334..98e2750219ff017556357c08ff4baae50657d5a6 100644 GIT binary patch delta 4131 zcmbuC-%Ha`7{+-^=iHW=PFYkssnIZP-~HZVf)`p2bPE>IMIny4ER~XG#TulT7h;8Q zf@2{%0_iFn9Ozt0tr7wYtcbjjK{tkW(Vz>96gtk;{oeBjJkR;O?>X=LaJJ@ETl1=v zAFMZ`9%o-y&sB@tVRuBmZfC^fa(6jhp0Lwy>$1CC4qL=(Q(Q_kY_lp+uam{$W^v&% zl5X>{&XV>q)F zxf3zuHRp>ku#VfOWGP(3ep!mTJBMW{R!6BUMeW#>EX9TKs4PYI{fI0@??hOZ;tFZU z4dwRhETcgmm`Fc;gBvlHnmnPxNl7MIM%t)}EPbvd&t_6M7nVsjAOYCelPoT>0_@k* zemxGDDCu%)>4EF)^6O^A{?4rx;laG`&S;Pb#+5xZk%04T@Jj=7F*4)I2rfnfWO}WX z99#X0gcoY|;M-gYO75qpYd}M?o5gJL#}cmn|2@>~=}JaWxjNMJr2#sT z9w{@JiDqyg|F|D!aSy>yg-Ii?sRa{m7v>GtjWB}Sgn0w~5kMwW-XLRwb4UU%dJsjH z&nN2P6Y|`h-fNBnG7bIQsK8^X!!OwZ8G`w?$DA-AMR3;xR*503rX4=WA_qt;lWP9H z2{v#!B3e)fRiu@g>8%!ci-gE|tR*jU?@3t3f{04A)Di+UpKb>oE>Uw!P0NK#A1)mI zwA>06bZ7vyWaHH}KHCF9?2g`c;=-vH7m|6DnPDjAA}T3%JLWKi%P1}^b1y_k58Z=O c(zt4(%j56@|4ejT7%k{f20kwS+H*yJ0s8&KIRF3v delta 4131 zcmbuC-%Ha`7{+-^=iHW=Q(06xsganr?|$hP6Lz8HKxeRsE()1#%Q6vj>xT_e%nPwX zIKiVEI}1D@x6-uImMeK=bSs;vc8 z+zXaK@2wkM*ZTX-K}Ull5VAOf4!boNvRZ4`-hr#GOjCkxrD-N8%G&q73MnCOV0|Vqw9Qfe>OMM92OS z7+6Crg1qKz5eC+F=aei({g79dqU!EpS&GyMm8Ga0os^}xFcy}j2t5eOQgn}Z%2M=_ zR@_i-zs@4s?gkU-p>J>_#^MtvR5&R~&J>XrY9h;@^<;iJj&otjnOY)ja*62Z8-hsI)Xo<+aZA{Qewt`6g3#7Cyq z3dyn5S0ubpvxnd23Q%${JzW7BlHSZ`OFx!z?f>tgW=DTF<7RKigQYi{4#?G^rY{Z9 zf%J%1Lp9Mv_wkSWVHWogyi}Of@rp_?;dWuxVBHAAxJ{TfC_MtmWXc*OO>hoLz(o(j z$nyDk4SYhLyVHBkaX_Y_mm3v$B6av>8z4h4+xCb9`lJZ%Il&?^gypo&4Qb>6iDgpG z-#5YrE=NQQs-TQC(`tIV3EmUBtYASzC0c6sgPKpZf)1CcnWd)X!sRM1 z9KE#I0wr{?542?CRX?BYf_ChV-ge@`sT&uPS(ND^$mb#|DRw(%FoeqpE-W)IL`M(Z dheA@9GSQVWc!7T=IxdVBbtnTj7k}-!yubF>IfwuN diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index f3b8e69400e99f35e3cc2db55671bb81faae2d3a..0560c8fcda5823a00540b19130fc1bc0b7a7b3f5 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVR@Q`X-;BBfxfwku}PYxxoL`pnR%kAnMIPRu~DM2nVE@EilLE# znL%2Tk)c7FrRn4z#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y;J}MqM2oi zX_}FRL7Ityf#u{L#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y%TM7byS$ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index ed8d84fe0440fdcbc5251649d9d69e4ccaf7b7e8..9875a91eb46784474194384b5957ebeb266b8e4e 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVR@Q`X-;BBfxfwku}PYxxoL`pnR%kAnMIPRu~DM2nVE@EilLE# znL%2Tk)c7FrRnB6MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgTE@Q`i6i delta 1200 zcmX@z%W}GxWrHuHVPbw|c}7ujv3`oFxoKjmp+$MqM2oi zX_}FRL7Ityf#v2pMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgT%$czgf= diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 9a309fe3fa0b9da68477cc36f706070df6f8420f..6fdaee814d4bbfa4a79c5df9e590a73d2bdf74af 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVR@Q`X-;BBfxfwku}PYxxoL`pnR%kAnMIPRu~DM2nVE@EilLE# znL%2Tk)c7FrRnAxMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFMqM2oi zX_}FRL7Ityf#v2JMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v;snMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v2zc!t diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 94d0b88631d5709815ab524dc4a690faf6589387..c001cc2f9fe928aeaaa6fade3b09d342596fa567 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZpyg_K&uCblW?`C>m{Fi_ZenbbW@&DkVqs>UXliDWWNK`bXl!O?Vw7TNWMF2H XmSkjTkY;JRc>-fEIokY~_i+ONnH(Te delta 117 zcmeB?>yg_K&uEyKUs;|}R9vi|Vrp)hm}+Q|VrpWPl4@j_lA3I4V3L+(oS0~4nPQq| XWMPnIVqjpoc>-fEIokY~_i+ONggztu diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 4d541c75ff02b641fd3b7c1f7ad6ce6e2bbf7c8e..9f2b4bf227c02cbd00461e9f80598f7ac68b117d 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZp;{7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^07<*zdH?_b delta 1704 zcmdlyiF5NL&JFI2hKc!=Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^02gr;)c^nh diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 0bafef98d6b67cdf7fa1982bcf9b1edeba99cc02..1c4f49704945f1c9e8645acfd738f756f4815533 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQB2I-nS1As31OHtu`sT((u^@pv9Qr>e3e-!4e6?@ zEG$N5rPPa4vXhdXt%YgCQu$a|DOdi2dH#Uk^StLhozB*QW$VClHqM-hm?|%Z<4Zjr zx62*#dgQ38c*3%xMr4;1b}5QmiaI5S;)q2grz7T-^)*I-%K4`BY;lc#C+uOGo(fh3 zjGDz8kX)y#((f{eZqilFF0$U7ZW3V-?IzUNp(mYB_loFKQsBZwJoX=kXJ+~x14qO9`dd`=m;Bc@A zYF#APSi%C*z|`R+L^XuJ*p+M044gRKd#1WI~yhf$i>mWR?C?;AiV?ek|r&n-@mJ=Z{^p7zCQxPLeY zYMrIlp_m1vf$_sJh$<9KCWRZWDu7sGDkA-kEM73sa z`NJAZmS^q^(@pcDeYP0N9GlNm(H)%)Mv4hJ#$cDZ`@V1X0q*`UiJM8h7n_8Oe&GvT OyJ6aDela2hyMF+u+M+Se|BKnvKByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQNA+sa^ delta 1486 zcmZo@W@~6>+u+M+n3!K#o>5d>te;|PZkm{CXpv%SVw93KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WPj72g~H diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 5de523d20f2325e1873f8af52df6f5f6082933e2..7cc4b080e7fbbf107fd96b32570dff1bb72597b2 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZp;{7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DnZ7$r delta 2066 zcmZ4ggKhl}whiu#hKc!=P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DUF3D_ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index f70dd4f4eb2b2072dada1d8b8adfb977e617a8aa..9e4e295e8c8180dba909913fea547b5df5de6f39 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#64nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( cT9T2WL7JuM<`%|wGPF&ez$m&oklB+P03Pun6#xJL delta 121 zcmbOwJ4<#$Fr#5&er0(^QE{<;imAD2VydAgs z{nKNpt3I1RT}^X6sOy?nm8k2Fd3bDBCUUXe+#nX-OxmGk(IB+1Z6V_*J>0J(kcBL{ zW?Jc2B00uQxzfPucz;OAq})#B1h85EQ?Q*Zj zY-MIT7gzcYK`OPn@2tjm$%z%`6F=jZ7^qM^bK6795Vohs)V&D#&AR z@gOw1n$LV17(`cG{Y4^wWGJivYb%@~!*b zWV~XjH*znTgRBEM^Az07r+S%2YrB~p7`SN#k_sIbAok}u>Mpw0&nAEs&Qma#u$A5q zvZidn{?GSfGkv_s1{_OJC?xYV8>%+0Kr)K~F#CFXX;)j3N&Gi)E)%!Xr}e5Itslwn SS>86|iOX?SLGm{q%lHk{uao%z delta 4106 zcmbuC+e=hY6vjFGj80AJTq@#_50!<1m1oTHLiv;iT40U0E~GOxj+Qvqj8@WvBKBYg zT1VQi+4S#;Uyg219sBq51;>1Hs!6=C#VL3;+eyq?cL;P-uNt-bbIdoRpnF3e;; zXj0t%j_y;f;YcJu;3@X_o82V=PhmlzxxgK0KH|{}gNL{J{Y9k#Pq3gw4;JcrsTfwi z0hr;8mGkOG)ov_XZxb1o{ki6?|7m>5>x6KxNNoD0f~e0OPXp2MVwV#{t14Tua(j(S zJuYLY(kAxq($dYl^AkR{n?KE0bA-*ibhCK@d0fdDS|IYM;Jw95AT%V}2gVqP()kV) zogVUIClwOY7lNqk>Kw(vV^+3;qEW?bUyRBj zJG0WcF{S4qq*7z(qZYo$&YXNODuYTiup;_wWeMPHWNIlnl5!g|;BYiPSjJXTZZ><1 z2cgl`9Ol))AdZh|T;IXcXt<22*qy2|qzFlo>%he#*{Iur36gA2AI&weFwom1-@4x| z<|~$bBX^NC$l8E2Pr^-nvWsc7I>KDQz)dNTRA{pSu|LmJcha?9HV&+Co`kuC?exB% zHD&_#f4&zR>ElJ#r!PVwkE~N{pvt@g$t?Q7?Ca>IOAR2C_;2D|CT^!sYgHdwKa$_G R>@DUKm*c9OY7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7jdq#FcIHO^CnuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( fT9T2WL7JuM<_^YMMkA87=}(@(BDUF=xt<#UZ>J&M delta 122 zcmX>jdq#FcIHO@=er0(^QE{<;imAD2VydA!f%(t`<_+$QhUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZp;{7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A7{!f%(t`<_+$QhKc!=9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AXRY71 diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index cada51071cf056fc92c45b6f3b4d3460e7b903c9..9994b0bd7831ce4afdab1d696296f5a0f4a49f03 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZp>I7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20aF+x-v9sr delta 1026 zcmbO`n`Q27mJPm)hKc!=ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20ZMm5F8}}l diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index ccdc4572f8be57da94cd68c588c081b366fa5c8a..1301cf05845f9aa5fdecb0966d89ef7d0aa09f4e 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZpn?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5da+=j2Qp` delta 483 zcmX?gh4IuC#tq(#hKc!=n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dfS*n!x}7 diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 091033c94e27f905f84301c2935c53b67dfaed67..3a033c3ce2bf6a0ee35c6d184a0dbe15593a5a87 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BEnuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( fT9T2WL7JuM<{6CZ8I4HRrayTfi`?ev%*VL_oL?gy delta 122 zcmca7cTa9ZI-_A?er0(^QE{<;imAD2VydAMqM2oi zX_}FRL7Ityf#u{1#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OR;K+=T!D diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 73dbb2c43519174c7a7ea9674e16bbabe5d86bb9..5d9768dcece5838f34199255aed2e92db4b73889 100644 GIT binary patch delta 1014 zcmX@}mgUS_mJPm)hUIA%ra6fj1^VVD#wKZ&=B6nYX6A{eW)?}N#zu+8W@aWvDTYP{ zW(H|VMurAymZqEQ7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc_+6r@b+nGUL?~+nMFqqaV z(ZEe_Uxs_z+Qywv3J1B_;Q^rimryAuYHt;25Qma>d*h z3=_tkODZpLaWNfiAjPkTM3~`3+)N;EU7jCTxoZ)D2aHg(D#SGjGjp0GlOO~Lf|5hH z{awleXP=f9kUOP~l-n2?%5^AW<9fBXfXdfeOSyLKT!LaieK(?5_>2r?zyAGt_vxD0 zqi+<|M%S}z=RS%3y7uZE#g{rI42T7ZsiR!N3^#BlHgh8#4B*^5g@JpTU;Ng`J4FBQ=S*mmiYGUV{Q6_MEK~D+yIxLh^7PSbRz#390ip4n@3_P^ zVJO$4bKV3a14nb4BHf1n8XYq-cn@;oLSepCp1F8_VXQ2UdM+l}D&XT@kRQV885u$O z;g_8F+YCPaqq@0pICCRBZf;YeUEn4OfMb9YhZO++jtpT2cZ<9+6OTSF zY~$Lub8wT~8kFQZ5I1;~hr8?6kql|l*#sKbZCp%g!$!i8S8EOPh!kheQ7?EBR zsmkqKB0;`p@*hN6Po!I^ytI=@eJ5TbzkMRoz3i(*`jbfD@pU4dMpD{Dzf;*ah`5gY zcsS)Yk$w>A!*E`@OeDqgJLI>;L~>PsL8N^|+K~K`NEe9Y9?eT1h!or5Bl&G6k+$5E z^u)1t2TN&w-}gv~c!~UY^qh=HyNIOz%uBn8w4{}s{I-!u(Xaf8^ngf{e+eYg0V2JW zsED+dNUo2(bdX4qCN=r(4Uy7P8fl66nTV@Gbwrv&q+@G%X)}>7Rn(K;ZV;*X%wQtD zCDOdkE+QQz(wbFnBIOb3+96(AL8P|-DMWsINTge7v%`tFpNL)mh#=BABH7y%CDIZi zwHV1uPl&XlQzZHA4in(lD(g5$6$6 z*0VH`UJ&WoG+tUtq?a$sli#ipY3R5LL^?yH>E$aDX&I45CGgT*B31aM68Y^SkxIR& zOr)non%|{L8WGPD(QjlGB7GxLjs8`M^p!~O3soo57b2Acyp%(v);D=+7Li&!<)z1b zP5pJ!?mm&`_1x48hu(D}g|@1hl7_`aM9gZnE(J@6h*YMn?l&yGB2x8)21BuwMI_N+ zUfM>a*XOU0-_{W6+^ogJaLw~X>aG)!9*z)6vAQRbjuUC(Qfqod8mjt{h{NBVO2-YK z6RB<1&=FYri%54)@X}2pT~J*ozg;0x$BDB?;+pS>l-#rIC@jqPaH4ZsnO4!Tr&j;1pWn27xWiy?EL23*rf(;#?}Vh@j+&8#enWyiA7;t)cY@$N{c^%x-vkL9H{AxtMu1xadJ{?$T1Hul>K<{yC@^YH#+# z(-7`6YFV@}qa|sYGbNbYGT0@`?6#0ozz{BToEkJNVbpSmQ;Tx5HmL9kZg{Ge8#~6y zMW@QSxFJQk#4({#7>8Yk0ou~ zBPwHF^2}~{9>bb8m{3KS(S|hYk#6Mv-AR4}Jk{X_Y2&JKx>41Ux)EIV^m5#o(UrN- zvE@07AfqhjzrON-VGB~XoGAbn3! zKO~gp8cm1-na@H4#K`Z5xg|@9nYp~t3c*$sFkwLTzJwp=8C&6R=J>FdH%IO)4VO4J zhD(}AOpa8;b1P<=GQB33KCUWe_)llLvCU9LJnecb{;SfY@fE0{@NDceR6bJ)Vk(eu zXIBTK0FZ&KvPyq$?8K4W<%QLdx4&~6vYK(VGpeJWs&Ne`ROZx^%HjwWW^^UC&g?Ja z=1j8TU`5q8aDv~<6H7i^pynI{<(y-!j?<2cCg$Sat&QXMPOgR+<5~QFVN7k$U7FIG zGRKoVWzHSWtR;x&?xvUGcCR;bQ!-1_I(X{$0ydj&@p|;{_If|9J@lZ&2Z0mAyr z4SZazm{}b)!>bA0%n539t`SwZd38A;MK5V+#(Q-POkHvL{U_csMlbr4E=DK zOPO7lGcPi6&8Fip5p!o|`=KnsOAXXVMi`el#|kP}C=qw%@}Q$vFkw|5GTzS5Z#R>1Fm6#eH-2FW-`K~GUq(*P;V8kY9o%C75)*h{t8qXe zQUR}d(7B9aoO+-E^c?b9#}!#zn9~e)p+U3=;`V^+xg~_eUfwz-H=&=C%UxWYJH9Ct z{dR!M+!5`I%VV1gbB~v#2)dIc3-7D76*(K+4=<>2)x7DUNPE1X!cv2sWw?&3+G3la+He1ddi?pL|2U7v1ynbWJF~i| zUS*ru>Ya|D9qnDb9efU9sKgr)mXn^+S?$)_#?(A9wYlGr5f$OkDcL2=2oAX58rYjRfIbdX@vUf7?UOU0PTjb$E}As8h4l z;OU~CWQ^THreS<0Hx=T_ZEA~RI7Tq8>0eOrnglP zPtf1DHWwt(n38kDw}y}?#94%=>%+rqqU;J5<7=7R?Lju~XtrM90{d2Pa7am#UPD?s z@L4V`OT|@QromUMxIdS&y#t(k}yBKFh$rXY`apxMcl5PnSw)H{aw=quejU0hH(w|rgFJ^(z!Ofhs*-A zWZda}{eUI*t(?2PyB|nf0p#4Td;5d(FM*7!oAZu4jjA`Kz=;#UCL*a7Pb};12H}!JR%lBCu3kLUgf|UY*f6@|+ub zya)LHE?W(T|FJ{P2~Q;R((}ljNIFF%BX|4gKuv53Un{(}#9ikdo51bgnarIzhNr!E z2y3_~HX(-l>*QB(wiIGA@PZb5!@>MR)%^S#0@^12A-8c z^@Jw|a-WZn;69&D1HFgm$dPmK8WlUIKXB@EI)R3j_sf8N!G1JcoJ#?_v-iumd*>g6 zhGh{{xAVQhu(B8i{j?6B!G+UP_sb9tUe98jf!y8Q9l?;AZ*}M-Ue)50gYikuaW#Xh ze0eB{DtS-J#b4?Ro>f3#H7^g~!mbSlxn1wcxr$fvz|={1W!#BNeYqW%hjL4I)Fy zm)n#5ejX4l_(QgweKcPnSPf!646Myn-Qrbnyd~wGGu=-7gn@zCBPE6HMQ7_v;ZM53>Dx2Ud`qKbrC&u&PjS zUPSOfs8leY5fF~{6TIRP!DxR$GAqpb06|LuVFN>g1lMU%q!d6}JgM>(IgQ{?%6xpV zfZ^U6u_t^JA~-JL4RFdT=)}tWolUTuvRUI2Y-WYAc?5l^9hVdmB(lOBE-YwFEfy9o z_)Lk#MhZ6kJR(G47tbTWlo-J(FK%(cTFK9&p%m%|2bB@Dmd!La)WgSB1k)(Hi8TZa z@l5ch)fBX(@%**6pdKwYuP6AO_bk*j66_Q6adoem;1bp5cuT=GDSvird%>Ty!kSKk zHEfC{fXqkPdN3#_(F`>`1o2|5A~@bdpanVM0ux-CBA6j%G8vByuMZSdq=X}e3xa8} z(P%*v8L!5+48bL;#{6l5)`5(j<<-k`!8Hp72hBu-%{#mrY}hHd#A+J?T5`W&DYgES zLxO1Po`@63SiA-k&IlUN;*;~fVx7yr;+pG%XSBkKJA(1l*A?#zUhrcpEdNX}SP5wBh-OVepS;!X%;`tk+(6o>e6Rb+MzcA&ribU4%PnQP4veLdk}w2&1Sr zUHc1f(qi)=!dzORbhiYfy~ zq|6S|&-f`}&Sc>;Ay`;bqlUXPh4&SFF>8@&jvmg9-#>Lp9oLUV$L(6Lc~|N{Zcrd!MPw`tB-Gl zL)gp`4;B|06amfegqwIa;O0l+m;zu01Jz@Z4F32e+`+Jh#X7}<(@um?Ngx_yLP1mI zYN8%qGmGZ%rU#>KqI6b%2v`B9*+qL87Po{NL#*ih7(R=D3p zG+fM|?bAY3k`{Ng5t(VGJZL9sL(eu&60M^-q3kXiD&d>WPZ71CV3K~KA2dDm14IXD z@yS5Z4O+Z3SoDY%&kPaOqqq_2qRtdy=_t`tT4BK$(HUACI!=^BEBrD^G=eg_Jy|q? zav03{&IZg9ouhSM%n{9HbTElwJ3x8a4m>&Pr!AK;?|*;P>;Lhj7eqOslo4Zr*DFPn z865oEM^Os2uNJ+aIb>Zc>dXogx=z%QHxQV+Q8bMe=2VtwJ!La-3p<K{%^M`0ID~BEzL>VljCgCvWlBg%;5OP&C zgOx-5Yob7AJAA$&noBt>zs>H8J9k8@nK^|2DOyB1Tzx27$Z7|}W6=R-UkrIF>Q6Zc zUaZW)Ac6M5`!=CT~S^SnV+RooEY#FCdD^N3{E{U)W8s@T=$)vk3yei?VnQ zGf#<`M+TWtT#a%4*BG9WiznIeexX^k9`+6sKcYib=b~bkX$#GtjRC@x!IqKYHFN~j zMu`v6;^SyBy0AgE1J#R*)pUuHTvmLXR;XNFyq2yMzEu&o4C3o1HxS?Dr)Aipg?Jaw z5qjE)kJ7W>I*MZ{Sfw7~^Ayb0OI(-sHY`OPNsGJsh|$KFaG20foXT)51Fui>S8-7= zcZeA6?FizhH1QvF6?bEbIFqU}Y=(FTtx#)@cnoEFbFuif6gShrJFCRUD5o83#D%C< zd7H#mO4_zn{G1leQ0$<^`a8tsX>raj@dt{qc#rrbJv%f<+=*K2%|Wr6p4A-@+epW1 zSnZU!EM+z&S1hN+)fdEa+U&q(@j0r+@|$8KJ$vSkcryi?c3*sfo*nQ={DpED@kCrf z&YR@y8}SElx(DRC#fU{=-GA} zNebnAJ6PhT6|^RacWZgmEV)SQ9<)kk(z;z;l97x{&89G=kYqIVo}`$hLLkq&Nm)q? z3t!y*tK=_gm=i4}I~lG?;NWTiGFJ|gfr`HmHi3O5%5{U8?Ii*+O4Gy?fev&|kZ3_( zJ+TS?(NS`QQJ4HK{9ssDNq1_#>VgRGT*0r<#4bB#5e3 z0Z6Qjqd^0pJT`a=?6Oc2A)#)9tCmS33j!Ae6MvU1q<&Ft@R5JIQBsNerR-Ko5+%Q3 zhhzqg%qIIKcW8y`MDou=Yb zlk_D$`=pSxo0(x*f%9)x>sRPz{It|=pg}e1QKWez&_NH2R+p}4^(aBa>cWBbq~77V zNxT%@9wHM*rH0a0)Rn(ClbV^6An1z7e^wi*6d1-?i-E(RQ#*sFt)v-@b^sVIyNxtb z;PrmX)>1n7^lmG?Bxl172klG6{{o+PmI@i|Nf4UAdA+1^q2Lr;ks?KR>`uXmA<|)t z10q3;18I&S7Vx>ex+9o4T&jh~(xeW?5YGp6!Pz6F_o<^ZMoTBtXpWd571J26G)Y>P zF;T-o=BpuQ_%c)aj4^5`Li{Z0Ogh}WnQ z^&08@VXT3JuI4p{>0y4}3F})CzbDkPA0quehVa?+y@p>3C7o8!Zv(AR@fW|@wD>6A zZxb!9Y3R3|u7>(F_tlMQ>8pFKm9OsnHhvdq-4RK?x|KWm>OM*K)m_`g?-;E+y0@=x zwcmVopZD?A-O$f(F|C_0#8=lg%vbm5a9`aC>3-{I-J0WkbtMygbvI1()lJFp%c6B- zIA7ho8NRx6X8G#2p6#=PXOXY&{l&hz8B2Y2Ve02wJ@YOAs<(EV2 z20~xmliPiD`|b4AExFt8CY{ARhy45sk`b$5(Gz~z%!2{SsYuX%mQ)IRpYc0DbD`=v zzqvH5UR?5X(xUx_-y~+HD4y#>lomxa1Q4qVN=78KT=j%?yI~Kro?jZLqh7YypFc_|YBk zwMm{FuB|D1#j@4Dn8?o5$gk?^V7`ER$nNY;D8Mjc@ zftAg`MY4%Bp*2fnw+-uSnUNT%xLy_ryR4Npq3lkrlRc*F z4rj?2uJS>|?iwXFG@IRGJ)rD8CDLb?Y&xTUaQbf95ax)Uw@-#Hz>}=1d4N5uS{;+MVZUlnW*1~#t z{I)ENapbB5irpBhfW7a_Uh%5I-j8JH!9z0jm3ksO$J-4WpUWE3`7Sk2rlxi0zm-+y zhYI-OlMFpoM4BD`B12EKkYb_lvRy%Z@lAld19}7jPpO?;^47H3xx#XhhClnDjJ&Cw zFV?Ll|40!U*OIqloEf6P*|x9DAlKk8g^|C=Px|rJ3Th_rUSPyP_@kA41wZ@3ZJp$g zRXpGb#dIos{;_4DjP{$7jhjqvwc1Vs9;r_Gub_kXA0 z6>e44e+V_%!|MKtG?ZF2@c%-?BdN9jHEOc>j{fMD2+19HvVRUOzU%D2o)$NE^f_&xc6=+Jzl+Aw=NCS6oq6Sdm>OpJYk#zlAqYut{Y^ARr+oBp z%W{z-F*L9o$ZVEZ7@XZ2Cu5|XnEf@z#FC~5(2z-Uz`}=wR=L6uW0KO5Jvskyjy^rVFLwG za6AttX$~F^2tZ$?X(l(peHj6vOrv}MfJ8W8dVreY`C)*Vw1nzK0X1ntcUcnPoeV24 z3rL}(-Trj}`)L4j8v?#i?H6thP*MBs+Z}M4C0737xWz)a{7}G3+EMEx0nMoU_Fo9t zO#2*t&F4PV&47M1ZD#%%P?{ERJqtiLz(}r)&I?#72029wYhda30qD^$ayIaz&%gIR z1(cw;Vc!FGGA2_JFqXAy;RI=586!V*U$zIfWbhnsYS$r_gx7|dk1zjqJ>uWt?fMhC~o+kGA{pYwm= zaezEN0oFYnm`x*JebndnS7!qi)EkP+KF5@~<#Wu)2R_GyJq@f+GiuDsz(q$pLEd$0!&yPzbwl`^An!Fz;liLXbeNmH zIA|Fi=IXBr(oh5R-VijN#Q@~$YX9t@zJ&yj__q$CZw4{Gb@1co7pAbv?VwDSX#lmW z3D#X{AOj8W2eI59MF5pSL**kiZ1-o-brHziS3?czJ`Q5J$nC=d2#Y?}KkiA8h+(z_ zUMvj^dKJ{4CHV3YB(Hg(a*??Gb}L`m2>NHJf+7iC%nS{Gr};T@eK&Yv%a z+7(ynS*25f9%LaEW``@#VuKWW6j7uL`Ql%Zib}NEFQpX^C~mci3N&XeUJ|c?i>fKw zXn#I1upROptOk>sE2an*;s~t`Dj#(g0h3!O2C%@E*VsT_%e(;CwxvSOav@B;R8WxyUXLVK?W?hIypI+P+ z7z@KED2|B*3*no|iW>rSJUdmf6(2`WQ>??s7>+;QnxQBXjAZ|{ie~}n_#s=-SBj3^ z_9)J)85IIPPM~E+MLRI3wNeL8c2qE|G62yL`8^!I&sEGp8iA=76%3c8c_8BagO?Py zSq2$Gg&>r>s%VFuKKHs}5vz>|(D@q*rdQVTsifalBw;Fl-c_*N-@rf+QDK_$^I7zN zps0&kC=I9c2!`R#e7Rr0*0gw|Mf+ zTl&4?SC#=HCPQ5xWEE1H`J1(6zbby9+y-TZN|sphqPbzJNZF0WH2DalrOJWWG~Z-O zmSoNcD&?M6xN<$i zxRTG}M1)d-7co~Ol`OBS<^z2$rp(1aCt{T>!wUw2cZw^26f98EN-3LSyId&4%mNQl zZWvTf`8&&n7-Eq0#8-Z>TxI2HR{sKmkWp1RpXCk^8mjAo#n%-6a6=;{>jcIl0E8d~ z!*de#plDfZENt3T*@1DfT@SRorwD`<+Z2EjMgTj9SmWWNcFK(mm&ozLs~%{-EjSQV zN>%!Sv-nx;o&(Ht;JNO~U(u2ikacwVfl8)(^geWm&{rza%Jty{<#oKmJupeB2|>q; zOO?NNLdT*q)nmLO)(5FB8_^Nnz%Ct%j)m&0{$P1tjP$&q!z&pa)=YIn;Z>wpN7ZYV zAoRh3FQMi@_$pcD#%#6SRh961yvc8>Q&=lUUsW#&I!+y=T8Yn>OjEtW$3kOO+wt*s zhH5`dpGDm4hKSY)fFxKU88os*|ipxTI>rGCU)-e2{Wj`KoF=f`p%M zsB&-&?YyNrsYwQulB-K#xu;US7iU6Iz4|2MULM;BJz?rn2Y_M?LMeN*RW0>b;EdLArscn{Jq|JdD@lQn

mcJKMAIDxf7Og&lk5gmSwQ&Yt zDXAXKyy(yD_{s#%%y-Da%c{~u(6)m5q&KE2R8-qp975(NtEp>aIEl9~1AZlW_gRkJLAU&~fQ|^-K{umj0|3Nzk$UceM=F+g3wU16Q9U z)J##Mqe-Vh{@)98Lo}}i=y<@WX^yL#?3$NmK{kIgqhUEs&d)0YkuvXvf^1l-l4gMf z9WPebpkXN+E~=@C3lPlavCqy#&k6ih<&g{&X{=$nhCn>wXrkHUFPIH)wbk?!2jY)z zc5CDJpZ~O-5zkHSTnuJ((Cl-7W=*=)2HQqy^kDTU&5EB_2oUd}?+lyZ?$MeJ!5~-B zT@8oK)5MDS;@*Xt8MK(RR8vgIpIy3KQ-l_8t<<3V?4((-HJU_PT)bA3CE(8{uGc_% zHattSgo0h)qA5$y7RuK2qQw>4ea(`0YUWS`)o#rhTH)1R%_)j->VT#rJzM3lrVTA_ zII0;>i?vQ@y3*qQQ$F00XMA+(p3^L*U|%oz=+wOIqjUJGui4n^K047iHD@WV>W(It zBD}t@=|<1?c&Kp-1st66STmKLD)vnCj#e!GN;8F?J^xzskQR@>)1bTk#Ej!VXtvVg zFQ0t9e*COiNYAePs#!pbP5;tVM_;CebH4j5AVr_Uqg`zfYr`o1BdONwrc!b(dQXvb zr47^`qjjGvwO(^3YP9ueg*`egdTx}|RhYDUX|FfU+6Jgs5H(b5gY~T1SXz6EU5j4K zCbj!HwK{JV5be_X!3{30PR9TEM}*cJU%|z+-uT)TqxHtum*QG)e3dNeBR;mY*6Uk) zIc-%8KenpY2}hOJmZ#n3R?u#w#mq`tbf1}!sZ~W=5nBn>PNr12h;>OxqZzz7L zt8GOqboxc>jo?BJwBGoWG}e0K?_M*X!J4D_^sTZM5FNZ=9g@Mw%$e*IRri zUvE1)`M}$fx)`v0<9e6E8TQC&Fj>`W-ymr|`46KIZG@`xNfC$Y+SdspLtXF_Ve)f=sMkec{T`#F$5J42xJ4rl_gE*Gu2@vwX^ zMCT33Wk%gT+C^Wp?gTByTXpEUHB#4M*Y!l-7RSvN7S(;FXMZoILm&SlXO~9ncF|(5 zSRHzDf}E`$r$aA`k)pJu&PjDEU0Qce&!08L>#q9qMR7}=H`|}K(z%rUS!*{P`nDB8 znBG$tF6WD<2I#zbnK4MWjdsyERo9H#cYC@|x4|QIy(q$`F}fQR;lWg$n--08bT%5l zwU_9UY2AIxb<0$IZ+*APr z8v@uvIa>WKYU+)_`pp!#k3m0_p8a9c-=k;WSoG*MW6~_ssTa@+OWk_(9x^#QD^za@ z;fn{$>u*qJW!2IT^m?XxamN8g1b#X|A=6SS_NrM@|JOVc;=+X0s zq;98f`e+KavWFgh`GcJ8&`XaVmmtOXKKfzQk~dO)YMvXb|4f@*pP&z;_SMbOd)>{= z(eI@`?yyXMlj1g9q2EC3DmUw2)1rExK7fKn?$?*1XZxSlH=GeR2ffr4^pKg3*)X1Z$Tk7`@Fw zik9%;=`>#U#RX^3W^GCZH>3*hsS@0eYFV{LFnS`LG>eQ6Mo&nQqOf7`8tTE_&4asB zOP5Xz-cIWZx&us4#c=LDlS4G7=GM}wbGU(LM~jNVZr zXHD0Gf2jFl#EalswBwN}vvA!HTh@OzDr>2(Az$sP-|FFDo(WS2)qz=cyouCZ*~@p2n|A728`&kWfi z7QBQRb3>|%(DCeokmdN;Z%If+Av$hZ7E%r$U#$pffRB|{hx~?*n|=>LSEpXWKI=k` zV!73TcDdZPOc8;qLZ`45cy52Z@1Lt)|Ry9m}o& z!xjAdSA~J7ouW3h#^+CI4QNCE5(XI!XE59ilOX{eL9Y=88*F7U#NtYmZH5Q<$G#4O z$NM9w_KXYXsuYaQ3zKw@ZROTJ#`)&>$oQSA)GxpxwIydoWW zyjjV7z2;pEdof;ccf&$##cjQKE5A(P)vDOnkRV0p7Y;Ub#k8^Yz{XT$pvWPHMBH-f zFhdGDW~Uo^Vg*nIhYX*dz}xM725+~4nY`Vyr}K7uGlTD-D&UE4ox>CAKaVF~VIgmb zS4()}Wta2BSFGggC9mcUQDZG{2-im55MUFJC*R7~JF$(&o4%blM77;K-juyO-sc>? z-p&KOAqF4j4PiLW8=}!kp68O&hS7e4yLhmm52MYwXkdL94Ys>v=pz^0h39S?eix$S z(0hgk3}X)b_Q-%f^Rk`4HqrZ&Nds<|FiOxZCQ}Gl^n{roXbAGGpxH7{B4{7nRRgl( z+-i_s)~E)-&kS7{E=BDBVMvDh=Z1$Ym;Z2M5c0&RfQ$1CgVAdcZw9GB#CyX5HX_47 z$|9K`T=D^BT!9dpel}bc@@y)8Gpu68iVjbZ!Fhif-ZQX)$TmB84(J-05zXb;IIxA- zh*p}UXqFmxF+>({b})8^y#kG=CA^09HOA!(8e$lLU_$xtUT@PHOEO$oC2al%lND@4 z`)Cpey^The%W(hVb-`qu^?$%C%4S4grX{?-I*cse3H=wZb}nPH0`Y<=p~f4OQrj@& z(t^A2P`ELg=AfjQk>$GNzjW*!Wt_9F=~0uVQ38_dI^;zSW;c%6`E`H>l;6aX0=Y$z@`n2 za~O3R53=5w#=*$u#h$$b2o7RgBC zEh(Rw@5URC768x&Cr&grKW-jy<+blL_(Anhk3gZbzrr4=AIDM6|K|$!+ zVAk)(yNGU;p&GDky>TZa8>rZ5{K1e_ct%Tydp8-sQs14}%FKbcNRwY9p&jT0CL;dG!JXS73b(m0PF z{6V#|>}J7O0AU4#hNlL};e%XbSC;2Bh^KyBHl7yobKR9|-nmY3!x+S@Y0hM$6_^{? z=fTnUj6pm$T=~Gbj5)tBB18*zbTx>K0kfYQoAU!^_G@EfW}^1eCMmdG_k#o~J{k{E zqL029(f43TH+kQU=#m{SZrf?{jz1%WCMAopV-%)YU{`7T9GE9JsTdy1ga`rMV<*gl zb*4jfE_`M%#WA1(gw`LNwwqMouQ8@#P-HWCScV-80};#%InV55xJknBqyiMgnMSdg z6}1}+Dus9RgH_9!f~ZZ}S2B5bE|FDCq5M1zlWLiC)PCdZo5nEqHURu`-zFyyT|)G1 z)-aanL!=3e5_IlwQh+@jjAjtssY^RJv6ZO^4Zb67P3Q&=@%Fd`(_VkR_-i-QFsja< zDW+hSXUvetdd^y9QvuWKt^vS)Y_Mupilq_MrJ9&_EIzo;@ud|od6)^^ydB4ft)f ziRIaRuX=Wny$)SDBG*UWt}!wF(GDLLL|EHtN~CQt^9syD!}faKfRRt3m6FAU3v0lezjK<^%Adbz86 zJM(znfIysN-c|tZ2&xUv>}Y0s;q@QnZ18$#Gy0G$S&6;uWGHABcYE2!K=nFppx+|9@fu zgyjGWfO9DP<&t?dRabh$e23A;oq_7B!2;*rGZ*JqkKp)SuX~lx%-$VP&Py|TdX1QQ zY@XSB1Fg;*^AeVIi0`f?KzA+GaPenzdx2mTzEk^zA?(q^B{mTKt5E}T=j6%2*B|o& zKyVU!WtfofzE`k? zWg&;U?*ZqASe~=w6KU)=Ste2rdoAo7o?0zUSW<5P3`-Nxu!YDn6Kg@A zTOv`sEzUBbAe68dZ17nL%Qb5IOJ)8q00YZea#*7SqUex{f#gbhFzivoGK6aSsg@RVngs^mk0sqvOmtfodN z8hE3rC4}kG8uPh)S)e;L1x3DmL?~NucM!7Y_(hZ(zWhu5JG<+Jkg>BIV-Iu7~RRzfCf`$XVzfidx5AIrf;$RgQo%v=wU$*Pi0$F z@K86)X~v;}D&D)7B>)!fWpOY@=igw!ka*;aMk$ugjFCmHRC|EM#TZ(Y&8tt3lu({( zi7S{=1m?yN%TmVJN`Q*d77H1a^sv%+3%X=XhTl^YS>q@HAVe9wFv-%EQ8kKie6j_7 z%pbFX5z{Qm4CaO?C?_(K=mpZ^Ey=JUU=Ec;SZ9I7!9W`i9qmE<5{n8CKxIMcQOjE&|BFAt2$ZwH;_~wOSdccc64w1HrHqE4_eT z%x0}j7ieitD_2ld8_aQ8(G_{DJxD2JW%=VVBq+T!(IYd3tu>jp!q{*GX2%d~19-8R zHJ;^8C}ES^7cH-j)C!A*4@+6+Gv^6`NzF+#LiCLxrmKpZx>%dS->X|6%lS1(%bHfY z2DuP#txo5T@J80242~q&=El}WEc)Tb05w*?A5E<22?P@Uf3~!?rr)1;&I7kN|oqXx@4)u5+zG_ zC{a8%v3SXnaj_j^Vxvn&CwGXAiB2w40wPc`&kG#sVV%KdwgLQe#`0d)`;4}u2=h{` z-Yub}uXSdD*tG9w?Zjy2_Mk!=WgJMDUswt=2U}+|D%BpM%sa|*s}Fgl8K^YY8U!Bi zvlfRn$5|IKa^PX$pb1tx3y~4~tSzB)hP95ApK{aYTG!JotFXX2k-X)CSr{> zmGauQ)>>elZBVq{+M6XWyu1Pd`m$Sbu&+(H6v(uXHDJMDYkzorvo)B}nZzOVYj20P zS~D2p6e4mJSr#m)T@Ns9g0&u8b-;R+SFX7Xq%OAcpDRhY? zO(253$YM{_t}}?gYGqlbqqZ$Uu>r3FVahe@2D*rey2X?XJ}iK+g8BJj=xw%)_-|O+ zd%m<-_$O0Z{5RC+57=_Ui=_bVUs%OJvDq32i#)R~VDupIf&wC}s|?8i2%Gc)uaw}) zK5J>{|Jk~bnFxUyJOM2rGrw9nCN}i`f*tOc+A_t0mHc~ii%y#2!07-R^9_?bW$ik! zGSK#sWfH1rYXh>z*rhO9VN(bND`6#-Z7kvjkLYY+EUWDi6cOEc>~3oZiWau%K%m9O zGNKTu+HJap!;==4CusCpw>w2`%@|GH8;`hJuy5!{f3UWzy*+FkXIqCu3xB>47>e7pAUfD)f|bkI z&4M`LZ97)P3|u1(>Oj*(4mMdaw% zvMqlclWe=daJyk zt_ikQ`XJj;0Xo)BwV}@xu7t{=HX){{8DZO4kPw6^BW+9%_xwxAgfX^lIKuSfZP^9k z15(1nWN_pJ+XSX%49!z&`TZHT9hlURsWwz zwv@%IJ{WlBv@L+;^WF&IxBM3=_>bILZrXHM*_b;vrWb87CPXi1?8hL=M>h0*iBhcO_i();3v+j*(w%B8F>)5P_q|Vt5C^EmHd_maz@XMQl1)rn}wfv&5X9UQ5jA zW#7aScxZU1z>iYwEpaAP8DL+6opwLfei&!UnxXas_}F8(9WpMl+d#BG3Ka;B;q6*& zU>j#&!Z1UUC+M=)EyX{vPvh!akwte=Kl+~C0_SHY1LjS_+cF?Y& z@jLm5o#lOpe*o5jO;6ij*!hHL{K8(CcPX6s+TM#6{id9q^wo*1`E>9caaQ3~rj>uoWarVRVKAeH4eNZJp`} zrNt)G9O(IPa@NQ>`chpN%yRTE*g&=1k%;*B(80&^9U8=+_o8yKqZ;1@NLuD#cx1$9 zAsD^fkwy)lv)ZS_*xwz){CIVAn;p#=CSP98z_(`(x@0);(D4n~5A1vD zSjvb75!!Nw(G(&o5*g~744BWpItF2jcl_>Pxb_OwKO6^HE{CFagWxcc(-??61C-8a z?4e^?XFYt>8Jz1F6ayF(-2CBCgH(r;`vOb-lWCT0yiXz%ue;81VbWsRl29I8?A_sxm|f7SwlIKyK+EHTcoIdm*^4 zt`kU*F4Y@4x5&})Q%fiM3twB|h1Sjx#0Nf4cBZ1S4|eY5e1Xq5OK~RR`mn$AsuUfk z4Rv0^=erDdZpKG*x)WW(-U{!Ha2~>Vt0p=B!a=zr(^-sREaq*6-r9_o1IL5I1M)jFSj~bp2$FLH}Ka~ zhh#e)V&K?uEIw=noOa2%o+WC$>=a;Jpi2$9JaDPN;**MEu;W$d8kQ0KAAqAk+BPT4 ztyzS!f#3cn-FHeP*hm_X`q;Ve=N*TQl#RY_;0$6J&PZe33+G-T@2LB)*f~si?KCoT znDEYdnR58;qw^4}9W0-nOn;G@*un4(O<}wpBtM*o898j*>Q4`UAtJuFT$Z;As4zLMF#g~;jUdjZwH8AtSqA)YPTHZ zZZCp9zkecp96S)~((y##qd3=20pSEUmvmKRnK=;n9N?(nLYHZ-ginD@D*M0(RrP^a ztL`eyatp)@E(Lcwget*eOT+|tzJafYkBxji9BAUI#N0zx`YR2{Y2!lgvBR{_Q%QF}H;3J_Q^1_9_bwP@^ zUb@`0g64w@{b><$cKR3BdRlDw!&R6pnAC8**nNc>;5V7O5p!r&JdeIwn6^1`DU4IP z6*LZ-sNLSAHEZ2odiQkhMXdeI8vRNJBCm%ULHhMVJ>gZe+fDllvbo2zqQV4^8~xQQ zVkTE%_s#(D=a&w(fv328C4&>`F3SPS#JM#r6Ss4`yC29a>1Nr^pte&$&w1hW3RK_H z?&l&lX?KnpW;yR-+-66&R1@@o%rygCTkt z@QaxDpt*yaVc`P2ST?vN$$f~~JSeDauxYXzeJqT`ld-FNC#z`)R#rFniGs0d-qVd1 zmV`~&6gSHPJKr{!e{(Z!Ir0&n^mCu4Y>p0evus22v62S6i?fVo2qBB#d`wDnZ>Mq7 zbTn(+Y)79ob$?=T5=2Di)2u!-$-SE`P`1Oqlih3|7a#B54qIos(Vs0N;StBNa6oTc zx%)DX;M?Ia;6@)bB;7Zi>t=Z(6&Z0md^^wGh;i7R`?r0^!ewr>@4#%}!4+<_?;yn~ ztK6Y1`wqlxDsT*Nqt9$NdK-{^tQS ze(}V29KuTrqQi(Iz8>oz^PSb5aDQjHtVBBBJ^Zl_KD^-0rX8=p>_#tilit#<`nsrf z-OcoO(s=!Y;?PI#R*XS66`ZXSYJ?k~x*tk;x+`D1 zM=}m1Q$fx|cOa5Mr+wiR~x zayxp{^HPMA9J1E)jA8jf(AMvYvBMhcJ$G3qV1m&8yobN5gZDk*z;W5* z5979ZLS={~cEMuJ)pJg{o+Tz_T%>BdjO^nQR`ikcitC`5IW8gIp(;mo6 z#RiQxJ=sD;CHJ=HWPzv*zUyJy0OeD0{^_}ZseE|oIaeSmD;|58c0c)4wm z^swxh^MOj{d6>372w@Yy^-1{PS&L&O;45pa?11~fc|I^^(+;@ghvzD`#SmfWX*Rd4 z1M345f?+vv=sRW>M!(P#n8lxRRu((pyns-qdoIWsJ78r+=rK${t`0r=^JahuBZy_5 zL+$4IHa_T!G;v{#VJ%bWK9+qB!pa1B&pl+HW9P9ddP27{&QA#Ifky@Q)d?F8t3-#6 zWrjh^e7bwM(?!}D>dS|Y$Ck!33fNi!{gxXLYJ#^bhDI^Y%$X2%@k5Hn{j;@0C$cPw zi0OtmjxG$VGzcAxr#Ld-ooyUC6;CS(zlQ1bKBe8RyJ=ECu|1 zKxijyGgWHnX*96GTf;-2WBKIB|Btn|j*sg2-p409PySQ-T35EFi*CPDfqn{SA(1VEH=lKke|kV5>JC{#ykd zw|nCzt5u-f;T_6g^7aG=DI9b`}JjD`_$mG9m z=IUL==Zes-n~Q@xw5Z`Tse;7qwWkjyGnxtB8GLK|jG=hYa)kW4J~h=e{Rk1A86vo` z&lP<_nd_UXZmi%`O;2_(%ZHK?P*fnUcKpJ=x?leyJ9sqM9@^&mgvnL8ril+_qb{PZ zg`j3Wq%psE_)K%36>^o0YUM-tJ_;brHrOtTk1&ac zS9S3@D03Lt-G`FKK;qETr;y^`mrwKA2&2F8!SxK$s#6D%OaWnjfZKz8K2sWvc=+Hj zpQExK=8f>7d?ZxBs7Cpawz-Ojt;YJ`thCU>iScv}?I!w=2KItO*(4ua1r!{PO!Xn8 zCjo@{jpAJKxq0TX{daJEt`E-ZB9SUMm*<1ijhqvl{@&*nWgv*)Q&_v}KKQ+jeg5^> z?U)7w;PZ0%4Q|k2l@HDwi#I%5?Gt0!8wzSG7r=xfGx&zBX7GXAebVXR-F!rRQEUFe zh6kYY9`g&P>_Zq=5_kszY6I^|9F-M|Y#W#s;*jqO?Xak2m5!cLi zUmai4#Iw+B!5|Ef3+wsf!iykR?JHkgcoD_>e!jTyB8nGOzL{i;DBlnEmB!b>1$jeo zf^R0-7!a>2WEy>O-9?Z)m*$J>E}|IQ*caDbL@~UTugMWsXya>YYA4(J;<}5t;d5tS zTz3)05j}iy-9;25`ugI!izxOO;EU@nqS$zd??6hGVSg`1@?J1^v~RCU%=?!bDXb_( z;m7hP`%+^Imh-w9dNU$6CmQ|o-oD&QX{ zH~Lam6*x2?bTU!Lf|oO!Z13mBN>BLxZB?Ooi?0!N1y(=!{%(!eXW)C>2CqB!`Qibs zGMIM27Y}HaLChgvoI5B3+atcXJW>XgkNFPNoCoIu|1zDKD9UOn|CElUUjf4uO;bZ}*C{cGPNR08@pzND~85IFbF zcO)l}`GML97sJmVeUEV8GQZ51vfGaH*jdN#1c!J~(T`jagKhjshhbjT_bZeZWj^G3)An#|Y*iFjm&^dqgJCsg~byPC!-H zkFr%!5ctWql<9F5$t4=K6ICl1{N*Ta% zsR1#)d1wEwmmi+qE`y)@_!aZ(^nAYy{MxRcAEwH}PJDph9yAuXHOLQ>%#}ga5z_rH zM@si^94*~HVytw3?0D(^zb5*%=J+k9`Hi5&Mp89fzpu(R=ZD*~7neG_vK$xds?2|X z6IT{wQ@I%g%<;R66s486-Lw4M=U>95sN8ve)u~!x1^7ZxeeXAri@ai?-xxCWnCtJI zSz*f{TWP=E$3nkD+~tlb%JX1$g??28*Uzi{GWdupZM`390Zu5%^d?8}+vta@aAojz zvmdU)mBBAt{JxNlE~j&l$NbLTU3dNHw};Xcu)D)go$^ydr;qrBQC8ke2=dOn^C$dp z<*f{~XZ&#Gtqdw&@WYk2GI)8(uQf$V0dLwwCm$9{yWuy9vIh4Ltg5i!nO{DqSoyUd zuEv$Yw;%m*HLeT>R8Zh*Tp2`LE6($)v#kPGSmIy#V7zwUrfFdem5M0Zr(DI`|E@GZph=Vn8J}D5w+MMgE5#cdWFdA*3~7Uc74%kk!qN7Mn-%cq z6`d56SlRRvX9(${Xh#^FF*5>NlCN-MCBe$S1zbCv}cEc7TlSI=>dv!oQl4fRJG+){@kOeOlc+M z2ygdeJ3}gW4_T;{HAfT~q`?bnW&Y^LxE{2!;SBitw4y4~fnI0P_24z^ydr@z2tff0 zrSn#|u1bi1{3;>tzoDp4>7gZ+nPO4E{0omb(e+OhmpIXpPZjvVhaxaOmtN!cQu_Pa zD}@#Lb>)HO>Aw^;cst_#@y_?k2y&$(WKF1Ut=xcUaJZ5ZgUKS8TUokxaa3YZSp*7a zB?gs6@SCghKELmjhw>d^LF)4sm4A4M7Hhx$pe%6yeFmlCU(5ad|p zK(G>Hl_K!gDlt|mfL#tDqqcQev!91ZBgN7^@V)-cd@7Rf^#E z@k-tmz@3Gn}nM!AFBHL#vh20OEBhiSPr(8pXU&eB3;lZQW z#ma^pxzkeROd=8<=9I%2PbgibEZ}h8tW};Q!w33LccP!m0jsA?1wHh2n+|omci@@6IU+hg<-kU1H5%uBzn5`d(7rB=ARs@$zRs zFDv^|4C0$N{(ae~JIZh=Uh8^8d90#DDY{g-oIr^K0s{U{@jQZ!%P-1?5b#)e&YCSA z@8kil&z0en0LTo+5X=s$yjEg1ZLV#Y^-j6ZN-DN{Z!QLWRBo1k{r!`2G9E|c_fD|# zH{IK~qW>}Z2BnQZ-h0s3z6w0H^-q`YO>*?VE@=;fUHx?we~F~WumfS3G)iOy)YSKP zs3O#`wn?bJTr-_@{*)OA4h;z1o6?R=yqw{w-v6^K)}OMRFQ8ne`Q!Hy z+cc~SxPF^e0hYD*UtU45Wx1XF341@83AQf$+}WQL`IaMe>E>T3v#H+Ge=Dt3j$tTd zU0}WZNnvm~o8Z3wnDLNT>imBGlzpk?P!s$6la_hQ5vC6E-z}@A=}>>lcbdwvejVmd z3X;na`i<}(E3>f~?Z3gIiW)V>|G3=Xzn*7TJGcwlJDgK0go5Gv{4QMZA zyoyA|veDc99au?aKPCJy%YTF1@Aa8aZCo;7=_H@J@QL|bQ#$W*UIOO&LbENcUgA&L zbp9{E&}II=6P@kf#rwG2A9vmI2FDJp`d{$MT;orQ`Tr%}{dNAhfl}~VyOC<4e-~7} z*?mX(|-j!{D%;_mwB&LlX$%C1*QA^izzXl&{Vs8fBDGY^^^Vs z$uO8<(1$%+9Jl}u|KhK+W0k8^_5i1w{;6b>7r6#k-^Y$~{^tN!R`R6bG&o=Cub2Dh znh*UO6UUPC#R4RAofa|(_CE8!WhJrQ^1}aHdCU;`hd*U|DWFEX$q-Ne^v9j0VpMVJ zga12%#q4~gI!8I`hvV&TQs`ddq>7-pLKA`YZ}yd(iy?pgH<000KD@Y%koF7?Afh(U*Rs2P(?08j8yp&Toc2} z5CNwb)ca0_$vj?3tCD>tsTLE48zKM>+N`P#11GDTFcIsWa5tDUUG){kw=7?y3Sh1q zRZ;BHY?T+&rZj5CR0G;nVOuo~y;#X?l`WJNs3Ism;y<7Xu{JXSWU;)1s%j84S9P$W zkd|3}uR2c9+&=*8!t4dAlLSX(=G6=^-n(MMivJAvfKO{wWfdfLl{cs;u^wj!SQR%d zQFd$QwM*s3_N4?QNSQ$bid2b`)?n;5)jdj3Zc>}TrmRYu0Hliid(3uzw`zf`wV``e zltJ!4u%x+wDpK_JFPPxtW?t`4swgAf ze*q3Sts(_-|AOg%PK8H%gub*FRFts$Uw~VGR*^!wf5F86q8cXiI(tR6#&UNNbxn0Z z_CHQH$t|2aThR{c!l+xSqcUKVyQ=k;GdzAzMOr8on#=DPkj-8etK@($`LXI-sc&JI zp3z%oIjRWPzJ8&iWT=!}?!U0SU#l?05{CEWjjD*MJ~Jxhyi+-n`%p6s6M}|(P%W0p z-Tp*3mVcqP`K?A9q@oM+A>?SD(^NK+2PXC60un5;YCza8 zm{W%jGwY=XWLQ+c%(Si~FJ#5$2DGjqji9zQ4j3elRKmXwpah(Ma}%c5I6}o10cYge zC~XyhL8uVqU>j5r(PaR(B-$xaKG?>GTS4zG0Uf0JVXQM&TF?(FPjKrMP{mH7r|BQ? zO4fyLZ~&gA7o@)o55O2x6rYX?z;6PG;-GN>8~z84LmYDMInCTI3TBv%v{gYsUCLC5 zXcySu=>fO-Zlr|XW&|F=%klSjg#j3U3(-HX48ZtX6i=@+>*mKz0adAW%d01wx$JcI^BJ zRV^v4rNfB;Olv8K#+(Y6Z_nl)>zKmoTnbo0uzeADmVSKM0D^uApzZpx3e0EMuLMw{ z!B+M?sj+91&2;-sfLBJO`WFhvZu6u~>x5PWp z6YjhZz(Y&Gc6|z<>`mp+452HrydTxJ5d1lyBc-qZ7tGgR0z55;VF=^KK3)lE%RcG@ z-C5780R)Et$nCKWYUsLMAmx-FJ}y_^H}-*~Fpnebatz$Wt7)@y;9-kwDBd-Y6xazd z@($?jp|nciAx>q5N8kyIs6IIx5R zjnxK{j%J#hP}Q(NQm`0&CU63aO$)3q&EqVI3_Na)d^*RGnzRW`0d@(2qy@opgeOUX z*Lh_fO9?zmFkub^C|Cexv|P?2BQx+v&cY^#%z~>|0qb%DNh^NkRN|WiV)9#HADWSj zt{iB7^S}toOsNS0=M>~`s>zFdU)lwZr_7`y;8d~7CmrkD+C7l8om24IGC1)6Io8=_ zVBifx$HpYUI)U!zKe1jzkM&QPTqLAZ z;PT}KJG34#%6YR0dwo92*|j>*i`+msIFzmpd}C_`@Jmr3>GY(~b;+JU>1zjoUpv^$ z#}tC5euqpGT=oPuLO%%|_6L$qPX6O9&R{$!x<_z75{R210sc4|NXd5#2wOr~#l#Mv zyR?ewel0MD5=xm6q$rB{J`HpR^{v3KxstxS6NtNz0h&Gt#9hb$@lOJ~P%KEi<6kS7 z>s|#GP*yPifmIc(DyoNaio@;HxC>i>1NW_{VEmBU6S6fl^ zEsWGl7bqW?+?lFYQM@XuT7+d@u)LAl)5>bIv_ARx_rW1d+eA%0+c^KDw=aA2bg&EH z(aAJxgvC>nTG-k`-Ot*pSUNg6yDc5QyV?&%wNsPak<|$GSeDyCO^HOsv-#cC@@Lyl zbX0$=i1Hlis{Tl@D2@h*HjZLK`0x&C7x2@*>M>laeFmt1qOsTu^#-XOD83z8?1dUb z)o&{x0q1Ykgs=(_ql^-e<8w>PkBu@sHmYD-kE`9-iB^g*sg&_7$Qg!CR7W`>J>E^g z={f4kyvi=mS5qQ&(>tA^=l5z-kY0|kaiRJQQh^~$)%|Vo`gEllb1N0&cc0XlTd5cZ zt>u2L7^2pzeffQzH>qD>JwwxNY7NC@nBUCs&G@0g4(hh-TBo3@hKK3_z4Q6M!Ck_& zz1nxnSBGgrHC^;!+D_rRu=ZMAcn580Nc&KoP7~58I3!3H)TKj6a8MV$mLcYjzpv`* z_o^{@3bybAYQo7&4!0K$A5@bfeDQGqBkE(EfZ>>$a{N+Yd_1luMfc+2ZKu@tIf40S z)z_%4vGsX1DW(?$M*gh6%?Y&qMSYb@py3rYDUufiu3l5G;{?XsP@km|h`6PG#+#|) zu9|X&S@8Jnp87S%xcX3CLgg{VrBY~wX78DJn#u5HPy_37>=YLR}g+TL%y>Hc| z)Ji5kO8D-*8bjq`*71{?l5@KpDEPDb5oLPOjIgsx5T4R5X3r`FS;l0Kbr98I2(>C< zh+WWCP9?W;5YgOZpqh?Bo$0>$`XeWP6cuxG^N(R1a}Rn<8Pf>`=XVXl1tr`RD`CB> z6Lgpo-3qLd$G*6inSTtUnlk7R8K$(8ABxw;&lApSgC5wSxavCg z;W5`@*zs);2AIV#c1#ckn8na{LQny*h4lOPH}Wb?586fvFa=dpuv!(SE)BwCuEp@z ziXaRyi=ofPAPg{zq00|J7+@Ad(9R$+5c_ji5C)jV;J-fz1I%LBcsK|H%wp(%JO~5K zV)*_{5C)jVFs3A^Cvix>l(n0#wENpG*uX16q`W-Byj&M5?fGZ8d%)&fL5W1IFNK4@ z1^Eyi(KwdVUtJq^Jr4@v4gQtBrU(4>Ht0`ctRca%^f4M|xbPw91lRV$&q3pPEnqNM z#;lI0o@FnFZPkKTdsu*kN9F>8E3+<+ zgK9!_K=4CblkYTWf)7}tN(mTFgau#Xs$3EgJe{l1KQ`FNRoE}tG8GE=N~~47MS7G_ z;MDj?^s?n4=7G`w`?%-hcUYg~I=od^`kr9jG1+`uUu_66~cN3VzRe2S| zV)g`Q!t(*aq)l;V1cnG+Y{~23wyfTeV9NJAOi<&c$%Le#!C&D9h!aiR*su}7A1sh= z8uT3%+=$YVnJD#vW#0u4uEG`;Ht_)eg~2WrC1UAIg4bCHUD%l>D%n(2(!)w>t#0AF9cI|-;`s)#o%X_G`ML{csckF zxu#ZK3;x+61MYV{m^9B(E|2b3@Lris#XG^rEn;)*Zm^Z?d#^qSK4}rwl1IU|GS-f# z!IXU+{u8#a zl*Ox{2ze^=`r;pQ#_}q>7!Wd&5?}t!w6+C1{(G;;I&FwIWnX+b>ddRbf1d_x7#mWR zGCNWZxVd$M>I@UG$;rT1WrPf~3^1>4NKNo)5%QyDFhw0h>cQ#GA_6?Ee z==OgT;$bfhy&nw=8DN<|Gr>yJbL`64kiQ*fXG_O~1hA5y0#(p*R7j~bIEC~HA-gG) zDCM%0O%8E~w^KuASCGV5JR@YGWnu_K-`OU&4C(Vi4q1uL4C*j*@x}Kcm~DuUuwnDU zkav{rK;=TXZVai)K5q%JgT?DilCX(uL)=+u_YhCW-x#vUGMCO@0QiC`lK+HyKbQr1 zy~A8Qy2~un*dIg2P$u2VWvb^9QWw6Q3~6X9RZLh(2(zqWI3hztJGgK$BtVwLOTQ)x26*F=7u!Xz^p?DZXhO{mW>W2t!tHA=ctD`=Ta|T-4mKl3hhO%7tRfq%?!Ozjdfmh zunsFcqV;D#t_h_aV-yp4v2|W~vh!<0|0E28zIh*-2Vbubtw4#6_`}S}OY6lBL~Giz z)U}~i*|QEB%6JE%da>vqL*=As>03e{SzFy_njN7hXi^EZx&S*vpHN1doDU$MgB6g) zm*UWk7P08OH?#w#doXFGE{r`8iswG=Gxgz6N}_>sAa*2_^eMw~guG*+D>#*kCoR-U z_fw&iTsllp*?c3k5>w2ra7|SJ`AnHRkZ&}C?zq338*f3KMf`A zC_#kpq$&EDuR_1&R2<)iZlzVwO!)R)C}rjrkcB;e_wY}lTd41T@>l2zO5cR<{ssao zYUZPL!cR6DYogcf%?_M@Y!CUBHJ6FbO+sLZfG5iZu4RLNvu~`!US|`l`D^!qZ zO7ro57kiipPJC>LVvAh8wc{%YjzL? z1f)gE5Q!`XLTQX+R`!$iO1W}F12;<;Db4`6hy9a#ze%S|kz;CTIv1Az*chopBr^;FlbL^mb zLR2UqO0vl(vTGe=?*rbQH9aVCfY9!N9vWMgUsXEI;gI{=(z1fsuk~ix-g5=FODj+K9V55mrLufHZLpsB4Mqr45oA-Ex(Q+1Qe#1Bo zWrk4TxlY#jiy;U@FSY~p6EstJTRZxlrkG$FLPH3NTc+-_57RWH+{C=@5F-=@%+OGW zRigGiSpFi7mwAAN=ZT)p)y(ALjbLQ)xLFBcU$9v~^KYh#^Z?|C-^snte3oh`n@-F? zTu@)wyi9Y6;uih^W6!#O)YO8EHJW`EVZqi-nh=7gy&g11Sb!ByuZH#q77$qoJk-x;p|tO=!rg#Uo? z`rGi%;WBl2S1vZ?AefmD9Js3K#I^O+4eBsRW`aOCfAgqfC0KS-8rtRFp$_f-1_=l6 zYSvI9B_U$zu@}|Z`9DmfR}4MTGsZj?M#oP7P8Zn(To~)c#^>;I7u%G)s6^hf0;T4Jpps#H>18bI`_^J!62AmRaJ;T%bo)?JVvT|Ei`P zO#fD?Orp5b zS4;YqP5V*WMy$YJYs<>KYgJ->1GR1wv`N%-Bg=Tg=x`Di{EPzrnR}1cByP-t=np=%f<0|+Iv>g z4MRF;Uzm!Wv}xATuNS*%9c2~0?5S-f|JpiVyGq7&8>IE3tW%)k-V(&x#WWf(e{FcbF}zLpKr(7ctGEIS~o%q286Y-W}~OuRDlzVw2NgE7+9!%PMM5H zwAS!)l{TEH>eiTCUhB%fXlgNNy;h5PHHC26_1gWiMOtssE|W>__(6*+z{38QgZ8e2 z)h5Y@&+MZ0VXuzReRzrAD>pcPRNJNkD;zh{4YbF#pD6+zQogFkV*kL9BK173{*|26 zQl_fRC}4Y9dz4ZuW(3ZIG6)s`TU~UiQrJAJMBAgHPz`guq+Ld62`0cskoAjpD`gO1 zk|_eF+|agkXKU__^ned9w1cENW20Yd`x1!(R@rz<>N}1_Sn1rL>sxI+W$%PZGyy~D zPfglQ6$b(4SE*|aLo4WNTT4~8##T3FOX}+8 zS;Xd&mu|OZY}5_RY<~F4LN-slb)Y7UjY)<>@@PjM7hhP~&x&o?#5HJs> z2kR;jx^KoQ0U}(JYwDCvM;RxXB+CPra9uQ&2os`|8FV;E7HSz2rJG}sT7HVw4V1Cc z<8<9D!s-;S`%T7bnPg#gEi&p3lI>Y&$uU*eQf4zaT{qJr$sj{lMhS0BwH^;CjdeRI z0kjE0!}_++Il%N*y2Td3Kv73s3-WLP6{}%OPQ9oM^LyxSSW-U{4ExKkSu&*b)}5~) zjW1OBy7@Nqm7}V_rGdJiq_z(mhUuP3qaj!~QrCyF=u)o6l1aKMuz9kMv|-_2FrL$N z5jLVBLYG;(w`2>!;gBnPncA!#++ez2$!ayh^n|esb@7z#2tqy+j4Nx~xLFh{ovgEk zAuDw&E#@TvU0~5_ohR9b1-ZgD&C(!mvyQZtqg+OWsSTsH=)x?nI9JxETQdh%r%SUy z$lIw~{y$I^0%pK|&{ZUp6ODD$UY#>E*{36=x+ynz0kivn&Pz7;$47Of`JQsbt!FS_ zN2k-e3uIjh`8W)7F6w9t=g;bD$n4(#tn+oS`oiK46xL-0$_lQKbxWtDbh=_+Yu>Ll zeBpViZmKQYK47c7Q8v3#EgQDpJJXjvd#IyKX1d*S@?=Gibd)_cc^+XQY)ag$q!ax?v^p>Y#oOCX0Na+c43Q%N&!@HXUkZG zID`%4EY>-NQ3gci3c2hYMj1r_B5bRQ1gu`P@&I3D*g?u{3xYI<{J^lmhy;(~!!Y&V z71(JE3w6TlOmGBzXAbe>RqWBP_4e!irM=V$GP7Oay zl^Skmh41!2Itx05=c6xx%00r>wnSPiKVqCSY|IZ2sA=N%Y;rhh{3dFI!!hOee$H&| z(r{c#H=9KOq{ zP?|iwdog?s0Svo~YH8}$N)(>jL>ih9(n;Ne#Bs3I3;9P>9H2o(YRvPt#IDzFU`V~|H z4^s7%z!i|dQU2~-S^6c^cfZTlA0ygNKWNuP-;NVF(2TDA3eEMGC<8O0{h_V&ojHNq zZRqw_zn%Uf+5T92Ndtd&q-(&?S$~&I;6PV>Z?1uW9&`=#?Wy0(F;so@W2ttO+gFcY z?)Q*z9}aVIz&(TrnMl@Z>atOnZT#v5`o;2dP?Xf2+SU( zKSyW`Fl($HKUh@AvM11mpD|HSnl%>0Uro|?=LA|!rMtnxY5H?y?Yqs?=WqfYX3>4& zirMG4f_~ZeoPIVJ zqPT=^ixqy>cOjdC!!P;~oWSHOdP>MF+`-RR_1(w>ZeG_f;RJ@?qG$keZ|gsj-~Ifq zemQ@4!EgF?R1>=XKtF^`;N4^W08XIiQ+jW(^_l(}*%_-|>eq7umtX5CIVnW-`@XTD zL;n7qzK|2pf1r2*aQmnyt@I1xum6&ULtDS-DTx+1#x5(vZL;#mRy5$}M+#Y*tzjG0 z{Fd4o9+C<8RW_7x0v{X=KTru|I~(ZcciPo}pC2h?Tip$mU4^0+D|;C3kTo!)y5ToY zV1TEgn5uybwG0o*9-x(%0nhCfvft|)$ip#hL&LWmW4pJ3+!J2%F*M{o;d_N)162`8 z{)Qvun%Ed1HHQ8{2FhHfFojdWhNi?B!+vl$T&jsi5e9NkxG2&<%B3mTw}>%($E)#9 z9NiTB6AX7bhO^Nyo?4CCWCMODtdIqz8&**<24@)Na2^iX2Ffa!&_`5`ILr_}b8f3o*NefwE>RFwVC${6=mQU$-#~;RH(B83@ysusqMOg6xS{Pl7XE&BN&EU<2J%eJkluz>T!=dP21<4y$qK$PT;>>62N=jxR*eQ4 z=rcyw2ODrjxsc@!Gc2dJgL%UZq;qr2=NkG+hv;i9G?ubkV-0pNVyvMX=ks8^ffB$Y zg(@ZGI(2bm#& z>ya-}v8xLV?rd~ly(hd{Y#>cEb4=E3kI@<0Ei;r@;|fsFDuXqVT~jt{oWTi>uQ!aR zARIbi$bmCk45TA8{9%R<*MKG445vwZ><$<@uo+j3BVp(sLv_N+A0US}Xcw^Sh#{7A z{NaEhmpNZBRA#Js?LfBmyx|6+=^~3yM2Hb{J2!+=TcKq*kcMSWSXrMXl zX4Pa@_94=(6SRD3*ujm(<*mV&(piYwLbz&h_D@4S%IJ$DK%X*$FQuyxuWwr?dC|^o z5%zW{#~!0yGgX2pTZ~IKl>P#AG39XC?(FmSRH#joqCCQy& z^~i`nDKLVF^ZH~*P<$7WO=$@xgeu@LCE_`^wU5&xN_cZPJtLwLSNEk^5ej}Sn;Y?v zEA7F8h%1yVOtXONeCJTAi@b;w?^3F{tc+UlWqlo zNR7!gx9?~~6_&F&%AM`65!nM89E|X!iUf#d#a+jNQxQWvsI9}xHU%?Yltwf~4KwfG zBF0+)R0onDM11CylAcBMCRuBu93M>?);mmSG1IIl@0$*c3W00^WZTd-HBNC$>} z3l6QDMGS1q$_S=1KpxX7yh?#Nu*yLy!I`Q zyv3i-+8cSFsuz}hB+>~E9*T6P4&ML~+HyN7IuR*GI*U$4db|AhmH@A=MQ)>zz~?%$ zC7)9^!QC5?2f3nFK90P?6*K(zNc^}t4sf1Dp5@oSo<}AUw*JC5R#D$knBjAs*o?0t zy1*Y5qpoosowbh=%vL)@31-cmqVO}Ug%Iu%u&)u9kI z!EA@lwWD^|{_mB?1j2?^snKvxAEh93Km=Dd^1D({ ztBFyV48LdcoxIc9<++G}Y-2rLrSr_HUo!tG6QIk2nK3k(6@TzXQFKRLW{q@19 z8T|J#KSfQZbnml@qFb`juTl>|v-45yDU$#u1b5bVVw5ekx*jDW)0mr4yLqJg;eOPf z%6Q%RBI=AYUdNV2-QmPLRfzt=_1?)Qx?2^zo~<4|fGmKke{^+r;B=ZhtC^TK2}ahB zwxi_2;i3Ryz2nAd7ZCl16aFhAdZrUzr=>fSk)=oS;UpXf;=RO8;o#LF)~S#?Rdr!i~Yv&#c@Ft^e=;rrG!F z+@(|B-tD{hncKsC2OCoy8451LqCaz?oxY7e$gk%{M0@k$+M99FzFY~lXGh;dp?A%X zcH*)-FNl828;SL@=+Q*k2lM)x0Nd6@Zy`jafMOrz44UnT<~z;c*skbLocQ4%CE}0v zM@MtwzGtI<=ZxJiL}RY_LI}PT{eeH{|0|6-w$K*y?b7GN>3h-LDWeG)pg!Dw6ukhq zi^I^rq62Z91nX>KzM|-o1F{w&>C@n@bIb`IGi-E^p^UgpK+de>hS3&IRE>GeHM_lf zOgN#2n1I_7mp%h3)Qzb|RTV=7H~67JOaZUGM4y;_-1}7sjakP3UZIQmlZ;%Dm!1qg zB4bF2@`QAVP!ocpV;m?ml!(v>_NT`*B`UWO!-uP~zJtw6C+F+RN3 z&V7ifz^@lR#aQ#}<mEA&Bu5jtH#zQ$JJAtXSg!Y3kG*6R>u01 z17n1#2H%Fn@(ul<*T(92&zK(>`@JL8p3n5nm=4v_VnZliM_36WIKkzt*f*Th>D*W` z&9}I5>^W|KJ-?1!=}P1VGrPt9#NB_>-m#QrV8ISC9HCvGSo~f_A$aA-{z(}T3Z%4^ z8FN56B9=TA!4Sa#tjES~=bC{Dv3self!*Gdu^E=ni(SOsS=6G~sYDfXAUD?TNCtlC zY;o*IUW2Wc#l~{0TD&IqFN)_7bI>^(W9`9rb8H)mJ2V}wtO;N3ip6hW{xZ=kh0Qx1 zyN)0vKO4&MY^d}6x3QJk;xn;N2_Q(Q20m|KMVDi3*~7=Ws^EPt)|M!n8H%zwMW&J` zWr4D}8k=py>M<`j*7;^^5nZ%yaP(H}S&Dy^33Y?`JF&YfNL(E6$5K*MnxUHh7HdbD z$u|QyJ&N5Vb2;@ScAh1AaeW$l-XgseJdedRZ=#Nxy^5t|zcY)q zw32=u<{NiPE;d!ft&xk4{&7We@w6)L1Et@VrH^3KZ@s9=3^{QjFefA~%>r>HC>W-R zYilnQ3D2V9!Ytwz^n0ua?2C^ZVi7HYaxO7$qOC-$JLYn;h}Pa$vDHAI6F1xXMZ4LJe`72=31`s&NAKk8#DsaY%Lc$ANkcSl-QW93UTxQ(IYG zf|-Zo7TB^?Ws6c+{>iw#7Ev30D$avqZ@IPOyRdpb@$yK^cqZ;Z1*>;pdp_=4%1Vg| zt`e(sA+9>}EKX?4M!$`7hxNb4HKcd~0T}yRoSZjf`t7)`)>iM>+k0`84e%Td5Dh=? z@s6#26h}$cU}97ko<5Fyz{y;E9=D26dF4Q=mvP@vOdS!rvYDUav{JU_k?-QpbHTDc z#;vFE=?aKe(T?~qr{V>v72|JH5#XRhd>$c!1=K`c(v2=-l%xL%6OeTIsS+( z|Ggl-7rz$Ij}NfH>!U^S{joNo^|E*)5`vX0-?^#Q%TwruaIQ@OorNd{2t; zAk#6dv^bs;?2Bhz_Qq3u7Jn8-?29*0+?9B^`+;~p@!_$o>7n>p1pCGpk7WxE#~=Ui z&jLPMi^><;{S;r(4y(E2nRv`4_ztFCi4Wjru>05e->vYv`bIpiy1#?|x8lEuYiYcW z|Nn-2@wklv&FQ!JH~jZ4596;{xxf4O3eL+9>{XBWM7aGpz6-zI_%!|qzgB(`j|)HV z;MlA9bNo8*O?(u$!i(?Yzv1vnf5kiVYm+bWPW=BnSS7^p>xzmAzwAonh7{Dg72%HaE)L4dL_K)*KQ3G z@C@2J$ns7&#;+cJ3Am%}9mM!2;FojX!QQ|GJAOSHEWJNPo1o@@4+&4O;`a|TBnWkN ziA+f0zi)|2aO1xpic7f3-@7a!;Spu{;&wM-AOxf*9CDK#2(!&haA&a#6FecPO+q%l zgN<&N@a=y$8^)m-LRVt3-4bw;J})61{R8`}O9CaXHKPHd`F({Vcb}H<3wIi#XG`N$n|G)D9#Mp>7 z$M!v-8v7;)dXzAmV;p&!aPq%X;LUFnbbp?ZNSOo@4^Md|d=|@plW>Si!1-N*vmNc> z8LV`KlLLF%GZE7QS5F)ay~`4K*CCB_wpb;)aP1thNhBJ*z^?=i>=Hc@6{0F9`f&Hr z$tBT1WIT*H4gcuKPM)!;3CMV%nQWa}iJ$l%HN6svEklMjTyu3?n_n-H6aJ=QA|8!; z2eo_?akcXuR97X=qYR|5u7|O@_g=WN^M1|oBjh28(b%I%T0Rn*Set9PG%S(Wl**xP zS&*)|EyU{+9XRc*$i((s-&^An_mFAVD@|}@(X)p2Vlz?_ubWtpOigUgSzpOaBz85! zm_QD^@vSq2WG99=A<@pQ6HjsCL3xRFIPt8`iN8>Y9~zLj0G{tLJk7@fEr%zz;RJsiow$WKCK$v@hJW;6RWBH7Lgb`GK7x~|Hkp~Y zjZ?LqOEm}y8rsZD4B?~;79{rMWdB;4Seak#RwYLB@uG2KVmSYM)Yio56d^=xnZGl! zG893gAEzwBqu=)=)}%N@GaN%WJJ`HG@drNqYJVv45?8tINa9%{OEG;R%{RdAQ;9`R zR`b|5YeG}mwyTL2P4}?EMz7r1PF2(Xto1M9PV*}#IkTK!6WbHK@vQu$=3uy|O(M>}3ZGjTdiY2~Q+UAhls zrTrad_NT<5veIgoC4OfKFFBSzBKv)MmQldUaLw;7$M7d(@a+8SijD|*yl1RyPg#de-Bu$YyeEoG2Wr#0e zRy9we zyGN4AXD9Tg+vM~iwC3==dqiLzxy)a#&eNu(sZ;$fSKN!?`*qb4O$;w%AkY;qDQYl?Wd%``KI zD>ITP+lT~Ay@Di4s$I!RESrs2n=(P9i1W6&%X;nmH^#K;Z!298Bs#IL;=u$Z1E-E%L8p z^cI^azNVYCcOtOx<%^6;ZP|Lm_&uVzell2$+l8{!yzG61??Us&5|`~^?MQ_+ndCp z(bFVSDqdljJzpeklQ{&urt4wEA4!wQdf4?Y33s`Qy7=}((h90N&ws?AlKSxb&nST4 zFmINT9A4bAGLjObimK>lZQLiTL1$;AY*-gCGbMs&Or~Mt}1#lG5}FB@V1%ye@NSU(2|W%3)t^BYi}j;bk-pqv9GEH&Zz* zYiNN@DtwIZWj%x_jFgPULY;G!MpC|B@vu*T@q^4ED9A|JCnsR$1sfld-9v!ZxKieD zCyd@MLiNV>GR*1-Bf0PVDbg4wcV14hM#^SAp^*-8MpEux@$lsYa|=0aG!l-F!183{ zFO)?R@p|8EbA?>bHIn;IRbwM5c`pt~$H0fC#)Wciu4+yjKrw|GiY6SxYT$?#yh%#>K-M$ zU8{`OWvHiXslM%R)DqSk*UNaHH&I*V-|%vZj18%aVXWSR7nQ+vhjF5{wCK3;N24pT zt#=S$48d%n?H=Q0sXu_EgGOgEy_ZLfF6_j5Lq}+S%t%`C&#jfxgeUhkvaV;0?+K08 z1WTR7T5?Py2IC3l3P-21UWTlBkyAy zD9=m$)9vISVxwvfi1k^v{Ao{;$5Qh02u^_yFv%>YChi2zRw;Ipo|unK3MGU$0pk8z z+Z0>5b876AGMH#t-PysobUBIhooXpD1Z4qo8Y#Q!()uaiR-^SA%~?criknDOEajB$ zuP4!ATt$FbTWU%D^`{mo%}8}OI3{#5$cI6Mqs&t&4iRqvIjdnDdhvXZ@`qr>6L|++2R!`lzB?d2{2*tB-x89R;MhL zd#$T$Qyk^u+x01(WxhQ(ryP@hT^qkO#Zju_#(Pt~$N(Mpr_`t;{W|S>$~pPho;On- zkyXaC7&FXb9LU`7r97ZncN3lqxj($RpJFAul!{MMOk=H=zo#f%sJP4YQMRn$bBYri zUS1=;9-yQ*GzID{8=ViX1gHmgf4*2t?BQ(wPAp_<^&LuM!N=BG@ zbu6gzM0nIHRc#4}YJW?G+_r71wW#tcFra7ZFyug{|9U$=HKQt#Ibd33 z(ivvqy6|CF!2HdpDoNJaq9FCAOe%SH>S0n$mXOwly;z4Sq0Nbr0TUz7C2b->EI_RB zveO#BF}0T5Yi!+;dRaD6wlnn=C9IvrnRZ_oWq_Q0skC#|oZpB2sWW7!`TgnC8nRP8 zbS`zMOf~&t>Sg(ckkZs?@(t(jrH+(uX!|I24rQ=`0(52v-HkRZ>w1)(r0+fFq835i z>(s%N$&r5mIze7p>OILCb~Z^{FOQ6zE2Zs_Iw-hUC2cPzY2^`oVg0lVvS4Gq(_YB+ zHP$aJyNYzfT|?SPf{cKa0x0eUpBo6BveItL=G-JF?Y_)4wO!gM*&AQ$m3B?0eI!5a zi%k1s|Fn$`6789z()tl-GkkqpD43L%O*G853?Hs3WwM?=Gfgck|LpuUQ}40*`?QTR z-}Z~rOszJ1Nm_{f>+EG|TV>%JFHiH3hm%9srd5~quzY9QMOpX>yVE|)kImVe_M6;4(Dz@a$@AGz@+QqmmjC&mX^&;FN1w?;x7lTvUY96e8%*Y0 zpJ6U$Te#?$K1Vuu0E6qL*R_`{ag8F~n^+lb0Mjz}kmO^R!qO?DN;K#;Ji9Zhktb#T zEj<0PY%sSY(&MQ@17=k&ri>y59g&i`QgV8MT#M_|(l^VFw(HmFGv#0HTBVa_fr2}v z4`Pv#F@bO;FP-v<1VDssl<8j-t{G3N{3F!=CjAGZdIUmMz_iSdh-(kW}{Vtj-!RblG-^lGv#ZQqpcK(TcJR-Tu6^!D@yw>&a4BOuWtPlsZe}MayO9x4OIjL_eV?&LvO4zX$BfYg^GC!U zQ01?T5frC`4-e-DLtP-PEMvdyJ!)3UoFFT1i$mrNQLF;lE|~-6Uw^5RImM*eYMJBZ zqK#+fV7WNGPUdR4m{31+q};52ZkYM2o8(;gX)_Du3h5J-c~mYYBxO#Mi=`Qv+vVcQ zCYc-LV%yf4^W>s+r_A?q(W#gD6^r|17FU%t+jCszO&h7$W^!hztthhO8JY4~;-6<` zI#WCbs_Y%1n(A-O93dTmJvlGaSvK)Ui!v!YhY)K5XqIFirBu0ixM*4CDB0|ySI{|3 zS(#Zv=HR*}v!Bdi&brK*G@VX>tLrl}D633D55I0Qb7-?AbIyO~00`5X{QA%zGUYjB zc6VpylK=jCCZy0p<~lNmImMZ#jljwKGAa8`1&1a3GfA82#KRtkG7Dr=*mWe6awc5B z*!-0FNpd^P?PMlp2bzHCa4PdhvN}u7W}5c;Z!gJQO|4R=pEHk>IZXK_^9Na-SywYD z``&~eR$j|oN$D!_;jVD2G;@xezd=zd`P^Et<9;UT3@Arrh**i`&9}7$&xe^K-1g(KTMuyaku-e-C+<^CpafF;zZ$e_{gQ|23@ z&y%p>+2_o2QuXXSleJK$JlHl%DHpdpWbLI)>vHz+mrGVUnI1lD54YU14%h)dRNA)V`A1|N{yK~Y1pWG!)t>+C2Inu(fyA9kdeSb-j{+;`Z=F0mgXP?{ zbB8OPvo>i7e$xcg2qG3|^_2YsEX#T0nF8$K}K``g2;EAn9X?2D|U{{tmAdzbZ$vZ`0E~piJDSNccY;g>gu>tBf&#q>fMxG8dYoyyyvqm}$&;BBtUB5Zmv9d;vd~cR= z>_W4Y{)^30K3kH#P}a!ztIYR)y~cF!u65>H53kR@C@W;mw(JR%uoSCRq%iY>i@UQ^ zt67yw3HdvfWET@!qB$Wy+dA-7byjz3h4$>pg>1@Mkvrey^Z>7m*{>;~8a_OZ`P@lt z%epnoagUgGKs}&$KL0nkOSraI`)>K_FiohYi#|--DO?xUUaJf5pbZUaAF9)7LOKP9 z1nGjhbO;F!>Y~@eH`lUz+OVy2+PJZ2x3Uitl!6G;nCnorJq#?(_Mo_V3E@%2N|1do zdus)Wjq8JKN?MR|tlkf^Cs&lP?0(OlN0yB9YX6kC0HLLuFS1uygq8Rzd!>X0@84wC zq|`qOIf&i9nPUt4KV5LWk0LPe$=-0*cq6!%2r4U_iS@=CDVW; z$DB{{uet6yU)f1FO!UkNvzChI>gHev!4(A4y>lGwd9ey?2+X-oNsf=~I;pdazJ zvbrq!#H{`~lptC7#63e_Rc0{*a*h*P#;DmjK`gvk4^J2~FlRPp?Oq_*wd&!_7LCst z%SMdLabZ9H8n>MVjLorwGh=dEQO2-{+ESX>IyNB(JABud3O80~YR(Lrj2$3)S`I0t zGZN_l9y48-qcJP{g6;^r^?Fb#^p}OqqHl+tUu_wo!6+X-HgpSv9>?vKI z85o ztzD(!lL@(688>J~ZYO)`*VQaH)m%JuC}f{Zg(;eYbzf9U}|>&Gp>%QgN;Som@Lfp2$bJxB)__44&nl zr3^hyRqVz}zt8bvL#nsO4>P>W9a&kjp{{RpB^%oLve6Z?h-jV?KD4lDG{Rb9{LsFU zqfFk~rO|!4WB))TaqcxOebre5{ znVhm4)5JB}Wwl4@X}pT-1+u*OMuYyl7h_{oO}*IXqL=odPG~fgFnF5tYN0zkO>WfG z%4H9JlcYy$yZ`&YHgo;5{y)~fIzFo0UH?wqy`=(ead&rEU~yX7PTOfa)|t9Z-5qyr zaEdz=YjAhh1r~RQ7TCq%m*ixoyZ3wV@AKiE`&TlVbDlh}L{3i5n@KKcdWf>ts;I$! zrl`Gt*dVmY*AMcLz!)avlIMd9BmLe3L~Pr`-x($4Ry!cM%C95#_4n%q>0fs+?h8C>!vq#+m{U9$P{{=b>OM?7v8KPb@!|c)Tp?>@I6?Pb26Xqua%w&*`7bZG$ zF+ujRVa|9$jNeztQOY(KK^n#zl3=K5VX7P5K8ek6z=E43Kq zNA_s5?B3CSa(-LOnSS;7wTd}@NBISv=J}lljAu2nGXJPCEIG^9ZwW+R=CR&+#NigN z_InO9q91CtjX0QaYVKOUF_39L(K~~IJWrE*Ly^}(zZSS?yI)U8f2~F6K+cHrbAj~8 z6af!3GN0XpCbNBs10Ht54-|y2Mg zJ74pws~>{vO}~whXTlmKj=AsGNIwqokNxUFo`@KSpLx};sI{xV8y;HaHv`-xv@j+} zVeDsuCx7x2dBOUKP_*EPpA#zjL`K-cT1rPe$kkr~?Coo?tg+b3e_icgr-X@?1^~62 zDk#Hyp#Sd1zg{!#!b8!fOMdRip<5kyJU_|*AdrXvgAH>12ekzf!GEmx4~KlZL8ZV) z_W5rg3a#1LGN2SV1cqX#S^>_G_bG%n8)m%F>0to}Q0d{0gV5#S0eb*KkddX~g`I-p)@QuDHp0nTWgPkFoFASiZnet*(2MqfU_`Z5VE67sOzNxe?TTDgabl~Ofz%ruLw9|Ah2no3V?*o zVpxn#nL5A=s9+*bpRVS3OjH1Q+0Aql5gV`!s2hACF2EJ=6oaTJxIzewWe1V9#GYrN%VDe*kLh@Ghm7}s-@}Vj5n1BfaaML2N4`I^868Lf|Hj8 zs07jQ;}rphKxd9ewZ#GCJF)cvWHq8NxD`IUHXst%UkF&3V68M4M4ea}a0xP(BcjSt zMNwoOY_T_>gCPS$&-Vs6BD<>r?zrec0AvY*HeL?9@@N2wZ$^6&yyQf{6_Jn~b1Hy* z0m@3HX9CFk7?yRo91v?HWG7z>*bAA^v5LJ)s=d&}sBky5H6_3cy~tNs<6idymKh7; z-MFU}ul|z&P{`z(TE5OFXX^BSu5*wbF9S-!c2Hy!l|QZym}w*!b@JZFY=XbJihFWBj;JHv3DzS;!~~ISb7b^<>We1=J0~`Cc`iC6EE3LZ zF0TCbE*Fy-8E9YD{hh%w)bx3n6CT(~400=ikcswx4wRw&ZN-oc7xyaygVBiIVsh4* zw7wIb+D`nzh-hO}XYtWrR|L|cdE%-rV$idE4Z_;);yeRFrExDYWZFf6FcGW>;$<}~ z(ti`Lr7XM$h#^y*8lbq}#fA_cB?uC9Zvi=IiW#WgaPcu?!soM}cq7a}46PNG2Z)V< zs^JK=gT&cXHDwYpWOuMuuvYkah!_+Wy#^siDn3D}^izl-halDftx}37>!+1hYC$WJ zQDVq!w1&$5XmNf0sLYEKle1F~p_Pf^y?XhIhem7$8TkcarifipZfH{yZD>Y;v;$~qpqz zSA4}nbO;Z9AwC6paA(c1e2dr~SG*Pfq(~KC#6R>xLQ~hjti3%VaG)hY+h7?u4)O*? z%gYUIni*t*@7M-*1KW&<$6!2=bfwA^-?k4lqg@RfG{3k6b~YhA+tmr22iYW{A1`!zJ%BF!Hbi%=CwrLS~nQ+EN?E>v->e4yTgN$dmUH8COkmdJc zao~WmA!Lxgg*vsumj(vzfUu@0l|urbK@>;s4ZsQhfe!%{V{-FO$Q+6i#ud`QXMjo( zy%~|4tx(~nPW`Y{5!f3t@G+Rg=s-(cCo=FRln5pWpvQFPuzf~~-SNVtz#K^RH3++t z1Jg*C!CVw&FyjyW?$R0wc_br@BuKJVHJ9?ySHwB9g8z3tUXg zhb<0lPs@vz2R&JZKPYv^#x*z>Stxhe>rm z0ezOBV=ZADoZ%l-O6C6&6eOnotFI#H8#UqZ@Sv|W9jp%8XiCygaY15w-3U$4P_TRJ zszsz)dtvRgB0UJWb}B&xueIjU1)+yV=LSKa2QfiA0d_8Ob7wrbD5!!O_e)98 z7HE5AKnbIQa`dCJdTh{FN@e+kpyPT`X)!72hCT-8GxCkogJk-+s~aX0`?tgsg^pnB z{GdGQmTi^=y{2yIxjN_&{e6E^&^hY16`O-J<|M7VJE#`w{Hq*D2T=CAlRzqC%^T5x7&+;Ca-l7uyAI2dkc7zN0;zVejB9 zN;I#3@G0st1Ah-b&P*^O*pw2l91};Gwt3x~e(qQygrB$s74xu+LB!OkhHZ zI)%1UF)sLu9bq?mZtw^Cn4hyESWQ{qT^oE65Mc|GS8vxuqIIb4-tE?+I>z7F`N% zhZajECMY3Y>V#MB3kL1<`WF`Yy5wLmWIMkWMIsEF+Ybe|GA4R_bUgU59`Y%%^klFl zq(y4^D6!|6;N1p<%AexE#@8C{eLCdRr%StMT#UZ@v~BYyd>RQlm7Pl6SY-k=8I%(LL0hC~=Pa(ccBzD~Rjf24-qd zDaaGAmJaK(PouwHH5`Pt$Rx`Foq_O`%@98u^zr9>TjcXI&JJIeQ~HPTGNmNbh@>8o zl8J^ST@@p_Mbl9UlFg8QRJle{8<%J#Q6hBjb3+^aF>T|6}e^zCr?tM#(rlUnv;~ z;DE`^)<#10g&QO%psw&`qa+(pJ!0G&ZIQgwe5Kl+C30o#%ypk=ND+{rU~NSU?PppE@PMsZ>G z1nVT26%wK~XeUL8)}TL?AzFjpjSA5kbVUqdB}khR7os(2-Gq=u-1rw#Lbg~77tAaQ z`9rvNRZdBW(7N!%Q6YQzrIHCDu3TLuQ$j|8)m3yd#0oE35Hie2E9cMhkRV`J5Q-Sw zn`I#jxuzDZ4LQkaW^4*c=Hx$Z3-RHl!8=11KvtZX+mYJHYjNJ-&YTZv4SDooO@JT` z#g{IJ+~+=e#f z0PL;|p|LpB+f1v8Flp!*&iK75^dQ&t(df|qJUcrfw1S%=Fg5fL7pZA_=mwsBni1NN zBh<+c-N#E`6@-#+%9;3wibALJ3)EvnNvwQU8apZU2hf;oj^>3N7KWY@eHM0RCq;xb zLn9W2f+vsOL;TFk=2lza#*0Hi@6tt!L+hjA>qFb3XumKoG^8>#rQ1UAXKqLfH&B?x z-Ci2{8wqQ*ww66=vnmv@30(*1gU7E9{YYX=QLO3fLZbnlCnbl8tRz}LgQ;B+Is*tp zRpx_7ZVpX@JWXn~)E3#U40XW@94h5nI=4F%659CRfQSI{iMaRP&~}iX?tcZeJP^8^ zTj9W=P^5?Y1mXX|)$T}WA!Ks&Z?3r6=}>!NPo^mBLLO=T~aHw*`6aNhDXdxh8 zd=#qIkE3^=FjutNE6jtuvJZ7M6n(~`x1nnNY(z1!!Mo6jf@9-Fe}&!`912hS5=zEq zrj5XFp=4}k+4?_12k{H?48lHG38lrhVH0_29j7oQ%R1m`u3`E5iL9v;RtvB33TsNF z6=sf4>xH$^Ph^IUr6`GBx-{DQ7S!q!68^=dqkbf%|8bA?Vm*FOvr4NkkrVUDKJ4!$5D>>XqPT@o1f z2GB}3tHQ!jXK9#=uwPj4@${Ak!YIJp6QG z*aC=;vzuL}hBYxF40_KDd)17jE%t?3H2^4{SU(ltdJwk7P_%`5;~?aDrDbzu@H7lO zs>1-EBxyla*z0|mA5bbxSdrte7>y^N z!T@uX8X8T%gf##Rg<60C_}-B%l)fiDInCa4llqeYsWjWau5>ED;8A0#3%|g!rF1wT+J}}@6V&D-89ASH zmRef~e9V56js#i@5o>Y4r~Re&g8N|e!BX;Q#Y716k#^+SrDCZ$&+ZA8w&d9_N+}IP zO2s{_l3w64E{~Ds0|p}|BWYK6kY980Amn3A&P5nvEv zf#L|jRETOxkU2!|m7+dbQouSetsAu|lJa%smD$o1W28AmzKv>HCwxlmci zy(M^RsdNMR%$L#_K1K=%sh}0B1aBHEg}jxm0T?|&x{z~eKUoTRiBJPIbBgp9&_Ae+ zN^r;NQu-M=)yu(|`k1=}d(4(r>BZ$Dl1}1W66Z+)5wvUca%R5tvtC>#E|QW{fS6vo zEs+8~Os(NEf2p)PWF+A2NR10tOCjMTv<%dU0GOci<5Fk5YOVB}0rF@O=!|!4ke(G9 zCNA45B@=imEDqZ)T}lEq(5&q)>0Lu1`*W}K1YjnqWe|+^kCED;h=sEDc;!*)U_C4& zK;ikvrAv(kIsDE_-*P$pF6-oQy((?YOMU;8p5W3oy(J}Q^D*h(-NlgHo#A;ME z!bs+bdl<+v^wAO~C}cT~8XCCzz zJIXF|!8Ui7Y27-rr|i9vV4%F;WZSr4ef!Hsa>14j(OnxeOy0ocw_W6XQ= zq*iEa=Q{22a*3?7UeYqCzg+3(E1@zoF6}P4tO<#7MNRWQQbyu?vh2ZVU3O}$OzY-8 z@iKC>2fM&NQO0{Wd_W_+&ULURQ>TNZY}siG;o702bYN~{blIn4b-1g>>u_Tx>Tq4B z$VPK5Zk!>r(#KO!{^Dvo9Jx@Iq?ZCI3R-Yn>W1enmbr5Uo?IrY#l^2)BO}isOh02b z%8YsGf^D*Ty!8AISt($PAM*z7gvt$Bosb<6y%$z0oKDIBQxSCkr0g4DS~>lxtQQ`3 znwSW9Gn)S{ob1;-Cj&h7AyRuho_1dLhaHj+O|VCq_hd_9Jks#K`?8k+U!WY)@Q6pU z90P&FjVH3Pzs>;@m^(lnreUX-vSeO;*=t$JuU9WfvG8S+U`|4?V@$q5lozIb?!d;ll5 zELWb*iM1?(G+RU_sOdPMSY8+GH14D1tGU50kC9LQb>-mcW97err*&Bq&yMiv(x%$6mQ3()5wLlW-$)&`BE<5Z^m0R||a&7N3%nHB9R7xZxQ& zS@B}o$7ki_L>rc!b6&oZXMHZpzwp~a{*b#G3m25$lzRYH>8WVFvCVyXM?*ojxev9n zjeZ1fz`aQ%6uB$*dnzBm>8*aH6EN$IPQWfzIsso+>jYf-Uhc(jyYxw34=NS1uv9pr z<}KSg;t4w1dK%XTP~9JbAXc zhvG5M*7a6g<5}~DiUDBJrhS%K;Zw~N)n-g8e4)Jp6fl9xf*6=nXN4_SdWRm0``p(W z^-^5pr8fN)<^{=$Ct$FOhOeCPvvdXMn*b&yML-jx!rd#g6v>u?Lmn^DI^@<; z#SOq}Jz6qT5sKWp)p5klCo2qiJ1(87g-x2K5CLSy1eUylVQLGXt023aS+>i3#Xzpi zX^R!FcpI3!OmUiD5VHd2*UHU`aP+6xz!3+mQ?%ex)LO5V;?PD#B48NB1ojgr8M|Gv zi<9h#71~bruN?}qbCJmwwO8T5C7y6dL0-DCQq>VfLr6nSzMv3en^Ow%JqjH)aJO>` z6Nm%^$B+{oeMNDSvy%Uz$mOLk|J0Qpy`@-hBhW5+sj!F8W{#TgR^@=QYbo8(frkM` zXppDe2KT8ZZATEL`(Fy!>M8AR7Xi*wpo+1ErUtz)HZ z#0?T)uPld%BWkJ)!Q{lFd|RQpU2{?L{=Zja+bA8l04^Ps z7ChUwtFkT6ruI~}`m?D&XxX3$ou{pfHHrjG0Lx{bjFrqtRDd&^S=W$wj+a@a^ zn?cyr4pD4Ou%`>tXY7-qYzZcMXGOI={+_E8n+Q&`x>(C`R*CW+M43!}2K(12y`6(7i3tW)7AOSO0s#Ksb#@dov6dN>qIrgI#JK=(22Twm(m|Bs%NiPHaPo$(usTR z!^2up&mU1%f<Jz>f|XsuY}L0&)p;k;tjp3{EN>z z%C2jLD7m48uEh7o1eWXvW2EEmDDOeKEHd`@K~o+nYatX|yA>8agmqaI1{0XUytjJw zT#0#G+xA9z#`V{q>G5XM@C2@|G>dRPq$(`KUje2#h=8f^J)7`L+}wv9!oPEKUvvs5 zAAK?YPn&L@Rqy=RqyamkeLMQcHa&Scfhy%hd<@a zZwv}w39%m200EoGl{#@mcqg#ft;fo1p*HexQ|uEEK8XA4dP(?qu$UAP6T~7;@1Qb# zFqj^Bf-^!%Q{+~dJjVUOAK@xfw5C~_8tw$~OJ)xpHu^F@+#2`G43FTHcV>sz2UA|O zrrHTB3d1M!(Wu`jE!)&4c3AX_c=@bSJIi~9;V@`%=0ytr!4AQ@{Nq6q0 z@N$SV5QtE`>W^^5A2WS!hijKN8r}{6oA<3P9)@@0s?2;AuAM{%y$HVw__~6&nO>Oe zKO1Z&IxcLUYwltrs`g8l?B@IEj$zes`O9|!Bf76 zLteKddNU$7o6K&h0(@{m?@trHrK)g?Gr|QT)m~$wq#mX!$XP1{Ee|g9Y=YMRFJ);Oo2xmt3cbi*v)gBsa8<}eOtoKKdY4r6yu)|kl~FT zRh?}J0rvgsmwu{HpeM@^K{CUy2B~6*JUDQuDi_e<(&ibA?%JuW5qZvY$HgO6EomRd z!uoCVRXHN>PAVSOuS%k70W`c&1>Pc6X(-wH3RMpvSwAF?Q@OAOada5<@6%9;J%LXH!)dOto69mHIC&-py4(Vzy%f ze323>9jj^vAx5MdirzF*+2O8}Ro`{W8ahqY8}e9C1LrbRwUqQJcxRdFx`?DR=BU;i zk+kQabgEpZasdmWs{)ZKOtI5O zRX-|D@MhIPO5eRwMIs3v$1kvo1VTKH=k8S1CIc9*+@~4^`09vynQlCFLsyQf4v4CR zDZ|}xvNHbQm^xJXomr(IO- zG#0HuqVbIfp&8dykU*`BSM#mp3yCq;RU%_lg<9C7Ik#alMyY$?#dlQeL<|Op-c$W% zC}cN2RIT?CvT=s$+V+5P)t;auf^LI)JyY4UW8OQrR6C+Ou@R6>1q5ycs_<5m$Sd^B z(atXF1S3KE?e1#GK3*-LC%)mKCf{>0O|JCsc$jHNVACGz)?D0yz15KY z>`Yt&V}s>=)DKJqck>&lek!;%9x_~g+e|3!5~%Lavy)}&ZjeU`U2Q0)hg$H*vD4K~ z-IjvGF<}DPi8sOEcr_$)BSAk=g~zBtA4k<73>mME=WLEogtM8J>S>M*C##o0=HG;k1h<-@?f^8i1d*Fb zoQIR9&ZzeN;ST6W(l7^9=l<})IBk~N(hx21CtcuxnY;@;h}2b(nKz;7gS?Z~7P$KY zb$cLJ0RgQ`k0`-8i`3x;0y(#GPR?_Q`ZG|6KIDa$+6d2Iscvt=Q1Qd{;BJM3b>E~W zQJ`qIf}3qsALes~AKTPhc=lkW+MRdaulA_Pjth3}v3+W?pPXeQ530vP-W4!yD+<*% zXzH?v8QA)a`WBb!$0hY&VEbtiN$8VJ5hi%bHFZ3f&+?{DzPq<{@-4li{tYd)E zwJDB!qJGF-@c3hH>GSgdjY2pJ}Cd&cXNE^ zi@FKe)fqzmH}zfa<=4J)`4|0EgN}z@G9cFX|To2!4SGRvv!RKVm(^P1w!72S$wMR=heG!T}SQ zMvzBVR(;y=2qmxniBAM%RhGdt9vK1pB9GlX%RgcT=P)ENVi91%#9(FzMSx}}?B1+RXtI$|tf0L3F?A`rxb$$jeoaq96i zE`n^yU{jBQi4nrn*T|#@BLF$t#sW~Avp9oNx%t4+D9W!2& z6#+WtmGScZ{@oZk)k}B76AL0d`5?V-RKy2}I(3M+$JmJ5+NsCH2;J0UQiN{mF(pDb z^_Uf*n|hQ*=%yZXBg!CC560m@AQ=(GJGd5kG0vyK!lRr{?v zsZ6))q&ig@F%mN2p!MMLeGzX3pTo-!Mbra!i2;b<*y50*I;yu%=%{W!rK6g5CZZ{1 zb|Kg}Ji-*6`a--}dO6}N)RBED%J>HjE%Dnc5#)6*ZEpDPwTPyGr8-2Woc~y~!n5v0 z6d0A!xQ-!@BOnKNu;se>mDLVNysUu|6;3p8K&MAW+n`5JA_4&tj~o!$2lcUzG(ltU zT07yRPa{?sik{%Omk}~2lAih*VGIf6u7zC&qohPtX#sp;Zm~_|KvU5Z^wc>L^1hZZ zVQ8MXcdf`si1*eYh}|RK8W1W2>O?}$)~o?q=@}WLAC>)eBUe)@(G4P(>Y-y#ysKd( z=$xGzVLX~fUZqs3n@6tGi^{N;k)SWGYpAH&2wJgf9|<{nr3NUpL!=67Ane;Y@(fi- zoo19pQ zOFJWH6BXg;J&{2sBt38_lDu+%f&-3522q^#r-a{q&PMJhzbh{bmzQ0Q9B)Sc_P!(h zz3pCPFumRSX=DtoHuFW~2_usBc^gRr1wX+i)scs2dh%W5dK;2vh@ut@hnmF4Bhnmi z@QLc^tX1hpb<`}NN|lJhAp&QHTSZ58p~{L%iegIbnH&{LrJ9==Rfj4A=S3M&srD2_ zF{SyHMjfQ(PUEAP(pFE5B0Dyo;K=F1?=Lf>R?^=~<_gz$UJx~%{yw=x_+Pp_>Kgss zacz_zt#{n!D5k9uTcen^?6*e^qsEr)i!yIa(&)!gXCO07;(h~=LK*FX54?yvOAv)u zgSB2nIg*dwBHZ!$4^fMN`V)W=0X9QzIt7!BWS^n}iD9tJI{FSZc~9HuwpJuf@`yf4 zmDkZbdKFdb?MBg6^!K^u(ZlKQ+U=srF= z=;>6z@#CWV(Dc+4LD0q1g!|HGL{A{)m2;!J(U#YJezXU@J*ZsxJ!5G!IhXed{=PDL zJ;eBRakK(=TOZw-a24!swjr9^ee1U9o&dXJg6T{-cHSe1V7)K8l8SodX!Lxl62-ab z?ew?HAJGz;YHmlTSi+inU-Yv}WNoZ@9-Tot79Nv+h!ilrFXZM}e4be~MnC}3+wyhHriD%Y|=>c&ldNZ2f7wd%@ zg~rOz+&(dm-6x%ZziT6ST}?y>QC$6)n=n~s3oqK78pePk3=jgdQ6EQJbL`qA=7#~H zQmc8)UcIO+Z4mR@9JlQdlLu(ysD?^z=NNJV z?Ljo6Tg*1Sv~r<)Oc`MMM5z>_y_d{9(1(H;ca(qH*c#2P7t>Em11a2 zFi=p2ZiY1@Vj2)n#IplpWQHXD5EPSVMAGE27zdh;Qp7x)1I!$B9BkO{+Z622B??T<8>g*Pc^FWsb2VzPWP@-?CTUDE0|t zO^Y#SRkWDX#0n2+8avREFrM5Y_9S(spzg5?TwwZTo$P7RMPbX+h*aNZ=(v9@c)ZyC zEv_y)vn9_4DV8+|L@zG-I3N#k>^K0q&EMi;aj(GG4v^u4++0dWj$By9YNV*+>wtWo z`tW6ml(5)TBci1zir7o~Kw^1#Ea-4MB2Wz}Pn;VOOV%bXqPXZ-NXPx(&|bvEPJpZ! zGMJ)I8=O#|={e@8d`+P*&Pa*PtwWfxeStyA#Qn>+#Jc15(_$|`W>Ym)w7HdMg?G$~ zCDY!ExXrxShL$7^ToIdQMbguoV=tPLbm7j})`lcKyC=3eu^0Y)AhweJt~e5V-<+f~ z&c$kIx#8v58AN}$>}qUn`v2DJu^F_y+3nbGw7l`X*s1h4eiS>2{_g)Y){R~#dl6g5 zgrs>@u~RKbYV|etrx{I+;>bSTi@2LrTp7LoqD|awdi^GcIC3V#MQmLw&Y%9T^oo1r z1a+YD$k@90YlpZGI{h~35Xbe~);}%*(s?ocGT?xaxZRYhojh(fRn^MqI8Q3#(UiEi zw0wJJTnm~$$c@8Pw0VVb7wL8JY6D%DJjV=A3IGj1Hc-epdl4ZXhM{J3cP zd&=TCrc#fkaqpIJpzti4bW|eqI&4U$0%duEsk|U*WVe~%pM(Yk2((W3q&Jo z7qQ;f4W*jIFAy!kcBb)3CP>-6co2H+UepM^wvGq)?A@sV_x4qrtvX`^IckQ^uNt88 zRz;pV{?4e)%b&(rW*6TU(#QXAfM{K}Vr#NiK-ALPIUX_s{7=Ysy9(=|s#Zn9fPmzG zH!wrNL-X6><1X=8MySovVteH45r6d8J?($gjJ7&Ye7kl$Xh-<}PY6%^$SeLY1A+C6 zdhu)j&sm2xh%W$p`G5103vc#%q3*qk+Tk6|;tvAnPygY24E21I;3zz)WqhGEI`XmD z8GCn+UtrGEg3tDkA7LnDTMUYi7fg)T42w76*#o}u_iTgUgphfw}`O zjEeusvr}W^=UNM;U9;lJB; z{4D!=Li{&g+m~taK9FUD|IIn(+c}7=@XvYiTmP@rOdXk_qVFBz+|ZVV@ePpY?{U`X zN8R|g_~F9%dKQA}-B-t#lAZEYFB`YUTXEH&u8beb_1$=P{1IOIZC`v3uFk<{bo#z~ zPN(m;7vsnB+s6J8|B-8J>aF-0koQ~vleTErrR!a&KRU-%JEjw^T*-wn{{DKI9$ zUm#D3|6&E%C8GssgDU!^^67b-SuLFK<@fOi42cb9eT+WyXqSIf1;lxs1=I zBvcrav>+>iylS|N9dZ*^(BC_X5=zWS+I@V&1)5sTNGP;GGmoy~YmJu|BtX_|=)?#U zhra;nYesHN@W3w?Cq#%u53ui&1hTrfRcM23s`GJG0(h#!+MxGA67KKp>V(Gte_Z8cIh*XG36RfVYuKDV zmhcVe&0L=RlL`Ado8e~?AbaR)*vvnhuu(tV{JfArV(c?Z9le}T26Y+lm1gGH;cCKL z{n+5^2}d}aNjLS>&7Zdtydi5IM7vSwZbn`V{`x3kkrnB5*t+n>>I6vKMdM_Yx z4ej2UrWb`K!d}Dw8@N@cU^9G4mUx3x-=j_pej?hTvc~=CH~Fz^LT$E35doJ zwj4}M=NEK2p(`~$l{mp%xS;&94mb5`;zoX3yK9LF?Su;|%#*YpJlZm8Ca+v&;u}jOOR@?;Q z9!c6J)udOF)&%!^Cu!UAw7yB&w(Q?8NoxYt;3TaH3P}m{bWh z0d-hcJP9X_bm0Dvu2m*EBE^RUckFd4sRz^y3>Y=-6l`62F3FUu-u1Rlz?XM)s$YIj zr+WVfI@P;8(y6}D3!UnJd#gimuGXpk@;jaCZ++IO{^1X;lDAiAw9enjRHL%p& z3GPVxU1KWjS_xEW=IgpylPFDn!GTb>1P$a{bJp=`tFXoei5e39jfowu(WGz3HC+e#qI1k7J6A90lqoQf~_GsZc%?=<8DnF!2!gd=pErDaH zhk)>Dljeqjz~;dgO}SoddT!I?>&GS?Yj$%seRpY~Di$Ow+pU2s4#c5yZ~7c`JB!)vg@ zFY0TgwO2IckU-X)`d`yPzCf&DGvT@hI?v|Xy>V0XfwQ@DN3&Y5=G6C|W;k$qz}XCb zq&dggG(9QV+r9e#!fIHYp(ald({m6_R|AmktR_9txaW zFe$sCip?5Nbn9)ZC9=cGb~qp+nZ%o9qMk@gUZ{_#HP~iIb3EAu*UCzs%w^nOkldV0 zQ(c-of|vSENIoG9HMr@lWG`MSnaB0vfSWByUdAQAvoM)V+?bZuE!HV4cS-VcUfO0^ zG6|2(E_kv$`53Ql@7iP%+K`pbT%Sy)b1WOVQK!)^70Ipj@tbbQ_js~5w#LaKYo4xG}sW8WjmIeKXn6YOaz$6f25xwQD5blR;E8`4r;OH1Z^&1RjYZ}u5nQHB+msI6E%rF2OyH$K9w}N6 zX;~-b9GBF}OIP~9JEenuZLX+uN<*~oO&dpirD@7*p=Uv#o1}0zG3=P~5x7DrG-^yL z*viG}-z!Di(u(?}U}tC-Px`KINE4Leif+G6wGcXsw~`dKnP8&m@RV}>Or*so$Dh;A zVrxW70TWVwNr#%xX@%MC2s zVr$B37a{xjWQw-^?LD2+!&NA?c$A{;1g||#3Fi9h^D5;%_v`-ebXC;)kfQAx&-|4_ z;^VR^W`9g^GZnJ?e`rg$k4v@Ug)2-`wH&j|Q?(o$Tc)n(0FSIv7xO-QmP_h#$on## zacDDbjIwHxsER*pr*<_LOf%S#WWrk>*!FV0Sl1g@&{DZ|^zsrB*3;?z#uK%Xb1YV>MD zm>{m?+FChFCu>HTPLzgobhddmS7)2XOn_z|5tlaHld=6uCxQ!A~|@)O>JP@O9+TcE-}Q^D&J zJ#MC6`St!8_q~kXKeO=K02dR+v{MCu+{n3r% z!65n8G<)Q^EZq)2_>y|sh%vF>6Whs!@>XgG7F*364E>zniwi zR&c#DZ_>QXh3vPFX;;lycKd_$RzeQfHBTppr_;uacUq>OG#0Wm?bFBeY|C2d@sNO{ zOe))Y=`Xodwyo0NL(PN;jwLQ_lfKtR;5V{&x(Amke^B~L-po1#q?_6c7YvKgiS;Nd z{T84Hz(fFuJq$Xt>>(H77yw8M@Y9<@1r0y(;1Ndvz5Id6M9c#wio zPt!@bDC#|E*o$61Q~3Ek#^dKq%^O&aY?w>Qsl zu@%Mm4WGV0j~LQGnj(NpM)@t^B6qIjv_?u?tYgbR9I z&LF3g=xeAKYf-#0{pSkl$RMK2qnw*uhwa= z?C*>|@3H|))V~rN=Nw14nHp}d2DM(V) zG4m$Wy%DRW^{qT>Jh)4yHy0tNXC~QjLM>6*KXWH9JT*9zd|JZHGiPX~*1$d^Ge>cC zJPOWy$FolrnZx;Q10pk1^=ZyV=-xB2Cwe<8(*vDz8DN59ACsSLW@lO>*T2)-;_V5U z7YzkP%umj&qmS3uRAq+yq-93)ro1yhvy2O)D9volTfv<1nc4>aVoGKy*vzDVF+$#U z-@Gvq(a%VbByetKbNwWth*W82h)80Bt}M*-#$)GXbQR&)g_&=8*A=@?Cz<_bon(Wt zPO|xXGMDHl*|Y!dW@lMor?;6cMYgYv{_DSD!%Y9{zofI8jF{v)(|(&1x**9j z!qHWkCydeMkq(1U*58@X4=f0Adpzo6W^I7s@Ws!WKMX}n@rCc1y;=Y?NA6dlidk8* zvgTQJ0QZk2IR-n;aQN0C!xfk$@$_wS$iQvf(`*Ko|R>fD)Mq{amL83OOUogEY%!U zjL+?lrZqQgi)=4jJL6W8td`XJVPRQsL?j(5%PMjt>6zrLFjJB?&Ccp>LehxBtfn-b zIy%demd~G*b&g&iJ0%PD%0{ahDi>r;s_wF^c;TFvTeGvoX2eGA7G*(p3K5_*oUu47 z2e9=7lbc^t|FB(|wd~hj7O}d6R%JbdxCXoV(VDCjN+4)`))FXzg&VRC0fZOW8*Ry| zqy%k!xkFCJuNQv&M8a1(5Ll63@3!1Z|+35c>3ZF-pn z2^Y)yv7fK9mH`lvOLRvU8oZyj74&qyiTYG1d^97e;vwGRjY5J~yww(n@ z4O?ZOroYd(&L(kNmg4fZ*=K2**gl(t>RgJ4cg&6@Lo(jcGy56+y`*>cQ<{$No4uK) z-TP&eNR~_S*}>UCM0vR3uxx)zl4b{G-=zPGCD|+J|6k?VY?g6Knca-eQvOnBhf!XB zF+zFWxa?Ru8<~_M{0>dau5U$t7Zzo2rRD9%Wp}eBX(GxlqV>F;o1H*Y>4I!ABuD_! zkUyHXGRqA2TAMx2SgY`xo3iTz$1ed65jaykeQS0ymC_Jr-=JE!y(4=jl{R^A_6M3q z9?EVAdG@2MvF(ZMT{^;d&Sry7E@ko)By0TQayALRv=qBs7d+(c4Z%Zh+{`{fs=-U| z3m%gAQ1Fo6j|C60ekyp#t7q9U)WU&p1&g<<&L)v-m*UZ%vj3*IdEc|&17#JXX`QO< zX}Bsk>}8bG#9nKrFy|a4&`cbY#ivrZ<@BXyT3S0tOr7bIXU-q=_xXA`j#Q+FO>$VH z+0!hCHJX(za_niN+0iM7HJVXfa#*7gcgtaorhbnc)@TfRa~{%qA1iY#Xrrr&$+=AV97)J&Zccw^# zOR+jP=Xc2NJ!TA1^a zih6xm0vbA!bR(H{?NI7+~yotpaTeSh``msO}6K-C+5aGb4;n? zTkp>qK-2W2Ijr{@c|3=NSXhb;&gL|vX_HGiQ}vUg_w}4~q8~x?CvWCF0SuLNvdX0( zaCLCNT|o-}hdCrx)1N2(9zF1 z?}0voI8r>?@-^qMRs|Ej<=h7>6(jZptmr&qIC>Rj;*X!E5iR>{>VK;|2MuZ{D0(*@PEQR;s4eTa-Y+&!tF(_2c+v^!V^o& zAw7WBzAcfW%)|s2e8@dS?b`Qa?pms|SKo5m($v!+544p1FZ(XQhUR&T?1A>Bt6_fF z$0IL}8hN*89y9WG@4TPX$lJT*^K2Mt7t0T4Az}WtWlYPyAS(muWy! zX?Wf)Lz22i=0V~={|o()p6r^S^J#f*!j2TSZ!{=2?*t)-yc6@5{GVZa;<%)|YJlti zOV%csaE0ux{5J}f*o(!;K;#Yj2s|h=FVK`oOds_S&dhT}MG<*C_VB%eyvr8ERNKbq z6`7E<ADHHl!ATEx&4(-zv*51GKOerzY=9qk%byBZ zE}A(K*TQ>xR@pZDut&-f9L z$AD)GdM_gPc0?83ip@~MAo8uh$B=wLTvmp3z&BqeyxZ{|njdduFwY3>^T`LqzT%kz^=Y3BAiUb1pSKG||bN<6pa zcX6Yc;IsLc*~Kl-=U-tN!;ATg*)_|r<;Sur>~7`z1C}?nI%|WfG722fg>ywxJmgXS zVN_Lh_-2t>h~m3kE9#S|AlYk|+0IikXj4Y-XdZ7!y6#zOO3NRc^8(3h2 z&JQc#5uh*B9$|!y`xi_yBD$F|r~t#Hs=@Wd?*|w70_786Frjzcfbc;+1%N5Mg9~g?v#!1Yc$chTjy)m8 z`o*U50!MUjISGd|OHkBs0v}|KRUs`^BXTb^jd&%yC+4TO-2Zie_4hz@qJW_C&)}Md2U0VSy`Ha}1bmY)pAl@Q}(A_)gGQ(icHrr@s~0P`UmT70OAA z!`(~@JJR18%ff2`qDPnc&RIi}z$Zq-C67c~>gE1DO^)BEeR zEo6Fo(ys6;#d*-Vkc5)Gifi{Oyg`5e{afJ>z=(p0yImqU%)fB($iim;-QeVaLMKXM zOmJZwCHqcV$ehSBvXD7ZRCJ*=El*DnlyWt>a5BAKl_A`hl~cHi{`M{`B+DyT@##^8 zhag9!5n+bW4)mbt#XlbDdd?^W4+9rGib(kXJ=GTI{FXejvyPq?b0J&efE2ZhoEKlX zW+*a6t7jI513J~|c12zk+7wmIFYJJR&MP!Q{H|~hO`Sg!k_~Au@W?NPSItP;*s!P?FbDd# z5X^(T&>@?mDWdauq-~KQL@(?)kvcslhk)FMAW+R>a{fn#$ol+0w~Wr*+^{ho>r~`v zBKoF#W&}KnAQq0BP_%%sD{fU3h`gOiWO=eg=!A3Y6di{&H7$${+R=?1sPU|R5oEeX zP(};Sh%Flyy)r@y?+|;`tXa`+Kx-pdlku|VMH?XfH@UgHp-}zVwnej{)qA%u+AP4} z2c3$R8ZbmWyK9jVq|FmjN%Zl}1o!S$bO~r|fqv&}1zz^WBt8eb_NhZL2`|L5d!33~@C&|p6t5+{Fa_J*pg0loo}Xxl zHE-4~*NDFU<6-b>_hS8K0p|nBve2d;#eV~u2ODk(Ku^SiSq|$}d=Ah~g$|#=kZ7AW zXnWsc$hKoGnQ)=+G3{5p)d;;=OTt#19#{-{Jk$cl;vR#GW%>vfivxxg?=TS9)bS~X z1S+gyqwy_v(2q?I|Kf$5%?oicq+_IPFfrL6$S|W7Wf62N-QC31$wnSIjbXjpjN1;?+sRL`hLkD(eXEBMa z#1Q81ELiDYF!AJKR!NI;C~V8E&w+ z9wl0J_v)nsd)>Q)JPWbf-VP~AH5Rg|zPgJ0`RT5G=dYu_NnFyAbNDN)WFWWFa8-#J zFO7^X83=g;USqJ0fdv+*Pwy&IJS?vyMn7BCU`5az+u)VCWkzDlBRb3938Vi39 zK2b{4$L_bgP`b@f$X>l%`iW=nTq`B971;&NZk4X!x81v6dXryp=5gseo<0A(^p&>s zb?GC1+rf9G&v@ysze_Dm1h7B8mHsIbvIl>Zwssel;cC}W<^W})s({gr(A*a!M)&uh z^WzB63HMQ+#-eAa@BVU6v}u^g7+ZLc>H!HWPM{m3123y>#;$KV3a@WETJBu0OFMO! zw(5vZ>h`KO9Xf}1=&JmG?7azq73G!oZ_6ggs;nY?FSy_WP3?;q1!IhH#f+Jl84cDN zcfci@xPXb!h=Od*+cb)x=_W2HBx*%82*$W1lZeU0Ok7zENnD7S%s7*1{Qusn+n4Sh zt(sxxn=jvguF2I~)$grS?|#mCpL3qTj|0zhHB)hX-@R_BQ12JRlaD4h&Z|qFpEUc1 zx^mHP#I|88e;|}k&t6kpbWzLTVdD8Kmi7_%e0p}@MBK4>=EMn#VbdME0?T1Z7+XYcfFYL^qj%syRXiETkIAqhl{hDR~{~m z*JqddU*KK#mFV25(=WVi?6~q+an^Hpju75fUS#$%%B?Aa2?^ zd$_0*D{uI3dCG8c{^W=Ii8Hp%{*HKZ`O2YUvuv3gx6dBkJAEtpQexfq*(DL}m_1U| zt)R$RuTzf+D^?B@vv$lLB6e+`J#jC8n+$tn_HA~_i9$axbTc+1hGVRHVW29C5-5sm z8LllhuU&X^xuB3IHXk=|WY5 zx42aL#BN8-xus9p4Ru2cL)(h{&~S9$bz(zPt-$qMCDL3sdtza!^of`0Jh7yCUKGT< zo#7gW66l_-=z(S#2Gv*nkf`UTo67}-l!OQVg8Ev%?nPA230%XEB0o}nFSKLV(PJeJ zqDp;>N~Lf2)l=r&-KT6RZm7`@dhEuAu13Ba8J?lUR_xh@TfBbynZ`B6MfWUTkDS!_mwI2-tvHHe%Zeg8()9yd zb7MuLTh%~G-ks7oy?aSBy(kVGHHZw=h)vH`^}yEcAa>Qj3eChjt?|yflBc`2>Cuxu z!@#FYnH7N=DQavxk?DyWPiP*T%xawfPj%&dsZl77p3-GPIFX?n zL9)4S?h|z-E%ay&B@7J9F=9*iJUt2w&DWjCQ*1X;zdL_pU8z8#n0);TwMd}Y_QOT0 zcjnTQ(CyP1X-uP6fQ!R-#x_Ld#`RD}m=4Cd-Va zQhCkslFdC^Hr0(XOw)4QK=VV5Ezcw%)5G&ZS8*c6@-4-)RMn^q zu!7Z*HJkSxxO4u^bu$Zk#vH>)_}r8)O+Ee06F+m>)PgaocP?$^wwf7?Id7c!*7yZO zOZkBw0b$y zt3aYy#LOud2#m$HO^u2ee_i82B`aj7F+Ja96dIagI8G3=Sh4R=3sbKw5WX3)hq*S3 zyl=!#;IlMG4kN>iOe3-q#v(OvNx_}xKNX!<9 z0)b-NpXRGVncdhh&T%_TEL-kxx*fA3Q5Pk0naK+KuoDJxXlu#tRkA+{bctm0g)3Ip z%`E5-yYnU_nc{)k#%QA+fD(&0#{hs<}tWk4!hFd(1Faj5yYuIMmI66;Jnr zFbb00Q(CBcj9Oy2p&g+@p`L|aY{U#Q)nGeSOhxRT(l|Id|KjDh){Sz!0K>sHZMLo; zc4%3Y8(PSss)lEz4}*xI9LZ8%0`RvX*P;6RzAj z4HfmrP~&V;Z`r#2-0t;`6SBoBp%M9pr`o>eaT#cuK|4_K86#IPHVx0_r+%P^x`J^O z`&OXXmZroJOOaLCyvk0#R8tHZwLmT93-pEOFHptpD;p24_e@=59YPtj4aW!>lokq3 zXgj{`cvdoc*9zGuto%NEYN+WkN`m1ADmq_4Pa2UK_?5}!Sx&6#su#1`7?#RJRp?{i z2z8tFP7yCO(Q{kQo_}v$Db5!w*8ibJEs~neuvKdsj~b_SoMADY5wJ$+aU2;6YqqJF zw(e_Dz`Co&$&97jsZxQ~ELaKBy=z|G%=~`oGH>+UK^b%@UC?9>v#cyy$1fOCDyWq> zYsL1XN+>&yt)d+-NFH2c8xJTIBC?>braK&O{oUvYK%&v9M$IL}g;GkWOT zf$*-XZd`_~MX{%=mP#QsaM#8J33UtY(6l03?(pr(VS(>%9!jO`&X73q_3hUgLmL zj0R|1N?=8(wQ6KCG3ZI#4FkrV>m;McJvqJmC?{YIFk-`IU^S00e1f6%X zf>G&pE?v-OrrgQQTN{U#3o2zuo#arl<)k$|>!p?A`Rv>*F$^rvLy?fHoXS006`NPA zVUL=<;P1PaR4bON5yQ>*3_J_Wc+FBZ+oi`$-N+V2v_!Tug|24l3N&V}CG9!G)iqmF z?7+a*pWKQvjgI&$#&WK7MZEv3#g@$D&yRS|aEDRjYbFh0n2D{XtE!_#I7`0J+ zKdbJhkCrnd^Q8u2(fAg%K3}LXRHYH=(*39hXu?6E9#o>I|s zZN>IH#f)_ovxa@iQPjw_SRQ>BlS`@W#Hva!SZe4mo8{7tzA_t7gS2mCRnN~%HbkyMjS~YW0J*& zIlx|IX@PATR%J}u*rlrDVt$#a-H(D2Mod9WRNv5pY#wGN7}^akfY5gwTSGI^r4pmL zx1~F?`D}2jj zU5FFZBG!NW8`4c->H$tK6j(=9^iXp&pWO_fS~B{4sUuqKTAuE(0h#EUF$Rv~+88{z z9PnW3nFUrZkeKaaMH0p2q4u+WGvr5EXgg*?`CRSMY@Pz5EYvah2t6r)m7C0M| z(XVaC5G&}GE{0gaQ0y`nz5E6<+Gkg(phBsJSdUikyS9e)fg2cm!*f{EO~rHE*m0xG zvr&(!9fzi`saXH4-zuFS`HrfED$1B6yb&#^#_O=a>K%qeYwWC_dsZo5G7H3?<}2egUFF26VuiU{pxQWASh0|dR|A!i)soFg z_f!itG4*fQCJshvD5{#vLSVTeU!=N-?-c7N^KaD0G0p(jve-b-5f$BaJd+v7(=^pr zMBOzlLz7Lvn14@QsX%IF_0Jbt@o`*t#N2~Q4y%FZSe_lJ7-2a4Tqc_t4=+f*wU z3!huXi4*7lpk#vq3>;v_zz#Xf;ebsy!PEtQSJh$6&=gK#Q7;U=Zc+HV>^pCJQ77V%F~YXO;>j z9}k?X{=ND8b65+ST?0F;#XuxMOB#v?ve62_pSeEgzUes~Cq}9Xlp_ivP~Dyi!bs)B zl9PJ?zjh=zZsq9l*=8Vwy34Brr;2P460`{?nWh2u2*|Pm;y;-&bqxo}1!B{KI#5;l zQUQLdV&EC`N7vh$4iFxEv_z2+gy3;hkFQEGb)Umr=z%wGSR4HgN04o~Wp)}fuCtGe=&{kK*l_XUTIGgYI*fjE&xs$+3n6Gt(4cE#c7&I0WXvRn84WcSATfZh!+ zc7P}Zo@xRX2dU&ZfDdF)5!eRB6&yhhNjAOS0&FtBfBeqJZ@J@A*Q3s*3);=&ur7m5 z*5_AByzs;MN0-3YSRAvOx+f!L9Kdy)kDJ6^c_2r9pcm=T^k@tdERO2SU@RFL0gl`c z>3>U}b|)`fMl?;mDx)v^&1inAtxD$P(P1yT+1{(%errd%M^ z7rS3vq==Tm3;LIcP$0AfbVcZ^01H9ing*)}XZW!nD@uk(u7J`!RtiA$CNssbIqDC9 z?)t!t^~h3Uz2h`vVIls^0|7-(Bf<}3KvAGBc{9c5%vnyea)E3!#Z8u2qH@KaKWf3> z)&qM?p{5%92Xn#)x9Y|cu%Ov~>?d{K*e+u)z=g?BEI&{I-bEbv126;O1j?6D9A{{m zdIIt^`i4aiB&CD}$ZjKGNJV=Gagd@zH+`iAELyHiBNXaOE!wDDkrFOri`K&z0F_jf zjz}&i^mW!J-8Gm{k?s=1q)03f@E;bd49Qg@q5^D!NtB;NSksfh*;pviDCNL<8LmULimd>YcT9jmfb;~Ypvn$bFDI&uNFw-#_ZC8#2BVPfW@Olp5D;Yoo=**Fr&e(}f zf*RPST(#pg^I1>`@rh(SngPm?v8S-xMTDxb(g22har^M(-B;#+8z7C`Cv*ceE%gVM z6M=HJLZbQzB2}FPKq<4VK(r}d_(xz-`9gy%vZn8(1!L35M+LAc0dW8g32t&(3__cj zIhzh>$Ij4WYzF|vWjGqKK`bl;ssvzYTsI)jg1#A^Ed0g}YGJC1sS<}naDYKzsiS~Z z(WtLy5h7Q?x~B1K^~7c7NY3yx1%izXJz2he{@C%%l@2?ZO`M$%RGgSBgBNj`Z?@+6 zXdf(fp_c`k)HBssQBWG3fL2z4Pl3+{${f=iwwW!}Q<|D@shgSKIZEffDSv#rU1HbN z{3h!V08mgV@xm8dj;dF51+|dn2GlJ&9Y9=NBO)penR8JfX8e-Lk!=A4M#!)gR!12h z6%a-v5y^q-JDy?cZnm8f%L&>yWa)AU33GJ*!Q2#B#LF0x7)?pWDG+eS3P>?cw?5l0v*+1YTPSRn~Qe zbVLZQVG#=IY6LV@f}Ut)6mA(-z@`m68HgSWphl!J0p&jPKMijM@&*1=w+ONUp9Uxx zuq8@90nHNf>LywAT7g8ddo$?&0)aBT)e(1YoIiG)VRzWfQ1d*MHNYYQ1cV$Nqnp6d zh|B=e8WO@Kqu1)u4OLG@_&GAf3ACZcw(qn11^_IBWZh%i?_?Xx?~<+{{``U1rF20< z?Fn8hs81HWwyyh%p7n%~lfA;WY~rLez`G%cd4&l9npb5T%YryiqzGb;1Hxl~-m#Jp z6AAz?R%{iuSxF`@YFt%UAJ9C2{1xVs0S?(wOi`;cxa;h+IG<8sV&AZC19JR1Oef(Axb5ou~^d<08%3~EBa)HoGcJ6 z7PYNWOZk#R8K?`mdiH`bB|zcqL@^`IB8!8qlY4+w0}BOAs;Zk66fa?;rWb}ly}=A? z7$%NMkef~{hKsRmRHhfOP)4_|5p|A=OW-RZ+e(aOKn@4nV|PvC*X~$xUtN8^RI&Rw zDp4Rbn_{CDEI4$W3N*RHBtuI?J3twfSqoAiE~~Un1Qr{#o;)~cISLbDt)Wl&A%O|Z zL7@G%WdLxc?tnghT_WGxL$3=uC+xg^5s;ZTI=d>2`AsIbuPpRBw@#tk0X2EgZ|9$1 z^Ly0%9yPxQfw(ol$H#kH+V#Ym-=pUD$Q)5MzemmQk>_lw`8{fW4;hbL;DD(4JwCzR zQuBM%{2n#GN6qh%=WVI^Ju0rE|GeMh(@D~_;F~?gmCL7(60=U9Gbq`5<+}de#Cd&g z-%l*;`QCm_%6t8jf4zIbxVmK1ss%50|Ig<k`1G#y~kx)sCLRLKke`~<86z6-ub-)hr zAUg^A76B0Ddy;ojwC?@XpcLN2q*=BFo>#EdKSq)Ny+N9r;cAKq=97Q(ep zaJOsv2}Pf%tIwC3o&-yQWK+c)@t=lIfwKtz>4DN_ww?N@b}j z)2Q-Whi>dAmfpMQl-fM2&9mA(OY_D4_s_FWC%=Dp(Ue|wPh}X-%l>tdx)&JFMz&l& zOOh>hONU=N26&PVu)-&48dxgeARLZ@xeCGg02B<34(X%GfPeq=rG8zx=r>ss>D`wv zT~l0CCXr6afWNVOVcBHuHA@F{6KCyTUr|TiymsmEy=Z|H<+^O<(*2Y3W-mR#Epz%# z&N$#NoWKK$AqlF?Oh}SO4!pq>*jdu>!cu9{@R?66-Oz`WeGZrem3*QcsFH>mcObch zNKdD*NrM)sJh7luQupJfPm_V%x5=W-QzQ(NvrAx(CTc~@u|24|*vKAMSSo$JH7_oG zfY&1(A%Gr-1cfALlsl$FIzP_O$*ZGk7LIJ06~3@k`b2a4()Y=`ZunpXR6t0i-(>T0 z$YlmZGo)3?Uju4XKCx6#D$A1Ich}N&V@MapQ6tbnpPad5u>-^;kMzmVt&>lS1N-b1 z3rnT1c>AEH)(d)&BGom;g6o=&7C)KU)Tf(eD`M-NO;f~Azux40(qE4h%F|7KlWVSR z8dSHZjFtX);j>N0ib>9#eq!MDO*eeZUr!c;Z)p12o=2 z*>6_UeceiA-19k|=fs$!UyGxAFdMPsJ0^H6H?Xn>QHx5Y4YK&ArsD^efeP3hkAt+9 z8OnngpdCF3{=_6ZC#qD|X9cCirsL*}NY*zs{jqm9M>oa0t7+c}t+IU`L$>d{kH1}M z*q2r{9az_1f@bA6otkx$Si8Du(!VQkviR!VP5;<_yR*PbyDF=ij`^elX{%n;+H`NX zl8SW%c7kb2epvKNunnX-3P}bgQ(Sq{(3n@sFH^BI{&s;~t51Xug9W@)RKY6O@*v|KkOc$00ii|e0h z>MKikX~zN2G@a0;NJ5eN%J13*q^);eX91%V8Z7BnCSjFMk|&^ZWUTf)5bB;1f@3pX zMkPS7+YCrA(m_cyJ|JF)%wMSQK&rAQ7M4m|>#D6y zubu=pnc<7wNPbvM3*rjU(t$0IC6bI_aZp*y3rnR>)Q(s-V48Td)I2u1KrFkguNbga zj7>hgd)ePzC=R-duQ&7)EhmZ1t$aQHZ1M8x;(~klI{7X!tDAUa9bbRjD!;yX_p-6c zZTHBplLcR`wesuryD0GLI`R5YvEWy2gT>Z4OL~hZo)LpZsYi2z82PLiB2Ii(93V#a zY#uMB$;;--WrKL?S#h9vtNPcW&vE&w=O}zypXP(bK=b|s#D(1Jp)?R2AXeZ0*nwip z%j<`VDHq>zc(Ua=acWFm%n}><>-&x;REPFu=_K4-r@YO#DcE`^Rnl zW?p#3xoM-HJN19C)%P^|;s3!_KXSkC94022%RVK}A9fdX)BkV1x+;$Ug}Ckiy|MDS zLEkxe=B+=hOp5BNqTe^#R z`!&~#^Z#*4FY&AHe4BR1eGTID9?e69VlN#gcJ0?ZK-|B%ZG+7jO1%?k_G`GiN`s^`6-Wh&!r(IIa(W=sV+< z(PGlwbNVGcdNs4={@;F?@yYx?&2zhn54$%H7n6ptv|WCntnn-{q95z30>02T`xxZY zT-3B=m{`@k@IY}}|K{FeYkM)#Fp$f$23CG0RxN+1yO=PzxrZnZ=yY$@K<<6#nO_eP zmkekg^gkvsr55}7z~&!`<999VF?8D1taO*f(=NZ%yYj+mmsOTM@%(di_W#+cYiB$> zR49w)^%K1gY_|Uj-e!zgGq`!h|5QheSbEX0Ui<8G-qMQ><3Hzou5O=wD(lMs)EgwP z4{P3kKk>zWECqwg&Ebg>HTo@B8SFFn0`J;_%CTZTZO zvSS7j8UfSY(3edvMGCC4kYSzJ>P2#~36yfYi-!Xla@au%Ebu3@c5NXHGN7 zbWR)sffupoQY||oRWigAp;2McN|^`_4oz8M@c+;%ppWY?7AU~KiKU4Hv3gj`uw=`k z?O=@a<)%PsO!r)|x>yu8PZp=1&^)Z(j%9{uWCC1A|Ho;s683^~BY^$R5b6%75-On~ zxG4y0#FtJCBP~v>j_L5ez6)8N6;?tjJW{*HHuQ7^nGm<6NHPFgmF@*XP7Gnn8EEmvX$mC!-y-EW;Y5r;U*5T;~~dw#EHU=0TWe1K+vi>CM)py$R|h8gf zbjMO9mu@c*|8_PHvqLs7S12I)cRtnfH>G^3RvM8YZac1JKq=Bq(jLdeA!)?a5uK?R zGU&}GYdG+HuaX>{r~@*)6BH@`PBfAy34f?N;7}6!llJ_9<|pb#kpx*WBTn5o$TDF4 z^NGKM3(kQvBxHc^OZMh;JeCWDI%4w&P!HtG6i{rb%MNQ9Bt~A;GNhj99s*T4zqDf9 z8&K@=b{brR!~#bU7m_-9NHS^c3If9+h9e6+Cxnt(4F-=GW`T%MR@N9RA`~HI+QNIs z!J|&(pmb`|dr-=SUIaHKS*?9a$#}q0zEE6?gdvnUhRhQfXHj&wPiYz3U^xw1hq;A4 zuW`~E;&NaK=O0|G#A6aR=Mqs{om=^y)e2QrZr`vZbq+!(7?54)Knfa5X%9ju7gVS+ zw^D)+qC{*sXCTFptZ6vyIjW_Ta1Jv~+QUllU&$2oka)3z!YlyC8j&&#XW~2AUpnMn zfcuKH*Dw|mgh-wOXv&DOCyon;32X+$_YysxW=eXX0f-Mo=EdA5b_xjwxi>ErlZY8{39zf^FOjiua2-j1Tu4oxM z-gFu|QtHHtZiSZbvSjg^F0rZ{l|ZG%E=+cab$<6`o6WZ4&TyGiYG zs$DQTyI`wxTa7Tb>Z$gq+&YPm{whdd^tmxw_n_X5+9#gQZ-I2|=hatRHokS&rc1O_mIdQDbgh$M*XC0>t6Hbx4e zy&@%$%XYJT$wX*RSk-)5DPJ^W{z)Js3%}X2AG8%Vv1K-VPde}ks7Q#(LTf@R37ADG zmnl_INuNPDSER5plcS#jC#kSWf&%P9*D6d;Az`BggiBH-oOK+|K)pp;7XtN2=MXtr ziiRwtu0U!=S4iM}o>Yl@fzR}w<|9in@!dM{+T{0O=_A((M?sueko$tVDNd$R!Ti9& z6_VQAWWytp5JES$Cdl_lq#uT2&>6tdSAA#u{dM&$bi`j1%nFwQQy0G<%yuMffKL=Y z%t};U#tN4&In@)31m8Gqxhkgo0#?)IO)aAv^ae+{@X9K!spK<)au2dc;u94=z#YyZ zEJREmaf7B>Q8&oV05=RO2`96xgy@p+H`6R80qy7%f@s|K;JSit>JnU6Ff_ZAMv=~I zxhlx4KEGCC&<`XZ*#d%C334Y-0@|SrrRE%fy-OaF283*)$F~Ess3pB>K_VxQ9!PUQ z-V+)O1|pL3R1%%QYG#n8TGFV2!eEhgbk4&F(PrJ@Oo5ghx8v=)vXw6}5-Z=7Z% zrbN9%y~h&ZK%`kQ!%*lY4)Zh1lXx1U{dZ(5uBzzDTDwJI(8+&iww6WIf0~v zXI2sDZJO*}F|6xQZj(5v1L>lQwgo*UMlJMdsewac6Uj#mo04W(9RtLjeA&7)1mz3M(=kCthNz90 zUabB2HM5K$t*k@WQHqNRGw;@GVNEErK><}x`UMgB;-j=>G>4# z;RBdt_q@F#Od81Wh`~gYk%OiDtOtWcWHIAZo~&N53R8cm zfxvu_;*$BB$6S^2iY~?dzYMm};;!k=P_#y-BQ+hYk_zPerHAD7g!| zri;>7Fetmkg%>oG-)@qX3M!S&vWz`gre#3`LL*_Jv!KiLK@;l{8V9L^D%IzC32*Trz0+;gCzR zKJi*%j1DVP5~lP?(43M}2JB47BuFwSk2Da{>O$QOP!2dl-QKKJESvV zH^hSi5i)8bUf|eg`vVsa&O6J!ApN4SbLWZ17L&Y@`9d>o7wX_%qW*g=gT=WYwj9{g z)YJx?&T>n`Xhzx29MO0`L!71fN$t=k&4TAb(w*kQD?mh5JRb%9(Nub9z5V*>?@-s+T zlP4LJ+JqHONfP>!(u9qPq?W+LS@cO+2d6IhaIzzI9GK|5(i=cdA*hQLfJ7nD2NrGw z{Llc1Iwrv*O%U11WJ(?;WQYfawTC5!Y$2qTgFJY&A=7ge$cCC5I<@)&scCAHEpM#o zQ(`$FX&MZ41PNdV;%On5oo*s9^l|ZKRhiWwogE=Q5sefsWH2YC6VryBi-im|#6wTc zT=6Kp7-MK>IPqPer)-YQG#@<|_>_bG&uWxxJ9jx1DUi%68aCq}%@SOZ1||$I?3!@N7thVF*ZHih3HdcjYBn(SwbQF1i2Pf%&!nWYNAKj8A!)Q@CozK zjiFt%=zQFe*-DtsuzDQm%Ark$_et@=4Yb1zQsyS`1BeTCB;+&c!JNiU}K+Op!)v zR}y66#^c|*2IYJj4}+_|Kw{?F$QLNKIxDoye<-I_g9&4>(P3IKhfobMTQzKQs8`9g zC6UIUkHHXDs6A1NbAhNb(5KzCk>4?P7iUHOSd5L%bFiS%_D}}rSBfN_DJQp75bF&^ zkx7%JDgr;PifYVh5qghLOdF}{)}MkcpB-?@Lt3_F(is9)MALxD97CM+$s`j-EvbZ_ zh4?(+VTY2}rWCPJ;LLqS2;Os0;daME=X}wwl1;Ayu~I1^^h{aNyX2C^PE$G540Ws~ zB&Wx(Wa=U}a*PXZ_Z0GTjpE48GQfRf=9Bj|B8_saWZo{eISeT>~p zB1{ZD(h$fbaV2~iFraJbQ$#+Hzsr@W(iC~-h^?uTcJqYh!Ik%i;g~K|b+X6e6vr~- z{Vkikpjg{zl%1mI@?~dfl8Z!Fx2^`$Y_Qc1b4*(6tYh>7i*|?wh1y`DL$G#$uFdqq z`h1+T;9z!0QVBiF?Uyd9VZnIpa^PIhW^vU?U!Py6OgAK_C#TFBa03}dh&IVaMjl4& zXnG>5=!RGx1P0 zyLjI>z*Xec^MJWGjOc6^m|%3%C4N%0>9p}286euK?11>>B^@z&^ z6~S>i=nwL3W`)30+li6fCvhjbclS~wrWD_?Y&`Vh+n zqRF}}Dev#NarvR+I?XI{rAyXkGI4YIgI$akgh7Ud!C61fn97!10On5yeZOT@-ORjh z@w)6=q>#=Vid_!M3R+9TILc$hGZ!`vE*Dg250Ik=+3q4@fr*L;0}eF_z+uYB#GfI~ z9h_yAK^fp-51D=#9_UdVst|Hl_3(Y22J>ChH0IV&hm|+uAgo6xUFg_Yqb}c(@&URsW3@*c^ zWuP<;9egZ0kR75oSXQvaD((#uhmy=TCIv46D>MrROU#aqYXgIgB{$1?nlH6-)?6S^ zx;G|DS^+u%_rH$E(~39@kj_y2M@$FOu_mK;tzh%Q)|C|Z771$cSvV1XSkgp#1gMi| zSMw_gC1WbZ@`iT@K54k0gP8S4{B)iwH03cP+7hNnTJfwMpu*>dN&{pzLIn5+l zE~ro?^LU!Gl{kB1*~rd~|H-rA$N&a_Hpill?QbP7bdwlFd7=(DAdu;(C1k-wDPc=c zSTH${&9iDrkU+zAE?-J!K*s$`AEtmFKo8{J-*+8jk)u^ye_$A-0VSb|*i$H4kTj49-_sJn zk+=y-sz8h&!Tq@GFxhZ+a*&3P1QU%7Bu;gxN6uL%cZ6J_m7}5pp@JP(6{)R-`3G7A zFcZyZs89*`AWP(&#-?L!NJfu)l3oCzf&GuY!~!Q7?$c!P;MC%f1rLYY)v^w_yE#?I zr%T`xdjwl9%9w3QunlMwGg}KlcjXEMZ!OQd?0kt?289%?k@+yp&IieaU=jJGlGzzF zC3%~{M$t2>%BcYJ-OU!`be+Ri&I`N}06T^x3wJki?p4r7UG}1a;n>ydk>7TEQX&`C zjHUiCk$U7=;W+}~AQSD55hs1=xV2gBi5|jpnC0HB=Y&Wmf|iUkAaO9tFwRi@=xvD$ z7B76GaSw3AF)W-@Iv#P{-po^`qRK{sN74$xNXh)Wm0TbBqTTdd83#n3XiWlgDh_!x zK}4fyfVIFOz%FS)kb~VHaMB6(2`z}3hNVTk8w4S2rl1Hy7gr8@5yy03z=&P$V6u?4 zA4jBxt47(VSRr#WU@G@M>1)|ecPmvRD|9Wg*3q%9x z6H;_zV8D-I0p|@-VS%$Hqu+Z_u6i6n5`W4zh93^Cj{_w@q>wsDdJmWhWK(CxBcL3% zTDCV*%QLz?ncA83-YSe6Dm!+?cw}YFlbUI`k~Sw#D*h!^RK4<_Hr2x~xpJbS9HS`X z&b^AQ)>ctx8qAKqMBmWJ1%i9abR{g5eB40WKxzl_|Gbiy74RSjcb!`Rm__8%YYQN!5R zF!nW!eR~GR8pgg#H(x4%GgnQr8pgf?>aSt!YZ&_)#=eHJuVL)>L?zTP_BD)s4P*bA z)27xi_MZsvuVL(K82dfB#A_J)8pgg0vcHD0FOMmJq}MR^r6Qbr4P*aF$o?9}zJ{@{ zVeD%d`xMk)!`OdZd_oOlU&GkfF!s4|5r1VEdpkMrpI3agw>YuK!6%Ei|FYtdy<^=i ziT6HQ@zuI@4_|ou_j-z7{Cs?cQ}4`Pw;#N>oO)tY|J(bCdyl-Sf8&b-Z|8GI^5Vdi zKkPP!6fq>Y#Cu9C3&gq_u@59jH+74UH^QW%>y`@jela}xXfh#3$<(1MAsH#tdQQ1Z?CmAm#8H=T1`rDg6M zy>jT@w#<@AUU%{Q;qUcK1{}Te=&y)>etGsG;>$}`?k7H6yz&rn&Z}IuyfV99T)%i_ zS)3>T_2*Y+m&Ng~&K@D&TDo$8==bvMUgD0$D-RY|E?Ifnf8_yn*NfGCmJSgEn^wLh zwk%tDxG-Kv@>$Q_IYPW65OCAh*(1g316B;v`>F7Phn+`E?+rR%-S(~IN|wo28$0{ zcqwzm%0Ydyx5!>%$Lxc}uI;lY?(L5ouUN5?&z;E?D^{I2Yz&!x$^T=Mr-sB8gwc?B zNg=lxDOO|(KFjMoM6Z2l6+^V>HyID+rbkw-DHRkIi+=ZTWte_DSv9Nsp#|l=r5D|} zDjTNpQ7&+GsNic-+kD!&pp*wj2ON8 z581Vv95-h5&+6)k|2}l}O!?nMhpqk&{}nSfEIwLH8@u{#zOP?@`%%f9BUb;Z$6(Dk zcEXk6aeXrKk7N0&6Tf=$U5AQIFSQL4Zy&p4Om|XstI6*hR-e}WKUI8Io!GkLroM?~ zuHM$Izm^eqNjbWui`zcCq?A5bJb1$D<>J(nm+-F>R_poYlB*}Ko>Mol^RxQsV(QZm z4Hvhax}<0Jt`k1BdS!8`kB(dYFLk-{TEwQwt2cgPkw#uUdGLh0`fK7a<6C2sH?F*E z(mXNv_O`K&r+#!-a_UESzhsEnZEa(d(~NK3)J?Pu;xF&p-%8%MTVEVMlh9Aio_hJT ztCgw2v`dt6z5UnH}%VoOZSPF@n>3oeEC7TKkxC>Af!H z^p7c*-s@7%kmZJSsj->mi(tBOXS+W_rluPf;>{8JF zn1boOF6Eq$DVN^sQqKLDa_PNFxtZ<5RZYihmsiYgc6p?l4yLXp)07y(2bW*!r2u;2X4xJ?`L(T92z-Pra!1%lmvnyZMT-^Him9M=nY5ij5>qo0wPpW)<;F8wQSH7;ktM%&2*BdXb z7WjutTR&B~+yAoa*C~6xHhimkcRFAD>{&v@3(vI<6~Di%wTG~#wT|le7j+hY8PM8V z>Uh(;yuElbt+l@6Ulx6{{V#u-)@oK>XG?4KC1*~rzQg9}t&{frR28E)wGI>OX0&z} zhtKFJP8Exmwg2U!8Lfv^9;&QqJ)z^zsY2!Ff1c4gs#0jw<*mn5zMgw|>+zMZt1fT- zLgnk9F0a1Ywr_WA6HT1;RjP9S6|~8kD_ZM&S6fTeJ&mOF4{u)4TBHUu@%5t)JcVJYBqSY3tBs*YGk&eYIM< z)4p0AYPWs0{TX7~{nY_E>gv`LGSSP{cC4H(WVfb|d;03ugDP)#GU#j7mw5Mq*5f<0(?Z#8TOZ_|zxTCjx83ky>j@poZ2pI=jJ8Lx zk-l8^!xdj|J*eYf(t(#g@};j=oBl6fueRDb*H&L~()x}yHnZ-0;#%IO=XD*2mnnAN zO;@FVIfcJeYIxao9s84?%l@49oz}6HzkhUHbrzp>eYJ@eUSI8o>EErsRl^OfC+(?) zmG-4j9%?EYI+DkUd8+;PzJBsp)(GpW>{X10#66dE_H z^_Y(0(nd=Q-7>3MzXxYkU$6I#)j9C)BdwpVJmvNqtNr@=jUA=h=}U=C-$Uw2->7!% z^lx-7l)hS8=$GGU9lz&&$a^oB6#mj-NwG!xl4!Pq(I z$E$DAud&)xyC3hklDXM{n%>AyH#An~{y@eqbw0Cfz^%N{-_2_+S2}p+yw(#tl}eY{ zwA7pPs*SmBQ|pP9ADnkf>zS3W>u+g2w(@ns=GMub9#hv`6?SX&?UX00Z@2B%jt!v- zudNl8d_FIC`uyt4_5VSqr&jiWwA4%Ut1q|e2i2E5eL?l*RxhZ&+zn54c})6p>0?g0 zt@?81A68%Ph1;qFX5_-wNtHUDzpztNY1xkS?jqj##|x`(v*_vS+Z?y3`Zf*ERNrRW zGo9Xs6d|&y(#K3(Tz#8C&$fQ9B6sSu)wk)lq&j@xeYVqM$l;MLw2OJ0$CtDowr6Uv zr(TVK=}XX&_gh*WWD}NFU#|3{>dT$~qb^TPUv8^>>bR!r%f(IAmz(nA>dXD5srqu; ze%v~_^7gkZYyE78kzr&*eoGT?^KZ+lZ&Mc4w;A}8>f4<4lj>vsEUN0z7n`fnC;zl6 z{rAn)j@t6mPL&{Cw``i3&r^xpm$x3);cY4_`jq9o&2N{t9#VPdfi3NCvusQCWhQT_ zzRX)Ktv7VBFS=MKsm@!o$13evv&W`gQnSZ0??ufXBa2hb9;>VjHG6E&MqRVV_OwOK z9;?}7(t#*y_L$UNYxY>XceQ4ZF&t|47%M|(d+hVcueP*a+O4+(AtPBp?NFTgkFBTn zsa`6g{^eVTi^u=5^*0@FdY9jNsCeNQt!H<+{Q2XU}DF>MvW* zJVqS)(OqMc&4b!LRqA7vRrMIvKE_bRole^ql7)KP*>$57=ZZdkG}51sSGDolo-*Yl zR29SDY?~|w=xt;6=GO_o9$DAnmkDwo`wxgbMmSE}d3*cAA=xqi&yHzZ*5MJ=I_q^} z((WDI#iV1}4l1s_BQE_^+o=DB=Onis-=@`;Ccm(|f8FL|yB6)8}{@5Unpt^`W z@$S;5o67}-;O;zb&hTXQm)q_>LVW*9I{4zowtEJPKMY$lHko*P+bMm-iH)4m-rv^t zLrpCBRoh^(bp34R$h+m**soM zKlAnj#9vVQU2^52Z%Gbwha{LzOa70Sa{u?gTx(M+Y6una@$mK>^3g{;k?yD z#4A0TM~IJJZaYw{J-YP(G4P`HdmFZK@9VF0D%Wp2_kJSpU9aEWOPv3WCH=DpoGm& zSN?1@@LO{4cl~<>>VR;?aTUAkpT&&c_tziNM|Dm47p1|5TE^(`kdwSiuHY3(B)+?} zWJpkMzfK>dG`OTNwLYeJ`kG1ugg%Z9{~zXkI_@>$lp>TJy?bTbaoJ^?{o<@A}$W@ZZ>^!^J5hAMZc&mb!iR zkxwoE-`TZ}@6*0*?cHMV*STvA7hn3)-Tji=cDIFxi!JuI#wG_1U-RX@u-3y1;hKgI zzn%frC^`Be6onix4lGjTXROKNHpX!ig^C=HGN8O z+<<(AUk1(&Nl@*ibb$f+_a*g@Ri!9}*VD40@G*i2P9`Izk$~0?_Br@QAVrFjMGrK? ziUGrbFIj0JSW_W?hPA*np!04{H8Ty8Xy&F zP^}L9Ztzw>fFAmqV_8N7R|8DYfz5~tVLuR?7Oxmup%5%EROCo&=TR)^pDsiJp(G^x zjMWY^{^pESKx(% zlPZ*~Y856e76h2p!YG30jRZ@uWJ0Z`!NkL2L1i)`k1~|ud1Apk$t9vdVwT0MI?pDs zA~!f%hk2$33dE|CD$9lU9P&rFe+g27;luY8Uko~9#hxV{LZiSoZOHc^K{x0X6V^K` zf@2aFf`E#zeWDfgQWxU4f}z=kPO+fzs{9@G1vR^I+VaE2^as}1;?|)X`-vGBt~sT) zzt#4)+WuD2yK4Je-qu>%-)j5YCu$*oHTzq_{&vW)x~IkDCss8iOJ{EA*DZPe*)@H8 z?p^fkNHP8=YX&yj&#&S0Z9ez#xtGs;AR4{30qD{xv%9y$%aN5h0@(6`~D zH_$gbhZCOlm-`7PEc#6vPS~_;?V93}i&_Q`%c5Rys9SqY_d|;wz4W5;_AH#x=(%=B zo%q8HwGvMFnf=yw-5X_hD ziRb#PJH1eLYSlmZ+Xs7>pb*9L5PD%GofJ@62c`-&vl7KNEPFvl2sx{v1*;wf8)8mK z&SATRjM`TDA*sf!G5w@GVeS)kf2%1@ffHq>6?1I1#N!209)zkPg)K7F82C3NW2g ze(8MasdGXt?kzr4jdiY|F~z=DeN~#paJ}bCO|ANJlrNOH?cEPvBxe2Hy3wT&hoodX*Q^lF z9+N`ROc?1S{31}1;_{L#)AcGgJ>1^73)QrgkLeBzy&apHYq`mkukF}WSK>|SCNF}{ zo^y5lo%E?0VAp#Z?Axkw{ zWyeWon|j3J<-yy_>JVAvp3oxP5(J>&km$=cgv@Ti$#1qSwBQ`!{~$hIM?_ z^Z5>+@A7$w&%?<#Zg}J;2i3iuNxWhCBct}(T)yS@M}{WmS`7mxUz5EhobJ!BR?y4UA>`gFT68puf1~3hOgFrnEcJx zHXP7XjP7;&1nKe_vDY0l^3#79+PMGC8~8ky?0@s)JCB?vBs2Egcu{dNv8N*s?z3@m_u}XNwExCQ-Rk~Wod^B8iPP?V zkHhI98~@Z}Z#y!50__w}75_A3)7Zw(T)Q#(%(YKU?k}$0_{7*`?afczF(oC|Luh*7S)SW?xXDbcb^z@pqO(rU;or?(`$poym$Hf z(U47N9W3gv-8eS6THEwcZ?SVOKl}W#^6M0huj5bJ^ymrVXD?8;-_4u)_Ypl$;_eAc zHXX8`SpC-36*t+E6`T6+^6p863k}-TG*&z@X!D%9b5g;d@T|!@n-0t^ zk^JR=&9{#iA3m}fX#Awj?;cz>^-%GGz=~pU2P)VLJyJodnikft5}IU6z*SgWDurb) z`ts(h4io1+!^6klw0Yb9qGb|a&4ruC^%MOU@^$VVo39!nygT@MXtLQID0<$+*PEW% z{MDg-o0it4y|K@EOOHr;zP7pF$zyO8X>q8Vq>59F$kCk$L)dXFRSDptw1dtw@|Rw(lTTn`V3qN`DcjVOWW zjRPfS^#G%UD}^MC9_fC`{uY{PN@ zU4$8KC-tG!=ZhAzzWC(d77Bj%#YL(ZWj;Beg!ji$L;Q`7ryE|3rw2rX>HS9TycTL1kO+(F1Ld(4&ll5w2@+=dhWYo^m2Afkfy{v2@mMhN6X6uZ zFNyDybd#o<%$T}nBc<|XirvSpQA>KBOfRLhS4F+|g4k z#X6|$$Nv1O%exo;Ao=MppPILC-S@KwST%YjD*G{;-a8=q%eJS+)rn237W7MAf9suDLy~s^E97l_&m$!IX*w)^J6~$z~?7?e#+;0K3n*_z~^Ute$M9~`TT;< zi+p~`=b!leiqA`YUgq-(pI7<3#^?3qogG`vs2po1M?SHH^>R$<1uhU{&(i}R6(|Hu zo9T~*rBeNI-&3|-yMGzPFQ*)u+{{fQqI(rU(3~`R=pnJEbD$wL(!x^d6VLnGZ7ucU z$J+L>N&QvZuInbo&)tURd(F1z_7_J?;O_dHVBC+DH!-&RZ-qsN^UA zwWk8&^uY83rS$-}I-X~$U|rof@oroG4u{+Ml1=f^6+2EZ6q=sUulwEh-t}h8IiZUR z>)H_~hkRVU_zoI_;~*nu5_YgcW}(NroVZakrRaI)#6<@a%Vm?xP;bGw?=a)IPfo*v$E zBpU8vnZ9U)ln*sBXQR0q0ZnY{q-Xd2z+g7IYO;RN@@d^mk)s03cc?T++j%SA!*lfVPjC=6+08CsRIKIQtX5blE7?soAg5@Mx|Je4GoEYZ! zPZz2IVBa}I((eMU%5N}B9vO;njbAXVlwY69;XKIu9`&?)NYsNg2YsLsw&yXJKtZ#P}u7!i*&T!chZDQ-HUy`_z(4jEd$;tJO3O3uscvS-nMude>)mYsv0a%^c91 zfo^(47`X|FKXVD}i4*`cPO|OXCpnY8 zHDcY4!Jb*fjJz;z$J=$~0}?W`T2ug@1NK00g1@g?wU3X7Q;MZ6l(D#)Xo6b4&B zfSXcrJmGeN;lmG2sfig5;Zg*TI3}}-j0>h!iDZeu!Vo(aM?hf=pO_ZSvRP{aR$YhC zI@l+sIo@q|3x4`P*ObkMJNsNFQW6)@7q=HCffy(xm3=!gcEE&{- zcs~h>BQ{Ug$We%MXGdn)dU1OdScb=nxrCzz%|vxHoK2o-nry#8sFSX?ceZKWN7{{C z>4TbDv~q#mK#cxHvn9&mj)n;!bsFrBL1PvpDzecez?1=t8-}pp*byQYI66Af3{+1eL>CChX`g#H!p>T2h5|#E*-*J zh~pM*kZ_*B(v>hN|6b}=Y-$clmr3N8Zm5QXLSovHqT6~9Dk{!(sW4?z%%sDKkz{Z= z7AR4PAS8S%GK0Vd*kp)7ceJzvIrBxEMye*33uL3M{cgKc!hCeWi?TtcbB$5Ro)wsE zIn25^PF@(iZaT0m1NR{zqY)uv3W_V5m&9*s2GMZ3k}!of)s0eRoSEXpI3FS5!J4tb zs|Ad9707Ec<6;@PSs+gA-n>FB%c-6tE*9Ge$P)9f-*H?iwj+sZRa6`JtIkA&E*VrN zdrwH8XvyU37O=>J_MmJ8~m%WgfiL!{UR z-FBQ(GsbGhSj`v%*V}nJs~Kbe&J3&>V>M%}Y9ZH*v6?ZK+JH4MfL})yJmLpUI}YF5)9fV^FB&Y$2Yj=acy#2(e#zoH zcRYP!z0zZ!eU6=ed30Q#@#8xusMWM%^rjo$`1`VBHn@6&+MpTkxUyz|EX2L59D{pV zIp!E!b;Pmn?lAW6P)bZauI+SjOWhk6iG^BQFLBIUI}RV1CcTx1?K?Ye zY;Z|4C;?6~Puhi-$;5^KF5#|}ZI+LaCB<34+j08;-l|U$Uwayg-W|JkEUs%5qnF$> zLCka7_TSSPbo<|m0q^eUvlo4T=D+Ruf|&jz+k#~tVXZ>sE>S$^gR{u%}t}< z_{{&V>N?3SJ>K}mT=DJ?>w5RS=ON;_XLi<$ug&3d{mopyGH2(x;>|^T`}@Y7eac90{$q~9DW z{*@czsc-T3^9KKBKQZa^2lN*+=JBv&TeVospI^e|qz%6vDeje*w>;i{dBkEa zAGw9g{&x(+*W9$Tr&uZP&0WB~?@c=L0CC_Fo;U0EPDO58LJ>zca*q+e8!UP*<#OP1 zE-zfV^Yh}IyZJV~``bgrALJjdUd83s58fUwE^FfQnuN=CX=jQL?%;CDvYml=^)bHP z@Z9f4irvd7_vjoh&lotezwiZbaG`9WFW=L@ulS|BykR4k^v5~kZTUR9qKDYjymN|} z{CzH8KIF||;*{m`tzf9}%Y*OO zxmA2y@U66Rr!QVx%(o3ke_@39{z{&A^?h6(e&^0Fi%aAXe(uX(8Yq%G`9rIGtMaOy zUlbE%SNvty`2JwK85<9*;>n+VWalAGUwC`4IBYdn_sRj0Htrqr^2U`r4_S8C&I`nM z+PHtqT{QpPb=!*HbkucURGqV_+1;nc!f6&u4H%XBc zIY7L=hClpK*7z?+j~yT`JM_0b#TUQLy}H}Dmsa3;dHJ3k$LTLlyobxOoaX6Zc|u+~ z^SJ!*qqpnDq9DM0hhOgx^k#etHOCNqnjg~z?oo|ruz2{f+9@zPF zF;9;9Sr6`vvuu^d`RTTEBCqD9PEq z@H;!NTPB-l!gqHHv2=d+$Km3wgc;Q2UU}~^*^&Jo-q|8% z-OINhJ-qXJ@qm2r#1G!l#O;qzgAk23t;l=I;yPwe`#`1}U`FhDMA3x50fBys1-yL$eAY+ZL? zRK@f6LP-xvs38eSD4~QBdJ#wfX+|I*9f44lC?*I}L`bY~DiD=qL=XZ3A~lGxND&YL z>9K+IpqT6TE+9w^zt7Bj7r^iDpWB(;+1cIM+1c5B@6FLY&TGoLGio=6@h(d9_7s0e zr+K|^-c$T39cR;)8VXvEpO#3U??r_>EVs0(S{Lg4J<#rKYdf#}tBcOl`h9W#tS`zx z^;CM%G5@F1*D>T`=mbM|8M?`k?{PpDhN>{MoS`^|7Bke8q3;=bnxP#G^VrVl%&oQ)~p7h{!#g98RModp0l_C#brC%)Bf@A zR-m&7i`UcAw;f?r_*-#hTJvLZf$0l1_)zgI6E%9tk-?tlL|Tz<5U8Jy6wfg+9!{qY zIs<9L$>Lfn`)KjC|70dm{>gTJ)T_EBTpd1M{F7d+@=q2w^^xkT=yY*w9i)y8Y=Pu> z&eMVl2KZD~Gkz(4-9$emS=vx$D@%L!cB5#%nuR4|>x^NA} z`3K+eqfS1q0JZW=agI@36lM)leg7!d3_RnKL&&2kXYI^N&_cUtm`?L6=QFQuRagb32 zs)m$5LJOz4f6Vly(<2-Ks-30yn9;_9mrygtR$R^?N6m(m=_(ga1<@GHOh@q{gR);u ztI?a}>*YcyC(;$JK64fCH;PfQ5vAQJ=dYG&#pjGnX*|(6vpgl4%2%a@uHpdoOG&ZK zgrk5pgAWgtsnb6YY?Gr_T?5qD{}j(OF&?g3-YWh_2eI4P1L^2UEtd9A_w%KU`(X6? z?cyBr8Yd)6W3`UvVU4isLy`Yv-tWf;BQIb|471s~;G@`v8SD5PPYuWc$<21Z9sFrHu zZ^1nAFeoz`dV2n-AAF~Z&-l@Ed+Y&fV4!83iRS%a&(O~f9fK`>Da~m&gs?f-GQ-4p zxIXe{ZNV{g!W!&H>tk#IYHB5}{duk{LqGcr53}^5f;BFq_TezgWE11zH0mE`ph~T5 z`PRUtFT0yqA}D)|R#7EawH!4{PRH0Q(Uq{gDwKa7Upd#h7~-c=t6QL(!YJ!wN1#fK zut3aZI03IgY1^w+CeKN0fO;*`f(emgY3D*%UJW%e+H&H*nUu65v;rkrL;UICcaX;P z7|U*hCcil*I=Q^vk23!W38Ul{p~2LwMz}A9et^aDUYz9{oly0zW4U3}k*;Udw?xzF zE0z8AzAUI`Ibcv?x=IZ&v!SJ;kKV(DFQFkwB3czBSlmWARKjGGgMS_BH$JR_ax}AG z4al%0GrL`-^2*lSa?eC6$Wn_u*7)XB5M=SCQTyB(e7>Dd`;WQ9RAOsOBYZ}4%pI;? zX=BMSKv!E!Zv*Vr-jZp6$2wSGRD`x)M@xwT4(JR5oRi1A>u60mZ@AhK4$H65TR-9; zyFb}-nC^e>%y{g?9M~0Vv|@$RP=q;MEj3~IRyf1y>u#1`O`oYb&v3UT=Yt-W3&@$+ zlcmEsYI<)AtnS%0V2K0wBuZN6W#mY)G%+zAt{U~Rj5NR{eJ!w)k{g?98E=4j{Vl5u z@Y&}r#|^OlAPa1;(3*y@MhJLisKsu87lvEb8sMidSWfF8AvZwH9c8f?c;oS~x@m7L zuAmmAS(Y1_g&$ffsIFrze;D;a1Op@uRG(mo`oY*XVT1GNb7D%iabR zilE|BcXI}-vw+j5Sgsg#k&FN1T2!^7%9?7~Wt6A9Zu#2)yUwtzFu)r#A#f8>AfBW*Jrz{!2VU_Y(3<6vQ5EI44e;n9o_FDW?qf?I18nzc*_7^EY)r1E)}r31s+af7VaIl)W#i=CzQ4ydpk^h`;7&=oD^sL zVT;Q9A)=8w@hwk+dn6Ay+>FUrCWujB^5>045ZK&)-aX5pS4MfpAI%!jBQsloRa;j z8s_oz54^I3WYhyIcQk=O;!h!aBMiG3dWc0VB(B}qDIXrTG%z}5RB23$=GP2RA0D+l zZ*(5}CJd6)$y$dxr6(<)8g=$na0HU4FE;PA3pMM~+_(roTGj=7!OcR;XL=pA;up&o z2B*HivqB4}q@x&O_CGZnH%v{dlXDYbr({b{$w$G{VVuqC@amUj&N)o#ES-mnxJRWol|e2t>foiI)N z@1dtfqob;-UH@7x8_hqOKrSKewxyD?-?8+2j3>3ZC_$N@;}X>v>rL`Si;ngKGx=XGr9fjQIr!O#;@9N;)(BIlZ=dC6OS`QnH3a=Hz8w$2U zo2Ab=RnTslIl2bb`a9ZJEv#hiVvHM(LS-s^U8_t5Eu$)^pl~a6OX{T7w8m4;>u{d5 z%GUEnX1~*LCPvi6y)H^B3pWC{09CJ=we5dcMyStgSXb*66}Z765yoB~ag_5HMwuUF z#ZKKS8^-U^9d(@;YcHzxmaDE>6l0xYVla%@*(Z#uDy6m!3#ZGm5MhXGZ-5#cXI*H} zz!49kl!n#@s$m`L89h^l*0cKg=se)u$8q(_YGi%u&qk%#09TMgr3VIHkdEUEGoj@( zwLpS}2vc7tSoi*?xQQxgV!dEwrY+FxV9h>Xvpf|h-SMM>`RJkeb2pk<;abTklBe2( z=%EKH8rvo&hJtfyh0}@zh%l~&6=qRrG8S2*xw!pfR&#PIE1U%`&ifrrjf&AZG^U*8 zwJOn`V{ZqjEp4oDV}(O%v@KfYx3j)sjGKqZLyD&R3AG|s#?w}K&a0n>(D4vpBxQ7j zs84jVzG`AHj56cVgkzHj|4dU5>qm1(hxw_6NmjT4|0&Mg5ErUo2;u%nN#~>1MtSeX z)*)vT2<=QaD>f7NEwaZyoO-o^202oH2>%)d5w~32W34N^Vj7-dPG^LFW!!wQok1r+u6B|f5 zadAPkKR(V+w~lT5SxHV!X6P>JKA58bA;`AmDJvt1u_NDy! z-qYL0fz~V&LuP7++O4VZA@;OGL#;6OLO!G-N($U@ zEh%v}&VHdIcv_`oZ(E?6II@feTP@DuQ){=Sf^02}3LeJ! zQfysps(VJWIx`=&VvMz$kIquMfyNqA$eXo;9@{0xkGGyOnr-)m6$jef+PDPxsE#j9 zHiO&tiBA^iuS2n?UISzQtvJaFCs!K74&KaYjQ3f>J{zWYaMTfNHTA({HcB!)P(Gjc zuI5WQn;?;s8Eo88(20^`Yd4_Lb?f+1zbdvc75*BFzw&TQy*yuhd}v#r=wq?kpQmrAJLMuCk{H`_3N5@4cq$@>sYn1xs{U<1Sh;?_EtvKmR?aW0G z$d<5rA-W?m>O<>~Mv16mXf}qFx&bo&Yyk_O>nPM|qBo|td~8kiq45f99}nzCQ|Mmr zZe6n2YBn(*PH9$%Huh}Yy0j_Z7OtFm)-R0`^u3?*d}g&8IHcSt??Sysk4bURQr1Q0 zqo7=H4FyESr*)8?`^460$0}=O0~Jv-3mJXxYSwn?1=FegwN~8m2#&5xuj*0iym}Q$ z`y8__&Q!gx*}h6M@QE5fMvksER?s*cl!QgnNK70CR*#mqY-niQUt3t?@@l}}k!O~J zzkx~e)HD1Y^}{#Tx+ccM>Gn43CDSo==3Cy)B*(qO`WJG3QPzhh>SfY|#W-494y%)I z`qYtK*4IpohZDTQD8vwpho#tKU2A0GP7bnL5Fby;+nW0+Xeri(ki#v+za)R6H5Jh+ zC@7p>DZy+uBF~8UxW_C-us^iF%0b=%ghphQwky8zV@4wNkX0GQUgs}{`9!JFM_A>! zqJqO(-ACuaUNFs_Y7?SJioF(ZNbK-&Htf=l^dCGT>54sG*LQ_m5^M-k3}?F$70!;Y zPnqw+HYFBXab5AKBy?$$29Ft*iN9EP8^!2GciP{xCEVK2VU}c?bAIEAI=t4BQT9L= zPl?W8wob2u*%5iac-D$D4)Ad0`NQfmK$wa+AIYUhgUY^v{o>K$&%VS~jcXb zl-W4(aWnh<6;^GbVdbPurny{Xt*IVdWq(6T&{$V0e6hjftN)p6JbO~ivzPZ-g9Iw5 z?lq|Mi+QDTslv*uZ}e1T$DLGI7=IeIQQnpEw>7Mydls!+JQKoq>0fa7iz+vWr+tkZ z7{(z@v+gm9`A8?lDzk(=jsMh1Y}U{)%>_5C`;21N5``l|dmnnSC$>U)K;Ppw>`$v+ z*1ELwwzYu#dRr^08F#ENo5*(#F0$oO`>1=M`E8D)t}47|ebdBXm>T)OitASfDStR@ zb9Sp(I2aeKwba#zto1_loypeGAo9H6B`UPl4|~iI&n|C+75@*TqVWxaAKT#$SF}Ok zLUZ>mo6%Uohql_Py1xzDDJ31N*`9w)nBxO&FeB294#75<5h3b4(px>F#9CbyRkC4? zNePIar$>T|3Ae!#OG(a5Z`b$#o#?NyvEfiAjM3z9AKHDRID_A1c!3g2iw(_vFT(bL ziSclP5o?s^R~?tNzc*^6-i+iHrQpOk91#|^vxeo3PN+|p@5UJ0-r8u}QiDXyM$y*^ z4JiAYgdpAj_%^1DgIM;Q>5XF^(|lW;?Wj>(OiT7E4cZCcLSf&-hA2%x;`<+8VqClp zlgBiQje*ajAz=4KJ7U!@HS!YiQ;28iREn*Zs?o#-YalfpO>GfIP0{1*X^k5atWs5# z+1v(olrDhi87i8UP=U0?w#w>@mNw|VRL^K_>)}JM)WJP7UI_`OHtlS^U_HF|%&Xej z;7$S$Cq7LQPLpBeIo!C8zP-)vU|V7ogHZw{-ojVzY>suO;hm1$O{t9@Bv5FzCb9Hz zICj`?I`gQc1fxozqWC89kJ(#SGAo1>3*VxzG??tNqk3#NRyQerWRz0xH?BsDszEw~ zy7R#G+Pro%FEy_F*wUWc(*~O%#ro7#Z-O1v>p3cTj@U;3KjxX`ni$5znPP*v6&l%_ z3cuD2*P&8h8;(0qwB16#!)}vm``#$Q6@}5O)T@ns^In5}A3eYZ3;oqgaNgvVixUGe z53fyv^WJWdZI;QT=z!f3Wt@K=qQlwIvAznP+gdIQn`j$C$$&3Kvc6NW*CCZ#;X zZJm6OHXUi}j+7b&+n&aQhNe-pCAw)%_4jC)1ZHu`iU`8LH;tywA2qG0LdM!oadzfS zWD9j#ZqxFr-FVv{%oGiFWTt&zvUO&r%Rly#Wxm?9;v;F2?5-7Fw*ADlPQ7Al%hb}A zFkSv*?Z@}2*E1j^5H!E!j8dsnY++AQgSVl%IP;@ zQsw=WsWTzUqJOF4V9cH|E$@8^t(+4B3&*?J~83m)qS(ulUtI>~=-xn>G3Gj(GfC)-xeT zZCw6IJ917b+@|4ZheL(Jp#leGAsYUnt=D5js&Ij=j)99CENwj6z^3J}mP<`+xOk8$ z?1eJBs98(pS!}zemlL~@DwJ$F2GOJQNcOpAF_b#BSro0m0&h0*b6(HFNX#AN5yr*% zY0})Ee&6Q|Qv;XT#+j)0r;t8g7OO+Om$UTA`*?Qya@+eR#=}*gd>fv$3HZh;8!nUt zys+9f&;Yx9WlJ-_ZC~3a8(@o#HeB^FEuq>ND%g!XokzAIehW)Xir?FY;)muI;p+XZ zHaIlGADQU}C({luCpBZIZIF?Bd6#X70ruQ$>uZ3RMof`#z;&(x5^~2-wxxN9zQj-b zh()6l;SzV85AC=C^}?HS{_&c4cC<%SJ;>4scIm5P?OB6~lV?s3d z3p}&LZA@K??b@mmEgJ{&4kb8+-Z;-@PH1o~49BTOtJ<_Ly;TL;*S?jnLjRvLSUk3& zP^&r$8n(%(h>a|nu6zcT^Uk0L2d}a!OAk;IV^kL->Y-M3sX%!fuUE_)n=~$VS&DNO zv+B*rXogT z2SJKiBnl!4Fq)9z=lHa)O}pBAdysL1ZG`hzI5G0Zk8lA&yJm!A;NP{++ntD6Q^GADa+&=Q-$ZNPJ_sMgBnSj$F&Jm z85QlA3#raeeEA8lAEj1rQ&~;+v%`;<5?oqF<;AoKR&xXFI6q2WS+6OS+EiD|g6v0) z67TITZqlhu5P3Sa2~!0jc5LDQUo&5Y+Ifv}|K+jniYoT%YE!r!rwe38)2K@D@nYKG zY4~4w9{hV1`_9J-sNiIq8q~C28(%tc8^zbE*)biq+M4k^De)!u^vB+^{3^oUi;^d~ z>#E8%?eCdj>ab|N0x3_Wt>1}L=OgWSULqx!w@TDBXJ?eMMcZ*u;7o;1-Za27arQhD z&Gy4t7w^4}rYn`aXWdbC?HMMPBn?$x(1 zGpNBmkiO{S2&T~9?L*Y*hITA}rdFF0SWXP)71?V@F=f5eAz1Bi!ZRps$qb%;+Kv-y zm-g7yy5VQhX?uYBqnUk&(BQ7HqTQd;p4MB4r6xB~{AY9fR)Yn`9H>ScDJR!v=KYd>a`zyiio_WTZ&=)pNV;!3u+fBP6Cg}&jsMEd%Ohm2I~WXG9P zO5{}nNGwumNp|>!l8N_0;84zNA4KPU@bt!~tNk0Jq_7z*S7s6hw0~~O8ni7AznI0Xd9v5qkRXS|}w>P4Xqj&#+_Thud)l`~OM0-wUkZTq2ES zp6eJzbFOvwr4ul7|`W||$Ber5GIk31LK`_j2`*!({q zYsVHQ^zA1H=}}o+gGHFAaL@e+u@X~2-B+2 z!V!*YRMenDbqX!TT&)N}ap>eSIbg%VcLrQsSg}J5x)O?guU!UPKIsQ;JpxtK6gzI$ z1Q&b$+*Er_1IOMY3ow!jYILZr_P_3(YK0!*8JtwYLmFu#mb6Gm_>MQqw3Od1;^iB; zfSRDA1=X!O3eS~-#)fJs~c_8nB*=*3HDbdvYln!w;I}R#7 z_U->iw^F-eY2`oPAxxj;SKhU6HfrNFs0d0<>rhDzeEM7|+r)Udf;4bP0x){V5<4D9aVB{# zVKxf8bct0xm$EsOOqrs@o5_K+rzAO=9EIr1lrQXXK7c+hgASqnSG3A%=t}!E z6P*dgEgHT|7)!B{#@!hm_|jfr`c1vI+Kw~Dz%$r?@vTBSH9Cu@L)NvtbpXV()o4cq z#op@DN*!OvS}B=$WE4SZ*Sb`t{efLW)TQ;TGEx#6>n+(C)iqq*+QO|ne!utV8MG89zwa_B$b=91MJOu#5NV{aOPX)!#M9`uo*z5ZrVwIH=Jnsrp ziAU`J8o0c6dGC_FE+yT5#!qD)wSWGIM{|n#riUM$ZDW%Z`rJZWaW-1uJ`0QrJ4N>q{ouZBC0`>+VP2 znPB|tUF3~|OB8rK)WN&~yu-EY8KIgN@kT5a@mvs(`}mEGtjEWU>U*0y}R9f|rdu)q$tv>zr&y%Lpmo zfk(%g>#@Pe%KX*M=3Rg9WE1esbTJ>X5KtT9S-Yw@xdD(r<` zNn+JDr+l|oN$oN@a0mE^Jo(S=wdkQ+^Hb-`IlRJPT_osYBoz+t9l4{T<8fiAN`4NU z(uD=Dd4)9}qW3^S8o2n=i>6{mvm<&mr2Un9R8aXL4qTc_N%l=}e>%v~l$v#YHk67g z!m4B6J8KlSt2=PekQUI5 z4r*USS&Q0nD3Y`odqWFQo=C?Py)gyLfU_G{QjiheO!n5tKlu*nQAy@g-{jt_?Z6pQ zipw-DW=xMDJdeaml-=&jx(@gc!VKz#cQS?g3Y<4ylxkZ8hoQtIOXAdw9-;aQyVS_> z-}RR_r$+^Pb1qnqnEXM2ay53q`4xVwGYYH1qvNbDvgY@H)FV(mNOZu43mv~bp{}%W z;N3aFrOliT;P~by{K#wHEn7Phjc#T{JA+hqTL(P*vSw)i^NtwW_%D=yM^6~ePun|S zucbI`Fv#J88=CB0mXVa%yia-ZB=-qcd7T_y!*seCsNvuKZPaF&Q0UM;IPazQ!M|;H zaTsP$P44Ent`n)u?vA?#y}Sv6u^8<4-_b%9dgQg8sFa|-?d|ZcI_?~w4`L|ouI8)u zr#Nr|mu~ah=?Z5Pi-Akc{rwzXvmo|ahLBpfuP-(Iu}=uz$%3VJ_5aTVJntwmc<76m zC6#uo4^BQ>F}9e&jx9!UVU)XqIyJ=MwNrwxA6B*uA8m{xkY@Ldx84=rdVg&F)~CXv zK7O=icb`y7wc&dH-bjaGM@d*78(pSeW#UqWV;pcCWaxN{1Y6xDEb7FSef)8z>QhBk z8t+|F#Fh%rQv1|X%_chTnW%37u6^G>U~@vKgofO3^@O zHLZT(w12k0{@&V-mswb#i_TkuMOyTV;~%3MZb0zS!oA+`0*0nGq5Pj-_ocK`@Oe9C zIL4Xi&%5xf1}zQ)ztMS(~`NxCB^*Kn|eSFd>J6PTz6fvb34NaR>eCc6YJvEgB{1u*$4;?u7?6iTjv1FSp)Hw z(%U7`YSA(_^is@Epj6g!2mAuT<>n4u525_*iMT<1Yaq@?Zx8fSm-8LiPM@Svg{vI! zNe=ysIg{^HudjCWrNy_cb=CMaju|Ef@woMfqdpZa927>)+70q0?FgjN`YXp5MzQQ5 z=wMYJo&58^prso=D2b%}Z&0T|8-&@-ALOehZeVjREJwYBU1#(r2M$4k!`uha=A*C< zs1u=%ZQ=3#Z%G&}syEnQX>eaIsg7Go^c=j zlb7?gmX=z1_pJT-`|0Ym>zbpN={ogKvDQ)Xe>*ZvK(^X(Uz`!?geW%;i^6-d*knxC z)k-V;2BdfZ)(C0d6ugr;BDW-(?kz5xnBPg$6(OY2mE*+ z6&g^bjl-(a=Iz6{o z`5xW|I{;JYD#o?2C}L<8Pdp7f1t;RyicajtQp|S^s=&{=+(hZC9U1r(y#f6l;Kcpr z8oX@KKakt@Y{x?t`RXa5sTpk&$DhE4Z6blM5;h9H9CeZ2kNBUBFolOC%Qza)3 zoKlBhidU7woX}mtfk-j#0wYvGJttPD;C#ubHrIFlD>&Y9xr=oj`gK~IayE3r zC<_t3@d;Fg2~J#j3XXo&q`49J7+}FAjG$aoC;U1tQD6^`P$%Nsz|eNi5K3-1rXq#Z z#GCywtw3JAg%gHIXz;diAYEvN9&c$eI*OXLfiINU%84`O|Hqt4NBZg;YO!HT8K(~=5bL(;7R+~Fq*#vV;k4Q39nRogBu=fZ|S4)N=Gl}??xs% z5~2D%>pbsm{St^0Eu$(>vw5Ry(Z(xSEpI;Oguh-kB83roM<~}bBGctxmsFi;7z%rM?8UOKuOVeSLe#{*b#g(Z)lFn;XW>q|mZ)<7ptY*HfE{LsD-+H`Pi4SHrN zp0|8C*oi}j6w7rqGzAq;kFBa!4CVFn(^OXm0y@;7&xb>wU2l5d53D%CIorf|ILRC4 z%U^K9iVH3;b;A$w&+9j?p8jh3KciS`QYsgOqJ)JL#>J`IX-;@y|0&6i^~6!7m~n>k z*BZz25*m?te!@8Xz1{@pAOCHTP*RspG#TfoKMQ&0MJLSCp)+v05Q?G-HJXGmjJo7~ zY@RpCSzz+0p6O0Fhuho2xk8wV5j3|Q{Ho2bII*z+3?n|;P(mi+K%6cD=jZmi@HOJA z&ZT;>ipg}sr4mYj`1oYX_yCppniE?PXR6d`PWVSsE}xTv6I}hQ@m2Mc!8g;LxD1eD zoF;-)&P?Z>$8Z83Lv!vwKzx{w#vAY4UVg*b&0v`wif>sv&td%&9&&6;%yQyTUxpL# zx|BF=LIB}A)o_*f7Ozh!miOqB% zWRURMOrYAc!innu!Q~~Kd*79Gr3W!M-S=L_vm_Ee2jt;BEKtT2?dQ`sqi#unt4fac^TaDX00%4b+kKyz)*T#uHTufO34Jvo9?? zX}lXooi;&jS1R`==GV42nv?J%)-7o6ixh8j0}FVVz;VCH_w?v7*mrj|Qyso>9y3ZF zH5|GtD|%^YxG9j(dYGE_EsrJP9X#vT$Fc*=OBZ_|_#fWEs{?qrO5N%F8f&a8C=rFF z7QMdn`w1|N#P1w|Et7H%PmZSj z3U`ae``Gw#F?)wEAE6Dl+yuT7o{ljCUlDJcDnV?6Y>O(54t5m!c?aQ4b;3WxL931^lG5Dr89 z8AYvgSULs2PKi;dTPOu8tI%21M@VGRd{_vQ)FV?6r|ldh`_C^}d{Qa{&`WDhEw4Pk zIbB8pyXU(Pm$aoeXYfgF*R#%jkD63y@`jGeZA8-xSboBfueMd6OU^1fDsK7QD?B?{ z&%&3Lcd#~Gh1^q9aK@_srxRx^fMIIIUrwAy7$h+#3;t%WM~ZSRY}Tcy$w%nbhQD9| z_S>AeoqG5wm?k=%!)eiH-gEY5Cr>8uaFy(K;^75@;`*sH4|_d=tl`NW;2X>TaLsnrdRmFzAl2HrFDKV4!f7^|?`^M;{1x!9agiE>P7f z?}CRUb=Wr31uo$*1}d?l3l5jgO#&Q*yJ8=USkT$e1&MO8f|^wE(J67Or}I#mL9P;` zIv*m{+z=NoK82keDuLIbq(9!MMw@>`0E6#Cu;rA7y7n79Plvm3Wh&%gkFXC8iMA@ihEutdceMIB~g~$iL7%Wkzu>?KP zH1w}Zq z3QtzV?Cfj;f-km3#=$YLgA3>D)H(HZ^YEaV3uZ@(AGUX4iC>*lgK|RO z_TACKH5p$zR>2DokE}yUOR#-5#{25S$X2fDCdR{wp8_gRYZrD*!Py^H58CqVGrpsP zYqg1%|K&Ba^*e&mMhg~wc1PETCI-Vv{HcVb?5b3>y967x_nJ(-*x3b3r9BHZN4Tik zG$I+b6K8lA!;xgj;Ix|Ag=Ns{8k^p3uHlq#HT)lSxf{y>IKBz#?t;g_AmL4yKtgjh zRY6bJJQIz6-l`vRAB}f+Z&xqVJ^e6Q|5*$c2#&N-T&*g_KKB+LSzEG=&#eAUaqVUT zK3J;LeOz}KNy6(iWz>GOdGOo-N>1`rq$(G&+tx{SEvZH$7Gv5F;3}D3eh~vZm4~^K z*ZR-C=xT@$xAL$(giqqZ3HU|2Yk~n*dBrux0Ow6+Efazo87?!Ps%JtF2$nUOl4g4y z!Ie`WsXR5{HJ-PXnXvqbpY<%gH4V+qnF6ctn&xU`Vla&6yzOeOMoxG2({Z(Th6|UK zT%_Ke<-#4mfX~ln^%Su5O;&8FyZ@oPqq5F*J%^pA237=ObG4*1*=WU+1;m!tq zni{yO_D2KaLI~a9Bs`p6BXM zi8vSPv#~4B)dH^3C3LuySYZUDB`g2|yDjBj3Rtqt6$%H7X)CXA;dzUIDJxwG1~~sq zR|5n5VU25niSE|JY#>b85URQkgEvB*{ZRF2fwry%o0Q@ zA<{DP;=ERA?oRXsD84{F;7(HIcVR&St)gb{cI8Tes=e2>M2Aj(54+36YQ=unCLJ2} zgR7?wse`W30@21Bu2|LUkgJtmu<)?U*GJljx#_B{j{fATtrt8v>bkE(fhSx8b!f^- z*F7DYdm3w0TKl8WRZbWv*DtP#dftTJT-c5KSYbLIMS1)43?y7&_u7xXXR#^@)Wfs9 zDtZlsQX%-;aO!*>RG|~SUqr1x&-w}+!FJwuwNf=N^3o9e`x&l8wc(QMJp+GlmTRI~ zcf~ba$5oZ9u1^i{yFXoh4JsLa`)jT)1}>xC{5M9UbH!jAs^%7+CcPEb{82WZrlWCC z7R06NM1vjZWO7}vGyH>tI|&>*>f}Ww;OA}^&b|V^P-=pm=Xk^1EI!oxAT!LZx@{?q{P?*J}p2`JoG^ zXvuxrYieNbraol4e;CM-Y%#CE#3HhO=xGgc0X?r z6t!``X@F=Q$9N%#?BK>nJ^~Kw=;mqXKAh-O1|}ty_2EdeyVOK4Zh=Kau*3E=xtkjs zZvmW|bKTrcVe1Ou=-24Z6Dr`I9&UW~FJNge_Xa(e#J=2m)(wqOUqEAOakRue&$;_j z>_)HJH0|StaRnZ(UhC^#Wq|Ri?(YroR)6tSxV zjRFoD;dUFjgGRb98({a*?yCmaZjAf90oEPoK4pOAC$PMP!`6xJ_f6zjgFPB?9S6|u zmmq_j_1-;t{3JJ49Pn_JpY9%LfE8bH<76wjA5C`W8DOgnH!QW}-p+In_0hqxQ{7vP z+&ZtjM;p0|XSiYDg*I)Ldz%5)o9*sv5WF|Xea^_u%yMIE7TR`ixo?Lu_XyO+wAUYfTurnFEj`;7PwCuxqWlo-x|49K5^sq zMyVE>>po!Q{*~vxZsb~)xHAm!rDbkxi$Ys%xqG{jdnw=D#Q+n(bl)}zI;?Tm#a~o& zCo|W%<Hw*Smi-a+_{;k21jJTUj}UcJnqjp6Lj-5da|`xQ#3N0j=dPhcmya7;r`mbV z-OT^-#|hvxQ__p;s`hQY0N(X>-RJxFc3;yu;zXW>DU8y5XovrFm|5t^qdn zxE~l`r|WEur`&gDAQWl}f`_3G$q!(KF8;$h4KPea-f}N8z}^3f)#codcUa4WVBtOY zL<6i)>RxZq!Zyvvmt8MI>Ikm-JO%jR^PT*8UV%^d(GqcTmY1p}-RrD2gv?#^iK69ar9Mw?@Rm?kW+avwo9k7CKLr~?5d;R%866bIJj27wz2 zu%eze*uc?hTh+O~2DOxO(So7|EKtT(?M51$RRPZ?XwVe_-)^Ge8MlC6H`7*`ByMer zNrKj-|El4;f zEiySCZAx_sMhi-gM4J*JVQ5oABnE9th4e!lw-tpPeik*ZaH0pE1r0}?MZzIxQ-USl zY)Ux^HVcdc&7z|mWfs*r#4Iv7zAP$ma9Lm+SvDn9!pee#W6Gie2b4_-muRvnRS-%R zaZAxI2a-jNhnzem5oFOf4j-G+R$|9uyc{?dY&dExC^=+oN7J zSYRCg6%{%7D+a@nUy;dCUs0VyzM>w-dj$yxdj-akUcr;YydslhyrKdJcufhA=&o6) z$gy3~3l8iG8jk7;v7P6{N5Z)x;aILH<3O%p%28Y~Y!2ayGLGMhG7jE~GLGDeG7j6C z;x926AuYf4r{3DOEuj?jvP!?R+7I5sP4a9~#Sl%ujD;gGB; zjU*l`y3N5@Aq0-Zib>}%tSL1l1S{%s{8d!o;HyYD@+w$!*i|&oF;~$;4!D})>o4I} zG5X`wx0Tkd=NHHwxj224?^92W5#=7axIudD>ZYgC)9^DvRGYKDn~p4e0F1z`_?aL| zj(Szrno#dhdAj;TY%9|-3T~|>MX{2iEO3es$~ej~knGcp{8pZ(9PAQn+D+!xT5F$! zKwleHtv=5(X!@2`01eM4w>WuLMTC6jpDFm6fGMTIm6NMgnE_bPhjnzz!E$8NN0{o^DUmhvRXZXws`_;_XO7A39RE2Sm!6OfQ^eMu1aP@*kMMPUoJ2f8g`n`J^0!74}K!=@}9%q5-7LQknX5nNNYJ+O*gx1 zz5UtDq0Cf)diKzInMx_AhxWXmu@h}3M-Q#HX+5>>i5eyJZcku}PW9A=`WgGvE^68f za=1-z_tM6iuF>DUv{!1K6sFjU>XmyceOx?#?k3=;SCew+%|^=Tt@ZX}9|{ehrTx9N zI8(m*v$qy$GVP<%XSIY7Hex7z8MbLm`Ymdkf_8J&TPfP7rdk|(pNF~-0!V)YA@9@w z#30h+(ddNqGt{Dw79Yaq3-zbMxQt2PLlgUGolSq!nm%xPf1opcwAqOp3@+XJRd_1> zrT+N2Gyp%{2jb_A!4<%YZ4mbXMrcg>b$Y9>me`jaFm5~QO^{8Ti=RPR_!*pypXu*# zE%wcrV%7V|nlO*E*iYlEHy0x7t3~+HKH>a}^suj%V7fsG{j_zaBlKH8jNI7LlVwX^ zL&2#KZZVBX1>pf&kP1=#Oj}a5>OI)fp?jlY+{TC#$4y+}Z9iZ(eqMiz_kQ;3IDh>6 z$Z9iBcL${2FqpbA>Dwr%zn0+hR0V3^AL@UOruIh*ODVU%mKefz4=r?t861t6E4EES?nTkAb-vpHwRh6=IVZh)V%v1*ZdrBcnr|04Q6MM>6Yb!E|&1~ z{&M_GSj#ooMdZS`4almqk+axdqWPULkz>SZ49G=W_b~4LmgACHPD^I-Im~iaGRslPEGH$i{O5*Qj!9-Y zC7I=rWR^3MS&m3%II}oRndO9JmIIPm&PQfB9+}1UFw5b{EN3IL9F5F!GMX<3BeSec zv;0+tSq?>JS$AexYV+kpWR?SwS zL1sAyndKB@mP3$PjzDJd2+VQ-GRyhLEQ`P_rysK%e#~!)7`6WSPY^ zHp{WcENW{Ot(`AQJ708mzNqYcIq%FDg`F?@Y8G{!FWNd^ly$!7>U>ev`J$=wMN#LA zo|;8X=gS#qz8rDp*AyL{FDhyl4V^CvIv=N-HwJ5?@dst+2Wz!V>*&s4+#9T;0YfC& zFhm;%tkO{JRU~tVYUxO9LqU0h{Dxu2JVDP6)4C(c83v1eg3b@aJ?S3Q(z+sfb(Gct$=9QB<#LlMj@AYt zd116R1j)Cfv9aBxa%n=@BTefD?1MD$w9waSU}hmVW6LRc3~pGK)3akhvYZx<(Rv~| zGX{I+a*7!%$xCCUY@?od#%j-^?CEik%W|4CPAVK4hxV3JmGO|$avDA!<6BN!$D>Qj z$#;TK_STaRCuogLS83-2w7!$hP5|XjYC2I%L$YWhuB&!Zr5ABWw38ORs7*rh?~B^o zNZxo!n~KE!lJ**sF_W~Hk(`{QO+k{BF4%^2NMa}Xy{t_{lJT-O9LcelwJ}H46Qzez8Zx$$8K9f{1>P9pBL~{ z19(0Ar%1)1*QDZ@*SrC)Mu*HUNTjBc5SMb zjLdq|pi7tOwP{)(B>Sgf9xhYG*P&ULY3S?F!OOJab;&HzGrLWf%)IFsCLFNo+H*l` zS(DR`pbwv&r|b-Lo}>Cw&ly?>NCwYwuBBl!p>D|36aQHd@>+Un z7M9vt`e_!H(^_i#24uaKR=%N)MDp+rZBTt_Xx(`<^!!EBQ|4)l-@>j2$PkeHKhuVb zxKNMxRHG)7AqPaDjq&pq)6v-w+)q^NO-$xb^zNJ5cqFzrwbrIX6f*|{`j$G+fkJ*u z3+ABH-;#BX_7al*b5XXHGUwvzb1Pk%tIb3*I7^#>-xsNYsv`i@|g-qohXZeTsF3SKM}Wu&uNLmmnoEq-{n?ryC|-UaT3JYz_l17M zJZ&1V!g=U(A@!Os*xvaNbRji1V_1c>#4MQK2U-TOnIB-ttBF2<09NOH2>R9Z`iJ1P znrt6xvyhDYNHYKU2qRmK$n_ZUYC5t&uucoXWHoJChy}8mA{Pnv;UX;)*!@LXEg$&T zQ90U3PG{$6lQ=ET(O%*-^eimNZ!eXs7uL_t4$1&KjtbLjoNSFMYqjpSi($7C`y&5g@W#139-_~b6MQRprfwUB*6lfEJrTvhj(MAk_Gkp+nR~T);QGDx0gw;B*XHRpH&?_d zyf-3B??=tVmMtq%>^qp9+myQx4#jP%x?g(>3GIg`ahqx$Ku51p`vcg^uaWrx_L6IO z?+BjYHER0<_OolWNKY(3Kv}L)uY;0&eGuE)HS+%vUdA<=_#<@m8twm4t_SKIlH~nE za44>k^$>LJ8udIZ%vK!c>Ul?m$(SR;mtKWV8TjysAv8!7oHoPmv$eH8oLMml{I&cH^hc}$WC$KbbZq|L{$ zRd38Y4$ojC^*Ii&VIwU$uJsDq$W3kSgr=%@rngRN)$%Tel$TIlgm77Y-X=FvqZ4o^ zHquNzIebE^<#(3rCU!v&Gc>%lf2U1t%De_8JWGiu;a{Ak=_lb4o~7?k!gD=KcTb|X z`4n*qE@VE9JcUl@(-)^el23o10{47sc^bXVr#DZd@A-7(G`QqbaG_)lE)>e;g_x^+ za_gCGf0oRwpM~eapW)8tlix2|4V7O{F`)Ygr0o;oA7b}rghU9%=#1z+>0sh0vI4rQguDMbTP6& zSwdq9k&UoOWirgCW4{Z-8fP$3`Sju$!M2~lT;@~7v(mr*XW<3s)4H?LgWG4}TIEyU zKcHa9`~!PgK9xTQy~(HX=b&d0(mA25ejYwtKBb?BG9mN4v{3DWluf(0-pOQ_X?QpqYGEG=BD2$xCr%bQR5<*w_EgS5$fF{ zYZ2DmE$VVrOAETivlH(|Pd|E!O7Ce1TFCKfw5wRhx9Ij&n3!Ai;-4^!x9G&5*pqKj z>%WBAvcF)3Zc)fJSo>Qv^BM$ui;iAHd%0x2hMwh8hri(k=2Gt8eBDM@{+7(<#aNxW zWG+UpbLnC+x|B=JEf8KVy=9Ti-z-8IZ^caHQnpna5R}XP9MAz5bHkpdD;BLS#a_1i zQM3(9AeZXdv_3k?*BwFfb|*@^2Zivo=^0q#_3>l8CjepcNheVFCY7fHXS7-pIs&0o ze7*XZOO@?Vid;&!V^(wNJG=BR#3B6~<;Y7a+G>3U+Ek zbh_N0peyK2VQw$o=%;)6ms!|c+Ut~df?UwgTpI3@A%E)<0aSF0s7ARlU%8}otdb@| zP1mGj`!txhT#EHby*E72)?7O8!3LO1olCGg=hEsD%up_cT*p3`OS7*Fa1)e^59jlO0&l~B&m-^fjWg2u(>#GyDz|)xYL#tVtnp4p|EgYpelhi7Mp2FMMv@*GB4my5pWc{lOkqf+l6*CwwVsg2VSQP1yJVYo~~g zKft6HQJqrAw1{SwVoNKcv!y6IL$^v{$InokhmhMDdgGzi3CYffup4Lar3ehxncQKX zCZ^rF^E|cu_VAJ^b(GH=qE(}qsvZf*kl~R>4yX*WR`Yo>U|qDuVI{T3XRF7D;JE&nrk?_Vo-y za!5~N{J`Z0n&anr0m*qkDQo2qoD38S^Ygdkt7Cqo<%Y{z%v5L*#OV;ND>02 zp*I7i-kCtD&^*YKfwGlB!sTv|rw_1R!JbL6Kk%@3rr=uK-nW9`UGC#sdELw1KtBh2 z`k6LRT!?27k{KbM-bfDUNnj;Un^?Z7PaleV`txXzPf^3V}w9In%tO6cZw+E@u4 zyG{=(L1foyWGFg)oxTh83_ubT=6M&%$6=na@zH>>IM9j7B%{ zRG_X^(6eu7K^5d*q>WWPgMuzH`-Mx;+@z(HlYK4XRn)(+$a}>YmO>zNqd=LUO6PXJF6`ZldjvXkyJF zS{dPqC4Amn#j9yIXjTo(?hQIn0|UB2p%I=gdX*u^QKi8tS`mdRb0R!7P?{Iv>A`#> zJl&DhsfmfbK~ri9ru5`NO;1;3CP#WYA(U) z<#Sv5s4ixF4ZT(y?X96*wLSfj1l7SDuc4uOvbqjhSVOKlP=htprLH8objUg?ebc7#|>DMvJLmJl0?_ZHh;)i|Kwm=C_yz)<+A)lwTheim9YN zDjcBD22ke%l-a;D3CZ~eo{31hH1wp!@)dV_!x8AbbyP)TUF;nVRM+F5=|DrU{h1;f zq0Y~g-3T+XlJ+$MTN_<&gw=1OrxQFAV{Oc68lEVnKZOTL`T{HBM@l-QU+F*sy7?=G zHukhO{YgC$^xo0S+OPYJ4@pMZy#|Y2St>&1TbClEq3U!X&ZsBu4yOid)LjRZ2)mENnCKrXZM)g&c*c!UCil()OVyvP) zt-)m#`L%%puc85MU>H`>x;7Z%Dtgcc6a0T{opoRoN%Qx~VM%azcXxO9;I6^51PJad z?w*7~LI}Z~91=7H*Mk6u`@FVlgo!;4=o^a}1fyIFe zunEnItkSI_OovlsMTUtgq3?uKr%D{!T!~eFR6>4tD0^kpTTN%UP65Xh5 zl=4_ho>kBcD^xR#nUR=k9>Z0ov+o2PKY?cW4gboGu3|LI$?=62;SaSs_+L&pZN{Yt z>ZZL;kD%pooeEV&M%QUnRTSkq9jl7`UecqgXtbA9rW$JLG7YQ-_>JaOL#O&ie^tYv z_(tWc!-=oTiS#FN+EPOFg{loF7o`Bz7rxSl>L|@u`c@svU&*J2QK9oHrQ8_*wfC>s zzoK?1!V{?DLUmJklZwrR@Xy#Gc_o(rW2l7i&scMk#J#mQSaf$gbG|b-9pRs`7qK76j^#UJ-4Om6TWYq%ZlP$E zk4X=dh@@{y9Hh*(AwE$>h|Yhhimj0{{x1ezsK4)Z+4x6yCxm~RFHllq`FHZN62HcF zswJ^EX_v|;j4mm0lwK+ECwbR__&^0AI`b0oWrhU5m@j-9YcQR;`p4fjAAk4%%)AWl z1>3PVRP1l~xA(nZIt=Gy?d zU#E!;kl#xRQQ|TkRN@=mQsOIpXkh$6+k9wfOvXQ*qZ=93va3m_e??c4Mc(md2F**_ zv(KPj{RjFE9pE>pUyy4RU29~F#9y6_8{-17iKwwL8X{#AV;sc1CdLeiG);}g5bK*7 z^C8MKGx9(nL3SF^3|F0t6wunh3sajJIq=^9K7<~0H!_jY(I}cci1$9Y5)L|&q?#7zSwJ^FFnQ=u((%ta$j8Y{u(|S;?*?1FpSa+kmM-<)c zj*D;<j8^VPi*7clwhr)&Wsev!{_q$9Si-?Jewy z6=W1G>uKbLIMUN-^q&k%_cGETrhYG@A_Q_ONE>?@Y4IJ|<)FL0j4b$$Jo8hw-bRN1 zWZb5=ksi^=I2+CCjb__N?fV#c=}T{{(DqTuK1P0x+IuXcoqe!~UPeYAqZUM`en`{2 zFIGIuXkK5`9Af$!l_8*)l^XOjQfsXWS|J}r_QQogkbEZM9F-saus{f;1rv>2iks3549dhbNq~<5a0dK*#fDX3+)<6hqcH&!042iQx&R2 z9z%^Zv|s>wD6*LZ|MvPDRjHW2kr-h7B>YBd;g6pofwXfH1{@;m;QMEPjEg|(KF}Bf zab+NWfCf^nL1?Q$+CIn_29awp8ZeL+4mNxtOf90Oz}}z$EZqX>U;rmBI)p{&5cH=& z%03DGHSJJV=rPn-36yP`(Sn)|!$1$Dxx>)^1L^)Sqqi=0>lPlA>vg&u)PFdZM#y!# zQIuW{XRUzgsI-0~&;Wt7X#_@oASD>d!efS!kw%ZiiY|~!%`kG)-y@A?+TiEb9!uvw z%R+5OIb>rSoVt-JO-4FC3cn2k$(Ui}ql%-A<~l)MJZw_yK>BR74G7WSMsvjv9%GEu z3RZg$n)Eh(cFH!!s6g()I9jXuSR)x!yN<=w7f9||=zs$!7-jM5P@^Egm09>ce;ijr z_Sr@r`ZmsJtBqCZ#vtQ9lbeoA z#?-(aCl`I5%zmNw6s87KjFjN$LRo0o6e9z^qaS6b%~RN4bfz*u=tp@d-Be8efrQSK zpE^&)Wh#)+qw?T?ajq3~r95zrK?7|(x++M3g}8cP(Uv# z53vy)3*t{L(1BF3(RXU<#7?&fnt?Sr4=w37S7+eL$la!vj*%YIZYDd59+Q`7Cf5hL zO@6vP)5xY(rSD{&#Z`wMlb?KNu|aejH5SlWnnIwT)YECCi!7MUB}5ldLlzw)FJ+p8 zixu~dvNUQA3ig=+b$E2ks^Ed^f)jpb#c}7F;{n~ozCEn!Th1(lF78*6x`{`3b zp~rkoED&pm{WKy7>l5tj2{L9uObRxpLnK;i z%+vNxErUILNahV`>{6Vdmw_-2_7m==t7QAg2!d#`%m{~gv&@(SF=jd1aX$qw$Aw`d z)m&kuqfg6?5}9zXRjq>h>Kab$+uJu_c%Pv`F4pnI)|l`WxEej6yDP9PctF)x8iOFV zuf&z~0c8v^hC|E`LBSr-yAVvb52*JlOt%jxW|c7lqJAjHZ4c$RY^ynL_G*s%u^LzB z2h=HyRgQ&W?tVZ8)?g}pKvUOXQSyNPS!48vXcLah#RJ+Kj$4-xDEC@S;SXrhT88FY zhTYZ~12ge&x#}lTOX>qllmxwfhvUD62lUrEXlv7H4K+D#{j}4Sy1N_)PV>cM% zAwF)v1!4mY*l3J`c(TzL1JQL8i<_G;eQlr)o6$ZS=+0(i5yXHk#$1SxThOI8(5S7P z?(J5L2+k-I71#z3&(f@IxJaC(Guu!HXQ{$=OvGnt%XT#USt`E6m;w>815?dey0`;V z!6{0;6L-N*QH!0JBo0ycv1WSw`;Dd59$FQF^T4j}G>YSUf?a5fJv3~WF#*Ed1!wlq zga}MHtk(}~uY|v&h9j`+&Ip0{{=2aiucgI3$nCq)ts|(-9%E-x-j)**A3q#J;#01_ zjS^Hde(n^sYoF1UvZXdtYlX!Lps+Xrtx0VDs?d5LmMjs}Z=bPM>$Oh=z4my?i1)wr z2L3RTLoYhg*hY(v!Gj_D(K{n3?EzyQ#DN3sPmhDfMua>Mp-y5b*GVG-m9a44mMohm z1;D*S7&0+5_^`1CBGnNi?3evP*)q}Pvv5A_gwcuphDygMjLR5`f0PrfKZ-1|Gbq|v z5Ai0NLyM20YGSDPaSYuUI(M8yeNPyxvg7AwJXhg@D31C-U-IfbBEa9Tm+x>~fY`g) z_!YnPBrd+#@pIA$gjjS6M%Pi9)5vfgT|bTDtfL8M80I`{tVQVLSrm004LHZ46z7dq z2yH))CB-^wbb&+9E*PQN*QxB&Rz>#eLuKzbu&1xT@1S1DejTm7h?YH1aTk&Od20R# zRw?Ic^(DMQ{aqn5YhcX06cqP|Q5dk$B?E6VOi2ANVP0jOMi4J9859o)mY`@KQR5|J3$7UN=Hi_@ga@Zx~BexY$jMw>a8(6F*|&$he7~ z5J$sq;fGcnCA^Jc7e`BP8%rUI-7!`}{Beily5GgD8b_b*qKm}Q+ES zhfu8tmHju% zA#~<%V>`r%r|2jw#8JHwc-w=<0nNB*P3>B?JUJRT1>JT?BG!v71Wl(&r%OAVtLw`!K3dzRG3B~)Uf zL4ybR`SlKRZJ`_%t~c1OWMSGhX^&;N^{%CS>tQM1dNSS_BkBA9jAXxTX8OE^d=2!m zobQeLl;S>4Y})n2NQC4q-=RPz{r%2Zpw)ld0V}`lP;T1lJkOYv;Da$6nhQRl{Y}dC z5ydkp;v+8UCRO^xaVI{ZH<;w}8S6Kb`hG?OM$)s-ShPe^*)OQaNILSxAiW=H<56U^ z@hGi9!D-hX>@NE8#b`(mzZyxQ_v$NVjYyjP%?O1k_#K%>(xLCj6#JCo41#zPhx(4B z@jo!mBZD)V2n0u%OSE;@Sy*?SR*#Y88e8AWADn9HUr0EIF))2Q7nBfrP6Pgha#S@vkARZ<%_dzU8%&?)S`8z^i zJX42_&h+LLgsk-DF^D}G%##pfGIFR&Ci4(NA2XQ;AR;nzXkZreFhYg1ngt=?L>?NM z)l^%KF6YN-hb42Gsp1E@{-T`O%mBc}+04-p-r3FZ5Hquz;~?VaVByYTPD3a`P8PFs zno|)FJktEXi?Pc1+k~7*%Kl|F|;Q(RY7E83*&0Qg8IOSPcYnf*Z`HQ zM{%<@wl>u*ZWeEZ7hoKcl`OBl&VKlqE*N*|XcAZW!<;>=(`;7GU58_8$Tt5{5F`a7GF`Lu&3T9HII#_`-&05jys}nDp4W&i1 zX<=n3-LGh-g3{ZH>~6T8C@8M_tobm(?={?s{UowyMqHV*;?K;bIiH3SQuN7}zE|95bU>e>egpdq8m@W)D^A4!8ZnK{Hr{Ht7E~v}jls>$9<=altsEGT zA81z-R3!F!H8tH3+nSm)ll|P;h3#FmxDULZbiP(bGMbpB=xYnpixWmPGlP+$fsZ*C z;+l`S5TaLeb3TOG98>-W+$%O0L1bx(Cc_@GmSzD6xRaaiw=~sOsR<+SzKZ6p%p&+c zt`#aEm|nIr$3paJjcyT4ms_K9f~i&;SiqL5Hs}|@RJ5%*9AZsdR8=sgYR7O|JJ$Tr z&Kv_6(B2%XchK<8uU3_5VLP)cHR)h_A+~J?bD)mpO<$XeVHW_9~Mu7)Qa>wTn4Q$MR0D z;0BbdJ7TMKMeh%$W?k9f;jWlRgQ;*g_Ih16E<^h6T-pWQ(T#&CaSsl;dvLvc>A@Zh z_QgycOolI~bM-{yq3U{K77wODy)fSg)4N{gY>0`y&3O<>`mpBoKDeR;({Fuofxu3> zzUFA{BJa~mJx&+E)sG7>z8@Dowjbx%zdr_OFkSD@wcXHcS%i z2DyUi$3P6;U>Yz8(;e&c?ycaJ6y`#M83WA(RDLjf+i5 zz18i5V9F7I@fl1r1Iz*1VB1h=w+&VO!#3D<2)9t5A?6^h!kf8DuT`C-eKK4Ox(E0U z^&N;m0)nZ|P+a+fX{r_{hGL2erb@${YULeX=QoqjP_tBuvPghY=z4;cDL!-&S`0VS zAxYoi<^-J?@A#^>Pj!~ogjgKtu0E>YY?c_qE||KEz{QzI&IIi4GDexXDC z|C5>gDg0C)YVF+D&!2C=yrkS?u^!-`|K%Wp$D%$D)AzBa4@A>(=&Oh6}!9px>wo=kX7&TjI^dgMht@L^ku6$dm-C`C;7n^zhn=EdzS=QqO zm04m|C!arz#AzNcptbA!$G5T%xyQ?viv$fkC)p+k8M7&NGRzoEVX{e$pG`_-kGGCos1 zGOKy3O>Jn?A86Bu%S<1-Ls+N0R--!Z(Sp@z4Nlx!?I8;@OQwj`u9P9J-^S#z!7M{D&$?wmuZ^YcVP-qMzb)(# zN)?7J0~^drJWA>=E}sSlX*#`4z>D|WxZgMwUaEf0;_fuAS_E#6_4%Bc1-pd-xJwV!C<;NJXy zF2`c??GCdtHo+CzX_kcOv=gD-|EJF8~84-%yW426ySvDRmOyQTF za_=>BV@qAVy)g5Xw(iCFdP>>$Aq93*>_de-rC0l~IDAS?Bhf{lQbeSg>zDMeB2iDr zsLg(}0Yu1tOsdBy=K(Clj#0z`tj>;6jf3V)h%*N<=&n%ZLuNg-=k5?Do-6eA5S9y9 zXx3q~Q<62RxhCKshk2O-J^Ey#L`N_H)=-rrW}*KlZq^Za_=5g9V%CBv7KL%}g0@DP zb29zhvZwa#sYV~_I|#qZzLC#SC|{#RN73llaKIw!=o*!e#9E_Tz0V@S1|x*x~1u$!(O$FgKM)j5IrayLbs;83oUW-Yb# zuJ=jIF6tmLbb$=ZyqBKApJ>M89h6A$wxq=l!iolC92~BeN=_uDq|Y^+bK3h>3@d7>G?9V}fuj#9wDolG{}H943R? z)ZrY8cbnFn!-%;}AJ5?me484a$AG&{%g>_&uB1QD<6^gxzMaQqc_r1q0L_&Yaskus zN_up`tPfG(A_n71ns^ZdZYABkh`L`%mH$9J^6i$4wD1oz7rsaQ0sG(*92~4a3@;ct}_3=-%<{ip-9a-L? z(bv(_Ii?}D3jTE+&3cKl-M~P*L=$fy)ml1w!>k7J{RVzpaVRsDy=m4}dj`keG|MQt z^QPHT$uzgj?n(~7g&}&KF5N<1UMH{H$m%-z-NvA}PFHSY++L@0chF~EQs^Dz@sb|i z!IJbPwYZBJ?J}*oYc_*;dl%PO4&|ou_b{n`!_8Y%?>9Po4|Vd5s@_McZ?yeB>gy|I ze1Q84U#as0bhxi{;Q>}bU#ZSRXnu{1d}yXkG>Be(Z9jC4XfrKR> zkR}t&cwwf-cO+Eik){G=erZ2{X}W%{2tyvp&jor zR@iVykInQTuT_fZ1FmbFrW-Z-h!w;?wCk`{l_Eca-=&sc%^KAB6NcYi^8bVZcb5)* zHOtYbPiAR+FY+0E<1TgmX4a$UpV2GtQj0IYO`l5u8HeD4~E8DTX=$Dw$usp=1N0YtF`R-@pw zRs)aK!CkD00Iw5R6)3fb)fL|ZJgnsqF$rO${%=+%d|&gM(%jsnjn-XtEbfqF_S#4oe(9xtc?)2yextU@V2HyWKDtg%$~%mo0yX> zYfg*PS=s1*6)P<*N@QiC4o$5>(7T_+nhb#qr+eI|jzLx>%AU-s00ir`X<0I>7QQ2k zrj$RqRRZ6UPi0z^+$x3d$gC>GCAYHSJ94avLEJTkH49}tdf)`J?iW&wM=hyhS;7SHUE~1Wwr8B#SB&veD9sX zY61cGhC;xL>g1cz%7gE4r8w=*h}K|#YEq$0R%3jJQ*G&7CMy@d!?U84A+wbn-}7g- z3Zln1&uleB2<}x%oqX_!;r@PohU(oe`1!k;o@BNvB06gpt0@G0tPTP9GSRUtoGpAT zPHD1QnZV&_ThCppsr|=z;u*Tv>G1f5mAkM)xFnBU!E54F>W(Y^#>zQ-#PGpG{e0Di zyMHBGn#~%9u0JZb)rl@;v+|@+Qw7pb)ah$cL{2LgHOy<}PRx_Yrg3`s56y1X)YHn- z33z#1*%0SV{Lz2<;99ChEy-Rai6ZAmq3Gp~53c8ny=d#*r;}3Dx zZXWc!jk&BQ+ET9I_&+M=azoFI|=RpZJQ&b*|yv>v~FZ4Fk zfV^lko?_NPBrat2peOmP=J>w65W3;u{AhY^kIWRAA6<1bJJG7@fHedn zX+iWSwq1=P3R-RP9kv!jz)U9y=oO-Dh0*v|X?rycw-tr0eE1$+7zwXZ!6Mcyh=?Lq ze~8RQ(T}fEt{PT-RYdG^DQcyptfj4_l&Tn}f~&NshE)bnPFSV!J+K%`a+QA6u(DEI zF{_^ERn^!HHhWUamuvITpyE~?M9;2?v3sXDD)K7bt!b5|&LynY_+GP?RfS%bU=x)} zTH`#fF0E}9qyLq}Shz~HN?CItuGB^s{ZtC&x=KE!tro$IN?p47bBn+()G75WU<%(n_wcIZ^AZxyC`6|E}xKDi?M z|EQuh0HLOptT7N>8sI|mv69tPTRL~rlO8`R0s~ zG>vK~)M~H)w94^1oCjK^F*UD?xq#cDAp~l>B>k^0rkbmSYA#DP>RI{m9d(ThZ9U9N zT;WCO?|N2xeE(JtvoP1MavD{eht}4&GU7YxHxE6m&s`anToMNbvL)1Xr~g#)^9EKr zq=;)^)rUYOm!&ZcG2ve&)O1yP*3c@0@2GCo5m3MRXn7;<>!{@XbhiaODdv*(A%rdDxns1oI9 zW)<*!rJ`G8_afuOzJfHe83sJ3FGshVVdR{qY(D7S=V+=A>gybB^FfoJqc1+V#GRw@ z&8<}sSvp#+$iIcv0^g6cutFiaw6qpN?C6AxeV$g>KW~$p0W9cL9=xJ?$xH7=1Nx{9a zj`&Ce{jI(pVoxnO1jdGSYJ4`^A~a%4?K0CMl1K-bGM(O?@cW zEUeV-jKY=f6*V1gU4h6x#`+!N${38ZSJZc`bs2)@S_5d&Tq_}M7>7adDze^qE4~LJ zT=T8|6fwb?rX4L^&Wjdqe$$J>CSnx5qQncWel*){9YK-?ldLoIp*?3Fx3c>8lIg}#b5Uig#oB0sPp)CZA=f+!Suma#5R(RZ^@u65Q+#(|s+1{d< zb?SG^YO8bNTWUV|-WojwBe_(V)yk7em5yGtCgstBv^&hIhXk+I!(x^-)?j>}y9UL* zMNPsn_HL2yMl6nUuZ4HFXxBzuJQl9S!jX+6?4*CWW?qLWja{fuA?tAEVFw0zyrUZH zt)3niXxAC6(f(YI>o@1r7Xq0ypcNZ1{c}z&aHbNj2%Mb{1acaW^u;z|yuG8vo2=fR z>O4@_wJu(CH2vH1RAw`3f-|T>CpTM-@ICn!xc`nOZowMo9U0rv-HL9ty6A)*26|Dg zrAMpKg{_!u-cgcmYbXEQw*wuaknLzRHZ$};7S`{;uPL^WkDl+a zvf?|;6riFzu{aH(al5T1baf|q2)*5j3vCEh--Xd0g15zDtc6hV2#mZCDzVpUiSwLr zg$|)nzgzPY<1asK_?e^YwDN9@J~lQK;>~XSreXsnY2+T%Fk7ik&-b8R*i;|{tTdve z`z-(84kVzg2QUOK?z8f%z`K1`2PJ(XtuacP2XNW=5NS0_d_ZN|f4<7JxTkCQe6M&o z$C4)Pw^rCj#@Xr0(8U8*9y{@HeY>O1S})uSI$o5PAH-1mhYlUYYVhCpM#>zrs{iNS z$nry2wf#c}qcC!M9!3w~n-4({Esvs8%sXP$|M#5{&nT0mb z1m@%7(N<1;Zys&+fY=p{Y4V6F#mBL9 zI6_HJV0FT6pP!bUz+}fp`=M8qI)l|*|C4BWPE!!C_QZ_>PFRI9pF;7EP}Nh`0;pa% zg?@N}s+`8p5AIGi>95mRg|m@~5Eu@VA@-lg+|c)|)!p-gaBsaCO5uc@=+p{qQeLTtgQ1bm0sSi?l)(wP`X}Y+OakJiWROKb>NE_p zEpj_1t7T=9LsTl|WROdMooQYLE-Ei7tGN*OLQc?9 zfL}0!)&j1qV9-`TmURr;3+TI|)SaK<0xCx-xJpM-!c7(p^-RpJ(7JKs^PC zqVy7Am#wb?&y)=pj)jMYp98qC1DuenDh`ZC^gso81HM=4-xP2MD1x05`1AZBs|<4h zTNvSl_<>0z7$uFB%V2_l_ZqkbGi7E z^H8486!6W1!E6B?5-^x6U_c@U^95}1WU!FOAD8~D7n8-J^2VD%pnxLD7z8Vzo)dDF z!ZG@AWSIg{3gAgj1y(wMYjBkla)qVh=r92RX+3!StrZfInpHLkxSEE+W&wEaQ{}Nu zzzYrDLufDX{HM|ggDDM;>3na%lm^RnE_-3a{V&h=i&fj#LjvHdvKl48cJ-J5+trf- zY*)_+uw6Z`z&=%BZPL5h>K_i_8oTU-5YN$96o$r9z6d=Zt0l^A>%aIPYQc#9n`K5GzPKp~wZk${^TcnP>zm2D&yklw9H3Lz&o zNG)JSO-_?ez=!G#G72bLgFzMny*0=#V4}8>OTeCboFwmJb^YTy4XMkdfT(QKDuo63 zG-Qop0{j{!TBC`8Hmz90M?h#x1})t}nrf9c0(Q1xmG%PgY^BP#lK?zgsX$i&0lK605P(N4 zl}0ZC@7giw>j1Z_LwhEE4sl^otj*!Wptc? z)f%`b3Q5tKRVE9lsKGP=_PCoVz#eyV1lS{Oz5siqEfQc4v_KnR{MjRIsi@c^ZMgt@ zq=g8u`_*az_DBmCV2`x*0@CYowMl>;Xl~b5A@)eyA;2DK5d!Rywnuh>AVZP7AO{+BpICNV_P&9$1$J*yHM|0DD|r7r^5R>#tiv z?16PxfIYAt2(Sm%V*&QS`b&U4u$~F9$JI*#_PBb@fY)F4z%oR|9$2vg?1A+`fIYB2 z3$O>)Hv#sz`XRs`SHI!OS3TvaaplIKNGQY}Se^pxft5snJ+P7sum@Hu0rtR3E5IIC z83fqlDzgIaUsp2O6j6Y$UpbtRD_Addatk=6K|TQ=H7F>+PEtgGous$`oy6@brO1AD zac@0}CxEgJU@yu$AybsfC&sL3y7Y^psE1%@H8s8x`1^v7}ONtzB7|aZ6Sqb zGpH*-JyZ=N^#wGX$DpAATEL*OfG!IeG!-ym5d$9q#g{N>;TAGCkVz{6MS>Z$5%67u zb^_Gn+3>7`fHW%@bP{lJC4(*k{#wPLn*-dgrfZq>aEL2TgPsEHcIl&ldVJfJ6NgtJ z-~JBZhH^O}Cwia)50t(->zsfae;_5zt~MCz&Up zUL=DB0+Q@!ut)(nS5TBDOGKsFVO9weQ1S?ar2?L4uuQ<8M_FTqfXHYDAp%^-7=#Mw zd_w>J2os{7Vn=zy1=vluUV#m&E!ELv(AeYvZp$rBh+kQO=xqWzoMZhR0^Vz|O9OTN zS#q9LeixO^ml^C4@GyqKJ^}cHKzXrWfX|-{4hpDsgTY||GjB4867b{}0IomLLeAc1 zmE!``dohsBNdb20&nR$KRmawQta07}TpbskkgMn;j=m(I?lT544sg2yUoyGs5ZA4L z82l-~&f}&6IH3&Bqr72_I}YGX@2Sus6}<{K8{zds1@jtK;yVG4J@oyD4?;Hn#^jR#bw&Wn z@kM|-69C|wfQJbg#0gNR0YD=jo}AWhnTZ+vCZN0*g9J9f`tPwflSHCYASDA&0iQMS z7NA}#f^3p15Tj~1P~S~S;Q%guDktP>hqsPEKaGI)85yJtRKI`Nf_mo&R5FN4>dXu> z3Fwi9K^6g}vogpgU}H80IRw1I370UMOTgnC4DtwY&&$OmpOCBh859t(t^k8V0@U#Y zuv$cbUHak*tW(vIs1R$EasXFH87JgAr=!aOxOIYtB{)F^Q8}+cB?03~vPKmFnMyIJ zCZJInE!&dsErkeXE(G!U>wgGK_>=?Ex&69IN%eH1vaNpTxf-_P=otdK;bk+>pCv%OeFk6- zk3TlKxCfJYqEf<_!2$uxHCQB|M<3Q$BA{wt20;Rr_hYbBfO=I8@?9pt{oaqs3L#Yn zGYAo|UV~5p>gWg<2~*&ps*Y=y8LU-+6v%)>I-#+_0bD$dwB_=AGXd+DLEPk?%Z4#0i^abp=A6p(QO0It7>g{ar) zAWf8j{d#yt3sC1&K;yW8nCT2o3TQWj!D#{aG&rjOpB!;w7HeE!pvE5;_791#G>79a z3kaUi;EI6acqb3MxF%qi2G<3s*YiN*rhp$B+!nBTIcvD@3c0a@$$bGcS2B1gp!6yR zj|He>Gmy;_0qVdEfWHN(6EXmv39w85QUO!FrqFdJl2u;YL|4aKCxk;YINB7TUH}A> zu>y{6W$<3Wo^1?13Q*@}AjxL|qjoa*%Ht1i;JUGk$#+qyx0}Ha0hRYK@WA;4{GLeH z-+LLv7ZACRK|%rQg+jiZQ-U>vjY~6+Tvr00DaA!#2g!pAcu#ifCI++6?jetVY z4AKd>qd^7%qmQvhCIMNFGsptq)^1GKB%7$b)gXs}RGdVm!XG7T>`LYiU<+*TD-JvNa7B^B7Nz&t(KlyLx8SUDAXt)e^O zRj$ylsKBq2QxylWel;iLc7A&_sZxfxDTIRgYMuxqv5sGiWKG*;59s1w?AlRzQhotkGV8I7(E>VpG8iksy*e3_@j|?G z1x*w%OoK@R>?)k9z+b9P)sfQ3W`+Z}i_LOEuB@p!dX9iB=@`rdaBB-|G+7`jdDFAX zA_03fSR!C%Ce{cN@I!;80{UiVjb#G<&|rlC-z;uc2@z5zJA+UGTQvw1kU9rzgbNs> z!8!rSax zt?zR}{Q4|J?-%eH@81~;5<$`A=h}E4-NyT z1w5|6;H-fD6&ait@K%G1HbD8+$uux>NmQr`gBSrLsxr7LAQj%%g(QCpP%rQTxFMiG zbq2QttkU3)0Ckehj3Bq`o)EjR4;8qnN{?52DXaf;0GIwRC**2dhohegIMR^8a{}0_JsR@JYb%o(#SS z$T^C^Hv!Kzhy!rzOnZ!Gm3TPsM1w?Q82lz+z*q(e1k@PMAd!H|6Bu|3_&Sk+w}4e{ z21y0%nWRZ_A@3%$N=gCur!Yt@pyxCOX$7crdQhk71*ijh05S@QnaLot0QKrKXk-mm zU>ewED`~uVq(f|qyP_ISC-?}S|A@9O^V5_0DOC-4{W&qD@-1RQz9AV9#v#|(xFNcW7v zZ~?X#qZCjl8@c8`XN|Gk|Mgi%DEj#S#&hNHnMH4Of+#~OPCyerROpMbX&80;6Ys}h5Q0^I5pCzS25 z5Wgx6q6DauoS+dcK)tOG;JAPcH5i-}kh&&=(*pKra8|(d+N^P&yBJqM<2p<(ii&!j zAF{b5pl5vsF#^=_Ptdq3Ai5EQKLwO&#^8p4;yw&+Il%4O-JHoChq&6eVQ^2tg|-YH z2&mkF!6N~CJ2Lp6fH|ER{3ReyHwI4ySlt=8p9`7l%jBhiHN6?U60q5i!5aaq1~M=N z)EmOU5-@o_MaEoc-LuwR3s0@RUO&?qk8`Z@+B1&qS~h|nm_ z0L_FJ!@tTPWksbgc3A_I7od*Y0;niJ9km5eS-|?O45|uH$8ABQx`1Ry7}OM?rd9R( zqmCkv__~C@*8u7}fG669PRKRp3`aK>@c2A~rULTemk|v32vDyS0%)ng4V8s@ix5B? z8`!`9+ev)4D;(cJKy5s0iv*nnVrSSX-kDh7)Mv`xbxP=J402EhUbq*K7{A|ZdKXO-mwY_~!b;KRbQ zWMqxi4q!jmI3d@*EF8U7z`=dBRBLj#KFsl%Q-2&n?*ehU4Vb+Lr3t3g1$pHa@r5GF%kg*(tBLZCI85|X$PBMcd z#{{IW#^8j2Ej1aOa)8^_tPYbi4so@p&)}SZkBt~y5TM@3iERE5V7E(*0vONw%~{a6 z<^XP}>rTkkuO%C}xm5j*;sp0vF}W=&b=xqwD_~4J2KNQ1w{sznM+%%!na;*5w*a0v zfHVEu2|3Zv6|j`PdPSF-NB(gLCwT3ITv@xZy|)6+X!W|c6wvfjO@q16e!!%= zsAPD|z*j)`Ck%QCDE}9OJ_3^c&7hxvq)!?6325+)!2kg--Orf}6q4vAgTVrF|HEL2 zfa*9Y5A{4ufI2!4V1xj>$Bb40OAq}nKWL0|0C%AYD&*$)EwOCD?Zmrwzh^L6K>Cji zrV99`!E^x^KC{M50qO`oWI9`bdZQq~JOvEpR;Rdx{2a?dhp=CZosf!G34#<@uM(*D z3IdP=Sbw<_a;1vT_as*eP;bYD{we`(F9xfBf~4L|)(8nt%3!U4DajeE7Z5)sgN*`0 zHP|d*XL{DyDxgUQ2HOSP(qJc7IhSovW>$$16`!mOb_=+ijlo_4c6H!QKJi>wy5UUH z?5uIf0bD;voRI5%ZjL@Gpj>G;lVd_URAq2Nz}s33P6?>jfWa97X`3)OC&2dNq5^!g z*uGbM*#Yd<6%O$_{$_KwaLtK#C2h;#x`1>Y8Qc`0ULA~cR{|7~|ILB?bg{<<~0c`TC6LOWC$Iz! zt$=BV8KhT$&qds0G03EVTM>3Ui^P98!SUGy3_s5xhk*ZGW{^w3`9B%t5m5dngM0!? z-Cc4a{*ut_~A9dY%Hf*@D9q@p4)<{uerg z6D)Q@9FOQA1#sVp-_@-$AP2Diawp_^HIp+~DL}ou8~UphxULMW#CyB}!W^LIpKvGW z%0V2zPQdg~1{(zQ-oRj!0>9p(*y;fGX}c40<=)2nI~Bkk6x>Ytox$%mupc*(P&RqeesvWbhHA4-m+#Q2e4^RC*+EH$a4(F{HC0x91mILt1zIYwS83o(Qw7?H4LjfV0up?4vnQRzNR_p0q^kl?l#xei z*hmitaOrzGA)I*1(R~Eqz*CiJe*qyW84M7BgHM&lAO^flyQT9OA}V&K!xg}dR=nwY zF{c?N8n)H33UGCl4PnP8C~#LLd0Uv1OmYA_KE(;Snx^My_jDoYGBcSaz&9I%xdQ6u zV6Z^IGo8m`0d}TA0_z)+gB=2>B!h_M>NW|Rj4s7wkEj$b%OFxfgYpax3iwo!!4UyHv|G^v zY(Gy3usu61z-_yBPKfQ=MFF;Fmj&3KT@_$^c3pt&*)0LKXLl7iscLX&3-Jx(-i&pdD_sVdQhg{5;suB5G5Kcj%SjtsI0c+rVLb^$Xwd-5_Nmyq|pSS7E3=Q`5@0+RZ%MqvR} z2QnxopsWTZ1zZ@+8f65W(4f2m`ub-VwvwoX>C#sf&}t+bsUe`T2DJtB(XQ4LU|&=l z3b1Rii2zg)-=^>pV%Jei0jiGF94^4FqV@vpD(WP_uA;6A@Z_0q8QbU~8g>=+0&r`U z&=suGS5)je@)Ka!h`#{4Mg|M8Yh@Lhc~fSSRSjPf&m- zz5{bO!6XN8pPS-@T${#m^mG9@ZdYY6OMra|oGTzw54Z&maJ%fub+JQSU8b>-AOWYQ zGavyE^?bZS08Zjn`K}URJ02#$&UdW>+$h6BIf;9N5DH_m*#TVGtxm{g&g1AE0_z(73b1>^K>?v|-S9_**nUL|IHHZ55U^1Dd0K$&_&EW#BNqkOj$9UC z8@;+hU4QU@Vm#N(820tLQc-|Qf71!Mj&9`WI|9apGq^8c_*w>!1iaMXiGWCLZb~}SO0Jkpv1x-9~ zysHMacCbnU0p?Byi3Q*!V&$2)fNuL3BonY|H-nS{Qtx4qM!?2BdN`yP(q0?MB%s0} zPLowY@kje9Coa-sV1P#2?jL0m>0d`jm5@2^l5@2`56%N4PRJu7=ImBgm#V`Sk42W2A?dgG;WE8ZS<}H+vo%C|L0Vi(%;zX zW2K@1JNm>4xf(s;=%)g_o-%kLp!stKuLMNCVDMG|y+i{oY7uHB1;Ft!91>kgRRX^SUZZ50~$44uYOjPXZNGZUsfHVT^ z3P>-&u7FGe>C@a9O zfC?dM{^#bmE1i>TViO{ay6fjP=%N+rBL){l(x5Og>c1t`FV7J6m0d`BgP{7R>3~mZM1tcnVOS~0e zw}d6YZi)8-?3VZ>z;21J0_>KE6M&ZB{_laK#&timTOxq~yCo6}uv@}gfZY1f z(WI_JT(;*81lXQ67GQhUOn~iK3jwxgtp(VgwG&`_=I$uOcCCv5+q3Qp+){0jtP_`} zrvtc7dpjXlvX&g(Pr&!q3|swP=K>_ml?&`ta1p~>1rpWPLfwO7B0Z{bG?8{{aIs^fKnQ46>u?tHFgNVDf7x` z1b|z+aZ;=75tSm^tw;g3p9dA-`WYU@Mvf?ejojGkcYr~(B(d{7A;8Y}w1ATVZccMf zh@J061wxe7>T_7*vIDq&t~eprt+5>ar-08B8Qc_LYH&wDsu`?tp8;Qgy3A(sNL0$} zOrHp_y?83X&i91?JKt9V?0nw}u=BM9sBG2s=e;5aRAB?=vm>7zz=i$dgj~j4j{Ytn zt=5kh>KN#+fqg(eEY{aa5{ibMg{KX${Mv;YW#5?L&8}lx2V|v#N`uUdr?q;ZMBF1+eUE(xJ$m$ zU9yw|*zqz>$aQeNzW$XLg5&p9Q7Q@eOIxTaz(0aDY6ytk&7ih`#QPZ36JQUFh5~H2 zngF=b9h)A)#rolQ#tb~bGU*x9sKfCuCTJz;fn02j846LQ((wYvb$6YIa8LhLE8 zkAQ(^*{%KpaQeThp8*0|>P!a-2-RSS0NbtM0&JtB801#n-nKecRBWpg7|_aMv6cC? z09|p+9rPhCYVlr+XIkLN7Zn$zMU)nJ=tMz0(W6A57H_n8ti^sUHfr%e3p^8}5}eiI zl$s|H+@r-qEh4l~$AuvdkJTuFCs347$3{WK=@4nLLyIk1m|8??v0aOUT71&tFD?E^ zfdA=XZJQ4M(Bh^RVOkv3;!iC;Xc4T1dX@&s)$=Y8hqO4X#ZE2M(;j3;)ND! zmmWfD^BsiRQwO28utBH|VQxsZX$wMal7dj1p&--_9|*Ni2SRPXfl!-jAg*hnwzD9l zcBw$9y(bWA2MNR%E!3tDgwzHJ2(|42LjC^_q5e(pigB`92i4z&pz2RT2=%`Xg!;Dz zVzU1IKNOSJah@%}xI(184rl0)0-i=DB}S z>R1+<*bm8B*{K&PcHv(vU4^pUOBN3p)Gr8icly_;e5uPg9J?rgn#mU!b1IRl>68DW zG`L)>m)EIZS#htkzXtQr-Ey&M@LH(1#TqaDs4JraNsE8Qez)K)#iejND-eavuOKZnTV`^0^D?5fx}~Ltfu$s=wQ6bb%4Ou%^Lu}D5dQhi_kGTp znfHBxIq!Rz=Q(DKEEs_kg)f3yM}3>MFG;)9Mzbdl&l#dm()l(`a?Kf!wbvD`)k2)R22?|Z$q7HhlGdNV>g zHx*lZe6_87u!v=RZ`L{x>rEnL<*fQfS2-I_Ksp3w4#RHs|kk20P4&Tp+N%baGYA*jF8VkO-GS>Rb34i?qHHP&RL+w2GnFy4*@23eHlv6}QW;0(MJjG8 zIaDT4SxF_4%EMIdr}85`w-eD~D!JvfJ&Q1p%D1#xLFIR}*_F!6RDL1t3YFfp8A!!R zWf+zDR9>g@C3W#9%A&G_N*QU*RGy*DWmKM{QnNi1HH2_Fl?LjwoM;f0c~rVliKlX% zS|24kNfbepN#z`E_ElR)o7qMXjgs!Z`P&|gkVkG*b_k;3(%l=|QPN>n28Hm*>5h_z zhrS+#EgG`i{nk|$_L5u1m?1$lkh=TJ#r13Zqm{-}^o{9K6%~N-R5p(>`v%c?>W-A1 zVyhz2g@#pkjI6k?Dh69Ly1JvKboDO~&Un1avE)npsMNS@PPQnt_8^@XHScdt#apv#{x->u=9SR=k7?$DJ z@V_{n^3qTY%ny$@JB8E1pp`Ba@IaRec=$;!8E+Rf&br9RrHA2hl zI7gb{^x=HNRQyFFw*819zVbWr8Uu2k3edzr2R|5|b(Fy1OJPBCtjludbDV#j%)XV^J)o=~xX*>{6e=`=YXh--lc-j+msBt4Y5b@Tuda5x7SR2J2&+V~sGwd` zjz1Rav9tqN$cX6+tYE}cf~AX?YHXT*8>;Cj7Adk?U1G}jett{dlE&?i1*_8_{OW5BDB*)2}&KT|t%hW#UII#~_DqD6?#79XjR zGizr=M$s*txD@2?OQ)U^;v<*X)o5V#%-R8RO?aPs)aAvsonq~DrzZ{|<(VU*1EYzQ zP1Y{%V5i$Z@hmcsIY3z<{8(&Pt9R61PV8@G2xm=%Vo?zScA1)ytjlyD%OX`+R{K?g zqlsQ@_B==y?L@FG(}xR))T+R`V!MNGCxuuF#iEo~edH2{kq^5>8c*KpDz|RCFG_9c zS$A^0gYG-U=Lk>b+|@%HG~Gh>sd!KQZEjstjDv1V#Ty6+L>z1Y_U8vieoJ6<8!Vjs4oR65;q^SYHh^&qG5Ae}vh(Z)~ zYH+x>x=SwIMT?)1D9F)zi;x`1bfbj^A__-4te%AG|v(SRL)}9UEguFa?4V6Yx}vRv~*&oKig|d0*=o zx|`b0BL+|GR=XedPRntWl2ZC06pKDYjvUjU5FjT?Rn$RmU`IPm1&E_LP%PSt;5V^V zjX3E&-7CpMZPiGV;vlLZq((87wa~i=j$&;P5~GAirQGsvc=J)3OAu%M+Hum8c;y~V zj`o@g?$uP$K~uL*n&P`?I%M||PS7uOg0Q&r#J+0AvO8;&=d7dm$?u6C7G00j6p^UO zyH-;)K99NIiWa)kLhCRQz^(C^gAnV~1L{s;NBbpuhx*T;STq`EUR+X@$L|dJr=2E8 z#9>T8a4bl_ABfb5-`Ah%W*k(uH|j?%eUK(e#8_lxSYaAs8p1J{79kabX(i$?nEq91}WIJTmUn+yu{-B1^oLriA5es9{&7xIEreNBHI0+_&7zw8TAwPoY z>*1Q7M?eH?r;!Z76h1~%1)?BW6UcyI>YSPOTdwSn^+9!FdQ zQ~oR>b@2}kd!I0$^X$_3$H#gq&pnODdXKt5z1~7X0A~vn zAR2&aA2I=$R_xFe@Scxc;(CE~<|~VHdZ_aQ8$WR6(v+3>7^Z%9s=os_Ka&?Wex|9g z?=zkLRMQL?_F0<+r#{nSSoE2u!JE%i0#iQI@)Av>VY+9n=^PyTj0a)7XF34KJ=11b z?U~lXW6$IVE4`1t(=?<)(@U_?b88m-^GtD9HT8vKp0&BK%3Cx@w7aH7C(QBOoC;Sw zQ#Rc1Oy66iigq-5`XpJt_EWI2vjcuG?CMP6b(*fivCdi%tm??K-t}4I3rV>&8z?5g zD9)bqk`~$nt2k?O?$vY?=5W>?>8Posg}QXp+SV3&sk_$VdTRPOQd6Jkc7(5PYHC!Q znwo6SB;gO-PfSUKYS9a+nrve=<-n57tpnl37C)%-3z{#EcF;to=nE?~yRZjkYf7I( zq|WVZc8&`@L%s6gh8AavZZr>$3%y3dYM7P9wF4tN8w)2JUme)>gmLVXB%1FOoBxg$ ziyZI*Gd%$lFw-`;f0;I8f=ul5Y>qXIW3NxMjK8Ze1H~5L1{ipmuE4p=l!ciZriqv^ zVfq*5NSMkn$-p!Uu3V63-}{E)|B{2IT}9_+Xcp~n7wn_wZA6}ue*T7QLE1*@wiwn} zHoRVdCzeUU49m0tCRnC&xL=vvu)T_no|UWpjhh>%(qyi<`T!)0R%UA24QncEr>1IJ z2s0{c^XF(vdtB2~aG8p?J)hneV0;v9eB*gJGr%|)XMEuq@dA|o?P+dUq{BdoSz=FZ zVSrJP;yg#%7FZ(LP5BDEkQTW_@rGdfyq;T>8|Nu44KS{CF|K=xZv+@G4({GS&-yo9 yiPoI5OQaN0Uw5qBdu>Xr#}(Pm_Vz*#-t!oFM z=vu4q#JSgX-~a#fzB@eoS)BQuGxMGA{9@wNeZFpv{0sU^SsNAKf5fmJ0|yO?=n`8d zHoj|A*)Fj$(OtSmM|J7iIW{t;Tc=X-@ukakiR~6$HnLkxWMsKHH@e6@m3Gt=?6Amt zl_}S!cj+NzcYL?@6ON6wN0lod8&$qkls!BW{WmXJ)+v5a*DgH=&Py&AF}QC6{__C* zf44d>*=JDyAp<*8oLc`oj_v! z;bD82Fu54GsOwowG%q;{H0?Mi7*t-THgZv+7LeD!w3Lesw{r)&Xf(>seY(c?>l5E8 zqI3Tt{RZRG)h4;3xPh)pTvn))%W^gVpIgKRb6FiKadYEJfM)fYl?0sV(?LUFgZb|NN&7420REaCgH3-qBt%*nA_3a>>Dt6$l(41 zd&c(}#P#i1pF7aq4?M^kF7ca}Ea};=OV{D^k{#S(rxD!SlqW-7C{H!%c{ARCo}$e=T3a$vT8{qEHQ&F<#F#c1Z;;ppLHP(#}g(c+?j$Fuq^!dC3Ow z;8{BZcdDaHUQ^ z7E}_<1Jy=PFrx0d1$Hp!WmP+>70vw~8Y(b?YRyL*x#gh_u2iT)Pz} zaL!qzIH*2)f}u#V*CQgj#1BTXhx{zSTfJM)K7+fWSfsW^t$01x1TGeTYeGl<2Rn1y zx?8!}_@eXkmb$r4B}2He-Gc?8*v6sU_qGmDYQ%&P?2*;XZ?)h-wRd9de*)zFZ}TnO z_-@4oyrz(g{NF+FH#3zCcT#`Z;xcjWk}jmG76L1$-fHDOy8StSmjQd2M?pWFjPoz9 zN3O0TevP_7eN3tFI(|gA_yOF5(4w4wICULVs5BU`(@`2_^dLT9f*xgl3Il3C;1Db| za^u_;xe!-*?oEhJ{X@O|hYar1v+F==e>42%k3TXxUeNI2R_!*O8;`7L7YC_|mw zA331c65L@|B#mzFV5nR0_wllSLp@re_hJ7)DNEgG9C{?C7=%er5CKFd-}+AEz% z(LG-h={%9n?tM?B4Mg&9_Jv6Eh$IRBN~9}93XK=e#wc%z6rD(=*F^GxR60kbZfB{q zVk{B&ex+hIk@}985SULy8rM)tq;Ev3JD5rZL>j-geDet+RNK1&ceyfv6 zM~T$tIF;TL>CSdHId_3b14|br(h>20#-ir?)urM!aNu%9Id_^!J-1XM(pn(R=(1=<@$|us0kY+^6B2wnORzzA%q@p{h^e2&S?QKiWJ*D*wy@<39 zOJilVo>FlEE&8DkIk|;MPmFzuw2Vl(!>P2DNc#-^$+?e2x;Q3*NOy?TvG`yjb?Bzbg$jQw_JXvu#k@gd5%|R;tMWh3bMv!w4h}0o9kw}k-qwb7zS(aBPK{L|jP39;vg4#1UzNErm$8h$O5+r4vN5 zIOmXa?}(I~OQoGe>L{N}&TS{sA@O`7Eho~&stbv9oJhkzja@{<8${d~w3J9oiPWYH zm39;9!l^WJZatCIozjVPj7aq~D~Pm_Nau@D=|2)2Ta7d;$+=DB+?gG#h;)iblS-@} zOT>LdTwZ%Mk?s-cR)sZ0dQPO9XSWdPGm(~6+)AW}MCv?-O3#S2dj^$G5~NqjMPEEZFVxU)tR4oeq_lstYnkya6D-YMa7eC`90x;~=PT_X84 zok`9eCerSGZPRecMMSb@o=L~j??l=&wf_n%?Ilw21;&+@u}Hj5#LmOdt;8oU6R9_t zx(Z8gh_reOl@1a~((5rfw~|QzDZ6?#F8P8;gY0eBVCfGc1(nsW$C7}UVqOm_rIB;R z0vd0y6f;SCT_s}dlTkZx(eFeWxj22Ng}XfH7eOZXePS?o`>le@e(I;5mqMn9+4G7f zN0cmy{^u^fEym@qb%|1Xo#*^!wBT&Z&D`L$aIV&nUfjIJM(*0+-?+i4MY*>_TM3hU za8XMda(@l6aPQVSxsi+YsM>~qRBOzQU7?l?O6b#bFxNk|1Xp`VPfj|bB&iWI!X(2J z4{D$LKC3;KHO0lX+#V&kf=Ctx3BG2TU>;|m9wLb1(ns65ltitd6v;&Q6UHdPeL9lwGthK0GBhmBKIjn z#U+i^fwan2Uo;8-%wf>z4hT5IOPM=1y{0g^6DOEmi%T8j!?hV(2B_Z0%D924#kgA2 zt8&{`*G4Cdekr~1T!tDn%Os|e8zULAa*5e%0S0QELxfT^kE=@X^v!#d+>TOTrfv1zL+_ZJoIrR(X9ixeWJoK>#X(R}{EN7;%9nF|j_} zNf6EbGTKQz+7}HUc$I-$&P}h5TqX<=pHFOdWub{HHNxzJ*A^I}D3`Lx0;*Oj=f^o0 zbrocBQx`1|Eaq&BqXmC*4b$y}X#UVL{J7u}#F3Z?UuNcZEsf;di{iP-Xsk(F8ia=+ zfoJ3~qXyS;f(^mk@fmnUylrWe}8twz~zIRe^`Drl(EF`^%3@>VMrN|ZiICpv|mz6$%42j4tsA3)o zOI$JONh>Ws81LXdujnqrYaCn=kCkm#^+IE59WG;KV>D()a1+-=2sU#~$28=&u9R|r ztq$alt#W~?x7zw}EmyZexcfZ|dYdfM7 zkH`r;*wY^6@NyA!4kGU?F4)6;Sr_Jmmp%wC*^UA%5X9B$=1+RNe|>fC?OGQr2p;Dl)SB!Spro*3k%^^|hr5fKQH!{~oEMdLjZ8D1)3ruiGoa0fS*Ld8xH5{EXH z;_hyW;7#N}=D`amOd^b%x!Dfl-u3a}mTzdzWp4fzxuuF*y4gsgeON|m!A_#!rJL2@ z#qz#>*cG-D(BT=SxEY&^p+=Sy8P!D-53)9wven4-%Tyy2HONX&@WpkG6Lqd%W%h(L z_i0;u?nDw+qaSG4xmh5$D7`3mWm^cDFR_VGJP2-hybet&QRED@`cmvJB;2{#JCriK zNW&c;yQ>?5P~j75E`BFAc_Tcba^juwsQ1;lZ@YBfV8GKbcD?o7mJAoSJJZb_U*)7O zARb}DMe*z^!;3tkR1|H4Q&rp{7>p`yBnyK>PyzN=9PQ_idWaW%Sfws51DZiv?a_D& z)9}SN5p#u-Q%Oz6_;Mw7w?gAMUI=3BDye3!5{%_qY**u`GjqtA{&-o40r64;4EV6w z0q$y&hym`QAt3Tccyg}vFu`+TgrEF!;<9MOG?m-8H$`xfYp`#wU=??N-)OGofstIJ zgQK{ES);jY`;)kK`x8OMQty1YdRc=(rD&9Cd2le7b6_;+kB>GvR1gqVGNE60)JeRq z!-Sh29nLj4K8|a2!iT$dd^mUZ*f{Vi1{FpE7&&-_4|n14aPH)habQ-NRX$wfBO|%` zN5^qF$HxE_Du!rX=0=_F1HKhxs=@NosN%RY-H0TPj_nx9{dKxGmJHnelf%H6%X@r~ zvhacrx1E1#sxWyn_i%p~?!qa&^m>7y#&9FDlfb#M@8q1|{6`QFoh9eSog2rA&b$YG z%VGQre}ax>NkhX$(H*0>QD^_+MqC&R4wOL$1v%q=@S+jxdkDy{a=5QBI-2{EGmQJ3 zGn{L7c^Ifv9u@0#sXsU1Vm|0t^{^a85nf8-8pALdP^r_=Ky(l^jyTcfzz*N1X-uZ`l)T^#{NRzzTxZwvw*hCf8wzB-iKd1C}u>G~(Ir6TIVtt&&p z!NCuuT*+I5!0c!QaOT<|&}bqmTl(fGF7&oVc7?WrFFTVpoemGL{G#sXgZ#4Y$3Yy9 z+1#z$MLY|;AE)H#6q%;E1J0V*lufB`_eY3bK_&8N)oBKBH-`C!8@of*8Ae}4!`Hz2J8K_GN=I(g-<%AF+tot^Q z72)ppUl9U~77BhBArt7Nf=!H2aH33*i?G08U%^mTjLm+6*2op0Od)uQ(|1b2Nu2Ie z(R6}FP=I+34-!DuHr@scPD>ERev4oTD@K7;unO~7~7QHf6w1j1+4 z1aq*S5^D(GsV~@z%m;-{1=*;}@KOuG6U=>2YrzXCN>{}R z3h;5X%HG4)hmIiSX{HVg&x$ueO&>ucjD~u1Rm!9hiUw~F6I90ZjAI0$IIT8O&>5)- zu1*#_!3`wO5%l(FZQyuWJ6xM8IBw$g4z}+RXhBw(zzDbO6>P=zs~2xFG0=)0>xQTJAbc7u^+=bv+p%r(jbU9%goX)8v48UDUuOZxl(-!rFZ}9P& zjfK})ZIW6-P!wKnA?%EMLt?CcobVEB9|+pjF2W`_fmJ?EN>wsSMTwKRWW~Tj5AH zO*8^&;lqnTQ-N?BAp`FIDV$UYs34$vCX&PNABB4umV&rTjlg*aLZ~7TO)`Qu^J8`J zrb)Dz=o?J5ijr8#Ayg%tV-p=e#XXNz*unL=MegH(mWyM8jX%|OCie6AR9$ZEARz)0jSQAlOdiGIs(HJo~ zHn5ebG|la4Co<8nc-%qMjvi~)S+t3UKtONNC<&>tG(psgqDTgdzSCgP4HX@wx#z<~ zcWCa~2+>oTyD(BzpW+ou5_P9_S4|EyV6zM3J-B1Kr zx#aB@@uS=J{p?)!9uO7K9v#XO&1U72dswuOqU<}y%mqw4De{Ne$3+#W)R4zi*-pLSg^9G*dPM2v81Nmk_U~gPt}*e2nIv zMT+Z_zQUTN#A>?o=vH2Qnx3s%QM{3^LB3WKw^oqVNVmq~hh*l3ty+oq5o*xgPJEIc z``SeuO;M`!5nrMx&VJ&0w2jdT;u18sZ=m=9Jv(i%IFaEh0bXJLScpZyoRQ*Sy5#vd zR(zQ*#O}-zr%?K%=ZW{wvvn4UCsBfT)5Q5w(xv-rJssY&UK~n0lDAE4p;WCq#jj}2 z1jTlmYp_RLk>(cd6Mvu`Njo4uOOK7p5_hGFd3#i>rpE$Lh^@4>8t262DVJF}Vjr4Y zcSY<&YaF>QzDPN*x+^x&V;3HXw^NikkHlB#v7t}JpJ}_}o{KB_kbY#p6@Q?0uYDBr z^V{6d;$gIg@tb(FFDZ9JE_q1np7E9B(cD>o$yQo!hDvgT9_yfyBv5|$gCs6`R%?{- zJH5Lm$yHkJs6{fLmh0)1jAvXP{t6R9B@?M>Bqb%4{0Y_O82k7*22)(n?}${R))!J*g+yiysZhV9}nE z-c)I;`bhYQ8q-fQnySiwkVHz2^DJfAHFa?a?AW5aRP;K$hez8?jh1#P0PDy7DUsjC^zdF(U$v7`vYG>Pr=16u)3 zE6Fq(Fr9NHTj?=Zf#ez;8+}F6%6=rUS}UbVG}vAkrElo5=b_SGCWfh>gjm{Tks4H) zlh_+Ht|2{1Ef`)?x`o+-1Tf;xC+z|OL zXeX5d{S-?{aQstZckrT(G?`Ti7%sD&w1j|KymebCKe+U7FTLi&h8hOq$~0;SUv-xX z8Ffhzn!_diq&`BydAK@3I?)%U#YRd;GY)tJF$Rpak2Hf%71dq9^f6K`JT+EoXLRcy zfKIq@yz~(@a`Hs!OzOhLrb)%rt*gwCmS>F1Fp!cv(gfe6NMABK43E%gfpk6{R|*zM z$5LJsmr6TOhkTbVt{x)^^|+w%~Nh;57{YNZeo8=xf%mJ?RTWf`cV~*#1qW)$S*|7Er$*q4+VYPq``Cw_mM9<`;zrAd@*JLym9vcY1mfy>v`50CX4`#`4NT^9q&y)9Og*h=_-k(MY zsJ&Ru@W2uviXFT}E)-EVQ&Q!fSlJ9)E}zZ^v?g7Ck4F@&ma|-?BgBfXkw@_T>#;%J zjgc6ryjkuKdu)_9=h>axB!9-UJDwqDxP}H1yIVZ5QJL%->jUNQc_IV%$>%cm56;~$ zAIa>|OAg5w^HEj%2zykuIVxYs!-!7E`>=N9uM_f*yhfyF#~*xoT}%g0-yPr2e6{1BC=|4 zb`iZ-qM=70m-G1*J%x|w+jg(VvLoRv{+DO&jS zE;OP){NBcAHJyFouC6}MRG?~?a4pOj>a&Yi!_eVA9__Un>0^`9u1y{1lj%pZjc5AQ zm(%RV`9AOTEDklquPm6o>5~NdZ}lndOFQ`69v=;pJ9xkV0+Yl0`+Y1tJ;iY!k561Z z;q4VX?W5y;;_i8$Q@p2S=J>qek8Zo_vyL}oubV#Kd9cLaeLC}Ye)H0&zKl2dJD+SN ziw3sIBS4b0Sujiy`X&ZY4cIikWf?<^f&m032S@`_ct`Jhle-qSao&vxnUyR1-shr$$G9PE+^M+uuA@g2o0@!m<_e11@QaMib>it4k(6W@KjFMWFLRo8`F z-{ZVuR^|I{;j^9J`5Jj2o%N@0dzR}A@ge>dK-$&AQfce3GSNv&ruetqH{E+fzF+Y#1<&^NtWZCqfxg`QT zI4#%1ZxMdAdDXOt@q5TSYn>W?Apx}E(aroke(Tf1?>6r!@7w!%JoHRQKaa}O;{7}- z@7UR!wRZI@%A4}HUVc6ddnbte;#Cldb?{`UpBC6#_!!}#WWNxmfqjTyJRCaLPtEY$ zCqPVEL-lgM+I%ecNcZ#1gH>1hCGZ2?;Z1&rdEeu<_IO+@x~U8-Xg&PezBup{f3()HGOsS?F2;`ly z$pVFE-4M1&;kleCOjS(chq;Amik18@*I>Ou!z-Zw7R6K+1&|A?LoyYE(3jU%sjVRL zao2E=)yg0SXSO^A|>e|Y^zW%mC&qQt3)d#+;8|GP#NP(vmrL+P5x+rLx~O8cDr&5tN!vU>*uJ&WhvjORdWEVwDBneC0~K8=6_mGA9%2bW4-CtbvZ!u7 z*tn}QQ-o9^?WtVDpkIsuzW=VY!dktQk60!w!eZqBWwrvbAnzkh8LR9iM8ex~%2AAz z;PdgyD3+ih{XvzLp#B7%Ue!-RKa1go6KN^NjQ=SqFuE4i5m3IUv&7Q5?iPMR5 zl$&rG#nJTMJY{$gl6^NSU;3f+L#A?&6s5fmC@-lQI|RI(K&Vm8AR1&X~#{50xx8IWQ1JRG23JA1sDER@TETvYr;wHU-a=mkVc`xR=Vln97CM z$`ysOjZd!9#W+~+L7X(eOz+s1|DybkVjGkf z1~B>xL36`IQ9v(7)zpWG&l0SaukrxKIObWD@eO#*=qvSMnt#9o%%V&{0AmRAEQYEA zqFHr;ZR3V@wE^=nm3z7X##ya?W^llk!jWiX4CsMLKyv`gS`hhaeVAhjc*|-Ks)|l_ z)DOf$?F!h!7QDPwI=Ta{6pqT}(17)r%IL6w&4r?JrdWUyFIsMv2w-`m6Kj?#=Tpgm z91L_OI)HIF;ekXk0e1@LEn~|Bpf71$0awZul8T~2zy_AWeXI)^)CAEfFh zLFw$_sx|m{>9ML@oQ6(T?Z)Z-WYu9@FMW<`ILj3U)S)JD@qASdBl9NkB~UG3^wkbf zmB!REM6|mHu?@=&K-JwUG5oX}DY#GwwfCuRF>ruQFR4D^ah!xe$7`zQEMqYOX%DO3 zRP9Dc@Y5Yt7Iv1s_f!{rQ9A9pYMTtD74lUBS-c#9|GGdJi0&T67?;CapH+TdzMub6 z?P28Wg_MCRVZEfVkw9(2F5F9|Cazw_M;(jhz5(ik*yW4s)Mr^X>4<$3km^+Xfs&0w z(6jr^jgz3sq857k06N>$T99{5X@ni^>Vqs!fSZ7*iC&nePf^PMT9~>BmcNx$pT^cW z6{$Xf)7jDLx;R8{lvYn^C=38(>Zobu7{c^?PG8^?q!S>n+sG zt0IgF5ULEmYpGt1IWKBWId^VLIK!76)J!i?Vb#FKUDRpFZiFu=*Tds8Q9ae&8Asas z0Acz=dtdb~)OUC-L46K8#>ye;uh{X^MydNUj->TLQrQ4>VLe$br?)fLO;n=~7+nDu zpBQ!U+cdS1*+VceM8MPV$l?ps?|s=uO?m|p&RL;O5eVMm%bFHgWtF;w2*lajpbtl` zRkJ)Ahc0fqA^M$~q7()W+o--G0qHM?S-_#mM>HUDn|db$UknQl#pUVYlI?1hSnwKd z%2W>(qSUoVeasi7&yK3qCX{}@r;fqLBOa=wa2o$e-5HlZ{#1QOfzlQ4)$>ItE&E9= zlAyHWH?5OwCg5Ik5TQo}k`G&3bM`?#iNkAP;k*4DWF1S@DG+4Ip;0j_46b^pF4K&)YJ zt~uZ~*9;ab@dq4xwUhnlKker=;(tj4&gi7cvJ0|ld%GrRbYR^C&1%N>K-K!I zg5jQtnr%UXY}k8=rn(5FTT(UXn|0Z+`3g;CAxh`2(p13dg*BSSIJK_V48Up1Mh%)e zvtiTCnv+;IWN5bGdS`cN&=sw07?i0QgVXuDX}OkrHS1CN%>9~s`0)LMnmf4o{v(>f zSdKcb>4VeMlN$6ruxwc7jAjH*x1FQa2VS7fl)tFS!1Z2Uq0N-OPMg_vla?ELn=}LM zcQyA>{mciN2e|mdM;bInXTx?+G|1Vq;jCwx**LYn)QH6>b>(VOv3w+7^8u%O3N#0C z?}mTS9K&g)j}-RlC(RZtFZiO_jMJKbX@14&qHmgZsNSv*+O@d3RI#=!hPf`)5~UUK z(cZ?g$X|N{pT85JCB1H{(W0-_Wy8&Z+9nc|elut-L-kkxs1)ZgFY@<><`OVp?KDX-O@y;l?N}vEhqST4KY{(v;57vRb0# zfC^glUBGNGxw_T?Csfo{#PC^_w1;q-R7IPK(=yexjc|$zb;C4X*VGb2FR!a5hJH~` zi!S76!xjy-#36zjYl(&5H`NjgUur@7TBntkIL@9nv|M64EpeRc9ks-w?>bSu%3Uem z`tGz`ub$e27(c9!HWlmcRDY^l!9d!Xrh~QU!h1G6o~Z4Kc_N)n#^p1|XcKT+WSq7y zI!<-DW4u;~HI+G?YU45ky~o%Fh7Eaw_^Z?XKlS+@-1B{_6z ze0;7;_YNPQ9HJ{8jM5zyb+54A((34@pz~{s*3;o)VGVSzaIv69x?A{kek)yftftl- z(Z{qki`c-?!-m*c}9ibS8{%IjpOLk9R$reWOFXF8J-rF%b6HH`kK^T)@hf6Ray49jaxL1efUS%dz-@-ur7S~H-ia0cbzbfY^c4&(cW z1+Bnl*%}kH6qjpICMXW`-CQkbBIXlaE9eE*i=|P}6*nwQtZ)eB3xJ2yNK1;nU$kbun(_$eH`35(^IB&GURd86BEE0Si;};YQ7US}tVuGJx{=ZiWh8TZwt>6{E z2tJXeCx|OO*$Cv<#}|XCvx9H3>}>F2hkG;97hazqyc4axH?~#7rHg~3(F0*Pdw*H* zJU%-yJ-8%#s0ANAx-vMN&wgJWjGySkM;osTj_0$7Hw0&(2fpyp@tcAnf3)7#;B+4B z>-OOC{LwnQg8T8=6VO|2%AVjwJVMmI;0t^K)xqF%Ji_b4!Cm;HosI>!1bid}M^W=uN+S*%QI!*5cXY;sG_k(kI1kI!1 zUi{ISkArPO!6&%+Y4B|RP{S9&1$@C~Z-Qs>NAvT7pYYjd?}G7jg;-&0-v{sHvwi;b zwi@&)IF&zo{B!U!K0D}Za7_VfYWH6r4eSch1HPs6B7IRFUMkgltkhDjKg%DD_S2u@ z%lZZAJ=#oC>+ACc?r8Oq=!qrF%3{zTOB!qrGwt% za(VII)+%)Iwzj65w_5ie`Yk+%(BAr4yrGWw^BVPAf>$?<2I(84N7itcw~WxE?{QP> zfUSv0^(97nSuG!}kK-{_Nl14{hscU{^neZt)4F)lSoDsNDOpqKg{4135Bscc|Vxm=R<^H`5D1M}vXo%hLqoiqWuunLvcqun!Y>X*aOk%_jsp zI1MeB2@DT0T)_ky7By^V@K8eFSePLa$I1H=hFz=}{UZ$X8U1J|+!$-9g$Tg>a!8wO z42IH>kFR8yEy74u4K9qRt7WK!oD(*$XLyF)y#{1SmHMW`r(2CdeL9q&TtLe<5>p-%abn19zXDvuwk5GB}261===d=gIS#n=wem@ zT-41_7Hi{DZ-W?-gxC8TuXcJNlVT``|cTyucLk9Mj;tLFi z3r}i4Fnne87l<^4E+G}b14|9)5=sG_lxjdX_X=QxG{aInz&~GYxK((HbJrRg{}=R@ zvBB^V>uv64!`Z@n;$KvNK!)Z+F*ipmj!jo!u+`#m~0nd1a-ldyjutIRwumla0pj0-y zrqJ9#(EvgV0!_{h_koXd3_V%y@_XrJ-Y}fQ#PH)3;KnTjy5s+s-UyX<3<~B+Ea$*e zG|E0V1mG{@X+i16wj?<5cY^}A<5-V=sA276!wP2i!{`v955v>W)K`Y?cv{KJGjw9+ zixlgEia!nL@>c;EaIUEiKKpF=6T?6FW!?6(iZ9SgIM( zvodJuR>$bZ`W@cDIG@3;KN^InFUtx=8RoS%V*i7g?TzT}N&y_!(TJW#DuA_n8E0ay zR}ze&EKeh0r7T!$RRLpuPd{KgHA1x@!Q2!ECK{QxCSJHtjmj!vx6#HlOjQ;h)-c_-7mC0-baU~UAkj{5c&MnCk~KlG1kl~D%Gi;TI1l^t z+QUYsH{3i8pn>d)Q4TAeHg?0yTjD{xFHjGPy;vv@BG5|M>ymL_VGOQ?h+)UVxE~>6 z16z{}9l*LrMlI-d!^korcywk23CXcRAaY*uK-lD_aXGRB$h%|QQwTpKkXAV2p0RUb z+{H;ASH{C8`25&-4fzLpE)25j4x-SVfrb*e>6Nh|%L8jfVQGFQ8${O#cB?%8HCkdq zzwlWAYRXM4@8oz;LtvVZsRy%bAzs^9Ef!}tS;0($iFX3+xY()!I6!Gaw_gi@Qf)d= zSYRt$t}(q~?wg076~^mKJ29ysz3FgaNI}%w3aqXP5ubUO1sPs^T&8lYE{UEYG=*k{ zn(!6{E)6qn#*3wTB~6hmb2_>l+!8!k7260lE@kpzQML!c4!_5k(q)KCdPUP#%&BQL z(<{ueaxIe&^H_tH`*M)d7tJSM8kPol#)*?}Gx1e0#Qc2h&tM%NKMq9sjT3TH*XICZ=~9e`w9a(F$*O zH=(D^3&6czrptw<2T`}tV=e{oNq^H8mKFL>3~fk(MU4=>ixcS2`wbX2#Du0oylFl< z-ZYsx1U-f#O~?RxIYA0_lTA*vHi2blnRekl*Bf9$@97l4GmA{YeklEYl_?R2NBd1C z^vF#CtiQz+kM}d1cbIPCJ;Ri}rfc|khyAAQI8`4sk$voqL#AUGZ`oYm<4Q7_9oXq%N=}D?`C{iJAG{uPQB14W>%X zj~RGARGAyWS2A;177xdj!Af5<%Y}PXw+merKJhaLhy@woLx6ejzwZG=K%E%L_kjCe_S-AR)p` zClOF}VRJG3>@t5AAyV&)n7My%5%3eP6~=~{KeOoPA24^q&FGom4A8KondK+_yl4=0 zR>tBmUIeTzD|APjlQ5svF=m!GkN<)8GS++xtNcW{{|1_W1#=dwM?mBe=#FOwT|V`$ zWkwfBGQhJsW|miyJiXMy?{&?C3gZP@fDoiGpuX9_43qWhsSbqqGnWDd4a~1uJsYFI z#75?GtQrOgK>@G-YBn=Ht%9Q#A^3xg-^>BPHxYH`cq{YwLUf0Rx;xU`8(wH*F2b^X zMV4*}RDI1pAf<;{4rg{U$78?2YjAKQ-i&^WevQQlBfFZ>OA{F&sXMDX(MBL@gz1Y| zKhaczp?%Eg!J|yG3LfiaKF>HRv;er8`-yr0?5=%0Us0V5lkd%>m&=I)F> zMzP>8L(L9GA0r3`h~29&{V_n~Rq2cl)e$Nun$6y^sLE727VV$T>O36*0+homGtBK7 zJH;cMo@s7^hHGe?V;;(&V2IpsIwOOAU~D6EH`oL)J4ZbHWtrK|KpW5OaiCGUSq1zO z&E>&V;WGp1kch^kjC3>0m-l|)-5ZGt$x;w-k!*Sf#=QpaeDCrJwGvro{za?K826}b=iE;h0^Rl z&FC$M47lo(c{Aha*BoB`YOan+>IIgNV3bzYTl5V3PP%TyS_epH!Jy+!O9$|q#bRNd z+47{%{K4o13xDCUq}5UtFR}VNEGr8OX@yx%3%Zt_0pda}D+-U6QN&W4Y2S(+74=g= zzf5wqq@@wl-9!v?a8NG#>BTxlqv4Y>mZi*2Phb+W;tddewdE7b=k2!ju>1-))U-VF zLHZ>Nh}N|&`~u=iBTG#j*oLN-(F|%Q(57aVrYzmVl>w@(gx{N6&>j2?c%`)^0egO} z4wh7${?W-Yn#J?I$N(X$spoGPX3}N#kAZ^*MRbWR6C2+(s%)3o znCLEDqocZX?Hn5!)2&mf`1sQ0y2N&iE*se`CNi=dM4;&X*9?%^$Fhn|RYQU5nMe+O z`dJ<^>WfEMl3*cwH~&GF)rF!GH`vmZQNeMbQoDc{&~a%IDNGq*S;*L%L~>6&sI2Id2f6S>ptUH=vUwbji0;buwsru;i&z7JzuC$#lmG%% zw_UF=c-Cy4DMDInZMUYe_Hx~PxfQN*SXZ;`7!j53p!iTLzu)mIY8`_4j0?9i&3-%@ z|E$-8;?@?7s_qZM=Arfbp;6;~!N#7pIM^)4x(WLiS=;MNS+yWC$ZCXD%URJ^M{>c8 z3Rad)JL>)rxVfU0<^30kDx-~dE__hkie7lhg@(FT^ukLnwAQmKeNkHCS8KQrN?W(5 z>7;JfD=b$~P&<>c(~V^F5Z=Dzet*M0)~ARnh#hEU`53FmTX_2}9AssB5d_0P{G*c{Cs}u457SMxW)_AI zNC+z`hvTPNr!lQxevYie$yW5DWiA*w+sg8$=RdmmEXB(7V#+^Y#&T9M9y}&4u%0NK zrqJuKnG3Bxvv>sC7(7M7p6MOllmDU@0IGeQ2 z%JMd(2QV1eFO-wR{Pk9*-(7xq#@YivfiDMHJ3UiCXomF{Y{i5fO!4Q1gb4Bu%ars3 zq0&CpFB8-a2AMuVmz+A4{VnNADBXS`7Odh#IWR5|gOjaF9CH zSO*#|ShExi?&aw!c>`iKG~cxb;*Lc2Lqm3(R&2BFz1;S zy+@D>m%p>3_XyDZ^w}z6x$^fD>;L(^jYN^n?Xeu(A+?<=Tz7tYKST-3_}b7*9J#Qz z(uQ8*$c0*!4ZXyX3x5f+p_e#vVLy|t7PIG7b=mav<(Rn+n~o*gv3?+eL7yF?z6)=M z*z#qF*!dE+;!MkI9H$u#Y&xJy%vFL1qEIQ^SJpPt+d%yawhU$!{{-w0o>Z}^L7v(g z0A4GNi{Pj#HuMppT==zy4ZV4k3oq8SF};ILyaqL8f#$|G&f^^5mqs>zDVN{OhCYIo z3%j(m)nv3@PoP?l-fuDG_w@C?-vSP_vt9BSVpV%vZALxu*q6Gf8yDHC@!7wY*fK=)=)vW-#f9Pk zW^J(zEWd~O(mNo%DY4$h@5DN+vQ47gK*3rY%R|2y5F$XPNf=cg03tKcXL;iGBT8iR zaCfWi7co&6D6^B5(hpShD(o)Xc@{7KiJTP{-)+mG76poZHkN&>7Z9S}ekc^B%tN;4 zJekjjZ7h$Ed&ywcTVb!GHVyBjGf&toEHUdvgukA*y|z)0Z}!?&gjy3$&$spCvpyee z75Qw-&$i)w_Wn29Sw6c@WKZL>edP8zd{(KjkMN_o3-xyNGnpjR-ka?M`Rs6q-Gh5P z#6F%s+Nzkn0bgxbti29@R8ihrEv2%z+TH5jY6*4h84QnyK%@tq6x^s(O$SG|us>zA z^EepT%C6+OmTG55pYbBSt=_>N#T#m3ynP&BAgG&N#~-cO(_T?R%TDX(t+p`1UWzY! zXRuwz7Z4`ekFxw;1Tl4!QS=+<29Q)ijeb~Qvi-P_bQ`RjWY+@KGMf>;on~kHt*W0I zkixmi_C$U(wam7M@Y&{b?7Mia7&!YNzW>V>*oUx8?4Bkip#5TdApTIfFDO}}j~YH( zYDb|#>=}?|uR)suombjfK7jpyw<3dcR@tq*ZL-#RyEJ)&eYA|)F>t&6H^zu0Q`cDm zpjS+7d+jVYT=68zH7V{3&HL;#81_Eg!)YciZ=xUkcF5jF01nm&^Mjoa+pEb0Hz}`I zr|g?pC-NC#hju@9%3AN-9e*79wR;c(h_dwrJ6 zp{VjSI7{S^`xCRR4RF}0v2JJ`6==?_cPwS;BZ3yQ%nC%YDGtX%(mW^^>R7>QZiM0l zapKxOFujPQCu5lO0tALUiIH8*afcdfe+dW6_sekS{)QJ7;b=u8dU3R)C(C&50rUp} z?Teb|&lzf5n~c7R0l`ABtbxM}QljRf zNpRs@H{4Xu0VKqWer@7d=|ghzHjc9blKZ2rL*_?vU%NSa$w+QkKgV5qwrhf;DXn{Q zh~u=BoJ}9)I6==2ALCd-bKyyjOqzQ;&asoW0cSW~Q%~KM;;=G|+kohB_GMEexPQJQ zl+|YeLa;;h`qf7v)%}LWjtpwt-l>k_au8o(oE7d`MaEA7e>fIKzea4+;+@SN`YA5 zORezJMTcC31mRW3?tf1Sc%YSV&Nato7SHh_fGPe?HR$o!sRC(dl_g=9n~wDi1N#q3 z7;pj@yUW3H-xkr@Lbt-5A2}ovq@kYA964+n%0w^!I}|MA9Ac3P17AB13K4{}s(^h`{@A4wet?VT@hdoUzObI4^R( z!0qprI=4{4ULn<5fRW4xFpaS#G(dLc~!9U0an8# zqw^wz8VJTOW+&5aHBvdk=DdUn2%YQ%PPm**pHLwL28TLxFo9ZOPKJ*JLWE&q8PZU_ zRUl_~xE$o137Z0sL^}f!3wS-oc}9TJ6{Vdlk99*w6=!WU_QM|4DNd=H&N3{wED+9e z@Ssyj07x?zn+7j6ru3dRrLfzZI~%jWqFyfo%fF*lUDhu}jSI3|hv2S`6#7iO6TO#k z050$BL=O}kfZe;&rlPx3`Ew7ambu9X@y|5y`5USqXnCKw52Uuj=Up7L zWUk#Z&Y8zJ1n`*l8j=1Wc#cyEXHRjWTek<`&FRh-r~w!;+nK_$KqpGxn(7P$_FW~l zFk`-R1YQmhzLgg_=i)XlE_DX7OzjvOBJ3yFSr?=`?_*O9UFjUdqF6MDCjixw62qZl zld~0z8a)UR^rsXnY;$(Sy-VNeJdZWle~%M=W#j;CcfdKBZcNXZoB#gf^3u{?!c-6_d8j#h_DF#_j!>+(XS>6`@ID&>UN`KEW7v!_!PI%jGa0(wy z+v(Im-5J+kEZ1}hg$-k#1;Qs+T$#MyHeYug=35(k)7x;J+b*WxHzQ4CS3^IcoqbNC z1$!!#mW1Kj$;^+Zbbv?kv*o^ec>4YH=Y{6W=LA#%Fz z5BTU>C88WpeR0jC^Ed4F9sTA7Ta^E3K?!RL+*f&R7Zba)d2Rbj-6ocefX7P%&{skt zO)x;|M!(aAS441~%Iyh(K^k{IMlbD6cNy<3?&d7J3`CD0@Vg9y%iWdN=Il`S0Xl-i z_Tlb3{Ly+5?mmnoL2vMn?Z)oX?o}+?4Z_)j6$p#ebtmvd*EMj*qvwLKc8x9EPh~W# zY41iqgG`Rz>EO=fvn%7=F22C^?(Y6P!f$=toB6D6fE#@PoK&kh)O~|jK#4>*(+3cU zA0*6tCRs4M*h+XO$*ttw;LCWoXZ$!i(aUc7WH-|W+2d{!fOaO+V2_z@7vIj(+3pd{ z@po`lvDvW80x#IYh3>hG(LnYVHuxsZEfols(7jH@6>jFej{OYU>!2UsV%qCmyyzYb zZoLe#fw7m|9YD|;w-Q8bccaIYFS%I)65-AM+x{nct^17#R6RFD4Q6a~-)0z_2;k;@ zQ8rj>v-=@ST#}8?ql*rSsfOTOfjvq6u-*eNe{_ z?v1?jn7*((4+1O(4}WztJpt;WR1Btnci-d{G(#A|@~LVMmIZ9~?-&Fth(ijPqlxv$(ZyhpN8tjg|?oy>Dv?qfIlPQoum$G~clA(NS5GQPMK zC_suD!Gj*s?od}T1g(nkd<1q@Lc5V1zYrt5UpXX#W%oh)>}i1iNb$33A!r|h?F#SL z4M}8K2N78N>OawKqc)LJx(}(=IAnx~&ZF7QLT2-`R{xeEO#6_ZTJVRBT7{gWz6itH zhM;{2q3_o|#KyAn@_2#@??d{cTTmf#mZx|TOdpUoAv6?J9T6!9RhE?a1x^?c(vo3n z20vjb;fA3hXzxKfX-^D6dk>O*GbRM>JxKQU_>lgLQPl^eED0$J(Or%|SauwkDMSdV zJgF*aA!wgLNNxK+tbKP}R7cnUiwcMoL9k)L2Ft?2F0c#i(#tNr*-KPZuovvHmuO-a z8xwo)-KfXjd&Lqb?1A(bLPyMIaAK8@;mM(a+$?bw|9>&)~@$C%w_n;K?Ir zy;G@b3g<3)7ZD{jm7%$?V}&YZ4`4UE{m3x$LzMmC?LF^UqTT8TI4-YYV{@4GUJ;Va zdc}E#vHs7zshhE8Y#LpSJw5wv^lFCDtKDJTbMII?_PBQoC%F8^+sRf+y1?@f-Un=1 ze`EP%)-%p4d{&^36(9Cy``f;>g<3W~9u$Mt?mM5M>~>inN}M;$yHMWEm2c~_qAYv4 zth^hm>EJ`zn1Wa<;baA$^Aw%H%;Ue=)zzbt&sAGCZ;W$gXi?1vjXx*$+S8{8VGL=; zb^%3ApHY8NPci&i;VHZk??9#xCGa28S}2Vpe`O8+ zsC$VWI1=OlZE}3VL_Mx(>_fTq7ExD%rl}9f6XBW9H1}B|s%%6nAHrQKfH1v@ZDA#> zY3s9Fe11TCAIhvYFGaaLpA$r7SqaNJ`Wz4(`gif6j1*-K-Fy~N%>1jJJ`E1YfDt|~{||WC zjP^m_nOm9@W31%Gcd)np(TC)4loqdGVOt0II?m@8!RzouA4>R>Qouzyfez4QvQH4j zNOPF|g%~+AOYdtZZ{NBx6MHQ#wC&6XC#)s$!ReoUZc|2~GS3@6w(P)O|2phWOuc^a zd9nEeP;Z(uDO#8~%*!kT`wVeAGA_?k@?@cvtT(g@&y^vB7z7bfgQ`zZ^f?S3De z!R2yM9JGAn^&!jKT}OO|Q&xbuw4yJ1+sPYP=AQS#Nn`$u+oj-iG2%O&^_|zn;;hiTwPLhjQ0g9jb^tNRcDpjZqP5<&q zq;wlxl4eBV6ZU-PgFYb_T>fXDCRD){6=S^Gl11ps?$lzuUZ4G!V&KaK&4!$CG7RE6gqL zWE%xKdHn6?d<8mrJUOhZ0-ZdbjOe96Cyyt)_EVsf$CHh|SM;aU9S$A1N8klBM=H9P zw>igb#w+d<`dPkPtl-AWI_y}AvK?%npjb}nXWeEfy0hX)r5Bsy;M<0s9Ix zHV>g@$_`7nDT+B|S#6(TZmi05#i{?kbbwf0DB{I@!@aM z^5|a0F&jBKZ@*%RNM;?Bv{(`|R5`5pOD-LF9#d==2zO6evh6ry$=2o%xT0!v!IE?;{g5<67 z%;(-Ih6@g@KTzB4Jh=E#aafq76<-ueMv`jUe)zoBri^V ztl;}fw32@+`chg6Vy%KPZoU^O){JLXd-&oCBDeA$RedSGJcn6Y&G!+RLtYKvJ+6Y$M$yeUE2Y#)6&)Ul)6sLS&(j>D~ zW*>2jByPwobSrAE0*(M z{`(rcGL3D8rVud0_nr+G7~46`*S+Yn!V_|4`Bo+Qmgdia-_O1Sg&elb@$F6KUij#d zGoVX}V>mwQEMD%5%Zyy8Em!-}97&0!gv&ii-?hHzNpe8j4Zi3}^5p%EzAwnin4Pbw zT$JzKY5NY}-IOMR-E=2;E92?IzG0N*L^Fce%6R^SFFK;UV8%1P=!o*9`vqTgM5W~R zUwzXlrRAS7?>-aq=acjFeC>af6D8AXvJH?kVFvOEj8;oTKJtCX+EY(_3n+OzY+RNcW%tE@-qKCmXb1A4G(8`jXj zNis`{R#Ln>?oVgWQr3gq7$t__J_P#{lq<{GT#+2~UhGP;lDdq@M&5lH04GwEo)jBZ zw~=x*yLQsgi)|=Swqej*>CU`*D=7^Xp*G46di_l0RooSOBgc(7HdNmK?}tr*SmP)T zI_8`Gje|a=mGX@(t9v86GW)(YmaMRc(i4ufQ{KX@uM)d0d8EoTf5ioYJ1W}}Mt01C zz~&by-B@vu-#7mHi_S`SS$yE$UAcwgHvbEsbkIwxOztt)>Z5eT-OiG@^aGWo<3o*< z043imNggwn1Ypt-qcD-TmSyqlsVdCZ){ifPIPfiPV7ll zI&rS@k$@SqP)XVK%GoFuD`_rs4Zk^1xI&5hfO)OVUrTBsuMmb6)bmwB_If4huA))| zpG`^(Ey~&0|DvSqbuGo(y;Vu`94+PP3d(bWP0B7(HJ7sad$+OzrH?B`c)L&eRIqt{ z&`Q~?IIJWM6U}TKxo-;?31hBI35K3kO6PvCbwkp5We8=og5ZnfQ*XDgDWxNI5?I+A z7Tj|;m2Q;2T_$aId;w3rJrdwMpP*frzcb~jQaZ3AeX{9u%O~r;w7h-%O8JU1_0PXv z>eQb8M_H{L@71@x_lqEF1Oirvs^$FF$ZZ!cmiLoR&`I={Rj?!nIQgMB%iro<{Lq`_ z$+xb4mqoVUD*HVkj86dzl`eYuOfNrk#aFNE*Pc>AXvO--UQ&_DFNfkKnGuASv_HrX zy(C^(oz71>@WoZh;3pmUl9Df@{CZP{_xwBm;U;x8`YoZjN&mv~fZI*|&`sj(+P3nO z4tz;OFLdye4tz<;limEJ17A{dMh`z+-QdZVz5LKk;>jrk{G{ze0gHYNg*!GNLr`z}Lt@wZU&) zS>CAO*=E1GLh@eQEfw|{EE3tY(=UQD>gIODGS^YO+YjeDxK!5f^TW9go}7HZ?`MkT zMO7RP=t$MT*`uf4$t>cuALV*1*-s4fuMNp({3=px+rjgGJ=wc+euO9;fO+SavpL1u zUiN!N7+hlZG2$-OD}H?_N-^rPe=inW<8eKRy6N|_EK&(9@gr;_WELQXK;p8${dfJ= zQY@Akt3Cug_B$uZhldq%eeM@d@y#r74B_md(rdq-hzXf-B@;^e;?MpjX!1l!l5co z@;6^fa7~d}1{SvSUt9)-8kgsPkkHo5n6=?zzCX#cE=B0r*?*Bl#lD+A#a}1|V%_~o z4t6O*P%nQB5_yWf?CpQdDyjU~*PrBPmr|KHz#lIxJH?EH{Eu2i<+s89BzL=%N}pl= zqa`YDNBC1b*(t`>QdRQXBC6N>hZ6gE4pX|p zSsbt|-0J^5q5GKiN;Qrjt%Q=j{<|n19T!vE0)JQeROOA6{{0CsfG`8gqj>p{#rc+h z3Q@Ud$|?RBDuQD5%m~6izg|g&VINOHOcfP|eLMxuHB=b(@f3Wlt!hVU037~5-13$_ zs!5cg*)X@f3_tSMdQ{qf8aXTf`AV~;flsy+}t zEIA{iS;0t^1G_z|L3MT@M41B-!&M4`U12C&?%sJpou5<~C}p`ED5d8()jUE!!`)5I zdR0y6KVIcruBbsC&Wub}HJ})YoQVNl+2!dfFQ!Xw*p#XIwXVcAY3qBj;^`_o_)@4M z`Rry?f;-DF?+})IKve}aGgSx5N~L2qKdX)t1Z9S*4bx|j`#bd(vjHoV-cA~{hK z0-%a*mw6}-tJV>#O;Xg_F#m{(W?3@2 z3o6PyPASx;iz<>ARf-V*t7@=J=Im9~3ahFq>bh#bY)_nTksGR9<0EdXj>u4r@2OT> z#p?L)D$*(@ifAZ%xl1J+s-(xNp}Z?#m!DCamB8b^P_q{*QmoEWS{%mvwQ8$eeNWz~ zD7)q@c#!>0;3^Crxpj8ztmlAey0rz*h2oMYhr-dq>Irt8``p) zi}ET%ow$Gms$v2nezoHwu9Fr(TAJd*XuAmSYc36C6Ppw8T^X6(=0*Vn)y3Cgwzz$KVXQ}Qdp-BtnTWJw=rjpCr$!J%x^su$(qc!z*zun`M1cF?P1 zK(1UbjOAlxX?{_8f?M~1O7>jH+P(p=WNCyB4A>!$oxctVxGBGTIwD|@oEq>$z#4+S z1Ij8;Mkt(O*1cAR0ksLU08-oO21cW9&9_b1M%4crBUaqMY9m(3tp#oBaXxW&G&}1EPpn zLs|A+72jW4gN?l5(*qn&m{DU+1r#~3y7u#Gv6wb$e^%>qz!HK^bN{S(a-bIk{2D+z z!D z(li!Z^$=TQv3H;++WnB!ulwfp{6lHn!d+ z@Q_tH6z>{Ha*ud1a`)>UprlgZL5a$e%7G`Wq7qd#kmMYdO4R5Xct)a9saD`ADit0D zWmD}yl512-C9Q7YUWtlBgFwpcNGZ@#Z)>SU`v(3fQ90@tNLivPrP5dxcv>=Cbu@vL z9mAzSn}Y(2C7{u|K+5*#QXr48K$3qJbS7{ti%kv0U_7nsd%*n2z~kkRPktP!Nt@A> zV4o03TI(uBcw!8^Ayw9~xRHll(8L6fSFEj<#uS{UeygAf6?X?VL^}!X_XU#H>i+c=7cd>*-6Oak4#X9^ZSdET zKxe}E5fHYRvSf#LyNkSJ=YBmfhT=Gx5oE`SDV_$pfckb|Gf7B4-3`QbyKT_qK_IT% zZG-qHfgLFt#J}+$>vpSN1r}1)?f!-30XAjTgCvSW?A5q#w+)_ERO7ncHn?9^jq7&X zU}JSPuG?*c0X5XPZnq8A)KlZS-8S%3sBztH8$9w?C-p~y{g==H z(SD$46K38jpLl%QOFc>waL<0~qcj$Kpw0lbBgM=ki#9Iol8)oAom9c+~ygIj!KseX_8xTFd;`_+_d zt`Tkz96F#TIr}_w-^1!-5&^?8^(AU!_;_4Ra`ZWY&8O6VNCb+`s;^TCe0N?=a_>2T z;TP3+Bm!-IRbQhLsDD*Wa_TvOYuDAQBm$#us?SmhMBG+ClbWgWp87l$d zlTWqHMO$#~%N*iXIL^o1HIFGnJYG!&oiyKGvGJ~!<`Bi%)oDI_+M zKL2@LU-`+J%@lW&Q#HG;9x!o%2Dgb`gnyQ3(A~TUJ=bc`-Mk1Lf6<`3c@Z?*G<+=f z_jV1sn-{@e^BE1gn-^hJv8EewRFBFx{jnWh$mc1$ zn}Js~q);|o!(8Y1Imn@G*5B475{1414&2xH5Y5mJEW59|CTxGM(MZkxmA-mq_~)(W zZ=$y$!?CncS{JzRL32V9_MFd}F;XSqMAaARS=&D7m{dvkU4m*-HVmTV#Ahy43TjL< zA)?rC-Gg>Z4SREypyidVK*BR%0YMd5N2dYRAvz%Fp`F=s8ni+Ctr4XR3@5^ZE=!`E z9}zTJ5}|)=kVz6@pCs!<$l=SgR%uqrQAUBG=|SftVWwpT&8R{X=4hDKF{r(x%}II6 zBce|bWqF3LjF-5-(y;IQ2JIv;c~#|A42#(vlmXBC1(EirSr8Z^c(M7fgW9k<-v?3d z^Dsk=k*5=kgMu2AvpES}hXpxM`eHNOBjM z)Aj|umsm_V81y@lh18NKL6^fpB&WTU%A8|CRU`%9d@|^?ELNPlJB5iqYWbL5nFvelwMxY~dO~dV;2?=lpPIqew0$A+?`m7gN78XW z=ukKKxnu^JJPIp}}g7rROq z>`mFSUW%H#6K{bkSnPx67^P6!^<#rQC^H?UfKyjK#(3H(zQbTydhlTDuyWf3SBJ_i zf_GR4GjiQyFF2JS{DLycR$8(H?jKy3>#zRRVPEgy$_}U+d=UL;aBx5CtQQBalb~^8 zS4Rhba~_*57!@4AijM}Wpyi0*5*%bg#Mt1Ilv$9{QhXU7><(`y22YoCn-^f-l;Anm z6@X(ZrgQTP5wn6X*dSGBCO_}|9E_1|PQv^-!FJA8H6+)y!5-}M#$bDxx2lvs`*CHk zJ1glD>pd1W%*Pkd;xJMf?@2i39fGsGCt;>v2+s1Jgi(PZt0@zXT<;LR5i7k{D?BvhD7n@pEI=%rBRmPl z^bnljJqge_1Sfb;!p84Hcy$kI6CzbN#O8+J1n)`c*C_-icu&HcZXr0qdlI%3gy014 zNx0iT1Sfb;!l^+aW5~iof3YWvy69~$U7;s-6)hYYLRvX0ZKj2XAD3r!;?>=t$+(d2 zWYJ6HVByq|3sr1ZO1B)pC0Ic|L00JX%9EX68S*y;;ATiJG+P}~hT@aNVP@v+rSoF@ zqqS{V%E}NA_N={@GW0;G?ksvoh&cM4wlU;UITVX_Ysd*&sW@6~fNdd9C}u_C1IXt< z8D#NwSIAncSmf^sX-~1^W~tPM(fdR2aK%cdJ`_SZ178Zn4u_EL_$x)oJr=S=qEhyx zl~U<)D&!rd^&pjgOgXcbI~#FI+Y`oK44GaQ`S2c7btPo5L~iA^kYThc8w}^Khr|(T z3y{}ZTbq^e>~6?O%6J3wPn26y@q-Y`1hcu0s=%U$A+;o#?0XVI2~}VQstw*xLrD8F zBm~HP6|z=h;q*3S6Rk43GsLJNA1xdDE`&4@$_rzG+5SORkRhK!Hd@c=$v+`WD7}-J zlPv_6)fS<`!ckjoIid~j&eolOTmcFyXs=LB9YDYml1v`w%T*od^&pL6Wt%UQ4+J53^5)c?K=X zJW1k(J2Be*690t>6#h)Yz&ot9Ub1OQo86=E#+GIQZ#-= z`N1^pIZA^y!#F@xLplO%YOd8#T08$dX09k%qmJxjOEen1QC5cgt+cV^5*6p60V!WW zr)N&>wNI$ch@)J0)OBMO^R$;`Vjk>zdtrsZJ73$CGOppJ-q%%Y&k8(r-@`B6weC{S zaJ;AX8U+sfn09Q@aBVHf9H7MusD)LVFj%%~`NK$7O+p1kC7mfWQ>qUwMrldMr!5E! z5pbiNnghcmsCHpW* zyPb%^5F-ToO`%yhUa(C^UsNeNilHv1F4T&n6jNV?*x10cncAsR5r;8y5!tukwZV2a z&HVi@p0$C^)lQMf`7F><_I&&c5wPU1DfZ%9lnSidM{RXTU!mP=6%;Gpgky}I>$FOW zQM54PFl<*DU3d0ngZ3&)iVs(wY}BS$L(hvjRL}*pD%-V`B`GsIFZP?Gt}Cm*0|%pm zn9EM>VzL2~w2T!T(b_@l1KNp_J$!sfdxZjr=Cvbx`5K2nBd==9GaTxTf@i0+OQdGX z1-R^-Y#B#fAX&zL;k&?%i`o!^7by)ZN@;q1GxBr1LLK>);!)0GSqQ=YYuY?XS`BVe z2TXzq0^vl@qq5~;;VtcE2{Pv{brARsBpkS>T|sf8%tfro3O}Q2od4_J)-vWX*F1Lm zPpisZie4MCp3%(Z|7Kbn?!1uutFEu9Lq;w`nI2%_pHj@oznE2EF%7l3aQdURyLDK( zPjSRHwI%wc`#~V?JedVo>P;uH|&8WS)h`UsMA$o%JY2oipPI zXf~tGE-eH&>lod}9e+_7a0tn** zT-u_uu{GTBB5;`DyCdG{ZZ)%i?sEE>v6>4>2@U~g4n~QQ|86i4~ zb10z!qScjTza>ofH$~?W1h2x5)|Gc-4!gEHvTg-76`*C7t`AluJDZ~$N|SUK_`RX7 zm4p$~L^qO((W0p?!4?ZQzm;x-q*&=~bPDO&FIV>$Dl&9#ufusGeCFv|mc!@a&bpeC zFiN`Vx=DYh7wEQ1`E3U1)Rbim6b@w>hgWm#SX9-5N#?qCAEjF()%CtHx@9zRv|?t+ z+Ti}9?m5Li{fk*`*fLIscT_xOx{10~){p`$C+TdznGd=&_dPvXuC7KE_Hu=;JItA( zJ7DvTM)sPeb0fA}E;s%G`y!tjc2M_c-7HB-V6JYxq$K%^bYCd*`<%OLNR1d4xLij$ z$8H92V_&s37<{)rO~|`(}e~qeOApFFITsehSk-_uA3szHGp!cGUT> zSBL2aT%&yD2FH)+T9;vkCmOqf?zrwVMX78~hi0;r^SEwUe3E3yBml5Gtvf=g2J_b` zV`0pT%jNc=!X8g6)^#n*Wx<>->lPAPgc-0lWc;clMVH|S0XCuKVZu#aOLsPBQRB++ z;e~F1TuE%?Yh5oYF@$x2QGe+Yh_&2^A%YildaH}4?4B?e&AOVBw&NF7s$C8Sl?km` zPOhyLcA-T?p#WC@Ua~web8Yad5Sk}yXQor=bRrQ+4{O5-=TK%H8yi;(n*o)qWV6QI zS~kB|4*f~UW=OTr*;dJBd-c$R*2$)N&CtGr&HUP-v#ers*(-FXb!^o2ENp&hU?rO; z-l3#TN!TVEvy$Y{2J$hN)Bd4&8>iG8uyjpmAx%IWPz95NLd#IPY%?Vl#A-taiRwBP z8amS|HWkA|qpf4}#Sq#@uo)ERb9N25dg3#_!b(9Tw2<;92I7g#NgR@T{EQ|JMr zQa1)vqaOv4foY*rttu3xhkl{BGiK#+f#gP^+bEtgN9ffe)Db4P3Y|wrh&}bf33hb| z&7k=GoWti%b;`4^-9znQPS?2QQ@ zFnUgCJY^FCN`oV~vNnyHMzNCdSdZT?4P9yt8;(^G<}MHQB`^yE+G>^ zgqkp7V`!K)RpZKfc5dp(YISTH2)Wxr7n9jwHFKe+`) zB(eb%b-r~(f*r%8VHhe5+uqAHqb*>{`c`=d&;s!i!&?1F;iGQ=OX8nO7O8!*y4J$5{9q?%fhR(37y(|Lh!(_ zomDv9?Nh?aQYtpNNux4ko4xhBj77EKSc36jZgIUI)9w*;hDf+0u4mO9HX)tAB+ zJITqrcf#6Nkduv{gfTlg`OnL+bvANx=j*V4#1D>r4s#RP9yx^PIk4=xsgus8s$bP)HD7h94*hiD8d04)Q^F6C1tcNDr_AvAm1TOX^TP3B z6K>l)yM}uaG>vh=7exHv0&5Gx@%#kWxo6|UN!v^u=;H>x4Cja?OfQb^l#V|X8X`R)Ae;YVxGq#exAK6|l0E{1Qnc_mMU-n$gOf&hjc zP!%|TIoyWO>4VLc@HdoNzF&|BdIcNXGqhmR=BUNXGt@50@1$~pof;Jq-?QoYCT z;iSd&S84hj_QLy#J$wH&Tuhwycog1K@Ot`Z_z#4tu%H5>CQ#&RMko(Q{|bLwmN~`+ zREG0^ho7W0K?G|IwLXU*aguS~Ip~*`kp;iTNk4{Gz{U&_%foJG{X~MoF^Q9maH*oc z6%Kg<0xChQyMBx;dHA)8ex^tc_SBCONvGQS1-5KnBNWE|`ugLP?#1$9=I*PfOm8AU zSBO>WtGde~>>R15%nl$-AD9!Rzd@8_A}{m zE}wJQoJ`J~RW_2XcDp@p3udI0F0VDV_lr?00?jx5*N@)nDI4a7g%GPub?dIrJH%e?aE& zX^4eGyW#pNRB=upp+84xAuw&Uey|AWjSeZGFQ;BaT5o>A4Y z`eOY%a$Rg$svj;m#I4X%*6z4C2d&gUAhwrH(0@;9|a^0?ksct8cG z=-ud&(^holigWtuq9~_|>DpQ5qP`k^K4R_w@@81j_fX>59?zfLyTs+aoJ zg2RK?`UO-uDBf7nf&ctYzesRM`9Lue;Pz2Z+Bd+}`1L=QanymY`uRi=Y_~DoA=kp_ zvWDYA0xj(fi-{CqfxY1&nS*ZyL$ToC;A~h*<&foKpljo4SHmBI!vS~0N-Bp6l?`{v za+p%pfIBs~cQeM*u!hRvLJh-1vSn!HWtb{Be5z|859M_A4MPRYA#Ve@+q~>!s4u$B z@_q)&q8o2#Mt{R$a;>Zlu(XgLGzQ9~D(7%2$k2p1Z`lV9g87M1! zymF(mE!HErk%2e|+6Ou{HjoYx${d;*8jGSVXhL8kUfa*Mkm*=Hl~N9S!8k%MqOnhsfsQk1m#KNa=1MPY-?H!>~*gC7{62gIb$W zy$x45OeN;skFFFA`y1$!RW}A2a21^!j&_3$)2Kz6HN-$VwYPYtp^tprzs4L>3A;Vo zU=PDa8#)V0@5UG?lLd%67(#zE><~ui>v)n$`#$gPFhFJopWCpGA z%``M7>`7wy`R{NioFSkLUrA!uW*gku$X9A9l9g%>=y-;fPwHX6byW4&R^6@u8N z8-~Aa<+nTT8rC}#3PHuFFFu4)r#9PG3afXU8p+-c1ib}dQjmTkB z6%iGoutCHyiex1OKm;)wgwcKxH$|~}sUpfycCd0%#W_g^7NCuIL6D0XzzNpqB9;pk z&5exsAXKz#Y{X%?-+<_Zh`NN9$oMC2cTcJSe!Dk05EM8O#-SW=1FoA_GLw zQA|GO`;Ns9PO^jRts>S5@f5X<7*4qxjyJM8lau;@eXodBTqc#^VBd%;6umNoxj@GO z5h(Hy1!NBm8J;Y3_kCpm%gr-&?aQ4paLI8KOoE)=iAbg|&x>+r`>I8Dg?a}fJgKDu#Ig}4 z=KQIM&Xo!Fic81KF1ae4FNtU(i<;@~M^M~qGgd7~dJyqh5Nq-*qBU88vZ^FchokQz zlw=Y0`V`?On5?mh>{f*;qOj=X%F+PJ9kAMFQ0Xv)sR7SwMgCkvZhuAk$VhUvm2Vd5 zw6bkhq|oVt#*w5hfa^43X~{b6l^5yAurtCTd((*ikli*ilPV!Vti8evJ?j*Chuj&& z{+xUOoWGCk@4zL^W{irYOd@ifE?k;i3l@!z>?W*c%`uS+gw;I#W2BQvJ{lL9FPOKP z6nRX3yHYnb(n+ps)7;3f0-)*q$ZECZwDwwYWoBug^9o)Mac|eHnm&cLEg^(ux8M#Cx zqn}0Y6-lQTky^suYUphf^%I39=F4MK8box2zsg2k7gD?B5M^e$%`wW%va@s4dBHNd zVw5fA;2X-MDVq?L;>d7+mqtSqlj&fmVm!&j@6{Dm42pb>) zv2F>A^kQ5To}l6by&99Ft_U?PGb8F2#SKN^me6%hR3=6Dq|EH&zLa@zXI|6|N14>= zRZ)0ol=FMDHfoTdI($>q6`>CKd!r_aACx&5HC+5)+R>;%lp)2m4bd&x$X6)`q3QXk zc9ak>zyc7)qv8`(|IY;*F{l&%!vLfic*vvy;js~!|$S-6N}P`<&KZCWh1Ai+5hhfH`;8WHT|R43g%A-MvDeq#(gUrwJS0NDh`hREM!n?X!ItLyge+svKUO3 z8xvhsNJce1`jQZbYf620FS9Vki^b~gHkC{g_j(as_ncRBj80E_sIRwA?lEsE^Zis1C` z(OoD*9RW}m?mUW~EpPUR@&82EmIryT!#2i)B54VhwFpj|1ovEGP6#h(w|fj_#AwEH zVZ}F1c5uQY=CM$TLsesZ3AM;L;>NhNDNv?%Ockow7$UgAFZE&yMSV8*iCHh~Y^9Kx zsp9RH(3pqhPZZ{+B|+E7nEJ#nq6I^Q>Y#~^aimP%qM#bWzOW0KnvyV56y>}(@URd(m+G&}ZT zK#UXfY-6ec75l}s7790PK+JtgbKrxeFU!)thgKtF(|8pi%mF{SLtDHv<~h~T1lN->Rj4EwW-bpK zPsMx@O!mEvc_g$B{*I|4>hbo6nAhU%-A^%ZMDoGsmqMShnAkksm3dw;xWg{LSby@=0K!y(p~11@>;|OhVtqtsJTfwNoD+2HnXzw#kZ`~E~_f`vm4l@&O`idN!(z!ZGz<|Oq1@=$EkZ=c$HuOswjOq8clvr*JS%pt zu!b3PV}}sMEn&H_wujU4>brTdA4RoxTNtYm3b$@WEGbekpUux+8|wgy^|7SMO!JZ4 z>d;_&tg^Dr0r^z%tkbcp2!)kS6*D|l>{9eLwgQ`XCiW=-q_^o+J$B%ItcGp45^KjE zKE}v6-sfWNDE-C1uqb=%%m7X0AYr!GVzX@7rq@5XvHV-H8>}c@8#r=1_AJFbn<=${ z_`9(?%gAh;{)nY)w=TtMazECdvKUf|;QS~SLtAj!oO%*F%PQHpK8-zZooou9$8HmB zn!bvqY%44++5FeBp4Q2x^V`^-g3ZIfV}B&d2C!AAtRpi2Q|v%N#QRGuB^pYpSlWJ# zEu@TRIl@TSxMY}M8+W)o+8pW90yf(@&b=r)&J(7(#4Vs!J|OO{vRn%x%_Hu;NH(r! zNw%&T*S?(mgW@`I`$ck*cic%E`R!mu+$oW4qKsQ1l1~0{8$|N7D((ZNbLZvOXyYT+*ms^wJsRr z&pK**Ud2`ceRkXs>!@*<%!YA=W@?P(2z{&5B5na$k9oNt^^9|dthRA6&Squ)&{lvK zcaNKC6>~uF^+JtT^og4+l8FQ2zM7SLa9k9s@s}Se!P4Pz?n0xFkLGW&tAffu#g!Fr zl@sHpi{zQ97L{KyEpDYy?lv>xCWs$=V3r?Tnr&$l8|GTtME-nBn`p2wZm`I( zmJ!J?BvTtyFXMVs6dtK`VpBiG>Ew$Ihrf$EFBL5FW87*QpH6^iWhq{^nTi*rl#Rbb zMSug2@wo&)7x447Nh=M9<41y|{xwl<{5GYC`1ow8QYV?>DcUg&0j2g-9c&Z{njQExhzTzPAK#{3qT;dN%$V?=1a)dz*w9>A9qA!Vl7WANvG1>G$D|3A{sj z@0>74`u`cO3EtBG?{rV#^iEbz;Pm!YO}HV^oKrpFBmZ8_gzM6?msi4j>Djqn!hPwP z>78&)dRF#LP)ay4{s}{+=bpd>d+B*3NdA7ZEwsQim1mq^9p?zTgbWET)xE3@(G~WhTFR`mlBmwDOGuTfvijzP=F;DNwkG^e>B=n(czM{aE(vbZ0D&^khEU7o zIhx_S6Q*PHU~Y#Kj?rYi4z?ai*nkCN9Zn?7qhj1VnV^?2s+>)r7)315I@owl=F#S2 z!b~cU^Oq75Bp&Wp6An-@HeE}=3x@w@1veAsQZXLglI2nFZoJ`m+g+?8F&cPe8_VEM#ldNc<%IQQa$%*fIpP{<^F4%7QwH65-zU6IV;m8j8eE zl6|YHN}NR*NTH|)vqkWvA}bj%6z{VSPQ(lGgp?15B-WIqToRT@Y)WS64%yBSuTON8 z7-vQ%wv$A?DK2q0nQ@(x1Sb|fZE$xsB{}hinegzG#O4y=s~L&JUS=@k$bmP9xha|R^2<{k}xRE#<7yvHg5`&~ZiTe|crzUQe2-?l0YQO-7fHfG#J+^}` zvl4wIzJ;?ByGcC%S&&#kdfG2bjFv`;rnQOT(%&OCB~GUB=WblVw!{js0TO*B-n+Zfu*XNniHeui?%`6^t${`?th)1p7U$z}OrNHxd&mnl5E#_IDF0%UJxw ze)kgpEX&S&xVSN&2Z`H>{29WCD{p^zn0Soj#YiP7g?afnaeo<^*MX;rlxR6zG^K#H z&l8PA3AbRI9wfT4=&x8t%}kXCRD6?&v#(reXa7!|OcPouD&AlCfh@FdVWxjd#0!Er zubN*Hf3k)bU};G+wkUQ^36E0Q85@+v_Qp-acn2dXD5nLEA)GxcacOS{9!^GsEPiNP z(daFbvnm-olPfs){)?I{+skMNtE(A(%&b|p8b)_k(%k3?ZZ(awDW;9{m(T&xO@ivm zdKT8Vyp1b}tlL8smGS#BLc;87fSGG?pmDHJgH}PtF*G%3&m2OHE-*6K7)NZ*9Knkf zPD*iQh3lI5u+>`QSu4m8ZQS>=2bddXY~U`pjajKi%FSz7l_TL!nz4i^kC9N2Y5Y-C zjD3!gSe}v4u%VF@Z|?>*imp;(b`A}y2N3g zw=t4}F7wR!9gKMQ9k-Q_^XYY=?PMecUFIBib~T#qbwUriPEPJ=qy(J+ReP~u@B*cs`mIxTlXd`923a{4zKNv~z zmU(8|AB`C3mltKkI3vZo;xNa?8%ZH-c;?oVEF7**F;X@WahN)VMoPS8*+?v$VZa2UARxR?raa*L4^Z<))XV4D%6$#Qjc-(jR&hRk6) z>@5{~J~EppNkON;#H7`;U%oG_9?Eprj}n)ev-! zZlMRBx57HQTr`5qg4q9WD{WZ$^xS!4)&_7QF}EaGTVN!@&~t zm*mgC|DB?fvTh~c#~~rLVYhu`oF*h`^QUnU6{g`+BPq%Ue$YdfMAA!Y5re7)RBmDD#kubD_2`{SQE&iW; z6Xh@}uOC$>i{a39rFW>KyO~I#mN|!xJxv%smKWttfr+xT&S4t#F_A(o^US;YnI;Ji z%?6stbEiwbH<2zv<{W+)V(Kn)C>m}ePg^FBFpW^T_4Q;g+{ zmYKxzAjVzpAbORl^G(F50t;wuc(}lHM&KP;LN$*v-u7iCjFrJ#^3#=6+x88$gw-Yt z<;?LuucNlgZ}74=nCerP!+0%#%U094a^_XXwL46%L{CO0#SpGMwApRCBKHVjJYaGm z6U=?^!j+v|ZDX9lRoFgWuF7;?@ulyY8$!|c0h zsstEia4ltmTaq#P6HOq?$m93knc$(7k+0Lo`RQHetz* z>~)Q#hr~hw#%kVWFAGQMorGs3xtz)=l5#1L#keuuxY*>%FivwGbkiqAkhODUgNS~x zFg{65F#udbh~UZ=C?aq_l`-k8+{ZvtauNm`h2y%rIp0 z2yktj6e(1;b<3m=LS;L(Njfa}Mzl+cptes|k`&Pkx^_%DCUE1r(zR6rbA(6Tlak0X z+uASb6S*wMTVW{Mf#Z{0*yKqm7}Pc|a?bW4Nw0;N$_`KZnGzO)*CmE>)(8vHZn_l` zLL3)xoR!ppA|c*(vL8Hg0gU22hTLqV0M2qW`Ee_fY^ZH#CBg`u@miOJkxF=jdAUAG zOoG6NO-W+b8tQLN!uZYn2aY?F?vj~H@tYaOZ_a~$A}ONl%hSQ{wklWP4do%*QsF;>4Q)t3#w+vYqIh8aXEqBx+U{ zb|5ZI1i-#qB{_y5EI>}fg_$m?n>@4%t-Ec`BBGPscwlEa9(P|oi4K!Q1cc;Fpf;u~nOwJ?JlO!091Bx5{h{{J2JC1X5io}6?e8RI$2xo#ytB8yCl=gcsk zb0Bm7J^2AmyBkYUq5HzCKay>PNh$jz**w;I`De0{62FdD=t6yz9V`5t?97IIF$BV$ zPsu*yp_haOi1o9xEH=Gk3I^%q5_EG;!7$1^dBi0JgFW-)bk~$*La=A9iqN)xN)(wY zX7-T7KF{?|c_3su-QU8uYk-AsEp-Zpedc^WYf`F{&h$%7hf7+D{R|lUIfu-g3mIW% z)uO5rA|%42Rw-(0I8^y2>~otoDdj|!_w8m8VOkH12*319!LZLebD|88y*Gt+lv?8VVPDD=VKjd}oq{2s zIjMu^QZVE*Po`Z;!H~~98C;TrA)k5j{O>6k@|h>wJW82C8Ejwy^4S4*jJ270Bg$Tu z_wI91b0O|^%0SBG$iD!cA@@rPMu3(mZfl&10iZcqm-4Awc zbG9he+s__NIa8zlr$TP z()>4|J#4#}njv_)UrQBRKjDYpQZf27XFuYmrO?aorDF7F{`QZTsbWSOir=JS^k@F| z`QND+{h22peI^&W^>+KT+Qjm;#>mli83ul~gG)|nGvuQOFtAPxqR$$SQ=$ii3;6X3L-56Ki>~e!@$p+*qw;9cxs^m!#3}tj3PN59`m_;QX0m5 z=1f+nreVxyp6t{t4P!p@qX8SU2=fd4wl%H3pUlbSPFfj41w!2Ov;qnV%=aC`sLmr`@5{6Y zg2dJu>1H)sUn?C$J9BYe_DaXl&OCXwZaRi`=EqZJM*`H z8`6C!(+kL~DVy9p-GzsCW*FMJ2L$J&U#9fI5*8pqnBb~C`Z^m+D7~0tmKF&nQMwI9dc0X*bk{$cZ?Rb^;1J|o!9<{?a*nvq56{83Wx2(?ppQ^qj) z?CZ%{87@M%AI;66Y#KtWv7nuwafDLSJoAQy86$+YMK7Uqn6NaXn9RX-MMfXNVaBSA zsWh36g=?!b(kaVJTn@jjvv6p=F=NJm&jAqTJM!m4e#sD%$L!v=jQRil=NT`B4l-7e zIn3CVVcr9rv^RsY<&<-nzb}KdkB(=qd@!R>sKWNc8I5P2YQWY%GDrtNB}|5xW+x znf0k$01-Y*9k&#;ge|Y1DZ+nD^~*d#sazbq=~!-9W(IrO$*vK!4$7QQg#m<#LVbV* z`pg~`@adG8IgnCeW=>i*qRx<-pij;mOKJE2f~g0C(=x@}GW5*IoGhF`r-qs3WTk_; zjWcUe%Ff#dR*O9gJd$D0rY_C*gf}fR@0x1~p0v#*T~x*kuxb2|be4V3-W{&yXRgx` zjHel?TYEEX;f?{G-i_Gw)QDO~m4znaQHHecYFcR|jyzvGYLY&m!6WQ08Wl zY;YuVlbGVYf6DUPWoInE%{XWIZN=iu4dS=wu2_CM`I_aop}$#v`~F7e7V+EN_bk61 z{DP0tL|5I%WinT0&CT9#SJy*;zk z)nsvQ4$i^_6fW8F;aO%OAJ=D@g%~@k9PAOI^4`1d5mv&~QRIynl zhvCmF&e}z2iIy<@?B#XefsuQ=jp<9?ec@d^K{zay!_yxy!;M2jkaU^kaq1t^?ACE z!Qq;YT8%~zy{~6=vt@-oHg4?M?W{utp&-H}<~m620R2m{DpL%-jPR&zdC2-bYf~AS zjq8IfN?4FmtR4@u#+Q|`?ElP~MJ}1dtKCzn1#l_ddXcrnDy+m;SxaRsc>gA=I;H-x zkOSDATiJH7??YC1%233NfMd@+*^NN;Pu8=ttotsT%G(07m*G|x)Cc(8E;~n74KO-o ze-dwV+_M|l%Rl(hGdrxDoIF=M8#@S|ZL)W^ql27W9hiNS5)B{O<+H3WFI>T2pPlN) ziNS=_Y@Dv)b)d}5Cf276%M90DouD8q8&9ip&Vw6fkD+uv649bwe^!?wu6BmXEwUHd z%4AQr$=)r<&T5}cIi+rfhLR51y@bBxcFI0tBQw@@$=)H7U%F;*Aq;2%t%$dcO_6L7 zGy7&!{A6wsD}4W|0*mRFeVouPMoiDvu<)i`Jz-S;?CF$sdyZh=s;di|J0^QH8}>tX zMYiL&xGgMTbhbU58I|3NGKNLemh#-zv9Z~BB}@@>o|sKJs)<1DA$n3aDSR`}TzP8t zqB2Ne`?PF=MFhlHNt8f)*jbeQS^752&fZ9?-S+TdPBv*m8Hp!Cou%0u2pd!2>xS$H zltlylXb?Ma-JudIxrOS3*70C%EI;?wPVCNhXN#U?dqRgB*$$MR&Vmkz{>sj#2rmAS z9f|@5hlkl6%i^=(N%nW;@p<-j_Hk^Sc;7*GGe>+r`bHL{; zmeWGQd9fzvZ|VKRUvhFNOF_J3iwd)=!ImRA`=l@TK9kdesCPk(BPAB+9Fodre>sQC z;{2~U)1(Zncjid^XD>qz=--KCp8cvi{ zqHg_$N2T`ZcH23aJ$V0+4_6!suRd^;~Nej zwDD1@CSI(@?m7)1HKAb}!f<9r+(LJFn$)m~jq?V)7NqNU_W$!gt!MgX&Twl`ePySV zhW0k|WtJPW8&XE?oM4?Hud1`Neg7Y8ZygrL4z>@!i@QS$6sg;(yHh*$LV*PqSYsEr z#og=fskW|zmlEJ+;czo^CXkWWD=T5Q9+dhTDZ#pIlwiox(4{8=37a)2piO{@gE84Uu$6? z53c0gFywW>{|{VT;ol9?+-ecplHHg5T_Ei#MZko^TIk8tfVOz-5q|?n&8;?I@Ns|8 zYIoHLnWz07_2V$$oc|oC4mkOezZvvoLBtN%{A=rnQ1h1m2FSx#wTL4h_&3mxL&6jP zI*^AC#-Ybfe;3@c(tka;Hc$ja5Xj@WvA+qP@X24~1#2F{P|Gndolx;7e^XRcL+Ob7 z*9=fV+Hhu>7Rwroy#m(O`h7~6!1M(QnS3j}R&O;1L#O~hU^{#41(>^p&EDE1_LD3-u|H$~+qTG=Dp@W3+wfd~RZ zc67jUoiy+&q=&)~6j^5GI6x72nC#h2*)&oGLPkES+00Z2dO>b-0)kH`b38IS@GNH& z85g(|s0}_JA6OIcgn}p$T&@Yc!8y!H3tR@|Ao#~7BQO%K2=#F9?7)MZjZ0qOV!ham z$`9S(!DMj}rydy+>5ZZ|;pGuk+yPGbWhlV$`q&$G?(@^OI` zkozY=D8W|K0w-FdPoG*lO*H(b0wFb8Nahh1?bkgO&~+cdoRc;IES`8dsvJQ;YDXQihD$=eTh)ZtQK9NAl( z7MO4?a1W$w$Lx{Md+CYBMn|}zEvbQC=tY6T8h5`RxYSrM@5X(td3B!#f)*&QzRH)m z5!SfRb6tRJe;HT?_JbmaNdBZMaGH_e)CvCtrUGlF95Jxfp9Ax_`t802f?oDBTQ@Fx z>4Fy;h+9|)5;|Fld4$+mi$RkHb+CxQn&L=1G1<9;x&FC>I0`BuzE@Km%GDd{A>IL2 zkKlOVt=?ktoeLx7TUR^|*d($3%5%|eVL)w8Q}MRnZ)h>;hk@olJ=hTpwMWxCh%0_y3#0|~ z#FZVzpeOligf(5n`NYMPO^5E{i9j}(m{$ymwQ3?6y~Jxck(PbMkmWe5vEu&}8$yDW zAV|>td1O~7=Bd_0#7B(@FFKzb4i0kUdW=_1=(opc! zwj}X-z1X;G#Ac9wfS~R~aZQvL)|jmGvoR6*w$OOOq%k7P6fi&CUnpLq7m;3z#gHY8=kVjH2V0XN=LL3M66e5(mFM`EXP`ofDaTLJS$jsCJU^De*}C*aVyvlik@^ z6hAo+b`rL`DE=8_wt+!^K_;D$a|3Z=K+q$=g)upK2c*MA3FC5U&|iRyB6>0+ zCtIPSjqQ75sUoNc(nh88y>2kj;UYqa|9o*6WW z7YJV%RF@Z+ye#O7&^gDMtAaWM;tLa&2L*0;`>vqt07LPCJwe|&i*pBpmhdW9dNgPj z&o(`!V=O-(bQ}_qLNn4`Y>B)c2AQHzhX(vPpzDpGe#XLcz^uDL8T?-8`5-6(*hN5# z$W<`83TXG-UwB%h4WEPTkHZOw68V$_9-(LoibtPE# z?CYTJkhbc7UmE=IKqRohXTJoc@FzdNA3=~;Mp{M|h+y&E=a>HsS^&R;5?<(sd2mBv zmv;x_V6p-z6%Cy;3x>R=&@sdWbtAaXLG_}%?6JRnaHSA~IKU|wbCX6ror}fRcJ?iq+al2eqY?%D0nQmf60P?z|QA&du)r~ zb-Y6NYa49Fvx<(v!QcwLKR?(Go%0Je``3g0MW5hsE1|K>8XU|UOU;nr{=90R@C^o6 zZF)USuJ;qr%n4d+8Qb8@fZ#H&fkjAgU*0$?6v3~!Po)vTWMMQ`r6ua%1?0^%ZOF|M zg8TB*WSU^m!tX3-bwm&$VlRy8mS+S5$8;r#;I$B*Lg!=#zYrLr8F|5rfz2o;fXBhH zM^5g52NVaBkC|BYwkQi;0wh8$>wpu72j}X?X4R*xW`rsylIin4B_T$bOh3p2hno%y6Ra>(p&wm7I^?pQza>GN0`iC@++KAO!Fkf)*rLxEWU* z3~6pGszi^Eg&cw#C&$tgA(ntzs%0a`o~J{084w~j&xWklhe)UMA&?EfC=pEDbe?iZ zxe_v89}b7FhTH%Qx>bu2a4RH(5;<{4KO(j6g?Ixx&sriq@#Uu>3P9zr1~~m!NH;@b z3H!*z^Hs=o5^VTmRmdqLk{<=+Vm6_x_=`>@>-+CC)3X{vcA@0EUEF^bCB;8{rIZD&vHj*U3y@BypcuIQX@lFy` zB7~sMs+tld5DgQw&qQV%T1Rq-GV`n_*+SEc^(7uu>B`2E+cZ7XTmsqSuv+m&Q>v`! zd~G*;q^-nS=he z27UZF*B1HyjJLy=Ys8KOW@$I>ii=4y01ro@*Zw$tMk)#or z!>c6{vYa3bk44KRGhyLTil48L^aF6f!~km};qpc6CC8zc|FS`n1Gv24h6bA@uebzt zDd-b9HlzIj429oWEd1oP99mlnwQda*M$za|+Y z)KI+ij)ZKoKm!El-IGi)7P1~sBxH#WcJ%2}$vJ-X=qpJDKRW&mx&H_SB$bi{JZtt& zLSB`y(^h?v)DS$6&;O8swl!qNpD_!qhmVG;1P&6W?_in48j*Lg+AaBd-!&! z6*u6)!_Zzl+xB@VS!{;|uldVR1C@}iH8ji-&=b{NxHi7+A2uHxyo7pf+&~;w+f2|Q zTpBi#^L?)hJHS;w5)-zMXJ;gam2)=)rG=4KH_V{M8DZ;r_E~0FeU9K!5Jm>$SbENuA8LE5cl`0*6Vd zFnf1}K?Y@h0Ye0g_rAUNgtZ1Vb6TNWAWH6Ec$WLamQmfy4~DITi}t@@?GA?(0Xjp! z(!@U9e5m;t`|3NpYWP!l~=ese*H4ck%Sy3 zE7hy@@(P8-2JgbgQM8GFhgFf#!Np%lLq*a*zlEKqspF5Z5PCepAl%5Bq$#%HbLnqu zr|=Y-7S#-&sFz_HkMJ6JwO4p!T8-GS)3Z9^E%h>tL2juZewP|HwQ+b~W0GEP9?lF~ z&@!AE7T-Gj05zalhj4T1p$qM8xIWM2^oviRU*>xof7R9+T*-{aL5!$ zIw(P&lknOrR{99dsJ4jfh;oA?xHyet+(-{E1bkAd!N^fJRuUxyDjBI=Y^h3^HL zL=aWj>wUOC&?HO%T&RbxehOcr4~NEI!s|iqXIz%P`2Npu$kM3HFT{wxhyaimYOcv- z99NuYkUI_a45=}9MfZi9jIS}-4{2_y^x*G@i7@B4S50Vu=fRW(OGEo5DBbcVDeKvASaK(CLTd>sAk zQR5=%Aw6vBh6q+2VYP|P#Zu7MMq2CsjWwxEy52xwIAo+0^0DE6P&EtX=D2*66!c-% zf3ZwklC?s{O6PHgZ6-(|F9rUC%2rgFHc@&T@L*Z(+kg3^-4rSL;*WXxz%(gjaQ{CH zE5G+O$F*ii-~L}Qynv+RIm4tmQoypa|Fv6T^rtyKGgtcQ|BB(b1yZul5Yw>pVkuYH!_Vv;;Lfe36 zZjqAyA2l9_S4hc}b(Xc=DZOVXWPk3F9tU(=|7FL%ky1MpIbYTWuQ(zdpqCAZV&S>R zq)Uv6Auc%JjPwmR#Q&1ckeXMd4f#>Oo8*oo7}EH*l*}<_=Doio-N>_B?n&?RvP+&w z_wl2t&!lABm6fgiTuLS{v+VO1(nUNw=atlgpH@*N-Osfe`M1;*GR3Sqeuf&!9C23z zS*BhxVFFW56>>&13}s|4);6gd_OX!VaLOlbWu83y*-54~`h<&2Yjk!^8JUpHjBe*9 z>trHii@aqb9w1Zd$@~Ca5f&Ag+$T5aW8XkD+PJ4PUe`)yWyIq7OgkC*>WR_a)J3L^ z=d5nB_ndBCFWu3eePqM9Jxd4bj>Zm_Ir6d-{A67Lb3Jqc-yOYKK&BpS?cmWGFO$eR z=wm6z`lqJY70(ZonF;3Zl*<~K3g*6#lI`J+IuN7FPKuLh5C2&=PnA|&U?PFV})+A+#se z4Xs-&wME4XWyY8^g7NyuC}3fN)mBjO#8O!eZhzHk*>FyI9vo&mjSkJ6t4aAgX}uU_)+onS2Z-kZUQ2^ePE~XuRG^4q7jO zvCp=ZZ>0p9ImnklJ&^7wZwLwjTK9Zh=r8Dd|!Dy zy|%f(95N`v`1cBs-vxLc4-?DD{wx^PS$eWTgpD5_k}K~^DNW0hkD-)2iXn9qk-lXH4lI$^28W2- zaQQ0gp+h6(fG=3^lu`0t;C@;5IQd9=?Vl6iEo0|Na?o^W=FECi<&!Cais|qQ`hJGI z16ciYvjhT)xo`pt=E>WE31lyntEmEa7Q@?Tm!)z$$m?k4f>SHyQz-%28aZSMNYcB^ zz)RNZQ2}B$$V(}Km*vohgLK?PfVKeaJEW_7(=BX`654#+`! zfKW($|A<^oFmd0La`O4hBkX)yzK^C?&dAA*I*;(^bMkF8?QubFVNBA2SLKapns!Ux z6f#y$F4_a#TU6zMy&uTy8fvYX{YY!gh{xbsDgYw_Y=Zrt$;nKbM|jpN!LFD$f?bU& z1-oul33g3=FKA{Hfr)`nH4_SL{VkN zO~L2eC_t+sFasEzQwN1DRl8nSMHP)Im+p#Z^!Jb6iWBtr@xF=(q8x7Ot2kgu($}Gi zOnnTfjqWEX%!IG_Y?X?2raDt%6h*+BQ4d5+sf`Kn1gddTisBzI(nb*pdxB(wUuP&X z06kaQcj|$(FoLDqvK1*rJfWF5R;mrZEoF)ukU{dr(-dLIwX=sKZaP6>psTTEleECe zlNBO>0+;}oQ|J57R*+4)9^poF6~R=|;)RNDG|CH>DsIu^lI5@{R&G*6pqpX?M;y3T z@drgL*`U}6xc^~-^ogDyTA?^e8P&%M)<{0tt|0RYAK~CViaOMi+=Ghi^#6dvigu8& zO*yX+W1EwT8U$3BZ_@d!!UV#YAQ@6-8J86|C?nsiigEP!t((H{irb3aHsp8eOGRx6 zQz7h@RynX86Vd)hfkvpmr`!hnR4JZnV+42kTLBx3WI;{Q$##iWc=0Di5NU)eJ}D1U z8+I8hhnbMn+Dh4;s@}(5Sq`y5)L0pc$u>y^w%W>a%|*%E>h2AdQvuZx6U;L-QqKLM zbfjD#wN%!jsYyGf8%=9>Qud^&s+*F`3V(!G^iZcqA zpo?@cn7}L~VhWAMnFlDBFPfF_;!L16;ACSh-b4 zazLP#q$o_e2TXFZTcr&p*$L;#m9@YmDGXVSLpfi|51)xrc7lW@t6JyXDxJ`VG~(LH z2}(JM6u~jiP4>kkz4Mf=-`kaF0x7Hz-g1Do+_j>Y~7IRf(3}^it)0Fgt=- z1AiT^Tum#;@-fO&v;j*QrzG>x9^uXtlod3soTx0P>Eg-4@8GFQ)`O@$U3rrp|29K; zkEXYgP;SC(p#$t2-fUS7))RW z(BLDcIpf#QmD^~YS@uSGyXNl?;^9rE5sBJ+H%hmN;P*m>WyC9pYy?h)@7qLNq%Pj# z5MfP4JKz-Yl)8GAO9WY+;t?))iwK8^NWjDJEYFA%3hGun;t>V?Q72*;WJ^@qDB^v8 zL|AC8$9G#qh$-#1Z6X?gtI?!PxeLDEF~U#_i#m1Didw&GL^FDUfF2QM;0wGR6ybpH z^oe+;y#T(^KVk*MS4;r{NA{k6g!6_*{0ZjNVwAiFYAKH}#lC?N{k07vUMGq84(aHy z`xV8+1d~;}P09!fnBCx^uk0|{km)LYx>TkSC;xsu5!wTagxID_y|W@BscfrrBHBQS z;lV`_i?w2*-ov$F(qaU0E|_9bgd1KoCW5|J!B*q-V7GA!V~2;Khz4LU5)d~;=$K&B zd4ghz3nCmKirJrw=!Nbtl3O6#^$}*Mc)!vK*IX9ylGrKSh9xVs0`^@QF+{IRU~-9D zRKS-TBgg_UkMRCY5v(UNW=q5e;xSyfBO;NuWUux_SVLxAvIt*)D5561QoDW|y!CK| z4fxhdVer7C|7yr$Pefz^?8ii6+5j>+ao)v2wfGkC z7*Oey?y7-!;`a#1yI(|4M&x9Z8O>CX_n+kabm42Da@TkxTqshJ1qHmf)U`*0O;u}P z*5u=*W-2kH!V@;hc$T&5n1R4SW2b_=(IznYc#FNNJ0$wp$qSrS(>RA-HC2$8y9}np zRkaaND=|5_zM&ui@`PXhs+Xz^EP+Wq6-m=Aj2ElsXEx8=x24wH(k9|VZgAKA%bIuU-ehT3I^e*L8^E_6H9A+ z2)bvdvPL=km2S9Xn5vl>qldQosT`4adlg?}u2Q1<1L%F>0(i4jrQvMbC{%v{+4>`S zyvl`*1*7|EDl-&cLuHHWM5(SD2(sG7s?Gpv301-$6YL_+@ol22FNEW!;i?#XCQWtT zRM4?T+AliZ%Tp}|jDTYTdx0~XHcI6NVMZ(*gx)kz+2KwTROCBd7KMW*t9n2>>(yW` z(^N}@<^`XasUn|E&{~d{%u>xW60*MYRX2II^Ac5eFm;>yDhu>>IpJ@!N@Z^-$op*7 zFY+qas$9V4=q`ZB1x&Hi232ovSj;BXCT>ELZ7TBR1GDi9R*^3sSa$Uem6dR-!$#HhJPtF3X_b(N7Zx>Rw{9?iM~ zGc#J<6)(K2S}S5OIPAWvm!Xi|@JO}JOUT9>s%zN;IwAH19T9XJ)cr4&J=A_ zx*Hb>d5ccqhN5zBHCZc!?f}}sMV)9QSYP3$9tGpa06p;ycQyH@h$*?o3yg&cIX@0# zUr!CWS!-?d#GUJ_+Y094qQ+_q$ioQ*!)7hjqs&A*gh#8V9n_99Cac}>g^udZ27K5GKem&IVfG~)_*kHMj`k{#saQ^+&&xF9n1Ba;Zm;##* zGvslD$xE+>V!Nt^h#WOV?bLY*c)=h{Alvgw7?Pld^pgofvhcO<%tSS4_HQ+UgGNoh zPi29;AXQH`x6{;TAsvEhHvXCFV9sV|wt5mQJh(PhIqEfFHk1G9WRCmftLJbwZwu9s zDcaSRwJcVHwl}Rt_*$way*lQp{1Ix%7bDeJc%&Niy-qd4z%l9s&gR%SIGf37p61wa zf_gEee@@s)aPz6^wm>&a5ILFd0dMMzYCRa@fPN$oc0e8vh77>z)76%S+D5SNG~Ngv zKx)uC07BFkd8eo?aF=;%(5q1$0$Q69S&DNPs3Q!t^jsHldY+5bpMg61lJ`$)BRqG7 zx{V3P#gEp38y61OWuy8o?;SMRqCUj?3_rH2H}mX)ZE82(gumLYKEaP3-K(A?#1@V^ zpdJMo<7av)ib%UXX=&tCY<*gNTW8mgi|W524_LoolARtlMw;M>*VGBzLd#n^3-8_5 zS-9k`x)<=qh=lZQC?>M38EJ!k9V6%Q4$e21NJs~V@grD|Y=mCS&jyiQcpVwkEOI2T7!O-S z9^gHmt?eQ~eH$HVRNO5R()T0)!XP9*(mnDx?^-YD9SQlCj$q~Er+p&VK|+O{+@oLQ z2=2uz10WnQfdPHW$1a~fBvQ#Q|I{}UGN#L58V-vDeNe_uo*odnoO2i$6bYF&&0uB( zM}qn)?BvMM$Xw2$GCUHpoCt$yCyRviQ1CECL zXGA{JHqUra&LpOBu14vzL_Ofl(sq;k93 zY|+_eTA{P+=J$vk*4V67j;`Cy%hNs8paG|%)|PY`0eFL^7>a8{J{6FMK%VE-yzab{MRrR zo_;^F& zX)1_E=cr|R36jz!DvH*|>)oUJ1KLGQ?78bkh_Dqb`zWGHfF{Laxhkr$Ibkv;Au66! zM*MeL6q(a;3ZKe|inbtWo8l;QW0H0o5%rETZaF4uG%dGdauoS+;uIb}HL4k5f;X>= z^0FrB#T`*Ih(tJMcT}(mN%tR&nnr&I9*GL3IO|RdzkSX`?IXXpT@s4Vyb?9WjQs6= zSNMDD{iqOny7jZDSbEv47g5KJNb2)8iY%ji3Y%0#9i-`rcTwwXNSY~%o;L*QlAje- zmUyFYbQ@=_q#xDM(}9vI5rsnp&IC7)iS9_nicXGZqIOG(4x?7h&WiS+V&ME}BWl&| z;%FwCe_8YadfaJDG!t#rxad9fchnT&_m^qWE9mdVvxV{<=0#7TzfUX{{+BL`zD9qy zTNCY1uRD5EG*fHnmT0DyeMR(O>TKEGX!C|7jd>D%8q&oi;nx=_lrb)N|BL7|1W|aA zP~%0kBl(mn(hZ;c5WN7Xp8$*quo-IEK7>py`xG5S9D`-nF?XrUyV=IHvLb1+d(06k zUOVrYl~mL_4Pq+k@3T!~hS1-&TE~#tU8itWn;0hkv34>0X+)3qi8)F|@EsU48q)96 z8sAX(glbe^%weqpSRso6?Ql&oF%i_4)`9X^f$+%qm=%<0vy7N5>ec1BF~g`=KbFKy zp$3i_9pgjOlM@9)7fu$=%a|H7mK@(UJEk+Od0pnlxYN^v7YV2RLI^zMCYEU7*~1HP3c_mxaTopq;)|eaZ6|X?N!WrNXNYz^QKLN725Wh z^x0nJMmgZfsu))qs72pn8dB0Ljbg`9BimTSHUI`5>(P0k=Z>-a(WPMy{gJP~yD?f_ ze@H{*;T)R@XaH%qb6Vb-IxD|9$3mXOT6x4q;b}EuyFx;Vo{Yx&$9bU!VR14v+b7ns z%lPB)*KP!_lZj{+imw|B>4KBfX9(}yoa)DdKC5R4K908LxMri+9|nXW}%^-W4D5-{AFl{ z&v%KP3FtUcDn)3|MKgEwp)l4B6`V4*Mzib0HpE4}V^5nBW~@i07!(@bv8F#j!EATI-&d$AY%VCfae#uo-=9aQ&^ZZ!8E!r+u-X ztw?HfI#yf{Om+TGFYHzoJC`5|J~;U`wgzN!lfaU|q0d7*+TazUxUa^9-4fHdY?``T z$ISu;PBijt99J9lnA^+|7dgeir+U7qM|;A%lesrufr(C*(6F*BmWc zUF3%|Q{(bHNK~;kOM+8K=r7tF=Z4!%jyn(OK2=|$tk&rb%5VwLK-G4alg1K;X$=NssFW`77u2fJL zuecIt#mgSL9v8(6biNZucE_ah;|}-ZiuloEkK^+B(ZFYM=KQpz7jf1mLfP?^aYYtF zw$|6Uw`M$R6z{>a1Fho8t38JMz$X3-N7&~OKZIYxqegshUN*%m{<0G^78gau)y7}j z#(&WHsZrZ_?x$7(@rjTIkok!L2ZqM);)K2B@gumv+hXEvxb;_3zAfW z;vez?p3CDid4c7t<16^p;`F#2%( z0iF##8o!KZZI8#V;Mt=mbY+L1ioa)pDq~$7aK_bm%Lc#iLrkQ07op)H`TY^O&sZVv zAMucm8|&IzPIN=%cE$Cu{Ac`Q!2NWZXktBd$Dz0mI{z`6%*hqUIic(C3~XkMNU%rk z`uhi=p|y(HjldP9nIy~;-NbgL3CSjC+L4uPN^4W}+O4<&dTpHmz4J`7oalwhZ&w+i zGd2l;eL;u`O;Kgtgm%c=Il%-q3Cnjxwv##-<2<_rC%_%(7d*f`V(s~A;o~0pKlRK| z$e@B&_?SyVwvp&4@^MeN^7~<7F0Ovj-=*(6rnyq0)w=i{%L&j7fS!oj?ZYj^gC#1Y26ZC@x_&0mF^66P}up z)UG6fY$<;f-z^o=b;A?LaxzD8!bn1$q|HYsY@p}g8Jl2bLedwL6Xbv)fNGO`27I%? z-{&M$=p_tALF7K+jw&X+azs8`U)dwiKjW>@kJ<^X@T2(&bu6@sxvfelvn0$HY)Pm^ z71*^cA&e?jV^_ju`uo-1guzsiPNxN>&YcyMx_2P~(Q;W=6HKY)MYj`{0Ny)kEoXJu z3tf1TFiZ6QUme?9FTu?VIy*nn9x2`@km+8p5&&-(rYSenLqFdnv_-}55?ooMIP;8; z1M*p&Xg}A_L1cW3GOGrqv$W3025WT=Ql^?z0-JaneD@O>3ss36mRFP zut&>2CX~ahqH0wmdt%ei33C8_l4_EQ?Ie8f-|;g=irszz6;l$)w=LfqkOdUXEfXPM z`~PobYkbiz@t^~<951h%NWNO3BH)briR7ylmaW$?kxV*Z*=LOsv&m*nw18$%BI#$a zY~LY?`6fd4VnAXG4xRaW=$XGZ!F*~u$K*-j~OPs-v9xqNzH4}~w8k4x6 zXKPJOOtwJFj(hh$3lk$nqOI6(aUvOk+bq;fcH{rJ zG7);?7iy;6!74L!W>w;o-;XskY(wHuR4**w4G&tAxEoN91cWu6OKebPPLd6(8y2Ue zIWkUJ4j-o^v>uzHjaA|H=+AA5TVRG22t$<{apHTRVFlQ4SK=B2fr#baM8E>kR3A>n ze_!GRC=tPw83z+DaW*+e5+SSfRd>rOtRmRU%~NLh5z`rt-5vrau$yXRb@M!kHY903 z;MPh7@kPmd6CF|c>0)DH-^}}gNvll+ofm{9!CsL63fsJWh#9^pOS-{{?^Y)TahdAI zC(YtVPivC;adYZrB!Q-?Gjr~5O(yS@n^o38`zI!upk&u%NBlJ}X{N1U(~5CPdBAGn zi*(qSU=Oer{NT1g=gHR#lgPjV^Vy2UI;V=4>O!dI@}!^K-bQPaEP1w1xelSm<|Hy6 z!4R%&N&3WPy1O&!AFj=leMw~NU{+xBfusyxpyP4fQR9!@`pONB$H{KE)HQi5*SvP)Vm#kccM){5^cN!E(*Elbvl|5~1$$ilT3!nn0L;m=x`UOC2Pf3 zWF%|Fzq?W={+89rxm^728Hxz zY&)B5%7w3aM`zy4yE@^Q-PZ{p@K7hb%VVAJ4PNMk@AX!P;9R8>{?a?0@V7tfgn#ry zD{)1+MjQ0)O*L9?7@BMT=9S6ZRzr5d6zZV8#)o;s0e^DSkik86^kglK)*E9yHCk_& z4%29>!fk&|EcZrGux2pW8b-H`OV##ER?5~R?~Q72GyfP1yBL$!J2k8I zVKQ@<2J#G4E$ZF9niGu4>H`|UoLdTniMV(5lB3g6%}qwa`GjVJK5`VE)IhfGs+Obo z8O=_{!V4} z`n2`2t7z+PR+I+U6{oijj$rj{>!iM>C zzG(i0)&z=+32xUvNE3zUG)`&hO*5wlq`WtwnFD?)XGJtK#Xsc?%P0aCno4EfE6l&kE>(SK4dvdo-MJd^Y#MX8@QZe*&9@6oE7=(5l5&CF@{IuX$WS$zyY>BZ=?ads%-YIo9JJR1hRq(v0N9rAB-FHuZ z79Di8QAubCZ;pe1gF+SciyI12vz*8BvoyubxBM_>LR^dq6Ie_$3^H(T>RcmQo2nM39%gZZ7pIQCkHR+MBk5Yve z>-dw@XeLXmSE&Yqd*5+Dvk$34^S0;j)ME^A zO<+;eGHn+->55g_2G)R%a7o(&c`eQ#Oi1hImevqu*C4A4{;ZYO$y_V?kOpax-EXS> zNO5saleB9#)HeT4X~NB|P8V*S`>XY_~dFaf5v`Zq#g+~ALKjTTg zk5VTmDr1wT$7Mc8i<8p&pcVs?nxmlu)2vXQxyBA93{0y<2I0E&#)}50b!134{nM-& z((|CSWvscF6walLkfjOw*HEMh`rlWkr82n#V>!oq@totO1TOdFq_m?<_Ye*L%QQ7@ z6+5yiE$t4w#N?c`48X8+wPJ54q}9b6O48cvobY*Unns_<#{_Z(Qv^-twnfk62Dr@P z`rnw%^{=^z>+i6f=uf@&Y(-joCXLqyE@<=3X;)a>8SmzRSN3qg;rqB)Jr8iP%n$Lu zwjbtVMI23g$oTwuChdro=!o!`?s>UcQ&e;_4g8qi^;X*D-)}N;&)aFvfV&?e=XFH; z9;N|agQKdXj6P`MUuiCgz5RaoC~c%6(IMwq8en*Vp<#k{17ZfHf=OSnyD=fay09YIq+rse;>o`P)zkoW(ld?N1G8wSa@q?1V`OEc{7!!K#4j6_H9hM#Hozy=$b zrVod*!e7nOS6UJVOP$g?K~~CO-q$HaO@l0o-O+T&o8D@3l8&YS z0q8a|JFwmP^p7M$g!)wLc6t_|{T378p?FPs~I|DlTSp zCkeJU&p^axyxKD32C2ok%syi_O+9L4qdi!)vjPB?N`hLHhD?XpYjrTGD(*l3B(-S|upWy|R z|KGOFc$AS&Nm)G2n4rH>O`m0urH8Jgt}imu^hfLcGD9pPkv97ksmug*Qf0$lwtXQ;LT%SSe-@FzGp1aU#Sy6G93R8NNGfw zAE;81Mwx(N-T&&o+&FUp;6|Z?@fId(6j^1;EeI*r^L_7<`4(EiF==`}n2{)LS0^*s zoTST}W;U=U>FJJ{;f+b!I3n{7J#LziIn0=(l9WsdZAZ6cWY!?E;8R(dE;N0ZlNk$m zme(2PfNbw(*y58#nWvn!hOL>A*-{@5a!kpr%sMuNV*ZLuvKGR1d~#i87X968SLVwa zByD~va|$(K|CP*b)Wob?!f*4tnPm6g>$vJs=3{E|)xR>y{!!O)#LLVJ^myAUL6VXG zWbUB19-l9nLjhkBX>T(_(d)O(e^vrf?8I|pQuuMDo^(Sx#>*Ln=gnoiBW9Fk=~ z1NxdGOG?YNi^?j~r^Xr0Y+LD#J11rhCgKU6nVXUY+GtPPYI4Z*tRz~qRu^QEbxf{f zzp|_j)WFeWvRF;KIWcP**iWQd8{u=)vr=`WgJx$n)u%EUAp+M3`J|H`*X8+H-gwlk z%uXU4H$UqwZ7)LC3RZ|V308E%f)(R-XKm8U3N(3t7WoQhdX^iK83lDf8}FN&VDCd& zHag3CAIln`pJm!hm}2jfS&eA)47ezmQ+Z7=r_o)(oZLrQ*MQN)daLhIPn)#G5>3!ZYM{w8vMsRF+pK0H>v?4C zGA`WofBr{0z0uHVUQOI_Y-QFlW6^fh>YpsgigRo+H$vDR5C51|3*aeCxc)Fil|HWa z`2P2-=6?WGBM>T7K0RADvuU;m;QV1Nvtxu|uaix)_X=dt>=xOhejf`HtWAK?Rz%M8 zM`vmqnxP&dLr1)*WA+RO^exQQ84nzkJ7dP%I;?$1pDH}!|WW+A^i#57aN~u9|m)%`8<0j=dkZ(_FQO{`1vY(F~Ar2!rN@J z1`2BxF1&+FVD%yUG+2Uyf3nwd4xK*3!!hqm_CJs=0g0m^bk^L+9XlH2Jh4NkZ;^hF zwPVf&NKZ-&W`+~pa}F3WWpNMh9J0k6>t)uglXFAJt~98ZLsqb$T~Ej6IlK7(_gdtT zMKajY@>V%}c($-j&RL$7w#x|>?&$bMRAM?fpYNb|kaPWaUP z+-YM+>}8bO$X@VkxO1)&=+|mkYpih1?aBSRxmIpp9)V_FxkvfYdv$URxvB3P6)vpzYg7VCvmMd_tn9U>zAvo za-joqXY(jC8kB3r%hvYKwd1<>3d-Hfv-V-RmpI42mAPMpvfJWv4{;kVC+517<ATU6ovvVPD|5@dwu&BlDd}};s zPVO+y{@eWATU?317Us%$xCSrJT?`DX07R~1gp1eaUgeEM{HENRz+e)<5CQYRjVf}r z!w4OA-Q|p3W-Oqg*F$%IN30eR%fH+guaQ|HFq|TgVVK^S&g+6z+SL2-?d7zb4by%2S8S_SPMxDF~ zysc={Fwck|?cX>Lv<)u1#N@Ym?&!^Alc{)8i#*T{($z3SXPVT+Ic@U_cr#(zF^}wj z%qkS>oTqIjOnma9AiY6$9Wp>P82LRkb-)e!M=Jg;|7J9K3)?bMac->oa#eXp*p z*AZRWyGM0pM;+Id9dI)5Fvs=0peuXlqOR=7%eu1tujcLMWu5Qn%3i*!D_d}1SGLE) zyc_)H)%Zo8C8Tj%^ZW(&z<{AJ{@B+&Kb}X;DbIXu)Ex27f6JrhNXPs(+NkNCuZx-<`MRj- znXikQ-uc1Y3v&nNdjK0k6&@Ur-_aPQ)Ly_}F`N#`-wd!)J7RB%&P(zi004+ro$0y8 z=w3{Ib4*s5+i4_Pji1Q#vkXWojmY0=NYa{7`JgqFe}O-!FTY0UTzbB%F#m>4Yz>af zKThZ&@1*?2|99Y?I6gVQ3Rp*~)og?bThJ`fUsPj8d$FY~5SdLd6!*`{4>Bc2(|6AZ zXOU$AizD;-BEI(v^DkKte{CI;Uu;6sc9ZjKP=5}Yo^MBw%NFE28k012Y5qqmeHH76 zzLw`t6de|(m$8+4zi!G0PcOUQt}&TYm%(Jma^2yAz<=~lTn1HS^A~N6JlfNBiRjRO3QICE3uOKZJ zArOx4-SIQS`;X_hvmsR2ya$VG`3O==v~V`K>+Sp%)}q7s(er#)JCc6?oUgDXsm!?G zxQL_;O$!oDNjk$u_${+5AQM9l<8>|tskS8bYEY12O#g3M@Yq_kRtUrcoeDtnf9Ts< z7K8V$lATcAyvlOLPdXP&f(*kE3v1xrT??cl(OT@*y`Z)UN}sLiFRUrLx=(?Ab!5?> z1;*&)szf!q-M0WTh2H*pRV`HhsGtcx_h-R2$dio@0TBeUPjTlGGnClBz#h2|EP$+V zt;Hkr2mA_}3-8+e1{EY2p_V%}_UMdn0pPQ8q(j976*h~JE5&%V$9n<_$lx-gqz)r0b-!7nNHVx}y7;`7zj6T_CkX9UG)MqfV*< zGHrQNfg664UT_Q&*Z;kM%Fi0r%OP$r>|bDq)3XZ9t(ZD^Vp)N&;5+Z}SS48w;mxUQ)1KBxLiJ6_7Tm z0C^{@m9?+1bx`TMf~n?$IrYC4Y~tEH6BQok=Il2sT*nI(I24}e_R5?JFOh|!sA9c5 z3dwT?%i7i}Y|nKJYFgNxgDr1acpEZxU(2+~f9rjXu7$Hu*`ap*QIFLv|3G!S73$N* zK_;)H3@jRq$vP#sA?+DG8Cgsz@!H_Wv3Ny27r5$S8$u9u!loighM>RC8CeTw zx~8xm)MN(T`G%bpTA5yGkM?gVw8Lp>h2;GK4HMior_hXi+(xtFlEOiPB6w3-;bLAu zHKy>GNGQ-{T;Xwk)M-lLX`Zc`sVi_|R^bs7q3ptih3S?;w%*!8vd9>_#K(1oWMwgy zU9q9C6)*7DjzZE9v!k1K6^`Jz{SN3(b33Fv?Zn~2Eu8O!Glhka8y6G2<7+2GM#9M# z<&R4O@z+a*Yi*h8c-N!CnqaLdDjNt-eOma4TNm|Cr*P31ox-=i75)%vDt;jwW`rQ0t%c2MTXsTUNw1rUMg+LIom+%>wq;Qf8A)PC zZw)WnYzb>ESxbHZT^Z@sAF-#>Zc~fEccb&}#m;E|%_=M8KCS32fY9QbRSi((+@iMV z=bR!FMD~wy#2cm;9fj1BU$7uwK~exr$h0#;-pI=ywO>>Od8E|x2uF&2oy_r?#YI0L z4}w~lKk37z3EKPFw>i#PSyTk+n*M@i#un7Zm8*-sTcR%uy`53JiXunkH?@e5leE}Y z)W(EKfYWvtVX{L6Q3H25SoGOk$o4&5^xRp<_IOwn#|!LyR^(|a9DV+#h%BzkPTNsQ zYcp2@`m1g+q$5aBMhMTZ&FUAwGD7Fi*0M)UniTH>G#vzM0$$p* zcs-=KCMS0>6fS?JRq+hy<-OY!ZxUee!}i5X3>YGw(W%%7QsW7!WVS~JCVOOD1Uj1_ z(5*4tdKRl}QIpZNoY9z`#bjAfgAzBq&#ySyT;SLvwD=CsHd7b(wG)n(r5BTR>#0}p z(9GiJ^@VKzdBt^&g>3%f;vf99achgob0sUQSYJ%;(Jb3|WAQx`A?v!WSjMxXcNb59 ze5^|p2}WKm$!0X?&la1YH|b;){?X~;0H8Jk7A9Ej%$YXW?Rv3>n>P1O@lI}9)U)Dc z+^y~}i$C!K^{R>!$*Tk^&XR9Bof3Z(i}=wZ^Aa-Kf)((xFTq@qXAULgp_?7u<5cno zFYv{^WR00{w4z=~5@d=55r@@mRwY-9o(n5^umv}-bScsAo_;Qfj9G2$TJjH|X3*9T z5rA%pEsQz1d&yZq6-CuBWZ_O5RME3!ydGpCgl5OIcgYqbv`9`iIy%*_1hCYej#eD* zI-o?Rk702*aB#_X1A&c)Z^>*u%!|VszY+)i*mMmjna|n05SKvOM0VdJp6?I2!)X0I z7;XRT+ZI0yFUf>da~%x+EGy}6k1V?+IHS?YCFDiW4AKOaX-ck{GRbj#cF9Se{j<0v zUN9XWEG;=DLy9>F zT2i0v(MA#E+jL+pw(G#|?kFK$B35ATu9AZsH|bCbd1_)udmho1tvp(Cz(P2B@Ir~$ zM94O}UUC=m+Cr;ScXYOUr8E5)(n#oI-g;0nMjzp;0nIUaSl#N#T!3$UEQvH@lq-Bo zwX%8{lxk%?YgnpPVw`d5H?G7i>r$;_oa{<3bH{vk(jlC1(II5lEIrOo8|GcAbxf@~ zr86xBsSY*M9i7;s^fY%@eAiN~*xkG9z+U$#CGXmp3*HVaO*0m7@<1m80jBX7Ea6Gru&8`)cN59YWMn9fI@n z(rsLk+v{`%)@{%g2rJiJqUPpO-e%+5+e(K*`Vm_7y3s|TZSaw!rI!Kf;giQpA09#V zuhi_1+D$5JiyBQTJN)~NHujiY*4{?+00%B8du>J1UTe!f8IiP0dD$&flGfN>W@ky# zMu*Dmj7i$*c-c{MeB1f5!-nMNkxOM}wD{R;WrJwycDt;C7CZl->?Qqw_meUMdVJsW zvTyA7>#`5@_ojDcpXl#3|CG6#ko4%cGBQPs9RE?)!wo(48qQ~1baWkl@b|4km4PD~ zOxs6BK0f}OnX^b9!iSU?q?jKWZ;XS-7WNmQ*+Yl*URauQ%(|9;u(|Cl^ z*;}b<+eW2s)25|5s%_i$?OR5)Qbu)Z*Qsq=wX$tXWt%9Ra`x~t5kBWLqEPhzEQ}u1 zSa1ln>^)-T|GQ}IONVQt)xAep;d*^W%rW|Zo`CQ6A3?r@8fNL~ffnVBx5sk_jrjlA zI}-pasx#kv1EL_SvMJK{f+8kLTl=C$!9>ltV>GJ^wI*s*aL*V;5}_4j6PnXB+Jf4R zMp1~yN>C9jW?p9AyEAF5y7$~Vr_TB< z|L^uzk@PrUs+MJ`#=cEShzZRsj8<9l<4i~C-h{X5aQW%j;R1qDcZ)1l4!g7 zzvL;S#k48k93)QKI{O=9>MvDe-*@fMQ^oX&%jQ<{%LKMa8+d`v^TzU= zD6+y(vv^}IF#OQ7Jl6?4!we!Z<>@u^D!D~;MN4?xPY0B($W;Q}^+Vh9S=Xv#8MbQ% zcI*eCLZxpkZN9!zP)N&~cG+=rZW~Z>_^qNUf#dj&5$ld?hEZfFVWb*?raDgAcZH>r zt*6iVH4lqDH*ow&4r5qzf>tG>t>tR(?>V0E_$q}{P?@$#RJDQ{kxSpit-4__RTU$2gE)%(fZs&A7I|XvJuSnNYntZ&yj0Gu*b2l!r!<{Z z&aYV)i?3Rtd{}qYM&+uj4z7$3Bg0n1NO$Q#Lo-=4pP*GOO~aFEvlo26 zZ`pE#&|zMLrfwUyZh5M0$7ZZVs_jLZCT5(ydUW!}i}P2P%D&}?zOFmAqK8JTGPNz< zC!)tZSMgl=QlpboPHJ6UYAC3Gv9m%gthw}uR#iOs*`{*Yaty_^eZvVY*RcH9wIj{4 z71dFqkVPRDuUbAldFJ-cGyCqVYM$v?VPwaKXE|=9D^}o`YOFZABi5C#8<9+3KmV>$ z*-*8}ifm1dw9wG>z=?caiyb|3HBX2s zu@#G{n|S?f@%f=^n{K4hp*p97>DyuC1~zw2tXQs4@0*`4zJDndRxMUs)O2#$%B|WH z&wjdff*ATl(;mXTxM`0D&r~c`Q)A0kBSVWc&o<_b2TzT)$w#rQN__zMW>vY`q%j* zl4nkv|MgNizhYl3ervv3j`AxNTQ)YSV$xTd_G$23RS*3@@jNy%%c589zzKZTR~%YV z!fKk{x2*Y*>AG&L86i8Fqj0crAL_`Xu@l6}tYKZeLul!$9eGh`$8u;XA21wYdYXs2 znDMg}wRgy^)RFI?jm@o7>@YT~;*_7V;;h+C2OjL&Jruf4Eup$x&MI3k(+`|_2%R|FZ?+uU%G^ZWh{9O6BHc%!upLifIdbAf zp~WghK;#I?)|-h0W$K}#d-4cT9M9AOQ`ZeeF~iV9Lh9E#JlS~CS`NGX>UFV4Gl!j9 zP&G4DnP^#N^{`_LjRPi~!X!03UGsv_4gJWnHQ$YrO5=hVeamdDmLGVoW_uRHueyP0 z#=fN~6bp4T+3_i6X<2n*!*rC`2xGd))g3QFP*q&d<>U;MgpFfEsUf#MUA%F`YOSa~ zIU=f9(bhD!Aynx$1Tr=7WiLBOAu8g8X6k+r_{q5KY<*?jm9nm{1z~I&oO*ts>4+Yj zVVbYoNIYjO?>?ks#pDHb_8uM>1-5HhwjP;!fIMmHN-kRd>;+A?l*+d2py!}McpMVC$8Vw_HUd>a zu4MPjBsm00&a#4PO>ueB^vR-X#o{YhD`M|&H4SM{6~|@*F~NM~UCVUCI1c?Vwr!g^ zD`p(U@Jv5qGh2m&bQMM{J5FXrkI@AjD^fX|X>?>{M?g97*>DX69A8SOu7@P;d4Ylm zshJuJHJh0EmFi;M?_1TflV73O$~h;7ZE6}{M$4g>{5Vkcz@YIiD_>DKz%Kw-A+42wgwm zAd5}MLV_6^^SJyVyeB)XSl>#A6HJo7d^xEk0c z<0uGX52Xkr8QT$(7mBBjnxyDr>vQx|wzdjt_Qjun-ZZtGU$dUdiOc@hG*GlW-!!lx z(iG3M)W8cZY#DawM1jhl?l`)SC?z)Ch)jf-cxK}(|C4!Mr=tDxRR9h_fif4Ox|+06Mh zzpJUtT&AxA4FiW}8yZKKYGZCR4RmS5VAoD|T-C*(glN4H+Axxa5%|8NS{eln4@o{? z;%@pnE36#xb*Op)<`{X*sl2m}`2=+|&`DPh%0{A zG~pn<(R6z(Gt1FU<^sl%kcp!QzM`m@RFMN*H+g#a+KZTExds}sYJBU+s(_e3CehAo zCVxhH!Oo=%`pZuR#G|)#j%>(zA=3+c2#AR3n#+p8RG}G`sk*Uc+Po`k$~RoCy2Ege zD@YZ#?eGQ01>f;(bZI_j=Tw6P`vPZ|6)C1>TY9XqY00_BL`1yO6}B(UwS{*AB4l-a z4yzKXArd2n@VHVAjBl1t3ecDB{e)Bfx^&Z(^Zwo7URO@qsWds|4vL+`BjQ3SFTp` zYZMEwT&;^r*tMJ3Yshu`H`dvKedoH%5V3?|3Bg#c@Rx@>!Q7jlF16|r=Ng!gF4&$N) zQH&VsVHcE^tjykHVqld=yziJcBB1Un994c`BhE9#uC(`56|joq@|j~&I%MBh&~XAz zF@-_LzF-(evg*o~S4)+G%5|}=;kv1nf_h`&eXUjbh_0H7Q&qq;X=-#rW@~I2(!%0! zKC@cPSogJ9%sL)rdE+Ber*u@5D-D%IN-XG$sNI$oBd<7?6S!l&wftH$gU446yl$TcUkMdoN7Hiy3`aCi z#nKU|u4#K_XlI6-bZ{z&fFW)IBtlEtIoMP@1WJ4zrfDMB+R4^On>eaMjW^UC(?`&i zs}6sqd{UMTm?A6Ydn77R}>b79fc+<2@9kHp8~5wR{rB;_)Q$UfI7B8UGs8TUVyZ28FbpXj@PQ9QuXbJy=B)?Kl5pCmry`U5^BCcLoukmN!2 z`pO3gIug&6ZY1TGas3`*w-4Poxas4EUC-ZK{^s#_gZTJi^S@IDbROe90=DG={Z~!L zi+x>2WC8sLkC)+(Qv}?;T7=)uP%NBAGT6Z9m#!7sU}!=9Z(Q6tvK!JI1HW|mJOYv6 z5wKzcx5RCYA5Aq?GlPLGI(;(`%lyhcam|kTCs%++ynn^26{Su-QGRp&00{*lss(sF zzBa=F!=@@0b>op#RR9vnxYq&Qlzkl-05~=vhn4|?*`rywn{5R+J+~Q1B?}`k?Z5=# zX=+*=7`7>KViH&c_7Ru8Wha|ftOj~tP^}^s<18<%HpQt7J!$?pq776WNk_*?O9g|{`qj)GPJ3+90fQZ>-lfC*gRH8Q_m*>w#y(10%k5jA`b z5G|nE*dxrq*TK{#)#!ozD%I*MLF;g*fH@wY7W6E zCb3q!Vlz%a>WGv`hTYsM;iCbt*cgYu#F>N9^B7^EL;wpUVgL{0sv01yU~qaty!`xW z*{gIxuhl{aDg|#9)c|2(7=eimRiHuuhInCxkQ6sI!I+pzXlAbuRtLPEuCRcJ?Fk~= zM^wNe8-;qTc#4?O3DBw?vf11_j^ z#}TX5GEm2y`jiZ9xp4aY37{Kv@Sb2*0a1eSFnk-NqXb<8R8yIaDLk=4C_@Cy)0E8y z2ujc$00$4qR|qH+w3J+9z%2kodu5$~K8(E~rsV0cTxU zp_ui2D?sK079221HLV`5b2<+!jSW~dAiCBEmlwr4+Z;GO0Iqr!MFfUkg2dP)LSS#~ zGP)5e?1A7+UGRxw>tT#s<%G@iN;C5Zr5D-~xIo@yRCacq6Ni!4Uv7$4v2JJ@Q7(8Z zQTpSGiSpT+9usB-YKu(}ybgyG!H0ej+q|BySy>EQiq|Q}kpV6_^gYlfAWztmRF4w? z2nf3*0X*xp1#LvS0XOh?s!ePiCqu-Xq<=s_TE3<0Sb|Qe;lT>(w!}YM3r;2uF~451 zZdRxAVNI!p#eskaT1g-STfeWHz6yF*F)V5WF{)O)`$OFYtqL>FNEHjhX2M4^BJj9s8`Sqojo*io(#)QNMUMxzh0Jc`KLqzIPl2v5_dnRO$Z~}H;i;awPR+9+e z(MjcNEq9d0;@l!?2h=9Jf&!!ku!}s}LCb+O6|+v{WJrUHD*3fLu6Xt*Eowti#WG}| za?|{YlK}7bIL83L+m=I(%r{n==>k=WEZ27;580?2=AQ0;5#fi3LIAo|IT3x24G@%J z2yQmEvq++BvE`3Yud}IOZvLC4nb&J-*aI3?@M1s~)6krLKr}T^CmbvUrsD*Jip50F z5XflCNX}|tQiJ0lGZC8{TLjF3&F3fs)(&VG(2)bc_^Y)bINPR2LxUZksi}qh$JI4A zrgJqyWdcEXK{xo4V6(icRq^M~aFpd&%{J$(;3)g-f*}ny_+J3iENOymkWXAQwpC7O z5RICvX8|DDJe6Cfr>G!+ks1|Xqy%9C5M?p~bPk;aj2i$c_6*`kfWvuU7#zS>Hh3&z zN_>;v;;pBg!vUUw81t(pQnX{WS}CX%gqy$Mlrra$MbIq$2JACb=xdb;N}L|2G6z?7 zAZM?kbDVL&1sY&dBwB)Q0j?1(B~NE!-ZETUMIOAw93e_*z~n5(i*e@ImdNRVXC^c5 z?|hgLse*dtnOrHTG0Kj#TQ_ z4>FM*5?CQ(6$k*J+?uAK#;B3+2{yOx0D^+CF?T+s3MOT*(nTF6(O~;OwRluR{!7&k zG&N)va_*pH5Qri}ry>GvRp0Xn{jiNpFRM<>I96FHoD?!LQ=>HTR3y@HfuRH5%g(+m zhya+VjZ>@wpEBA2@$(kZE<9(62h29 zMeJP-^ERwFuuTO(stdLel?L6<(tILLOax98J{d(&E~r#YCG5FOY889Tmu??I%QWaz^LYsbm31`E^#s__fcs?k>hISg`*= zTBD-$5F-_GUa;kINE2#_KJ2i8qfs+S0y|lILlfZyZp0xBik378Oihw2prsM=fX0uk zs|dA=n7J$zu3&U}#S`RD&Zsy1E5F0ih@F0Wwi4T&^F~Na0=2t}zr6D|^QYAfB6WjE zmQJB=5ZNj7Lfs(J%NA2Nh|~=tJ*-s!M(e5@MBc|3Q#Xjz4I*`eNZlY(H;BBq38rok z>0#xm8${{`k-9Q4`Pt$DWM{yFscM0x zC;@g-vIc_iAR#B&!boOUHTGtoQzLbpBMTN7B)jKX)y1KZiOt+u>{Nkne_bn`&thr+8kUruMtM;$H`YTs19sL1b zJq5iko4It4*8aeWKa9 z^v?q-WW=&bkO|(`m#%n_shUi)=mXk|1N`&Z6AMeFPaL>?>DuuXpmAhomHv8CasglU z0a*o}MM7^|Bg?}s z(fd7ooY?(|=5e|8j}wnP(L5;G{hH>x`ZSOtH2~T`@@6UM#JKsvb=kmeBgI!7v1!es z>nlL2@(P(*4*eUiZ9Z~n1+)$BXpoBF1xQG)`3{ek&@}*(B-N>QaY3o9i`O+b|Dpef zTun@Uta-S&W@YpEJ_yCKf9JmEr`3Laer5AsrJe;wi^^@yd!)bJsdp!fHLIE@zkkV3 zh|6wk{z=d8YYnLOva+)I(D(U1?c#IWo4?+t0^E~@5UU}ntFgc;B<%xiW&@Cf5&$8& zx^Rn1rStd?cgjxo&>zTH76KlX_%#xmDL{Tm9Sf3%3`U>?)6J!*RQkld9&G+oe`eqh zA8ociq?_6Fed@c-hwuE^hZ834xKj4vLE@^%ng`0#y*hNrW6ekPDw0s7q58Y-3exU7 zbLR@iC3IQRrven-rn3M%%KV*b2oMGR!$MC3UjuYLd$+<;kTC3>eENsYM+~hvKspFF zAa6a=zT=ROkJ*U;tpRcY9nnqeP*f`ItxLBwzjO?Vra-R%(=x%L88S;NfMnp206NK# zNh;s0jfJJsCu#>S8*-r-vPMiyz9^PmFi?E)PA>m;+p^D{BVH-DOiZpGBwCLVS8eCh zBTo}AoG3m$h|4Lrifj6a(Wi0wn|67*&#hc8yi;C2ciXawiM2*vZffV#m)443jui8L z-Z4r{`^l1i;-SaHa8cg1rBRG|T#OKky>w(>4Zxrn_UbJY#D(3Ti8+spq2lga=j<)M z^Ekhd<;2fxpN;&!*em<&pzl*|#j!WId9$p$ur*|9BygPpwl2oaS~OA?Q9)>01IX|$)ZZ=}u{)pW z3fNIG>@Q142=S~K{Euot%Eoi~kHiz>&$;-Fv?ZI@lnTzc*V{&T~lmF)liF;g>{_A@bdlz3n* z8^!J0g)ws3t}SJ;WzLfR;)T9kz4n-B6esT5GD2LoYs;SEu-vZ{e!$ju z)QFbR;-bA;Ml9R2Wp}ZpdC3T|vSrb(V+J6Z+h%nPy8ojzDh>(!7k_KvsI-*W!Vkp- z@|XMlqkvoR39F=`MZU`TrJVX|qcY9We_{?kTMu;yB zX&LrEpe?Wbaouq7AS+)n?$rJVt8LN8mksDjgq7WxG)-q4C*At5gW6(Wqj+X zYKR$_>j+dWiN>Is)-w=t6)&7ydEki)#FQELgnO|d?RBPFU)&t9cg5@|w zlHx=1EXa2v8iZ8vsxFC12xjay9Fr`a@B$O14e)=Ye&xC--O#Ew6x0jFf+~pU>?cMw zwtnOwwFgufr-&Boy6X`ZMf|Bt6ryWE*aNLXgbOE`YHlW;v%mn8412h>tu(V}bapm| z7tG6E6dPzSIUS}(-NtY@!*X9pMvY|DG!1%aVpJjOLm}KlBR{ff62RhVF-|4MpnIv2 zMcC41QvbjKqK~DBMAG<_NQ8}%M(3j}FeAg}LsJL24Ma>Z*BFw_0ozKb!QaM;*29dj zt(t&5w|3UrYaea>WQ91tysBXso7Jg`CqLgZh@8-@3PPmG!AvV9T3vOBzJzj&4A4Nj z(`lLo8{jx{F?vbU5?hBGcuZs>seQt`6oSE%O{MFIf{|&+NnozQR7Pk95uH9>ALs^& zbd6aK$@Kd>37amc7HNLRy=p^#g>q0-*4i*J=G@j11pd$*GE}1?;PxX4Gn9BR&_w*J z#&I>AJ2*P;WkWpG$0FzEj&$ZeS`>Qt*;QU8(JDZV4`B^s0-+* z>WYJG4S%p?M8Tj1^B{bX3@ZeCFt4Z?OIx<$Wd8GgjugTq?uQdHw*|xmhmqHj+6D=hhf8#gq<;7Upe^Q zluCqYIMDKtW?y6+WtkTmG+$D8Dfog3*TL-T1TZ*SI&=XZd^3Hv@}@oC0!dWUhX{g{GCfH`CTV77gSeX z(W|8^Z`wbt=vTG@GrL4b5%h{>EhHG)A!DG=;=zYR2Kgx-sT&X_RFx=W0=7UF;BbO? zkE|4Imv{>tGdo3Cc{dPi%!Fsx(kxSQ7!h?38?>ir7PcSD&q&xFxV4i6Aq5qSLsqt& zfRvSAahkYb(brmcuV9pwyuJV|h=h)v*e5!fqc4UoO3qn388?gk@(l!Zv92IegX)1( z6g&cO39^O&2k|1MO2CE>$dAEiFi(lOa}{Jg2v`El$q)sEx{TN&tA2isS&ldvil0+o zmZSB-J6k?X=oNIY9H)kb;BJM`Rzk6%x^x_&k&)Q6nDvukLqfz6__?rs65C0}g_vvs zNYIFvKpB*pI0+FW8w(^@yqIKYBH;+a2ivCs!xvGMxE`{U08*fA$gSPV!q38jn!5$c z-9&41Yvo`Ski|Kd)Hp^-_7Nfj6NgI-pF+L}^0vsVCTuRQA*LTiX8(+xK^pLlh?qS@ z5varAwIXQ*OjocXu#d~R){V0$7^hyT37F$~Q?nNzTS4CiQnY;ZoTibL-1pL9x$UNn zlEJnb0mQ^i+6LV~))vVy0i~a+5}%lb{WlQnEBVflut>L&l2^jV1X~#?16)-T5YN1@ zVpIdUCm1u94oeGFOlGE`aVmt+img~;N;`qy*^bG{pn~`!xdEvSh((6*1ymB-hmPAp z*Rq)E2E3u1@PImBi00YLJ$l{mxJ3EK}^mtiTPQ%b_JAIq&=ZY%u=9E$d3d;1|;e+!T>2guF^$8 z@JbQ~L=AHJklO$lmLwD1JS67|K&pUs`SkI1pvxmUL(e{m99z@65lsG&6r}qFyIi(QMrL zBrE7MwOetkurKAk7M>+Y*~Ssh=F#mqt|ccSa5Q{QCX8l?7sNxONhe;p3y7eN0O*sc zfCL(xVGK$eMTkW^t0B{faTMBHHb7P)nB z+(ElUfHCC7AQhBYWzw-*WNJ|(9t1$4`VM+Hc4-xWwUegU7fIH=hrHx z&h1ny=!1Eca;8+5*)VbEv#sR@9||ngO$i1i@dw;?L>Na%kg(j7;3z>XWLV&9hmc%C z138ruD`koUHVWEDwkxeld|0+PkI4)YvYT+iySQWVeUl_4vf&1HtF&_E{0b3OAZ4r+ zROm>s;Iw|^f@s8dnc@UB_@3dC)OAEKPF->l$lMjlJZ=f}VQUEK=}R0`Bt(Vr}0Q{Tf_J9t4dLXI9Fe8j1%C#7Oo_H4`|p_pPX=uUG5GcSe`SjUkk$p^+p%;v?KllfvWl=Vz= zh3cMHzm*E2`w5mR3ax7$6@8)&Uh^&4I4a@RcOvUq;IH**i&9 zK)N1Cfk3%pLXhT1#YKe7L@j0LTI46BLmQclga#^y91d&HumR!qGG7Rphfqy9$nqhe7rextV&k|Y$c@VJpsTt>CQH`mXSShH`62t!1dR9MD z@-^j3z^(?Vsw!S=+ z0+0~sUnIAIl?{U<`V3+gHUU);o4l^-`f5Ol3CLgs@*d;9+_D0+c1|zEM&zC>QB!t; z6;vOJ4JRx=v7BGCnVI-2$_jW7B?u4q9>P6@V`%y$uVQdvXhgcTyliz}- z8iM|fm=C#V0BJ8Q*_j0nyEuvr2z^j4EbqzY38CP)4C{ai|_=n|KJDA)IvmSZqw3r-_KQSd^ z=nrDBwfpFZ<)P=NlB(1 zll*xsFu9S)bUxS(WvED0RV2wh=#r{;XT zlX3r_!^pX?hZksb9d!1wjoo2mjPt1QQD-#q`OFoN-+(xz(8w@~u=oF-qix?{% zpQT^r#+FvW7z4j#(qtSWB|NYn8cVS$b}l**-RAj<6^tR zke;$rcWYs}HCGo{e#KsMYjuIa)Xw2z^FLG)1=A(`sB9Fx7dtkpf93&27xc*qic?Kh zaWx|!V)Q`cLFcg$C98?!WPFw+R%KpeG$9EOix1v(xNtE8g;q7wa6ygW#qBPwA-BG& zkwczdWl3ubS#W?&i1mPB8%rCwcuW&`8ORO1ZrF0NSfM*vHc!sr1UEc4Q#8O$>(Qg(E^WH4iAbm88UKvXzlvk&MY~XGH5D`Pges7WG)|9BasbEAh;y zTMr_4EJ_BR9%Jb}DMq*AxOp**cRPfl4h&45lby$Xh7nRQ1oyK`)!gXktI71>UuqUPdaiLrUB@B|PE)nj2b@M;>y zZL*1y<($0VBseF{yD1~GIpW2-GT;NyNq3jV=2o1N&^JI_ol~z^bmi*9%Q|VnF@+-J zp+y4Y04QeJ5rTAp3Z+KbPEQOII3;p@qu1i5({wx$IQM{cfV7esdb3>lV{HIf$jh7; zNVzKGAsNrXk`a}osN&gUn{YpUp%rLVex;d_rm)i5x*FGr_N6&J=(9+?BMT|J~=;5BiXSg)xdIx#pwn0z#^418>3!^k=#xrbA7j&o-~|!FNIaO z8(&o>G>2F?L=c(L9%yx)C%bH2lpfWpEyPmXgI8nQgenswI(T##Ac zv!e?~Gl@n4c#!54G65a+4rCA_qRbNRks!Bp9opJSYkyv9$gf(QznJw^P;shR|BXzc zpFeSVf819@sVG=u;H1FMhVI14%0VFGX}qW>fPlQU@MX|;n~bGoB*y847cjzH$e}@i z5~izeoCm$bK4UXE)BL!+1CBo=9@oXCLj+x_%53@gW-Rsv^-E2rTvRhQUR9(959zo< zXTp?7#d72G*{4WYigS)^`nb@iiWRuf(P=o46l@0UfS>~K&yaTjF_~C@9D6BDtbyN> zG!vO>-dFG z?_~;VT;HLIZUobO!Sv&H3%+%ysOVbSJzf>)&jwAE8 z`rsJI3M{b~5(3}?=>T|&7Qo9(k)*+(2zIG+^uTRZ63_D{X|DN{`GpBAJq!{K zNVFQ#Kh__R#hSs7Ffxd#eoayA2XE$zI4f9igKu;9DK&5fJiW| z;DgqC8bAPFYwQOcXdn+j43lR#f~>-}=x}^J)g8VdbT5+}GYd%WaP_9Y#@UoRPj@y* z7Ib0{L{-6CWeVD~JzGT`tX~J~*TMQSh@=kIuY>jLVEy+=CXzvhCqF4oBl#f}y)?Kw zSpR+F1nOY@ash6>D)r~%=IdbnYDh&d4GrZzC#a+j)~|#0>tOvlSicU|&xsJIgZ1lR z{W@5`4%V--x7ES=C!Ade>%Ui=Kpm`K2kTdZCwlp$>tOx-Sb;iNzYf;#on*ES)~|#0 zd&daW!TKm7`MCBvSYJX!>R|mkSpWSZ1bV=)>R|ou5QI8dzYf-~gY|2{BXzL;`vnQq z!TNQue$N<+I#|CB*3S6(fzW9)k7)^4;koJR25|Kt~#ekfqB$)6#0$|OUs6=>X z;h}+&uPoktXT@cuKYjC@o4(agL^IbPlAN;JO=CVN%bj>;?3+Wx-5umWj5R{}m6}TU_(`IRnL=Ep7J+ zzjO8&(Y3s7wD?0S|7h}`Z!B-yTkOArtDuW-_iSz3Q_L8$vSIK2mXgWdfNLF6ccmJZtEu~S zlGh$z`PQdPy4d=O@2X<&ajSmM^|*&`QeT*OTr@tWJEcKb4jW>b-I`!R(8x8Dt>qPlJR{> zX>KO3H?BIN?|-QHH6^j7>)L^dWv<%VXRzsHRq(HFX=35AOUmhk#l1(ZS}uB`$vm~$1mxZwe^sXu4*eT_0AEi{#44XuT^ZEvTDQo z7HOjC$-PJ2I#?4QZ|azsynM;6ljn-oVI32jj(_LYCg7<$)D}^=O)dR@!pXu-MneiT< znLR(7dEw>idsLi$wo}0iFW26qT>4qBa{7CeOF!#X&XDCs^m=16{jr#J`8T1pJEOgy z_*>k*+pcMci2h$_Ke1PTIX&N{`YQH&eAcU6+U#EC($9L8OPjq@Ir=O8uvfwKU3MyX z;pORPy~?Gp*Q;FmS+8=I?1oyc_YnR=H@KkQxdy~ah|X<)uoT`lUr9U6xJy@p18ud&HK>|K5D(GeTY zX+OF;`G&3Jz}@%U_9LqIXP?{tiR$Iu=e8eTy?p!J_7kg@C!N=RTJ>`EdF`LCUhej# z_D@$Y-&xguO!e}fFSVaqy;L}GwO;$o zm9-{LUf1)D2`QJu`N);Drr%e3PA@W{-`4%jaePyK!wbIBb3FOE9M22C(LS;I{X1W& zt>URy)w*cWRkdN5eqXIsjaRoH^X^+%=~xQo{`Lc_&)Rf#?N_Vr?>PpRocbe|eY5=| z)slyNv*)DeNpjs*X7W;R&1|1kEp+fT?T7ZPF733m(7bDE?|1JtwdVDoRa*mZJkb8J z>Qio-RU6k|&gxmKoi<8r{1&wy^VQnGPXFr8h0>;_g?{$c_DS!y2bvkVrSMIUEyWgT zBh%tv{93J%H+-$u$ZcP%HB!B{{bTPw&&ftsSzl|(hHGox*|xs67EYMmy%xkF57x$R z)`PXN+xTG5u7~iAt!&vGUh=v*wVmv&hia`D)Ku%L9S`-~$w-MOC)D&Ne!9M?w)VF+ z^_);{Hlfl&$6r?~GW$J-e_rVa6 zt?iA)wE4+Jwbm^DUad7pEUvYt@v&NKE_`gK)@UMaP5PL_ZmhLt*yHX0RIT^y$7`(_ zw4^qD-*|kd$G{JeZnQVjnunIOPk47}aHd{PJEt!}M&5mCZIT_bwAQ%t6Sc-od!pA< z)5dL)Pd&J~*0{L2*0@uitTpcM&9%mDeX@N@we|CswIADKW*FI&f2Nt%{AF3KHBbX} z&#IwM)mk(4soG=yDr(};r(0^ZPkFjl`@E-X1NF?)JG}&X^<~%0{2?!K)AIHSJz7)U z(N9@UYksr5eZOj(hqiXNX4x~f#!Pvp)|gjY+pq4WU-Z&WQkl1|k5&7#u8&>#rMfiXEb2X$Q^d$%v@`dD2blLkal*Tf6{*ZfZDAh8eX_zw0P(z?Z58%p?A>@`-^9P+J0Kk z57lVye&W>U+VAc0v;jYBciz2Cj{jNv$%l$(?As?Mn}&6Kv^>D9sP3Vrbtv3Lw>TZA zCyVrs(@JBFiw6wQ$O=D6)h21(MNFk~pk_7dqGWbV5kvHj@gL;Z3BMjw>ha5jdLR6E zRC%ayoQ^X;=nqF^?)@Jf+Oe$1BWmxgm&D|r-`95+BrFc|E+J31cK#Jrz(VEg~cl78Z$$HZ`P;mvm)DHMC@NOAlxJBEtC z9=7Bo+3gB>JNC}I_ZBN}pFJ%5>{a>M-M7x!TWoy3qx#ulTlnmRPp{fXOgrk<1H?Re zJNBus?=7ai&~dhyJn;6t#X(y;28+XgapxFu&Q^Xl?ZfSp#rmxsdx@ck&)Zv^^J4e6 zLpu5Pja73-iw9rq7$V!UkNC@r9eZZwhP*_%-|6jRk`rI*xS{m_z>5f8WIyr4FW)vW zdAYOW$Ub|WbMe`schPxgpL6lWmqwL}ycW-PEEyp#Y+tzh07w&cn2W6es+jS`g(J9E zA)3_O0a|+BpYKgWb({fW+^j_-WpT}gY-E6ue!V;QBo|gl?)&21`|jG<*vNCF=Lm8kho4#sC#gIN6Q zj>G>Kx4j}NU%PFf_`+{H9v^Ye#b=~LaK=t!F!i1#xK92n$Ka8t?;a=aoqbz>G4$1r z-Nc{nx^KvT$vEsS?s=_agisdG9VCABYKQs%#tW_cUp%`;i{r*TGIz8OI#6UuDx zk`YM*;0dQJd8-W-woDTB8}L=T@HxTKozd%L!~@Vgkz!o86$dgoQ-$=C6yk82L);CE zs3%CkJv?Lfs1#Hkh}REZeNqLYtGv1)!u(pRBA&Tub^kI6^|io(IY##(x$$ATAV0ce znLe4fNip7oc>vlDxVND?hRr9G#K?YRh5~ZjvC5yk&xe*Sy2rf{_HGL9d8!(u_ zHQ>dtkXsRrGQ*4mF5?_1s5#{v$geXHTQ)YSDd#{rupupmpcITCS&*ZZOE@M3wu>&H|-`Kx_0$=SUk)|wI}lc)N}@sJGFYY4ezl67d%EKdnY zPY=BlBL`Ce6EIMr1-3O;Po8aVf}#-iQYZt!G)D#rZz2fIBQr7?I=D~adr8)63vM9~ zKa@N?Oww6FoCHBEjPbCWfqI5`#1k{lYpHVRR0?V})0I|Kt0Vzc#1Ai84UHOgnT{eQ z4_6YbdX@&yqAN*t;z-e|#7=OcxzJg|tVJQm_8f?|*%^S3YY~KL8RyjW_4A>Zk+Xr6 z{!ySqxduBRbPUia+fW+nFnxy!L?BR^7F4Tk8p-f{?zi3WjH=z4TEG< zf!;%bi#yQZ*@lQEfbqa}k||$VaADty1!k8qfGk!CA)Zp?i&(H1D>f4so|=qFr_3wD zA}a~*;93Y^iPE)*B?;wtpb))Or3x;nQcSsO1#IF4HD)wA4_>=^KZWWVm7WAuAtSFU zx&ccH@OPl_a9o(6;vr{-N>E95oWlHSfJ_$J3nPN-7=}A22O&a&wFuHJrX^IwKUoex z)s7~TFc%C=FY3hn8ENz?UC?EcGB~4wD|jhMu{%LbzXv*o8%AyzBxanm`ndYJRzKGy z`*HnTlTugxT+2C4>*reiTXIFZkN*Hdg8Ayrqq zW9g>;{cggQiVCOUO3lmGtS&B@Mk`%iT60C;{fnNu^xR5k7OiCTThmn%I_dkvHCOIYLH+V$2*IFUL`;Wbi?~F1U7=i;BaXQrSt$|Ef1bl9o{o3YTHl^#t^86Frcdt zcfZ~;JXw2yObBQBie%G(l@2OCokzmSXNJ0s=F4fCDbX3}Z9&zl`2K*kCzgwWRHsyn2z(ojLixIX$lB!~{AUy@fA20>(dh|k~wE2uCf<*ek_XT@U1j(ZoEeJz5_ z8oL9$?FPK@RO>-~i`>mSDMqGDlx>%}0QKx%s1k5@Mx+Rij&Vg5|)MWj^FX>Lk) zYu(T^qFnG+(u^@dD3`YETGk^oRs(p;VdOMy1vX;EfgcsBJlBmvr%IJ*!9)icqjdhE z)9Xwx1&!E;&6cI;p+_!mx`pAgw8&8@hIPgu_S2;^)ez!UNF@mh?MWtGP;HQ{tAc99 z*0<(Y*A=XPR1%q%>dF3S~UHDi+ym4;9yZ zZtb`-1_6T2If*dTVaSR-Xy$dBRi`LW6oO&8Z~pLP^28Nbj{?Z?bX_vI!&MB8s@yJo zliiyfU1TifK7jTIqr_M0UW41aiRZOEU{b zsTX-t!PM-Ps!GZ4vy}e!<6AmMHRQjPfHZcZxaO(FM~PE^dGB%cbF6-jz30hUKgV`D z{Ojjf{T!>GV^wM6f7CfZwNh;Iua@qW_0( z9N6^LtJm_kj=yj4cOQTE^Y_i*kPivas9-mYyOxd*ZlEYlYb#T`^RKr^6MXe``FKkjX(bO z#N_nG^&iqJp%R**i;4-!u>l*k6RYsg<9;ylTWK}R!I)q@mV=_gS)!9^(fZZJMN`wk zC*t*Y_nlbu*rn&5e`x<*E*8U{duUXmowxpyfu-$PmZR;LukZK(CY5xYUc6%cWu@)O zC%?RY&wiy1HA~IjA9yfsSo-GhrvBHj=kLL!|Md^;c3SDSWY|j&o%w;E_)y!M;;u!{k1tS8DT}6?WW+4MRWh z3ggEk#oSxE1}EPev*9ymi&M0X6Pu2{azk?Tm5)prEPmW)uq#E+h(z)?#! z?zemC4OJ*@P} z&I85W`DKP}Y@R5-Gi=kG(x*w#wCRZVe$td}&3ok)Nc!%z>843y_@Ye{lgB1+dSl4s;*eALFb#IONR`9MU})Jk!@{uuMhMLvTu=0&tfM zb}lwq%k?5x4|TPQ1tNEs=9;z}V1h90Kyw2t*0s2%f)Esc_x!DjL03hv0v+mWcm@CG3Dg1*(!xg z!Qfas+Z7AuWG}m7L2uPi3JnGCwD`3Z2lN0bJa*FN#s$q#32 zzM}8MqLXv!xufUS)PvcVZ5})HL#18CxL;Uf#kuQ-4HeJM+1&OYR}zwyO`G*bG4vM) z3`<`A=H@9AN-Hy&?z9&+@AH9Wx-%Ynb7(5MHvQz~&B;$*{?1jut&r^$--BaY^3(;g zhE*H)O<=~LaDn%x@_WBN4f(~yFGsaKDn9q4@2)O>9^%82z7zAGXGBZSopf8RTi^WI zcfa(Z(oeG*XyYq6*$U+llv$R%n^&OrJmCd>7<^&UBczRYVz{I^Qm%$)j7M5C|%0sv4?iPwr7Kn zc$s3jwUFaoc7bZBpk(#bRU%fMzI85M^}I5=nsvhPlRCZ8Lcfj*Z;EAw&&}iV$aCf8 zB^DKSo-Z#O58-n540%~Ol*#kh;7{ zyn~0!*JZ~fE4iat8kmuF$K$Kbv}rXC(1Rpo1dp%Dxo|(6xqf}wf$*EuWvw)6*s@XfL9{7!GIwy>! z^E9fBI0mG7P;p%VI)NQYwGEiVxlJ>qZGgxilzS{KAaD%gQveeMnqtMF83cYpj|0!q z6xE7ja7LgFG=hX|B9A~KSqd%jp$X2 zRfJ^X%IW7DhzADqPY_fvJjv`mEU(Dpfk3Tvwpoq@X1)YQk(?jbK!!7`qQ~;<*TvVr z*Li9g^m1<9VE+|y{9~Pi%dy9VgX5LZBCu72rs%p)_!*WEX}Y$PVK=v?p*0vsfQn&M zV`Fs;kRvw7JGKx-ar`J-ZP#2Pu_3_Ed?KC#m7OxAq%`b3d2%X_8yhs*wQ~B(QyGmnoD;1|~Z_&z8 zew`9yq>4(|We{>gh_c(`93u`sWZy+B#@Y&sl*P^D;B3_b-ZbcGPb?52GXPn3oaK*6 zFW7FuWb9SCpyz`0IQ!l?O(O_g%zZUBrfReo$RaR2?Acfh4TumWFjLM?;I)?P1Tszv zF$K6)WXEc36Q~pV?EQukfE^2T+%QJbY+RuEJF z%AvCHq_saUmGdiB(!;D0=htkBb+bC1h7hYDkWdGqUoo(LBAPI$OxKu!RK=?Cts@@z zawoflL(&6PM@9}@!)GP3pCjKI62wTHUn*`raOP$f7V(*;X$6LFD~4+$`V#XcL#kYP zI(LhW`PJH)u*EvbtutkYy5r5xBO0(bsuqAdB}CLEMh*20=`eJW2eD2IZy_O1-J2cq zq8&!;4}j$q&%@G-4HaW}h$TS}_tdy^S!nvGzW&|eH^JB};M&g;%=6@ZG zX>P@F3U86STwbMO%8{ASxc?-h=K&VGHVOkMx@6G5f%Vc*G{I)1=%+? zS4&D(9n;0xMQCr{p!5*zCoV~B^TvyKO%GtkB2J6b1j4#Xe0@RhWs_CPyoYi!~x^gBl zE=9`B|BK4mw9=sD)CFB%-L3Ra=HTtKtZTvtb#W)tZ|U0p@sc4{{kCg(f3u<~hbro! zX7luyKfj;lHmW8TCxic5P|a!Nt~%5tm(`)FN1;O_*pVRA~p9`NYY;@A~wvX;E?35gjLp*1vSwqV1io!(?^+#979oU$(^$_@VgnTWy2tUDBgVR+r|9aZBzzL>&Idu047T z*eQSPn)ZRG$&f#F{qEm0C5{mfzu6U6isps*#lLoW{jySmXP++T#H|15Bv|{0t~36B zdfAh+jIX!9)iq~yW!GJHnKY?KM%(}L&EUv?&v^f5w}4~+qhrp(cbboXdC>o_9gxrg zgRbx2eD!V_URq3F__8HVo_*D>;@3}hO=@~%!OO`b3x4&=pGpsit&6se7lXdLZ6C31 z_O{7lRr|L6#KDhkYY<wI8}_ba=K z1)tb&fM`6et)KYhb^PqrTliw(!fm6))AIJBJGuSWZwxz7JYxL1pE&z^K3hG9&l)EG zdVjG^-o7S_OmF!0?qc$(dkz+7&)s&6IA#r>ZCE~Pck#^JZJ!mzEy*An0OKiC4xBbM1 z`TXn(`7-WDe=|Z@3%LD(eEjkSJZ1JBT)lYQZ}t%fFXW5K_i#%yJ|iA~m@7JBUva=9 zzWDV*ZV%V@8zx#8QQP0-&(2u-n^9t)#e92_?2^XyzZoN1xBz}1(&|JyO*m&+)!@LSxT zG<3{haf;v-Ub&guv+f)`P@MdC>UdI6;9R?#cSAT5fTLxf+*dT9>rQE*tV`rGq zmh;==@8$NMCnxVI*2vq=ySSbA?J2{>M_RdkUbf&99j}ZR-)!Z#H_6_3@?SnaLQGo0 zw+G0%(e%Yv$BASG-)@(WI-%+U4PK&gj(GGYCo|~es+xPyy3TOJ4>{z=IZ-reRim5zlEBglv8f- z%59$( zN@4>}M1n#_=@yD2B#5wpfKfmN1R^3x4+6P<@1h{mf1jE6E|9Oke{N@XW@p>%?Ciex z=0;KSJ`g7GGD$w|?m;$2PkjZn@3%#n^a(4q``e-=^aq=OHT#P`q(>~iW0<=A*7{Vp`SJXOFgM&Z=nPu6*qK`6nmwo1$^ulBQ&!m6Ckc*)c4BcbsONM-p16sjQ z1%}Qr6wlCK3^iiN#ZWtjeqpE=L!UA7o9gP}(Zt!60j7eI#?s>0B1K$+>a z7(B_DO&R)up-v2)WvDMh#~2#Q&_;$PGPH}KR~Wj;P!>a{8CuHFQHEAAw3(sJ3^^J4 zhM}7beb3O7nEWhkGa+YGH@$may0I}C*~WML?pp)Cy6V><}!4Ip~VdS!O%*E)-d!bLwgv?W$25tnE>}Qc$hPfGPISU zvkW~0KRNw6Ltk;8hoPStddSeX3ln&p=vRi`W9V~+K4$12hBh&DnW3Ewea}!nLmxAAf}uYdy1>vr zhAa%7W9Sw`zcFM=F97IfFodCl3`H^Y8AEj$vNP0zp&JZ!VaUWIGk~EDoHv4@-x-?B z&|`*P1N7>9WoOP9_sWX-E9$22reE(_@v`QjqFj2H{ksnj7v-6Dt8Pb%=9sA7SI!yi zUrr?7ZO#O>`=_G$CI-VPx4;pkQjZq-_&mW0cnoD*cEc&FY>80c954FWV4r^58bt5L znd(x(1$=~k?nKc|gA!T)=84lo7(Q6@lnZWNvWPw`G==0?zhKW6(JqB1_*)#?g@9vP&L)vQK`!XB5wAQYDgq)yJ+erle}D6ZG5va}+E zkdu+(7Av&4o)5iU1p|vCLL?>L!oY5*=^a?QRW#egc!Y}or|6arQhrZ+AgPgB9Ob{} z=Sw3W6a}bp{}$~w$OHaz22#66MWJvT?v~3@t^IVC5%-F|GgvY$V0pd#!0PnfYkqzT z623R8NqSTi=p!|fXBUQ4Bydrwy`a;v9lp(?@O@~c4^RUOT`aMUkGB?VeuHPPv2mKaLD;doX* zEF=Y6dYM+x@^DK{wI~d}H7vs{;?MXt5f2b{%IBWkuNiDEmT4HHx_u;-@-Rwm>tbc-(xD zll^pZ7>)WfB$7Ol)&TWfRm->k;Yr<92}4qdDN2j7V2VTp*GQC{-w zmu6g!^rft$kUKusD_14OTW%Zdd5vKrvToswF?|}CGHP0|L`C{j?H{K_(TuVceDxO0 zt!2SH3s2r)M-X}XTK&lLFfyL<7RUHe{%y!vQOB~!;7R(UD2Vd!*o3E|T3F9=#h}C$ z*@I~G*En>hmJbc51>?1eLD6D>{Z_YI=T1P|g zz$zN0h}Iju`S-Yd4{^vsPak{Q%a_dl2qVjUK`THfdq0Y+^86 z4Q*-3Fu)6~EPV{HMH|aY2B_LvW*T7o_Ljd4uv157xbRz1%baDF)_ka*O4)xF=~j)l zCtH4`d5=+XspEBddfXXGm0I0pSidPl?PjXEJ2E&w;W@R{V$+VDE90qOO*O;m}Lzk z%LltEsJBNz2f+b~j}J2a$6IPp+UqOIskv#Ebxf%?788XO6g#K4CSVMaT3)pHaS4=+ zq&3qlekw5iDZ%@vh+rWrkXZ(qlF+AhGoS=OcG!VTe93azOCeCg=+Ux@<<+!TpwXzL z?yHu6ykymMmSrtx7R-h@Lb~g9O97_~=UE;L)4#4rN`KQ*i9Cb;Do1n6d={a8TwwW- zd4^?K9(Z{ac#1i5#M_n~oXK5K@e3_KF@nr0%Cy*WlaVz`F&yuIUa7naeOIr1+Y)^^ zK=DWS)uv^ZP)>I*w~S($6+e`j(tDS?!ji?ANja8xS)6qFB(eEArFwj9`H0i2tE7qg z;4EBYnIoM37@Wv;dhr$OrMQay1hx((zWLPhF{k}Mw}ko7_}fn{m)HK+3bx)1#maM9 zMPVzbjhii1OpHgUQ(G(}b&xuK2|anF{I_CUgh)Z#V3{AOE88$^^xk#%489zyM5FUq znjL2~+5C^^p(~6>knE5!3)mqAZ+zAkt+Kzd{B6)3-`k>deyEyAS-)3}RrhyW;1CF- zXR$4s3anLoskFUVFGgl9gFCKuwQ_VSr)nUr{lFHWwts8E9xCNl{iv5qrm)wwV8WlD z!Bn&bPxXVAGX_uU46Dd)MupMU0_jl`Yq*-8k9Dexs2BXCmIx|n4C;X&*d|K_VH2NF z{VC)?Re#-*K00hUZLn=&@1;+LfSgrO`Ypn;lk)H2c-7TH+$U&1DzcClJC zrRAVmxBjw+tERs|zl?I1(P|+lPthu>Mkg)L8l}^GbV>p(h_C8L_y4j7sOtq#BPpns zp0=ztI0r1nzU;BEGjXe0J-vz#elMw_;ZXfm|Hctb2|Xh?ZEs5^U_7D?HSs`~1!SbE8_(P(~X6lOl{ilvrO#`XpTC6AA4psp5L zUNtgj+(rZ9YE%uUu=`b_Rql1(^NW|j;L6qGr#CJA@o!S_a9Pi&LXjoURHTj+Sza?y zm$R^(xRH#Y{Z?pWm2)tfb!|)mh<_W4w^X3Cxatv<+BrIi4mU3ouKu!H$RJ<6gUwH? zfg8)T{?XOw%uYeU|suF%)$WVqc8%2}5h<Kg(ML6>!t-c0lR(;IO zw|1ECg72zVp=Hrnj**qDt^Pkjp=wbTuMC2WI#g)KjBmeE-B*sLnNL%)CW7d;8>Ay zl-epBchEy)LR4}s>yHKn=K`IgQtDWLH8R9hFwkde$qGedy#fP@1@5u~lg4 zY%PH19K~Q$B6mWs_X$tS*vb@EIi?)tJy)$fxekMIS3~PzgYn72k9(T2EFJ80*Y7D` z?^tw|`{x8L!GPcI! zPYc;xuIOxqA1pjDg7s8(SL-bUPr8gF$bgQvn4GucLez=w*2N~;dB-|Kzc;_o6Wa0S zzt#lm(aV}g&)>C%s&c)plT1|c8q5}+b&RD^Hw}xW#-_0H0FNM?fnX_rkBV1S`&qXb znPSP~p0!rR-%7^gNKxAsu4)aip74?t&YPjnT08nst=_Juz2U1Bv>E!5sL>!asCBGn z49luP)=U%Q5!7#ztv+RZA74)`c;33x$V{w+%+$6uT2NYhRJQX4EA}a2PkU^wPg$8- zb4nf#%A;XCtxQo@M_9Z0=uFtA>rj)VKo*7vx}bJpP*XQ-h3Z5-IyNkn_gYj8uiQ zd7(%__!RY(=XEO_GvFPBNu|xV;^-!H?1myZfxcW|t)Px(T5+%v$`hHVI@dA=FX2t@ zvyjo9{*?c2%^-^X6y96L+dNA`k@-WF7?S$7D3!m^TSlQwb7=?u8?(q-e{evqr7WPeD!1G!lgWnB9ggj!@CKIbae$(;_xyy^-NJ~ms?YPDAxg%$8);T)Zs6$ z%3ob!HJcd6BNnJHL4ENLqT!Vr(ER67@IsFDGlPs~)u*^~2}zV4i|dX1A6aoZ%Ps!#dxw#usOYBroqP*9ytK01%LbS=tXXNBP$58>C>^Js{OW!H4!wP<=>Ta0S* zsTH?DLSgL`;bH&A!;;%ErEh)y|CC#{9D^L@g4ka-S&tfp(Qj#UElOQft30JNa>9TFC;zDRR5-Ne=s733V)$>zO)O)yq zyXKgoKl<$UHP-o=YmNk!_q8>_#9%nx+-bc+TmE!}s?*+izWI@My!J&S?i(eWeTxeSPu_ zuia1`%(uc*mQ2wWWX9_X=yQk-zffe<()QJEKzWbjeF;`0Ky^G~RR$Seph%0>*YVh& ztb28ef^DwsV@SVjt*^3BAK_GCm#wvR&@jqP>sFzR21(&hjmKA4S<6|lg6_h4 zNgWWU@BQ>D#L0mXJpEF6n>0rnGH*9amsGzRV^}0*eSI} z-8kB?vt9-L;-`kons4x!uVbq&jI3LmzH3l7L?4;{nsvWH=3^bD{SAjJ>2l*h-EPb* zwjO+{v;z5|jw?(sHjo!Shc4sEd=+Z@FUB-~3lv!V`c3~@^GrXeA$P5~TTHfgI!M^S>Qi>8t?vI0 z`sA`UY=0scB?mq=(%+P~VWfp3wmNma){vf9jB@@q7%L&eo(z0y5C;a@U=5g}un8m@ zE#Sqi&;pZzgEWwm8rSpH%|LL34W65bW80^*TM$#uzd!629KWbcuy;_1i9FG zOWe3+FR>m!k>jnlEL~n}A$Q1A*1Gchya7lP#eWuYPqw_V*=*Z{EDj~eO(^vzSiQ|3@Qghvm{r)gnYyyV zcEiY&GmuDoV#d3Xt&h(xJwiZD~66$rrY1Iu!SnZM;B) z5@YDL*05xHcZLpsA%Rbu>9cppF z)?XKoiNXfaplNsAc?ikJ7A7rqd~fUaG|M~9I_j2p-(f5)VZo*DI3G&5X_>(<*o`C4 zO-q9M`=|{rD?sd0xSk_i&%uA#)vPLAt=HU-(xYqv>fmu3uCatiF6VHMgsa6e&0{Im z(acw^Kf%)}WPW7M*G%D*{7RwoZNuSpjznB_08@>VS+v7vR&IimTi4cBbvjDpCEGYY%8ve_m6Dpcr>@p5wWX-9o`2+`h87m<(83D z*sEoT>f=*F$+KHC6q|;sPl77;Z`35iNby`0{paAtEg<3b#KZ?cs}Y zerlYb9eapSa6uTI6WcPF)|p#|s<{Dn*dr!L=fd#rhI%*14%bVVM|4GRGD7UGr^M#; zX<3nuc5fL%qxLugRBo948-vO(Oej3Xb{cqI5HTydz#_`sJ-4aTVTD%oc zGY;Bu){nAd3la*ZFO(W(?}?_x7vUM(s@s1sDDqYZ8d;X!PkJjx*<?hGm{<**2LTrx_9&&Ll=S?`z&-p311C4MVg2n` z!_r{s`G!rPq;6;vN$po-ToY1D21aHMWV~z2SG&yz{)d92*dRO3Ya&g0dg_c;PBnR+ z^|NG56g0^3bd{_vWd5N|WlDV;f(H(>;}%ueOQuS77-2tcWJ)_S&bN=I`8T@b4y6^! zOdMs$U9^NR)?XUjxhXe>eD(X79ZE=&eA|C|;>qk_MpV*t37C9ZzEf#~}tv_lFisarHX-)98Qu_|l0msD14jZ2Ckn?m=Plrqv!p14t6i_>NCk;q;_drOINHe zS!@xxnkSkLYA9__X&XuJ*1-dj)HnY-pB8V z#q{i(_MvL~Li;eIC$K1WC~Z_*U)ozAJsGyRl(mqBg56UquX?{*GDobys>^#NOZUlo z?({zI9x_Dof}IRR=4Cucde9W}JR;k>s1@qPTW4QRgy$|F8XQ{z+v=I(J#V#NY0tt2 zI>q(WASB&RuC|-(xTNBIe&~WbtSeeg74tDKWXZg88JPv0JIAROt9h;^Q)UaL18IM8 za&`J;1Jq~qTKhJGECUtQtGEjF`!_jQ^f2kHmVu$CUCL}q}5;A zp?UW^$Ev+scrd{kq0lY7yTBmj6=3_!`^sM4z;RT@%LD$7U{$!?j+;<0RiF(GE&hZB zgLCbnu6UFGUS~gguWJy@&<^`1T_#_;2htQ}Z$Zi5cEw)??zF>olPcu&CX{U_y5elh zFNwXgi?@4e3~uV`7?n$lg)^?OYY^rARtEbIv)|dv21umgP$Bg+p^VAhqUpe)uD+`6 ze)}0iTHHbVM}{=9Cer_mUEKm`q}JJ&(#OsYP!ZqTapu?<1kYQ(DY^RthIe)_-0vxe zcw7PE(lQcniLN~dTa;JSttw5Az=qN32pbw9uyxP6%6XpmlPAUVteU@W(jzaG2=qdP8(cweT+C5@7kAeMPBr8&AcQn@CFS7o?2DzA(KPJy(P6`P>gQ3R1u z%3aQ3OqC4wN>2|wzgdm_p{kz)zLpfhX(>p-W`r0cUeYDX3+hovjSO;l#~o)vStYn7 z3xZx}2ji%=G{k|!r3jLDwnZC+oFD24qr&oS{S44eRd16adlUmTHvh3=rUq#0iokz8=?7(qJ*q^jFxpj}m>f5RguO8z}_jF|$9eemI z?8b#gJ%uMqwI!^&Ba(uez^4}Pp<#@}s}oO#KXrOa9n~?;0drQmZduRSLwbZ#QWkpi zN(~1b0b#)+XhN}LdcYu#g#nS>d3l24e~p1!R@;GNHWyKNN#(Ht!iwP9Qv|Vf$eG`x z9L-w*IoN{&)Wrr4oE?OUS7ot0r}Yh_uiowvsIE40cvk@{FE>vWCV6Whez!=SXzKXa zD2-~G(xuaV{Zv>B2VQm%k@Cjz^i~e|xZWxfY1JJK$GbKTW2y2>OhJ602&S+X`bDT| z?YyHewqZ#>M=W`g`vt4FJ2<>H^FU)SC0fR5Lpj3)icQd(+1f3>)? z!)vhd#!nC}8{mjl3%fc>mLVHr3Rohcark>wYR_KN0DH#gwDE5wt*x+X!c;xqFjPkzd7eIY8@i5r-oOgm0 zCg>l7X;q@ViaIsK0au+1sSk%baI>SAp9<5zEtFFfLmB@al&$AY!qFvvdBxKl#r3wm{Rx?{VEmSwcEc0nJQuykGRmk>xn|&?%f?kaUY;$ z-#LzJ22;nm4uuy6?s;FHd3`>r%Wg?@ia@P5_^&rc>rRTY?H+;dmE4`vNxsc%mCf4szhN zjI82H6yluVOY=YU2~g#8*d{ZNDkMiGADtcN6%6aJK@}-4YhnW76@R#a=k@0>y5Ds7F!V^HuaQy>-W)G768&D=qL3Jt{Kk%Dj?@!U0QB5w6IIIcgPnL21t z7+tM0xDrLx(Zbd3PaW{L+6UlqlJ`5?{!|#|eVjCKqhl7X;luD02rgR%%A>(Gs8Q>| zesuXKj7H7Pjk zw$Jgh(E?0ERf_8{IGB>39bApxdv36wYH)xTnXu!C9Y|~HIQ?^SpRcBBeaF^Hm&3O# z8;Trw4>xg0G;Njp zIv8Xb+prEp@V#fJ7km}Q_ESR;_eNou{Jes=(S>t{#87O(5IEn*9k|$#D)4M4P(3)| z_*Caq=q~&-y~TX*c7GSf+B5cr5OTdZ*jL}Gf_^I*9Xxjnq;Ct@qQ75UTXp)~G1EjV zCqXaptu;P@Ifs>#HW}YMe09z-+r*%84Ib9biIF({LOi|q^9vY>v$g;=|2*%I!js3} zU=#%DJmKW=9a@=2^vBbMRTmv!>pTh$I!vsv1FTIOmKO)ojgOm!tIw~pdIlUoGvq_> zh1VSY>HY5w^`w8VVFB+{U;N4T<7yXJ7JUDW@0@R-v306=IUYQmm?j`im8qJ%93S9g45s*AI=SUcnx6zv~X2XI!_m5*PUX+=Q>vC9h zI0Xz+UYfIF&ZgmEv?Rh4uIk?79bPAt3~JiV2X(0L{^5SA-veI#LWT%wL##dPqB(I&htE1pT>sdqgdjTi$t^v*Xin%aB(ObBt_1O1d+m3XQxw!cU#@ zb56tSuai(cKC`b&zXhOv&m_D<)G3gw0f=6rGYT4V*TAs@R-}xdMkdm!g(Gn+thp^f zC5Ae88D#$OM?DO4{-xu)Bb^v{5ror35Jjaw@1L_^WE2&y8X2ilD>|_U2^D)?kZM@j zxfx&fWIM`N6NB>Vc96cnvw}uP)1$&sezgBfyrjG$%DG49 zQP`6-gI(+7tVUNi6qlpWz%*Za^e4@}XKz_?JvpaA06zgp+lJ!oEn0 zR~PCzp$K|rW1NH!COUEBD>zymr3xB4FB#<_9-}TKc|rP7D<|$cJ}-`>*hM(jmTT&S z(GxOWr4FL4pBLBDDKX8RxFq?Xg30y9;9{_vCsBQ-@gsdPJx3_{Xu)q)L*dO&c z=Z*=ZaZynDW^J7?1x!}|v~%LLBb<1#8%LK8PI&Y}!Z^b*6Vj8$F1;}(QpI#}!o?B_ zKbcc7Nw*9fJ+7u2_i$b{aQSksa6DAilRnxXp$&>7)PP=2oVukrs;@>`m$8AWS05){ z<&#X7Ye8C8xNFB%=A()v2FO9_QLqtF>|=bp5y@BFcmbanM;V@h93{eQ+QcUdW( z%z>=qBA2^P=z546J;;eukz|T9EBj8tmeJ8F^LZy6B%weJs!{5xu@%+Q7kF9OUV+1d z7#3+c^S$qs-WukdYXU0wY3jWZ&U=E9m@!#11IE?T->v_1l=Fa2lpAAN*98;C#jBz; z)W|aU*;Jsu;0vS2#ZgG?I6uNg557$u=iIHc#PxFGaw>5gl=8!I<>^uFalR^W0@OkT zlvK+s2`cVICk$iDK`@MnwNZhpOvbXzde!Tvy*=5PXHu#~x)Wx;r3r5yBMwI-B~1la zvX7Ra)=YI`PXcH-i(3~ttLD5tzML8`-HB^HA;{;32BAD{xc@Ma`ekAt8kFJ0%NhR< zOWaH21JtOOSq+3L-!zs8$p3tNS!z6Iye|cn#adr5lNX&Xg>R<}zF>-Z@X%K+dkuzC zr}9}xEtt*gPPpal13Z>mzc=1^`Qew>on3u|te~%OW`&boeHD}G#3gzOPQVi=Bf*2t z{0*=F>T|FkZ@Lhf!0SBKU*aeNR8-V_T` zU#@rJfw|yvT@d;W)=^xu$&K|-16qB`3th;3jY6y9C)c2pZ70X;uc(au+zH?0av!un z&NIC>p#`aU&BGVlpJt4Yvdo(W->T@&OOI+c+D|DDN+KRUlN$nup9lh=<9G?_y2 za=|pC${s(LmLbjZT$~n9aQXw(gkwCLi&tV2B;HNmU(lb})m|TR&oAsA0FNN~OeE;M zvnnpZUy4=lopi!26N>)1`eml<$cTXl&Z}N1@>$~g(@uEgg7eirwY%)BP6K`{uB>jK zapGhn6nUu^l&X}~>g5;}d#*&fJQ_p2e;b^9KvB^bo$wa9q{3Z3Ub++^a%z}*m8WoU zPfVe_()RH+^r%KJys264PbWV8JfeTwn|&P%3&#U9aWe#tU#fN zee4wE;!iTTGO>?SLtHp@l;8v$0nq+gY_LOeeJTkR zp%5zKjL`%c9qC0}!@2lAE33S5h4g%7uONaTydC92qzKtErdM_0&Ow^NpO$S-jdB^) zfH9HM?w0YVzJJg5)48`)cVV*=ZfQl5b9Pyk8|%U$^&>kLkOZ6RP{Y+f=U?yo$*tka zGy%m6bP294_~KwQ_{0WHsg224m*-_XSKEcH9C!uFZesUWQ|r3$v}Wg793do1mASsF zKlQzAygEbo>$~zyTh&*IE==&x$Gz5QQ$q;V{_q;Mh(<1`Cvbcd;>0eM+t`K6Bf;Hm z5J4*M+Wab%9rmW7uKzZ1L7&b%ggYX(;A%5STl)y-w3Ozq*Gx1LU+}3bEnK*a0f-Bo zRxX@D1cW%eQ+TXB7M=92VtW*=+sW&Oz0sa~2RuUeyb?QQRm|z&sruBd+Te~{`R#e= z@RQJ5y^|s4hxv{K+Li3eqnri!;$miJ*Ax@AvsyA}Kv&mL+92*S8)* zE!8M5e(KW}cw2WDEU@rM=n&zFP0ET;c|Bcl#s=qNET#8f^hVt=d9dsi`*808>d%Ij zTq$nw)P3L06c>&yOx2Hc2l~10dU1A%z+PQ>2DtWBqHi`~B_bABG7WtZ!m~DG+dlH5 zs~+N#Y{r%8<4La94e;G`*F*y}O?8bmz?svygUpNfdW*^`{~4}@CffZ9bP93Brcu&d z@4mV0CFqA$CBMuqHw{Cd5NWIr&6tU53x=Uj7iYTaLzjo4)l=SdwNNRqxd!OC+B(a% z+aNW*>UvR~pW_;0kUGz0t&~!^d9L#6uX!#q@GzUJy*j(V)feaM7^nf_nKh%sS*S0K z-+~w4An6UR6nKQ1`lbtahXVS&%~K-anRj?SGDt~(xyq@$MJ!+N+{f;AYK58QPxgaD zh7f3r=tQX3A-lK4)x^YjgzB)=wZH&RyzhG70HdLKYfsH`T+dQ=I3{OHj;pDO!Eogu7d$=z-~QOO+5nSQyKoaIxmVV>!hHnXz21e# z$CBCl6Bpil7Vy>2TzK>^VD3h4){%{v7Q}QLLS?pKn6fuvT4ro&mLX zu6nA*FRny`H2Q?=z5z}>u(g0aj0{{)!D$M^J{K$UqqnvIM(7SG;q=XzBZmb z`zk07qWX29ZVt3>>3Ynqtgk!=w+}epP;>J75^%BGg^Lpg39TxphI@D=2nmbq1p`ET z#uy-)l5P}`R($;rw^|BB{Obz!(Pc@4rr+ZRop}tajo^Z>uUrou{^^0MlL-($SAPT- zL!i}or{e})b7wBHBL(U-g zY90D0#GRm*I1%QasONQyaIe>)TaoT{I`mmZ_eve=UD>_LpjL4=(#tlBa=)(U9gKFr zr9%T_++%d;aIAZ&K!it7Rn+V8?u$BMVompG9Xgxfeo1E;-r60kCe(JntrPCmafj)3 zMAdhv>Ur}L-LrJ4Y(w`P9eTf!`(+&pPjYAK&?ilddR3=p?kc*JNiE!ibn1zg?)f@| zD%a?cUt4!Wov%lG_gFn|ZwD{bpp&=WZ<5_Ocv$vAkzBir+R*T>?q0NiAJ1M_cO!g} zy${n@zPlTWE8v$s+=yZzptF~ItDdVHlpB38QFP~Zcnt_6Ih3-Odfya{?&oIfxfIWS z()znUHNXm~?t=z+<5@Q}Q5g0<=f+t^z;_3`VV(u-JH(CsK){+q-MF$AuM3R0pn-5cN*Z$3^zUxliUHXaPtKWd)1w0 z4KG1*`^|BGV}KEJ-2)7Um*;bvg<)i-TNz-jH{7?dQ|!V#Ar$9o%HEAB>iITL5x{V@ z@Exos9ZX#0=B7RNh7yiwtJV6Yx=W<#a8c>`Qj>G-{l@*Fj)5RNHc@3bC!LqbE7utLCOZwOoCgTJ>Z5tuiG3uI|7z&qDCFP*A(yMyRpXsk5Jg-&?^Dw9&-O~fMbua zl1c8^pRky9@ZX=^@Qoxl|CqbCj}Atia4#`(_nd^W(sNS^Sjo!Qhj)hXsPEIc`nYfZ z>$JPAiNSEy;f#Bu4$@YOyNhaZ)(vAUq;==qLkzI|d2XHLesjTn+yJvLxpNIL^@o=Cpgv5=fATPW&<-s?MAlB!_6F2^WP3DY(+zifxbE%2*{ibFQ?)H}r|Gyt zTUHq)G^34LW^>0I_#bgvL*=%+@v#jTRo9*FECZbBcIOyil*j$Z0PFt+vq}$thHXF~ z*c2Ld3k@jXSQoNi9lOPf3_L;w{NsM#0KdHBo?(EAcis5v0}K^Z=6&}#0VC9{hi;tk zr5HA$MJ5Eig*Suvvd_`KCao7;{nhKqjQ7!!OpHgUO=YzA46s`{ZK(lXFRx*ahSh{2 z@J6MbO&i*I-?4w)UxPIOZfyAW01X?y;IiS*4bn1oTm^+_-y0-$T?wvh2NfTtO*QE2 z!?n!@U3Sh7BQ?y;@Mf4B#J)At$yVN@;Qfjk<_36#>Rnk|V}N(6XjsUcOY6_MTdRU< zT7p3;AFW~Rq`;=?+6M;MCsvzpfal{h%*eM@>_$vKMAz*}OKWPq@b4WG)9-FgR0#x6 zv?3{`ver#4t))HBIYm{pUaCPI?FB}f%ymW5s%lzGb+Rr7*7R6CuBRcI7^M7(^Vd&_ z8gb_6hFWbOWa4TiQhnT5+hCGVz9}Y&rE*u!Fp4gNu*w|aF||Xa){oP$`YR!oE)4trK&{cO$m{(yeZ}Ix&r5# zBqA?La5!F+=UBYp;Xu4dI0|n{u!P`EDI@WBfpP3zG?WAHqBuw0MJ9*bMFEbt3yg#9 zri4kPU9fPNT@>ILyD1S8U^k@#qU$1*E9&Lgx+rm#6FsOd+Qt!eQ(8$lUG$e@=|T(# z(gi0+(M=g3A#_ok zJxY0c=q{2d_mYN3KoDEH80u!OB5v zk#NLXOb~~wMG1~oitBNNBKVU%otJbk%&TDqq6Cl z^fdfTNPk2dnroFqi*&XMn@nJ%vUKf-xaOuqbicXQDVlW>A_8CX0qvrWWSwGURatuJ zQ0F+G?PY08pMlMNb^?ESXr($lt0>X`Q8_U2{Bfnz=9EX&YyNo&KNB#8RPf2PN)>sU znBF(Z_nGwm_?dv&q4zt^ujKP>St_iMRf)Q_)V5dTF=sxdfo~svCSXu$y3d-%*os@V z(#FZs&z8Ov*gFoG-Y3LGrHJNI*pgD%(o)#6QrPlR*qmYIqz1Nj+39mjVe^NT z%Y2H+s?Uw#m5?o}&loR-Y*_``E`=TQV&rP8MU}q?mUK6Tw9}$8by&*87U>e6%Bu0- ztXlugs{7xp#Q$bB`fpZ~qVE5xviX16TKzYxZK*8fYNz>|GTE?Xi$&o9)UlK~elogj zL@>IguxCqQgGymTN@2rFVQEieuf7-j;?x;qN6(z0UhSZDHknS4>Zr9rQp|}3SIUx1 z(3AC??4k2|5}Aw=Yt`Un?UX6Ru<$8j;Xk3KU9{SeGPH~Koasy2)dgH~{|nyz=(di%4j1OM%^)S?F*$&<98hxVMGu`8XW^F6fQrejpI zCrWIjmwN)+Mf-bdFZdaI)oF_Eg~2#V8NIZzrp@$QFSyE1O75*in{Lv`-db-zc9c-X zO4{CAi#HXkg5Fw`$&^pdK3ZbPDxEk5rf5w19jcXr8Z2r?iuR!?W{c43roWG1`{}R4 zA4vZbPFs3y{CUKL^c;%or_~N&YX#x2z?O_jUrU4fX&p`f(ue)v*IuH-{j|9z4<+~4 z;zQW3fN=^8%b4^BG^0N_w$TQV8n7$HQ~2q^a)^_^s2rrTTg6%P-bdEvW%$uP;QT^z z_16+j*Qx3NZHuXZei(p07&~&Z?8tlR{s0WfaT<^c#*b)jDmwiktxeS`_qd?9VKl7L z81cEdimSY92h7FKt8ehu%}yBSk6(zamW%Y=T-rVqHfl`z*K`k(eb$$yI?qCHkIxzZF?Ezv3)5bQt74ux(?+$K%4S zcY=QL8~m(0z)UvUH&CmY$$we^UN#9x*xN(G-X0RnCMWCkgq=NL?Cc?7tAT`_JtXYx zAz^0^$)9?%PfyP22|IhBx%GsdJz$^J*HiZPfU>uTguOi^?Cl}pzZ*dEm=->#^%Dok zEJq)+oO~9`!N)A;90H_LK2%W5}^XJnS+j#=CuvmAEJa@H}+ zQO7K+*evH9vmA5G=?Aa@KVz0tj#&;lW;x@S<%naJ6OLJ&1GAiO%yPUj%jw1}ha0mv z3uZamnB`<+mV=F1{x!rbry8>yYRvLSA!a$!nB_!chBJz@k68{hW;xH8sKVU{zDS&lGfS!#>r0ArT(i&>5@X4&1%a(FTG z*(DRz^V!8LM;Ehf_hwl{W?3?3IkuSP)MA!Hi&@SrW;wB#Wh*z!dBrTp6|*b?vm92; za#k_RQN=8JZ5CBFiw>LRn38E0ch)SY6tk$US+sVsDD7g=*~Ox=i{*H-SQK`#=&M=O zb+KscVo}z`qN|JLT(Ve>C5z=$vRL%gEN7C%awJ(SCz8e0L`N5kikd}37mI=}hJH?Z zUK@=+RQvgPEynZ-S)Ru+{}W0cBFV=?v~j>54$-C~nfij3j^x}6;5&lGJ8l4?`6 zQAp-Y)g~ahI#opXo+h-d)3j;GtU4W=-Yr@=9rJ#R?oQWY{P;E{{l!gq=G@kUxbDAb zWog;!I>CArV+42(_I-9yz%zBz^Jv@*Oj{nQ8PI_|^3BkOA{mpRr6Adsp$$Uf^OBYt zBoZ^eg4?m-D;h9Mt3zSaqY(`8_2{q?S=(QdV)tH>Vgp{*Qc-%t%jixX-G5o@grwao z!m{WU%taoZenm@05;+qZlt*bZwSGvp&%|8h(XE-#t~~1TD)caqK7Lg)uf8goOnfyI097fn*7Jpj3cI;D+nH)|C-hqE|upsbXKEov(O}s*3W`4 zjf!Vswl(TG8w!X_J-IU*!>-ZubFj`d+C2wrNuye?WArsz_PRC_iR*Q3a2=^-%LUZ> z96U6=5!cyQ(;LC=Tl&^Zcz2@~<{@*g*2?r9sks=R?71>3q9^McNDL-OW8qWg6kkf}8> z!a0%_36^$ip)O}ht;J*sXYc}WZpozB_1aKs?5K<2GH;>Uv-H_IOv+h&{{wA1ON-V+ zzs}PA_1f$>DR*fh%8gv?)z>Cwpt`;uqYpP=c8`(i6RhlGH2M>)^J8@M6Kzru&L3!8 z4)YSNCp1nXIi@bu{J`?br@|Td88+Et^x9|IG`+ytRVXlPH8t7H>xg46zW=6H0W1SP z*T(BCP1k~D(x()*3Nk&PHAMJo~J53e8hK`)3DUlCX~7g6UoNEHM``9>ZHeh<&OU89kPr50A0bKnRye-?7SFkkQu2ODPVUFknWHrEfVK#U`+)W? zk~s$jGkvGM0qm{s;C~#YGWmkNlMlz^DEWPl$~RM;@3FIQrdi)()7gyog5V==rdmH> zv)fGbkpyk#0ozrn3^Xf>Iv>)yQ(-5>LTh*k9okGS4?#aR6CJ|LZ>Bqk;Hhk;L5HDw zoAJu0+yI0hk!0o(I3=6u>=EeIW@_=H)UfnNDel&j0Y8b9+@C~B(9dX~lM;W%*6yU2 zeufj^q=P@hYj9HNQP6HuqoeQ|ZqoFl*z|7FfurymZj#?ItxqsNlS$WFqtz4Jl%aw# zh}&BdF090Q-=sCiu*csd_b~{+N$rlq`?yJqj>A2?Nd?E@0^X!5zrgLdNfVLO5vg-K zL2B>hGR6uR)|rP!7Trp&G^ul$61S?MX(h#+K>JtH_!E$}lD;|t$9E-JPoVw9ugyAlx_)}$JE1FYG(|(l(?D!R~b20t%tJVWa zhtn91VtV(qWS%-LbyfRK>Pq`fu&uv|u=~GZY>KJ(8A<4j6u5LoWXAn2EE&H`MSFf1 zmhxvYQ^hp+tYDv=#bg%Kt+OJt(>eIe#gubS$`zf1+f_{M|9~nX^AGG@#q`%7P>^C8 zcwQT;clejR=v6c>`O8#2QNv_%UqV8 z_q>dAQ!y>SEG!o;W2*D%?qx{Hryf_Z&hlyX73f_)xvrp<`ILNB>k^dD6Tj>lno-U| z`KRz-bR|)GDE}%tl}|^nYE4Y5=>AnmyhGIrVfgOQ8-iEa80)x0j{-n|Y}bcY^Xht|kJ}?!uhuGPT*j;3iLlTZ8`Q%>c{Vf#|1D#OLRjbpyJT**OHB{# zQd3`tV4paoiu(>2Dv`aiCuHaK#(yektthQRud;gNl=shI04=oDDWdKT?b=x?c^@Nc2Dy(K+geoJa7 zx~26EmfjVE$c`;80_s zpZ<|qsCEY`YN1hggk{?u=(L6Yy(8n@`(G@73uXTcO|{VFe_;$QRPQc~i$1jQqth#_ zp#}e7i6B%(1v+?Fs{QeF;c& zU+-dnOik$TZyXOTRD91n57)m0&&sWI?KZE~!hT^9x_uP^P4QSZ{mAD!5m6#SN^G2k zuHA>)Td36o8O-bl((@Y+w2^w<-FKtt!~HzJ4XJP(LcVl7*YAmqw9u-DI2`jWbNbRF z@UuJMP?q7u-(Y#eMMUNdhjX%p!XIH`w$Q{!+Nd~TuZ1h<^e^Eu>t0c_0-$=EbLhq+ zSoa)Cc#M(Hp-GRm4oEgVhQ-Js$79&FoRvL24eRj5b$S{uI@7xc<5o+~t8<+ta@I2W zk)tfRpT~i5oVhct{N@puj_#TLGDcw5kHi6_Td{x>!iPD|((svY{f{SV+YcJ%f<+ zsN@-fWL+f`xK0Nup&Qr9ud=5rlD?Ha9g!@l?CFH$cx4p0PH|N{J&?Ru1;c%va;u=e z>-4CKr!$h|s#5Ols={)-s;4_L!>eIruhZyif^F0jM>S6uWHyTObU-pS%9D&_Ta?u2 zj1tbK(HQ*e^k%fk{4v_o3s`7%DbTMvrs6tLb&+zRx)g|ukz`_w2-_Uv=@WFF$GM{m z1G~pXZ}@nk^pBJA0dOV5He9E+vFLgM4UP5mMY1UtlT|=>W6`ey>J=vm#i8;7DvT3a zvv^OUNzv$dl-rB{bwm61(hu?A+)Lp#BuT4*(b-E|YIvSSa<2wvYA^MuDai*lA#5*Q ztceNRON|pGc`E_6@1=qSOwnGdQwvkHmuBn9(ORhJIR57XUbK0`hFeAIZjvWK)^@zs1CI9BN|l~D*h4uT-P%Z zN#lB0lpj%cJ+OR8x%Hq8AChl<&_1N;^)Vk8Xj^^IexzUOV^RJ{^%6n*k+Kt!`8VYz zq8WeFqeM@OI{c_Ry$7BfJ!NGEF9)hCHNWDM{zo=q_aoc_!cAlOd`+7hKsmmq+YO+h zUsL~v=;GJ(SwoET*YuB$r8M%y@Dr#hjXZ-m{l1ZBIHxgI4-kj&61Wwu5@_XHl&2&r?G_C!i9+9^=#pj;uVwV3 zBq}tLGM7SkilnZk(19XpV<}jPq`ym{yGK%$(iqN>w5T*{DUx27Mn{OGx@B0bD+8O* zEW;`d%EELcg_ULau`K#nB-JU$Au7izZ_6RS4V17v8ejvpE054|8c`nO|2Q2lZx-{~ zM1KQ%^IOA5OpZr|kKp3a-fuMC5RuS~7ZZQm^{8OhQ8K&&Ds3}eL=Ym4FDz~*e_!~# znYQ`D@M*f}izYoy*(#zs_EY9qmDLxz2ydXa zbJRWOl`1wJ!arjN_a2%vuqz)N-W=Tn}qPs*z?%sBcH7_ zTZs_bT-~gI^~(!{+VjdIL)tjMq&(ahmlB=QR6bQh_@_^SvwYlGwFAItga7}3#G6h5(8KR#xS;-zsBaBEt#u50!AV1 z5crw-6NDVc_fnIZ$mbmORbnyCRAK>bRN@YuhG>u4i(%ZyUV)zm9;zJzy5wrpfYB7; zpRx0PW-eEOpRs%q&}p|*m0D&dHPd#kWoE>r`UirT1eYkWj3Oc0t9_ove(WmvX`!jw zPM|HQ9R@}^gn!09;GG3L!qsL2qY1)4V{;?INxO-P)<*7_vKrS$?wctPK}<{2mDo?~ zA+qp9R0i7!ep=vpNay~Np42vfpvj)pF~{L=&?9wCypg7^nF9|xt7*kZFxMx>l%Saj zyZZO-)~k=-z}^9Udj=V-I5eI!|11c9nTnd%!yLPkCe<^CLwv7ij)E9j-<%BL)xeww zv7muD3nE)XGspiW?a~mdtqattxtWm;H8iu}`~8NPUoTLxMp)rqpc##DO}IcW8=2i8 z8aBo<^a5>YZ1#jm)&$q@3pBh5uKO40b`yqGo0h zqeL3gAEdEu zum-tC_u81HyszmBA3*0jK`}= z3bem1+eq6Eb##q}LL^eAj8E_N$FHdd`uFcQaIi{Ms6DQz*JyHktf8*av-Vi0U89N} z*wm5^sOM|+y#sz%T%)!f&E60vI-*LiQPEDUIYo>6oy_#Omi*hv4Df!dGPP2AQIToS za?Xw6L3*QhSkw&U7;~{J$#+x|?Z!bER5$GqrXl6AkTdHuOHPirONz7e!5bmY$w= zhwbx}+273lTTBmsRKh9>@y7~&72WqoH(y0rd!VnZqOm>AT(qJG)@6w4VU~x0UPda_ z(@d_lGLe5zR4=Pm$Gf|I$C&wWf*Y10(KsvA%tmc`nWgZ3b}!T4TWyLnhPU*htdo-G zrfdObD~)!S^jg&Dc{U0Sz)C2ZUI(DtMpFX=ods_L_aMWQ2Hc9KhaU7gd@q@}XTVVZ zzJ<7hVY3}|>uq*Iyzf{u6FumS@exhNSp4#+6o_9%(G)V)%uK5TnO{=8$568*rR{4b z;kUTQQYISqF$X~Pa3B0ajiw@f(V?PgXyIuJP3Z@)jhO?`MWZR^Y&it&5>1PSU_OZ^TZ{LT%(SWus1bRdv2y}+x5af*T0jTLM$gBYIl$2i@>8ktW>S1dSI9t*@~lywp+96M8jk@RP3ROE z=+t;js@yZGL7-FQrn(bw?TaS#j2!rDouknua?pthn6SBDs4D6`(aa7pdm=7VsLF}l zSm+X}Z=pAohFFLW0&!FebOcpO^nvVDbuyO(9U&J@n#?6xIT=5Jq6xhr7sZ;w9-vF8 z{)FD38UP)k`fq)}XDXXP^XI0&*Of%E{ z*7C8Zv$JS<12gcl>G%cloi0tsMdmvlnt`#JZ-$u*-y6?>Q{QRs3^W$UF!#OT@P znnWsrQD+inUwqJ`Xq~1G1RopGvl4j=2H)9p{=$AU@AEgLSg5(~%4x6zyek zR-7zDY+ThoQm*;tVrUmBcaK7Kv@ zF(Q;N6M}JBe@2&s%^K;R=^E-WpO;1P{JQ(~AM8Ic$l&NyRDB8BF`VWu!6hM_&Md*| zAe;&=HTyy=U5cg(r?|^7e}vPhWtif^>91v&Tf(VX2pet5@N+WjG~WjafLH#;nHWA)FqpX4qhj*(V*_;k`lX1632dyWe2H zAnbR#vIbi3sdAWED}nkkh>o)s)k1z5tt^Ye%%pTU3{%2;vcur`d+N2;`~%|YT1@-z zsqH#*7{uju<_L)T>sg#wZ;nN%)&{Ia-_z+0=3I!j8_gLIPd8!?d{6$HINiNX7)hLW zI!d(}P9LVBo6Sl-Y7-FrIE@ZmY>U~IvTiYBBQDn#b0EaxE$BvvDdSdiJj9Bvn1&A1 zzO5K@v}hY{#1U26hWTSFwcduS#BG`pfz|M_ZD!#lx3%4ey4gF?&mLDnI2<)S@i9HPVK@2-V9Ue`4a~?M-k5R=7Sg0JMSr@TP_$!~4aY2o=!bEc9#FPTe~jD6W$qGaf0bA^&s zub81qKE7fGDLLY*xk$-m*Gy7!<29YG_H|S}-&65zfCBh7P*p#X-kmWME42wXbg~RL zF%U1(!khS2bdm1gL>IY8ez(kddb3ie&Pa<7HPaWStar_N6cyJ>2%U+y%|#Fy?wBhe z_TRw|zKhiGPfX$$>Diy?Ru^f+U2`Esl6&TSZLMA}Si{GnMYwE)-!|LO-E@{WREpd; zr$g+!kJ!=-mS>P><4)hgi5xj&0#p%)9g9JyDhO zCEzCnF&(T~z_YbapCN&R1Dtf6U@^8ewR?oSi8pBLBQ*34YVa4v&kg$bFN~%e6!zGR zfN1@MVeF@7I6}Lgnp+^cJwqqEK?$ClVGt3|In?%rxnA$BYNhr_wVF&(Pt71||HDiS zrSO-S0?$&RS6E%1rQxqoA7?4?Yh0Di61~P%=`0m|gZ_M$qTb+&b(Y$_W%&NBxlnI) z+7Jw@8-f=mLkBi{;?1>1-7C zDch`-MD2V+mA}?i-jABjC{&ot4`$WGLA;~h$Q6cMa)r_TkLFOy{Kia#lo20rXCRC! ze?;NK=;}vvc0y&xh`ANIF}Es5i&E6Cg0YpQYPveZ$o^zbgZdwTqkDx>l7GxO5G(${ zA|;ISeCD`_&*t=WY>GEysSmgwyYG;|K)6FK{>24n7hV6?Y>-6lw1VRag1D~?C(EmF zF?##Otc@vt7j61tQbMI-tUC;!)*Yrfw=s1!`Gy}IsQ$P#W@`?$7wgV{nDBPdu&?HF zh}7TU+AiAg4X$DP)pwI1E`P_U*hR(hEnCRQXS|*A*)5 zZEc5m>22+TSP`E?&3vrQ2>tM}HbQJnz@gR&tt|+}No1{s*qq2(4bddA)f?NYs%Eru z(1XNQO?=Ol1TLJRn@OxFh{Z{*!w_wfStlSeC%4W)yh?6efjF3gRmP;WP9an)6^q2F zt;+~KOl=*3Se3>)4$(6$hw`Pf_9OH(owXNYMS2dk&tM%uC~Zb7F9bXphn-djb6aI- zY(^^?ntUB4&Sdom^klMzLwwF;{Q)r~vo#9B(xOimYa&9n7Q?by6A=0@t2Gwlk8IXx zh%ec!$q?hRv+&MgO+sjP4r@F_vYc#eR!+8(JQoYf#a1%pW-H5bTUntA&+1_>mvoJ>H}hI$A(G~^T0`{82hFE+C7-nx6XIq8s|Q4-f>t+(RRyiC z5OE4wy&(ERqTwjK5`jq9+fU<1tURln) zb~zRi<*Y7xm(`g0DCU^?)Txx!IC+5D+M^0(j937S4;t6s%7`}xS;gsmc`F(6x?djc z#X75kp@R?V+}zb!R>4XFoy`?210sztXEx5)3Pk9gFZFc6-qG)toOa18r zi)m>`U8^Ymd8u5_N>AVGS~)VS=O&TG@P+!;w*T<{{sRO0`1c*`hl>I$j=}z}L-ni{ zKI)$usE&m<9UEI+_?>O=;U8LFA2o%IWeqG3#F7TqltlcmPVRST8hnt)A59b5#A?Rs zD;io0p;xMrH3Q;EBWn&s)5g{;hzE^v3HS$hu&uce@tdM0uvM+8l?MV&WT$gYEw#C; z_Yf-sRcvMz!1sV=DEo7|)yx_R(Y!gD`#BwKj(T}cMOwhZb6VE|&HbFxx3mUB%xQ^Q zdQLxDS_Ad|qmQNWml8gxN+md2v>mFx>yREj{0HLa_j7vE${GRnPOaI-<<`~!y)B6M zqXkr;tcKMwF7HQsP7!U`m#l3uT|TFIZLOgY-t8C;Ysb02X~(&DXwRX`?b&$!4%RSd zyHsuXvat4|E>=e>&=DQ^IaTP$={I)7-1eN(cCtojw|6v#Dn5R?ovKg2?n46omD_6k z@W!;(EnutLuLb&}GkWiH`qY{0rcW2Hw-;U5pN@W*YM;}6KX$84S2QWAwyQNEIa}Ni zfGpJq=A(h+)dSt&LO0y#eolXNv!+1=cDH6i{M((=5Aw%_;yIcAnDDXpuLtLA_TV_9 zCs)p+o}6#1URIzk6>nC<2l-WW8iNW1SUyN!I)H0#Z2(tCDub(If?*9p+&>1lj?o*_ z)N{Jnn^h_XVthWQ^?}?P>H1(`KBuvLFcCbbw|y{ZpHthuRxhXG)jqX_OKG-YHOGO< zRw~4n?q~JZUhx(+e9-%+klNNIZ&aL@uX@0G&zfv_1U?ckb^u(65i%XuMIa_-aRGpp_JU6dQ;O*>jxR z!6ITH=BekDXAoCs=pcp<2XQ^L7;KH!&hW0an!C~X&8g@RTo0d9y&<@O^57YbZD{w0 zS=q>Es8tN#eTSkGtfxI%6d#7GFG9nt+*+?O_M8=9Pa42x9HON@I%{DFQFw?{xA-xoSfNk`(Ey_Fh{v`Rrt7>TJagkF!d8bOpF zh3*(a+eaZ&hS~Of8D-swg}-bsd#ol&KI`dc$|9brhLBf_7I~@jI1A_UwrG(ZGYdAV zjm0tpd)dZeMe&(7jKkvLGZh+-9{riNj>jbRnetCyv33Hc6gHfl%n6uM?o!1$Ru<|p z(JJ7h{v5_c7qZBQ4$iQe(Su1=QrN${Xc8>lrE!yB{w~FyjGlg%=1oR#zDo(Fu$VLj z9^9o^Q_=75(%7jCzf46#-K9a(P{()a-87W?F14DDzIm69OouH3%EqBIcmgO!_hho!+D#b1~*j`g1NWSSHn&$70JoD+fZC=b>SDP`3G2 zC5SHbt+YCnn&!;MI{GU`Ewa+kkNH+Xd@r~FNx#y<1(U zR~oU<3WLb9$eNJ(=his2KMq|Ze(%10JNF#u*S}W~o~4K7f%xOR1X&d!1`x*Z7Q$|} zK!}EmVQmW?S!@l+utoK-ArnwR>O=LgKK_FT26PKDpcjlmet>ocTNRTW(CwInxW}}j zm90ADpd3rk_YP3oC0KBMqs>dK(h!fAAk{ajw-i_6Z?tVG>hmFOT!Cd@lVw&(e4n%o z&GeAGLa;V|NE1RZEk2}J%h9|KY4mcm`9u0|IZFSK{#b!^9VhOt_OylKdW+3-p;kMH zrJ+_Uy>BgaKfDj!PqWur<>aj?-cYHr5`JO#+e&nj$Mj>R)fS@dDyyANSN@dh7N^K> z3%W&>HMmzC8qp;aR8p_T%JDJvUX8x|n2xUIbQ#y6#U9g;HCS~#rW-m`B#hzIFsmit z{VulgWR%-EO0~>F&(dr15%^R(D>39poX|;JzeV_?r55e7tAmcG**@UXP zL?bt0rnp3VHX+MPlzub%?IoJL8MShW-f7Wl3)WPZC~}L{I}2}`SoR<6sSnum8R{1p zfCY0vzrH~Ro6AA|TQLjnAe2Ej_&Nn zitZeh--8Z%j#likvOys6SZwmZZ-G?QI?^hR@6#hO=Pjnhd$E36Oe^+cQMH%~?X#vp z?AnLnwSe;O$B#^G0Njr$WC6Y0k6CO14LyKj+@Z?{@Du3{x@*v7`l5QWg zszPKqguZ@~f)82K)A3G{!8mKeP#>xd2m1BJPn`SYdl;RhVGh-&yiIioNI z?W8_YR?S2^^~n6rBa^IUeNy1GFcp=V>?o@NHV9Teg5PZ0Y4{Noe>*)n0u$S*;ZaNi z+v&(rtOK@Fv16F;w$qAZ97=NBs;c&$G&^opRC3;NtDllFPgo=>aOI$Q`R^otDLrmX5=l1Ip3m)>H|fLH)u#7?EDxJgwrRkoJK{S zptNT&;7?GkGbr8(nsWvN-~>HAgIV+hl{$-7K0#B?TII13=IB{mbZ*hBv$$s7qLSyJ zd5fl>v#LW}JZIH{NOc}#>lOu`$N0HLC(fe}+@ib}P>;*V|AJKxV#NiRj->Y&aM_Qf zA{UV$k|tk7r;Ma07cnFvsa7<4OC+t0M&(6P@=LhVMAGO>sJuwBwD7--o)k%EFSAPN zE0}Asr|=3xpQ~0tLf)yftvmMSZ0k<_FI$c1!c{8)lx|<;BsH($a=~t7rYYB~D%fZ^ z?YfnTo?gQmV*|y#4i`31kLy-;9a9H;53gKDqaLROH!!-6Q{WAx+C*D!V7lK#uW#Vz z4~NoI_M27>wUejUO$(3E#=%RDt*%OX-Li1gH4b&Xg#o#l4%|YuZl-@gAzI(Y*8ubjV{fM5wunLj=43o?wD)15uuNu#Bx8)J_d5%u>h^D+m)m?gy zKJbVxzr>xFMlW!gVk1@P_zP4bo2U+f)I}hWFdYqkX(h*Zq*i$#;SjGEwEq=;AO^m| zGU^2_c!e&X7&U5d)uXp*(`<&#x{_S$fKEj_ZWmfmZX z$!0OUwaKm@Fk!F7ZBlCkMEj4{PKczR@MCfuM?H| z2Qz;tEk9uUQrJJ>uc`8XR%I&t8T09DYWEpq=`}@sMn`&0>HbCIzNUHq;@;hBs`SMQ zhPd?w3k6OU00GTXcw-rE46!<%UHOV0$!TiR+^?7rIAL=t_zk7GM}b-G;xzdiuA9s0 zYfLzi`8#^%a;pCw<9s=7{fVgL!FVY`Z83 ztoDU~#Y!|aj$I1hVYWX+k+}8_uglahq1}cm#Ipq zd0$p-loRiD{t-IAD1D1>cR@^eV)(bj$F7U-K1uAnlrVu^1K*n_utz|gOJI+KKn9b% z)p0sTSf%)sZNu9l6hDz&9x=$E8cj}QSH*Ya(tuJXwu}6h)u_aFNkk*7wh+jr3Wi|) zB=%5<IXb|(nrn1hz3LhGd}a$cXOpH-%?Jwj9brRz|zO_dV52 zd#B?SySLvqp}m>x-00R1Gucgb%=%HzAnlmhu8x?Mne9+L?z>QQK^rgsOuQ@+9m`_p z2Yr{t9u0v((G?;(E1bMX8ME0fwXFx!yeTSsXgZpo&2EI4N7?KNzvX`*J9;G>Dn(gx z*lE4hDNe?q^STh|jC+0-E@;tEyVn8l*=OdIYH=38L zGd+dnwu|69>M2dn0$-dlXb$ENI2G7m4~e2wm)K8m#_yxoGW3s(hA9UdQ(KEcfRCb z5;X^f8WhQFj z-9Wo`=D0UKx*wLGx|PSE38rP`(G7wrZUwIYITh^r2*t0938RZI`#as2jlT4?yCJ4w zMY|ycT2Q4zt5u`gl`y=x=?YVDB|8niqy0KUpy~QTpw+5D9I1>+fg3C%#jj##$9I&u z5VfshXTo>1S6*6Ch4VzCbq7Lw_4uu+PFLk#gQn{BTU9TqX6Hm2w3zBOsO4^2K^iN( zI=g|!sz()T*y*5!c2NzFW@rO}sxL`}YGSN&{o|Ti6Vn1WLP5G((@u@=uWEAVLanPJ zp~7>}yjpfzd`GS4pbNFwJyd;B90JIeQ2*_ItNI(Y?NmtdrnX%R0##p+#ZZk^%g|@u3t_U@%hiw0%!S(DG5NGPy ze?Zi#ZwEpAsYU+=sF43p<te@ zN6XsTWhhxQyAQs5n%Qq5`ZTvMKpg5|SEn&8?2-8XZwosLVqZ&pFGOS~JAm%B!o_AE zHSKJdrw*+#UGJl%t#R4hM>ksAz7X)GG}Ucmm&SKEG!+8A%z}U$wdh`36oY+H8NiJ> z5b&TI&1sJ@#%_$INgXg6*q8MXaHBun?1(|dzSN?&ozSb;p~VpJrJJ`pG|$NY)teIa zcvp~KbjECRlR9?666Pij*~0boCbcury}S9r|C_Yl4>Q|MO4b$g%1v6<)m{s6xVK$} zCUmnW;d}c)y9f2_j@j@g{Rp)2Iy!%QqW4Xe%cWFUW)6MVp5pd^$2X}-U%NR)_dsLc zq>FvAqHNpKo{aAgd)j|P6zUJ}YX_i?ZqnBNm@`5GFx#+m&8Uolk;kqn1g~<@DFcJy zCOtB+m|@py)3n~WKC^#IA>i6-2za&XH-}>P#k|Z8jfQ|P^B}tPv(H1ojj<5$V3O`- z6UxV@@W^L%Y2pAokJnY&JOK0M|M$OA1MP+yJ<1ZFvR>L|V5DG@66GEnX@< zT{yS58_gbrQE+unQV(Vxud9pZ+H2|0vFPDfsqQ#*;Hxx!9u{+r$78O%N_)rK%XRuu zs0XjSSd7e?VAs(|swVeDyRb%50aGVp%Hax_27$6SpcRvFjb>k@0#Z)K$m0rVL3<~o zYj7=Wfn!O9+^fY?`1j=5Pf~I3saRt<*v@@{0=300IfeM&Nf6v6a zjVs}-&Qr=iYc_i8RYLiDQinOJ%1{Ru2#Vi|>deEy=Qu8fGP^OpBcoXm z$fG3$%x9;t5Y|E-OT1Q-u^fwr)pUP3GG0xG)~MelEA001@ccfW!f#HaH(+3A3ALMP zQlTw{9>HQ{O(?EBtLaV{48~t+_rv$9Ywg+;wbCAr@8wpZ8CFx{byz4RU5)F@YFfU| z&P}6NW4+0ynpZ6NfZ|p}cn!W~?9QLBG*DER%hNbEcnj40iAeSHrWY7fX zB;jJfxio@627e$`hV>YnugJ6B?(Y3c72;}#_;je+q0;!RgGykt6=?eg7=1-wH^B8* z6u1!++AF%h1>G?HCR|5eQPZtV>T(PP4Bvt^GFuu50VACukiIGelIEfG+i)FL=aw3krpKpbAKz7_gWK#ZUQg)W zHmoF{P{D9}0L1ceEWn;n#t2-(o=~P;c2i2Y9arKf6tT;$OIx?wHME)1FvG(*?+&}l zZECpKA>y6;34v)xK`V<%dMjW2+J-CZ%g;*if?43T}i?c7P!xvCfz zf9qjUm*y2eo|WeAv13z;J$4?Y>$}Guq2zayQn zsAK*Nj!%9=k2Rr&2Qc^W{e~cj%7@V%M;=58`F=;2-!f=<$Zqyq`X7g|O6G)1(VPd5 zVNsDW%Fc@K6{B!Xx=zcZF!x?pZTDa!emW;TfnB6WuynglOO9Z^y-wao@k97Jd5&Tg zah<*##gc{lMF$Aj>xs^iT($;4~G;`vgjTo${ZsXG3-G33SdM zl<7K-`WD$_SX+i9tC5UY!|K5YVR!gNgti zU6jdwOe%{?#%>I%3TQlnL3II7Mlz@=z^RTp3T#yMvtul4)OP{bPeV6k)SZfGPms}A zh-VHbXeuCJA%o@uE-zuwQb2|^3|b55v4KHb0k6Xuv=@+mAA^nzJj&6y$C-2%mEf}s z`~;-D%AlJ7r))hG2vRl-oC1%g3~&J#wznHHd~rTJqWdVor)I`a9#a8Ne?_h-3%4Gy z${-i8g&}T;pQA*AVFL2MW&IHX`n+Q>N}+{fVJKX=J5FA(w~mcWS*$J^I@<+K!HRI z7Ao*vRah~cnh!@7E8srAslZYfa1DmIAtN*y>xT;HpVEuR-)bStlC#QM0ax&BCQNP+ zfJZzP*eu|s2A?3b7kJcDX@tU*21j(h`Y})Cc(Bf87i@U`&+|yJ>iD`}0DM(e4+(Hw zJtDwy^|%1X)l&i-SI;WoJO%1us~23tH5ToL)Kj7=(<=(BQl586%iy{TSpTLQG7976 zH_*Q$AW(yQ0$OMT4_)AKO+I#sYvh>#$H+?s_yNF-9XOje0t#yI-UaNI<%ZOgrOK_3 z0`LT(0{_hQ@i-=nlxFfpR34OL@J+y(vJ7I(bG`UigIEIc=_GLl+|(exfb+g=BcXuQ z9!-)6Ij%u+0h6n6np6V*uEZd%fRdFNWDw9@gUkZPXdBrC?5xR2a?VrNKd#edHJIcP zmCafuzko({Sfh}DfZ7a-3JBJqgn-&QNofIIbva2n0iMYEOnimJ)S$9}a1E*nXx@aA z)D#fXm_Z!@^|eNQ0WF%bMk4{sn=)wX5z;`bv=FeZ1*^0c@NaVl?F6jT8XX1n*Bz~k zfSkHxb`$Wi72D|H0*}$AHIo3B7+7el&KW46RT~EV1nkpbpnySbS!0NRn;HxkP@x@b zj1sUy1J4*Ccq~`tJ5E4Z4JHb3#@!SF&bXT{z!_n(oRJnLAhjM>>jmh6<}o%2aYou!0nSK^5a5ioodTSZwnu<7 z()I~(M%qCE&OnRO054ZCoRM}+RGg7^Qh+nk&IoWu+Ia!az={^&jH@dGoN;ws0FNuI zzitU}2G*YfoPl*;fHSZj32+A169LY^dM>~jSFZ#(_6KLj}ADkh$S)Ki`sS042EI6|C(*<)u`Y~0@h4sP(^^}&J-rq zgyfsXpoReTq&1Ax5>RI*gE|6eHiLQsI?Q3vK)~p^3>pbgk6^=S6OWJ?3z#$$P+%d0 z76QI$&`Q9G#jMdrK#C;{+6g$nltBjpPeK@Ua)HNafM>ShNf(#!L)-ve1vu^EuK;%G z;?!WAY6Xp6F5reT+>jgHM*)5STAhLg{r)as{ec|f@wa>f#}9Vnjcywm3>9!tgW&?c zX)scN|0YiIhk(?0M+7n*BcQ(qV+Di*sPQ*mNZKu&W}<*bTNz9iuwH|y0$yk^T|kp< zoMfhentK?`7LXv4!CVDATtSC4nJ+3053ov*0QDF;TwNsKu?C9;TszDfO9bqRVz5kr zafHEg0qu|J-yfku)KlunW|aV^>B1CHkEt7YlZDb)?*eYijc&*=PI2^R0d3AO*ec+Y z2H_g0>(BhNtg>BHHbgVnDd52+2D=5|UkBwyq<}`(80-^J^#+3j0;b$#a7e)8TL8HJ zL4n^leqP%qR#Hpc}xr9Y*>VO1TQ?y|;N7jSi)cSAr0aBUPe8(DhT)>&$RUtmxH3Vn7!s`bLs7LRO=r64QmkU_`35R(6 z1)CiI%#Am;e`N4NKzeQAl>o=&TLpf-pJ2Lx^RV5J5%`rYeiZP?OW%L^TgbYYOg;-x zPxPZ4Uj(Q}_yN8Oco2udcLA;AGKhiaXSG`v&L%{Xm;%(BMF3(u0PDX;K1||@N}i+) zyaoKLfsX+7$`Kezs6d3O;RX6`N)i`v>65u3qZQss0{s*MTBl`@YJvLw!xl27W0FQx zlBZ{oPC%Co3^E8Po{>Q&0qQIPWRpd}o6HQd33!x+K@I_)nc0}+5^^OsgFFJ%X#=pD zPk=gI0HA;Xr}TvtkaG#4QOpHg9VOh5aR$d0BDxfSM<-A(O#vw*DrYq)Cty@j)~FyL zT`>j~1*r20V571C^)?lNssb99WKdnemr@=kHHB2Ez@WB(jT+PypiVD<)%pU|A&dZx z6gZ|j!(^Ph2+-68T>9p2$Y`LWTQT7AH%61TihNQQ)X9yo(Bbzqodq~ay8fQT-vyj$ zPd8-D#o3Us7$88s7zV)8TS&@UO!^48tU*5kvum@)00DRFFc>6YYh4CI1eC1DV3>e? z8jNrN#-BP;0iKK!m5_!EMhj@!n1M$DIlB@`#=C$EJJAgpby~6hWC7~r1?W!|@KA&4 zJpS0^ye_OVQ&fuhF_U&{EA<@ zasw7PLAV<-vJGT=+XZ|Y#$cy_{lgjT7NFjv0~aC%d>_eRpMbQZ0dW02AVj@U2Wbuo zh}6R~O2GGttZ`JprAZ8q3s5IVz{W`d>UBE+rxoC17>-S4aE^f*e_YrL5?^jQ$43iT zIE%q$0fq4z9+Rmk`_XJE?%HV+jbs_~c z9tluKQ2;y^pbnt`cq%|0Hv#ZmfK&Qc3gBo5jK5Pj)&VMS9ipq_y&K{aClGB3_;(}g ze-LnZ6N66zc5Y_yj{tQN1#J8)VAwVW|MB?a6DHP#Gx;VeHFq%hA)x$D23|N~LZ5~4 zbQgnI0`}}?5J!MIu>$$V6X2B9M*%()!jm8G6@p44mvCoD;)aa3Iy#vEb$|u*QwYcx z#UPb{I~t@BF#HH>q!XatNCX=h06f}_Nt$F5mG>HC5fFTw(_|Bn_#}fI0uF1COMp5J z1KH#epbo$Q$R{BEMLoa@2$^`1RSGF^LQN%=KEzdNiYoA@0yCpoql62%!b+*oG8Nqp zN3}w~tOCDIP8D3h`W4-f$5?fl?NxS(G2u3YssiHRB}y<^U4VM45E&gOsTR_Tt z4C)G~dY?gk0k#I7hCv;xde^o0`_RoQb3XCtkGIP>DLU}D!`{E zKS~@++34T^j~;HFBz~mH3AzaQ=QD$@0!IAHpu2$lUl{Zda9V?20!IAD8is)UUl{}j zsr4uO_2wIszM``G2ZR0s_IR=90|n%a&0w&AZ*dq56|glfgW&?&dNUX)z_TI|lRt#S z*A+BIz#t9A3UI1$f&%MQpHpW|qfRHgfVKIPQjwKX7n3 zqE8BVREEK60ln~ME@+$;pkCDlaNYqZzdFAKrvP;(4r(N~0CgG;KwbgggBau&u*wt6q@a-0 zOBoavFe!vVQ2{YlFeonIdMJaE0{X6IP+CC6Fa~7>TwKeb{6cm8;R<-Ofr+oEeB8>Q zl7JW68B`H4cQ=D-0@O>|P~I8>1|MKhOMvGfgE~KfdR-gR)Dxm!&<4;zz~rM08VT5V zj6o9tbeusm0R>JoXd%G9z@U`??@J8Yc!cD+!la#mQCAss5D?=!gH8e#-C)o~KxI94 zyD6ZK0y1{pVvQay;KAI>4Ho3_c9z3OJB}!F&O|6EO%9up=>pMFRFFWw2Pl znB)wWH~`~+bt)#yM8zrW3I+HK9rZd3_`1pkT>3R`$f%T_qt^-;k%7T_0Xs7?*eGB{ zF$SA?{Ba&3#hGjsl~g4dgbUcO!FB;zOR>gI0qRsF__vznw9m9}`O5-Mp0ywD)MfMJ+4p^;HQ+@%aM3s|T@RslKj^BhUC z3s47Csrzp^h4c(zmD~c<@l;5YS3t|<4Dt(5$5TP0pa69k6+mGD*Viy8DnPxM5gNrA zsQYim!gWkaib@Z>rw1yf1)SZ$psWD(=0<3g7ZA3Ifv*5{niVuE2}pF1K@|aNT2=r5 zR#!yc3k{E)aw}m8VSJb9TjM*z#>)FnAq(G(82-E z@Bda3-{~^Pw-HbccTtd_oq*hUTnV6qfHi+H=p;a$r3H;H3Y=D%X5GX$Wx6S_RRQNO z!XAsNIYciER6LrT-~XsA^mYM9_i;nUCHw$HbUy}E^*?*9=d()IB|#j;rzx%gC!67h zjKIVkJxf5IqzvW=D4UGIJOM3JFjycUFeQV90(z%Xz+;e*YpGc!Sb*c!G6n7`Kh=Aj z;O7b#u%9d4kg+=hN3RyJFB^j}0cWx^SSP@9D+iMeLZ0Vjut`9H+zhq|Xpon|HUTd* zh!CLObO}Fq2>7nSE&=27v&J5ekdVSm_6k@~jKO{ZX-hFUD8MMq;III7mKgFqA|Q1| z2FCP$|##As5B!5IPn)Mao^KxBOe7X&!%a!CPGHI#a#796?i0&b}5 zZpi4_l%sDhQoo}(!QEy|Zi`Bd77YFrFrpQMdjgz19xAXyWjYOS>O!WEUBH<>bwh6S z3kAL^{a4Ue^T=zLaDumP$jI14<>doLE0pI&D_}2j_ zzd9ieUi>F2$}fQL3T)wSkC%!9c;OHw2JB}nH)Qya;b=TQ<>UppXF1 ziw#VQ2ywh9uE1mEmU@31>Z+6r*sU^d$f&iKqss|UC%!?yf`C~E8B`STAc{d{0FTb2 z%yA}FMP=6s2Gs?q^Wb2$rU2hF3~CE#eU3q00c9^Ts4rmOB?b)z_+QgKrLmBl*IA{h zfX5m%7qIFEYqS)w@+O1U0w&&J&{n{(yA0Y3P-o7eFda#af3D=G_nCASl{AkS_zCFz zm_auIrJpeH7m(;FgPsBsK4TCdp!RbHy#>7TykOEtNZeNp`U%MXn!x}8>P@t8evkll zupPh<0Zxw@uD~VLh15&_pfSn?+=WJ~kcZyRN4eGRdmMg_WsXbOuX%1r#VZRz3hY%0_G>^cVEte>WF(8l z_av7JcjFCm#uGlR*4XmMj09G5D=Y-!7c$#bwnz_ukU@4nKkyifa~X=8!|p+=jg)% zN)`7oIU=NuFN0$O)Ej}(1}6m6tj*w*fRyzaoDtx7ab5xZM2TTI_ll!kz;0dU5U=BJ zHf9S~-FPEmO9s~kq-x9Hrht6y8QfN2fy$#wX9jm&z`7qErrZpe*(rNBw0uU>5l{kJY){r7Ijh(C&>EdlE6Lg;@`;Jz}T-Vdp+ z|9>m;L6Kc^Smj?Au*v`2kWp$1M}Jdbr_vvW_awtWjKvOM{g`gZjgF(hcBPLOCo6q# z7xXHt^7nCrI02pG6AGBPgh65faY7g*6;Nv(gX99HL@-DxVB!G=sTEkEyx3_oNT+~D z5q3L+#Q%Ma<1+~ue3n5L0qR}Na6FrUv)35p5K#IigIofN-C>YNK+s(UJVrhthn}%Y z0RieLMr2b+ftSj2ygOKdq6+-_FLwzSa7jwJA*0GiHc&>u=Wh(k3Ggh9#U?8VQLlwY z9u*b1r7~@a7efP7aRKL1%?%kL$vC=(fYxal)DmzsD}y=$LUJ&u2jJ0pG|0=Ofv6nM z&!CZjfrS_}Q2;jps!*hgRc^V7S0zll1A!E=8wlH3RdVMYQ zCn<1T8E7?$!BiKpf$46@XfuYRXDWc39x;rxllA;F$0eL#o*UwLWDul)`vPy3Be{U} zgWZtvW(sGpR6xGD3_=vxta4nskU^*m^!&5R4H{X9fRe&4v`83XVwF0=kjk92U8LV{ymuL zu*s-mOm>P&{*ny#2&i3}!9D?>%Q849po?}ZN`T|%F#(QeCk1#M*UkuWTstqo@hn<^ z>9ig>b z2ym*XwE(Az+6i!~sG|ZrdFEQoHoAz0Q$^hXJX&S>5?1LUDoz~*2ykj7P=He-{RB8Q zGEjh1BSRGUTXo&Q5uD3#7oZDyf{c-F(2XCh08e~4rdO4ItP8l$jdw!^&gxaslLR~) z&0wkk=Mp$Wz#cu|X1l;+IFsu?Sv4;K*Nxi7mj|#vq;m9Db{; z`UvQ>n?WK0Av+i(6@asgRgx3}*6q~8A+?a!+DJM9W%hHLi~(^r$2WWfc~t?+f#tkoecp_8Fa*pQnn7)1PMuSf{)1YynQ+oF~BPia`RLu1Er$uDHYn z9>ZzQ5SJKER}2+!LU+a00-Ub6R)EtLHwbXL;${I(SKKDR>5881LQ?6Tw@ZN26(a>W zU2(qvr{^6K;PkvB3SbikpChfh#Bmq!w0hDF8F@Tcxyzgpa!7;o0=hq9jc5Ud|6*`O z0M4pbd0bZjTS55DX$5YHhGXDrYYnkJ?;r)d* zVhcE;K|BG~{$mXv01p>d9X73MERm=<)sa+yQvoRiI2DjufKvhK1UMCtQGincSp*!g z^!%S)h*JT%1UMCtSAbIi1q3)1P*{Ld0mTG36;M)uQvqd`srjFq->HD|O68{N53e%t z&zy=b;QmnA4H+Q`IJ%mEp+C3=YYM0qi#6&9Xz9bCzJP_Wq5h_5BqUA}R%t5WTVe(+ z1mL`G)ljVk3{A85~(3wuYa^bi%N^Z^2#@&*cU%G*zX zQ{I6BobnD4pvnv1hYLV)`S-^tAx?S62yn_fPJmP1i2|JRP7&agce((lyt4#2#hnY_ z(K7}P$yTl{P%3H);nrU0hSVYUDtfU1oS?11QUT4fGgvNQMNS4Q1>iVsm1K>8zw-d# z_s2RR?-U6#HVOzVz+j7j?iz#(2rkGPI|Pg<%wV^G0UGQT5ThJx9ALorzwF{n4vWew z4UP&ZUy3zO2*5$z%GJ{XB1$tjC*X5g1{Vdi*Wj`M6F~L4&-wTH^>wf68L~H?0OT-i4w1kfUrzH{za9Sd%0H-BV2yj{=HGtFqRa2mz z(}{}H5*ZbEr{=>V6<8yS3wVTNb3<-)P6hZjQHO@CpT`BPpU(}scaaKuguJQ735p1~ zQJq0?0XTPEIax|To_Y+*3Rt5xDhMdhfHf)!@X>Bnb%Dodp-Byw7>?()1vsA76X1B( zP=MoE69JBA%>_7~wG!ZX=4mU$ajk;@$Ft4~U=wi+BT+jpO;;CiopyIaMxv%1-BZA~ z<_ru071}cBBVd@PHIx2AVz*&1NWe%9h6=c?!3Y5*wADWZ;2e0>P~5h^IzC=B99JiW zsNWy2RM{GI<1|y1$`1wFo@FpY(hSqC&KBUfI!}P(YLEcORTAL1xC2_XA|NQ zuG1B6NF6ku2yGHgZsb>#D-;?qv`qNt}F-32^c~Dd2d252raJ#L4%(0#B4xoM^8qAle07 zKbPH*acd+;UlZ`}7zQ^5SQ^|BkZdw*++)DkpAOTQJQNk2f3GrqEWq*NnE)r>mjax8 z-w1H>eJ{Yt*A}3%Ro9rcmO0#R|SCRTv|TfzzY%4#wfuv;nIko!+uY5~qaap?r$IDKUx zqX6gMsw~UZ_~SeVtYVeyqT>7$mrH=-MP31p)dB(>8-*3%F8M}x$zm>G$4j^&V_%rQ z{*@MjGx(LG#bGT-%@c^ct;K&@9MmF0 z3q0SWRE}x!NsEhG9M$567I;WSX@+UBON&3Xz{4df?u-_A4o8LF#K!;hkm?b9hzD9M z)WXstN{c00{G-KlE!49#NT;56flv>eK!j+qO$+sO2%vfz143=xhuEP7Hq}>DLA9S8 zLhT}l_@>1}E!1XTK(*@?LhV9@*sH}k8c_XxO3xh~QhWRm_dyG_-3}qOiw{t(s4YDZYGV$B+HV7)cF{nny)Y1J{|bcKmI85Ki$8Y zO9X`4=m4Sq@rO|VpF=FyLj6C8kos2;Lj92gq5htMP=94Ws9U%Y>W&kH`aut&e%V5( z1wO>P*kxF%#VLYnSpuQf01)a*2cfP35NbYzP%{|B4?0=&L)AFSnYq-k#)raGzSxHZ z@sw9{XBMKyH9n-L@ERXdCd9Zr7&k_YIYD{x63C_{K4e~S>0o?CBmbWsiekFw|7pWR zOtGc#7YkIe_=kk?_x;MUq%7LGXyN{Sdj`RB)c?iM*f8=|8Sef+j0DBq1c(1GhAwW_ z3HJX#u2|wjg7}AiW%=Xp{WX|5Rq0|sy*TMa1(R2)57}wd;8k3dbN`Q%{;#TYkBh2I zAVPowYFZw%A}P`eJRP4Ye9-ZXuX?(6%Ln-(}!9fo}! z^{A3V`;5becQ1`q9+PJW=?T8SxF#13)*~$`gWC7_h+C6fbZnQgb%#63iT>5jN&2p> zvOgeqWa`oK++f|W>#>e4@~cd}Kb`-u=8=lU#MwVQlW%j`IC7e+bU{1vf1?wS6JKy0yqd)VrpmmgtLDQ=L12 zEshRMRhxU-O_whX#aXMBv{!QOBK~W@JFD%pM#@t|u}7!eHUD9HFiILN9;Ww{BZi^9 z*4ggVW;|43>=s^jH5O&aF}{~OPKE`iw4cQ*?kxk`TmI+X@?d+*HMbU-Gh7eyrr(QI za(b3-rL)-R>~R7`HT6ESeEvmatKb@CY?V`<@hZ!AJIdj5;u{x@ui_0ixg`9wq2l%8 z_GN_21!*`14IQ;O-=>a})G=_qm!rv%lQy4@ckHRYyPEhAV z6rQHZTB55Iy3wSSLL7yQq@@teq~J#(m_itZe^cwd&2;-4MbpD6jHOUbEz61iLg6$` zjwEU!@*rA9VJU?<6oycEfPvDI`!hM-ARYlPNS|GDGwwe38OJ3IP=Q zP?$v_m%>e&?=l6QLTAz*qwpt97HKO+>A5B|T|(`Br8Vk}zMc6>YLAjPZ{LdY#06ER zr|Z#Xx`x^Nt+}=Fe))sxwi(^%DrS$DMa`?@(QPwz3w2g{J}duB*ZZ333Ty8zSLMDL zDhG_#eav*NwMWXM3AZCL%OzPbT95IfORii!d1;7`aoM%^lRNWo$D8TeYq!cJ8_TR_ zI2d4R?YO0p9^zAJ&Cmx>F|`am)=XDldk>kv1LcSL>T3@xS^OMI9bc~OjM7=<8F~~d zRh`e!$A-{eF67Hy0PGw-e|pItJa#Omt@6l zqKPmR#^RD%38;w0G!>Pwm?onHme{22dQWey9!vM&Vpkf1K~)nJ)uLtigKT2n@=l%Rzi$tHrf^oli-iRe5S1~@_{=(Yu~`Zo~a(z^-LA8tY^xFH9b@6 zT19^A6?tq_)K;pf$7b4@J6iU{`Z;M2(^HUm78dSo7#|8BcBW-;Q)jvZk94M<-z)kU zj^>7D6TvWq$L>X@`UlCyY2m?ItiAq`v6JYzN_2sJIJ=imsaCWThT*Ke4X1FX!>|Zv zN{16TQ@x8SVFoU4XcfomuO(OuhmK zi<{E$c<(-YsO^H;!|6^vv9ptG;`3G$Dr+_*%2grJ_i0Cq8UkW0JE?a$T%Oq?+B=*` zYgpS*)XhSVf8qsrAhUt82J>UFL0h<`;kT6dI%>;)6pBG*FxX|f2WMTT@@#{&cWN4r zB}C9;qnJ7ql0jQxY|HfZY$9!ecVmUcN{^F5ybi^nVQ)DJzZ39>#lb&P^+2+=qE};8 zW&}NRiYgeVvghiab&77l_f-6>y;{)N78y^Eq~cwegR-IL9=L)s4d3Y`o2cAkEIYkC zDMhPZ+SoJ2@-5A^Z7+Hl6uY0OtgP`sOdLJVioi1v40;MSkW7!jn2{+Pj*OyOyLq~? zd1xv<_li!iK4cTblr}{za6e=%)5FtAKf~`({G^44G}Q$ae@1iu0oy?K&zlQ-K&Iba zlmxp!*4DU4_EOq^!WE@QD9W%ZS_VHpp7&2hHn@y?($9z$KO^$j(*E6K_Q4ze+V=RS zj7SR{8DNB%fVm7>0dGC=hvqZB>Fw@*^c*iv!RAg}(LQ*(DJL&t4JjudhGNjy@QGtu z0E0NOM)TX<AN4*HO*4ZuF{Ud0+N7TcrflV7`z@vewaQ(3 z^HW=>SEpy77*sP$(cfW)z*>(N6=`rk5G~sFlPxX&e%olymGCAI+qAN)EepGK*$ri$ zXocAT{Z9Ez@2yR%Z|NFrp;0B#xdc6lY$9b9ddP~wGcD5k>hxaPw)Ufhd%(*H!ucZTCzov=Rcfe6Sc4!!1``g*i zkju|B2|4^sNA@dv99jFUJ%Mz6rXu9&Gvy#bpXoR<^O+VOS2PNl_pG&@K$bgBti6U@dZuh7(KE$fQPdY{^Q;vhU*4c$!t0t6 zt;mq)<}{?nGvy)$p6QYzo7e?s1p0$n@JxjE%a+zP(Wx}-Ck`XGozvn6AcvhPq*2io zq_MMBhWvGLL|glF>&vOdyJ*g_$R6iJ^y4nthWv5Xrgc?x9U0@SJ=tB+aTf)JD(zzz zz1Bl%vAq<1*IQ9^xEJAD@3ysS@3yu1&PlDJ&6$`2)u5Nt6#0%;l!rWRZcRdhwy4q$ z%)WPaRKhx%voG?iIW@a~uA+=-PO^#B*=8I#dz@VTyol49w%)7F@GGJDmLh3dlxWv$ z?+u9cqXAN}5=qVC$MU#9Q{e=YUcNTpw0B=BjgpGe571&z1agL%@{ugev=87WD~gap%ZagPkUPtyA!(LrHj-tT z&LK;d$&U0`QRA4u(!+Fp!web&7FQmEWYDs4ioQe&D{F@*DJn$LDr>W*DH<_D(X+@# zHCk;#4DzAV(nA&$F6iN?dBD@OGTiiqW6n5F)9%@V=;&Wt*;XA+NkA;04kG#L0KnfAbN~PV delta 64 zcmcb9gX#JWrVTBOhKc!=#L00b5mNdN!< diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 9efc0e80fe8c8eb86fc9c65aa1ab9d4e19b21829..e572a6c45851549e0a253b47876095a3c77e4296 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4a?IkOmh-53iQoQj7`!k%}rA*%*+!_%`B2kjg1nG&CE=UQVfj@ T%nZ_!j0_FZEKL_*Vax#lvYiva delta 63 zcmca|oAJtR#tn-Z4HNS#%QK3Ki}h1X%}o 0.9\n", "\n", "assert jaccard_similarity(predicted_outlier_issues_indices, outlier_issue_indices) > 0.9\n", - "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9" + "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9\n", + "\n", + "expected_issue_types = set([\"label\", \"outlier\", \"near_duplicate\", \"class_imbalance\"])\n", + "detected_issue_types = set(lab.get_issue_summary()[lab.get_issue_summary()[\"num_issues\"] > 0][\"issue_type\"])\n", + "assert detected_issue_types == expected_issue_types" ] }, { diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 94873ef7e..1b03b5170 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:01.705444Z", - "iopub.status.busy": "2024-12-25T19:53:01.705271Z", - "iopub.status.idle": "2024-12-25T19:53:04.688692Z", - "shell.execute_reply": "2024-12-25T19:53:04.687824Z" + "iopub.execute_input": "2024-12-26T11:13:55.066377Z", + "iopub.status.busy": "2024-12-26T11:13:55.065970Z", + "iopub.status.idle": "2024-12-26T11:13:58.119624Z", + "shell.execute_reply": "2024-12-26T11:13:58.119002Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:04.691880Z", - "iopub.status.busy": "2024-12-25T19:53:04.691433Z", - "iopub.status.idle": "2024-12-25T19:53:04.696264Z", - "shell.execute_reply": "2024-12-25T19:53:04.695718Z" + "iopub.execute_input": "2024-12-26T11:13:58.122034Z", + "iopub.status.busy": "2024-12-26T11:13:58.121585Z", + "iopub.status.idle": "2024-12-26T11:13:58.125384Z", + "shell.execute_reply": "2024-12-26T11:13:58.124830Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:04.698398Z", - "iopub.status.busy": "2024-12-25T19:53:04.698049Z", - "iopub.status.idle": "2024-12-25T19:53:10.167848Z", - "shell.execute_reply": "2024-12-25T19:53:10.167290Z" + "iopub.execute_input": "2024-12-26T11:13:58.127346Z", + "iopub.status.busy": "2024-12-26T11:13:58.126912Z", + "iopub.status.idle": "2024-12-26T11:14:00.143229Z", + "shell.execute_reply": "2024-12-26T11:14:00.142729Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a93f09c26a99419f9408245e9fb75e1b", + "model_id": "f4ff351cea04464ea2c5aad09727e327", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "934aabfe9a994494aaaa79e9738430b9", + "model_id": "f184c01ff207409fa2616b01a03e66dc", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa83b3e0df7a491b9cc7bba0820ef6b9", + "model_id": "6b7f0209fffe464da1552b8f9bedb1f4", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "678375d8f3fe444fa525d34020ce8c94", + "model_id": "ff8e913873fc4844888676660631126b", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fa78b5b30b7439989237b5bd15fce38", + "model_id": "a4b545185c5d4644814ac73d51cff97d", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:10.169873Z", - "iopub.status.busy": "2024-12-25T19:53:10.169472Z", - "iopub.status.idle": "2024-12-25T19:53:10.173316Z", - "shell.execute_reply": "2024-12-25T19:53:10.172875Z" + "iopub.execute_input": "2024-12-26T11:14:00.145159Z", + "iopub.status.busy": "2024-12-26T11:14:00.144822Z", + "iopub.status.idle": "2024-12-26T11:14:00.148714Z", + "shell.execute_reply": "2024-12-26T11:14:00.148183Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:10.175009Z", - "iopub.status.busy": "2024-12-25T19:53:10.174657Z", - "iopub.status.idle": "2024-12-25T19:53:21.569153Z", - "shell.execute_reply": "2024-12-25T19:53:21.568622Z" + "iopub.execute_input": "2024-12-26T11:14:00.150618Z", + "iopub.status.busy": "2024-12-26T11:14:00.150211Z", + "iopub.status.idle": "2024-12-26T11:14:11.734138Z", + "shell.execute_reply": "2024-12-26T11:14:11.733604Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c87ed6354806472ab823ca636a72cbe0", + "model_id": "56549934bb8b4370915a9339138d273c", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:21.571354Z", - "iopub.status.busy": "2024-12-25T19:53:21.570979Z", - "iopub.status.idle": "2024-12-25T19:53:40.028612Z", - "shell.execute_reply": "2024-12-25T19:53:40.027995Z" + "iopub.execute_input": "2024-12-26T11:14:11.736360Z", + "iopub.status.busy": "2024-12-26T11:14:11.735961Z", + "iopub.status.idle": "2024-12-26T11:14:30.208190Z", + "shell.execute_reply": "2024-12-26T11:14:30.207511Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.030949Z", - "iopub.status.busy": "2024-12-25T19:53:40.030531Z", - "iopub.status.idle": "2024-12-25T19:53:40.035487Z", - "shell.execute_reply": "2024-12-25T19:53:40.034945Z" + "iopub.execute_input": "2024-12-26T11:14:30.210509Z", + "iopub.status.busy": "2024-12-26T11:14:30.210112Z", + "iopub.status.idle": "2024-12-26T11:14:30.215848Z", + "shell.execute_reply": "2024-12-26T11:14:30.215398Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.037073Z", - "iopub.status.busy": "2024-12-25T19:53:40.036898Z", - "iopub.status.idle": "2024-12-25T19:53:40.040953Z", - "shell.execute_reply": "2024-12-25T19:53:40.040516Z" + "iopub.execute_input": "2024-12-26T11:14:30.217523Z", + "iopub.status.busy": "2024-12-26T11:14:30.217190Z", + "iopub.status.idle": "2024-12-26T11:14:30.221153Z", + "shell.execute_reply": "2024-12-26T11:14:30.220723Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.042532Z", - "iopub.status.busy": "2024-12-25T19:53:40.042364Z", - "iopub.status.idle": "2024-12-25T19:53:40.051154Z", - "shell.execute_reply": "2024-12-25T19:53:40.050695Z" + "iopub.execute_input": "2024-12-26T11:14:30.222823Z", + "iopub.status.busy": "2024-12-26T11:14:30.222518Z", + "iopub.status.idle": "2024-12-26T11:14:30.231184Z", + "shell.execute_reply": "2024-12-26T11:14:30.230697Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.052671Z", - "iopub.status.busy": "2024-12-25T19:53:40.052504Z", - "iopub.status.idle": "2024-12-25T19:53:40.080849Z", - "shell.execute_reply": "2024-12-25T19:53:40.080351Z" + "iopub.execute_input": "2024-12-26T11:14:30.232928Z", + "iopub.status.busy": "2024-12-26T11:14:30.232600Z", + "iopub.status.idle": "2024-12-26T11:14:30.260562Z", + "shell.execute_reply": "2024-12-26T11:14:30.260132Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.082691Z", - "iopub.status.busy": "2024-12-25T19:53:40.082371Z", - "iopub.status.idle": "2024-12-25T19:54:13.516719Z", - "shell.execute_reply": "2024-12-25T19:54:13.516116Z" + "iopub.execute_input": "2024-12-26T11:14:30.262215Z", + "iopub.status.busy": "2024-12-26T11:14:30.261887Z", + "iopub.status.idle": "2024-12-26T11:15:03.917221Z", + "shell.execute_reply": "2024-12-26T11:15:03.916539Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.831\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.095\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.596\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.670\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1322c07edc3d44dfaa5ede7707e0b085", + "model_id": "17c4b74cddd74b6f83737f8b857249c6", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb6260a24a574052b8dc3b63327e49b0", + "model_id": "003790eac1da44cfacf5182c85bf1f62", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.929\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.835\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.749\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.684\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9e4d34f1dafd42108013827c12b7a9ec", + "model_id": "17744260742849c4988dd6d5d5b061a5", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a61ad2ad4b744a2ca9088d411dae337f", + "model_id": "d3a7e2a492de443e9fc34cd490473b54", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.971\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.979\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.635\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.681\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "51274f11c67a441d9675a667bf50664e", + "model_id": "7563e14e5ad24aa285a0d80e59cdd41e", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e39e3083e0948878024a2772e960428", + "model_id": "5be8e4b7db7940b5a22aca8a89b771f1", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:54:13.518841Z", - "iopub.status.busy": "2024-12-25T19:54:13.518462Z", - "iopub.status.idle": "2024-12-25T19:54:13.534397Z", - "shell.execute_reply": "2024-12-25T19:54:13.533974Z" + "iopub.execute_input": "2024-12-26T11:15:03.919422Z", + "iopub.status.busy": "2024-12-26T11:15:03.919014Z", + "iopub.status.idle": "2024-12-26T11:15:03.936490Z", + "shell.execute_reply": "2024-12-26T11:15:03.936070Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:54:13.535991Z", - "iopub.status.busy": "2024-12-25T19:54:13.535695Z", - "iopub.status.idle": "2024-12-25T19:54:13.987080Z", - "shell.execute_reply": "2024-12-25T19:54:13.986440Z" + "iopub.execute_input": "2024-12-26T11:15:03.938233Z", + "iopub.status.busy": "2024-12-26T11:15:03.937940Z", + "iopub.status.idle": "2024-12-26T11:15:04.409277Z", + "shell.execute_reply": "2024-12-26T11:15:04.408645Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:54:13.989151Z", - "iopub.status.busy": "2024-12-25T19:54:13.988937Z", - "iopub.status.idle": "2024-12-25T19:56:03.939526Z", - "shell.execute_reply": "2024-12-25T19:56:03.938911Z" + "iopub.execute_input": "2024-12-26T11:15:04.411460Z", + "iopub.status.busy": "2024-12-26T11:15:04.411281Z", + "iopub.status.idle": "2024-12-26T11:16:56.028934Z", + "shell.execute_reply": "2024-12-26T11:16:56.028228Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c55c29353e849aabd683fc81a40a89f", + "model_id": "a285b1fda3104d11b406b25e4e839fc7", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:03.941877Z", - "iopub.status.busy": "2024-12-25T19:56:03.941302Z", - "iopub.status.idle": "2024-12-25T19:56:04.393616Z", - "shell.execute_reply": "2024-12-25T19:56:04.393044Z" + "iopub.execute_input": "2024-12-26T11:16:56.031350Z", + "iopub.status.busy": "2024-12-26T11:16:56.030738Z", + "iopub.status.idle": "2024-12-26T11:16:56.486297Z", + "shell.execute_reply": "2024-12-26T11:16:56.485729Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.395960Z", - "iopub.status.busy": "2024-12-25T19:56:04.395458Z", - "iopub.status.idle": "2024-12-25T19:56:04.457746Z", - "shell.execute_reply": "2024-12-25T19:56:04.457251Z" + "iopub.execute_input": "2024-12-26T11:16:56.488560Z", + "iopub.status.busy": "2024-12-26T11:16:56.488025Z", + "iopub.status.idle": "2024-12-26T11:16:56.550966Z", + "shell.execute_reply": "2024-12-26T11:16:56.550375Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.459502Z", - "iopub.status.busy": "2024-12-25T19:56:04.459160Z", - "iopub.status.idle": "2024-12-25T19:56:04.467590Z", - "shell.execute_reply": "2024-12-25T19:56:04.467068Z" + "iopub.execute_input": "2024-12-26T11:16:56.552924Z", + "iopub.status.busy": "2024-12-26T11:16:56.552520Z", + "iopub.status.idle": "2024-12-26T11:16:56.561013Z", + "shell.execute_reply": "2024-12-26T11:16:56.560483Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.469332Z", - "iopub.status.busy": "2024-12-25T19:56:04.469012Z", - "iopub.status.idle": "2024-12-25T19:56:04.473595Z", - "shell.execute_reply": "2024-12-25T19:56:04.473171Z" + "iopub.execute_input": "2024-12-26T11:16:56.562714Z", + "iopub.status.busy": "2024-12-26T11:16:56.562329Z", + "iopub.status.idle": "2024-12-26T11:16:56.566960Z", + "shell.execute_reply": "2024-12-26T11:16:56.566522Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.475284Z", - "iopub.status.busy": "2024-12-25T19:56:04.474958Z", - "iopub.status.idle": "2024-12-25T19:56:04.979884Z", - "shell.execute_reply": "2024-12-25T19:56:04.979275Z" + "iopub.execute_input": "2024-12-26T11:16:56.568724Z", + "iopub.status.busy": "2024-12-26T11:16:56.568344Z", + "iopub.status.idle": "2024-12-26T11:16:57.079326Z", + "shell.execute_reply": "2024-12-26T11:16:57.078644Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.981542Z", - "iopub.status.busy": "2024-12-25T19:56:04.981352Z", - "iopub.status.idle": "2024-12-25T19:56:04.989933Z", - "shell.execute_reply": "2024-12-25T19:56:04.989460Z" + "iopub.execute_input": "2024-12-26T11:16:57.081252Z", + "iopub.status.busy": "2024-12-26T11:16:57.080929Z", + "iopub.status.idle": "2024-12-26T11:16:57.089455Z", + "shell.execute_reply": "2024-12-26T11:16:57.089003Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.991824Z", - "iopub.status.busy": "2024-12-25T19:56:04.991512Z", - "iopub.status.idle": "2024-12-25T19:56:04.998740Z", - "shell.execute_reply": "2024-12-25T19:56:04.998283Z" + "iopub.execute_input": "2024-12-26T11:16:57.091238Z", + "iopub.status.busy": "2024-12-26T11:16:57.090907Z", + "iopub.status.idle": "2024-12-26T11:16:57.098171Z", + "shell.execute_reply": "2024-12-26T11:16:57.097576Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.000387Z", - "iopub.status.busy": "2024-12-25T19:56:05.000097Z", - "iopub.status.idle": "2024-12-25T19:56:05.465349Z", - "shell.execute_reply": "2024-12-25T19:56:05.464760Z" + "iopub.execute_input": "2024-12-26T11:16:57.099812Z", + "iopub.status.busy": "2024-12-26T11:16:57.099490Z", + "iopub.status.idle": "2024-12-26T11:16:57.570286Z", + "shell.execute_reply": "2024-12-26T11:16:57.569667Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.467556Z", - "iopub.status.busy": "2024-12-25T19:56:05.467199Z", - "iopub.status.idle": "2024-12-25T19:56:05.483088Z", - "shell.execute_reply": "2024-12-25T19:56:05.482513Z" + "iopub.execute_input": "2024-12-26T11:16:57.572173Z", + "iopub.status.busy": "2024-12-26T11:16:57.571821Z", + "iopub.status.idle": "2024-12-26T11:16:57.588280Z", + "shell.execute_reply": "2024-12-26T11:16:57.587682Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.485050Z", - "iopub.status.busy": "2024-12-25T19:56:05.484707Z", - "iopub.status.idle": "2024-12-25T19:56:05.490317Z", - "shell.execute_reply": "2024-12-25T19:56:05.489832Z" + "iopub.execute_input": "2024-12-26T11:16:57.590160Z", + "iopub.status.busy": "2024-12-26T11:16:57.589877Z", + "iopub.status.idle": "2024-12-26T11:16:57.595490Z", + "shell.execute_reply": "2024-12-26T11:16:57.594976Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.491928Z", - "iopub.status.busy": "2024-12-25T19:56:05.491655Z", - "iopub.status.idle": "2024-12-25T19:56:06.250950Z", - "shell.execute_reply": "2024-12-25T19:56:06.250369Z" + "iopub.execute_input": "2024-12-26T11:16:57.597184Z", + "iopub.status.busy": "2024-12-26T11:16:57.596874Z", + "iopub.status.idle": "2024-12-26T11:16:58.379600Z", + "shell.execute_reply": "2024-12-26T11:16:58.379020Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.253117Z", - "iopub.status.busy": "2024-12-25T19:56:06.252908Z", - "iopub.status.idle": "2024-12-25T19:56:06.262943Z", - "shell.execute_reply": "2024-12-25T19:56:06.262395Z" + "iopub.execute_input": "2024-12-26T11:16:58.381970Z", + "iopub.status.busy": "2024-12-26T11:16:58.381440Z", + "iopub.status.idle": "2024-12-26T11:16:58.391525Z", + "shell.execute_reply": "2024-12-26T11:16:58.391001Z" } }, "outputs": [ @@ -2195,47 +2195,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.264906Z", - "iopub.status.busy": "2024-12-25T19:56:06.264707Z", - "iopub.status.idle": "2024-12-25T19:56:06.271397Z", - "shell.execute_reply": "2024-12-25T19:56:06.270865Z" + "iopub.execute_input": "2024-12-26T11:16:58.393653Z", + "iopub.status.busy": "2024-12-26T11:16:58.393160Z", + "iopub.status.idle": "2024-12-26T11:16:58.399378Z", + "shell.execute_reply": "2024-12-26T11:16:58.398771Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.273211Z", - "iopub.status.busy": "2024-12-25T19:56:06.273020Z", - "iopub.status.idle": "2024-12-25T19:56:06.475602Z", - "shell.execute_reply": "2024-12-25T19:56:06.475123Z" + "iopub.execute_input": "2024-12-26T11:16:58.401464Z", + "iopub.status.busy": "2024-12-26T11:16:58.401020Z", + "iopub.status.idle": "2024-12-26T11:16:58.603605Z", + "shell.execute_reply": "2024-12-26T11:16:58.603122Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.477438Z", - "iopub.status.busy": "2024-12-25T19:56:06.477143Z", - "iopub.status.idle": "2024-12-25T19:56:06.485181Z", - "shell.execute_reply": "2024-12-25T19:56:06.484606Z" + "iopub.execute_input": "2024-12-26T11:16:58.605460Z", + "iopub.status.busy": "2024-12-26T11:16:58.605128Z", + "iopub.status.idle": "2024-12-26T11:16:58.612456Z", + "shell.execute_reply": "2024-12-26T11:16:58.612006Z" } }, "outputs": [ @@ -2411,47 +2411,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.486840Z", - "iopub.status.busy": "2024-12-25T19:56:06.486534Z", - "iopub.status.idle": "2024-12-25T19:56:06.685034Z", - "shell.execute_reply": "2024-12-25T19:56:06.684448Z" + "iopub.execute_input": "2024-12-26T11:16:58.614075Z", + "iopub.status.busy": "2024-12-26T11:16:58.613743Z", + "iopub.status.idle": "2024-12-26T11:16:58.811358Z", + "shell.execute_reply": "2024-12-26T11:16:58.810899Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.686832Z", - "iopub.status.busy": "2024-12-25T19:56:06.686533Z", - "iopub.status.idle": "2024-12-25T19:56:06.691680Z", - "shell.execute_reply": "2024-12-25T19:56:06.691136Z" + "iopub.execute_input": "2024-12-26T11:16:58.813060Z", + "iopub.status.busy": "2024-12-26T11:16:58.812728Z", + "iopub.status.idle": "2024-12-26T11:16:58.817041Z", + "shell.execute_reply": "2024-12-26T11:16:58.816588Z" }, "nbsphinx": "hidden" }, @@ -2555,7 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01ef0e4f64fd423fbe151d5488934b01": { + "0024d4199dae41bf903390cc792ed260": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,141 +2608,119 @@ "width": null } }, - "02148a2720e94655aafde92af9b01dc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11f1be18e701489ba23a37eeb576e937", - "placeholder": "​", - "style": "IPY_MODEL_f8b15d0f74dc495aa140ae3e0a1fee1b", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.67it/s]" - } - }, - "044b1fe3eaba4fb1bd442fa7be32f390": { + "003790eac1da44cfacf5182c85bf1f62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e940b8484a44373862483908f8603db", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_907261e1e53b4107b218ca28d5c70b0f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_183345239f194ee48a5e5503db476c7d", + "IPY_MODEL_9caf4b4175f74931a8e29555d56a5cf4", + "IPY_MODEL_53b2f74e987b45a5bdfd6bbdf322ecb2" + ], + "layout": "IPY_MODEL_c3862f19726f43139736766e91ad2e8c", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "05387ecea2654c4f8cec1b7b53d91218": { + "02d3be24caec40e2ad95769ab44b473d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05c88c06baa34af887bdc5deb3f0ca93": { + "03e822c4ea3c4f40ae61a20481bbcf71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36b8244290fa4b409d179f82afa754a0", - "placeholder": "​", - "style": "IPY_MODEL_2b1e2800f49c4ab88c17763e2fa3dc54", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 11.2MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "06cc74e6d9b14909aa898c1eec8bef7b": { + "07846f593d614c67bc252174f3b06df8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01ef0e4f64fd423fbe151d5488934b01", - "placeholder": "​", - "style": "IPY_MODEL_d6eb5c530ad84d28bbc95826d2099365", + "layout": "IPY_MODEL_4f77cb1e3a7c4d9f8d5d7f7fd0274af9", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c483682d58df45a7b94f7e5473449825", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": 60000.0 } }, - "082c0f49338e471a900df64e25963ce9": { + "07b4528c25f94cc2bfe65b20fc6f82fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bd401a460024bc48a31b717fb070608", - "placeholder": "​", - "style": "IPY_MODEL_54a11615b1a04569b980049043c6732f", + "layout": "IPY_MODEL_b6735ab9e73940ea9fd4d15752f0434b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_448ad094ea874b36b28dc064540626d0", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 2.0 } }, - "0a58eea28eb54bebbb8feee6050f88e4": { + "08032ec8e12548b1b5090e23e9c5cdad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2757,15 +2735,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ad0023111c034ae2bf185a8e7299a303", + "layout": "IPY_MODEL_145defe4f7d7455aa1644523fa0c63af", "placeholder": "​", - "style": "IPY_MODEL_aff9494e44414b9ca131464b7ef06d79", + "style": "IPY_MODEL_a595d095cbc049fca70f2b6cedb97861", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "100%" } }, - "0e3d1e5c544a45dbb3873f8a0048eb16": { + "0844beb068c049daa4758f29b95f56d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2783,84 +2761,30 @@ "text_color": null } }, - "11f1be18e701489ba23a37eeb576e937": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1322c07edc3d44dfaa5ede7707e0b085": { + "0fb863f8786844f2bd1f8aa6fa2ad8e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_57720e22f2764eed89ce3b7251e5c1d3", - "IPY_MODEL_fbfc9749611f42999cf827c6a91c4989", - "IPY_MODEL_02148a2720e94655aafde92af9b01dc4" - ], - "layout": "IPY_MODEL_14c9a4e0ae7f452ca437d86195e8563c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31d2057f74f747bb8e67fdc2d8f9b2ce", + "placeholder": "​", + "style": "IPY_MODEL_45975ae1a9b3496b823baf490fed9570", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "14c9a4e0ae7f452ca437d86195e8563c": { + "108812bccbd741fe97637c2274d2b4df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2913,7 +2837,23 @@ "width": null } }, - "16ed526bf9ba40bdb11e4012b829433e": { + "1090c715109041f69b16b3ea9e7cc89c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "145defe4f7d7455aa1644523fa0c63af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2966,30 +2906,7 @@ "width": null } }, - "18e38ac0e1f6478d9f7300a1682d8d0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0d516f5941c4557bdba5b1e744d2f72", - "placeholder": "​", - "style": "IPY_MODEL_811601011a024e32986e64a1513db2d5", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "19394f5d752743e78883476208a2b9ca": { + "14e2c08150ea43558eebd6f3486bafdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3042,7 +2959,7 @@ "width": null } }, - "21b1e1a335c84d29998713bd15e43580": { + "16d380e0df77435282bb3d529594c4b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3095,7 +3012,7 @@ "width": null } }, - "240b3517d93d46629dd6a70bbba5cf51": { + "16feba3a36064d3297c8c6a38338ea60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3110,15 +3027,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7e1ff3e34d3c49caad23eb7e9a2ffaf6", + "layout": "IPY_MODEL_9a4221150d324e0988f29b43c59df08a", "placeholder": "​", - "style": "IPY_MODEL_bb2c790001214f159330cf2a4dcf75f3", + "style": "IPY_MODEL_6eb643d5d4e340e99bf3820633dbce6e", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 282590.69 examples/s]" + "value": "100%" } }, - "242104ee0f4e4959a4153f4f20d06af3": { + "17744260742849c4988dd6d5d5b061a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3133,87 +3050,89 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_abfbff3a88c24b90924d46cc12cc6d30", - "IPY_MODEL_e37413872650482a92cd3a0263486b78", - "IPY_MODEL_c52a734ae4b443c494fb694c3022008c" + "IPY_MODEL_16feba3a36064d3297c8c6a38338ea60", + "IPY_MODEL_dceeba9e537e4860984cb37d3771557a", + "IPY_MODEL_7abf5d13f10d4fa097c867780436dc8f" ], - "layout": "IPY_MODEL_16ed526bf9ba40bdb11e4012b829433e", + "layout": "IPY_MODEL_1bb3b9d9df9e4de1be2a6e24171e8e0c", "tabbable": null, "tooltip": null } }, - "2a2ffb2a35184d118bfc8b003ecc387a": { - "model_module": "@jupyter-widgets/base", + "17c4b74cddd74b6f83737f8b857249c6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8648bb270a434d839bb63f51a140cc71", + "IPY_MODEL_d119ec5ae01c44198508b90ab13eac79", + "IPY_MODEL_f8285f59b8424d64abd192de82dd8836" + ], + "layout": "IPY_MODEL_67af2714ad5641808e4c38e47312c61a", + "tabbable": null, + "tooltip": null } }, - "2b1e2800f49c4ab88c17763e2fa3dc54": { + "183345239f194ee48a5e5503db476c7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65bf121055374645af97ac18ab95221d", + "placeholder": "​", + "style": "IPY_MODEL_c4dec36e37e3418b9d64683574cb2e59", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1a70712be579474db5f6c1904e32e1c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3f9915f8fa64a7f9f881537bc002d6d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bb7f0142c0f843aea52524450bd6d96f", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "2e9fb0892b8044baa8694687db5386a1": { + "1bb3b9d9df9e4de1be2a6e24171e8e0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3266,75 +3185,67 @@ "width": null } }, - "2f39aaa4c6a24d23b0766aea99ab3987": { + "1c119d3815a94d07a3a80110a36f2669": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cc052bc26c64436b2e556ba35239873", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_22c0ba4d74724adca55064fd1bb3a097", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "2fa78b5b30b7439989237b5bd15fce38": { + "1f5b860557574c59ad3c3cf7f6e1c093": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3d5bb862500b4baf8f1c036198559721", - "IPY_MODEL_aae19f3127584f9296ecf0b0ff7c695b", - "IPY_MODEL_6a88bb9d45604f988d52b903e7c0a94e" - ], - "layout": "IPY_MODEL_21b1e1a335c84d29998713bd15e43580", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "306ae28149d44a228735d2b7039937e6": { + "22c0ba4d74724adca55064fd1bb3a097": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a907dcb7d0e14bd69c92d3e6f6324ebb", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_92cdf07aa86d4657bb8fbd859a9bda76", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3375cbf361d04f8fb15d002f9dfb4097": { + "24297e5b0e604438877ede93f02b2859": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3387,7 +3298,7 @@ "width": null } }, - "33a1a9cfe2804fd88f467e7e9c20e1e1": { + "25451e345fcf4e2384e0fd87bffeae2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3440,7 +3351,87 @@ "width": null } }, - "36b8244290fa4b409d179f82afa754a0": { + "280605f687624aa6a5c57ceeffbe642b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "28173da4edf74648b7c8dc14dec217ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba552f3bea524d3f831f4a9b3346f6ac", + "placeholder": "​", + "style": "IPY_MODEL_7a2913cecf194812b334d9cc9c61fa2a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "29505eb3ce6041d9bbac0dc879dd4657": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3586af5ce2c4e0b804c724b9293a6a8", + "placeholder": "​", + "style": "IPY_MODEL_cd5d2dd9db804394ab64c453bbd07a35", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "2a549bb6200f4e8e8cc477a8cbd5e2b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31d2057f74f747bb8e67fdc2d8f9b2ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3493,7 +3484,7 @@ "width": null } }, - "3bd401a460024bc48a31b717fb070608": { + "320953a58ed1469888fce350ccdbabd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3546,7 +3537,48 @@ "width": null } }, - "3d55d37d80234295a5576da2f9f452ca": { + "32a164f3eb4f498888ac958438af9d1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3aeaf85820de4e5f8393777e189b3dce", + "placeholder": "​", + "style": "IPY_MODEL_9954a09e3a90435193ea01d218b5c117", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "39147631539c485fb6d9e35eb2bb0674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "39cc543d130b46e6aac550cff6755f21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3599,95 +3631,60 @@ "width": null } }, - "3d5bb862500b4baf8f1c036198559721": { - "model_module": "@jupyter-widgets/controls", + "3a8d9ea9e7ca47d3b7b8c7d7a76a920c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9c9484fe19843cd8242aebfa07bca87", - "placeholder": "​", - "style": "IPY_MODEL_64b65706677f48e88189730f1cf553d8", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "400f135f0fad41bcaa5fb9f34a254890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_595bac28c382411c8ed83dbe0664e5b6", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74a3baed822c485fa6e06f17073f1d15", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "44106118c38648c6ac9d419718f9521e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_924e788edbe6435683b771360d131993", - "placeholder": "​", - "style": "IPY_MODEL_e27f5a052608489ab13d73a95f127cc5", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.11MB/s]" - } - }, - "4639fa5c8f134aafb865cfea7833f138": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "478e293e37f940adb538a80b4cb2bbe7": { + "3aeaf85820de4e5f8393777e189b3dce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3740,23 +3737,7 @@ "width": null } }, - "48bb30d3288d428ebb1c738851326a6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4b8e4ff862314d4a91f4d6b6ed79cf3a": { + "3bc507e5e47e4b72aeeea5869a5441ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3772,56 +3753,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_19394f5d752743e78883476208a2b9ca", - "max": 9015.0, + "layout": "IPY_MODEL_e1a99c2562404d3a8f24c1fed2c86e01", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a2916522c3814be0b065ab22fa354d72", + "style": "IPY_MODEL_98c1520586874449b9f3840a4fda7c0a", "tabbable": null, "tooltip": null, - "value": 9015.0 - } - }, - "4c784eb6ca0d44ec8fdbaa27388294a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cf1042a571f741ff8b4501247a7b737a", - "placeholder": "​", - "style": "IPY_MODEL_e0c0c52f1d0646b58bbd276a6a9fbada", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "4cd8eb69e49d4b77b074ad62dea1ca7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 40.0 } }, - "4f6e24c828674bf9a3827c768c11f3ef": { + "400b25482bb94f1ca7b8079db0f5db90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3874,43 +3816,60 @@ "width": null } }, - "4fd706c037d14d15a7401f06a4ea0329": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "500d900734f649c2b44bcc26d2e42db1": { - "model_module": "@jupyter-widgets/controls", + "4129b09b8f22418fa98b017137dbf26b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5084c1e9bea14b65a257b66df2adbb78": { + "41e1fd1ebc7048ca9f24a9114c77b296": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3963,121 +3922,41 @@ "width": null } }, - "51274f11c67a441d9675a667bf50664e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_58d229d42b9546979f53135e0452d384", - "IPY_MODEL_eecddcbb42544c72a337c357524f9ceb", - "IPY_MODEL_7052cd84faeb41cbb8eefcc2c3d010ed" - ], - "layout": "IPY_MODEL_e5303be63bba4080a74c6b8b79a11b89", - "tabbable": null, - "tooltip": null - } - }, - "54a11615b1a04569b980049043c6732f": { + "448ad094ea874b36b28dc064540626d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "55a91b252ecf4fbea6311de73ef07857": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4f6e24c828674bf9a3827c768c11f3ef", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_05387ecea2654c4f8cec1b7b53d91218", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "57720e22f2764eed89ce3b7251e5c1d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2e9fb0892b8044baa8694687db5386a1", - "placeholder": "​", - "style": "IPY_MODEL_77ae19f35bdf479f83f47b4c6e16bcf4", - "tabbable": null, - "tooltip": null, - "value": "100%" + "bar_color": null, + "description_width": "" } }, - "58d229d42b9546979f53135e0452d384": { + "45975ae1a9b3496b823baf490fed9570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a63d2d076f0454292f9cd0aec23805c", - "placeholder": "​", - "style": "IPY_MODEL_cfde35eed3174baa96aff79010b1bfe5", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "595bac28c382411c8ed83dbe0664e5b6": { + "46e7fffa8e484541b153c6f62bc59ab5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4130,25 +4009,56 @@ "width": null } }, - "596e17a7ea5c4da594dcf5a7db4d3871": { + "4841910b6f41431f8317ca2f2a18a816": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_610b357d582f4cb791c03e66cd02ddae", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_280605f687624aa6a5c57ceeffbe642b", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "4f0d3db3265d4e6bad4c6aaa33d19772": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83c8d2dfb00a4b0dae6ed23af048d7ea", + "placeholder": "​", + "style": "IPY_MODEL_1f5b860557574c59ad3c3cf7f6e1c093", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" } }, - "5df4998e41664c4f8bcdc8714ab169db": { + "4f77cb1e3a7c4d9f8d5d7f7fd0274af9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4201,7 +4111,7 @@ "width": null } }, - "60855c03fcde46e2a29f9ecc475a6aea": { + "5023d0218cbf4a69b63b5f6a6d54f073": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4254,43 +4164,7 @@ "width": null } }, - "622ac67ab7e543faaad674e9b119aec0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "64b65706677f48e88189730f1cf553d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6506d6af2c5b4243b845da2b7cdbca49": { + "5122f8d5afdf40dd8b74c186ca1cea9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4306,105 +4180,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8011b9b5b02c4cf199be26ba2deb66b1", - "max": 40.0, + "layout": "IPY_MODEL_b82f7d923f7f4968abb6823e332d8b5e", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9dd096994de646e3ad1bc4586397ab8b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "6726c970164f4f919919ab26f89162b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78d25c679de341d08c0c840991231657", - "placeholder": "​", - "style": "IPY_MODEL_692f4624632847709858c4b0c06097d1", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1290.32it/s]" - } - }, - "678375d8f3fe444fa525d34020ce8c94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_082c0f49338e471a900df64e25963ce9", - "IPY_MODEL_55a91b252ecf4fbea6311de73ef07857", - "IPY_MODEL_240b3517d93d46629dd6a70bbba5cf51" - ], - "layout": "IPY_MODEL_e3c740e55fb04953a2171d44514f5c58", - "tabbable": null, - "tooltip": null - } - }, - "692f4624632847709858c4b0c06097d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a88bb9d45604f988d52b903e7c0a94e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b29ea8e3efa946a68e18e9d12eb8af54", - "placeholder": "​", - "style": "IPY_MODEL_b5fee3c6d86a4afab187043597c9b238", + "style": "IPY_MODEL_e2947083f54343ac98ee23ccff13ec59", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 239640.28 examples/s]" + "value": 60000.0 } }, - "6b7642cc9871480cb4a8c2fba55fa10e": { + "527ac4413b0c45d9b0a4af216feac901": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4457,31 +4243,7 @@ "width": null } }, - "6c55c29353e849aabd683fc81a40a89f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd4a2515950949cb8f82b42492b20107", - "IPY_MODEL_e0609713a8684c4089c523eb6a6fe2d4", - "IPY_MODEL_6726c970164f4f919919ab26f89162b3" - ], - "layout": "IPY_MODEL_da32f06b79e244038daed9c76595f0f1", - "tabbable": null, - "tooltip": null - } - }, - "7052cd84faeb41cbb8eefcc2c3d010ed": { + "53b2f74e987b45a5bdfd6bbdf322ecb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4496,15 +4258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_33a1a9cfe2804fd88f467e7e9c20e1e1", + "layout": "IPY_MODEL_4129b09b8f22418fa98b017137dbf26b", "placeholder": "​", - "style": "IPY_MODEL_2f39aaa4c6a24d23b0766aea99ab3987", + "style": "IPY_MODEL_03e822c4ea3c4f40ae61a20481bbcf71", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.28it/s]" + "value": " 40/40 [00:00<00:00, 56.94it/s]" } }, - "730b3acd812f4126ab76aa1bd5fdcc4b": { + "55a46f69a848418cba68dea3cc109113": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4557,23 +4319,49 @@ "width": null } }, - "73c8b4db66c0416691e571d2394b3936": { + "5621938c593842fa97157e9083b2d4a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "56549934bb8b4370915a9339138d273c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e190f8b319134def98c32b7a5016fae0", + "IPY_MODEL_5122f8d5afdf40dd8b74c186ca1cea9b", + "IPY_MODEL_a5a2adf4e9564a7a88a9efb53abeef28" + ], + "layout": "IPY_MODEL_3a8d9ea9e7ca47d3b7b8c7d7a76a920c", + "tabbable": null, + "tooltip": null } }, - "74a3baed822c485fa6e06f17073f1d15": { + "5938e19a245e488aa2bcf4f0fde7c061": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4589,7 +4377,49 @@ "description_width": "" } }, - "77ae19f35bdf479f83f47b4c6e16bcf4": { + "5ae2353a45d646d7967aa360871859f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5be8e4b7db7940b5a22aca8a89b771f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28173da4edf74648b7c8dc14dec217ff", + "IPY_MODEL_1a70712be579474db5f6c1904e32e1c1", + "IPY_MODEL_dca4ddc98aca4838b13b9761c90b4f59" + ], + "layout": "IPY_MODEL_41e1fd1ebc7048ca9f24a9114c77b296", + "tabbable": null, + "tooltip": null + } + }, + "5d4b1f89a6584fed9ae98aa5a9c0e273": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4607,7 +4437,7 @@ "text_color": null } }, - "78d25c679de341d08c0c840991231657": { + "610b357d582f4cb791c03e66cd02ddae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4660,7 +4490,7 @@ "width": null } }, - "7e1ff3e34d3c49caad23eb7e9a2ffaf6": { + "65bf121055374645af97ac18ab95221d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4713,7 +4543,7 @@ "width": null } }, - "7e940b8484a44373862483908f8603db": { + "67af2714ad5641808e4c38e47312c61a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,60 +4596,31 @@ "width": null } }, - "8011b9b5b02c4cf199be26ba2deb66b1": { - "model_module": "@jupyter-widgets/base", + "6b7f0209fffe464da1552b8f9bedb1f4": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_32a164f3eb4f498888ac958438af9d1f", + "IPY_MODEL_be69891db2c845979ef461306b5460fb", + "IPY_MODEL_9851708cece84eaa987d910cb56ec60c" + ], + "layout": "IPY_MODEL_f036d6b9c0df439c9d4fffc268c3b0f1", + "tabbable": null, + "tooltip": null } }, - "811601011a024e32986e64a1513db2d5": { + "6eb643d5d4e340e99bf3820633dbce6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4837,7 +4638,7 @@ "text_color": null } }, - "8499b3dd5f864e5a94cd507844cad1ec": { + "70796253deb141feb43e6bebd0f20e6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4890,7 +4691,30 @@ "width": null } }, - "88314cef04524d1a85daebcedae1ff6a": { + "739a2ac473004c7a83e7b1a1fb9123b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70796253deb141feb43e6bebd0f20e6f", + "placeholder": "​", + "style": "IPY_MODEL_7badc82ca5414a80a4b0c4c8dbdf64b8", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1134.53it/s]" + } + }, + "744805aa63e247828f784fdc45db35ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4943,60 +4767,49 @@ "width": null } }, - "8a5bad1c31144463b12bb75d6a6b5b75": { - "model_module": "@jupyter-widgets/base", + "7481d35dd38b40ca95bbd63bb1651e1c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7563e14e5ad24aa285a0d80e59cdd41e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0fb863f8786844f2bd1f8aa6fa2ad8e9", + "IPY_MODEL_d4c42aa05f13403e92e658224acba840", + "IPY_MODEL_f6b84b7b26fb4ad0b00a2080ca788f2c" + ], + "layout": "IPY_MODEL_5023d0218cbf4a69b63b5f6a6d54f073", + "tabbable": null, + "tooltip": null } }, - "8b86b62c9d534afd8d085de159583428": { + "76e72eb7a31f45e8814290f43be25bf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5014,7 +4827,7 @@ "text_color": null } }, - "8b9c8bbff9d6486bb4439bbea955d6e0": { + "76ecd7428dc541709a4f2d25d784354f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5067,7 +4880,7 @@ "width": null } }, - "8c83b7cde83d42628f45812c4d8dce86": { + "79d7f02883414d61b263c4320e04931e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5120,47 +4933,66 @@ "width": null } }, - "8e39e3083e0948878024a2772e960428": { + "7a2913cecf194812b334d9cc9c61fa2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7abf5d13f10d4fa097c867780436dc8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9bfa17fcc87439ca4912abd99217e06", - "IPY_MODEL_6506d6af2c5b4243b845da2b7cdbca49", - "IPY_MODEL_bbc4266819394f66bcab4138f525ee52" - ], - "layout": "IPY_MODEL_8499b3dd5f864e5a94cd507844cad1ec", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a87d6f090bc0457d8b0527479ed9c7a7", + "placeholder": "​", + "style": "IPY_MODEL_aa322526a97d415b9961408f9b40b143", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.71it/s]" } }, - "907261e1e53b4107b218ca28d5c70b0f": { + "7badc82ca5414a80a4b0c4c8dbdf64b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "924e788edbe6435683b771360d131993": { + "7daaf6a86ffd4834a065210fcab69a0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5193,109 +5025,45 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "927115af3d90415fad6e48adb17b5853": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "92cdf07aa86d4657bb8fbd859a9bda76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "934aabfe9a994494aaaa79e9738430b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0a58eea28eb54bebbb8feee6050f88e4", - "IPY_MODEL_a9cd43f674d94f75bce3d21255d73d31", - "IPY_MODEL_c25f6c7ea91642fb97bcdb19edfd2df4" - ], - "layout": "IPY_MODEL_2a2ffb2a35184d118bfc8b003ecc387a", - "tabbable": null, - "tooltip": null + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9703ef2bf4644e038e7a13e150314dbd": { + "7e88473ecb404a65a312d4d93fd0432e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a165db2b19a74c2f938c7d694e525926", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af604a97cad643f3af620c6334f9eb7e", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "985af320a2f44fd7a0a667374dada460": { + "7ff1a331657040b3b7124d2b8c47f45b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5348,7 +5116,7 @@ "width": null } }, - "9a63d2d076f0454292f9cd0aec23805c": { + "83c8d2dfb00a4b0dae6ed23af048d7ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5401,7 +5169,7 @@ "width": null } }, - "9cb1ff0574624b2d8d384461ce4bfd6d": { + "8648bb270a434d839bb63f51a140cc71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5416,15 +5184,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1351e71e76a4086beef3907d092a5f9", + "layout": "IPY_MODEL_bcef24339cc14f42903dbde4f7f78695", "placeholder": "​", - "style": "IPY_MODEL_f7cb68abf11143bbbca1129e9ea6889f", + "style": "IPY_MODEL_02d3be24caec40e2ad95769ab44b473d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "9dd096994de646e3ad1bc4586397ab8b": { + "88dc41c0e97f4b8888b3446afe1c90c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5440,7 +5208,25 @@ "description_width": "" } }, - "9dd62db46f87480cbbc350933384ca97": { + "89546d3305f74c02a533a1c332bbdd76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8cc052bc26c64436b2e556ba35239873": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5493,7 +5279,111 @@ "width": null } }, - "9e3ccebb468146d0a1a77192630cbe6e": { + "8d0cb5d8af7f491696758ea40d39d4e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_25451e345fcf4e2384e0fd87bffeae2c", + "placeholder": "​", + "style": "IPY_MODEL_5ae2353a45d646d7967aa360871859f9", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 281094.35 examples/s]" + } + }, + "916c29ce2d2c435486a7af805806bac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd2e434696784834b978d928717fbe8d", + "IPY_MODEL_07b4528c25f94cc2bfe65b20fc6f82fd", + "IPY_MODEL_af460e7a258f4fa8809b6cafbe06cc18" + ], + "layout": "IPY_MODEL_e7124fe9cee740bcb7d840253a3fe518", + "tabbable": null, + "tooltip": null + } + }, + "9851708cece84eaa987d910cb56ec60c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46e7fffa8e484541b153c6f62bc59ab5", + "placeholder": "​", + "style": "IPY_MODEL_76e72eb7a31f45e8814290f43be25bf5", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 58.8MB/s]" + } + }, + "98c1520586874449b9f3840a4fda7c0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9954a09e3a90435193ea01d218b5c117": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9a4221150d324e0988f29b43c59df08a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5546,31 +5436,25 @@ "width": null } }, - "9e4d34f1dafd42108013827c12b7a9ec": { + "9b3345d149374a3a9f53dee9312b6e4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9cb1ff0574624b2d8d384461ce4bfd6d", - "IPY_MODEL_306ae28149d44a228735d2b7039937e6", - "IPY_MODEL_cbef1fc290164ccf84ddd72eb12766f4" - ], - "layout": "IPY_MODEL_f572abdd053b484fa923c35c6c1b7441", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0d516f5941c4557bdba5b1e744d2f72": { + "9c776a9c550743feaef06995240b45d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5623,7 +5507,56 @@ "width": null } }, - "a165db2b19a74c2f938c7d694e525926": { + "9caf4b4175f74931a8e29555d56a5cf4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a66f243ae972404f8bbf95579e4fc3ee", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_da0691a3418941b79b09fe086ce38778", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "a02438583e914e80a9edeec461675c63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dbda3f69bdb3488887f2171a5013b4cd", + "placeholder": "​", + "style": "IPY_MODEL_7481d35dd38b40ca95bbd63bb1651e1c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.71it/s]" + } + }, + "a1474539b99c4c069e5a0cc75abd58a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5676,39 +5609,96 @@ "width": null } }, - "a1923fce48364b85a78a93b1a44e1052": { + "a285b1fda3104d11b406b25e4e839fc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d71ef26cdb624a41849c7f983bfa0323", + "IPY_MODEL_07846f593d614c67bc252174f3b06df8", + "IPY_MODEL_739a2ac473004c7a83e7b1a1fb9123b0" + ], + "layout": "IPY_MODEL_b42750a665994ab48977ebd7c912326c", + "tabbable": null, + "tooltip": null + } + }, + "a4b21b3edc0740768e50dae0093a1b40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d14aaa8956f742cf945328e790de0db9", + "placeholder": "​", + "style": "IPY_MODEL_9b3345d149374a3a9f53dee9312b6e4f", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 68.2MB/s]" + } + }, + "a4b545185c5d4644814ac73d51cff97d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e1bbf66f3b824ea6949f354f06559b2b", + "IPY_MODEL_1c119d3815a94d07a3a80110a36f2669", + "IPY_MODEL_d1c09326e39d4c7cb01e678c8242efbb" + ], + "layout": "IPY_MODEL_e278318c62f84b08a1cdca7849af9d5e", + "tabbable": null, + "tooltip": null } }, - "a2916522c3814be0b065ab22fa354d72": { + "a595d095cbc049fca70f2b6cedb97861": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2d6049e0027448686da307d11b43b57": { + "a5a2adf4e9564a7a88a9efb53abeef28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5723,15 +5713,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c83b7cde83d42628f45812c4d8dce86", + "layout": "IPY_MODEL_16d380e0df77435282bb3d529594c4b5", "placeholder": "​", - "style": "IPY_MODEL_500d900734f649c2b44bcc26d2e42db1", + "style": "IPY_MODEL_e139a6425bf74dc8a8502512c0687de1", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 60000/60000 [00:11<00:00, 5521.89 examples/s]" } }, - "a4a0713774214a97bf4107a3c0c0fa85": { + "a66f243ae972404f8bbf95579e4fc3ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5784,31 +5774,25 @@ "width": null } }, - "a61ad2ad4b744a2ca9088d411dae337f": { + "a71434c6d0e04c9d9f7254a31dcdf3a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18e38ac0e1f6478d9f7300a1682d8d0c", - "IPY_MODEL_9703ef2bf4644e038e7a13e150314dbd", - "IPY_MODEL_bec1f90f44b24feaa006c199f1565547" - ], - "layout": "IPY_MODEL_5df4998e41664c4f8bcdc8714ab169db", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a907dcb7d0e14bd69c92d3e6f6324ebb": { + "a87d6f090bc0457d8b0527479ed9c7a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5861,31 +5845,121 @@ "width": null } }, - "a93f09c26a99419f9408245e9fb75e1b": { + "aa322526a97d415b9961408f9b40b143": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab457040f53740fc9999e1d504d2a51c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "adffa2710a0545cfb5e6086c556a00a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aed4f72dda8b4590bef309071af45f33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2d6049e0027448686da307d11b43b57", - "IPY_MODEL_4b8e4ff862314d4a91f4d6b6ed79cf3a", - "IPY_MODEL_44106118c38648c6ac9d419718f9521e" - ], - "layout": "IPY_MODEL_b672f339ae614049a4596f0e403e1cd9", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ff1a331657040b3b7124d2b8c47f45b", + "placeholder": "​", + "style": "IPY_MODEL_0844beb068c049daa4758f29b95f56d9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.16MB/s]" + } + }, + "af460e7a258f4fa8809b6cafbe06cc18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f80d3f33b4b443f7b339cfa574c8808b", + "placeholder": "​", + "style": "IPY_MODEL_89546d3305f74c02a533a1c332bbdd76", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 593.80it/s]" + } + }, + "b0417747689248528d0b4d93bbcd4d6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a98cc419a4ac4859b8bec675330417c0": { + "b402346d9cd449999f208e13379066db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5938,7 +6012,7 @@ "width": null } }, - "a9c9484fe19843cd8242aebfa07bca87": { + "b42750a665994ab48977ebd7c912326c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5991,33 +6065,7 @@ "width": null } }, - "a9cd43f674d94f75bce3d21255d73d31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3d55d37d80234295a5576da2f9f452ca", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4639fa5c8f134aafb865cfea7833f138", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "a9dd5bd4c10f4b4285cadaf816f8c62b": { + "b6735ab9e73940ea9fd4d15752f0434b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6067,127 +6115,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "aa83b3e0df7a491b9cc7bba0820ef6b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c784eb6ca0d44ec8fdbaa27388294a9", - "IPY_MODEL_ab7d4cb17d174956af22fd23c819c1ab", - "IPY_MODEL_05c88c06baa34af887bdc5deb3f0ca93" - ], - "layout": "IPY_MODEL_e22c8ad4b22d439f8563b6b9a21e3daa", - "tabbable": null, - "tooltip": null - } - }, - "aae19f3127584f9296ecf0b0ff7c695b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9dd5bd4c10f4b4285cadaf816f8c62b", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_73c8b4db66c0416691e571d2394b3936", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "ab7d4cb17d174956af22fd23c819c1ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4a0713774214a97bf4107a3c0c0fa85", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cd8eb69e49d4b77b074ad62dea1ca7b", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "abd13d8f3b444f92bc4aeb89a1d336a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "abfbff3a88c24b90924d46cc12cc6d30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3375cbf361d04f8fb15d002f9dfb4097", - "placeholder": "​", - "style": "IPY_MODEL_d545fba9366a46399c6ffeb3a5c4ae01", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "width": null } }, - "ad0023111c034ae2bf185a8e7299a303": { + "b82f7d923f7f4968abb6823e332d8b5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6240,41 +6171,7 @@ "width": null } }, - "af604a97cad643f3af620c6334f9eb7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "aff9494e44414b9ca131464b7ef06d79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b29ea8e3efa946a68e18e9d12eb8af54": { + "ba552f3bea524d3f831f4a9b3346f6ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6327,25 +6224,23 @@ "width": null } }, - "b5fee3c6d86a4afab187043597c9b238": { + "bb7f0142c0f843aea52524450bd6d96f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b672f339ae614049a4596f0e403e1cd9": { + "bcef24339cc14f42903dbde4f7f78695": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6398,30 +6293,59 @@ "width": null } }, - "b9bfa17fcc87439ca4912abd99217e06": { + "be69891db2c845979ef461306b5460fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60855c03fcde46e2a29f9ecc475a6aea", - "placeholder": "​", - "style": "IPY_MODEL_622ac67ab7e543faaad674e9b119aec0", + "layout": "IPY_MODEL_24297e5b0e604438877ede93f02b2859", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88dc41c0e97f4b8888b3446afe1c90c9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 5175617.0 + } + }, + "bf5b6eb28fd24c3691f23018f9b05c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1474539b99c4c069e5a0cc75abd58a5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0417747689248528d0b4d93bbcd4d6e", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 } }, - "ba5b3c3ff51646fca6d9652fe7336d9e": { + "bf7fd900d1004498a79101df1571a72b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6474,95 +6398,23 @@ "width": null } }, - "bb2c790001214f159330cf2a4dcf75f3": { + "c317d4043f56465f849ce406ef98e3e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bb6260a24a574052b8dc3b63327e49b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f1eabe792beb46a2902e776898203d21", - "IPY_MODEL_044b1fe3eaba4fb1bd442fa7be32f390", - "IPY_MODEL_f301fa35fb38444389c42dbc43a712d6" - ], - "layout": "IPY_MODEL_985af320a2f44fd7a0a667374dada460", - "tabbable": null, - "tooltip": null - } - }, - "bbc4266819394f66bcab4138f525ee52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9dd62db46f87480cbbc350933384ca97", - "placeholder": "​", - "style": "IPY_MODEL_4fd706c037d14d15a7401f06a4ea0329", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.56it/s]" - } - }, - "bec1f90f44b24feaa006c199f1565547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a98cc419a4ac4859b8bec675330417c0", - "placeholder": "​", - "style": "IPY_MODEL_0e3d1e5c544a45dbb3873f8a0048eb16", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 52.81it/s]" + "bar_color": null, + "description_width": "" } }, - "c1351e71e76a4086beef3907d092a5f9": { + "c3862f19726f43139736766e91ad2e8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6615,100 +6467,23 @@ "width": null } }, - "c25f6c7ea91642fb97bcdb19edfd2df4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88314cef04524d1a85daebcedae1ff6a", - "placeholder": "​", - "style": "IPY_MODEL_8b86b62c9d534afd8d085de159583428", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 25.8MB/s]" - } - }, - "c52a734ae4b443c494fb694c3022008c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9e3ccebb468146d0a1a77192630cbe6e", - "placeholder": "​", - "style": "IPY_MODEL_dd6da14e6c594d2e8f1564582607dc05", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 591.41it/s]" - } - }, - "c87ed6354806472ab823ca636a72cbe0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_06cc74e6d9b14909aa898c1eec8bef7b", - "IPY_MODEL_400f135f0fad41bcaa5fb9f34a254890", - "IPY_MODEL_e9a71258239242e2acb3be22ed0e1c1b" - ], - "layout": "IPY_MODEL_cd69a0d246894dc8920bcab3063f96ca", - "tabbable": null, - "tooltip": null - } - }, - "cbef1fc290164ccf84ddd72eb12766f4": { + "c483682d58df45a7b94f7e5473449825": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a5bad1c31144463b12bb75d6a6b5b75", - "placeholder": "​", - "style": "IPY_MODEL_ee7c6f935b4046d290506bc6b5f71709", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.87it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ccb13c3a279949ac83416caf994e69b6": { + "c4dec36e37e3418b9d64683574cb2e59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6726,7 +6501,7 @@ "text_color": null } }, - "cd69a0d246894dc8920bcab3063f96ca": { + "cc7c887c523c4ddeb4e7b9558ec18b62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6779,7 +6554,51 @@ "width": null } }, - "cf1042a571f741ff8b4501247a7b737a": { + "cd5d2dd9db804394ab64c453bbd07a35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d119ec5ae01c44198508b90ab13eac79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_527ac4413b0c45d9b0a4af216feac901", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab457040f53740fc9999e1d504d2a51c", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "d14aaa8956f742cf945328e790de0db9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6832,61 +6651,54 @@ "width": null } }, - "cfde35eed3174baa96aff79010b1bfe5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d545fba9366a46399c6ffeb3a5c4ae01": { + "d1c09326e39d4c7cb01e678c8242efbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0024d4199dae41bf903390cc792ed260", + "placeholder": "​", + "style": "IPY_MODEL_fee2191facdb482e9c59a09be601e11f", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 239459.68 examples/s]" } }, - "d6eb5c530ad84d28bbc95826d2099365": { + "d3a7e2a492de443e9fc34cd490473b54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_08032ec8e12548b1b5090e23e9c5cdad", + "IPY_MODEL_3bc507e5e47e4b72aeeea5869a5441ff", + "IPY_MODEL_a02438583e914e80a9edeec461675c63" + ], + "layout": "IPY_MODEL_7daaf6a86ffd4834a065210fcab69a0b", + "tabbable": null, + "tooltip": null } }, - "d70ad9981d414c5891139e8c56004c3d": { + "d3f9915f8fa64a7f9f881537bc002d6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6939,7 +6751,79 @@ "width": null } }, - "d8b14dad19b04b49baca467358d63793": { + "d4c42aa05f13403e92e658224acba840": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76ecd7428dc541709a4f2d25d784354f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c317d4043f56465f849ce406ef98e3e6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "d55109f293164b738bf09e69c5fc4d72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_108812bccbd741fe97637c2274d2b4df", + "placeholder": "​", + "style": "IPY_MODEL_5621938c593842fa97157e9083b2d4a3", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "d71ef26cdb624a41849c7f983bfa0323": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55a46f69a848418cba68dea3cc109113", + "placeholder": "​", + "style": "IPY_MODEL_5d4b1f89a6584fed9ae98aa5a9c0e273", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "da0691a3418941b79b09fe086ce38778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6955,7 +6839,7 @@ "description_width": "" } }, - "da32f06b79e244038daed9c76595f0f1": { + "dbda3f69bdb3488887f2171a5013b4cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7008,25 +6892,79 @@ "width": null } }, - "dd6da14e6c594d2e8f1564582607dc05": { + "dca4ddc98aca4838b13b9761c90b4f59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e37f3e1b31a7416eab193b86365be678", + "placeholder": "​", + "style": "IPY_MODEL_7e88473ecb404a65a312d4d93fd0432e", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.80it/s]" + } + }, + "dceeba9e537e4860984cb37d3771557a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_400b25482bb94f1ca7b8079db0f5db90", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5938e19a245e488aa2bcf4f0fde7c061", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "de854ac5201c498694e0f3f886f6fe2f": { + "dd2e434696784834b978d928717fbe8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cc7c887c523c4ddeb4e7b9558ec18b62", + "placeholder": "​", + "style": "IPY_MODEL_e19ca719e0774d509109acb9b2d96321", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e139a6425bf74dc8a8502512c0687de1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7044,33 +6982,30 @@ "text_color": null } }, - "e0609713a8684c4089c523eb6a6fe2d4": { + "e190f8b319134def98c32b7a5016fae0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b9c8bbff9d6486bb4439bbea955d6e0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_48bb30d3288d428ebb1c738851326a6e", + "layout": "IPY_MODEL_79d7f02883414d61b263c4320e04931e", + "placeholder": "​", + "style": "IPY_MODEL_a71434c6d0e04c9d9f7254a31dcdf3a0", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Map (num_proc=4): 100%" } }, - "e0c0c52f1d0646b58bbd276a6a9fbada": { + "e19ca719e0774d509109acb9b2d96321": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7088,7 +7023,83 @@ "text_color": null } }, - "e22c8ad4b22d439f8563b6b9a21e3daa": { + "e1a99c2562404d3a8f24c1fed2c86e01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e1bbf66f3b824ea6949f354f06559b2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c776a9c550743feaef06995240b45d2", + "placeholder": "​", + "style": "IPY_MODEL_39147631539c485fb6d9e35eb2bb0674", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "e278318c62f84b08a1cdca7849af9d5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7141,51 +7152,23 @@ "width": null } }, - "e27f5a052608489ab13d73a95f127cc5": { + "e2947083f54343ac98ee23ccff13ec59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e37413872650482a92cd3a0263486b78": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_478e293e37f940adb538a80b4cb2bbe7", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_927115af3d90415fad6e48adb17b5853", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "bar_color": null, + "description_width": "" } }, - "e3c740e55fb04953a2171d44514f5c58": { + "e3586af5ce2c4e0b804c724b9293a6a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7238,7 +7221,7 @@ "width": null } }, - "e5303be63bba4080a74c6b8b79a11b89": { + "e37f3e1b31a7416eab193b86365be678": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7291,48 +7274,60 @@ "width": null } }, - "e9a71258239242e2acb3be22ed0e1c1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ba5b3c3ff51646fca6d9652fe7336d9e", - "placeholder": "​", - "style": "IPY_MODEL_ccb13c3a279949ac83416caf994e69b6", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5702.30 examples/s]" - } - }, - "ee7c6f935b4046d290506bc6b5f71709": { - "model_module": "@jupyter-widgets/controls", + "e7124fe9cee740bcb7d840253a3fe518": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "eecddcbb42544c72a337c357524f9ceb": { + "ee6c43ae39da44d7be4afa23290fcbca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7348,63 +7343,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b7642cc9871480cb4a8c2fba55fa10e", - "max": 40.0, + "layout": "IPY_MODEL_bf7fd900d1004498a79101df1571a72b", + "max": 9015.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d8b14dad19b04b49baca467358d63793", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "f1eabe792beb46a2902e776898203d21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_730b3acd812f4126ab76aa1bd5fdcc4b", - "placeholder": "​", - "style": "IPY_MODEL_596e17a7ea5c4da594dcf5a7db4d3871", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "f301fa35fb38444389c42dbc43a712d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb974854b89d4edf815d2752adaf746a", - "placeholder": "​", - "style": "IPY_MODEL_de854ac5201c498694e0f3f886f6fe2f", + "style": "IPY_MODEL_1090c715109041f69b16b3ea9e7cc89c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 56.42it/s]" + "value": 9015.0 } }, - "f572abdd053b484fa923c35c6c1b7441": { + "f036d6b9c0df439c9d4fffc268c3b0f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7457,43 +7406,78 @@ "width": null } }, - "f7cb68abf11143bbbca1129e9ea6889f": { + "f184c01ff207409fa2616b01a03e66dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_29505eb3ce6041d9bbac0dc879dd4657", + "IPY_MODEL_bf5b6eb28fd24c3691f23018f9b05c7c", + "IPY_MODEL_a4b21b3edc0740768e50dae0093a1b40" + ], + "layout": "IPY_MODEL_b402346d9cd449999f208e13379066db", + "tabbable": null, + "tooltip": null } }, - "f8b15d0f74dc495aa140ae3e0a1fee1b": { + "f4ff351cea04464ea2c5aad09727e327": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d55109f293164b738bf09e69c5fc4d72", + "IPY_MODEL_ee6c43ae39da44d7be4afa23290fcbca", + "IPY_MODEL_aed4f72dda8b4590bef309071af45f33" + ], + "layout": "IPY_MODEL_14e2c08150ea43558eebd6f3486bafdb", + "tabbable": null, + "tooltip": null + } + }, + "f6b84b7b26fb4ad0b00a2080ca788f2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39cc543d130b46e6aac550cff6755f21", + "placeholder": "​", + "style": "IPY_MODEL_2a549bb6200f4e8e8cc477a8cbd5e2b6", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.13it/s]" } }, - "fb974854b89d4edf815d2752adaf746a": { + "f80d3f33b4b443f7b339cfa574c8808b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7546,53 +7530,69 @@ "width": null } }, - "fbfc9749611f42999cf827c6a91c4989": { + "f8285f59b8424d64abd192de82dd8836": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d70ad9981d414c5891139e8c56004c3d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a1923fce48364b85a78a93b1a44e1052", + "layout": "IPY_MODEL_320953a58ed1469888fce350ccdbabd5", + "placeholder": "​", + "style": "IPY_MODEL_adffa2710a0545cfb5e6086c556a00a3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 59.13it/s]" } }, - "fd4a2515950949cb8f82b42492b20107": { + "fee2191facdb482e9c59a09be601e11f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ff8e913873fc4844888676660631126b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5084c1e9bea14b65a257b66df2adbb78", - "placeholder": "​", - "style": "IPY_MODEL_abd13d8f3b444f92bc4aeb89a1d336a2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f0d3db3265d4e6bad4c6aaa33d19772", + "IPY_MODEL_4841910b6f41431f8317ca2f2a18a816", + "IPY_MODEL_8d0cb5d8af7f491696758ea40d39d4e2" + ], + "layout": "IPY_MODEL_744805aa63e247828f784fdc45db35ae", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 7758d68b1..719782b23 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:11.231213Z", - "iopub.status.busy": "2024-12-25T19:56:11.231043Z", - "iopub.status.idle": "2024-12-25T19:56:12.388108Z", - "shell.execute_reply": "2024-12-25T19:56:12.387478Z" + "iopub.execute_input": "2024-12-26T11:17:03.557721Z", + "iopub.status.busy": "2024-12-26T11:17:03.557546Z", + "iopub.status.idle": "2024-12-26T11:17:04.730101Z", + "shell.execute_reply": "2024-12-26T11:17:04.729544Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.390315Z", - "iopub.status.busy": "2024-12-25T19:56:12.390039Z", - "iopub.status.idle": "2024-12-25T19:56:12.408191Z", - "shell.execute_reply": "2024-12-25T19:56:12.407737Z" + "iopub.execute_input": "2024-12-26T11:17:04.732437Z", + "iopub.status.busy": "2024-12-26T11:17:04.732040Z", + "iopub.status.idle": "2024-12-26T11:17:04.750289Z", + "shell.execute_reply": "2024-12-26T11:17:04.749863Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.410021Z", - "iopub.status.busy": "2024-12-25T19:56:12.409654Z", - "iopub.status.idle": "2024-12-25T19:56:12.458335Z", - "shell.execute_reply": "2024-12-25T19:56:12.457750Z" + "iopub.execute_input": "2024-12-26T11:17:04.752376Z", + "iopub.status.busy": "2024-12-26T11:17:04.751975Z", + "iopub.status.idle": "2024-12-26T11:17:04.776395Z", + "shell.execute_reply": "2024-12-26T11:17:04.775527Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.460109Z", - "iopub.status.busy": "2024-12-25T19:56:12.459760Z", - "iopub.status.idle": "2024-12-25T19:56:12.463447Z", - "shell.execute_reply": "2024-12-25T19:56:12.463011Z" + "iopub.execute_input": "2024-12-26T11:17:04.778133Z", + "iopub.status.busy": "2024-12-26T11:17:04.777798Z", + "iopub.status.idle": "2024-12-26T11:17:04.781151Z", + "shell.execute_reply": "2024-12-26T11:17:04.780706Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.465178Z", - "iopub.status.busy": "2024-12-25T19:56:12.464856Z", - "iopub.status.idle": "2024-12-25T19:56:12.472469Z", - "shell.execute_reply": "2024-12-25T19:56:12.472036Z" + "iopub.execute_input": "2024-12-26T11:17:04.782958Z", + "iopub.status.busy": "2024-12-26T11:17:04.782549Z", + "iopub.status.idle": "2024-12-26T11:17:04.789809Z", + "shell.execute_reply": "2024-12-26T11:17:04.789376Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.474221Z", - "iopub.status.busy": "2024-12-25T19:56:12.473890Z", - "iopub.status.idle": "2024-12-25T19:56:12.476348Z", - "shell.execute_reply": "2024-12-25T19:56:12.475894Z" + "iopub.execute_input": "2024-12-26T11:17:04.791526Z", + "iopub.status.busy": "2024-12-26T11:17:04.791249Z", + "iopub.status.idle": "2024-12-26T11:17:04.793881Z", + "shell.execute_reply": "2024-12-26T11:17:04.793400Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.478121Z", - "iopub.status.busy": "2024-12-25T19:56:12.477803Z", - "iopub.status.idle": "2024-12-25T19:56:15.576844Z", - "shell.execute_reply": "2024-12-25T19:56:15.576206Z" + "iopub.execute_input": "2024-12-26T11:17:04.795572Z", + "iopub.status.busy": "2024-12-26T11:17:04.795309Z", + "iopub.status.idle": "2024-12-26T11:17:07.876050Z", + "shell.execute_reply": "2024-12-26T11:17:07.875511Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:15.578963Z", - "iopub.status.busy": "2024-12-25T19:56:15.578761Z", - "iopub.status.idle": "2024-12-25T19:56:15.588045Z", - "shell.execute_reply": "2024-12-25T19:56:15.587617Z" + "iopub.execute_input": "2024-12-26T11:17:07.878143Z", + "iopub.status.busy": "2024-12-26T11:17:07.877745Z", + "iopub.status.idle": "2024-12-26T11:17:07.887527Z", + "shell.execute_reply": "2024-12-26T11:17:07.887081Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:15.589615Z", - "iopub.status.busy": "2024-12-25T19:56:15.589443Z", - "iopub.status.idle": "2024-12-25T19:56:17.464513Z", - "shell.execute_reply": "2024-12-25T19:56:17.463858Z" + "iopub.execute_input": "2024-12-26T11:17:07.889358Z", + "iopub.status.busy": "2024-12-26T11:17:07.889032Z", + "iopub.status.idle": "2024-12-26T11:17:09.795289Z", + "shell.execute_reply": "2024-12-26T11:17:09.794573Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.466440Z", - "iopub.status.busy": "2024-12-25T19:56:17.466121Z", - "iopub.status.idle": "2024-12-25T19:56:17.485253Z", - "shell.execute_reply": "2024-12-25T19:56:17.484761Z" + "iopub.execute_input": "2024-12-26T11:17:09.797371Z", + "iopub.status.busy": "2024-12-26T11:17:09.796899Z", + "iopub.status.idle": "2024-12-26T11:17:09.815581Z", + "shell.execute_reply": "2024-12-26T11:17:09.815120Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.486975Z", - "iopub.status.busy": "2024-12-25T19:56:17.486788Z", - "iopub.status.idle": "2024-12-25T19:56:17.494859Z", - "shell.execute_reply": "2024-12-25T19:56:17.494405Z" + "iopub.execute_input": "2024-12-26T11:17:09.817301Z", + "iopub.status.busy": "2024-12-26T11:17:09.816940Z", + "iopub.status.idle": "2024-12-26T11:17:09.824808Z", + "shell.execute_reply": "2024-12-26T11:17:09.824343Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.496396Z", - "iopub.status.busy": "2024-12-25T19:56:17.496221Z", - "iopub.status.idle": "2024-12-25T19:56:17.505201Z", - "shell.execute_reply": "2024-12-25T19:56:17.504758Z" + "iopub.execute_input": "2024-12-26T11:17:09.826519Z", + "iopub.status.busy": "2024-12-26T11:17:09.826205Z", + "iopub.status.idle": "2024-12-26T11:17:09.835237Z", + "shell.execute_reply": "2024-12-26T11:17:09.834673Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.507059Z", - "iopub.status.busy": "2024-12-25T19:56:17.506642Z", - "iopub.status.idle": "2024-12-25T19:56:17.514587Z", - "shell.execute_reply": "2024-12-25T19:56:17.514016Z" + "iopub.execute_input": "2024-12-26T11:17:09.836873Z", + "iopub.status.busy": "2024-12-26T11:17:09.836602Z", + "iopub.status.idle": "2024-12-26T11:17:09.844481Z", + "shell.execute_reply": "2024-12-26T11:17:09.843930Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.516535Z", - "iopub.status.busy": "2024-12-25T19:56:17.516176Z", - "iopub.status.idle": "2024-12-25T19:56:17.525298Z", - "shell.execute_reply": "2024-12-25T19:56:17.524703Z" + "iopub.execute_input": "2024-12-26T11:17:09.846284Z", + "iopub.status.busy": "2024-12-26T11:17:09.845973Z", + "iopub.status.idle": "2024-12-26T11:17:09.854754Z", + "shell.execute_reply": "2024-12-26T11:17:09.854294Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.527072Z", - "iopub.status.busy": "2024-12-25T19:56:17.526787Z", - "iopub.status.idle": "2024-12-25T19:56:17.534514Z", - "shell.execute_reply": "2024-12-25T19:56:17.533947Z" + "iopub.execute_input": "2024-12-26T11:17:09.856381Z", + "iopub.status.busy": "2024-12-26T11:17:09.856075Z", + "iopub.status.idle": "2024-12-26T11:17:09.863563Z", + "shell.execute_reply": "2024-12-26T11:17:09.862918Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.536479Z", - "iopub.status.busy": "2024-12-25T19:56:17.535951Z", - "iopub.status.idle": "2024-12-25T19:56:17.543478Z", - "shell.execute_reply": "2024-12-25T19:56:17.543043Z" + "iopub.execute_input": "2024-12-26T11:17:09.865193Z", + "iopub.status.busy": "2024-12-26T11:17:09.865021Z", + "iopub.status.idle": "2024-12-26T11:17:09.872462Z", + "shell.execute_reply": "2024-12-26T11:17:09.871999Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.545334Z", - "iopub.status.busy": "2024-12-25T19:56:17.544998Z", - "iopub.status.idle": "2024-12-25T19:56:17.553214Z", - "shell.execute_reply": "2024-12-25T19:56:17.552758Z" + "iopub.execute_input": "2024-12-26T11:17:09.874085Z", + "iopub.status.busy": "2024-12-26T11:17:09.873918Z", + "iopub.status.idle": "2024-12-26T11:17:09.882269Z", + "shell.execute_reply": "2024-12-26T11:17:09.881800Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 8fd7cb214..46f1322a7 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:20.348167Z", - "iopub.status.busy": "2024-12-25T19:56:20.348001Z", - "iopub.status.idle": "2024-12-25T19:56:23.162184Z", - "shell.execute_reply": "2024-12-25T19:56:23.161680Z" + "iopub.execute_input": "2024-12-26T11:17:12.554745Z", + "iopub.status.busy": "2024-12-26T11:17:12.554574Z", + "iopub.status.idle": "2024-12-26T11:17:15.446022Z", + "shell.execute_reply": "2024-12-26T11:17:15.445427Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.164239Z", - "iopub.status.busy": "2024-12-25T19:56:23.163949Z", - "iopub.status.idle": "2024-12-25T19:56:23.167268Z", - "shell.execute_reply": "2024-12-25T19:56:23.166816Z" + "iopub.execute_input": "2024-12-26T11:17:15.448227Z", + "iopub.status.busy": "2024-12-26T11:17:15.447923Z", + "iopub.status.idle": "2024-12-26T11:17:15.451436Z", + "shell.execute_reply": "2024-12-26T11:17:15.450954Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.168875Z", - "iopub.status.busy": "2024-12-25T19:56:23.168545Z", - "iopub.status.idle": "2024-12-25T19:56:23.171626Z", - "shell.execute_reply": "2024-12-25T19:56:23.171160Z" + "iopub.execute_input": "2024-12-26T11:17:15.452914Z", + "iopub.status.busy": "2024-12-26T11:17:15.452739Z", + "iopub.status.idle": "2024-12-26T11:17:15.455650Z", + "shell.execute_reply": "2024-12-26T11:17:15.455224Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.173355Z", - "iopub.status.busy": "2024-12-25T19:56:23.173014Z", - "iopub.status.idle": "2024-12-25T19:56:23.227446Z", - "shell.execute_reply": "2024-12-25T19:56:23.226893Z" + "iopub.execute_input": "2024-12-26T11:17:15.457278Z", + "iopub.status.busy": "2024-12-26T11:17:15.456933Z", + "iopub.status.idle": "2024-12-26T11:17:15.480938Z", + "shell.execute_reply": "2024-12-26T11:17:15.480487Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.229248Z", - "iopub.status.busy": "2024-12-25T19:56:23.228912Z", - "iopub.status.idle": "2024-12-25T19:56:23.232826Z", - "shell.execute_reply": "2024-12-25T19:56:23.232344Z" + "iopub.execute_input": "2024-12-26T11:17:15.482601Z", + "iopub.status.busy": "2024-12-26T11:17:15.482271Z", + "iopub.status.idle": "2024-12-26T11:17:15.486113Z", + "shell.execute_reply": "2024-12-26T11:17:15.485669Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'apple_pay_or_google_pay'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.234471Z", - "iopub.status.busy": "2024-12-25T19:56:23.234169Z", - "iopub.status.idle": "2024-12-25T19:56:23.236983Z", - "shell.execute_reply": "2024-12-25T19:56:23.236544Z" + "iopub.execute_input": "2024-12-26T11:17:15.487781Z", + "iopub.status.busy": "2024-12-26T11:17:15.487501Z", + "iopub.status.idle": "2024-12-26T11:17:15.490750Z", + "shell.execute_reply": "2024-12-26T11:17:15.490295Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.238690Z", - "iopub.status.busy": "2024-12-25T19:56:23.238516Z", - "iopub.status.idle": "2024-12-25T19:56:29.321329Z", - "shell.execute_reply": "2024-12-25T19:56:29.320771Z" + "iopub.execute_input": "2024-12-26T11:17:15.492414Z", + "iopub.status.busy": "2024-12-26T11:17:15.492239Z", + "iopub.status.idle": "2024-12-26T11:17:21.069939Z", + "shell.execute_reply": "2024-12-26T11:17:21.069233Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:29.323599Z", - "iopub.status.busy": "2024-12-25T19:56:29.323218Z", - "iopub.status.idle": "2024-12-25T19:56:30.190894Z", - "shell.execute_reply": "2024-12-25T19:56:30.190315Z" + "iopub.execute_input": "2024-12-26T11:17:21.072578Z", + "iopub.status.busy": "2024-12-26T11:17:21.071988Z", + "iopub.status.idle": "2024-12-26T11:17:21.978950Z", + "shell.execute_reply": "2024-12-26T11:17:21.978376Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.193317Z", - "iopub.status.busy": "2024-12-25T19:56:30.192784Z", - "iopub.status.idle": "2024-12-25T19:56:30.195798Z", - "shell.execute_reply": "2024-12-25T19:56:30.195309Z" + "iopub.execute_input": "2024-12-26T11:17:21.981255Z", + "iopub.status.busy": "2024-12-26T11:17:21.980872Z", + "iopub.status.idle": "2024-12-26T11:17:21.983774Z", + "shell.execute_reply": "2024-12-26T11:17:21.983259Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.197722Z", - "iopub.status.busy": "2024-12-25T19:56:30.197327Z", - "iopub.status.idle": "2024-12-25T19:56:30.384404Z", - "shell.execute_reply": "2024-12-25T19:56:30.383777Z" + "iopub.execute_input": "2024-12-26T11:17:21.985729Z", + "iopub.status.busy": "2024-12-26T11:17:21.985365Z", + "iopub.status.idle": "2024-12-26T11:17:22.176826Z", + "shell.execute_reply": "2024-12-26T11:17:22.176196Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.387750Z", - "iopub.status.busy": "2024-12-25T19:56:30.386980Z", - "iopub.status.idle": "2024-12-25T19:56:30.412023Z", - "shell.execute_reply": "2024-12-25T19:56:30.411504Z" + "iopub.execute_input": "2024-12-26T11:17:22.179229Z", + "iopub.status.busy": "2024-12-26T11:17:22.178802Z", + "iopub.status.idle": "2024-12-26T11:17:22.202825Z", + "shell.execute_reply": "2024-12-26T11:17:22.202313Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.414911Z", - "iopub.status.busy": "2024-12-25T19:56:30.414155Z", - "iopub.status.idle": "2024-12-25T19:56:30.423056Z", - "shell.execute_reply": "2024-12-25T19:56:30.422466Z" + "iopub.execute_input": "2024-12-26T11:17:22.204831Z", + "iopub.status.busy": "2024-12-26T11:17:22.204440Z", + "iopub.status.idle": "2024-12-26T11:17:22.214119Z", + "shell.execute_reply": "2024-12-26T11:17:22.213648Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.424844Z", - "iopub.status.busy": "2024-12-25T19:56:30.424525Z", - "iopub.status.idle": "2024-12-25T19:56:30.428872Z", - "shell.execute_reply": "2024-12-25T19:56:30.428309Z" + "iopub.execute_input": "2024-12-26T11:17:22.215939Z", + "iopub.status.busy": "2024-12-26T11:17:22.215621Z", + "iopub.status.idle": "2024-12-26T11:17:22.219962Z", + "shell.execute_reply": "2024-12-26T11:17:22.219400Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.430671Z", - "iopub.status.busy": "2024-12-25T19:56:30.430494Z", - "iopub.status.idle": "2024-12-25T19:56:30.436950Z", - "shell.execute_reply": "2024-12-25T19:56:30.436514Z" + "iopub.execute_input": "2024-12-26T11:17:22.221770Z", + "iopub.status.busy": "2024-12-26T11:17:22.221382Z", + "iopub.status.idle": "2024-12-26T11:17:22.227858Z", + "shell.execute_reply": "2024-12-26T11:17:22.227296Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.438751Z", - "iopub.status.busy": "2024-12-25T19:56:30.438444Z", - "iopub.status.idle": "2024-12-25T19:56:30.445101Z", - "shell.execute_reply": "2024-12-25T19:56:30.444528Z" + "iopub.execute_input": "2024-12-26T11:17:22.229626Z", + "iopub.status.busy": "2024-12-26T11:17:22.229227Z", + "iopub.status.idle": "2024-12-26T11:17:22.235900Z", + "shell.execute_reply": "2024-12-26T11:17:22.235345Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.446751Z", - "iopub.status.busy": "2024-12-25T19:56:30.446445Z", - "iopub.status.idle": "2024-12-25T19:56:30.452338Z", - "shell.execute_reply": "2024-12-25T19:56:30.451769Z" + "iopub.execute_input": "2024-12-26T11:17:22.237487Z", + "iopub.status.busy": "2024-12-26T11:17:22.237175Z", + "iopub.status.idle": "2024-12-26T11:17:22.242936Z", + "shell.execute_reply": "2024-12-26T11:17:22.242489Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.454336Z", - "iopub.status.busy": "2024-12-25T19:56:30.453905Z", - "iopub.status.idle": "2024-12-25T19:56:30.462596Z", - "shell.execute_reply": "2024-12-25T19:56:30.462131Z" + "iopub.execute_input": "2024-12-26T11:17:22.244547Z", + "iopub.status.busy": "2024-12-26T11:17:22.244376Z", + "iopub.status.idle": "2024-12-26T11:17:22.252712Z", + "shell.execute_reply": "2024-12-26T11:17:22.252253Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.464058Z", - "iopub.status.busy": "2024-12-25T19:56:30.463889Z", - "iopub.status.idle": "2024-12-25T19:56:30.469174Z", - "shell.execute_reply": "2024-12-25T19:56:30.468727Z" + "iopub.execute_input": "2024-12-26T11:17:22.254210Z", + "iopub.status.busy": "2024-12-26T11:17:22.254042Z", + "iopub.status.idle": "2024-12-26T11:17:22.259413Z", + "shell.execute_reply": "2024-12-26T11:17:22.258929Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.470700Z", - "iopub.status.busy": "2024-12-25T19:56:30.470527Z", - "iopub.status.idle": "2024-12-25T19:56:30.475963Z", - "shell.execute_reply": "2024-12-25T19:56:30.475509Z" + "iopub.execute_input": "2024-12-26T11:17:22.260873Z", + "iopub.status.busy": "2024-12-26T11:17:22.260703Z", + "iopub.status.idle": "2024-12-26T11:17:22.266082Z", + "shell.execute_reply": "2024-12-26T11:17:22.265634Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.477569Z", - "iopub.status.busy": "2024-12-25T19:56:30.477260Z", - "iopub.status.idle": "2024-12-25T19:56:30.481045Z", - "shell.execute_reply": "2024-12-25T19:56:30.480459Z" + "iopub.execute_input": "2024-12-26T11:17:22.267789Z", + "iopub.status.busy": "2024-12-26T11:17:22.267456Z", + "iopub.status.idle": "2024-12-26T11:17:22.270990Z", + "shell.execute_reply": "2024-12-26T11:17:22.270543Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.482747Z", - "iopub.status.busy": "2024-12-25T19:56:30.482572Z", - "iopub.status.idle": "2024-12-25T19:56:30.487722Z", - "shell.execute_reply": "2024-12-25T19:56:30.487263Z" + "iopub.execute_input": "2024-12-26T11:17:22.272660Z", + "iopub.status.busy": "2024-12-26T11:17:22.272339Z", + "iopub.status.idle": "2024-12-26T11:17:22.277717Z", + "shell.execute_reply": "2024-12-26T11:17:22.277159Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 4a8ab4416..c7f81ee55 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:33.822787Z", - "iopub.status.busy": "2024-12-25T19:56:33.822622Z", - "iopub.status.idle": "2024-12-25T19:56:34.503013Z", - "shell.execute_reply": "2024-12-25T19:56:34.502383Z" + "iopub.execute_input": "2024-12-26T11:17:25.638853Z", + "iopub.status.busy": "2024-12-26T11:17:25.638436Z", + "iopub.status.idle": "2024-12-26T11:17:26.318059Z", + "shell.execute_reply": "2024-12-26T11:17:26.317500Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:34.505094Z", - "iopub.status.busy": "2024-12-25T19:56:34.504846Z", - "iopub.status.idle": "2024-12-25T19:56:34.637030Z", - "shell.execute_reply": "2024-12-25T19:56:34.636538Z" + "iopub.execute_input": "2024-12-26T11:17:26.320368Z", + "iopub.status.busy": "2024-12-26T11:17:26.319937Z", + "iopub.status.idle": "2024-12-26T11:17:26.449619Z", + "shell.execute_reply": "2024-12-26T11:17:26.449145Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:34.639053Z", - "iopub.status.busy": "2024-12-25T19:56:34.638585Z", - "iopub.status.idle": "2024-12-25T19:56:34.657606Z", - "shell.execute_reply": "2024-12-25T19:56:34.656947Z" + "iopub.execute_input": "2024-12-26T11:17:26.451455Z", + "iopub.status.busy": "2024-12-26T11:17:26.451083Z", + "iopub.status.idle": "2024-12-26T11:17:26.470452Z", + "shell.execute_reply": "2024-12-26T11:17:26.469872Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:34.659954Z", - "iopub.status.busy": "2024-12-25T19:56:34.659479Z", - "iopub.status.idle": "2024-12-25T19:56:37.134102Z", - "shell.execute_reply": "2024-12-25T19:56:37.133400Z" + "iopub.execute_input": "2024-12-26T11:17:26.472659Z", + "iopub.status.busy": "2024-12-26T11:17:26.472230Z", + "iopub.status.idle": "2024-12-26T11:17:28.999474Z", + "shell.execute_reply": "2024-12-26T11:17:28.998771Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 523 issues found in the dataset.\n" + "Audit complete. 524 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356924\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356924 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651838 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:37.136729Z", - "iopub.status.busy": "2024-12-25T19:56:37.136121Z", - "iopub.status.idle": "2024-12-25T19:56:46.773390Z", - "shell.execute_reply": "2024-12-25T19:56:46.772893Z" + "iopub.execute_input": "2024-12-26T11:17:29.001564Z", + "iopub.status.busy": "2024-12-26T11:17:29.001200Z", + "iopub.status.idle": "2024-12-26T11:17:37.670097Z", + "shell.execute_reply": "2024-12-26T11:17:37.669567Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:46.775356Z", - "iopub.status.busy": "2024-12-25T19:56:46.775028Z", - "iopub.status.idle": "2024-12-25T19:56:46.934893Z", - "shell.execute_reply": "2024-12-25T19:56:46.934248Z" + "iopub.execute_input": "2024-12-26T11:17:37.672065Z", + "iopub.status.busy": "2024-12-26T11:17:37.671720Z", + "iopub.status.idle": "2024-12-26T11:17:37.835364Z", + "shell.execute_reply": "2024-12-26T11:17:37.834655Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:46.937134Z", - "iopub.status.busy": "2024-12-25T19:56:46.936727Z", - "iopub.status.idle": "2024-12-25T19:56:48.246334Z", - "shell.execute_reply": "2024-12-25T19:56:48.245743Z" + "iopub.execute_input": "2024-12-26T11:17:37.837672Z", + "iopub.status.busy": "2024-12-26T11:17:37.837289Z", + "iopub.status.idle": "2024-12-26T11:17:39.289372Z", + "shell.execute_reply": "2024-12-26T11:17:39.288770Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.248219Z", - "iopub.status.busy": "2024-12-25T19:56:48.247871Z", - "iopub.status.idle": "2024-12-25T19:56:48.644563Z", - "shell.execute_reply": "2024-12-25T19:56:48.643974Z" + "iopub.execute_input": "2024-12-26T11:17:39.291271Z", + "iopub.status.busy": "2024-12-26T11:17:39.290934Z", + "iopub.status.idle": "2024-12-26T11:17:39.706868Z", + "shell.execute_reply": "2024-12-26T11:17:39.706284Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.647103Z", - "iopub.status.busy": "2024-12-25T19:56:48.646433Z", - "iopub.status.idle": "2024-12-25T19:56:48.659924Z", - "shell.execute_reply": "2024-12-25T19:56:48.659505Z" + "iopub.execute_input": "2024-12-26T11:17:39.708810Z", + "iopub.status.busy": "2024-12-26T11:17:39.708411Z", + "iopub.status.idle": "2024-12-26T11:17:39.721690Z", + "shell.execute_reply": "2024-12-26T11:17:39.721151Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.661631Z", - "iopub.status.busy": "2024-12-25T19:56:48.661326Z", - "iopub.status.idle": "2024-12-25T19:56:48.680098Z", - "shell.execute_reply": "2024-12-25T19:56:48.679526Z" + "iopub.execute_input": "2024-12-26T11:17:39.723563Z", + "iopub.status.busy": "2024-12-26T11:17:39.723161Z", + "iopub.status.idle": "2024-12-26T11:17:39.742607Z", + "shell.execute_reply": "2024-12-26T11:17:39.742042Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.681841Z", - "iopub.status.busy": "2024-12-25T19:56:48.681494Z", - "iopub.status.idle": "2024-12-25T19:56:48.913588Z", - "shell.execute_reply": "2024-12-25T19:56:48.913060Z" + "iopub.execute_input": "2024-12-26T11:17:39.744423Z", + "iopub.status.busy": "2024-12-26T11:17:39.744116Z", + "iopub.status.idle": "2024-12-26T11:17:39.992027Z", + "shell.execute_reply": "2024-12-26T11:17:39.991394Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.915617Z", - "iopub.status.busy": "2024-12-25T19:56:48.915439Z", - "iopub.status.idle": "2024-12-25T19:56:48.934301Z", - "shell.execute_reply": "2024-12-25T19:56:48.933668Z" + "iopub.execute_input": "2024-12-26T11:17:39.994216Z", + "iopub.status.busy": "2024-12-26T11:17:39.993801Z", + "iopub.status.idle": "2024-12-26T11:17:40.012818Z", + "shell.execute_reply": "2024-12-26T11:17:40.012223Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.936159Z", - "iopub.status.busy": "2024-12-25T19:56:48.935855Z", - "iopub.status.idle": "2024-12-25T19:56:49.105538Z", - "shell.execute_reply": "2024-12-25T19:56:49.105079Z" + "iopub.execute_input": "2024-12-26T11:17:40.014669Z", + "iopub.status.busy": "2024-12-26T11:17:40.014329Z", + "iopub.status.idle": "2024-12-26T11:17:40.182609Z", + "shell.execute_reply": "2024-12-26T11:17:40.182089Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.107422Z", - "iopub.status.busy": "2024-12-25T19:56:49.107084Z", - "iopub.status.idle": "2024-12-25T19:56:49.116883Z", - "shell.execute_reply": "2024-12-25T19:56:49.116445Z" + "iopub.execute_input": "2024-12-26T11:17:40.184368Z", + "iopub.status.busy": "2024-12-26T11:17:40.184189Z", + "iopub.status.idle": "2024-12-26T11:17:40.194055Z", + "shell.execute_reply": "2024-12-26T11:17:40.193607Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.118642Z", - "iopub.status.busy": "2024-12-25T19:56:49.118330Z", - "iopub.status.idle": "2024-12-25T19:56:49.127331Z", - "shell.execute_reply": "2024-12-25T19:56:49.126884Z" + "iopub.execute_input": "2024-12-26T11:17:40.195681Z", + "iopub.status.busy": "2024-12-26T11:17:40.195509Z", + "iopub.status.idle": "2024-12-26T11:17:40.205215Z", + "shell.execute_reply": "2024-12-26T11:17:40.204655Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.129088Z", - "iopub.status.busy": "2024-12-25T19:56:49.128766Z", - "iopub.status.idle": "2024-12-25T19:56:49.154844Z", - "shell.execute_reply": "2024-12-25T19:56:49.154359Z" + "iopub.execute_input": "2024-12-26T11:17:40.206844Z", + "iopub.status.busy": "2024-12-26T11:17:40.206670Z", + "iopub.status.idle": "2024-12-26T11:17:40.242356Z", + "shell.execute_reply": "2024-12-26T11:17:40.241892Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.156503Z", - "iopub.status.busy": "2024-12-25T19:56:49.156175Z", - "iopub.status.idle": "2024-12-25T19:56:49.158737Z", - "shell.execute_reply": "2024-12-25T19:56:49.158289Z" + "iopub.execute_input": "2024-12-26T11:17:40.243880Z", + "iopub.status.busy": "2024-12-26T11:17:40.243714Z", + "iopub.status.idle": "2024-12-26T11:17:40.246455Z", + "shell.execute_reply": "2024-12-26T11:17:40.245998Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.160490Z", - "iopub.status.busy": "2024-12-25T19:56:49.160169Z", - "iopub.status.idle": "2024-12-25T19:56:49.178541Z", - "shell.execute_reply": "2024-12-25T19:56:49.178080Z" + "iopub.execute_input": "2024-12-26T11:17:40.247973Z", + "iopub.status.busy": "2024-12-26T11:17:40.247809Z", + "iopub.status.idle": "2024-12-26T11:17:40.267302Z", + "shell.execute_reply": "2024-12-26T11:17:40.266831Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.180240Z", - "iopub.status.busy": "2024-12-25T19:56:49.179846Z", - "iopub.status.idle": "2024-12-25T19:56:49.184198Z", - "shell.execute_reply": "2024-12-25T19:56:49.183630Z" + "iopub.execute_input": "2024-12-26T11:17:40.268867Z", + "iopub.status.busy": "2024-12-26T11:17:40.268694Z", + "iopub.status.idle": "2024-12-26T11:17:40.273021Z", + "shell.execute_reply": "2024-12-26T11:17:40.272554Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.185796Z", - "iopub.status.busy": "2024-12-25T19:56:49.185600Z", - "iopub.status.idle": "2024-12-25T19:56:49.213262Z", - "shell.execute_reply": "2024-12-25T19:56:49.212705Z" + "iopub.execute_input": "2024-12-26T11:17:40.274712Z", + "iopub.status.busy": "2024-12-26T11:17:40.274388Z", + "iopub.status.idle": "2024-12-26T11:17:40.303277Z", + "shell.execute_reply": "2024-12-26T11:17:40.302688Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.215227Z", - "iopub.status.busy": "2024-12-25T19:56:49.214833Z", - "iopub.status.idle": "2024-12-25T19:56:49.526030Z", - "shell.execute_reply": "2024-12-25T19:56:49.525445Z" + "iopub.execute_input": "2024-12-26T11:17:40.304895Z", + "iopub.status.busy": "2024-12-26T11:17:40.304578Z", + "iopub.status.idle": "2024-12-26T11:17:40.673223Z", + "shell.execute_reply": "2024-12-26T11:17:40.672630Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.527945Z", - "iopub.status.busy": "2024-12-25T19:56:49.527528Z", - "iopub.status.idle": "2024-12-25T19:56:49.530458Z", - "shell.execute_reply": "2024-12-25T19:56:49.530001Z" + "iopub.execute_input": "2024-12-26T11:17:40.674930Z", + "iopub.status.busy": "2024-12-26T11:17:40.674608Z", + "iopub.status.idle": "2024-12-26T11:17:40.677810Z", + "shell.execute_reply": "2024-12-26T11:17:40.677265Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.532241Z", - "iopub.status.busy": "2024-12-25T19:56:49.531911Z", - "iopub.status.idle": "2024-12-25T19:56:49.544940Z", - "shell.execute_reply": "2024-12-25T19:56:49.544370Z" + "iopub.execute_input": "2024-12-26T11:17:40.679593Z", + "iopub.status.busy": "2024-12-26T11:17:40.679284Z", + "iopub.status.idle": "2024-12-26T11:17:40.692433Z", + "shell.execute_reply": "2024-12-26T11:17:40.691862Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.546721Z", - "iopub.status.busy": "2024-12-25T19:56:49.546417Z", - "iopub.status.idle": "2024-12-25T19:56:49.560176Z", - "shell.execute_reply": "2024-12-25T19:56:49.559616Z" + "iopub.execute_input": "2024-12-26T11:17:40.694248Z", + "iopub.status.busy": "2024-12-26T11:17:40.693797Z", + "iopub.status.idle": "2024-12-26T11:17:40.707306Z", + "shell.execute_reply": "2024-12-26T11:17:40.706869Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.562071Z", - "iopub.status.busy": "2024-12-25T19:56:49.561612Z", - "iopub.status.idle": "2024-12-25T19:56:49.571996Z", - "shell.execute_reply": "2024-12-25T19:56:49.571422Z" + "iopub.execute_input": "2024-12-26T11:17:40.708955Z", + "iopub.status.busy": "2024-12-26T11:17:40.708642Z", + "iopub.status.idle": "2024-12-26T11:17:40.718767Z", + "shell.execute_reply": "2024-12-26T11:17:40.718333Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.573875Z", - "iopub.status.busy": "2024-12-25T19:56:49.573466Z", - "iopub.status.idle": "2024-12-25T19:56:49.582837Z", - "shell.execute_reply": "2024-12-25T19:56:49.582280Z" + "iopub.execute_input": "2024-12-26T11:17:40.720514Z", + "iopub.status.busy": "2024-12-26T11:17:40.720133Z", + "iopub.status.idle": "2024-12-26T11:17:40.729314Z", + "shell.execute_reply": "2024-12-26T11:17:40.728762Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.584526Z", - "iopub.status.busy": "2024-12-25T19:56:49.584202Z", - "iopub.status.idle": "2024-12-25T19:56:49.587750Z", - "shell.execute_reply": "2024-12-25T19:56:49.587310Z" + "iopub.execute_input": "2024-12-26T11:17:40.731164Z", + "iopub.status.busy": "2024-12-26T11:17:40.730738Z", + "iopub.status.idle": "2024-12-26T11:17:40.734359Z", + "shell.execute_reply": "2024-12-26T11:17:40.733894Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.589303Z", - "iopub.status.busy": "2024-12-25T19:56:49.589133Z", - "iopub.status.idle": "2024-12-25T19:56:49.639398Z", - "shell.execute_reply": "2024-12-25T19:56:49.638973Z" + "iopub.execute_input": "2024-12-26T11:17:40.736017Z", + "iopub.status.busy": "2024-12-26T11:17:40.735707Z", + "iopub.status.idle": "2024-12-26T11:17:40.787444Z", + "shell.execute_reply": "2024-12-26T11:17:40.786864Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.641246Z", - "iopub.status.busy": "2024-12-25T19:56:49.640824Z", - "iopub.status.idle": "2024-12-25T19:56:49.646455Z", - "shell.execute_reply": "2024-12-25T19:56:49.645993Z" + "iopub.execute_input": "2024-12-26T11:17:40.789770Z", + "iopub.status.busy": "2024-12-26T11:17:40.789317Z", + "iopub.status.idle": "2024-12-26T11:17:40.794991Z", + "shell.execute_reply": "2024-12-26T11:17:40.794497Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.648122Z", - "iopub.status.busy": "2024-12-25T19:56:49.647790Z", - "iopub.status.idle": "2024-12-25T19:56:49.658207Z", - "shell.execute_reply": "2024-12-25T19:56:49.657655Z" + "iopub.execute_input": "2024-12-26T11:17:40.796790Z", + "iopub.status.busy": "2024-12-26T11:17:40.796427Z", + "iopub.status.idle": "2024-12-26T11:17:40.812668Z", + "shell.execute_reply": "2024-12-26T11:17:40.812102Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.659873Z", - "iopub.status.busy": "2024-12-25T19:56:49.659539Z", - "iopub.status.idle": "2024-12-25T19:56:49.840904Z", - "shell.execute_reply": "2024-12-25T19:56:49.840413Z" + "iopub.execute_input": "2024-12-26T11:17:40.814372Z", + "iopub.status.busy": "2024-12-26T11:17:40.813994Z", + "iopub.status.idle": "2024-12-26T11:17:41.029376Z", + "shell.execute_reply": "2024-12-26T11:17:41.028875Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.843000Z", - "iopub.status.busy": "2024-12-25T19:56:49.842597Z", - "iopub.status.idle": "2024-12-25T19:56:49.850726Z", - "shell.execute_reply": "2024-12-25T19:56:49.850171Z" + "iopub.execute_input": "2024-12-26T11:17:41.031171Z", + "iopub.status.busy": "2024-12-26T11:17:41.030821Z", + "iopub.status.idle": "2024-12-26T11:17:41.037821Z", + "shell.execute_reply": "2024-12-26T11:17:41.037360Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.852671Z", - "iopub.status.busy": "2024-12-25T19:56:49.852363Z", - "iopub.status.idle": "2024-12-25T19:56:50.477951Z", - "shell.execute_reply": "2024-12-25T19:56:50.477233Z" + "iopub.execute_input": "2024-12-26T11:17:41.039688Z", + "iopub.status.busy": "2024-12-26T11:17:41.039376Z", + "iopub.status.idle": "2024-12-26T11:17:41.396236Z", + "shell.execute_reply": "2024-12-26T11:17:41.395593Z" } }, "outputs": [ @@ -3767,7 +3767,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-12-25 19:56:49-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-12-26 11:17:41-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " @@ -3782,17 +3782,10 @@ "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", - "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.04s \r\n", + "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.008s \r\n", "\r\n", - "2024-12-25 19:56:50 (26.3 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-12-26 11:17:41 (112 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3808,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:50.480154Z", - "iopub.status.busy": "2024-12-25T19:56:50.479755Z", - "iopub.status.idle": "2024-12-25T19:56:52.369483Z", - "shell.execute_reply": "2024-12-25T19:56:52.368833Z" + "iopub.execute_input": "2024-12-26T11:17:41.398414Z", + "iopub.status.busy": "2024-12-26T11:17:41.398023Z", + "iopub.status.idle": "2024-12-26T11:17:43.318099Z", + "shell.execute_reply": "2024-12-26T11:17:43.317473Z" } }, "outputs": [], @@ -3857,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:52.371611Z", - "iopub.status.busy": "2024-12-25T19:56:52.371345Z", - "iopub.status.idle": "2024-12-25T19:56:52.991545Z", - "shell.execute_reply": "2024-12-25T19:56:52.990941Z" + "iopub.execute_input": "2024-12-26T11:17:43.320598Z", + "iopub.status.busy": "2024-12-26T11:17:43.320146Z", + "iopub.status.idle": "2024-12-26T11:17:43.972127Z", + "shell.execute_reply": "2024-12-26T11:17:43.971536Z" } }, "outputs": [ @@ -3875,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4517eefb74fa491eb59de22b68477da0", + "model_id": "1d9c2ded32704fc9b13d77ccfe221ea0", "version_major": 2, "version_minor": 0 }, @@ -4015,10 +4008,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:52.994080Z", - "iopub.status.busy": "2024-12-25T19:56:52.993497Z", - "iopub.status.idle": "2024-12-25T19:56:53.006856Z", - "shell.execute_reply": "2024-12-25T19:56:53.006357Z" + "iopub.execute_input": "2024-12-26T11:17:43.974722Z", + "iopub.status.busy": "2024-12-26T11:17:43.974139Z", + "iopub.status.idle": "2024-12-26T11:17:43.987758Z", + "shell.execute_reply": "2024-12-26T11:17:43.987248Z" } }, "outputs": [ @@ -4137,35 +4130,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " True\n", " 0.237196\n", + " True\n", " \n", " \n", " 1\n", - " True\n", " 0.197229\n", + " True\n", " \n", " \n", " 2\n", - " True\n", " 0.254188\n", + " True\n", " \n", " \n", " 3\n", - " True\n", " 0.229170\n", + " True\n", " \n", " \n", " 4\n", - " True\n", " 0.208907\n", + " True\n", " \n", " \n", " ...\n", @@ -4174,28 +4167,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4203,18 +4196,18 @@ "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 True 0.237196\n", - "1 True 0.197229\n", - "2 True 0.254188\n", - "3 True 0.229170\n", - "4 True 0.208907\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.237196 True\n", + "1 0.197229 True\n", + "2 0.254188 True\n", + "3 0.229170 True\n", + "4 0.208907 True\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4264,10 +4257,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:53.008909Z", - "iopub.status.busy": "2024-12-25T19:56:53.008422Z", - "iopub.status.idle": "2024-12-25T19:56:53.156900Z", - "shell.execute_reply": "2024-12-25T19:56:53.156397Z" + "iopub.execute_input": "2024-12-26T11:17:43.989823Z", + "iopub.status.busy": "2024-12-26T11:17:43.989318Z", + "iopub.status.idle": "2024-12-26T11:17:44.135582Z", + "shell.execute_reply": "2024-12-26T11:17:44.135177Z" } }, "outputs": [ @@ -4332,10 +4325,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:53.158748Z", - "iopub.status.busy": "2024-12-25T19:56:53.158572Z", - "iopub.status.idle": "2024-12-25T19:56:53.668661Z", - "shell.execute_reply": "2024-12-25T19:56:53.668123Z" + "iopub.execute_input": "2024-12-26T11:17:44.137233Z", + "iopub.status.busy": "2024-12-26T11:17:44.136844Z", + "iopub.status.idle": "2024-12-26T11:17:44.646483Z", + "shell.execute_reply": "2024-12-26T11:17:44.645824Z" }, "nbsphinx": "hidden" }, @@ -4351,7 +4344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c6e4394e4e604607a429313f8a4596c1", + "model_id": "422b3c757ced4c94bae58876e7d6b131", "version_major": 2, "version_minor": 0 }, @@ -4480,35 +4473,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " False\n", " 0.797509\n", + " False\n", " \n", " \n", " 1\n", - " False\n", " 0.663760\n", + " False\n", " \n", " \n", " 2\n", - " False\n", " 0.849826\n", + " False\n", " \n", " \n", " 3\n", - " False\n", " 0.773951\n", + " False\n", " \n", " \n", " 4\n", - " False\n", " 0.699518\n", + " False\n", " \n", " \n", " ...\n", @@ -4517,28 +4510,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4546,18 +4539,18 @@ "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 False 0.797509\n", - "1 False 0.663760\n", - "2 False 0.849826\n", - "3 False 0.773951\n", - "4 False 0.699518\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.797509 False\n", + "1 0.663760 False\n", + "2 0.849826 False\n", + "3 0.773951 False\n", + "4 0.699518 False\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4605,10 +4598,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:53.670727Z", - "iopub.status.busy": "2024-12-25T19:56:53.670344Z", - "iopub.status.idle": "2024-12-25T19:56:53.819686Z", - "shell.execute_reply": "2024-12-25T19:56:53.819099Z" + "iopub.execute_input": "2024-12-26T11:17:44.648395Z", + "iopub.status.busy": "2024-12-26T11:17:44.648202Z", + "iopub.status.idle": "2024-12-26T11:17:44.795498Z", + "shell.execute_reply": "2024-12-26T11:17:44.794928Z" }, "nbsphinx": "hidden" }, @@ -4660,51 +4653,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0b766a0604aa45c89493bad447e53a40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_29e6a0c164594f74b6a1d4c122c72935", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a788b912ae4949e590e5e50b38c58f44", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "1c104bcf74f64ce89f8b8e518822ad29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22e0692fd2694009bfd7bbd0b5e6e6dc": { + "10ecb954bb454d50848c4476cfc650d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4757,7 +4706,46 @@ "width": null } }, - "29e6a0c164594f74b6a1d4c122c72935": { + "14b0467bee524a9394e4475e6b4ee8d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a122a2a2f5c461d8a715a4f6abd3198", + "placeholder": "​", + "style": "IPY_MODEL_dff2ca8c3c71471692f0ce2207abe391", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 786.16it/s]" + } + }, + "15e5b0cc29d742ea9dd63569047801a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1c02c45e2b9c435b9731085071bb0b76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4810,7 +4798,107 @@ "width": null } }, - "2ca65d1dc0db40efac24af11bcb2098f": { + "1d9c2ded32704fc9b13d77ccfe221ea0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b62b6a9247914b5ea3542dd95b081f48", + "IPY_MODEL_d164481b458b4fd88f671470a650e6eb", + "IPY_MODEL_14b0467bee524a9394e4475e6b4ee8d4" + ], + "layout": "IPY_MODEL_74a776db28664ebfaceac7371d300793", + "tabbable": null, + "tooltip": null + } + }, + "2bd6a3f7493149f7b6807f2cc4ddaaf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "421f13711059410a9fbab0283a293f30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "422b3c757ced4c94bae58876e7d6b131": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bce80871cb84509847cd8fad6d1661d", + "IPY_MODEL_9431a0d0e19245f190305ca7ed7a50da", + "IPY_MODEL_95bd48dee14e4d8bb9ab62b862ddd8f0" + ], + "layout": "IPY_MODEL_1c02c45e2b9c435b9731085071bb0b76", + "tabbable": null, + "tooltip": null + } + }, + "66705f4ce9ed45be8ef1c771e32b69e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "74a776db28664ebfaceac7371d300793": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4863,7 +4951,7 @@ "width": null } }, - "3a3b623b2ddf4ca0b3d1160544fd6673": { + "8bce80871cb84509847cd8fad6d1661d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4878,39 +4966,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c7897b13a9ff4f6cba97751e1b5be749", + "layout": "IPY_MODEL_db410ffcbaea42dcbb50bfe4131179eb", "placeholder": "​", - "style": "IPY_MODEL_1c104bcf74f64ce89f8b8e518822ad29", + "style": "IPY_MODEL_e5fbdf55049f4198bfedb99f5a7bae31", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 805.16it/s]" + "value": "100%" } }, - "4517eefb74fa491eb59de22b68477da0": { + "9431a0d0e19245f190305ca7ed7a50da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fee697edb6724d63992afece6eae25d1", - "IPY_MODEL_9e94ae3708a445109a2491e4265893a3", - "IPY_MODEL_3a3b623b2ddf4ca0b3d1160544fd6673" - ], - "layout": "IPY_MODEL_f6f4531b40ee4a4da06688f879655236", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ad52a23dfed547a0b379ba5798df5ac8", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_15e5b0cc29d742ea9dd63569047801a5", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "4a4d709ec3404d7aa95be070f333cdd0": { + "95bd48dee14e4d8bb9ab62b862ddd8f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4925,51 +5015,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_88945807938944e1a62aa1976f0fe020", + "layout": "IPY_MODEL_fae23f59ea104d4db363ce6aed1cb9e6", "placeholder": "​", - "style": "IPY_MODEL_cf898af33494487a8bafe375ae2eccfc", + "style": "IPY_MODEL_2bd6a3f7493149f7b6807f2cc4ddaaf0", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 711.82it/s]" } }, - "589b96693e1d4b42be5dc254acdaf3ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "654249e1f40d4fe087a86ef707f870a7": { - "model_module": "@jupyter-widgets/controls", + "9a122a2a2f5c461d8a715a4f6abd3198": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "66b2c88a03b647bab314b865b2f0c67a": { + "ad52a23dfed547a0b379ba5798df5ac8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5022,7 +5129,7 @@ "width": null } }, - "88945807938944e1a62aa1976f0fe020": { + "af45d51303ce4d418d6bbdc0c4170965": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5075,7 +5182,7 @@ "width": null } }, - "94427ca6883b4cf4932ee8953dc02acb": { + "b62b6a9247914b5ea3542dd95b081f48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5090,15 +5197,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ca65d1dc0db40efac24af11bcb2098f", + "layout": "IPY_MODEL_af45d51303ce4d418d6bbdc0c4170965", "placeholder": "​", - "style": "IPY_MODEL_654249e1f40d4fe087a86ef707f870a7", + "style": "IPY_MODEL_66705f4ce9ed45be8ef1c771e32b69e5", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 688.01it/s]" + "value": "100%" } }, - "9e94ae3708a445109a2491e4265893a3": { + "d164481b458b4fd88f671470a650e6eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5114,73 +5221,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22e0692fd2694009bfd7bbd0b5e6e6dc", + "layout": "IPY_MODEL_10ecb954bb454d50848c4476cfc650d0", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ae2b3a3e703841ac8aad473296881f36", + "style": "IPY_MODEL_421f13711059410a9fbab0283a293f30", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "a788b912ae4949e590e5e50b38c58f44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ae2b3a3e703841ac8aad473296881f36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c6e4394e4e604607a429313f8a4596c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a4d709ec3404d7aa95be070f333cdd0", - "IPY_MODEL_0b766a0604aa45c89493bad447e53a40", - "IPY_MODEL_94427ca6883b4cf4932ee8953dc02acb" - ], - "layout": "IPY_MODEL_d53a1034c87e4414986b5644d20bd802", - "tabbable": null, - "tooltip": null - } - }, - "c7897b13a9ff4f6cba97751e1b5be749": { + "db410ffcbaea42dcbb50bfe4131179eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5233,7 +5284,7 @@ "width": null } }, - "cf898af33494487a8bafe375ae2eccfc": { + "dff2ca8c3c71471692f0ce2207abe391": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5251,60 +5302,25 @@ "text_color": null } }, - "d53a1034c87e4414986b5644d20bd802": { - "model_module": "@jupyter-widgets/base", + "e5fbdf55049f4198bfedb99f5a7bae31": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f6f4531b40ee4a4da06688f879655236": { + "fae23f59ea104d4db363ce6aed1cb9e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5356,29 +5372,6 @@ "visibility": null, "width": null } - }, - "fee697edb6724d63992afece6eae25d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66b2c88a03b647bab314b865b2f0c67a", - "placeholder": "​", - "style": "IPY_MODEL_589b96693e1d4b42be5dc254acdaf3ce", - "tabbable": null, - "tooltip": null, - "value": "100%" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 7f0eac01b..e0188f875 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:57.874492Z", - "iopub.status.busy": "2024-12-25T19:56:57.874326Z", - "iopub.status.idle": "2024-12-25T19:56:59.015843Z", - "shell.execute_reply": "2024-12-25T19:56:59.015281Z" + "iopub.execute_input": "2024-12-26T11:17:48.965171Z", + "iopub.status.busy": "2024-12-26T11:17:48.965020Z", + "iopub.status.idle": "2024-12-26T11:17:50.132398Z", + "shell.execute_reply": "2024-12-26T11:17:50.131775Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:59.017801Z", - "iopub.status.busy": "2024-12-25T19:56:59.017533Z", - "iopub.status.idle": "2024-12-25T19:56:59.020424Z", - "shell.execute_reply": "2024-12-25T19:56:59.019980Z" + "iopub.execute_input": "2024-12-26T11:17:50.134585Z", + "iopub.status.busy": "2024-12-26T11:17:50.134302Z", + "iopub.status.idle": "2024-12-26T11:17:50.137254Z", + "shell.execute_reply": "2024-12-26T11:17:50.136723Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:59.022213Z", - "iopub.status.busy": "2024-12-25T19:56:59.021889Z", - "iopub.status.idle": "2024-12-25T19:56:59.033828Z", - "shell.execute_reply": "2024-12-25T19:56:59.033362Z" + "iopub.execute_input": "2024-12-26T11:17:50.139113Z", + "iopub.status.busy": "2024-12-26T11:17:50.138843Z", + "iopub.status.idle": "2024-12-26T11:17:50.150793Z", + "shell.execute_reply": "2024-12-26T11:17:50.150312Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:59.035430Z", - "iopub.status.busy": "2024-12-25T19:56:59.035258Z", - "iopub.status.idle": "2024-12-25T19:57:06.481645Z", - "shell.execute_reply": "2024-12-25T19:57:06.481124Z" + "iopub.execute_input": "2024-12-26T11:17:50.152520Z", + "iopub.status.busy": "2024-12-26T11:17:50.152187Z", + "iopub.status.idle": "2024-12-26T11:17:53.632326Z", + "shell.execute_reply": "2024-12-26T11:17:53.631833Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,13 +694,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -2184,13 +2178,7 @@ "\n", "\n", "🎯 Cifar100_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 9e32026ee..64d3efcb0 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:08.595294Z", - "iopub.status.busy": "2024-12-25T19:57:08.594828Z", - "iopub.status.idle": "2024-12-25T19:57:09.784648Z", - "shell.execute_reply": "2024-12-25T19:57:09.784093Z" + "iopub.execute_input": "2024-12-26T11:17:55.880552Z", + "iopub.status.busy": "2024-12-26T11:17:55.880060Z", + "iopub.status.idle": "2024-12-26T11:17:57.078006Z", + "shell.execute_reply": "2024-12-26T11:17:57.077458Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:09.786815Z", - "iopub.status.busy": "2024-12-25T19:57:09.786555Z", - "iopub.status.idle": "2024-12-25T19:57:09.789987Z", - "shell.execute_reply": "2024-12-25T19:57:09.789512Z" + "iopub.execute_input": "2024-12-26T11:17:57.080465Z", + "iopub.status.busy": "2024-12-26T11:17:57.080014Z", + "iopub.status.idle": "2024-12-26T11:17:57.083213Z", + "shell.execute_reply": "2024-12-26T11:17:57.082768Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:09.791479Z", - "iopub.status.busy": "2024-12-25T19:57:09.791303Z", - "iopub.status.idle": "2024-12-25T19:57:13.023674Z", - "shell.execute_reply": "2024-12-25T19:57:13.023032Z" + "iopub.execute_input": "2024-12-26T11:17:57.084946Z", + "iopub.status.busy": "2024-12-26T11:17:57.084557Z", + "iopub.status.idle": "2024-12-26T11:18:00.383459Z", + "shell.execute_reply": "2024-12-26T11:18:00.382771Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.026393Z", - "iopub.status.busy": "2024-12-25T19:57:13.025576Z", - "iopub.status.idle": "2024-12-25T19:57:13.068874Z", - "shell.execute_reply": "2024-12-25T19:57:13.068277Z" + "iopub.execute_input": "2024-12-26T11:18:00.386119Z", + "iopub.status.busy": "2024-12-26T11:18:00.385433Z", + "iopub.status.idle": "2024-12-26T11:18:00.425121Z", + "shell.execute_reply": "2024-12-26T11:18:00.424475Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.071249Z", - "iopub.status.busy": "2024-12-25T19:57:13.070743Z", - "iopub.status.idle": "2024-12-25T19:57:13.110940Z", - "shell.execute_reply": "2024-12-25T19:57:13.110219Z" + "iopub.execute_input": "2024-12-26T11:18:00.427391Z", + "iopub.status.busy": "2024-12-26T11:18:00.427016Z", + "iopub.status.idle": "2024-12-26T11:18:00.466579Z", + "shell.execute_reply": "2024-12-26T11:18:00.465962Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.113348Z", - "iopub.status.busy": "2024-12-25T19:57:13.112924Z", - "iopub.status.idle": "2024-12-25T19:57:13.116127Z", - "shell.execute_reply": "2024-12-25T19:57:13.115616Z" + "iopub.execute_input": "2024-12-26T11:18:00.468778Z", + "iopub.status.busy": "2024-12-26T11:18:00.468516Z", + "iopub.status.idle": "2024-12-26T11:18:00.471918Z", + "shell.execute_reply": "2024-12-26T11:18:00.471427Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.117983Z", - "iopub.status.busy": "2024-12-25T19:57:13.117621Z", - "iopub.status.idle": "2024-12-25T19:57:13.120329Z", - "shell.execute_reply": "2024-12-25T19:57:13.119828Z" + "iopub.execute_input": "2024-12-26T11:18:00.473699Z", + "iopub.status.busy": "2024-12-26T11:18:00.473367Z", + "iopub.status.idle": "2024-12-26T11:18:00.475923Z", + "shell.execute_reply": "2024-12-26T11:18:00.475471Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.122364Z", - "iopub.status.busy": "2024-12-25T19:57:13.121910Z", - "iopub.status.idle": "2024-12-25T19:57:13.147016Z", - "shell.execute_reply": "2024-12-25T19:57:13.146416Z" + "iopub.execute_input": "2024-12-26T11:18:00.477696Z", + "iopub.status.busy": "2024-12-26T11:18:00.477366Z", + "iopub.status.idle": "2024-12-26T11:18:00.501865Z", + "shell.execute_reply": "2024-12-26T11:18:00.501314Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b748e781b1da4cf89a18f4b90d8ecccd", + "model_id": "7f8d699b7da8423e91ba308659fea302", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2dbf2d49879495096d2bdb84aaba49a", + "model_id": "56dfa11ba6604d54b082e1e795f55950", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.149763Z", - "iopub.status.busy": "2024-12-25T19:57:13.149291Z", - "iopub.status.idle": "2024-12-25T19:57:13.155938Z", - "shell.execute_reply": "2024-12-25T19:57:13.155404Z" + "iopub.execute_input": "2024-12-26T11:18:00.504716Z", + "iopub.status.busy": "2024-12-26T11:18:00.504455Z", + "iopub.status.idle": "2024-12-26T11:18:00.510853Z", + "shell.execute_reply": "2024-12-26T11:18:00.510404Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.157704Z", - "iopub.status.busy": "2024-12-25T19:57:13.157381Z", - "iopub.status.idle": "2024-12-25T19:57:13.160862Z", - "shell.execute_reply": "2024-12-25T19:57:13.160414Z" + "iopub.execute_input": "2024-12-26T11:18:00.512514Z", + "iopub.status.busy": "2024-12-26T11:18:00.512187Z", + "iopub.status.idle": "2024-12-26T11:18:00.515650Z", + "shell.execute_reply": "2024-12-26T11:18:00.515177Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.162510Z", - "iopub.status.busy": "2024-12-25T19:57:13.162179Z", - "iopub.status.idle": "2024-12-25T19:57:13.168479Z", - "shell.execute_reply": "2024-12-25T19:57:13.168030Z" + "iopub.execute_input": "2024-12-26T11:18:00.517475Z", + "iopub.status.busy": "2024-12-26T11:18:00.517044Z", + "iopub.status.idle": "2024-12-26T11:18:00.523643Z", + "shell.execute_reply": "2024-12-26T11:18:00.523082Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.170113Z", - "iopub.status.busy": "2024-12-25T19:57:13.169735Z", - "iopub.status.idle": "2024-12-25T19:57:13.213668Z", - "shell.execute_reply": "2024-12-25T19:57:13.212909Z" + "iopub.execute_input": "2024-12-26T11:18:00.525427Z", + "iopub.status.busy": "2024-12-26T11:18:00.525103Z", + "iopub.status.idle": "2024-12-26T11:18:00.568752Z", + "shell.execute_reply": "2024-12-26T11:18:00.568142Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.216014Z", - "iopub.status.busy": "2024-12-25T19:57:13.215617Z", - "iopub.status.idle": "2024-12-25T19:57:13.257769Z", - "shell.execute_reply": "2024-12-25T19:57:13.257136Z" + "iopub.execute_input": "2024-12-26T11:18:00.571054Z", + "iopub.status.busy": "2024-12-26T11:18:00.570547Z", + "iopub.status.idle": "2024-12-26T11:18:00.613494Z", + "shell.execute_reply": "2024-12-26T11:18:00.612888Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.259967Z", - "iopub.status.busy": "2024-12-25T19:57:13.259579Z", - "iopub.status.idle": "2024-12-25T19:57:13.392058Z", - "shell.execute_reply": "2024-12-25T19:57:13.391413Z" + "iopub.execute_input": "2024-12-26T11:18:00.615924Z", + "iopub.status.busy": "2024-12-26T11:18:00.615504Z", + "iopub.status.idle": "2024-12-26T11:18:00.750867Z", + "shell.execute_reply": "2024-12-26T11:18:00.750235Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.394678Z", - "iopub.status.busy": "2024-12-25T19:57:13.393847Z", - "iopub.status.idle": "2024-12-25T19:57:16.467412Z", - "shell.execute_reply": "2024-12-25T19:57:16.466799Z" + "iopub.execute_input": "2024-12-26T11:18:00.753347Z", + "iopub.status.busy": "2024-12-26T11:18:00.752692Z", + "iopub.status.idle": "2024-12-26T11:18:03.842906Z", + "shell.execute_reply": "2024-12-26T11:18:03.842284Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.469494Z", - "iopub.status.busy": "2024-12-25T19:57:16.469100Z", - "iopub.status.idle": "2024-12-25T19:57:16.527566Z", - "shell.execute_reply": "2024-12-25T19:57:16.527109Z" + "iopub.execute_input": "2024-12-26T11:18:03.844964Z", + "iopub.status.busy": "2024-12-26T11:18:03.844762Z", + "iopub.status.idle": "2024-12-26T11:18:03.903026Z", + "shell.execute_reply": "2024-12-26T11:18:03.902494Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.529237Z", - "iopub.status.busy": "2024-12-25T19:57:16.528903Z", - "iopub.status.idle": "2024-12-25T19:57:16.568175Z", - "shell.execute_reply": "2024-12-25T19:57:16.567704Z" + "iopub.execute_input": "2024-12-26T11:18:03.904823Z", + "iopub.status.busy": "2024-12-26T11:18:03.904528Z", + "iopub.status.idle": "2024-12-26T11:18:03.945605Z", + "shell.execute_reply": "2024-12-26T11:18:03.945030Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "44dd4128", + "id": "d3bc2a14", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "38aacef6", + "id": "042ccb7f", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "6354be62", + "id": "bc7578af", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "2c6f5bcb", + "id": "c4ff42cd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.569900Z", - "iopub.status.busy": "2024-12-25T19:57:16.569720Z", - "iopub.status.idle": "2024-12-25T19:57:16.577135Z", - "shell.execute_reply": "2024-12-25T19:57:16.576703Z" + "iopub.execute_input": "2024-12-26T11:18:03.947427Z", + "iopub.status.busy": "2024-12-26T11:18:03.947084Z", + "iopub.status.idle": "2024-12-26T11:18:03.954839Z", + "shell.execute_reply": "2024-12-26T11:18:03.954257Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ff7be5cd", + "id": "b51a6ed3", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "ee0394c5", + "id": "b76036f8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.578710Z", - "iopub.status.busy": "2024-12-25T19:57:16.578521Z", - "iopub.status.idle": "2024-12-25T19:57:16.597069Z", - "shell.execute_reply": "2024-12-25T19:57:16.596609Z" + "iopub.execute_input": "2024-12-26T11:18:03.956618Z", + "iopub.status.busy": "2024-12-26T11:18:03.956213Z", + "iopub.status.idle": "2024-12-26T11:18:03.974991Z", + "shell.execute_reply": "2024-12-26T11:18:03.974491Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "87a46690", + "id": "0fe26d00", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.598550Z", - "iopub.status.busy": "2024-12-25T19:57:16.598379Z", - "iopub.status.idle": "2024-12-25T19:57:16.601280Z", - "shell.execute_reply": "2024-12-25T19:57:16.600844Z" + "iopub.execute_input": "2024-12-26T11:18:03.976526Z", + "iopub.status.busy": "2024-12-26T11:18:03.976351Z", + "iopub.status.idle": "2024-12-26T11:18:03.979774Z", + "shell.execute_reply": "2024-12-26T11:18:03.979195Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "017fb85e8ae443789d4850cf617ba0cd": { + "0b4e059ed2654d9a8f359ef7f8fa1b10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1637,15 +1637,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_be0deca07dc24cafa7cb37ef0002b23a", + "layout": "IPY_MODEL_8f7a7305eb4c40c28cc5f6c2afd6268b", "placeholder": "​", - "style": "IPY_MODEL_dcd4a33935b1486bad143b50d88e8542", + "style": "IPY_MODEL_e187fbdd0f27481bb06831b553951234", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1558293.95it/s]" + "value": "number of examples processed for checking labels: " } }, - "0e341acb9d9b4b45b4878d73f8fcc982": { + "1218069996eb491389b3dd0c6b415bb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1660,31 +1660,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a53f4310f714b8cb3f7a4454fdca64c", + "layout": "IPY_MODEL_142137dade454d869c51f210ef7ca5c6", "placeholder": "​", - "style": "IPY_MODEL_d32bd143e8214bea9e5dc9536ca6326f", + "style": "IPY_MODEL_ae231fa0b1cb4defb1204a3dce6eaa85", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "3c8c0a5473d64d7097b02fc19dda51f0": { + "13f798e45d1d45fbbe14b6c7f5296980": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e5f1c9eaf19470eb108efcfd499ed8c": { + "142137dade454d869c51f210ef7ca5c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1737,7 +1739,23 @@ "width": null } }, - "5943b9d4d0ff4a52a42995396a5dc881": { + "441d86bd84cf4e00ae8a5e720de1adf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "49514ebe06a54cbca89c2cb31613b38a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,30 +1808,31 @@ "width": null } }, - "5a0c8d4eb65c494c8f8b6a3113632a29": { + "56dfa11ba6604d54b082e1e795f55950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b2ef05b644ed4e799b4a419d2053f04f", - "placeholder": "​", - "style": "IPY_MODEL_7989a83812524fd78cded7d2e35145d6", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b4e059ed2654d9a8f359ef7f8fa1b10", + "IPY_MODEL_a428db43fa96425ca9f8277d83baad41", + "IPY_MODEL_f7f43bae74504fbabd125c2b8a2bb81e" + ], + "layout": "IPY_MODEL_753e218a43204de68532e49f09c06d46", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1007640.60it/s]" + "tooltip": null } }, - "62bee35cdf3b46f2a3fb6234b9e0568b": { + "753e218a43204de68532e49f09c06d46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1866,46 +1885,57 @@ "width": null } }, - "685806c801d94f3c9801a6b357429a8d": { + "79c00c9bf1b241ada13ae2c04bdc10b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_49514ebe06a54cbca89c2cb31613b38a", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_441d86bd84cf4e00ae8a5e720de1adf0", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "74aecffb59514c91b5ddfe03a15d6304": { + "7f8d699b7da8423e91ba308659fea302": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc4480e561914be18f7d0ffdfa2baa87", - "placeholder": "​", - "style": "IPY_MODEL_a8a4731de4314aaa87cdad2c8157dce1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1218069996eb491389b3dd0c6b415bb4", + "IPY_MODEL_79c00c9bf1b241ada13ae2c04bdc10b2", + "IPY_MODEL_ec08dfad995748fb98a45a8b6466eb98" + ], + "layout": "IPY_MODEL_bb6b48e3cee245efa526c523dd847a6b", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "tooltip": null } }, - "7989a83812524fd78cded7d2e35145d6": { + "8ca73f0b304d43df9a7736740d679f24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1923,7 +1953,7 @@ "text_color": null } }, - "8a53f4310f714b8cb3f7a4454fdca64c": { + "8cbafe308e7a4550a1cd120c229c5f8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1976,7 +2006,7 @@ "width": null } }, - "a1546a6b484c4911ac796bb78d8045a9": { + "8f7a7305eb4c40c28cc5f6c2afd6268b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2029,49 +2059,67 @@ "width": null } }, - "a8a4731de4314aaa87cdad2c8157dce1": { + "95d6d0c2833643b786fd1bc98d7f7591": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b2dbf2d49879495096d2bdb84aaba49a": { + "a428db43fa96425ca9f8277d83baad41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_74aecffb59514c91b5ddfe03a15d6304", - "IPY_MODEL_b62e816c882249fd9ac71dfae480288d", - "IPY_MODEL_017fb85e8ae443789d4850cf617ba0cd" - ], - "layout": "IPY_MODEL_62bee35cdf3b46f2a3fb6234b9e0568b", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cbafe308e7a4550a1cd120c229c5f8f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_95d6d0c2833643b786fd1bc98d7f7591", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 + } + }, + "ae231fa0b1cb4defb1204a3dce6eaa85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b2ef05b644ed4e799b4a419d2053f04f": { + "bb6b48e3cee245efa526c523dd847a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2124,57 +2172,7 @@ "width": null } }, - "b62e816c882249fd9ac71dfae480288d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3e5f1c9eaf19470eb108efcfd499ed8c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_685806c801d94f3c9801a6b357429a8d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "b748e781b1da4cf89a18f4b90d8ecccd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e341acb9d9b4b45b4878d73f8fcc982", - "IPY_MODEL_d6b0a9cd38f74e34a5d675d37fecc78a", - "IPY_MODEL_5a0c8d4eb65c494c8f8b6a3113632a29" - ], - "layout": "IPY_MODEL_a1546a6b484c4911ac796bb78d8045a9", - "tabbable": null, - "tooltip": null - } - }, - "bc4480e561914be18f7d0ffdfa2baa87": { + "d1acb28c4c5f4397bc9893a8c1978205": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,7 +2225,7 @@ "width": null } }, - "be0deca07dc24cafa7cb37ef0002b23a": { + "da29f6a826dd45fb90257d7eed755ad1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,7 +2278,7 @@ "width": null } }, - "d32bd143e8214bea9e5dc9536ca6326f": { + "e187fbdd0f27481bb06831b553951234": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2298,48 +2296,50 @@ "text_color": null } }, - "d6b0a9cd38f74e34a5d675d37fecc78a": { + "ec08dfad995748fb98a45a8b6466eb98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5943b9d4d0ff4a52a42995396a5dc881", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3c8c0a5473d64d7097b02fc19dda51f0", + "layout": "IPY_MODEL_d1acb28c4c5f4397bc9893a8c1978205", + "placeholder": "​", + "style": "IPY_MODEL_8ca73f0b304d43df9a7736740d679f24", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1043514.95it/s]" } }, - "dcd4a33935b1486bad143b50d88e8542": { + "f7f43bae74504fbabd125c2b8a2bb81e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_da29f6a826dd45fb90257d7eed755ad1", + "placeholder": "​", + "style": "IPY_MODEL_13f798e45d1d45fbbe14b6c7f5296980", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1552640.85it/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index f34efd99d..bd456d994 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:19.685102Z", - "iopub.status.busy": "2024-12-25T19:57:19.684695Z", - "iopub.status.idle": "2024-12-25T19:57:20.856518Z", - "shell.execute_reply": "2024-12-25T19:57:20.855897Z" + "iopub.execute_input": "2024-12-26T11:18:07.467336Z", + "iopub.status.busy": "2024-12-26T11:18:07.466918Z", + "iopub.status.idle": "2024-12-26T11:18:08.637919Z", + "shell.execute_reply": "2024-12-26T11:18:08.637348Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:20.859033Z", - "iopub.status.busy": "2024-12-25T19:57:20.858494Z", - "iopub.status.idle": "2024-12-25T19:57:20.862118Z", - "shell.execute_reply": "2024-12-25T19:57:20.861685Z" + "iopub.execute_input": "2024-12-26T11:18:08.640116Z", + "iopub.status.busy": "2024-12-26T11:18:08.639697Z", + "iopub.status.idle": "2024-12-26T11:18:08.643495Z", + "shell.execute_reply": "2024-12-26T11:18:08.642990Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:20.863699Z", - "iopub.status.busy": "2024-12-25T19:57:20.863524Z", - "iopub.status.idle": "2024-12-25T19:57:21.361035Z", - "shell.execute_reply": "2024-12-25T19:57:21.360465Z" + "iopub.execute_input": "2024-12-26T11:18:08.645274Z", + "iopub.status.busy": "2024-12-26T11:18:08.644938Z", + "iopub.status.idle": "2024-12-26T11:18:08.838114Z", + "shell.execute_reply": "2024-12-26T11:18:08.837547Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.362730Z", - "iopub.status.busy": "2024-12-25T19:57:21.362553Z", - "iopub.status.idle": "2024-12-25T19:57:21.368414Z", - "shell.execute_reply": "2024-12-25T19:57:21.367967Z" + "iopub.execute_input": "2024-12-26T11:18:08.839774Z", + "iopub.status.busy": "2024-12-26T11:18:08.839599Z", + "iopub.status.idle": "2024-12-26T11:18:08.845341Z", + "shell.execute_reply": "2024-12-26T11:18:08.844796Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.370080Z", - "iopub.status.busy": "2024-12-25T19:57:21.369806Z", - "iopub.status.idle": "2024-12-25T19:57:21.376490Z", - "shell.execute_reply": "2024-12-25T19:57:21.376057Z" + "iopub.execute_input": "2024-12-26T11:18:08.847227Z", + "iopub.status.busy": "2024-12-26T11:18:08.847028Z", + "iopub.status.idle": "2024-12-26T11:18:08.854024Z", + "shell.execute_reply": "2024-12-26T11:18:08.853543Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.378355Z", - "iopub.status.busy": "2024-12-25T19:57:21.377928Z", - "iopub.status.idle": "2024-12-25T19:57:21.382744Z", - "shell.execute_reply": "2024-12-25T19:57:21.382191Z" + "iopub.execute_input": "2024-12-26T11:18:08.855655Z", + "iopub.status.busy": "2024-12-26T11:18:08.855484Z", + "iopub.status.idle": "2024-12-26T11:18:08.860454Z", + "shell.execute_reply": "2024-12-26T11:18:08.859885Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.384523Z", - "iopub.status.busy": "2024-12-25T19:57:21.384192Z", - "iopub.status.idle": "2024-12-25T19:57:21.389561Z", - "shell.execute_reply": "2024-12-25T19:57:21.389128Z" + "iopub.execute_input": "2024-12-26T11:18:08.862158Z", + "iopub.status.busy": "2024-12-26T11:18:08.861991Z", + "iopub.status.idle": "2024-12-26T11:18:08.868015Z", + "shell.execute_reply": "2024-12-26T11:18:08.867564Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.391315Z", - "iopub.status.busy": "2024-12-25T19:57:21.390987Z", - "iopub.status.idle": "2024-12-25T19:57:21.394720Z", - "shell.execute_reply": "2024-12-25T19:57:21.394282Z" + "iopub.execute_input": "2024-12-26T11:18:08.869456Z", + "iopub.status.busy": "2024-12-26T11:18:08.869286Z", + "iopub.status.idle": "2024-12-26T11:18:08.873262Z", + "shell.execute_reply": "2024-12-26T11:18:08.872853Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.396420Z", - "iopub.status.busy": "2024-12-25T19:57:21.396106Z", - "iopub.status.idle": "2024-12-25T19:57:21.460280Z", - "shell.execute_reply": "2024-12-25T19:57:21.459641Z" + "iopub.execute_input": "2024-12-26T11:18:08.874714Z", + "iopub.status.busy": "2024-12-26T11:18:08.874551Z", + "iopub.status.idle": "2024-12-26T11:18:08.939042Z", + "shell.execute_reply": "2024-12-26T11:18:08.938440Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.462522Z", - "iopub.status.busy": "2024-12-25T19:57:21.461976Z", - "iopub.status.idle": "2024-12-25T19:57:21.472629Z", - "shell.execute_reply": "2024-12-25T19:57:21.472137Z" + "iopub.execute_input": "2024-12-26T11:18:08.941104Z", + "iopub.status.busy": "2024-12-26T11:18:08.940905Z", + "iopub.status.idle": "2024-12-26T11:18:08.951803Z", + "shell.execute_reply": "2024-12-26T11:18:08.951244Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.475143Z", - "iopub.status.busy": "2024-12-25T19:57:21.474405Z", - "iopub.status.idle": "2024-12-25T19:57:21.495179Z", - "shell.execute_reply": "2024-12-25T19:57:21.494687Z" + "iopub.execute_input": "2024-12-26T11:18:08.953664Z", + "iopub.status.busy": "2024-12-26T11:18:08.953471Z", + "iopub.status.idle": "2024-12-26T11:18:08.973309Z", + "shell.execute_reply": "2024-12-26T11:18:08.972806Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.497970Z", - "iopub.status.busy": "2024-12-25T19:57:21.497218Z", - "iopub.status.idle": "2024-12-25T19:57:21.502535Z", - "shell.execute_reply": "2024-12-25T19:57:21.502041Z" + "iopub.execute_input": "2024-12-26T11:18:08.975242Z", + "iopub.status.busy": "2024-12-26T11:18:08.974854Z", + "iopub.status.idle": "2024-12-26T11:18:08.978814Z", + "shell.execute_reply": "2024-12-26T11:18:08.978332Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.505342Z", - "iopub.status.busy": "2024-12-25T19:57:21.504613Z", - "iopub.status.idle": "2024-12-25T19:57:21.510162Z", - "shell.execute_reply": "2024-12-25T19:57:21.509664Z" + "iopub.execute_input": "2024-12-26T11:18:08.980719Z", + "iopub.status.busy": "2024-12-26T11:18:08.980352Z", + "iopub.status.idle": "2024-12-26T11:18:08.984509Z", + "shell.execute_reply": "2024-12-26T11:18:08.984027Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.512949Z", - "iopub.status.busy": "2024-12-25T19:57:21.512223Z", - "iopub.status.idle": "2024-12-25T19:57:21.524160Z", - "shell.execute_reply": "2024-12-25T19:57:21.523763Z" + "iopub.execute_input": "2024-12-26T11:18:08.986406Z", + "iopub.status.busy": "2024-12-26T11:18:08.986034Z", + "iopub.status.idle": "2024-12-26T11:18:08.997341Z", + "shell.execute_reply": "2024-12-26T11:18:08.996859Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.526029Z", - "iopub.status.busy": "2024-12-25T19:57:21.525860Z", - "iopub.status.idle": "2024-12-25T19:57:21.530489Z", - "shell.execute_reply": "2024-12-25T19:57:21.529945Z" + "iopub.execute_input": "2024-12-26T11:18:08.999221Z", + "iopub.status.busy": "2024-12-26T11:18:08.998836Z", + "iopub.status.idle": "2024-12-26T11:18:09.003159Z", + "shell.execute_reply": "2024-12-26T11:18:09.002601Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.532255Z", - "iopub.status.busy": "2024-12-25T19:57:21.532076Z", - "iopub.status.idle": "2024-12-25T19:57:21.643030Z", - "shell.execute_reply": "2024-12-25T19:57:21.642477Z" + "iopub.execute_input": "2024-12-26T11:18:09.004700Z", + "iopub.status.busy": "2024-12-26T11:18:09.004532Z", + "iopub.status.idle": "2024-12-26T11:18:09.114185Z", + "shell.execute_reply": "2024-12-26T11:18:09.113707Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.645034Z", - "iopub.status.busy": "2024-12-25T19:57:21.644710Z", - "iopub.status.idle": "2024-12-25T19:57:21.650645Z", - "shell.execute_reply": "2024-12-25T19:57:21.650122Z" + "iopub.execute_input": "2024-12-26T11:18:09.117162Z", + "iopub.status.busy": "2024-12-26T11:18:09.116821Z", + "iopub.status.idle": "2024-12-26T11:18:09.125950Z", + "shell.execute_reply": "2024-12-26T11:18:09.125353Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.652495Z", - "iopub.status.busy": "2024-12-25T19:57:21.652193Z", - "iopub.status.idle": "2024-12-25T19:57:23.556545Z", - "shell.execute_reply": "2024-12-25T19:57:23.555919Z" + "iopub.execute_input": "2024-12-26T11:18:09.127960Z", + "iopub.status.busy": "2024-12-26T11:18:09.127458Z", + "iopub.status.idle": "2024-12-26T11:18:11.075427Z", + "shell.execute_reply": "2024-12-26T11:18:11.074722Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.559096Z", - "iopub.status.busy": "2024-12-25T19:57:23.558551Z", - "iopub.status.idle": "2024-12-25T19:57:23.571462Z", - "shell.execute_reply": "2024-12-25T19:57:23.570953Z" + "iopub.execute_input": "2024-12-26T11:18:11.078436Z", + "iopub.status.busy": "2024-12-26T11:18:11.077344Z", + "iopub.status.idle": "2024-12-26T11:18:11.091993Z", + "shell.execute_reply": "2024-12-26T11:18:11.091479Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.573438Z", - "iopub.status.busy": "2024-12-25T19:57:23.573057Z", - "iopub.status.idle": "2024-12-25T19:57:23.575961Z", - "shell.execute_reply": "2024-12-25T19:57:23.575467Z" + "iopub.execute_input": "2024-12-26T11:18:11.094953Z", + "iopub.status.busy": "2024-12-26T11:18:11.094192Z", + "iopub.status.idle": "2024-12-26T11:18:11.097875Z", + "shell.execute_reply": "2024-12-26T11:18:11.097371Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.577841Z", - "iopub.status.busy": "2024-12-25T19:57:23.577440Z", - "iopub.status.idle": "2024-12-25T19:57:23.581922Z", - "shell.execute_reply": "2024-12-25T19:57:23.581385Z" + "iopub.execute_input": "2024-12-26T11:18:11.100839Z", + "iopub.status.busy": "2024-12-26T11:18:11.100086Z", + "iopub.status.idle": "2024-12-26T11:18:11.105362Z", + "shell.execute_reply": "2024-12-26T11:18:11.104848Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.583831Z", - "iopub.status.busy": "2024-12-25T19:57:23.583450Z", - "iopub.status.idle": "2024-12-25T19:57:23.593849Z", - "shell.execute_reply": "2024-12-25T19:57:23.593340Z" + "iopub.execute_input": "2024-12-26T11:18:11.108271Z", + "iopub.status.busy": "2024-12-26T11:18:11.107516Z", + "iopub.status.idle": "2024-12-26T11:18:11.137278Z", + "shell.execute_reply": "2024-12-26T11:18:11.136793Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.596593Z", - "iopub.status.busy": "2024-12-25T19:57:23.595876Z", - "iopub.status.idle": "2024-12-25T19:57:24.114670Z", - "shell.execute_reply": "2024-12-25T19:57:24.114113Z" + "iopub.execute_input": "2024-12-26T11:18:11.140038Z", + "iopub.status.busy": "2024-12-26T11:18:11.139319Z", + "iopub.status.idle": "2024-12-26T11:18:11.656593Z", + "shell.execute_reply": "2024-12-26T11:18:11.656055Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.117979Z", - "iopub.status.busy": "2024-12-25T19:57:24.117207Z", - "iopub.status.idle": "2024-12-25T19:57:24.248280Z", - "shell.execute_reply": "2024-12-25T19:57:24.247667Z" + "iopub.execute_input": "2024-12-26T11:18:11.659773Z", + "iopub.status.busy": "2024-12-26T11:18:11.659019Z", + "iopub.status.idle": "2024-12-26T11:18:11.794107Z", + "shell.execute_reply": "2024-12-26T11:18:11.793500Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.251603Z", - "iopub.status.busy": "2024-12-25T19:57:24.250824Z", - "iopub.status.idle": "2024-12-25T19:57:24.258977Z", - "shell.execute_reply": "2024-12-25T19:57:24.258474Z" + "iopub.execute_input": "2024-12-26T11:18:11.797009Z", + "iopub.status.busy": "2024-12-26T11:18:11.796225Z", + "iopub.status.idle": "2024-12-26T11:18:11.804495Z", + "shell.execute_reply": "2024-12-26T11:18:11.803978Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.261826Z", - "iopub.status.busy": "2024-12-25T19:57:24.261065Z", - "iopub.status.idle": "2024-12-25T19:57:24.268418Z", - "shell.execute_reply": "2024-12-25T19:57:24.267919Z" + "iopub.execute_input": "2024-12-26T11:18:11.807373Z", + "iopub.status.busy": "2024-12-26T11:18:11.806596Z", + "iopub.status.idle": "2024-12-26T11:18:11.814045Z", + "shell.execute_reply": "2024-12-26T11:18:11.813536Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.271245Z", - "iopub.status.busy": "2024-12-25T19:57:24.270494Z", - "iopub.status.idle": "2024-12-25T19:57:24.277195Z", - "shell.execute_reply": "2024-12-25T19:57:24.276693Z" + "iopub.execute_input": "2024-12-26T11:18:11.816895Z", + "iopub.status.busy": "2024-12-26T11:18:11.816143Z", + "iopub.status.idle": "2024-12-26T11:18:11.822893Z", + "shell.execute_reply": "2024-12-26T11:18:11.822394Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.279984Z", - "iopub.status.busy": "2024-12-25T19:57:24.279251Z", - "iopub.status.idle": "2024-12-25T19:57:24.284869Z", - "shell.execute_reply": "2024-12-25T19:57:24.284329Z" + "iopub.execute_input": "2024-12-26T11:18:11.825702Z", + "iopub.status.busy": "2024-12-26T11:18:11.824964Z", + "iopub.status.idle": "2024-12-26T11:18:11.830510Z", + "shell.execute_reply": "2024-12-26T11:18:11.830013Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.287722Z", - "iopub.status.busy": "2024-12-25T19:57:24.286983Z", - "iopub.status.idle": "2024-12-25T19:57:24.292057Z", - "shell.execute_reply": "2024-12-25T19:57:24.291505Z" + "iopub.execute_input": "2024-12-26T11:18:11.833348Z", + "iopub.status.busy": "2024-12-26T11:18:11.832608Z", + "iopub.status.idle": "2024-12-26T11:18:11.837883Z", + "shell.execute_reply": "2024-12-26T11:18:11.837455Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.293920Z", - "iopub.status.busy": "2024-12-25T19:57:24.293748Z", - "iopub.status.idle": "2024-12-25T19:57:24.368500Z", - "shell.execute_reply": "2024-12-25T19:57:24.368005Z" + "iopub.execute_input": "2024-12-26T11:18:11.839626Z", + "iopub.status.busy": "2024-12-26T11:18:11.839229Z", + "iopub.status.idle": "2024-12-26T11:18:11.913135Z", + "shell.execute_reply": "2024-12-26T11:18:11.912657Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.370667Z", - "iopub.status.busy": "2024-12-25T19:57:24.370241Z", - "iopub.status.idle": "2024-12-25T19:57:24.386796Z", - "shell.execute_reply": "2024-12-25T19:57:24.386297Z" + "iopub.execute_input": "2024-12-26T11:18:11.914820Z", + "iopub.status.busy": "2024-12-26T11:18:11.914652Z", + "iopub.status.idle": "2024-12-26T11:18:11.922882Z", + "shell.execute_reply": "2024-12-26T11:18:11.922386Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.389550Z", - "iopub.status.busy": "2024-12-25T19:57:24.388729Z", - "iopub.status.idle": "2024-12-25T19:57:24.392017Z", - "shell.execute_reply": "2024-12-25T19:57:24.391578Z" + "iopub.execute_input": "2024-12-26T11:18:11.924818Z", + "iopub.status.busy": "2024-12-26T11:18:11.924444Z", + "iopub.status.idle": "2024-12-26T11:18:11.927238Z", + "shell.execute_reply": "2024-12-26T11:18:11.926719Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.393710Z", - "iopub.status.busy": "2024-12-25T19:57:24.393510Z", - "iopub.status.idle": "2024-12-25T19:57:24.403415Z", - "shell.execute_reply": "2024-12-25T19:57:24.402851Z" + "iopub.execute_input": "2024-12-26T11:18:11.929426Z", + "iopub.status.busy": "2024-12-26T11:18:11.928846Z", + "iopub.status.idle": "2024-12-26T11:18:11.938318Z", + "shell.execute_reply": "2024-12-26T11:18:11.937750Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.405188Z", - "iopub.status.busy": "2024-12-25T19:57:24.405018Z", - "iopub.status.idle": "2024-12-25T19:57:24.411482Z", - "shell.execute_reply": "2024-12-25T19:57:24.410907Z" + "iopub.execute_input": "2024-12-26T11:18:11.940107Z", + "iopub.status.busy": "2024-12-26T11:18:11.939935Z", + "iopub.status.idle": "2024-12-26T11:18:11.946384Z", + "shell.execute_reply": "2024-12-26T11:18:11.945922Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.413032Z", - "iopub.status.busy": "2024-12-25T19:57:24.412864Z", - "iopub.status.idle": "2024-12-25T19:57:24.416145Z", - "shell.execute_reply": "2024-12-25T19:57:24.415589Z" + "iopub.execute_input": "2024-12-26T11:18:11.948111Z", + "iopub.status.busy": "2024-12-26T11:18:11.947779Z", + "iopub.status.idle": "2024-12-26T11:18:11.951204Z", + "shell.execute_reply": "2024-12-26T11:18:11.950704Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.417615Z", - "iopub.status.busy": "2024-12-25T19:57:24.417447Z", - "iopub.status.idle": "2024-12-25T19:57:28.448500Z", - "shell.execute_reply": "2024-12-25T19:57:28.447808Z" + "iopub.execute_input": "2024-12-26T11:18:11.952823Z", + "iopub.status.busy": "2024-12-26T11:18:11.952493Z", + "iopub.status.idle": "2024-12-26T11:18:15.883748Z", + "shell.execute_reply": "2024-12-26T11:18:15.883191Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:28.451222Z", - "iopub.status.busy": "2024-12-25T19:57:28.450485Z", - "iopub.status.idle": "2024-12-25T19:57:28.455115Z", - "shell.execute_reply": "2024-12-25T19:57:28.454599Z" + "iopub.execute_input": "2024-12-26T11:18:15.886742Z", + "iopub.status.busy": "2024-12-26T11:18:15.885999Z", + "iopub.status.idle": "2024-12-26T11:18:15.890239Z", + "shell.execute_reply": "2024-12-26T11:18:15.889822Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:28.456975Z", - "iopub.status.busy": "2024-12-25T19:57:28.456619Z", - "iopub.status.idle": "2024-12-25T19:57:28.459456Z", - "shell.execute_reply": "2024-12-25T19:57:28.458992Z" + "iopub.execute_input": "2024-12-26T11:18:15.892081Z", + "iopub.status.busy": "2024-12-26T11:18:15.891905Z", + "iopub.status.idle": "2024-12-26T11:18:15.894750Z", + "shell.execute_reply": "2024-12-26T11:18:15.894187Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 82142b049..6a6f39888 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:31.641735Z", - "iopub.status.busy": "2024-12-25T19:57:31.641237Z", - "iopub.status.idle": "2024-12-25T19:57:32.843351Z", - "shell.execute_reply": "2024-12-25T19:57:32.842798Z" + "iopub.execute_input": "2024-12-26T11:18:19.021279Z", + "iopub.status.busy": "2024-12-26T11:18:19.020867Z", + "iopub.status.idle": "2024-12-26T11:18:20.254927Z", + "shell.execute_reply": "2024-12-26T11:18:20.254347Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:32.845479Z", - "iopub.status.busy": "2024-12-25T19:57:32.845122Z", - "iopub.status.idle": "2024-12-25T19:57:33.024082Z", - "shell.execute_reply": "2024-12-25T19:57:33.023539Z" + "iopub.execute_input": "2024-12-26T11:18:20.256913Z", + "iopub.status.busy": "2024-12-26T11:18:20.256593Z", + "iopub.status.idle": "2024-12-26T11:18:20.435616Z", + "shell.execute_reply": "2024-12-26T11:18:20.435130Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.026060Z", - "iopub.status.busy": "2024-12-25T19:57:33.025870Z", - "iopub.status.idle": "2024-12-25T19:57:33.037924Z", - "shell.execute_reply": "2024-12-25T19:57:33.037452Z" + "iopub.execute_input": "2024-12-26T11:18:20.437660Z", + "iopub.status.busy": "2024-12-26T11:18:20.437303Z", + "iopub.status.idle": "2024-12-26T11:18:20.448941Z", + "shell.execute_reply": "2024-12-26T11:18:20.448512Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.039578Z", - "iopub.status.busy": "2024-12-25T19:57:33.039400Z", - "iopub.status.idle": "2024-12-25T19:57:33.273946Z", - "shell.execute_reply": "2024-12-25T19:57:33.273341Z" + "iopub.execute_input": "2024-12-26T11:18:20.450644Z", + "iopub.status.busy": "2024-12-26T11:18:20.450300Z", + "iopub.status.idle": "2024-12-26T11:18:20.686380Z", + "shell.execute_reply": "2024-12-26T11:18:20.685778Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.276026Z", - "iopub.status.busy": "2024-12-25T19:57:33.275685Z", - "iopub.status.idle": "2024-12-25T19:57:33.302127Z", - "shell.execute_reply": "2024-12-25T19:57:33.301649Z" + "iopub.execute_input": "2024-12-26T11:18:20.688424Z", + "iopub.status.busy": "2024-12-26T11:18:20.688124Z", + "iopub.status.idle": "2024-12-26T11:18:20.714631Z", + "shell.execute_reply": "2024-12-26T11:18:20.714189Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.303851Z", - "iopub.status.busy": "2024-12-25T19:57:33.303515Z", - "iopub.status.idle": "2024-12-25T19:57:35.321380Z", - "shell.execute_reply": "2024-12-25T19:57:35.320843Z" + "iopub.execute_input": "2024-12-26T11:18:20.716302Z", + "iopub.status.busy": "2024-12-26T11:18:20.715978Z", + "iopub.status.idle": "2024-12-26T11:18:22.755411Z", + "shell.execute_reply": "2024-12-26T11:18:22.754784Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:35.323442Z", - "iopub.status.busy": "2024-12-25T19:57:35.322986Z", - "iopub.status.idle": "2024-12-25T19:57:35.341288Z", - "shell.execute_reply": "2024-12-25T19:57:35.340830Z" + "iopub.execute_input": "2024-12-26T11:18:22.757587Z", + "iopub.status.busy": "2024-12-26T11:18:22.757028Z", + "iopub.status.idle": "2024-12-26T11:18:22.775324Z", + "shell.execute_reply": "2024-12-26T11:18:22.774810Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:35.342877Z", - "iopub.status.busy": "2024-12-25T19:57:35.342694Z", - "iopub.status.idle": "2024-12-25T19:57:36.899328Z", - "shell.execute_reply": "2024-12-25T19:57:36.898747Z" + "iopub.execute_input": "2024-12-26T11:18:22.777035Z", + "iopub.status.busy": "2024-12-26T11:18:22.776679Z", + "iopub.status.idle": "2024-12-26T11:18:24.344636Z", + "shell.execute_reply": "2024-12-26T11:18:24.344076Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:36.901596Z", - "iopub.status.busy": "2024-12-25T19:57:36.900927Z", - "iopub.status.idle": "2024-12-25T19:57:36.915066Z", - "shell.execute_reply": "2024-12-25T19:57:36.914502Z" + "iopub.execute_input": "2024-12-26T11:18:24.347189Z", + "iopub.status.busy": "2024-12-26T11:18:24.346296Z", + "iopub.status.idle": "2024-12-26T11:18:24.360147Z", + "shell.execute_reply": "2024-12-26T11:18:24.359667Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:36.916900Z", - "iopub.status.busy": "2024-12-25T19:57:36.916592Z", - "iopub.status.idle": "2024-12-25T19:57:36.997097Z", - "shell.execute_reply": "2024-12-25T19:57:36.996456Z" + "iopub.execute_input": "2024-12-26T11:18:24.361819Z", + "iopub.status.busy": "2024-12-26T11:18:24.361546Z", + "iopub.status.idle": "2024-12-26T11:18:24.443072Z", + "shell.execute_reply": "2024-12-26T11:18:24.442431Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:36.999149Z", - "iopub.status.busy": "2024-12-25T19:57:36.998907Z", - "iopub.status.idle": "2024-12-25T19:57:37.213188Z", - "shell.execute_reply": "2024-12-25T19:57:37.212615Z" + "iopub.execute_input": "2024-12-26T11:18:24.445318Z", + "iopub.status.busy": "2024-12-26T11:18:24.444842Z", + "iopub.status.idle": "2024-12-26T11:18:24.663437Z", + "shell.execute_reply": "2024-12-26T11:18:24.662912Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.215102Z", - "iopub.status.busy": "2024-12-25T19:57:37.214736Z", - "iopub.status.idle": "2024-12-25T19:57:37.231765Z", - "shell.execute_reply": "2024-12-25T19:57:37.231317Z" + "iopub.execute_input": "2024-12-26T11:18:24.665282Z", + "iopub.status.busy": "2024-12-26T11:18:24.664918Z", + "iopub.status.idle": "2024-12-26T11:18:24.681904Z", + "shell.execute_reply": "2024-12-26T11:18:24.681462Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.233438Z", - "iopub.status.busy": "2024-12-25T19:57:37.233107Z", - "iopub.status.idle": "2024-12-25T19:57:37.242581Z", - "shell.execute_reply": "2024-12-25T19:57:37.242145Z" + "iopub.execute_input": "2024-12-26T11:18:24.683596Z", + "iopub.status.busy": "2024-12-26T11:18:24.683317Z", + "iopub.status.idle": "2024-12-26T11:18:24.693159Z", + "shell.execute_reply": "2024-12-26T11:18:24.692602Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.244290Z", - "iopub.status.busy": "2024-12-25T19:57:37.244017Z", - "iopub.status.idle": "2024-12-25T19:57:37.338842Z", - "shell.execute_reply": "2024-12-25T19:57:37.338271Z" + "iopub.execute_input": "2024-12-26T11:18:24.694774Z", + "iopub.status.busy": "2024-12-26T11:18:24.694596Z", + "iopub.status.idle": "2024-12-26T11:18:24.791831Z", + "shell.execute_reply": "2024-12-26T11:18:24.791184Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.340766Z", - "iopub.status.busy": "2024-12-25T19:57:37.340523Z", - "iopub.status.idle": "2024-12-25T19:57:37.478288Z", - "shell.execute_reply": "2024-12-25T19:57:37.477695Z" + "iopub.execute_input": "2024-12-26T11:18:24.793627Z", + "iopub.status.busy": "2024-12-26T11:18:24.793398Z", + "iopub.status.idle": "2024-12-26T11:18:24.928109Z", + "shell.execute_reply": "2024-12-26T11:18:24.927283Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.480103Z", - "iopub.status.busy": "2024-12-25T19:57:37.479866Z", - "iopub.status.idle": "2024-12-25T19:57:37.483600Z", - "shell.execute_reply": "2024-12-25T19:57:37.483137Z" + "iopub.execute_input": "2024-12-26T11:18:24.929978Z", + "iopub.status.busy": "2024-12-26T11:18:24.929741Z", + "iopub.status.idle": "2024-12-26T11:18:24.933390Z", + "shell.execute_reply": "2024-12-26T11:18:24.932933Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.485248Z", - "iopub.status.busy": "2024-12-25T19:57:37.485077Z", - "iopub.status.idle": "2024-12-25T19:57:37.488596Z", - "shell.execute_reply": "2024-12-25T19:57:37.488153Z" + "iopub.execute_input": "2024-12-26T11:18:24.935289Z", + "iopub.status.busy": "2024-12-26T11:18:24.934811Z", + "iopub.status.idle": "2024-12-26T11:18:24.938732Z", + "shell.execute_reply": "2024-12-26T11:18:24.938262Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.490117Z", - "iopub.status.busy": "2024-12-25T19:57:37.489945Z", - "iopub.status.idle": "2024-12-25T19:57:37.529361Z", - "shell.execute_reply": "2024-12-25T19:57:37.528844Z" + "iopub.execute_input": "2024-12-26T11:18:24.940469Z", + "iopub.status.busy": "2024-12-26T11:18:24.940159Z", + "iopub.status.idle": "2024-12-26T11:18:24.977088Z", + "shell.execute_reply": "2024-12-26T11:18:24.976626Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.531115Z", - "iopub.status.busy": "2024-12-25T19:57:37.530915Z", - "iopub.status.idle": "2024-12-25T19:57:37.573535Z", - "shell.execute_reply": "2024-12-25T19:57:37.573022Z" + "iopub.execute_input": "2024-12-26T11:18:24.978808Z", + "iopub.status.busy": "2024-12-26T11:18:24.978479Z", + "iopub.status.idle": "2024-12-26T11:18:25.019590Z", + "shell.execute_reply": "2024-12-26T11:18:25.019093Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.575284Z", - "iopub.status.busy": "2024-12-25T19:57:37.575108Z", - "iopub.status.idle": "2024-12-25T19:57:37.677988Z", - "shell.execute_reply": "2024-12-25T19:57:37.677139Z" + "iopub.execute_input": "2024-12-26T11:18:25.021336Z", + "iopub.status.busy": "2024-12-26T11:18:25.020999Z", + "iopub.status.idle": "2024-12-26T11:18:25.121520Z", + "shell.execute_reply": "2024-12-26T11:18:25.120916Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.680161Z", - "iopub.status.busy": "2024-12-25T19:57:37.679815Z", - "iopub.status.idle": "2024-12-25T19:57:37.778846Z", - "shell.execute_reply": "2024-12-25T19:57:37.778300Z" + "iopub.execute_input": "2024-12-26T11:18:25.123877Z", + "iopub.status.busy": "2024-12-26T11:18:25.123473Z", + "iopub.status.idle": "2024-12-26T11:18:25.228708Z", + "shell.execute_reply": "2024-12-26T11:18:25.228059Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.780747Z", - "iopub.status.busy": "2024-12-25T19:57:37.780406Z", - "iopub.status.idle": "2024-12-25T19:57:37.990772Z", - "shell.execute_reply": "2024-12-25T19:57:37.990280Z" + "iopub.execute_input": "2024-12-26T11:18:25.230888Z", + "iopub.status.busy": "2024-12-26T11:18:25.230515Z", + "iopub.status.idle": "2024-12-26T11:18:25.441527Z", + "shell.execute_reply": "2024-12-26T11:18:25.441057Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.992748Z", - "iopub.status.busy": "2024-12-25T19:57:37.992403Z", - "iopub.status.idle": "2024-12-25T19:57:38.209201Z", - "shell.execute_reply": "2024-12-25T19:57:38.208646Z" + "iopub.execute_input": "2024-12-26T11:18:25.443422Z", + "iopub.status.busy": "2024-12-26T11:18:25.443051Z", + "iopub.status.idle": "2024-12-26T11:18:25.672933Z", + "shell.execute_reply": "2024-12-26T11:18:25.672348Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:38.211137Z", - "iopub.status.busy": "2024-12-25T19:57:38.210932Z", - "iopub.status.idle": "2024-12-25T19:57:38.217551Z", - "shell.execute_reply": "2024-12-25T19:57:38.216997Z" + "iopub.execute_input": "2024-12-26T11:18:25.674949Z", + "iopub.status.busy": "2024-12-26T11:18:25.674708Z", + "iopub.status.idle": "2024-12-26T11:18:25.681170Z", + "shell.execute_reply": "2024-12-26T11:18:25.680629Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:38.219232Z", - "iopub.status.busy": "2024-12-25T19:57:38.218919Z", - "iopub.status.idle": "2024-12-25T19:57:38.437508Z", - "shell.execute_reply": "2024-12-25T19:57:38.437019Z" + "iopub.execute_input": "2024-12-26T11:18:25.682870Z", + "iopub.status.busy": "2024-12-26T11:18:25.682559Z", + "iopub.status.idle": "2024-12-26T11:18:25.901457Z", + "shell.execute_reply": "2024-12-26T11:18:25.900975Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:38.439315Z", - "iopub.status.busy": "2024-12-25T19:57:38.439129Z", - "iopub.status.idle": "2024-12-25T19:57:39.507473Z", - "shell.execute_reply": "2024-12-25T19:57:39.506930Z" + "iopub.execute_input": "2024-12-26T11:18:25.903223Z", + "iopub.status.busy": "2024-12-26T11:18:25.902861Z", + "iopub.status.idle": "2024-12-26T11:18:26.969135Z", + "shell.execute_reply": "2024-12-26T11:18:26.968530Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 0c6c5a137..d090bb7c4 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:43.882483Z", - "iopub.status.busy": "2024-12-25T19:57:43.882328Z", - "iopub.status.idle": "2024-12-25T19:57:45.033942Z", - "shell.execute_reply": "2024-12-25T19:57:45.033364Z" + "iopub.execute_input": "2024-12-26T11:18:30.549778Z", + "iopub.status.busy": "2024-12-26T11:18:30.549610Z", + "iopub.status.idle": "2024-12-26T11:18:31.709962Z", + "shell.execute_reply": "2024-12-26T11:18:31.709426Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.036103Z", - "iopub.status.busy": "2024-12-25T19:57:45.035666Z", - "iopub.status.idle": "2024-12-25T19:57:45.038796Z", - "shell.execute_reply": "2024-12-25T19:57:45.038344Z" + "iopub.execute_input": "2024-12-26T11:18:31.712134Z", + "iopub.status.busy": "2024-12-26T11:18:31.711767Z", + "iopub.status.idle": "2024-12-26T11:18:31.714748Z", + "shell.execute_reply": "2024-12-26T11:18:31.714298Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.040531Z", - "iopub.status.busy": "2024-12-25T19:57:45.040194Z", - "iopub.status.idle": "2024-12-25T19:57:45.047839Z", - "shell.execute_reply": "2024-12-25T19:57:45.047410Z" + "iopub.execute_input": "2024-12-26T11:18:31.716603Z", + "iopub.status.busy": "2024-12-26T11:18:31.716278Z", + "iopub.status.idle": "2024-12-26T11:18:31.724116Z", + "shell.execute_reply": "2024-12-26T11:18:31.723621Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.049443Z", - "iopub.status.busy": "2024-12-25T19:57:45.049099Z", - "iopub.status.idle": "2024-12-25T19:57:45.098344Z", - "shell.execute_reply": "2024-12-25T19:57:45.097747Z" + "iopub.execute_input": "2024-12-26T11:18:31.725703Z", + "iopub.status.busy": "2024-12-26T11:18:31.725385Z", + "iopub.status.idle": "2024-12-26T11:18:31.774424Z", + "shell.execute_reply": "2024-12-26T11:18:31.773812Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.100160Z", - "iopub.status.busy": "2024-12-25T19:57:45.099819Z", - "iopub.status.idle": "2024-12-25T19:57:45.116437Z", - "shell.execute_reply": "2024-12-25T19:57:45.116010Z" + "iopub.execute_input": "2024-12-26T11:18:31.776605Z", + "iopub.status.busy": "2024-12-26T11:18:31.776063Z", + "iopub.status.idle": "2024-12-26T11:18:31.793237Z", + "shell.execute_reply": "2024-12-26T11:18:31.792657Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.118003Z", - "iopub.status.busy": "2024-12-25T19:57:45.117735Z", - "iopub.status.idle": "2024-12-25T19:57:45.121482Z", - "shell.execute_reply": "2024-12-25T19:57:45.120964Z" + "iopub.execute_input": "2024-12-26T11:18:31.794993Z", + "iopub.status.busy": "2024-12-26T11:18:31.794822Z", + "iopub.status.idle": "2024-12-26T11:18:31.798479Z", + "shell.execute_reply": "2024-12-26T11:18:31.798049Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.123322Z", - "iopub.status.busy": "2024-12-25T19:57:45.122994Z", - "iopub.status.idle": "2024-12-25T19:57:45.137120Z", - "shell.execute_reply": "2024-12-25T19:57:45.136687Z" + "iopub.execute_input": "2024-12-26T11:18:31.800119Z", + "iopub.status.busy": "2024-12-26T11:18:31.799952Z", + "iopub.status.idle": "2024-12-26T11:18:31.815286Z", + "shell.execute_reply": "2024-12-26T11:18:31.814826Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.138652Z", - "iopub.status.busy": "2024-12-25T19:57:45.138478Z", - "iopub.status.idle": "2024-12-25T19:57:45.165477Z", - "shell.execute_reply": "2024-12-25T19:57:45.164909Z" + "iopub.execute_input": "2024-12-26T11:18:31.817003Z", + "iopub.status.busy": "2024-12-26T11:18:31.816631Z", + "iopub.status.idle": "2024-12-26T11:18:31.843214Z", + "shell.execute_reply": "2024-12-26T11:18:31.842639Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.167427Z", - "iopub.status.busy": "2024-12-25T19:57:45.167004Z", - "iopub.status.idle": "2024-12-25T19:57:47.047124Z", - "shell.execute_reply": "2024-12-25T19:57:47.046555Z" + "iopub.execute_input": "2024-12-26T11:18:31.845018Z", + "iopub.status.busy": "2024-12-26T11:18:31.844700Z", + "iopub.status.idle": "2024-12-26T11:18:33.744473Z", + "shell.execute_reply": "2024-12-26T11:18:33.743856Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.049149Z", - "iopub.status.busy": "2024-12-25T19:57:47.048867Z", - "iopub.status.idle": "2024-12-25T19:57:47.055392Z", - "shell.execute_reply": "2024-12-25T19:57:47.054961Z" + "iopub.execute_input": "2024-12-26T11:18:33.746552Z", + "iopub.status.busy": "2024-12-26T11:18:33.746267Z", + "iopub.status.idle": "2024-12-26T11:18:33.752975Z", + "shell.execute_reply": "2024-12-26T11:18:33.752545Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.056887Z", - "iopub.status.busy": "2024-12-25T19:57:47.056716Z", - "iopub.status.idle": "2024-12-25T19:57:47.069083Z", - "shell.execute_reply": "2024-12-25T19:57:47.068643Z" + "iopub.execute_input": "2024-12-26T11:18:33.754707Z", + "iopub.status.busy": "2024-12-26T11:18:33.754342Z", + "iopub.status.idle": "2024-12-26T11:18:33.767105Z", + "shell.execute_reply": "2024-12-26T11:18:33.766599Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.070565Z", - "iopub.status.busy": "2024-12-25T19:57:47.070394Z", - "iopub.status.idle": "2024-12-25T19:57:47.076740Z", - "shell.execute_reply": "2024-12-25T19:57:47.076319Z" + "iopub.execute_input": "2024-12-26T11:18:33.768977Z", + "iopub.status.busy": "2024-12-26T11:18:33.768653Z", + "iopub.status.idle": "2024-12-26T11:18:33.775091Z", + "shell.execute_reply": "2024-12-26T11:18:33.774549Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.078447Z", - "iopub.status.busy": "2024-12-25T19:57:47.078142Z", - "iopub.status.idle": "2024-12-25T19:57:47.080678Z", - "shell.execute_reply": "2024-12-25T19:57:47.080235Z" + "iopub.execute_input": "2024-12-26T11:18:33.776815Z", + "iopub.status.busy": "2024-12-26T11:18:33.776645Z", + "iopub.status.idle": "2024-12-26T11:18:33.779497Z", + "shell.execute_reply": "2024-12-26T11:18:33.778927Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.082422Z", - "iopub.status.busy": "2024-12-25T19:57:47.082039Z", - "iopub.status.idle": "2024-12-25T19:57:47.085647Z", - "shell.execute_reply": "2024-12-25T19:57:47.085098Z" + "iopub.execute_input": "2024-12-26T11:18:33.781267Z", + "iopub.status.busy": "2024-12-26T11:18:33.781087Z", + "iopub.status.idle": "2024-12-26T11:18:33.784968Z", + "shell.execute_reply": "2024-12-26T11:18:33.784444Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.087364Z", - "iopub.status.busy": "2024-12-25T19:57:47.087064Z", - "iopub.status.idle": "2024-12-25T19:57:47.089776Z", - "shell.execute_reply": "2024-12-25T19:57:47.089226Z" + "iopub.execute_input": "2024-12-26T11:18:33.786843Z", + "iopub.status.busy": "2024-12-26T11:18:33.786457Z", + "iopub.status.idle": "2024-12-26T11:18:33.789163Z", + "shell.execute_reply": "2024-12-26T11:18:33.788659Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.091403Z", - "iopub.status.busy": "2024-12-25T19:57:47.091102Z", - "iopub.status.idle": "2024-12-25T19:57:47.095083Z", - "shell.execute_reply": "2024-12-25T19:57:47.094581Z" + "iopub.execute_input": "2024-12-26T11:18:33.790604Z", + "iopub.status.busy": "2024-12-26T11:18:33.790436Z", + "iopub.status.idle": "2024-12-26T11:18:33.794625Z", + "shell.execute_reply": "2024-12-26T11:18:33.794165Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.096860Z", - "iopub.status.busy": "2024-12-25T19:57:47.096540Z", - "iopub.status.idle": "2024-12-25T19:57:47.125818Z", - "shell.execute_reply": "2024-12-25T19:57:47.125298Z" + "iopub.execute_input": "2024-12-26T11:18:33.796345Z", + "iopub.status.busy": "2024-12-26T11:18:33.796042Z", + "iopub.status.idle": "2024-12-26T11:18:33.825523Z", + "shell.execute_reply": "2024-12-26T11:18:33.824952Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.127607Z", - "iopub.status.busy": "2024-12-25T19:57:47.127266Z", - "iopub.status.idle": "2024-12-25T19:57:47.131790Z", - "shell.execute_reply": "2024-12-25T19:57:47.131235Z" + "iopub.execute_input": "2024-12-26T11:18:33.827517Z", + "iopub.status.busy": "2024-12-26T11:18:33.827065Z", + "iopub.status.idle": "2024-12-26T11:18:33.831764Z", + "shell.execute_reply": "2024-12-26T11:18:33.831173Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 3d3e305e2..814ee7e91 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:49.982133Z", - "iopub.status.busy": "2024-12-25T19:57:49.981738Z", - "iopub.status.idle": "2024-12-25T19:57:51.183595Z", - "shell.execute_reply": "2024-12-25T19:57:51.182972Z" + "iopub.execute_input": "2024-12-26T11:18:36.574427Z", + "iopub.status.busy": "2024-12-26T11:18:36.574255Z", + "iopub.status.idle": "2024-12-26T11:18:37.797986Z", + "shell.execute_reply": "2024-12-26T11:18:37.797422Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:51.186058Z", - "iopub.status.busy": "2024-12-25T19:57:51.185478Z", - "iopub.status.idle": "2024-12-25T19:57:51.382771Z", - "shell.execute_reply": "2024-12-25T19:57:51.382193Z" + "iopub.execute_input": "2024-12-26T11:18:37.800089Z", + "iopub.status.busy": "2024-12-26T11:18:37.799817Z", + "iopub.status.idle": "2024-12-26T11:18:37.995964Z", + "shell.execute_reply": "2024-12-26T11:18:37.995414Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:51.384853Z", - "iopub.status.busy": "2024-12-25T19:57:51.384569Z", - "iopub.status.idle": "2024-12-25T19:57:51.397435Z", - "shell.execute_reply": "2024-12-25T19:57:51.396867Z" + "iopub.execute_input": "2024-12-26T11:18:37.998059Z", + "iopub.status.busy": "2024-12-26T11:18:37.997627Z", + "iopub.status.idle": "2024-12-26T11:18:38.010201Z", + "shell.execute_reply": "2024-12-26T11:18:38.009754Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:51.399225Z", - "iopub.status.busy": "2024-12-25T19:57:51.398918Z", - "iopub.status.idle": "2024-12-25T19:57:54.021154Z", - "shell.execute_reply": "2024-12-25T19:57:54.020647Z" + "iopub.execute_input": "2024-12-26T11:18:38.011896Z", + "iopub.status.busy": "2024-12-26T11:18:38.011719Z", + "iopub.status.idle": "2024-12-26T11:18:40.589429Z", + "shell.execute_reply": "2024-12-26T11:18:40.588890Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:54.023126Z", - "iopub.status.busy": "2024-12-25T19:57:54.022758Z", - "iopub.status.idle": "2024-12-25T19:57:55.384943Z", - "shell.execute_reply": "2024-12-25T19:57:55.384368Z" + "iopub.execute_input": "2024-12-26T11:18:40.591387Z", + "iopub.status.busy": "2024-12-26T11:18:40.591080Z", + "iopub.status.idle": "2024-12-26T11:18:41.928189Z", + "shell.execute_reply": "2024-12-26T11:18:41.927648Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:55.386927Z", - "iopub.status.busy": "2024-12-25T19:57:55.386579Z", - "iopub.status.idle": "2024-12-25T19:57:55.390137Z", - "shell.execute_reply": "2024-12-25T19:57:55.389711Z" + "iopub.execute_input": "2024-12-26T11:18:41.930185Z", + "iopub.status.busy": "2024-12-26T11:18:41.929813Z", + "iopub.status.idle": "2024-12-26T11:18:41.933365Z", + "shell.execute_reply": "2024-12-26T11:18:41.932918Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:55.391790Z", - "iopub.status.busy": "2024-12-25T19:57:55.391444Z", - "iopub.status.idle": "2024-12-25T19:57:57.381059Z", - "shell.execute_reply": "2024-12-25T19:57:57.380471Z" + "iopub.execute_input": "2024-12-26T11:18:41.935096Z", + "iopub.status.busy": "2024-12-26T11:18:41.934768Z", + "iopub.status.idle": "2024-12-26T11:18:43.978507Z", + "shell.execute_reply": "2024-12-26T11:18:43.977797Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:57.383429Z", - "iopub.status.busy": "2024-12-25T19:57:57.382844Z", - "iopub.status.idle": "2024-12-25T19:57:57.390717Z", - "shell.execute_reply": "2024-12-25T19:57:57.390265Z" + "iopub.execute_input": "2024-12-26T11:18:43.980627Z", + "iopub.status.busy": "2024-12-26T11:18:43.980250Z", + "iopub.status.idle": "2024-12-26T11:18:43.988845Z", + "shell.execute_reply": "2024-12-26T11:18:43.988382Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:57.392433Z", - "iopub.status.busy": "2024-12-25T19:57:57.392102Z", - "iopub.status.idle": "2024-12-25T19:57:59.971452Z", - "shell.execute_reply": "2024-12-25T19:57:59.970924Z" + "iopub.execute_input": "2024-12-26T11:18:43.990402Z", + "iopub.status.busy": "2024-12-26T11:18:43.990241Z", + "iopub.status.idle": "2024-12-26T11:18:46.524108Z", + "shell.execute_reply": "2024-12-26T11:18:46.523589Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:59.973144Z", - "iopub.status.busy": "2024-12-25T19:57:59.972957Z", - "iopub.status.idle": "2024-12-25T19:57:59.976686Z", - "shell.execute_reply": "2024-12-25T19:57:59.976233Z" + "iopub.execute_input": "2024-12-26T11:18:46.526054Z", + "iopub.status.busy": "2024-12-26T11:18:46.525692Z", + "iopub.status.idle": "2024-12-26T11:18:46.529054Z", + "shell.execute_reply": "2024-12-26T11:18:46.528625Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:59.978526Z", - "iopub.status.busy": "2024-12-25T19:57:59.978089Z", - "iopub.status.idle": "2024-12-25T19:57:59.981700Z", - "shell.execute_reply": "2024-12-25T19:57:59.981234Z" + "iopub.execute_input": "2024-12-26T11:18:46.530794Z", + "iopub.status.busy": "2024-12-26T11:18:46.530467Z", + "iopub.status.idle": "2024-12-26T11:18:46.534058Z", + "shell.execute_reply": "2024-12-26T11:18:46.533463Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:59.983447Z", - "iopub.status.busy": "2024-12-25T19:57:59.983116Z", - "iopub.status.idle": "2024-12-25T19:57:59.986425Z", - "shell.execute_reply": "2024-12-25T19:57:59.985987Z" + "iopub.execute_input": "2024-12-26T11:18:46.536031Z", + "iopub.status.busy": "2024-12-26T11:18:46.535633Z", + "iopub.status.idle": "2024-12-26T11:18:46.538951Z", + "shell.execute_reply": "2024-12-26T11:18:46.538371Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 5b77bd5a4..ab30a2ade 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:02.435140Z", - "iopub.status.busy": "2024-12-25T19:58:02.434968Z", - "iopub.status.idle": "2024-12-25T19:58:03.634083Z", - "shell.execute_reply": "2024-12-25T19:58:03.633513Z" + "iopub.execute_input": "2024-12-26T11:18:49.144518Z", + "iopub.status.busy": "2024-12-26T11:18:49.144348Z", + "iopub.status.idle": "2024-12-26T11:18:50.358514Z", + "shell.execute_reply": "2024-12-26T11:18:50.357961Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:03.636159Z", - "iopub.status.busy": "2024-12-25T19:58:03.635747Z", - "iopub.status.idle": "2024-12-25T19:58:05.904045Z", - "shell.execute_reply": "2024-12-25T19:58:05.903344Z" + "iopub.execute_input": "2024-12-26T11:18:50.360603Z", + "iopub.status.busy": "2024-12-26T11:18:50.360234Z", + "iopub.status.idle": "2024-12-26T11:18:51.352874Z", + "shell.execute_reply": "2024-12-26T11:18:51.352047Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:05.906149Z", - "iopub.status.busy": "2024-12-25T19:58:05.905951Z", - "iopub.status.idle": "2024-12-25T19:58:05.909343Z", - "shell.execute_reply": "2024-12-25T19:58:05.908783Z" + "iopub.execute_input": "2024-12-26T11:18:51.355306Z", + "iopub.status.busy": "2024-12-26T11:18:51.354833Z", + "iopub.status.idle": "2024-12-26T11:18:51.358325Z", + "shell.execute_reply": "2024-12-26T11:18:51.357788Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:05.911022Z", - "iopub.status.busy": "2024-12-25T19:58:05.910847Z", - "iopub.status.idle": "2024-12-25T19:58:05.917719Z", - "shell.execute_reply": "2024-12-25T19:58:05.917286Z" + "iopub.execute_input": "2024-12-26T11:18:51.359902Z", + "iopub.status.busy": "2024-12-26T11:18:51.359723Z", + "iopub.status.idle": "2024-12-26T11:18:51.366111Z", + "shell.execute_reply": "2024-12-26T11:18:51.365549Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:05.919214Z", - "iopub.status.busy": "2024-12-25T19:58:05.919045Z", - "iopub.status.idle": "2024-12-25T19:58:06.412582Z", - "shell.execute_reply": "2024-12-25T19:58:06.412008Z" + "iopub.execute_input": "2024-12-26T11:18:51.367999Z", + "iopub.status.busy": "2024-12-26T11:18:51.367657Z", + "iopub.status.idle": "2024-12-26T11:18:51.857369Z", + "shell.execute_reply": "2024-12-26T11:18:51.856744Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:06.415071Z", - "iopub.status.busy": "2024-12-25T19:58:06.414625Z", - "iopub.status.idle": "2024-12-25T19:58:06.419978Z", - "shell.execute_reply": "2024-12-25T19:58:06.419415Z" + "iopub.execute_input": "2024-12-26T11:18:51.859704Z", + "iopub.status.busy": "2024-12-26T11:18:51.859297Z", + "iopub.status.idle": "2024-12-26T11:18:51.864546Z", + "shell.execute_reply": "2024-12-26T11:18:51.864106Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:06.421832Z", - "iopub.status.busy": "2024-12-25T19:58:06.421441Z", - "iopub.status.idle": "2024-12-25T19:58:06.425547Z", - "shell.execute_reply": "2024-12-25T19:58:06.425130Z" + "iopub.execute_input": "2024-12-26T11:18:51.866118Z", + "iopub.status.busy": "2024-12-26T11:18:51.865945Z", + "iopub.status.idle": "2024-12-26T11:18:51.869982Z", + "shell.execute_reply": "2024-12-26T11:18:51.869426Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:06.427283Z", - "iopub.status.busy": "2024-12-25T19:58:06.426878Z", - "iopub.status.idle": "2024-12-25T19:58:07.387920Z", - "shell.execute_reply": "2024-12-25T19:58:07.387290Z" + "iopub.execute_input": "2024-12-26T11:18:51.871749Z", + "iopub.status.busy": "2024-12-26T11:18:51.871447Z", + "iopub.status.idle": "2024-12-26T11:18:52.777961Z", + "shell.execute_reply": "2024-12-26T11:18:52.777372Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:07.389996Z", - "iopub.status.busy": "2024-12-25T19:58:07.389594Z", - "iopub.status.idle": "2024-12-25T19:58:07.598119Z", - "shell.execute_reply": "2024-12-25T19:58:07.597664Z" + "iopub.execute_input": "2024-12-26T11:18:52.779857Z", + "iopub.status.busy": "2024-12-26T11:18:52.779660Z", + "iopub.status.idle": "2024-12-26T11:18:52.986710Z", + "shell.execute_reply": "2024-12-26T11:18:52.986212Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:07.599928Z", - "iopub.status.busy": "2024-12-25T19:58:07.599597Z", - "iopub.status.idle": "2024-12-25T19:58:07.603911Z", - "shell.execute_reply": "2024-12-25T19:58:07.603453Z" + "iopub.execute_input": "2024-12-26T11:18:52.988363Z", + "iopub.status.busy": "2024-12-26T11:18:52.988083Z", + "iopub.status.idle": "2024-12-26T11:18:52.992225Z", + "shell.execute_reply": "2024-12-26T11:18:52.991781Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:07.605668Z", - "iopub.status.busy": "2024-12-25T19:58:07.605321Z", - "iopub.status.idle": "2024-12-25T19:58:08.063457Z", - "shell.execute_reply": "2024-12-25T19:58:08.062708Z" + "iopub.execute_input": "2024-12-26T11:18:52.993829Z", + "iopub.status.busy": "2024-12-26T11:18:52.993653Z", + "iopub.status.idle": "2024-12-26T11:18:53.465269Z", + "shell.execute_reply": "2024-12-26T11:18:53.464673Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:08.066563Z", - "iopub.status.busy": "2024-12-25T19:58:08.066056Z", - "iopub.status.idle": "2024-12-25T19:58:08.406694Z", - "shell.execute_reply": "2024-12-25T19:58:08.406104Z" + "iopub.execute_input": "2024-12-26T11:18:53.467346Z", + "iopub.status.busy": "2024-12-26T11:18:53.467163Z", + "iopub.status.idle": "2024-12-26T11:18:53.797907Z", + "shell.execute_reply": "2024-12-26T11:18:53.797349Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:08.408573Z", - "iopub.status.busy": "2024-12-25T19:58:08.408170Z", - "iopub.status.idle": "2024-12-25T19:58:08.778833Z", - "shell.execute_reply": "2024-12-25T19:58:08.778193Z" + "iopub.execute_input": "2024-12-26T11:18:53.799851Z", + "iopub.status.busy": "2024-12-26T11:18:53.799519Z", + "iopub.status.idle": "2024-12-26T11:18:54.134085Z", + "shell.execute_reply": "2024-12-26T11:18:54.133547Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:08.781314Z", - "iopub.status.busy": "2024-12-25T19:58:08.780975Z", - "iopub.status.idle": "2024-12-25T19:58:09.233170Z", - "shell.execute_reply": "2024-12-25T19:58:09.232616Z" + "iopub.execute_input": "2024-12-26T11:18:54.136573Z", + "iopub.status.busy": "2024-12-26T11:18:54.136260Z", + "iopub.status.idle": "2024-12-26T11:18:54.547622Z", + "shell.execute_reply": "2024-12-26T11:18:54.547062Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:09.237262Z", - "iopub.status.busy": "2024-12-25T19:58:09.236861Z", - "iopub.status.idle": "2024-12-25T19:58:09.690569Z", - "shell.execute_reply": "2024-12-25T19:58:09.690037Z" + "iopub.execute_input": "2024-12-26T11:18:54.551547Z", + "iopub.status.busy": "2024-12-26T11:18:54.551172Z", + "iopub.status.idle": "2024-12-26T11:18:54.998554Z", + "shell.execute_reply": "2024-12-26T11:18:54.997931Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:09.692920Z", - "iopub.status.busy": "2024-12-25T19:58:09.692573Z", - "iopub.status.idle": "2024-12-25T19:58:09.908313Z", - "shell.execute_reply": "2024-12-25T19:58:09.907772Z" + "iopub.execute_input": "2024-12-26T11:18:55.000960Z", + "iopub.status.busy": "2024-12-26T11:18:55.000597Z", + "iopub.status.idle": "2024-12-26T11:18:55.217164Z", + "shell.execute_reply": "2024-12-26T11:18:55.216558Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:09.910030Z", - "iopub.status.busy": "2024-12-25T19:58:09.909753Z", - "iopub.status.idle": "2024-12-25T19:58:10.113594Z", - "shell.execute_reply": "2024-12-25T19:58:10.112993Z" + "iopub.execute_input": "2024-12-26T11:18:55.219171Z", + "iopub.status.busy": "2024-12-26T11:18:55.218620Z", + "iopub.status.idle": "2024-12-26T11:18:55.417253Z", + "shell.execute_reply": "2024-12-26T11:18:55.416685Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:10.115653Z", - "iopub.status.busy": "2024-12-25T19:58:10.115245Z", - "iopub.status.idle": "2024-12-25T19:58:10.118240Z", - "shell.execute_reply": "2024-12-25T19:58:10.117783Z" + "iopub.execute_input": "2024-12-26T11:18:55.418931Z", + "iopub.status.busy": "2024-12-26T11:18:55.418633Z", + "iopub.status.idle": "2024-12-26T11:18:55.421560Z", + "shell.execute_reply": "2024-12-26T11:18:55.421004Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:10.119856Z", - "iopub.status.busy": "2024-12-25T19:58:10.119533Z", - "iopub.status.idle": "2024-12-25T19:58:11.073714Z", - "shell.execute_reply": "2024-12-25T19:58:11.073100Z" + "iopub.execute_input": "2024-12-26T11:18:55.423217Z", + "iopub.status.busy": "2024-12-26T11:18:55.423001Z", + "iopub.status.idle": "2024-12-26T11:18:56.390302Z", + "shell.execute_reply": "2024-12-26T11:18:56.389693Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:11.075598Z", - "iopub.status.busy": "2024-12-25T19:58:11.075320Z", - "iopub.status.idle": "2024-12-25T19:58:11.207757Z", - "shell.execute_reply": "2024-12-25T19:58:11.207268Z" + "iopub.execute_input": "2024-12-26T11:18:56.392146Z", + "iopub.status.busy": "2024-12-26T11:18:56.391957Z", + "iopub.status.idle": "2024-12-26T11:18:56.529309Z", + "shell.execute_reply": "2024-12-26T11:18:56.528861Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:11.209578Z", - "iopub.status.busy": "2024-12-25T19:58:11.209233Z", - "iopub.status.idle": "2024-12-25T19:58:11.440377Z", - "shell.execute_reply": "2024-12-25T19:58:11.439915Z" + "iopub.execute_input": "2024-12-26T11:18:56.530853Z", + "iopub.status.busy": "2024-12-26T11:18:56.530641Z", + "iopub.status.idle": "2024-12-26T11:18:56.670921Z", + "shell.execute_reply": "2024-12-26T11:18:56.670506Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:11.441995Z", - "iopub.status.busy": "2024-12-25T19:58:11.441826Z", - "iopub.status.idle": "2024-12-25T19:58:12.192202Z", - "shell.execute_reply": "2024-12-25T19:58:12.191616Z" + "iopub.execute_input": "2024-12-26T11:18:56.672563Z", + "iopub.status.busy": "2024-12-26T11:18:56.672246Z", + "iopub.status.idle": "2024-12-26T11:18:57.424420Z", + "shell.execute_reply": "2024-12-26T11:18:57.423871Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:12.193892Z", - "iopub.status.busy": "2024-12-25T19:58:12.193715Z", - "iopub.status.idle": "2024-12-25T19:58:12.197399Z", - "shell.execute_reply": "2024-12-25T19:58:12.196837Z" + "iopub.execute_input": "2024-12-26T11:18:57.426188Z", + "iopub.status.busy": "2024-12-26T11:18:57.426012Z", + "iopub.status.idle": "2024-12-26T11:18:57.429607Z", + "shell.execute_reply": "2024-12-26T11:18:57.429166Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index d9b948860..4fee540c4 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:14.467565Z", - "iopub.status.busy": "2024-12-25T19:58:14.467399Z", - "iopub.status.idle": "2024-12-25T19:58:17.309325Z", - "shell.execute_reply": "2024-12-25T19:58:17.308788Z" + "iopub.execute_input": "2024-12-26T11:18:59.577561Z", + "iopub.status.busy": "2024-12-26T11:18:59.577161Z", + "iopub.status.idle": "2024-12-26T11:19:02.539005Z", + "shell.execute_reply": "2024-12-26T11:19:02.538345Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:17.311311Z", - "iopub.status.busy": "2024-12-25T19:58:17.311031Z", - "iopub.status.idle": "2024-12-25T19:58:17.627892Z", - "shell.execute_reply": "2024-12-25T19:58:17.627336Z" + "iopub.execute_input": "2024-12-26T11:19:02.541736Z", + "iopub.status.busy": "2024-12-26T11:19:02.541224Z", + "iopub.status.idle": "2024-12-26T11:19:02.875636Z", + "shell.execute_reply": "2024-12-26T11:19:02.875057Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:17.630134Z", - "iopub.status.busy": "2024-12-25T19:58:17.629676Z", - "iopub.status.idle": "2024-12-25T19:58:17.633614Z", - "shell.execute_reply": "2024-12-25T19:58:17.633198Z" + "iopub.execute_input": "2024-12-26T11:19:02.877694Z", + "iopub.status.busy": "2024-12-26T11:19:02.877403Z", + "iopub.status.idle": "2024-12-26T11:19:02.881924Z", + "shell.execute_reply": "2024-12-26T11:19:02.881367Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:17.635357Z", - "iopub.status.busy": "2024-12-25T19:58:17.635023Z", - "iopub.status.idle": "2024-12-25T19:58:25.624475Z", - "shell.execute_reply": "2024-12-25T19:58:25.623880Z" + "iopub.execute_input": "2024-12-26T11:19:02.883827Z", + "iopub.status.busy": "2024-12-26T11:19:02.883504Z", + "iopub.status.idle": "2024-12-26T11:19:07.561891Z", + "shell.execute_reply": "2024-12-26T11:19:07.561358Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<11:44, 242022.82it/s]" + " 1%| | 1736704/170498071 [00:00<00:11, 15274773.50it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<03:00, 942802.44it/s]" + " 8%|▊ | 12976128/170498071 [00:00<00:02, 69339408.63it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<01:02, 2695287.41it/s]" + " 14%|█▍ | 23625728/170498071 [00:00<00:01, 85724727.85it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3604480/170498071 [00:00<00:17, 9439955.62it/s]" + " 21%|██ | 35028992/170498071 [00:00<00:01, 96620932.89it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9535488/170498071 [00:00<00:06, 23937167.81it/s]" + " 27%|██▋ | 46366720/170498071 [00:00<00:01, 102518077.11it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12976128/170498071 [00:00<00:05, 26583497.19it/s]" + " 34%|███▍ | 57769984/170498071 [00:00<00:01, 106377707.63it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17858560/170498071 [00:00<00:04, 33072538.78it/s]" + " 41%|████ | 69107712/170498071 [00:00<00:00, 108639675.19it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22151168/170498071 [00:00<00:04, 35353762.95it/s]" + " 47%|████▋ | 80052224/170498071 [00:00<00:00, 108167347.03it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26181632/170498071 [00:01<00:03, 36642486.34it/s]" + " 54%|█████▎ | 91553792/170498071 [00:00<00:00, 110203204.46it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 31424512/170498071 [00:01<00:03, 40579398.24it/s]" + " 60%|██████ | 102825984/170498071 [00:01<00:00, 110965301.78it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35586048/170498071 [00:01<00:03, 39563767.23it/s]" + " 67%|██████▋ | 114294784/170498071 [00:01<00:00, 112080003.57it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40992768/170498071 [00:01<00:02, 43415892.14it/s]" + " 74%|███████▎ | 125632512/170498071 [00:01<00:00, 112417015.15it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45416448/170498071 [00:01<00:03, 41494932.50it/s]" + " 80%|████████ | 137101312/170498071 [00:01<00:00, 113031193.28it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 50561024/170498071 [00:01<00:02, 44261831.23it/s]" + " 87%|████████▋ | 148537344/170498071 [00:01<00:00, 113361611.22it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 55050240/170498071 [00:01<00:02, 42223327.68it/s]" + " 94%|█████████▍| 159907840/170498071 [00:01<00:00, 113380930.47it/s]" ] }, { @@ -372,199 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 60227584/170498071 [00:01<00:02, 42579104.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 38%|███▊ | 64782336/170498071 [00:01<00:02, 43373100.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 41%|████ | 69500928/170498071 [00:02<00:02, 43787332.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 43%|████▎ | 73924608/170498071 [00:02<00:02, 42802215.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 46%|████▋ | 78905344/170498071 [00:02<00:02, 44783330.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 49%|████▉ | 83427328/170498071 [00:02<00:02, 42798381.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88473600/170498071 [00:02<00:01, 44776737.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 92995584/170498071 [00:02<00:01, 42855032.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 97976320/170498071 [00:02<00:01, 44560517.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 102465536/170498071 [00:02<00:01, 42737114.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107446272/170498071 [00:02<00:01, 44653588.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 111968256/170498071 [00:03<00:01, 42702467.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 116850688/170498071 [00:03<00:01, 44392111.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121339904/170498071 [00:03<00:01, 42567313.24it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126255104/170498071 [00:03<00:00, 44391722.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130744320/170498071 [00:03<00:00, 42498226.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|███████▉ | 135593984/170498071 [00:03<00:00, 44171582.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 140050432/170498071 [00:03<00:00, 42322590.24it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 144998400/170498071 [00:03<00:00, 44301791.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 149487616/170498071 [00:03<00:00, 42360243.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 154566656/170498071 [00:03<00:00, 44658032.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 159088640/170498071 [00:04<00:00, 42593430.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 164102144/170498071 [00:04<00:00, 44687146.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 168624128/170498071 [00:04<00:00, 42503489.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 39147774.82it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 105877447.96it/s]" ] }, { @@ -682,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:25.626401Z", - "iopub.status.busy": "2024-12-25T19:58:25.626082Z", - "iopub.status.idle": "2024-12-25T19:58:25.630847Z", - "shell.execute_reply": "2024-12-25T19:58:25.630300Z" + "iopub.execute_input": "2024-12-26T11:19:07.563705Z", + "iopub.status.busy": "2024-12-26T11:19:07.563524Z", + "iopub.status.idle": "2024-12-26T11:19:07.568302Z", + "shell.execute_reply": "2024-12-26T11:19:07.567848Z" }, "nbsphinx": "hidden" }, @@ -736,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:25.632491Z", - "iopub.status.busy": "2024-12-25T19:58:25.632174Z", - "iopub.status.idle": "2024-12-25T19:58:26.175295Z", - "shell.execute_reply": "2024-12-25T19:58:26.174711Z" + "iopub.execute_input": "2024-12-26T11:19:07.569940Z", + "iopub.status.busy": "2024-12-26T11:19:07.569628Z", + "iopub.status.idle": "2024-12-26T11:19:08.117081Z", + "shell.execute_reply": "2024-12-26T11:19:08.116562Z" } }, "outputs": [ @@ -772,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:26.177042Z", - "iopub.status.busy": "2024-12-25T19:58:26.176734Z", - "iopub.status.idle": "2024-12-25T19:58:26.692473Z", - "shell.execute_reply": "2024-12-25T19:58:26.691848Z" + "iopub.execute_input": "2024-12-26T11:19:08.119028Z", + "iopub.status.busy": "2024-12-26T11:19:08.118660Z", + "iopub.status.idle": "2024-12-26T11:19:08.635485Z", + "shell.execute_reply": "2024-12-26T11:19:08.634881Z" } }, "outputs": [ @@ -813,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:26.694362Z", - "iopub.status.busy": "2024-12-25T19:58:26.694075Z", - "iopub.status.idle": "2024-12-25T19:58:26.697616Z", - "shell.execute_reply": "2024-12-25T19:58:26.697045Z" + "iopub.execute_input": "2024-12-26T11:19:08.637408Z", + "iopub.status.busy": "2024-12-26T11:19:08.636999Z", + "iopub.status.idle": "2024-12-26T11:19:08.640586Z", + "shell.execute_reply": "2024-12-26T11:19:08.640118Z" } }, "outputs": [], @@ -839,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:26.699728Z", - "iopub.status.busy": "2024-12-25T19:58:26.699396Z", - "iopub.status.idle": "2024-12-25T19:58:39.441767Z", - "shell.execute_reply": "2024-12-25T19:58:39.441171Z" + "iopub.execute_input": "2024-12-26T11:19:08.642250Z", + "iopub.status.busy": "2024-12-26T11:19:08.641931Z", + "iopub.status.idle": "2024-12-26T11:19:21.098343Z", + "shell.execute_reply": "2024-12-26T11:19:21.097701Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8d985fce871343fda1b32911225e82d5", + "model_id": "53d0acc6ef16419393e1196568fa0d59", "version_major": 2, "version_minor": 0 }, @@ -908,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:39.443706Z", - "iopub.status.busy": "2024-12-25T19:58:39.443354Z", - "iopub.status.idle": "2024-12-25T19:58:41.514645Z", - "shell.execute_reply": "2024-12-25T19:58:41.514173Z" + "iopub.execute_input": "2024-12-26T11:19:21.100330Z", + "iopub.status.busy": "2024-12-26T11:19:21.100133Z", + "iopub.status.idle": "2024-12-26T11:19:23.248251Z", + "shell.execute_reply": "2024-12-26T11:19:23.247642Z" } }, "outputs": [ @@ -955,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:41.516574Z", - "iopub.status.busy": "2024-12-25T19:58:41.516212Z", - "iopub.status.idle": "2024-12-25T19:58:41.738716Z", - "shell.execute_reply": "2024-12-25T19:58:41.738128Z" + "iopub.execute_input": "2024-12-26T11:19:23.250701Z", + "iopub.status.busy": "2024-12-26T11:19:23.250280Z", + "iopub.status.idle": "2024-12-26T11:19:23.508410Z", + "shell.execute_reply": "2024-12-26T11:19:23.507868Z" } }, "outputs": [ @@ -994,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:41.740544Z", - "iopub.status.busy": "2024-12-25T19:58:41.740363Z", - "iopub.status.idle": "2024-12-25T19:58:42.395028Z", - "shell.execute_reply": "2024-12-25T19:58:42.394422Z" + "iopub.execute_input": "2024-12-26T11:19:23.510739Z", + "iopub.status.busy": "2024-12-26T11:19:23.510321Z", + "iopub.status.idle": "2024-12-26T11:19:24.207595Z", + "shell.execute_reply": "2024-12-26T11:19:24.206986Z" } }, "outputs": [ @@ -1047,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:42.397102Z", - "iopub.status.busy": "2024-12-25T19:58:42.396923Z", - "iopub.status.idle": "2024-12-25T19:58:42.687202Z", - "shell.execute_reply": "2024-12-25T19:58:42.686602Z" + "iopub.execute_input": "2024-12-26T11:19:24.210301Z", + "iopub.status.busy": "2024-12-26T11:19:24.209831Z", + "iopub.status.idle": "2024-12-26T11:19:24.549671Z", + "shell.execute_reply": "2024-12-26T11:19:24.549207Z" } }, "outputs": [ @@ -1098,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:42.689278Z", - "iopub.status.busy": "2024-12-25T19:58:42.689104Z", - "iopub.status.idle": "2024-12-25T19:58:42.919174Z", - "shell.execute_reply": "2024-12-25T19:58:42.918636Z" + "iopub.execute_input": "2024-12-26T11:19:24.551507Z", + "iopub.status.busy": "2024-12-26T11:19:24.551186Z", + "iopub.status.idle": "2024-12-26T11:19:24.795066Z", + "shell.execute_reply": "2024-12-26T11:19:24.794493Z" } }, "outputs": [ @@ -1157,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:42.922755Z", - "iopub.status.busy": "2024-12-25T19:58:42.921991Z", - "iopub.status.idle": "2024-12-25T19:58:43.019622Z", - "shell.execute_reply": "2024-12-25T19:58:43.019139Z" + "iopub.execute_input": "2024-12-26T11:19:24.797562Z", + "iopub.status.busy": "2024-12-26T11:19:24.797115Z", + "iopub.status.idle": "2024-12-26T11:19:24.929780Z", + "shell.execute_reply": "2024-12-26T11:19:24.929268Z" } }, "outputs": [], @@ -1181,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:43.022340Z", - "iopub.status.busy": "2024-12-25T19:58:43.021729Z", - "iopub.status.idle": "2024-12-25T19:58:53.698857Z", - "shell.execute_reply": "2024-12-25T19:58:53.698258Z" + "iopub.execute_input": "2024-12-26T11:19:24.931991Z", + "iopub.status.busy": "2024-12-26T11:19:24.931513Z", + "iopub.status.idle": "2024-12-26T11:19:35.886393Z", + "shell.execute_reply": "2024-12-26T11:19:35.885775Z" } }, "outputs": [ @@ -1221,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:53.700949Z", - "iopub.status.busy": "2024-12-25T19:58:53.700457Z", - "iopub.status.idle": "2024-12-25T19:58:55.844108Z", - "shell.execute_reply": "2024-12-25T19:58:55.843597Z" + "iopub.execute_input": "2024-12-26T11:19:35.888506Z", + "iopub.status.busy": "2024-12-26T11:19:35.888187Z", + "iopub.status.idle": "2024-12-26T11:19:38.112557Z", + "shell.execute_reply": "2024-12-26T11:19:38.111963Z" } }, "outputs": [ @@ -1255,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:55.846412Z", - "iopub.status.busy": "2024-12-25T19:58:55.845813Z", - "iopub.status.idle": "2024-12-25T19:58:56.054313Z", - "shell.execute_reply": "2024-12-25T19:58:56.053798Z" + "iopub.execute_input": "2024-12-26T11:19:38.115196Z", + "iopub.status.busy": "2024-12-26T11:19:38.114524Z", + "iopub.status.idle": "2024-12-26T11:19:38.332153Z", + "shell.execute_reply": "2024-12-26T11:19:38.331635Z" } }, "outputs": [], @@ -1272,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:56.056359Z", - "iopub.status.busy": "2024-12-25T19:58:56.055925Z", - "iopub.status.idle": "2024-12-25T19:58:56.059159Z", - "shell.execute_reply": "2024-12-25T19:58:56.058726Z" + "iopub.execute_input": "2024-12-26T11:19:38.334277Z", + "iopub.status.busy": "2024-12-26T11:19:38.333932Z", + "iopub.status.idle": "2024-12-26T11:19:38.337007Z", + "shell.execute_reply": "2024-12-26T11:19:38.336562Z" } }, "outputs": [], @@ -1313,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:56.060944Z", - "iopub.status.busy": "2024-12-25T19:58:56.060630Z", - "iopub.status.idle": "2024-12-25T19:58:56.068742Z", - "shell.execute_reply": "2024-12-25T19:58:56.068319Z" + "iopub.execute_input": "2024-12-26T11:19:38.338736Z", + "iopub.status.busy": "2024-12-26T11:19:38.338409Z", + "iopub.status.idle": "2024-12-26T11:19:38.346389Z", + "shell.execute_reply": "2024-12-26T11:19:38.345944Z" }, "nbsphinx": "hidden" }, @@ -1361,7 +1169,72 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "138ce5630c6a49d69c98aa57b2de09b8": { + "2d8132f06b5d4efa8bbe426e8063fa0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6ba9b0c85f0c47cd87407c9100e1efd0", + "placeholder": "​", + "style": "IPY_MODEL_80fd9b326c104f51b73bfa2048678fa7", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 239MB/s]" + } + }, + "34587ff1a8ae45f99f602b8c360aba6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "53d0acc6ef16419393e1196568fa0d59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78bd76de52a24fc98b30142f2160b51b", + "IPY_MODEL_ea7f6f0bfc2e48c48aeabe3746879bd8", + "IPY_MODEL_2d8132f06b5d4efa8bbe426e8063fa0a" + ], + "layout": "IPY_MODEL_bcd708d22bec4cfb9872dafde27a6d89", + "tabbable": null, + "tooltip": null + } + }, + "6ba9b0c85f0c47cd87407c9100e1efd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1414,33 +1287,30 @@ "width": null } }, - "17d2441570d948c3af49db21e9cd324a": { + "78bd76de52a24fc98b30142f2160b51b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38c24467b27d4211858132a790d487e8", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7510d8c2b966466ea92ce214aa702c5a", + "layout": "IPY_MODEL_7a481ddce8a34af2830981918d3d3d09", + "placeholder": "​", + "style": "IPY_MODEL_34587ff1a8ae45f99f602b8c360aba6e", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": "model.safetensors: 100%" } }, - "38c24467b27d4211858132a790d487e8": { + "7a481ddce8a34af2830981918d3d3d09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1493,7 +1363,7 @@ "width": null } }, - "65023da24d0847f289aba69ae93d31ce": { + "80fd9b326c104f51b73bfa2048678fa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1511,30 +1381,7 @@ "text_color": null } }, - "6e5c539e87254a96b41cf468456f807b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff1abd65b79f4f6a9224cb644ebc2edd", - "placeholder": "​", - "style": "IPY_MODEL_a4ce244a61e64fd295da1866337a4e27", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 216MB/s]" - } - }, - "7510d8c2b966466ea92ce214aa702c5a": { + "971fc0f882c445d6844aa4f9fdd6d6fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1550,72 +1397,7 @@ "description_width": "" } }, - "84529579ceca47c29c6f32d7c4a49146": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a64060dac43048c3b73f25e183dc5da6", - "placeholder": "​", - "style": "IPY_MODEL_65023da24d0847f289aba69ae93d31ce", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "8d985fce871343fda1b32911225e82d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_84529579ceca47c29c6f32d7c4a49146", - "IPY_MODEL_17d2441570d948c3af49db21e9cd324a", - "IPY_MODEL_6e5c539e87254a96b41cf468456f807b" - ], - "layout": "IPY_MODEL_138ce5630c6a49d69c98aa57b2de09b8", - "tabbable": null, - "tooltip": null - } - }, - "a4ce244a61e64fd295da1866337a4e27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a64060dac43048c3b73f25e183dc5da6": { + "bcd708d22bec4cfb9872dafde27a6d89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,7 +1450,33 @@ "width": null } }, - "ff1abd65b79f4f6a9224cb644ebc2edd": { + "ea7f6f0bfc2e48c48aeabe3746879bd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee02b92b7bcb42b99a64449aa96031e8", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_971fc0f882c445d6844aa4f9fdd6d6fd", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "ee02b92b7bcb42b99a64449aa96031e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 5c44675f3..e2bc15331 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:00.282383Z", - "iopub.status.busy": "2024-12-25T19:59:00.281930Z", - "iopub.status.idle": "2024-12-25T19:59:01.485197Z", - "shell.execute_reply": "2024-12-25T19:59:01.484654Z" + "iopub.execute_input": "2024-12-26T11:19:42.481269Z", + "iopub.status.busy": "2024-12-26T11:19:42.481094Z", + "iopub.status.idle": "2024-12-26T11:19:43.708370Z", + "shell.execute_reply": "2024-12-26T11:19:43.707673Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.487375Z", - "iopub.status.busy": "2024-12-25T19:59:01.486857Z", - "iopub.status.idle": "2024-12-25T19:59:01.504767Z", - "shell.execute_reply": "2024-12-25T19:59:01.504195Z" + "iopub.execute_input": "2024-12-26T11:19:43.710808Z", + "iopub.status.busy": "2024-12-26T11:19:43.710308Z", + "iopub.status.idle": "2024-12-26T11:19:43.731917Z", + "shell.execute_reply": "2024-12-26T11:19:43.731408Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.506880Z", - "iopub.status.busy": "2024-12-25T19:59:01.506310Z", - "iopub.status.idle": "2024-12-25T19:59:01.509512Z", - "shell.execute_reply": "2024-12-25T19:59:01.509080Z" + "iopub.execute_input": "2024-12-26T11:19:43.733765Z", + "iopub.status.busy": "2024-12-26T11:19:43.733363Z", + "iopub.status.idle": "2024-12-26T11:19:43.736480Z", + "shell.execute_reply": "2024-12-26T11:19:43.735939Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.511338Z", - "iopub.status.busy": "2024-12-25T19:59:01.510937Z", - "iopub.status.idle": "2024-12-25T19:59:01.804178Z", - "shell.execute_reply": "2024-12-25T19:59:01.803707Z" + "iopub.execute_input": "2024-12-26T11:19:43.738294Z", + "iopub.status.busy": "2024-12-26T11:19:43.737977Z", + "iopub.status.idle": "2024-12-26T11:19:43.799687Z", + "shell.execute_reply": "2024-12-26T11:19:43.799240Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.806005Z", - "iopub.status.busy": "2024-12-25T19:59:01.805696Z", - "iopub.status.idle": "2024-12-25T19:59:01.983200Z", - "shell.execute_reply": "2024-12-25T19:59:01.982600Z" + "iopub.execute_input": "2024-12-26T11:19:43.801379Z", + "iopub.status.busy": "2024-12-26T11:19:43.801116Z", + "iopub.status.idle": "2024-12-26T11:19:43.981986Z", + "shell.execute_reply": "2024-12-26T11:19:43.981404Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.985218Z", - "iopub.status.busy": "2024-12-25T19:59:01.985032Z", - "iopub.status.idle": "2024-12-25T19:59:02.191100Z", - "shell.execute_reply": "2024-12-25T19:59:02.190569Z" + "iopub.execute_input": "2024-12-26T11:19:43.984030Z", + "iopub.status.busy": "2024-12-26T11:19:43.983668Z", + "iopub.status.idle": "2024-12-26T11:19:44.225950Z", + "shell.execute_reply": "2024-12-26T11:19:44.225449Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.192932Z", - "iopub.status.busy": "2024-12-25T19:59:02.192574Z", - "iopub.status.idle": "2024-12-25T19:59:02.196850Z", - "shell.execute_reply": "2024-12-25T19:59:02.196396Z" + "iopub.execute_input": "2024-12-26T11:19:44.227657Z", + "iopub.status.busy": "2024-12-26T11:19:44.227475Z", + "iopub.status.idle": "2024-12-26T11:19:44.231827Z", + "shell.execute_reply": "2024-12-26T11:19:44.231378Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.198510Z", - "iopub.status.busy": "2024-12-25T19:59:02.198180Z", - "iopub.status.idle": "2024-12-25T19:59:02.203719Z", - "shell.execute_reply": "2024-12-25T19:59:02.203279Z" + "iopub.execute_input": "2024-12-26T11:19:44.233467Z", + "iopub.status.busy": "2024-12-26T11:19:44.233127Z", + "iopub.status.idle": "2024-12-26T11:19:44.238664Z", + "shell.execute_reply": "2024-12-26T11:19:44.238243Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.205490Z", - "iopub.status.busy": "2024-12-25T19:59:02.205168Z", - "iopub.status.idle": "2024-12-25T19:59:02.207978Z", - "shell.execute_reply": "2024-12-25T19:59:02.207551Z" + "iopub.execute_input": "2024-12-26T11:19:44.240385Z", + "iopub.status.busy": "2024-12-26T11:19:44.240089Z", + "iopub.status.idle": "2024-12-26T11:19:44.242788Z", + "shell.execute_reply": "2024-12-26T11:19:44.242225Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.209532Z", - "iopub.status.busy": "2024-12-25T19:59:02.209269Z", - "iopub.status.idle": "2024-12-25T19:59:11.055160Z", - "shell.execute_reply": "2024-12-25T19:59:11.054613Z" + "iopub.execute_input": "2024-12-26T11:19:44.244409Z", + "iopub.status.busy": "2024-12-26T11:19:44.244236Z", + "iopub.status.idle": "2024-12-26T11:19:53.106361Z", + "shell.execute_reply": "2024-12-26T11:19:53.105691Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.057392Z", - "iopub.status.busy": "2024-12-25T19:59:11.056991Z", - "iopub.status.idle": "2024-12-25T19:59:11.064335Z", - "shell.execute_reply": "2024-12-25T19:59:11.063766Z" + "iopub.execute_input": "2024-12-26T11:19:53.108847Z", + "iopub.status.busy": "2024-12-26T11:19:53.108299Z", + "iopub.status.idle": "2024-12-26T11:19:53.115551Z", + "shell.execute_reply": "2024-12-26T11:19:53.115101Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.066103Z", - "iopub.status.busy": "2024-12-25T19:59:11.065796Z", - "iopub.status.idle": "2024-12-25T19:59:11.069539Z", - "shell.execute_reply": "2024-12-25T19:59:11.068979Z" + "iopub.execute_input": "2024-12-26T11:19:53.117223Z", + "iopub.status.busy": "2024-12-26T11:19:53.116883Z", + "iopub.status.idle": "2024-12-26T11:19:53.120305Z", + "shell.execute_reply": "2024-12-26T11:19:53.119866Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.071214Z", - "iopub.status.busy": "2024-12-25T19:59:11.070900Z", - "iopub.status.idle": "2024-12-25T19:59:11.073909Z", - "shell.execute_reply": "2024-12-25T19:59:11.073443Z" + "iopub.execute_input": "2024-12-26T11:19:53.121863Z", + "iopub.status.busy": "2024-12-26T11:19:53.121551Z", + "iopub.status.idle": "2024-12-26T11:19:53.124862Z", + "shell.execute_reply": "2024-12-26T11:19:53.124312Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.075575Z", - "iopub.status.busy": "2024-12-25T19:59:11.075242Z", - "iopub.status.idle": "2024-12-25T19:59:11.078164Z", - "shell.execute_reply": "2024-12-25T19:59:11.077725Z" + "iopub.execute_input": "2024-12-26T11:19:53.126669Z", + "iopub.status.busy": "2024-12-26T11:19:53.126332Z", + "iopub.status.idle": "2024-12-26T11:19:53.129559Z", + "shell.execute_reply": "2024-12-26T11:19:53.128974Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.079935Z", - "iopub.status.busy": "2024-12-25T19:59:11.079498Z", - "iopub.status.idle": "2024-12-25T19:59:11.087442Z", - "shell.execute_reply": "2024-12-25T19:59:11.087009Z" + "iopub.execute_input": "2024-12-26T11:19:53.131337Z", + "iopub.status.busy": "2024-12-26T11:19:53.131047Z", + "iopub.status.idle": "2024-12-26T11:19:53.139532Z", + "shell.execute_reply": "2024-12-26T11:19:53.138943Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.089004Z", - "iopub.status.busy": "2024-12-25T19:59:11.088830Z", - "iopub.status.idle": "2024-12-25T19:59:11.091354Z", - "shell.execute_reply": "2024-12-25T19:59:11.090921Z" + "iopub.execute_input": "2024-12-26T11:19:53.141322Z", + "iopub.status.busy": "2024-12-26T11:19:53.141015Z", + "iopub.status.idle": "2024-12-26T11:19:53.143707Z", + "shell.execute_reply": "2024-12-26T11:19:53.143163Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.093083Z", - "iopub.status.busy": "2024-12-25T19:59:11.092767Z", - "iopub.status.idle": "2024-12-25T19:59:11.217691Z", - "shell.execute_reply": "2024-12-25T19:59:11.217084Z" + "iopub.execute_input": "2024-12-26T11:19:53.145382Z", + "iopub.status.busy": "2024-12-26T11:19:53.145210Z", + "iopub.status.idle": "2024-12-26T11:19:53.269728Z", + "shell.execute_reply": "2024-12-26T11:19:53.269231Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.219658Z", - "iopub.status.busy": "2024-12-25T19:59:11.219323Z", - "iopub.status.idle": "2024-12-25T19:59:11.326108Z", - "shell.execute_reply": "2024-12-25T19:59:11.325518Z" + "iopub.execute_input": "2024-12-26T11:19:53.271517Z", + "iopub.status.busy": "2024-12-26T11:19:53.271135Z", + "iopub.status.idle": "2024-12-26T11:19:53.379346Z", + "shell.execute_reply": "2024-12-26T11:19:53.378826Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.328189Z", - "iopub.status.busy": "2024-12-25T19:59:11.327811Z", - "iopub.status.idle": "2024-12-25T19:59:11.830223Z", - "shell.execute_reply": "2024-12-25T19:59:11.829609Z" + "iopub.execute_input": "2024-12-26T11:19:53.381283Z", + "iopub.status.busy": "2024-12-26T11:19:53.380874Z", + "iopub.status.idle": "2024-12-26T11:19:53.880530Z", + "shell.execute_reply": "2024-12-26T11:19:53.879975Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.832395Z", - "iopub.status.busy": "2024-12-25T19:59:11.832002Z", - "iopub.status.idle": "2024-12-25T19:59:11.938761Z", - "shell.execute_reply": "2024-12-25T19:59:11.938213Z" + "iopub.execute_input": "2024-12-26T11:19:53.882464Z", + "iopub.status.busy": "2024-12-26T11:19:53.882058Z", + "iopub.status.idle": "2024-12-26T11:19:53.978522Z", + "shell.execute_reply": "2024-12-26T11:19:53.977938Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.940788Z", - "iopub.status.busy": "2024-12-25T19:59:11.940351Z", - "iopub.status.idle": "2024-12-25T19:59:11.948851Z", - "shell.execute_reply": "2024-12-25T19:59:11.948391Z" + "iopub.execute_input": "2024-12-26T11:19:53.980438Z", + "iopub.status.busy": "2024-12-26T11:19:53.980098Z", + "iopub.status.idle": "2024-12-26T11:19:53.988661Z", + "shell.execute_reply": "2024-12-26T11:19:53.988113Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.950677Z", - "iopub.status.busy": "2024-12-25T19:59:11.950222Z", - "iopub.status.idle": "2024-12-25T19:59:11.953002Z", - "shell.execute_reply": "2024-12-25T19:59:11.952558Z" + "iopub.execute_input": "2024-12-26T11:19:53.990429Z", + "iopub.status.busy": "2024-12-26T11:19:53.990120Z", + "iopub.status.idle": "2024-12-26T11:19:53.992882Z", + "shell.execute_reply": "2024-12-26T11:19:53.992419Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.954765Z", - "iopub.status.busy": "2024-12-25T19:59:11.954435Z", - "iopub.status.idle": "2024-12-25T19:59:17.639825Z", - "shell.execute_reply": "2024-12-25T19:59:17.639255Z" + "iopub.execute_input": "2024-12-26T11:19:53.994653Z", + "iopub.status.busy": "2024-12-26T11:19:53.994314Z", + "iopub.status.idle": "2024-12-26T11:19:59.591495Z", + "shell.execute_reply": "2024-12-26T11:19:59.590894Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:17.641984Z", - "iopub.status.busy": "2024-12-25T19:59:17.641554Z", - "iopub.status.idle": "2024-12-25T19:59:17.650274Z", - "shell.execute_reply": "2024-12-25T19:59:17.649717Z" + "iopub.execute_input": "2024-12-26T11:19:59.593355Z", + "iopub.status.busy": "2024-12-26T11:19:59.593167Z", + "iopub.status.idle": "2024-12-26T11:19:59.601997Z", + "shell.execute_reply": "2024-12-26T11:19:59.601497Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:17.652219Z", - "iopub.status.busy": "2024-12-25T19:59:17.651839Z", - "iopub.status.idle": "2024-12-25T19:59:17.715828Z", - "shell.execute_reply": "2024-12-25T19:59:17.715246Z" + "iopub.execute_input": "2024-12-26T11:19:59.603738Z", + "iopub.status.busy": "2024-12-26T11:19:59.603560Z", + "iopub.status.idle": "2024-12-26T11:19:59.671984Z", + "shell.execute_reply": "2024-12-26T11:19:59.671399Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index b9b1cc24f..7b67cb498 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:20.782702Z", - "iopub.status.busy": "2024-12-25T19:59:20.782547Z", - "iopub.status.idle": "2024-12-25T19:59:22.768406Z", - "shell.execute_reply": "2024-12-25T19:59:22.767708Z" + "iopub.execute_input": "2024-12-26T11:20:03.694939Z", + "iopub.status.busy": "2024-12-26T11:20:03.694765Z", + "iopub.status.idle": "2024-12-26T11:20:05.297830Z", + "shell.execute_reply": "2024-12-26T11:20:05.297132Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:22.770537Z", - "iopub.status.busy": "2024-12-25T19:59:22.770356Z", - "iopub.status.idle": "2024-12-25T20:00:10.545245Z", - "shell.execute_reply": "2024-12-25T20:00:10.544614Z" + "iopub.execute_input": "2024-12-26T11:20:05.299850Z", + "iopub.status.busy": "2024-12-26T11:20:05.299611Z", + "iopub.status.idle": "2024-12-26T11:20:50.645887Z", + "shell.execute_reply": "2024-12-26T11:20:50.645127Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:10.547292Z", - "iopub.status.busy": "2024-12-25T20:00:10.547099Z", - "iopub.status.idle": "2024-12-25T20:00:11.702506Z", - "shell.execute_reply": "2024-12-25T20:00:11.701960Z" + "iopub.execute_input": "2024-12-26T11:20:50.648149Z", + "iopub.status.busy": "2024-12-26T11:20:50.647950Z", + "iopub.status.idle": "2024-12-26T11:20:51.812406Z", + "shell.execute_reply": "2024-12-26T11:20:51.811854Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.704658Z", - "iopub.status.busy": "2024-12-25T20:00:11.704189Z", - "iopub.status.idle": "2024-12-25T20:00:11.707524Z", - "shell.execute_reply": "2024-12-25T20:00:11.706971Z" + "iopub.execute_input": "2024-12-26T11:20:51.814535Z", + "iopub.status.busy": "2024-12-26T11:20:51.814115Z", + "iopub.status.idle": "2024-12-26T11:20:51.817488Z", + "shell.execute_reply": "2024-12-26T11:20:51.816952Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.709315Z", - "iopub.status.busy": "2024-12-25T20:00:11.708983Z", - "iopub.status.idle": "2024-12-25T20:00:11.712713Z", - "shell.execute_reply": "2024-12-25T20:00:11.712264Z" + "iopub.execute_input": "2024-12-26T11:20:51.819365Z", + "iopub.status.busy": "2024-12-26T11:20:51.818953Z", + "iopub.status.idle": "2024-12-26T11:20:51.823234Z", + "shell.execute_reply": "2024-12-26T11:20:51.822704Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.714656Z", - "iopub.status.busy": "2024-12-25T20:00:11.714246Z", - "iopub.status.idle": "2024-12-25T20:00:11.717725Z", - "shell.execute_reply": "2024-12-25T20:00:11.717259Z" + "iopub.execute_input": "2024-12-26T11:20:51.825455Z", + "iopub.status.busy": "2024-12-26T11:20:51.825081Z", + "iopub.status.idle": "2024-12-26T11:20:51.829049Z", + "shell.execute_reply": "2024-12-26T11:20:51.828483Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.719325Z", - "iopub.status.busy": "2024-12-25T20:00:11.719005Z", - "iopub.status.idle": "2024-12-25T20:00:11.721734Z", - "shell.execute_reply": "2024-12-25T20:00:11.721266Z" + "iopub.execute_input": "2024-12-26T11:20:51.830768Z", + "iopub.status.busy": "2024-12-26T11:20:51.830442Z", + "iopub.status.idle": "2024-12-26T11:20:51.833301Z", + "shell.execute_reply": "2024-12-26T11:20:51.832864Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.723332Z", - "iopub.status.busy": "2024-12-25T20:00:11.723004Z", - "iopub.status.idle": "2024-12-25T20:00:49.741854Z", - "shell.execute_reply": "2024-12-25T20:00:49.741190Z" + "iopub.execute_input": "2024-12-26T11:20:51.835132Z", + "iopub.status.busy": "2024-12-26T11:20:51.834552Z", + "iopub.status.idle": "2024-12-26T11:21:29.428044Z", + "shell.execute_reply": "2024-12-26T11:21:29.427380Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f078ebe90b9435b86ed20cb9dc11623", + "model_id": "f2583bff0ceb49ac9af4aa3cb0f8d4a7", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "126b53f966cb4c359c3818489a33d7b7", + "model_id": "e8d14b2c91054e7c80705b43aae4fa31", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:49.743882Z", - "iopub.status.busy": "2024-12-25T20:00:49.743686Z", - "iopub.status.idle": "2024-12-25T20:00:50.420769Z", - "shell.execute_reply": "2024-12-25T20:00:50.420268Z" + "iopub.execute_input": "2024-12-26T11:21:29.430265Z", + "iopub.status.busy": "2024-12-26T11:21:29.430006Z", + "iopub.status.idle": "2024-12-26T11:21:30.105491Z", + "shell.execute_reply": "2024-12-26T11:21:30.105010Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:50.422698Z", - "iopub.status.busy": "2024-12-25T20:00:50.422384Z", - "iopub.status.idle": "2024-12-25T20:00:53.418886Z", - "shell.execute_reply": "2024-12-25T20:00:53.418313Z" + "iopub.execute_input": "2024-12-26T11:21:30.107303Z", + "iopub.status.busy": "2024-12-26T11:21:30.107003Z", + "iopub.status.idle": "2024-12-26T11:21:33.216703Z", + "shell.execute_reply": "2024-12-26T11:21:33.216177Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:53.420625Z", - "iopub.status.busy": "2024-12-25T20:00:53.420441Z", - "iopub.status.idle": "2024-12-25T20:01:25.147857Z", - "shell.execute_reply": "2024-12-25T20:01:25.147293Z" + "iopub.execute_input": "2024-12-26T11:21:33.218409Z", + "iopub.status.busy": "2024-12-26T11:21:33.218228Z", + "iopub.status.idle": "2024-12-26T11:22:04.974296Z", + "shell.execute_reply": "2024-12-26T11:22:04.973821Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5992bf8d30fc4c7bb98d61880d4229dd", + "model_id": "49cae2f1b757468ea311c5db902ccf61", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:25.149605Z", - "iopub.status.busy": "2024-12-25T20:01:25.149426Z", - "iopub.status.idle": "2024-12-25T20:01:40.869620Z", - "shell.execute_reply": "2024-12-25T20:01:40.869063Z" + "iopub.execute_input": "2024-12-26T11:22:04.976041Z", + "iopub.status.busy": "2024-12-26T11:22:04.975769Z", + "iopub.status.idle": "2024-12-26T11:22:20.434198Z", + "shell.execute_reply": "2024-12-26T11:22:20.433615Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:40.871634Z", - "iopub.status.busy": "2024-12-25T20:01:40.871279Z", - "iopub.status.idle": "2024-12-25T20:01:44.711812Z", - "shell.execute_reply": "2024-12-25T20:01:44.711207Z" + "iopub.execute_input": "2024-12-26T11:22:20.436470Z", + "iopub.status.busy": "2024-12-26T11:22:20.436102Z", + "iopub.status.idle": "2024-12-26T11:22:24.261916Z", + "shell.execute_reply": "2024-12-26T11:22:24.261387Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:44.713623Z", - "iopub.status.busy": "2024-12-25T20:01:44.713445Z", - "iopub.status.idle": "2024-12-25T20:01:46.187654Z", - "shell.execute_reply": "2024-12-25T20:01:46.187094Z" + "iopub.execute_input": "2024-12-26T11:22:24.263708Z", + "iopub.status.busy": "2024-12-26T11:22:24.263360Z", + "iopub.status.idle": "2024-12-26T11:22:25.776699Z", + "shell.execute_reply": "2024-12-26T11:22:25.776181Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2b97bab32d845c3811412c73bee3531", + "model_id": "e438b3fc6cac4216915e7c5dd064065e", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:46.189685Z", - "iopub.status.busy": "2024-12-25T20:01:46.189487Z", - "iopub.status.idle": "2024-12-25T20:01:46.217215Z", - "shell.execute_reply": "2024-12-25T20:01:46.216652Z" + "iopub.execute_input": "2024-12-26T11:22:25.778515Z", + "iopub.status.busy": "2024-12-26T11:22:25.778166Z", + "iopub.status.idle": "2024-12-26T11:22:25.809966Z", + "shell.execute_reply": "2024-12-26T11:22:25.809401Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:46.219221Z", - "iopub.status.busy": "2024-12-25T20:01:46.218874Z", - "iopub.status.idle": "2024-12-25T20:01:52.359441Z", - "shell.execute_reply": "2024-12-25T20:01:52.358942Z" + "iopub.execute_input": "2024-12-26T11:22:25.812167Z", + "iopub.status.busy": "2024-12-26T11:22:25.811783Z", + "iopub.status.idle": "2024-12-26T11:22:31.979303Z", + "shell.execute_reply": "2024-12-26T11:22:31.978723Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:52.361257Z", - "iopub.status.busy": "2024-12-25T20:01:52.360970Z", - "iopub.status.idle": "2024-12-25T20:01:52.417551Z", - "shell.execute_reply": "2024-12-25T20:01:52.416916Z" + "iopub.execute_input": "2024-12-26T11:22:31.981178Z", + "iopub.status.busy": "2024-12-26T11:22:31.980821Z", + "iopub.status.idle": "2024-12-26T11:22:32.036858Z", + "shell.execute_reply": "2024-12-26T11:22:32.036273Z" }, "nbsphinx": "hidden" }, @@ -1038,57 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11837a9bb59d40baaf6fa16afdaadfc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3821afc153ec405dadad55a3682d160d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b454ee3ffc6046ef954867e20cb57e1a", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "126b53f966cb4c359c3818489a33d7b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_526e5cec709048a3b6a7ac01cde97741", - "IPY_MODEL_ab76a901b0b141eb87cb56b693ba7066", - "IPY_MODEL_a2016ff0a9de421097009dda600ef577" - ], - "layout": "IPY_MODEL_9e6765d48646453e90f2310104f1c9ad", - "tabbable": null, - "tooltip": null - } - }, - "199c434bf86945f69f9b8075052fd992": { + "01131108f9b3472c9174c4c3f7114ef4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1103,15 +1053,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_917765207fd6459a8a888ec09086d04d", + "layout": "IPY_MODEL_5879e2cd17ee4e4db912ec53a7dfaffa", "placeholder": "​", - "style": "IPY_MODEL_55ed20968b6a46c997b6ef586f3665f1", + "style": "IPY_MODEL_d14048fd8e9f40368b734a3d24d7430f", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "images processed using softmin: 100%" } }, - "19ba421ae0b449b1a66e5fadc35e6412": { + "055556d3f9744ae482fc3a071c630d54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1164,71 +1114,7 @@ "width": null } }, - "1b3fbc10c1f84c0f991b2cb1c24e4ae0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa341faae4a24f93833b09a64f347e7e", - "placeholder": "​", - "style": "IPY_MODEL_a71e66ca1b724a84b237fc1872008bea", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "1e333bb6499c4951979c5e3e8abf6b07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ce1671d0dd04e029dc592d9365157ff", - "placeholder": "​", - "style": "IPY_MODEL_93a4c17de7244be0aac6f663132d4671", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.46it/s]" - } - }, - "1fc30ce799234559ac3ba32aea5e2bfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22bd1b090b13488fa60cb5ab52cd6cc8": { + "1631e6fcd57f4673b06b315cd792ad65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1281,60 +1167,25 @@ "width": null } }, - "2c5b5be4b6bf4da0869521ae6582bb56": { - "model_module": "@jupyter-widgets/base", + "1fc2d6bd5ceb4489a1f5985a68327561": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3821afc153ec405dadad55a3682d160d": { + "27f13c0dd9b140eb8c593160761e12c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1387,31 +1238,25 @@ "width": null } }, - "3f078ebe90b9435b86ed20cb9dc11623": { + "29cdfbce5ff64ba4bda713cd9199f385": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_199c434bf86945f69f9b8075052fd992", - "IPY_MODEL_11837a9bb59d40baaf6fa16afdaadfc4", - "IPY_MODEL_ec43c803c84a4ab5ba1101b8a3c96f90" - ], - "layout": "IPY_MODEL_92a72fb667274da5b24a133eef8484a9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4f9ea06775294d4f901c8e2b34b01f8c": { + "3005b6e2fdb4496a8eb849d21d22416e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1426,15 +1271,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_97bb5d6c5e2c44adbc87ab786c019ad2", + "layout": "IPY_MODEL_7a93d2d9032f4cdbb7335fbbc4ff091e", "placeholder": "​", - "style": "IPY_MODEL_eed4c931003046ca954d7beb69db94ad", + "style": "IPY_MODEL_e8115a88c9d843f68471b07d1b859b77", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 159340.29it/s]" + "value": " 30/30 [00:00<00:00, 831.75it/s]" } }, - "526e5cec709048a3b6a7ac01cde97741": { + "3690ced5e4b14ab3a75d73475a36c271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1449,15 +1294,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57eacc48851b4a82999dd48d82626f3b", + "layout": "IPY_MODEL_a1e2fc40a8b149858a5db2e4912ee806", "placeholder": "​", - "style": "IPY_MODEL_1fc30ce799234559ac3ba32aea5e2bfa", + "style": "IPY_MODEL_f74dc2eebf5e47a681c62015b31ecb55", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%" } }, - "55ed20968b6a46c997b6ef586f3665f1": { + "3722a40b6c7944a6aa68bfc09d7b610d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1475,7 +1320,7 @@ "text_color": null } }, - "560dcbc83717455a96dfd01e969b3d53": { + "38452ee6f3394e65aad660645940d239": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1528,7 +1373,7 @@ "width": null } }, - "57eacc48851b4a82999dd48d82626f3b": { + "496d475bfc2b4667aa7a1310471d57a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1581,7 +1426,7 @@ "width": null } }, - "5992bf8d30fc4c7bb98d61880d4229dd": { + "49cae2f1b757468ea311c5db902ccf61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1596,39 +1441,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1b3fbc10c1f84c0f991b2cb1c24e4ae0", - "IPY_MODEL_cb5ea717d7334d269f299f05b3485470", - "IPY_MODEL_4f9ea06775294d4f901c8e2b34b01f8c" + "IPY_MODEL_e1bbb69fe5534b80826767ac7878d50f", + "IPY_MODEL_4d029a4812c748c6a9536f37f00c6e36", + "IPY_MODEL_e918a744267f4182b51a555282cd3752" ], - "layout": "IPY_MODEL_22bd1b090b13488fa60cb5ab52cd6cc8", + "layout": "IPY_MODEL_69b6e769d2454c50b5d29827ca26d693", "tabbable": null, "tooltip": null } }, - "703b556c4b70497fa104d6ef797cb592": { + "4d029a4812c748c6a9536f37f00c6e36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6f8b0a842204ecab6690b5d6fcd6172", - "placeholder": "​", - "style": "IPY_MODEL_c877d1305dc94b1fada69d4465c46680", + "layout": "IPY_MODEL_71712bea7b5d4b449b62cf6b28558a0e", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_50c9c14f924e4d8d9deffdf3c5f730c2", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": 4997683.0 } }, - "74421c231860403ca7bbfe736b774d07": { + "5053d511fc8649508dfb50e5cc7b8a4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1644,35 +1492,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_85e4b96e547c4c6c9953ae4a722698c0", + "layout": "IPY_MODEL_055556d3f9744ae482fc3a071c630d54", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f314e7f1f7564dbba340c574c3989466", + "style": "IPY_MODEL_66789565a503414884357e0373cd0163", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "75d479cd85f34144bca9cc206fd5ccb6": { + "50c9c14f924e4d8d9deffdf3c5f730c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7cb248ae8d604620993f7c7e7b2d848c": { + "5879e2cd17ee4e4db912ec53a7dfaffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1725,7 +1571,25 @@ "width": null } }, - "85e4b96e547c4c6c9953ae4a722698c0": { + "5c35aab094ae4a7899209303e09788ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ff6c9b8c97e40cc956f569d3ed9af97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1778,7 +1642,7 @@ "width": null } }, - "8ce1671d0dd04e029dc592d9365157ff": { + "60ded59cd92d4caab46a91e16593f76e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1831,7 +1695,7 @@ "width": null } }, - "917765207fd6459a8a888ec09086d04d": { + "6117876fc6664795937768745ca4e52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1884,7 +1748,23 @@ "width": null } }, - "92a72fb667274da5b24a133eef8484a9": { + "66789565a503414884357e0373cd0163": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "69b6e769d2454c50b5d29827ca26d693": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1937,48 +1817,14 @@ "width": null } }, - "93a131219661413f999048b492b47ac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "93a4c17de7244be0aac6f663132d4671": { - "model_module": "@jupyter-widgets/controls", + "71712bea7b5d4b449b62cf6b28558a0e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "97bb5d6c5e2c44adbc87ab786c019ad2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2024,7 +1870,7 @@ "width": null } }, - "9e6765d48646453e90f2310104f1c9ad": { + "7a93d2d9032f4cdbb7335fbbc4ff091e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2077,7 +1923,7 @@ "width": null } }, - "a2016ff0a9de421097009dda600ef577": { + "7e58cc450ac741a0a74e3891dee2ba84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2092,99 +1938,167 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7cb248ae8d604620993f7c7e7b2d848c", + "layout": "IPY_MODEL_9207297a485546bcad8266f409b21a27", "placeholder": "​", - "style": "IPY_MODEL_75d479cd85f34144bca9cc206fd5ccb6", + "style": "IPY_MODEL_5c35aab094ae4a7899209303e09788ce", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.16it/s]" + "value": " 30/30 [00:25<00:00,  1.18it/s]" } }, - "a71e66ca1b724a84b237fc1872008bea": { + "907201e234e649869bdfad15729474ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7e9514017b2434ca548367c45dae422", + "placeholder": "​", + "style": "IPY_MODEL_29cdfbce5ff64ba4bda713cd9199f385", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.34it/s]" } }, - "ab76a901b0b141eb87cb56b693ba7066": { - "model_module": "@jupyter-widgets/controls", + "9207297a485546bcad8266f409b21a27": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c5b5be4b6bf4da0869521ae6582bb56", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_feb24c052b9c459e8c43719c4af22c35", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b2b97bab32d845c3811412c73bee3531": { - "model_module": "@jupyter-widgets/controls", + "a1e2fc40a8b149858a5db2e4912ee806": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_703b556c4b70497fa104d6ef797cb592", - "IPY_MODEL_74421c231860403ca7bbfe736b774d07", - "IPY_MODEL_1e333bb6499c4951979c5e3e8abf6b07" - ], - "layout": "IPY_MODEL_f97adf93863e40d6b9b2b3f559699b97", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b454ee3ffc6046ef954867e20cb57e1a": { + "b7fe28f8936b4a0c97d07a172821ab33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5ff6c9b8c97e40cc956f569d3ed9af97", + "placeholder": "​", + "style": "IPY_MODEL_3722a40b6c7944a6aa68bfc09d7b610d", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "c877d1305dc94b1fada69d4465c46680": { + "ba4986bdb9504a38b4bd5c80533c792c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2202,33 +2116,7 @@ "text_color": null } }, - "cb5ea717d7334d269f299f05b3485470": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_560dcbc83717455a96dfd01e969b3d53", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_93a131219661413f999048b492b47ac2", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "d6f8b0a842204ecab6690b5d6fcd6172": { + "c040b7f5ee4e4bdfa95d140992c9fb08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,7 +2169,23 @@ "width": null } }, - "e6592e3c84c14a38a998e365b4d29090": { + "c3aa4bf8503d41938bc5f753bdbbbfb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d14048fd8e9f40368b734a3d24d7430f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2299,7 +2203,7 @@ "text_color": null } }, - "ec43c803c84a4ab5ba1101b8a3c96f90": { + "e1bbb69fe5534b80826767ac7878d50f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2314,15 +2218,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_19ba421ae0b449b1a66e5fadc35e6412", + "layout": "IPY_MODEL_c040b7f5ee4e4bdfa95d140992c9fb08", "placeholder": "​", - "style": "IPY_MODEL_e6592e3c84c14a38a998e365b4d29090", + "style": "IPY_MODEL_1fc2d6bd5ceb4489a1f5985a68327561", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 818.93it/s]" + "value": "100%" } }, - "eed4c931003046ca954d7beb69db94ad": { + "e438b3fc6cac4216915e7c5dd064065e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_01131108f9b3472c9174c4c3f7114ef4", + "IPY_MODEL_5053d511fc8649508dfb50e5cc7b8a4f", + "IPY_MODEL_907201e234e649869bdfad15729474ff" + ], + "layout": "IPY_MODEL_27f13c0dd9b140eb8c593160761e12c3", + "tabbable": null, + "tooltip": null + } + }, + "e8115a88c9d843f68471b07d1b859b77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2340,23 +2268,122 @@ "text_color": null } }, - "f314e7f1f7564dbba340c574c3989466": { + "e8d14b2c91054e7c80705b43aae4fa31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3690ced5e4b14ab3a75d73475a36c271", + "IPY_MODEL_f9d6c073f7bc453ca14dff271c9d172b", + "IPY_MODEL_7e58cc450ac741a0a74e3891dee2ba84" + ], + "layout": "IPY_MODEL_38452ee6f3394e65aad660645940d239", + "tabbable": null, + "tooltip": null + } + }, + "e918a744267f4182b51a555282cd3752": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60ded59cd92d4caab46a91e16593f76e", + "placeholder": "​", + "style": "IPY_MODEL_ba4986bdb9504a38b4bd5c80533c792c", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 159257.76it/s]" + } + }, + "edb2a176eabb47cdab368aa51a109fbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1631e6fcd57f4673b06b315cd792ad65", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c3aa4bf8503d41938bc5f753bdbbbfb0", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "f2583bff0ceb49ac9af4aa3cb0f8d4a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b7fe28f8936b4a0c97d07a172821ab33", + "IPY_MODEL_edb2a176eabb47cdab368aa51a109fbd", + "IPY_MODEL_3005b6e2fdb4496a8eb849d21d22416e" + ], + "layout": "IPY_MODEL_6117876fc6664795937768745ca4e52b", + "tabbable": null, + "tooltip": null + } + }, + "f74dc2eebf5e47a681c62015b31ecb55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f97adf93863e40d6b9b2b3f559699b97": { + "f7e9514017b2434ca548367c45dae422": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2409,60 +2436,33 @@ "width": null } }, - "fa341faae4a24f93833b09a64f347e7e": { - "model_module": "@jupyter-widgets/base", + "f9d6c073f7bc453ca14dff271c9d172b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_496d475bfc2b4667aa7a1310471d57a9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb3b677fa59a4752b99657d242501459", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "feb24c052b9c459e8c43719c4af22c35": { + "fb3b677fa59a4752b99657d242501459": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index f9ba9dfb8..dba540da7 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:54.726908Z", - "iopub.status.busy": "2024-12-25T20:01:54.726509Z", - "iopub.status.idle": "2024-12-25T20:01:56.537837Z", - "shell.execute_reply": "2024-12-25T20:01:56.537132Z" + "iopub.execute_input": "2024-12-26T11:22:34.399535Z", + "iopub.status.busy": "2024-12-26T11:22:34.399359Z", + "iopub.status.idle": "2024-12-26T11:22:35.626063Z", + "shell.execute_reply": "2024-12-26T11:22:35.625451Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-12-25 20:01:54-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-12-26 11:22:34-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.162, 2400:52e0:1a01::852:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.162|:443... connected.\r\n" + "185.93.1.249, 2400:52e0:1a00::718:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -117,7 +125,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-12-25 20:01:55 (6.27 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-12-26 11:22:34 (6.99 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,22 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-12-25 20:01:55-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.10.213, 3.5.25.230, 52.217.98.12, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.10.213|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-12-26 11:22:35-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.21.112, 52.216.138.219, 3.5.20.180, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.21.112|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -173,25 +168,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 2%[ ] 347.63K 1.50MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 35%[======> ] 5.73M 12.7MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 25.4MB/s in 0.6s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 90.7MB/s in 0.2s \r\n", "\r\n", - "2024-12-25 20:01:56 (25.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-12-26 11:22:35 (90.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -208,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:56.540013Z", - "iopub.status.busy": "2024-12-25T20:01:56.539655Z", - "iopub.status.idle": "2024-12-25T20:01:57.840343Z", - "shell.execute_reply": "2024-12-25T20:01:57.839800Z" + "iopub.execute_input": "2024-12-26T11:22:35.628276Z", + "iopub.status.busy": "2024-12-26T11:22:35.627815Z", + "iopub.status.idle": "2024-12-26T11:22:36.881130Z", + "shell.execute_reply": "2024-12-26T11:22:36.880584Z" }, "nbsphinx": "hidden" }, @@ -222,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -248,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:57.842471Z", - "iopub.status.busy": "2024-12-25T20:01:57.842031Z", - "iopub.status.idle": "2024-12-25T20:01:57.845420Z", - "shell.execute_reply": "2024-12-25T20:01:57.844959Z" + "iopub.execute_input": "2024-12-26T11:22:36.883250Z", + "iopub.status.busy": "2024-12-26T11:22:36.882823Z", + "iopub.status.idle": "2024-12-26T11:22:36.885969Z", + "shell.execute_reply": "2024-12-26T11:22:36.885534Z" } }, "outputs": [], @@ -301,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:57.847288Z", - "iopub.status.busy": "2024-12-25T20:01:57.846778Z", - "iopub.status.idle": "2024-12-25T20:01:57.849819Z", - "shell.execute_reply": "2024-12-25T20:01:57.849357Z" + "iopub.execute_input": "2024-12-26T11:22:36.887827Z", + "iopub.status.busy": "2024-12-26T11:22:36.887411Z", + "iopub.status.idle": "2024-12-26T11:22:36.890577Z", + "shell.execute_reply": "2024-12-26T11:22:36.890018Z" }, "nbsphinx": "hidden" }, @@ -322,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:57.851403Z", - "iopub.status.busy": "2024-12-25T20:01:57.851071Z", - "iopub.status.idle": "2024-12-25T20:02:06.941982Z", - "shell.execute_reply": "2024-12-25T20:02:06.941457Z" + "iopub.execute_input": "2024-12-26T11:22:36.892329Z", + "iopub.status.busy": "2024-12-26T11:22:36.892034Z", + "iopub.status.idle": "2024-12-26T11:22:45.825758Z", + "shell.execute_reply": "2024-12-26T11:22:45.825130Z" } }, "outputs": [], @@ -399,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:06.944086Z", - "iopub.status.busy": "2024-12-25T20:02:06.943664Z", - "iopub.status.idle": "2024-12-25T20:02:06.949108Z", - "shell.execute_reply": "2024-12-25T20:02:06.948614Z" + "iopub.execute_input": "2024-12-26T11:22:45.827886Z", + "iopub.status.busy": "2024-12-26T11:22:45.827689Z", + "iopub.status.idle": "2024-12-26T11:22:45.833299Z", + "shell.execute_reply": "2024-12-26T11:22:45.832816Z" }, "nbsphinx": "hidden" }, @@ -442,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:06.950667Z", - "iopub.status.busy": "2024-12-25T20:02:06.950499Z", - "iopub.status.idle": "2024-12-25T20:02:07.296228Z", - "shell.execute_reply": "2024-12-25T20:02:07.295706Z" + "iopub.execute_input": "2024-12-26T11:22:45.835174Z", + "iopub.status.busy": "2024-12-26T11:22:45.834729Z", + "iopub.status.idle": "2024-12-26T11:22:46.171040Z", + "shell.execute_reply": "2024-12-26T11:22:46.170385Z" } }, "outputs": [], @@ -482,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:07.298257Z", - "iopub.status.busy": "2024-12-25T20:02:07.297924Z", - "iopub.status.idle": "2024-12-25T20:02:07.302355Z", - "shell.execute_reply": "2024-12-25T20:02:07.301803Z" + "iopub.execute_input": "2024-12-26T11:22:46.173102Z", + "iopub.status.busy": "2024-12-26T11:22:46.172908Z", + "iopub.status.idle": "2024-12-26T11:22:46.177360Z", + "shell.execute_reply": "2024-12-26T11:22:46.176796Z" } }, "outputs": [ @@ -557,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:07.304191Z", - "iopub.status.busy": "2024-12-25T20:02:07.303860Z", - "iopub.status.idle": "2024-12-25T20:02:09.878059Z", - "shell.execute_reply": "2024-12-25T20:02:09.877342Z" + "iopub.execute_input": "2024-12-26T11:22:46.179081Z", + "iopub.status.busy": "2024-12-26T11:22:46.178687Z", + "iopub.status.idle": "2024-12-26T11:22:48.779826Z", + "shell.execute_reply": "2024-12-26T11:22:48.778992Z" } }, "outputs": [], @@ -582,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.880922Z", - "iopub.status.busy": "2024-12-25T20:02:09.880097Z", - "iopub.status.idle": "2024-12-25T20:02:09.884088Z", - "shell.execute_reply": "2024-12-25T20:02:09.883640Z" + "iopub.execute_input": "2024-12-26T11:22:48.782644Z", + "iopub.status.busy": "2024-12-26T11:22:48.781849Z", + "iopub.status.idle": "2024-12-26T11:22:48.786175Z", + "shell.execute_reply": "2024-12-26T11:22:48.785709Z" } }, "outputs": [ @@ -621,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.885802Z", - "iopub.status.busy": "2024-12-25T20:02:09.885454Z", - "iopub.status.idle": "2024-12-25T20:02:09.890377Z", - "shell.execute_reply": "2024-12-25T20:02:09.889927Z" + "iopub.execute_input": "2024-12-26T11:22:48.787842Z", + "iopub.status.busy": "2024-12-26T11:22:48.787479Z", + "iopub.status.idle": "2024-12-26T11:22:48.792857Z", + "shell.execute_reply": "2024-12-26T11:22:48.792300Z" } }, "outputs": [ @@ -802,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.892118Z", - "iopub.status.busy": "2024-12-25T20:02:09.891795Z", - "iopub.status.idle": "2024-12-25T20:02:09.917983Z", - "shell.execute_reply": "2024-12-25T20:02:09.917489Z" + "iopub.execute_input": "2024-12-26T11:22:48.794737Z", + "iopub.status.busy": "2024-12-26T11:22:48.794304Z", + "iopub.status.idle": "2024-12-26T11:22:48.821061Z", + "shell.execute_reply": "2024-12-26T11:22:48.820448Z" } }, "outputs": [ @@ -907,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.919765Z", - "iopub.status.busy": "2024-12-25T20:02:09.919437Z", - "iopub.status.idle": "2024-12-25T20:02:09.923542Z", - "shell.execute_reply": "2024-12-25T20:02:09.923102Z" + "iopub.execute_input": "2024-12-26T11:22:48.822853Z", + "iopub.status.busy": "2024-12-26T11:22:48.822532Z", + "iopub.status.idle": "2024-12-26T11:22:48.826924Z", + "shell.execute_reply": "2024-12-26T11:22:48.826422Z" } }, "outputs": [ @@ -984,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.925289Z", - "iopub.status.busy": "2024-12-25T20:02:09.924966Z", - "iopub.status.idle": "2024-12-25T20:02:11.332437Z", - "shell.execute_reply": "2024-12-25T20:02:11.331933Z" + "iopub.execute_input": "2024-12-26T11:22:48.828667Z", + "iopub.status.busy": "2024-12-26T11:22:48.828255Z", + "iopub.status.idle": "2024-12-26T11:22:50.298040Z", + "shell.execute_reply": "2024-12-26T11:22:50.297508Z" } }, "outputs": [ @@ -1159,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:11.334378Z", - "iopub.status.busy": "2024-12-25T20:02:11.333943Z", - "iopub.status.idle": "2024-12-25T20:02:11.339264Z", - "shell.execute_reply": "2024-12-25T20:02:11.338667Z" + "iopub.execute_input": "2024-12-26T11:22:50.299994Z", + "iopub.status.busy": "2024-12-26T11:22:50.299646Z", + "iopub.status.idle": "2024-12-26T11:22:50.303852Z", + "shell.execute_reply": "2024-12-26T11:22:50.303241Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 70dc6a2f6140822a197e1b85b7192b2fdc54248a..2b45f1703bf8bf26dfe7549f1e841c2ba2fa0b63 100644 GIT binary patch delta 62 zcmX>tep-A(E~8<2nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM=6Q^|TmVz45t9G_ delta 62 zcmX>tep-A(E~8;$er0(^QE{<;imAD2VydAV3Cw$xw-Vs hL?$Ids%jJ_Pkgg<^4a&jgbl3v@Q|Ibs_GxP%mBQvNtFNq delta 221 zcmaFyo%zLg<_%{!4HNS#%QK3Ki}h1X%}o<*>Vq#`ykYt#cW@&0^Vv>?*VvuN@wz>4p hL?$Ids%jJ_Pkgg<^4a&jgbl3v@Q|Ibs_GxP%mAUQNwNR{ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 42d388774813c0eb13eb6933c74edbe08b932c0b..db12f2ef3e3103f7484ddec5158c3382de6dd051 100644 GIT binary patch delta 13311 zcmeHNTdZAG70o{98YqvF3%#@;y=U7;D%i(*KfVxy22dzOLlj!;dQz0MwFOkXrIj`& zK4?-8xP!#f$_GY?sWx&nQKT{YVIr9Dff@~9VuG4T`-6rL;@J0`+ujR!mx=m!(s#4Y zntQD|=NMy-eU3c7^vL5&kNBX>&_khtM)F6 zwX@q57q#0xaT41x=TgXcE@6crfjdojU`hxaoBBv*w<|7cx7+%w$#ZL`Ja-8vGrSene+(}hFL8xYPY-a&&PjUqoT$^gQJ%r<9dS3CXfPXl65ENF5C%HOHRqEPLvy>h_6g zCSA(G(2xWbSvpI3&|HUXX;87b<+W<6dG#BeO9%IVySk^Eb{y#BkT{RTdt?yxA7~;p zYm;QNe|KkU@Y185-&S?u5n?m_WOY+-@$j-axw*5pIsRldHEmc{QYoDRZchj0@u#8a639}R{ZOJh*NB%o_(CLidm7`(Ki^F&p%=x{qE2BD0| ziaW~wWzoqbI4dMzMNwP?Gp>30y3Vq}C$8;$x2lzppbHzA zk4$JU9TT_#d{6}+f()aRlmgG5q!@QLDfPbY#m!HiuGVa@8`-Dcw`tGTReSfYuUDa* zl1{{PjW%*FT4EAWUJ<7#74u532#kYcuKUeuUnxne5cK++Kep}0&DXyFL)#WFP{$Xp zE?wKIt?QeI&g)!S7fu!1ieZ7)gmDGL_rgp!=&1;Xke1l_1-W=OLg239#1PZenNbf~9!2_U^K|{$T zMN)2firTcDrMT7v{KvF55>hQG?}G(+COc}eLfjEplwvmTJ>F5xl`mKCUT^HY?$RyI zah(BBI1@=0NJ2oxCWag}Yp-$$>_ss#>aId=^um5A)#Jj|r5l^;u3qU>*E|RoXq&6{ zN!pA&$(V`AnVB5948T6_LrlR9UcRBbb7C6uMA)bkL=@y%bXjB+92MYVBFQZMonf_m ztChwDd!u++|pI)ef{ zXf`sQp&Wz_6uK`Uks`_9=bFqZlPRYz1ABy`=vsmtdl9(?^bs>^vb=aqIy^!l2}s^VDoz{BM|{;!E;W60JkNPntPT4@E0i>xZk%3UQpMg{wn2UVaM=AD>2B0t4o(P z*I#w%L}%HnhW;^{LN%c-0fw!{!;cJsAEd+VF+BXrz>#I^iRH+ju@+3{6hXJ}=ygK? z=x6%to~jm_rR+FW6bm89t;Q%4xq@tzDrq;Ou~O{jlb3Wp+_Q_u4h_J9G#4!ETvTU> zL#;?q3CfoyiOxVSwT%IFXN?)Lm^K0ZFS5`mO+zfo%mZMP0qx-PBUeRW;)N3lb_Ry z22$Ly0KMP#mxJ)L3J)tdKuxRpT9KKSq?vUT0}kg7r=&_@E|84n1nn_Yy`{h-tyqYA zRx3USM_?mk=Ek#H5z{ht3{w>pI{*uqCI}>}1{7o1oRb;7!cf_Ke>DL5_|K~^Rr^Xw zTG&9Px?H%rbZ=+ct#quj?bc)M9OFDl99V+_a}Khi#X5@r)3iO>h|eLXT2w;Sc_&~m zp!u1i3{whYl0#P>yQp)d>KTHB1HS@8^Qw006P7d0hz`P9P#`|J=F6&cVJ)KqQj(;Y#5Cz5Brtvg#xaX(%EDmsWDA@!LM}yAUCUnCd*zr0U-7J< zx8z*ALH0sh8jM2@b>GTq#ZAEBa3bRU921mcwpB_?A)A}8?rer%k`%N8egf2TZcPQN z2?5Ij=p307y_#s}h|HW~zyU8ALX%a%M{hBFkr5g9C=MJHji#NHEv7p|g5-c639^S! zK_VcH3o(a+w-j+mWQVTntldD>Mmw*;v{F0*I{*l9lAz&n-=N``NQN>ROm6M&nkYIk zBPJ^)WMQ)u>X0p5UAQbZ*ILtyAE-GUy6>583#1(y;UYzpArJG?BvfX`kYnIdVrokg<|Q8vV*95si1i9#XTiUQ)3RvT z<{8(ywFfM6CNVH>AP7hdCSwkdR7IY3RC6=SmWf_~J7uFYLBZ$n00%P2v*TBPJ`JC9j|;j|UUObq#}81|&?(mEGH4qNMITe@pEnT=M@o5Y9*L}Zs> zl|j>F0=R=W#;w(GGAYBAw~3iv+?s4Bku%h_cyit}iIwVcVSkmbtnII58#>E-g+t9_ zE{JBi<)JoJlv^T8D#4x;#x~mW~G{3tKj8%#`?5@v!9*kvKpc?K9NE6}UZa^&p zB*94BQFwxL3Q@v$Y{x_76*!YQN+Sf#)oP>6(E<0N_z`!VW? zA2|fmiwA9vy;QMU7b3Q2AkEH$oy&U$Sm2CuI#Entu>34K&9)LAc?oprH`N4dQfnVs z=&Bs>0glp57&)1hz<^P2G3b488tfT~`4d>^DP|xqLTjH>mqyyK5Hk$np%io2T%W~o zzlpO2yoKox6#yqT5{chiR})AJZHU=C3p~b9NfeCw5pk8$vanT3rMPf)>AvQOt5-Nt zEBMzozj>&0c^No+OcR%li!O-#^d-v`4JW3|_=)J_)yT5&+=%J6j`?q~xF!t`p-u>9SAA9$2 wePuBA?$5sN7<>0)@4o$-WnJ>3$KL(_*}K<+lV9vUdQR~>`h%H6-BsOx0SLNJ;{X5v delta 13307 zcmeHNTdZAG70uqKhF3ugEfmCiwk;JzXxIDkpptruHC!0M5(1q)I=#*OpL}9BoWzj=ah{yGefc< z#2)_paeumI^vIr9k1pJ^ZuI003#0veHnvCJR;?Y~x#!%`*?TsP{s9C(FyxrIr{QqGkVj$Q%1jBeAQ@iaYKFC-qEdpI&<{teV6_(AGzkw z!_n%SZXUgV|LLnI`|Gziy8q_WZojlTZB@6`$!VO?{q&KmcDwC6c5VNV+kI`?g)PU) z-w$0;tsgyk)5}Khy7}bM+WoH_edVU%Xz$JP|M1wuckh4T+=fbNqE^Xq>V#v&1Q~oL zf(pX9PI>g)LpPNdk;m5^e(j;7$22xNqMXJfwGu)KOBl06Xd$v-BoI7q|3YC&_pqbi zd-9kjDw7k5L3t)bV#!-donhWv9UTpNvbW-*?s4}X!Q=3llvIpNAypQHk4`yjf)g?% zPT1se#YNrYF8}$OV;hw$3EcXqofkY%qlC6H=Gh{<{FG$+Y;nKNUfYregIID3g3 zbq_o74~M?r2<>%FST1rDlxv?Xbx|nGV-SMb@$c@cZmrA94jimRRb1Bo{!7&(!)yf2 zk~8J0!qMVf7`GykAfppmjc?pl?^xB~aGXz>GAX#A*q32UCz2&vmGPX855By+FzzT^Z9F(&JAI6s)u6|qRm}G^t|q8y|FoFI0=Ai`jsHZ@c(C z+b`Po=C@q9y;PJdSI<5y!8crfUVGc|^{K-`M(vSp^|=lA$xtJtGm4?D0$ga$$rC^< zMxSw+U11Jm;D%aDJ@q0vho3Y@!=%P%m7SlWYv`lZ(k6!U<7o5J>zHiN_+&CswmtZ0 zy>|T6o%OE(#6sNmz@yc+1vN8n`-WR;+Mf4Vb;8g|q9~(TX_^E}%xQ@(p$JA$qRMy0 zw)VT_){VdYaP_Hbv2-mfp;D+v zw{msiyyOzFno?HXeV*0c{l>w|hNeq4S)rqjLZdZnn|u_Q>gaVQ_g%$;E2NmYO56*f zv~dLR!w5@J0d=W|mjwHfJQD7@@j#4|EJ)5lw`Gh@k6*EM@Ykv-gyik>&tZ0zLUuW9 zY41FW*@ecK11gN5EQRCDg=nKsN;8k1Zq3;Jrt9|}O)oghv{SfpYJ-&7D@L#|a!LE5 zq$Ug5X@r<@DwZ3Uz$}S%7PByru0^aL@BC5q)v6e`@AZYa)46rvAJwZCBE`vpQPJSL zLpGol6!d^e?nCfBk>IwYsh)+HrNBhG(Qoju6tq=J^CWoy z4V2)IW49V@q!6+_`k9(GrHE5--7%=oI-f2FmoOm0q9bw=^g3u`GtL?K5|jp`!Hha^ z6^U~{vI-aTBCHfj(X2#P>9GEdtWruZAZr1%ol8YfVYsKHls7zRDgk0ga%_+Oty(u} z_(Rkd^1CH2wK4%zMVoA zff6vrj<@v`ad!M5+Yg*lzoRJxms6OnUR%F>ffA!pNGLK74y&Y%IY%F})*5x&-gx|A znowg52o!X8#5jg9%b@c{C5my39b;Ja6&gHRt^kek9r?5l^w_yTzz~^a7}7mCoE?^@ zDauMQrzm^yq``&-$Q2xu&w=tFkbp%iAOus4VS<`=&9~}451CB@Nq~GaM085dX{^kE zsFog`q3;+Vl_UoXDu!#wOdIqS&`j2_8Es8o|HR~JrVE2BB(JxyFd z*UTvd@J7%?REEhQUl5WUVun}a{Vq6bgzrtzcoPrwk-W3BNq zKt2j%CkB|{F~qMA4^1++2P zuhm_@$L1q+Y=XW8#}L7LLlwh9;lSI2kS)a7+VT6}Tz{i#64pfO0vwfY)KO%NaUP&J z1M37{pFt_^q(cl@AuiO$rnXreoZKGRT5sCIH%q$=Tgq^WGJweuQ7}AsLZ||Lhtjap zMcUU_!9eM;Rl1p#XqjD&F05Q#Ixly4A#$wXpRFC+J(uYTD1QQqcCy z3kDZ8rI^$C_58c*(J9Hj0NLVV%EU^fVeRl;tSt_ zMhF%psvll}DJ(8rJZe|~T}DHRC(DUVlhc`&W+~>h;g>?T54rkX3#j}YNdzF!lu~BS zV^C(ALB_RS&L_OcK$2I%b-so*)`9hc51|q8U{l8@dS3&l7h!>L8d8GeDVztj5Ijpu z2}}{SG=gV`29=nY8ilxWI=6mu*PGq$0|YMh%8g;K z>|9l}9hb0GxR{k_Db?c2)urQF!q&p=Lg2Jz#TU^e-n!RK+SHjiJ;>MvFc79WkoLU0b?(4kzZBe+}G2|`Q^ zhJI+xj_i2*>+3PJ3Sqn1OWNyhs81YrFImv2QJPta&POpA!T^TM+ymni0z36Kn4wTs z3^3|Q33MWawo(~3woxWwa!tJr6_|!x5HM#XhB+8UL2R4>BW2lG>%r-26IKpyd8LP`l9t9xn~ z84~11dhpr~SP+vIy)Q)umXbj?uIwC+QrL;ZQHnT4*T-(DH*FT1sa`g^IBchm83eo{ zfxf_?wSX%07!)Cm>ILhmWW{&dcis5V!__CN#nKh61df?qoMPqb!l{WRm^FpW#B_xH z;E|Z>GE0AM(l5Onn49!-lm12TPF9Yixk>-h_X2a1es0pQ`0tipea%h! zxk>-hcLQ^ies0p^W%JympPTgm@#VnWq+j-8@XXbVmNZpwIXhzm8y8utpp7Awr4mNesHCW#zkPe} zrQ3T8{Jd{{dvAIAr@b{vBv)cKhDl24S+jCA#p0!KKCK^lp?j|DwXVL(P(_u3f~zrm zC87+$8DWz5!>|6ZynlW1rS9d$D&Tu!HJM#5lpVR`Y)F!n28!0hD>s+>>#INS{<3JI z56?Z*J=q3-=k?_$`yhc9#wuB_6+m1<+ik&@GaVu_pu>u9nT!=+cd{q?`^EWg;Db;dK>93rZqqGS{z zkt`xftvL+eySY5G{_@-1FHn;Rsuo{$L=UNW^0gKcNsF9q9>UZ3&gg zPs6RhEuZQexN!i}E)Flhy*#xNDSJ)A$Q&gVS&;(s$>@nY-9bke?a4|HTrW8&02GLoMw&FDu*=d zTNRBH`p|IapUV?{4NiAJE*-A zbi~@gA_iGQ)&-P-(*!tftwytD%&pfm*;>dycoweK#NBZ11OHO3SKrt|Nu)o4ZLULl7hO;L(nuR9zm~$^RR5ig^l2w!~ zMq~{;{~bhQJMPS|*ub0^_TFB1t_PYG6_G&IOi@6dparhWPJ8M!AfS2mMjI!B17^-LMJB-{sF}XQ;{=nobS%ee%8XBrJ?~l``PvG+$X?~ zBYtKp!jOREMn`xP4~|*oBEks7E{8Ro_4%#`y`UqA5ia4FrHHjyC_ijYRm)K7iDs?d z94Ag|B9A}4{lv%}(rneJXn5pGcW(S@p#@SRB*tjCvkne&<4vd;Tr0_}k@ZG>L2&WJ zP{YDhQjFF!1V%;|i1o(GXFFRdn7zo*D`z7F3BTYf+L9<*!D^_bcYSa+(IwLm_#1U%GUSEMD_4`?CbOd-&$mW)gt3wxad8509Sb^(<%_y#U*^#9Gp zS#UI}@i{nt#as$vD^+raF!1VV*lNMfVXFZ<``BN*9&!!~i-|>+kaLi!Se&3KRe42P z%;Si2M)-H|S2#DrBCLY&DXuD`3C@fpdvmeE0o1IG)H1@mRLH?0^;@o0urD#Bg z*}@u-V-0rr?z;$#WRKVwB43cu0b>NBy+C&~bMV?Td7IObG`vDsltCzMoPzCI6~>EC zg!v|Kb&BJob84*HI~0yHr!klJJY5^7cF427QJKAKXR92b#xh%D6K*61!on8QO3p_i z)0_!6SArE17CWj*$SUA!h|bo1q27|LdbL)%8Ho{_>++@;byqfZHF9A-&xAO1vs(n zU!Us^dhbU^su(yU$Xf06C?B}7Xykg$elCF&Zkajff=e|i+$tUGv0&poZqc-%*&B;K z7>^m(DtgpF#`=opR$LY=MO^9K%(E8g#IqLW#IsXRcMn~V?t(wUG=xON1Y|)ECxeE= z!-}yI#tW6te$w-vx#VcH7Z@I#vkKNwv5fK=Q4$I>IT@5>YhR8ttTl{cPuQttn}3bE@~KX~HTC;tQAeA~bP delta 8870 zcmeHMO^BUm73O-sP$p3l=|pOgxnIVXY}(}gIp_UxSFwW98bdaUhWP$kP#R4ZDpDf2 zC=x*n>PHuXU5QqLf_TCD6TyvW7cN9y7~)E5HgV<3>hsNaC!HJZyc?HyF*6MJoA12m zyyy8jXI{Or{pyYFAO3VphRa|0+%s3MUOk)HawyVeCY6hlxg-`;qYlCN%vCv2NeKVt zJ6q4+*_z?&Ez3Jw^Aq1&6fLUN!3!4zWyvn!uZ)ONt75$wPW`dlUjF;;{A1ltR)rmt zFdQNkks|)on`}9=Npkr5!`;c{+2_0Kvqh{yc!v*4&J>b~oQ3v|OCrgVhhKdVFa6BR z-JfQCBYqg3eWp9NI6Sl&p19OKI(+HY{Mc~fXY*rykye#bqDCRe86BiBIDi*g$|AE^ z${XF~Zbt{3JsB#=plmMSY^2Bv#S*`csXw&5eRKZZ*@A6i>zS3Ri7d-tg7uE9bB4UJ zV?qxN-}&8qYkBjj?%T+!ae(3Ncjt0(c>FMgyL0iaE8VHycOZ7U(La1d` z!P_dQeBNaR(q>~-C?v=QO+qRm9Qovjul-^Ej^*tO-OIDydy+|I6SNBymGvbRUxTb7 z>JqJ9{^+;!pU;|6rz8#w8a<6knBl}1yVH-8=TE)&?A43A&pr28znh(k)o~3`IZA

so+`;mK^i2k2sH>PM7{j%-%#&sjr+;F2>5{yfArGR z=ic|^Q@d^rVxuV{BvG=iA_%1iT-1XT=6YRSQ9y4IIS?BeixMi4k%d#OPAtRg z^E$m2|`wDcKYC|?okhL{rF40(4$r^+FmQP&ip6wP@ z+2WG%Rw;li<`^}a)tN+zQxZ!c=$Eq|lp)!QU@Ung93vxBS2(yzMUz@}W-I2{nWArm z%zOA6u6?6>w9i%hf-Vf?6lJ1lxw_z$B}R6!PD%8vYLUY6cy_WrdK{L5BF;X9+1el`}=Bi8vM(h|>v70sUZ5jixNXh(bUYASEl1wJv8JWUYQ&f4WgJzYns$ zmC=CCd}O%$&-syF=~|S5{(%T7SLjttIi_lnUBn0DrCvs77Lo-Y1V`j$04d1;De%PL z$Z8K_%t??YUTdAw(20WfM172e!WpfrT4Age_?w^Z&h@SpcMoDmXWg+rYu4G3@C4S6 znxjk_YHbiFv6TDWDY7oPumZDWs6=wcgVu4ZT8v3fueuXz4dsd132d)#b*Fa}yhXwZjpR)5D$bUwAke|O6zcGgU&BW%{@#7OTbP*f zAP~lhver&9M4Svb4brRBDj{Sjr4vqCP=tulduTPJUKL}jm;WWshsSq*1-C}y2os=gLG`XVcJl4DcG0A5tqWarRiiuZwc z_>JACSFI*p2VSFi`5y2ZY2|~!b6N#moXXmgOF5Lv8Ny@P!jO460dL2_OJ%qYBVhn+ zgt$?TR=N<2(`97I?UlA!i;`x74xm|8#t*NRuc)qKFB0$Lt`T>5ZMVCyaE-XPUzv;H z`n$X1y$t}KAs{=zAjaysS_#pvStySatyE#8%^+j~VHgrQx~So|HQJGs&8|*u+JiU< zDiBMshMYs&+rSlQW)#Y49<>eP(TKT1TO;I3+Wy@2J;ccf)+iaF+yZr$XwFJ76Ba7A zug@B~2B}Lb;2JC&ubF~}7DB5-$ph@z_VN?Ax*yCIP~wWq0zDe426u%!hLESCY{EO2 zFFi1dU?c2a9*b7g$=7rDp2wv>AZyN4!YQDr8W5xC9HtS1dxXUYk)-Kj774~DFc{M! z8Mt5&gD^@7OgOT{FcQPbpBz2%mD#n{-K=A#)sE{=kIv<=dfh`1Rhn%+|#$O&K4;F(1MlzN))x$wo-m>?__OB0hyNk*SGAtwrd^A(VD^dp27^;Y-6RWw#09m7x2dltoB`~0b z*GxDyoMcritp<2wa>ZeO^BFbL0GhWsMJK5`i?>aaS|etel4!*old!|_k93cmQD=lW zfHxsXf@dMm5rn|lGX#nG8oiM$jK+a>TX<|C;EA-2V`uv0FtjPbSO&oP3Ny0$3UiH1 zD(fhcjow^;x>dJ(m}_JfCd}1K-3yyd$!1fs*_5m=^6qnfN}E1J!wWV0z5|M#@nlx#L7n@!1K`z?weuAK diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index ded65d8c6148c2dbdbb6c520765df3edd2f9a2ad..a9e61164c35e935c96f8e320fb9c6a5db6c500cc 100644 GIT binary patch delta 1977 zcmeH|y=zoK6vcV7BDgLpC`n=F_wAR|p`E^V{Z?WsL>=SVHJ6gFY8yQ})C)CL2R^P9=hAGE2F{rz7cXz({mS7!Y8Evt9+h zpTc}|;TJp6j(WW}RV_-?GVs7XcVJb)RJu&oDGCIma$911S9N>%xyg9l{rZGGs&jHs zHY^hYhv=LDFCk4iU z&#L5>f|Udoy*%Jq=k6qP}$a*n~O zptGi=Ihi=k*I9wWccvW=dM~S|U8@={)x)bdZ?9foxqRi?YS-N!R(HiVyt~wlzOlK5 l4!Gvxgq>^p-`R`q9?S|kE99(@e?OA{Tu9yCKiPYA{5K6;MMeMs delta 1977 zcmeHIJ8M)y6z0wb!F5qVNeYWx7P|ynAbro!3ZIZf;K*Wz{SSj zuuZs?jirT&HbS;a2v}&Lq_l{W1R<$z8oTu0%zRH~du6b_G8nC$!+Q-g(W^b!nL?ZA>tB3|&rl8I4?J+n{9KGJdHlNnmWV^GpshyQU2od*` zO*NPQu+#0R*LzphD!Cj9wTpqHHo_%d|b+Qn|p8JRN7^9?zR6;~T59GBb zO)8q~2&}aGdZs%#G{4pvue%=~Gics#v6&M>$xFza)h#wvCvQ^Zz?~^nGnGVyN<7Ah z!WbU*8?)QQ`xDb$3n=cNZ`TIB*VXf`q=vKg@cQk$3peMlUc0f-RolbpF4u++W}DFu mHhBbXV|KCW|75SacW^w&<3Sz|^4~x5zXxgBM`wC(PW=Up=}|ub diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index c89deb49592576fdb83488d100a646299e17adbd..3b2ab8d914f2ff0b6c9c79c351bf1667214ffada 100644 GIT binary patch delta 234 zcmZ4Tg=5JVjty5h4a?IkOmh-53iQoQj7`!k%}rA*%*+!_%`B2kjg1nG&CE=UQVfj@ z%nZ_!j0_FZEKQqPx!PH|7`L->F)=DA7$q4QTUeMU8Jk*Km>8ra0SR-1MB@~rWTV6+ s^AwZqYFbQ9OiF~5)hJB2)?!*ZJztlpm#~>KdQ89B2`e)jx!PH|7`L->F)=DAq$XP!nWiNgq@^V#n;4~i)uQ3=sws28YFjI^;+tTq)3*3{Tk8?;Ir3fSj8`+PI!`xwp}k}5Gd z^JC!KvuD58wbt`IYpwb0cTf84cTf7%y&LIG*~n|%ReQE;!9})OMx(To%6Q3{<4Oq@ zDIRoIsp>uJ+PBr|!Jr#F11|Sj&a?#tW{ArP5i>%VZ9!+w?z+)kldd~wB$mrx z-T#x9w~zi|e|>x8k-Z)J;x~S6-m4exJMEiy9e80fc6;aM-qwA`{q)3r=Y7jO^N+UO z^T@aUtUuI2cr8MVQ46oK;hO7gypfs-8`NYUY3-%5_{+b2)ZrsSxV9v@K%)~PWEV0H zi3KBlrdhGc=c+H2&)FYbvY|0t?z`@%Sd9@gJ9*;1cl_5mvwwEaEst&KO&_e@M*O|i z+xWU4pa1MH{`>4lSGMo9YaedAXa7$>(jQT+gIMIE!r`OHoleXN%VH9OCz}Juu?S0q=D6#V&sAT-=f+}P@6ruD+g`o7r}~D@Zd`lz z=HAO!{Sj+F@uJ?pb&s~SUp%6Bc=;={dv@zH|M0?g^HIG&Klq)MtvYed_s6(_5A;V` zDxRoF(nThmV@5g>4N21C+6kH_ORK(AmUiBj9xj>m$t2v`=(QEZOUIZC&NySe)-=<} z_i8VVH*f9TtVd-w@Mh6*N<^g83!*%eNhHH@1f37AzJ$5`L3%@PoZirX{F?SHU+Evy z9`#gjeS5`M`p13Xss3_%?^pU;+Ka!|e{uWPC;BgIk9Yt->Ib?Xm)pPlTL0+wozov* z)(#)Uj}IUCal=>fxeqKk@Ve!TjI8{V8YaX54{!Y{JS2)B%t|DXPP?e%y;5~fLcP+kzyOkSRS zfm^O7KjQ_;iG9WkniJmrh4O}0rhC16G#SGXD^@*jYBG5Nii#rv+>aOL~1+WhV>PoFqmPhe&7lC%gLh;PamDo ze)Fl7XFn>>&b_IBVtdxp-Lqrc&p**Ws(beK1JB;~G@gA<^-})petJXWpZ5dUJas9* zc~S2LFPM0T_Lhy!iO=WF9Dia{bJx*BpLLFwkVpv#wKYy#N@&bfYU(r_-+As}_h3Yc zB|%eJ{wu&qtOrZx$=ResFgCPzlIG~~Z5KB0>J3v;L2#G2Ep#SopM(Ri=FE~Dd}w=L z9vn0N`f1HS^+uJ!efz)}&8zE!-~Vv4eVZi|Eb``?&mL{1#2Cta2p;^5=47?vIxwb1 zWM0HP#%!+}fWtCsxd{@#36`D30(G*)aL=M}e0=vunlJR0qAbhK%yOy#ptW^c{mOVQumQ6><9jdwyzgE@OEvsAIAe=|6y#ViLcd9pcTeEw&e5A{Ya zMUgd&(SgKEOMJ?Jkpu^i4`-sL#Ggf;1>#d#ew-g9g7N4>rC4^6YJxF#1} z`ubfLzxsj;U$v`pW!>txYumQ<%Cp~p`nqFBU~ltQ<;#wo*1kG4>xWcmAvsP9oH!6= zLHkGuS~?%4adN!lJI(IFDKI_oXW)3tgptfdg4=Al_n^G7J@tdlmd*rWSJJEGnaLoJ zfh$Wh1H3Of6p=ws&9$>ZR~fr~#YN3)hJNnYsy+2Do73Az??CMQ!9~rHqr|0AF3W%& z5Q%t0M1VHpEv(2XXU6+~js?NAB5t3J<}@=8R#4KIXuXrOFU2LbjM2GYMi% zOeFe=QH@7?20I5s&$*Cz-*OGl;cS*XrUaM4a1bJQu4D*pjZyf`7>e46gG`b{mk7bG zfJL|a4P0aAODbdAZZWnp?u^m>?26_k%gQXX8M^~QlK~f*YfCia0l@ zxG*2t9q}D^H&+aXkg9^9fgqe@;UUEu&mlp(oM=FF>|X6cphtKxmPQW|4~|val!XFC zSJ0#&Xpb-3-~6yQs*G*h2d`-^A615(_|@(0wbwRB3=wo4RCU8}KcO5!m&A3%f+$2D z9>aLYoiMtQwNf}lFx*mDokR$PmQEw1P~HQjy1T0*i13JanI|uD(dmqF!AgTYa@j_j zr@^5zW}4p9%9sa@ZX{Gfz{w7374}Y0PbCiuGN?zOb{+w*1n;57Yb<%V3CQX)A@JfP zNfz8E2Hmvt9V2Tb)x?Apl0mM(S)(KHP4H5sph%c5qBdr?h{}*t&oPN`Z+Sb6O`2sh zV{Dml6_vMeUYMp07Qr{?z!0*z$ECRc@!}HaCkNWwUf&!$4RN&tT5UX)E9qCiUE8+< zrdC-LJrLv8EqSFm0vaGATs;E4&4^k+T#{wn!|@&G4)zR&NJ^As4$jJG;W=bQSRGNg z2t+a9n2Cq%jErc27G?sIaLgevpOccF0c1jvXL)?f%>x+O{85E(FZtuUc3 zc|QY^4P#^p`7mXbhCGP;iq$4sW;E3q3T}%4_W=m0NYai0h6-3S zlt!rTIg)cU(E3?d~r%8`_`T(VV)SFB@|8jR&x0DtH+j zAf$wt>jNZkgRm#L<2fPEG9?3+s=)9Pi$E+~0(m+OXG)}j*LFe82D!>1#nrY{xumCU)Grs`+Sd2_Bi^8YAT;sDR@&99b^MGC~D13GM#(fC_b}vNC9D|NCdn zr6V?f)JdS;ewHHmH8nlM0}_ledqMyQ3V2c}GVb6)Ow^zGGJMF00{t4S2CfA+6hR~M zzyo-$LZk-N>Tc+g$hhv&bEc3DO*rHzf&$*-JW{J?dENX$lbcxD()?lDOYg!hee7Y- zy5G9D8I4%U#3q2o95Q$U7-%9n8tsuec0kS3FemZ<9CsDqQo-yr`~qgE2pocuHcvpu zT3$BE2_X~H0 zUnNM-BbCL3HsB-hY8fy}V&CQD>cLS~vfM51-ZA6dw?bRkJNL-evby=Vm8#WdTG=!P z!yC2lJ)_xDTUFsgXAMmV1gU?7_kc`$31mr1Tr!TJ0TeR6gA^>rKoGryNFugAmZO~ddh#eA?1s>C-41Q`QgD=G~PGcPs|KOz@Pz?mu$n3!>K*vBqJv0g3-v0XL z_!;E^vC;di!0^3ci1o?}i>eM-q>>T=vO97Rp^sxhbI0$Z+^{zOj<+|oecipy=C=Qx zW;i4S5(-=ygpve=nJq!6D}>uJcoWs3j7zr`VwVy`B8r@R^ujQN5%?2?GSCH@C{XZ3 zBLY(_j)kcrdV%Q%RFEV@@PO5^l>LGAe5_X;`^Psobd)Q@&hWaUzTcd+4kTk)wdZ}m zIewU!hFdm4v25TW4PrCy73|Iy+zu(BkbuHO=aqtVI0H8K&feb2S*<~im0N088(n4J z{7ST|t*Wy*T&4_s&wyRv_mpwoE5mpKHi;lN)1@b71vmlE5 zP0mPy#K-B%Nos^*M6OsKgH%{3dLVe5#t<`ile@e&LM#Cl5)`a(Tx~95$`%}iflNt4 zRd(&|FM_CY)N=Dz5dY>+V#@D;bLUNBf}ctIuAet&j3~e(>KH(R0E^)b4O|3DkRTiY z#p70%zy}^gxpe>@pmG4u0q6qha2yA?04Q8KBzRtOsA_OHsRYGF0KS2;f_bB!%y}T0 z_Ren~SXFHjE7*DNB&OIIgzu#G(}xX?UN0G4Hg*#FM%)3ncLF)I*a+Dcimi^?6>rMG zJXbX6`E^vYuyg*QC9>MIDtC8{+0NfOW>yTbx~>_*Cz*CZ2nu#vB0jW7hfDy&4MVMy z9pCpjaOcP&iWFfRf*Ig>4n>7Z6m$t1w?kptYy?E9iG_tiFr($WAgRQ7OPq({qL8gb zKrp`f!xGxQXYb&WVQttF0nZdGu+xW>nJ9cHP{<)r8h{)jvcS=3qwI<(0YF{!2N7Hf zpt!hk|thttt}3X62^PfdO-RX5tFk3>>X4H)3@amcIg$zGJAB*V)a{6V zl+SQJfaHw%0#U&cP;l1-6&$~5=&?c3F;Y+^sa2`ao3*{lA<@;gSGlNbf?#Fe)B)S8 zEXy6Rz4c4LR=BSYS|xy*fU5_{0U@%uvVo^AbSy;&D2L<{w#WhoX;`Sushn&=&1t*i z-OV(iummLonkUi^h4dr#K%IlbmZ;k+OtGj^E5y&uA33$(IcIS3aQ?`;rFS>vr3b7J zvQDNb0+z)`KnntpfoB2bgy_N;?Z8SW(n60(NO&ZUVqh%G+d`XA5sA265cr|_5;aA= z2QJSP$`f=)Cjr)ri38Na0%t^*%2Z-!f|XfJ`BE{#p`b|80Z<}Y$1q`JAq~KzrW}=e zfb}csJq{}>sT2nU04M_5OC74h3~)4F*@_vngbf0ff?P8Q2pkb!^HR=?5@!@SCbPnME2Xa8ygO`K zIk`33%KTfL#cCt2Y+oUSUAm#RtOI7bZb=Y=LP-z_@2$ubxE!f3KrHCLpv3Lp8we=4 z$U6s1$VnsKI|gkVW#1?O#W{l?<%odr3StXN0!ANfj(tX4EI0vtxu_keq(}JxL{|tj9L5SUV@lFGjyQh?6Mcp* z&6`0wn87@}J?W1IFB}48D&+Yg7^3zPk|7eOs2_j>MY0SaZY450*pg&`bQ*k8B7dt8 zwM(8A^cax1qlY8ykm-t)XG$RY7h)e!$gfM*6Fmk7Eb>nf8<*yf+3tC`p+l%Y^F~|~ z8R0UQHJvfRA}qiu;$#pCBB&ieiUMMR$3cDY3M?H~>a<&AX17e!5S3$EgGwuxbxo$d zwr^7tJZ@N7)rX2k-D8fKoL}@rKD=1wC?Z=U%4wMc-hp1%GenB<_GNT^q1Vm#8 zWyZn$I+L1M--shEMUX)RxG3e-%%zk7r~vvTAZiBdD3vjtC^~;^AXCJ~OQ0Oh8+#Ju zXOJlcvQB6=0r5o%0kk$G?Mf`eEei^|Xm?SEPFjh)ibMep$YX}%AsMOZfVLE57&?El z+5-QycM9Q%6L1B^V|nV4!T_d4m3@#Qy4k2$n?x5CD|48Jk4aPnxQ0BBG9&1OrR&9L z@CMYSfS)2g5oRL(NFxYFE+beaj4n7U5#khT2v9Kti6%@<&_VLy$ccQS8(-6IdB|8sBSUb`X1#3H;pd!D(l&GC_^%oQxU>m5~4gw+9FVaRl{2`2)12 zX~eH|Efhs<#R7?$dr)hFVC}-L4uZ99g9T1%T`G&3Nx6@ZMh&>DC9#L}E?S3RR>-=@ z2#u;}fL(3K5UGU-69p3jf&)d`IjC}@39wIMRW@k6@rB({?H2Umr^ z!5y{=DiKF96M9qNY(NVSACx<)qiV@`65iuZh3k{_O zrFJsGp-inUW4Z8#P^_{C3nL|6gVGY1r!MedCGTDtlXhgVGG;jw(&hgSNd_StaiqE+ ziTW%cHG^GyWV#&MjsU2pO8l_WO4H&@CrJnhqUcDRcSvj49rWONmvc>gtZiJ0c=!LT zIc{nGq6!Q+y-WWgrEAfhmq9IxD3)zTtpu0U$~MSwO~$fJ|MHi#w! z4i!1;X)Nn(4#lA;6l6YuRHAq-mMslX6@l*)(|m?K;!o7~p5%NimLfNBNk-Dvzm;6X?S6x6Cz zFQLX~Dtvd$&V<7eK_FGo;W%;zNDRQzVa61} z3PP-k*>vxAwpp2i?eg^1(Ti=a%3T17Vh+GFsA7SvfjF#8Eb2u-f|$~2`V({zeS`)| zKMKoAScG7OaEAmZ%IwfaJdGw1M9ET|fX@L7z>%R&8z`5v73@|SlXsW4GG<4h z-gv>_g(EmPt57I{0v}q+$kFJGG67U313IH#aHWh~qjCU=KICqZra?-!)Fq&b*8oap z6pWj05lg6gLJ&u^1Rtp=dWwR4Bx+Z-R+A;h(#mBq7h=z2=VMq7>h=TMI*%ge=KG;`YjqE zN-tog>U_}%v9|f5Qw~e_(V`Jz-anf^JvV@$IT zi$;h=BgCQ+V$lfkjDCzx%w04>q(vjdq7h=z2yuv}l{FRBi$;jG{TGWy2)Ag2STsT` z8X*>q5Q|2LNypBbQkg{~#F`e2MI*$b5#rhZVemyG#G(;m(FpM@trv?%h(on^EE*vy zO$d`}!qt_Ni$;h;bYLtRA=dPdEE*vejS!1Qh*jMxYuMeQ5n|B@F{c${(Fn0;qEgNm@0#J*7paP0tT8O0s|UbWhh;1?X?O*ozc;# zQ5=zIKeW|x)UC!w#-zqb(qO0_ORZv!U?B}6M%#!H(r9d|4Oq0bg7#TwpL6Hj3!L?< z&>x2w;hekgUZ3y#KF{;M@BQM#FZklaFSzZF=Tf)tt#7{e4F?YFZlsnjQqxGmn#gDq zgCrt(?wqoXOw5oZ2(h>S`*T10;-RxV5gV9t)(UEq6~r(hqfK7RNd4i1SKVBfp4q;4 z%k4Lq`k0~R!a1L!&2JMHADq)RTFs5%#9O@WUFC=J>-+`%V}{Nd?s+6l(oR_FZ3xj_ zZM^hYmloVwV;R@@+)$Z9p zhw{v>fAb5kS|^qbr-$GEU0F%14&U_1i`qXrt+(NW4_x`ApRmJUec<7hZ+9KP_nJ4l z>*MRr8H(lntM~uxCGA6h(qG@6a6<2b!_BvUd)}iL9X{hbpIUifJa&6zQ*X!Nt&eRx zeBO7>lYg}9_8)xrFZ(rTED&r!;EfPXa!$r3YK^amCq|AJPfHKw#b5co6OSEwub3i^ z2`9B6l6iv{d&N1^QCQ#YW$~f>I{V|xHdL0`!>@ZxR$ADZo!oZ#o&R~x?9Xn$>5(nH z$rr1(G5_A`ZG6?E=Rf^}|2F&5>Gr*H?U%c5zyGmM^oKSI+}}hSmm0w+F@$o%bfC;@ zXJZ)eT=Aj2)C>Rn`Ns~OqOM`C5xCF7vEVE*rV$kHkDTj-*WFx~p26EjVqI^~h8}IN z+tgEiE@$_xJ$qB{C98hK+P^-o_rvb1UF}zn?;V?eWp>MMe)115YB!zO`}EQGOm}MA zn)i=z0q^b)C1o1>M1z7K5wx)iE>bD&lO#%s*zVijySXkrbT}{Vye&Q4F%!9soEW$! zD~!>G;JPubS+t4>)|r0kq0y!ty&LsV1t|lwT=Hmyh4*Zf;VBsE1aZdZU4K{kA%P(7+j|zKFuL{L{*iut-GOTw_lE1Qx$eM$H^t#_{ND${zBj~; zTo_?m_nzL#$CG77xMggkButa>cgN-LgfwO&w_LTae`{~^vG|H|V$DX)d3)&Hy)EN! zv@&X=A+|kqLVwFKc!m>7O}p{F{^`%&=s&!#e`~w{y#8P*uXyk5^7mfzjI95P`}?na zR%dXy_mjGP_qY1jJkzJ3r+45(*KWA_L)UJ4-`9uTKhM@(9PR&h|E@FI-~VO5Zcluo zx4!+`$NM|l_uU0Iu>1r}{&%0~pVVG*Pyfa3Z+?l7x2}Br&J%DKZ~LF=Pha$F{PfCS zPe0z6KYn`h@wE2NU&DorP5$a%Wt0EE9d3l-{;JIjrjPpBfZHZ z`}_Frll|!^k-_->01aCfPNd=Q`cAe zSsA}>Kfj^!&-kvNJTc~vnNkD0Cr~qg1L`mlv2ncvZqgji`P9A;WqUyc9q3|Y(l#F7W zibgm~lW3GzvC%dp?z(61JEQvNUUB&L?w!@;<n%Cf0EXE}5Zr|@2-l6{L^qUr!Tso_J=Irw!_oxW*FRX1;`m3d9+372SHe5I zmQ-7ZmWg~ovGGv}E`j8{)|4yKP)@DoqfPIx_6=&LlXT!FiU5&V=P7SAcUC4q&=BP4 zbDyZb+*<-tB?`y_C#r-A$^{EFZZ$Q@O4i=_i)zaVOaE-IIBd6;IDgpof_K2u_uJ~M zUG&nI?mlq!j`2ZxrCH+Kx~QnYt~vo`m`D_aM;e;8cWt$Kv}ea)@1P_Tv{=^W(f*sO zKkXfye?(I6z!kZ8&#SMw^zsWYdigb_`?}`ox%)=rj;qgZ5ACeB*7H|pTin?*+RH<= zZpa%6sX#XX`dlz8os=4viY1F{3#K%=twM1NSs|E2vk;QJQ8J_moq%(E)n0G}8!$G( z+S$+uo|G01tXoSD$)I7BVI0jHKElQRNv}9=`#Tp`uc%AIZvRYmX8X`B)$`gPUtFCq zbPWuHQ_vxTSw`j)HPV@=nYFMJK3R-Q5QD79QVARi91X6pP#}jf5!LAN!LK#FnmB1< zbj(CA;f1{SCdC*PB6WgYwD+6A=E;4~eu7U0LlM!Y@)0FgqNHXs9z1 z#1;FB|EDRb=^+`M3N!*3lf?29{0&5gCQ@l794i|i(%N+`1tyaUI>J>d!IHPyhsIMI zo7AwT{iYdAZLu_q&K66Pm>$_l?a!~Oerq?A%Vx$V8E#(k44$1DtdtrL!srPsGQe5r z=}HS~TxYubZm#~Ucd&47Vzq@8E-zjE^!&X`Vq%Y{3`@(JF-RvIfn(Jgx(DJHm^_SL zJ03_N2`4`_$k5;>Drg{Zop8mTXyFJ}=x~PG zKwbA}7ZOW@xA$IOU0I95*z|K1X>YipI(`@ug=zr3iY6^^RgD*tP$sm~UUM907d5c7 zAQ|Kyh=j^Z<9)-la!_uQca7_!28Pu}V9mi1$Y~M2sPPWs1UH63knIlr10Sw#?bU^0 zI|Gb`Ve_GM23T_i;Zndq;s}Hn#9}LLGR#3Kl^FWatFha+-HK3gx~CC3G=yjy1msQ= zsMdY^KKhZtDIa;+U{e>*hXfwg1fsBxY_Skrd=p@@9?~^bDn9C6GWdHq%lX5T z&hpsYp=EpLgB5M}f2~^IzU3XTJW7|@jO9fDER!WN#^AoOIH@2mdg~a4|8`T$D+t%K zmRC40yV{oA{9Ec*KV90mY;x}|0cX$o8x%R<8)VG4SU^12I}o#B;6 zZ!i0c>gDCZGZsCQO@JtrO&NUR3U(!uNuJ6aACqm87ww_@s#8X{e6G4`P$QorVQ3JC zl*~* zfiV{Sm$o{qhBz4lg0E2E0;(a7I>1niEhR`NsL@w{0TeoH8bBB-A{0m~0H}dlqyh>D zEY(dQ6Bt^<=Q!YR7h%$Z2S9=Zk17Huj1gkm-q%+`dSTo+S;zcwI~@A6TdM8LbXm~r z-narqDF_NcvrpDT9QC+O6fhKOclKEFkS@Ed()nGx9iC~xkaKt{ivEC0sGEka$99{9w!M?!~fl=xh z0K=3N0hc<&Ks_uE=15t4{t*y|F$!Ih5`e}t$zs3``G}ko8RP?R<;n9`Qf#PsHm zoZA2Td9|lB^6)d&&M^?(r3n6+TA*)mim)k|9oQZG1jlTtPKee-kr7ZcI1>U0rHV>V z9RQxP-XeYoxEBsppR@L+8=uSsYh((62ZZGugjZ8!G>}V#;LpHec!-@J?l=^mKMT`E z!@?|5KC27bKfI$F4s}MI@RZ2Wz-WR)ZiPpnXT*w>T$(Uk2FbMUFyZt|TPp zL=!*@5}$;1h6@k4ryC2ttQ51bUZ)8FHvCVLWABrJHNtvf+-@PIVY{%7IJkQQHj6AP z+n)a;L<$~|Rf`gy5SuSK;-03!84`1sV6NR+6_ThO3zz`U`6sj{{LR0wYiVO)&*&ul zZ7nRS1sFdIgso|i+!cZ1LU|;4WB}+&hAP;XVk1CF_*4zN=tbj|3J82kSsDTBaPn68 zabDqQ;9GLwB{p$zerZHPqEW#Lq1&XS1Gf8Du@%LAvvXM!pvU}_(nnMCm#WKT($pwc=C6OEw;nS7EcE*yNxQ!=F*R2igC zF(@})cx(_JCy1`rNNFKMWyNO701MOT!bNEoQ>t`q`>H#tO>O`CRlVeyjbOBJW6lad zWP^H$2sp~3H!fv-xn&a7y#zmn3uz3ZI)JLDM#HCIs=<2JQTDZLuvUoY-h)y|=uF8X zONu2V89mfb-Kp+Gm)ZOV`&!CHJ;R-_@nBqbxI)P(4Gf-tQiHKrH*r8WCU@G zIt1{dT!av@3NwSbm*&?ibT|t}`QF~a`A4{h-p#+pat$OcY+V*-hV2J;R$GRJm64-i zaR}<}U0_)$W5`zr2yl=UA%f=QuJlt^3+~6g!_NTXg#jv6cp_0$8bF=Fj?JP{RLDTF zkqJ}=q8qHj!R5hPk>^F326BIy%XFc!H2OF+)`h_{>LIJbBB2PvkZG03*?o@aOeF;d zGzPrhcX+eA#6zHK5AVwX$nzz@-3$;jvPw!II;shh8xjCd4ZPP_PZ2qhY&I6iA%Z0O zn6#hpsKUUsyRwBb^Ll9e-rrO^YeXo|15ZgpJ5dRREl9wF$O2|?{AUN->HzMIr@&NE zI%FN>VffGB5tw7PzvX0tZ-Duo4cpF52sBY3&N>LPH0$d^iIT#%|7f^KQz&cRP z0P@G-$00Ln0|o^Q2Wf&r0iQKFFr{Fjy+HF$5D`GIpdBC-0-^#ynb8&ZSCB*t<2LR0 z&ly}=9yfEq7s8Ep*$5PF0MOtRy&=djz%amYl+j~;t6UefzWFy$E>6>3)CLqtBC8vq z78>+dMXG#zpBbF8Hd+iN3PT9)Xo6Y;UeXu~t=DTNfeiu$3GC#H!W<@Mr{|3yQYT+r zf8k)`5W7g>Gob4d3XkO-(L&ilMHPi&GuCzYtRDb=7KZJ-2Q;qCv!8C*b}Wv;^ft7| z?iy@gR(x6MStcj~cpWAgflRUhFS0lfkRc-!nfB0eU3^DQqEI(BO9o5lwAum-w{;D0 zE$rWl23o_G=B$jjkDfX>bDWc?!6d*5kU$bJCJud1F<2RDwvg8&yy*aGZ3%=GAcQEn z&l0I;NGL&{Z)5;_AY0EP=R13Sl&6*`;w=xd0k;VhvHloFg<4WJU=?K_Of<3P+J;S;3&Vt@8)<-EEyesBXu~%WE$jJa3pY1ArEA zbwGzm4j9~W;CocnIo$P?90byyV3JS>$k?^P*+8z~P&QRkDL#qJKC*N0@jO+Ulewtm zHOR?uxRIO!4T9&8*rv8cN_x^pr>nSfT{(Pfm9E%5OwX4PLM#se{`9ZCGa+tP=bk^1>{n= z3zUWWfJYK!C^BCE+Niz+AvMv2%1r`P8vs>A)1b^EVhF9&Oh&LSOrm}C#)=N({5eeW zoa4Mij)=PzSvIo~G09vv-Zaque5Ur0(SfFAP+9pCqH}qjMHVW8J3+ToX9`ExtPY8# z+q?Sd`5SmNEm)V92JhR2M4&z;8zdqq@U95Z@VN;Zb_o&)5sOWWN+7sjVvmKvC%|<6*kiGG z_ls75DL4jLQ$m5u+AV{QTWGvwU1&$Np4*c9W&4XU4*J(nc5txNR$a45GuDZ23 zhasiVlW15Ncajq<47oxC$7poNGFvvYX$c7?03sB#-Zz%pQ5pc^hrG0>=(w2xu|joy z2gEw7D;!f;ZAXPGy2eIJ`!X z8X*1*4=5M|^i%K=pmtyeY0&wi?dp_Z3=IM+R90Mq0LO*|8Jrn#6f6|7{Wxtuwz|47 zc>CZvgUd6=nLG4qGH8(nK~V?MD032MqOx!#0ZFtN7&l0Z!Aihv0|*e8pmQAc0$_|5 zxupalpAsPF6sIPK;buV-~m@ERdNQ6bep5p#C7N z=X{_c+3BMOz-tRs;*pumrDHu6Xp94zArLiDNn$PZFqBH5#syi3u0pcgge7D!h*c2O8UzOwIgAnXK^i2p zwe#)vk52P~HB#{kAStl`OvHfn3_LN)O;NB3$S1NC^Hbc1`6IvY;NbG5xkH*U&p#UN zP!EY_7y`kliI^bjfzXhMnkJFkb#NcMXjdx+-4CriNTx}|Z`|Al>CgyO69FcUgUP8g z^`Jv+4;+!kT{XE=4+}sV6ky3(WUn9rPhv%B^bUO%1|RbS(vHz*&e4IPLG#48*)e)J zF@gji@Gt6CrfHT;pb)$WBn-GIluaPRMp0u2fx{7GHuE)J3qNbT3uUv&?~kj4anMj7 za~VYf(uq-i;gSLB3Q7~`R#X^&7J7bZ-{6e1rJAup^ekD=ks5>Q0GNgBM`$E+$MD;@ zUa@nQb)gq(CHH_zw9;X%4t|A;x<-X5Y#Lh$euY)ds4xbVkXd6FEGl78 z%?p|lXMv5tbDT7s<*vG1A?azzWmy1eP&?Et?8K!+*#|}4h{9EYZ?n(}kUhp@aOcek zavP-3!q}wC$cosxDjZ9NB|8f4 zEI21GaUBsBP|OTL6Md_!(+!76UEud~Z6!M8z$PG0p@y3Y`~tKOGKFb{F(=9Q(wJSm z$fkEXz%2v$(H21(4SxjXW5|yo8$wa}+P-toN>z_SbkDpLl-&q4or3a_*^(1&tT^$4`qI;=+2!4lz=Xvmu4^)mvR>3rIPHt;f?1K zatwK_cyu@2zA$3yp`ffV6aq zt8KDydDjHc(q69EX))1qM_|GBOCZ3T;liABT2qG94`S~j}0%A#RnO}oi7FF#x~ zOe`8E77Y`lMZ-k?)1q~u8hz0)F|SW!rg*#1xG-B+Sm<6@G)ycSCKe47Pur+5V{?m! ziABT2qG94=y+y;s({*fgTyW7aG3hc{G)!b|t8Y+uj}7> G-2VcaSrym- diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 3a069853a871c6f9e2458f2e9ce90e4acabc25b6..e2e2192784cab21d9589b9342101d0b9b79a6222 100644 GIT binary patch delta 62 zcmZ23wOndLBBNn>nuTdjVn%_!xrwn!nx(mEiiMeZqN$lhlBuy#qOqBoiBXE7k%5^( RT9T2WL7JuM=1GiGxdB1m5uyM9 delta 62 zcmZ23wOndLBBNnqer0(^QE{<;imAD2VydAUQqaj1!p%E8BCH(S(tpvgHEj894~5+HP>2@f9-wg(yMV delta 223 zcmbQWjeXWO_6_?u4HNS#%QK3Ki}h1X%}ooYnOTZa j+IH^Kj1!p%E8BCH(S(tpvgHEj894~5+HP>2@f9-wQMN)q diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index f21bdeb16a5210407f54a8baad282183556ab565..2cc6dd59913a052a9fc5e7c58e83e8c454bd7d9e 100644 GIT binary patch delta 694 zcmex8i}Uv^&J8;_4a?IkOmh-53iQoQj7`!k%}rA*%*+!_%`B2kjg1nG&CE=UQVfj@ z%nZ_!j0_FZEKN7Rubxyfr&cqcEqAwD@Hg=cbNw)kX@6s^etDXf#PB}-4< zn5;0_C`Dm%S&HQ3ohkg2UnMI~K9S-^o<@(fbJOj2FenNyCHz;M4hOh!l86{;v zV(FZft(9*J>2mhlf@@%XPZ&OoMykA?S46o-WL@t zQ_YRc4T0&vG}YL|+`=R=#nK?n+$hb&AT2RD#Vm3APFtplOoWwXIWU~d)k?A-) MVP#7_nXWMd09UT=mjD0& delta 644 zcmex8i}Uv^&J8;_4HNS#%QK3Ki}h1X%}oX1|>6emRWZ7Zr@nKyhYnm}Zb_VFHX<3kyTb tRAWQaM9Z`k12c2e?K^FmCNdFLmgT@?!bn)zK1ZhG?1Ysq^<=un3;<#Y+#Ub` diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 774cff2520a93a507b12defaf960c5e363fc8933..90e8c67d350869577ee8c605652b8e354fb6ed3f 100644 GIT binary patch delta 13501 zcmeHNdvH|M8J}IwO&}Bz2`@{?0%`@q=A3)az2{y`LIMPc2qe4&L6ZAyfRxRXKn*PM zQ4z6<>v+Z)HKEg~wrCB_)NQpQv~~JN0de|Aoz4h2t*u%>m_DYpj`r-mch5dpUB-@e zoY^pB&i&5!eZSxLIOm>|-S-Ekygx8y=$E6admUA7(_7ms36`*<5!q4|qRWbE$daf_ zih@N8iBN%#AtLB#a-|h9yDGaPJ)Nc<>liU(czTJ@K#vcDathxaF($TZ_22kYF+F-b zFlxAa&G!Nc8Ky(qMidV>t()&YRu7-NeW5#=Mk{|ED2~Y+E+o{Z4cFdLB9w}_saCi=H6r$Wv)_^; z#m=`*52|Q*?3U)hr%VlOJs%jKX;mUI>sZsN39;SVM>6x+*e%nC&$RVkjb7|b+d;Z_ zEz8h?$jDE@Wd5Frm3I6*H>1QXJ%1uta?hd8`ww*n*#BVsQ0EBsCsAEPB5Cf7^ulH{ z(grI+GuJd{%1{oOm_sJzkl`FMIb9Zw^r9TVt}H__(ktfBb7fh2QVu;=mZgUidZW`K zraL!+u;2zy4{rp^vvQ-R^Y&?z9I`AumtvNlE6dVzDQ4)g+_=IlMVEJmVx-rVW$DR@ z__Fj|S(cuXL(i2(vlK}VMOT)kr{>UeWm$S!4n0@q>qV2TiQL}I3dIv69 zpBC1U2Uu84Cz-H^31`vqEzY7$F#q zyhwfBoWZGX&R|Rr_tn(H86586ecDnB7W&R=cJN~K?*I!@6p4om7qIlayMq^_uP#%` zUBs@^u3j+LcY3%N%uDy=E?rltWG7E_cqgZ}Zzrc#y$~!+nX29r8eGWnTXyl-u35zU z_Tny{l7U4$C6^cRl)(D*oT~H)N~C`wi*5E@K=x^$s^>IbxQk~R;cvtKCeYwZUvJ`QFWk=~ zZ&}67s`h~;X}OfV9pjqSe3iekj{`rvnggF+%{@H#00$nqp93FT!+{6)bKs`6+-&ZH z8Nk>B{$wo&u2{!`_pal>$JcQWPaWXE|31KhkKE3I4?e{6Tf3f{P5o{Lu)jxMTn}dX zIh(qH1GjJBz(+Q44-Y*IR?&t#z)e{P=(M9Yzi<>T7v9Ay`*@h+Xq@X5o9hspafbDe zuvea73zv)J>ArBe@E3OBazSX}a`9Z@a={N6h08_aPcXD_xhPyN3YQCaDHJXj-rvW+ ztjk55T`rCVN2xNARm&k3UH2%cPka3Squ}IdJ_~E8{^MX7eIf?dWJt&TC0I@;JqDs_ zrUQ=wG4&Y#!(-rqr6o!Tp?QeR!zkYW9@rP4|2PAtmqE3wq(p=wo{Pk}VoE1;GeRP5 zc^lNx?z3R(=e2$}&5$zKwejoU0Zt%4>^%DWKZ6PG$7gi!pTI5ulb?IjtP{ci;3^2H zwBGK%I`~C{HO`e7<%@i%$l0*WrV`>JHEJ94vu|*NtQ~<)gd355>0AWrm{h&=K zjScP?MMk|I7)@rt6bWFGKe9tp5~y(3(yE zm3o*$Uyyk0{O}iUgyU z-np&0%Zzl|q0pADX7_PRS67c+0=>^!VOW$1(iHxwYbdm)lTD-KG}4GDYT46ba$1xz zQq}C~#0RkK2P$D^i-?cq%3SaMhrA3Nsv0Ejg!jvxrstZ1lVjyaifLKDP#lF}qDd-F z^RifP>tY-|+9(X&pOly6wCfm#HG*U%hqX)F?~b$tB(2?`nRO|VWXX>xf#J^6gLerb zI_BHL#6pf)p}(*kA9vHcDb>T9+$P@C{Qv6WTN2TIt}YITW2aBt6lHBHC)(yq>f))% zHvY6Oo70f!XbR8&c~mlc(SbO+0pj3g+THn!L?$5IT#GNFmtiAGc8I0N4fLW)A5>|oQ@ zYzxbVt=bMU2|>0b8j5DiE=St_ngCvWOL!&_G887)H4zgHVMDfcNoL>YvozU&Dsr&u z#l-Y~6v#_~zI|g6%+G+uG%uv-NECJU&yh{6AWPNRu}H^`q8pZkG}RBsavagrRZ}t( znMR5xI?!Yn0!VbjmNb+d4vPU|g&4Lii&)nr4cn~lvaJ}{wpELLDIrlJFPwZ7ym0a| zVBtXe(r<)Wh^R^!DO2EjTZie-o@`(or`d`X*eX9W%XRG1jb7Y{|HMYBS> zC9}FpmSbBoCOR}Eq8YkOGoL<5HH%=;)-}sgBw5iQCMra_*QoKM z{}c`c%CUrWXh9pXK9wD$K?%yHPHc;P4;5OvS5$A^hK6HfBq2mJ+ep-qtvg$G3>KaYvF2dbzf8q4G>rvJn5A?@qpF5!t57A#G*m1@ zO~u5tR7bZIRy(#H(i=4&1+P)_GH}4{!tmt4zY z0lAv=(hWsli|>9-cq$OeN5Bgv55BuGdaDkytvjrWX{!#IP&Bb@i-u-mNj5YhA*jks z(J-Jv;*Dd9*f)ek(O{d3OiZ>qbnry9|1UCr$s9o4q1%7%k9TPE0cFtQy>hQu`` z!%%cvcCiLs0-;`QN3D+Pj%a7Q<-|4>OdO~Pi}M93ws+M83O_6u7F)XPljP$NdgL{s zcwqDLX9Qm;(f$nuLk1dFPG`>pdsp>%|COvM@n%cbOrR4!E-3!Rf;+@gS*xkuY)=bE z{695pC@Gj8h60Jrvu_9~@<6M-Q=lha3Jn>kHC_#Us|9V~T3Jh2WdAaQvGdIpo~_|6 zjl$PV?O%Uh7@58*EV0$Gh7+Z+9j!%dd2Dz~#lV@3UEfA8c4p&Vx^o4K$&6^x*I+Vx zPsT=V`h9jr-Yh+TEEK-?K>Pg%+6DGE6hF{jp#8STvan?~wnw{QqZQoQs#z3$S%#jLMbDRI=;>MXd|9B^Ggz9)ugwfs62c6V$S<5sO<$O)nJq6UEioH| z&Ol#H4NHHv)Szs+NeDCHGqXdR?gFzD#TRQZN6{m9foVZ43XNc1FkIXS76!w8jbKqQ zyxa(u2gCVIU~Mq`RTEeh45O34oM2dQfTh8(q!M%m!-p%mLaPa;2GaiIaNT4s-IpA` z%ZB0P+k)0D1EXnA6%gs$7AQ-d>F-L+l&1<28B||mg9!oXb{nh+hPBn4RfWUxk5_}* zq!mQ>&Ie;?6$IA@tIj)vfuwy9%m}1ATyEf17fcDHU$|g;Fg%1f?o&VJxD7bfLrjI$ z9%YGnIKLT8DCWM?O-mRHe_~HFC=YD*H-p(ps+jiHC073^n6GQ$q%KIDR3+i0+6X7r zv>wbIq`ICjySSd03EIGyot1eAUfsY$(59sN!nRc}C-o}xrFkQ`F0g$?0n=05I{W~0 zi|Gso>=Bi-*z^<5qDwGUI>5nnS(M|g zi*l#>qC6J=j&c_LQ^3@usV7!5OJ{FmXwSFtEF5d&Hb!hpO^BRG2-6=-$bn6~sqU=d zB%Z3_2HvgVBu=%1IZ00ydU!qav~Mc7Iq>56RKBWYT53>~L{QqMfm;LB{nL1owr}PP zPHg53hIMjV4V|39!A@SMO|@WVU~JkJo{ZitU`CRnn!trKSa?3%!jrMRE?voQVqa-n z7nmFvJ=g`Nq+0S@*H;Q}<$gfwNO%s?o#93;#^!+pTv4IiP)FHmC98-8@3Z98eo5)NJQ47v^yA<4I}v zTn>I}E(aezFBM!*fFIq#z>B*%_zUy+d;8IDFncI}Ss>^IVGM2C$rgOx4I%-ViXJd4 zO^Y>8ptYxm$1Ab`%nBBK*#njY!&er7nqc_F0#KJ`hJ|JjY$s>ew~({DurTR)FONs} z?Vv81H$*QxU@YzHWt6wy!^w5hrtTQM#3WG-&1gy`0OVi#eBf7IQAI z?BZ$KxP-$jypQ+3P|v0B-p9fB)pPK(^`I^Y${&8lcf;NWFh7u;`jFVksrw7}qZ2UH;Z?4*bY64t#1Ew{YkI4qWsg2R^!-1NS}1fg4uvWs@ID111UJ zFIRBj%9R{==SmLz+DdNW={+3yUwb(4;Z+=X@54O4wX6BE@jp)k4&IR$SA$!En2le< zf!o$_;KOUUg@+#jOX>VOz)cwk=#-;2zi{L)7m15k=J7Dg(Ky>FHrpXK?F<_nVZVBU z&0j7CPxtxDMbOy!%Y{kvmy1LB%LPARiWSvxHHd7Pu6zv4PI>(0W8nBuJ`1N&<2Ru)`eY0&Pm`8>5Gto*9tS-sOZPtx zaPl#J`f>2Uys#WW`V?82LiBj=Ij~!xpPm5~Wuzk<#t@Uq2v5d?Dl&}RjFl>hHoXVx z=;pIv{C8dbVah_vU{}Pi`zLUP+^|#V-`@wN{`X~c=Rd%0-^t(_GDw5(Sg5-WUj_%*Of z)g_ItHF9>MD{IPpZWlo*u~{H3egdQHU9*ON+dDNtPJi-C~3e`>8nk zYWCo@(w2^Oe*D*^CE(=iqyH-j7|Ih+RTX>hAspvX)Hb2E0$c{9$eZYgyU`ZiuJcdFm|A#W7o!t?)`+tbZyl%ZD`7l z;wZKizj8!u1rfu+?AI=mqeAv7L58InhD}rn>x!l!S7P7v91%yx&-_i?Ba}NjF&s&S znnBnu2XzB`8yvxktm(`~LUsCp__mM}oxU}`aB*&MbW>q9Z7nMdM-;`xmZlj{G8Lkl zhAAOpYKm-P7h3GN6u85fn7X3ql7nnw5^OrMZLwFZVcCW&S&q+qHPR%;km7zO1Pg2c33c9u|xiYZ@0VnKk?N zMm8_iUBR85LqWIZ>D0fLbMRZmWp*r4$9O} zHObO0FoaU?-$t`6`7e_=oK*O{P)-O|nQ2XvOk%k#PuO8iD@zOr8|-5!KdXuM%S9pK zPEH2A{SZT~f+(f^Y*rlzO2pDshY&<`O)+JK5F10&)*ud?v=oO(I&p}@DolZ@L0Fw4 z$z?BjSy!y!4Y-69J}C6$$QexUtQ>`#q0Or18-wTdq3}C#bR?HwwBd?)DCY(gc%R?? i^4nk54LHC3C5{aF?JvLm<+s19Z2MaqKc^H5)11VN0)2B6W0N#XbJG+HGxJ1KGm9isW1~c4GcyyT6hk8e zGlR4wBSV8UOVj4Job7Kp8G)Dyh?%#)JlQ10D9s|x#MIC% rHObu6$jHRlz;ye!A1o7@2rFCuo5h5Yu(IEOSoX6MR(6Yp^*$2-QNu`# delta 236 zcmdnlFS4^=WWyd#!^Hf`@{FS5V*M0TbJN6BLyHts6Qh(=Bg2%`WK#o^v?SxiL^I12 z(=;OsgESKZ1Iy;Oob7Kp8G)Dyh?%#)jRaFWr4~`X)!KCURK31302m?7g&;SmTBk}0 zYp}XhlSAkPi#mNw2);dRShAqgi$+%Q)*1#nj&2~}y=TGX_$?)(FD2?|% zQm6Xp8&?z!2CQ*1=u!bex{Vo4lZDh4a>DEvxC=hgkTWf5HkqN+#ufqOT0mIEw5_(b+Q?WQN%zpPGJoLG4Lx5B~YvN)J8YQK)Q>7tbpmib0j{)|LU2BSE`)nz}ga8pV7*U z2}1IGNb!x8^^TKfrB6)ve^H-Lc6)2v6zG?BUORK@l^0%o`Ako*N2_}y+&sNCUf)+w z4qa}t=@TdBW1!5bRmp`KWFM%L$+JMo){2H3jXN`H3*kmAUIb{#IS-Bl`BuzK86~uU z(JUsmFk%8rg~7EHC898=*vN)Z$Z<*q4r&)h?6lD4MqKZpkB{vsJ?>mlt4~u4qDYP6 zn+&slvoP`5rdGV2{`Q@EZ)K>4LSyk$v!X`BtUWoyh)#0Jy18igC+jSMgRvIt#nv%V zbMmc8vPvAXnMcok4?YxC@_L+WwugJ@!RN-0_teHvl8wzLvc42RagDYZN~pC2#8eLE zxY&FFX^qp`ES2YndORf)O;PGYcBPjc8Q#HJ<6eSss<**h_ZM!YcD?X2#ovwCtp zTHTwV_;471*jH;qm)y*V;~zh&&z1*qc@UQead{ADZ>GzG_}?L39>o9WK@8Jl|ETMa F{0ksDU&{ah delta 3866 zcmeHJzl&W(6y^6a=veRzeUAp7*X17i8xT@YVM)=li~MzVF;yR~K(x zUHp9Kpo*u?zVY&F8yjn6y^Td7S!T099oqmV1p<<_LbN)94#Aq>qNR-3U;arPo^)@E7Z=7RW0ui^H{^i4 z3_eL+vkFAfs@k9al1uNuFD{Kba!JOJ$zb(R3_ncHTQa^fWsk9cep4Kp{Pwl@anv;s zsQ&(0alC6Zm;Lg#2;*o?1*2s33KHgIs*eB`D&^=P4{c{`Ix;Ms0#i_PZHb{UVP@{Q z(r8yF4Dt48EE&CunI#Gd64(Ujk-Vu`a}L;lb6G6)&weKsCnwH}?NNs<2v6J*ve|sf zX05+;K_s4esnR9~PzZ_-3?l+-t|fEj%^Nt$@5M_C29>s&DSOOR$dfL{D&PqW zlsX$_Mt&)GdjM}c%XCpj#xF)JCH}6eC74E zjgu?q&aHMUQCV=&v9iE;6szrnONnJh2{z8~92$18>60n;!;@2gh>N4m{U@haxb@S| zy|8}##FI}wv))EYvizyd3(u>eYq4{8T9HZjc1 z*zC@vuuB=ZL$OYUslzz+{4`~_vraLhA21Ht5;1bFaGJ7vInDTMrbs%YvYv7oV(8N? z@yV$35KFE#*}z+!gG!dD7HL>%az?_Q^=(0zuJ5?jyxSIXYQ|&zn>%8;OGR?(N6El6 z7 z9yyfJ%3PiDi5)u|=|8q?K^RhI|K@tI<*UDo$JbB?b2Qk0xzg!WI5;v@lfYFSP31*0 ze7K6Vll7m)>4oM!8r-=1gLr4O*&5qkgSB>cZ*@yLwqt)|S3J_~OUhxIDsrU%^((P8 kKaBIkI6sW@!}#DYb$%HC<0{V&Ja<+fuWCUWS?H@UrB|Q{U3{p%}EKN=U(hL*RjLecu wO_Pi*j11GZYXvbkF)0yJR--W8K8Shg^x{zFUczQ7gfV|+C#=jkj`TNZ9}Y delta 238 zcmexAh2{SgmJOFUZ4>h=%QK3Ki}h1X%}owYbryyJa<+fuWZeFdlWB=00IEG0tpET3 diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 50807dbb61dbf9c98cf94f5cec11c463b440b28f..442a02d89263ecf945612baa123708fdebdec582 100644 GIT binary patch delta 2388 zcmeHI&ubM|6!wM~t4O5Orh;IGr*u)C$+LxDosZ1aVQi^YRiw;kC2vA~TzT`OdlDch2|C zynN92&x5|+8(Z&eS?&FOJG~q+pD~TuVI{bTTIC+4GPy*Xb7r`df_ch7LbQxR)cM-8 z?Oz-xjg~UCgY?6hi-!RY0aP;zIVvTD8q)I2#o=as$H?&Pg)q9@*j8U|yt~w?*z<1{ ztsZ-Yd|#~YBh}V~8~cEcbZy&ux{|#Cd%r8J^@F=gPPC4g(fwWDci6qA)xmY|vv%MA zGLq%ogKZrSxiv;=5;c)Wt)om+K*uE*Yh+kwc=|f&EvBxK{`TFk z$#*1EXuXm?Z)vzd8C|0kT&-sM1$4_ z!DK*?Jo&sh`YGAnUKduzqa$pvghug|C-s9|Pkx-f6qUKTYF4q%D?rbf4Nkb2oUWKR z(FdlC^!R#nWqDlR!5>TH7Fj6US0x=g@!84g$*I~W$EM3%`!>2{Vy05B7B5bbfvikd mkyd=5*fm3LZbor4iexj2|AQ#1_Qbd3;kMF0Xj>Fytp63S^0l)7 delta 2409 zcmeH|%WG9v7{&X^)im0N!4e08J-w8IaBcSE+picBC@F0rK`FE`mKgWzn9zqwZi)|x z+DtlVLZvt1&_PQd6bg!M3FQohf|GRMNF0iPf;e(eaOcK=!RQ%wk~3a=@88;MefvCI z-SuE~SMBo7<&M8<*E*>^bN=kaOtaY&gc3GV9R#uv84b}3g1O_?N)trRG|7<=vvRNV zqY*gW`rQsT@U72gj}X#JNF(EhqEZUq)@*XNr#ZH}uV-o|_AgCzj4e%cEwmTxf5w7V z&7FhqTU}Qhtsy_~8umTCXX___pty1fI;wRSV5D{3_Sd)Crj542)Rt{|+RCl)YhR{= z(IWRzE6S1Q!BWSWp_DNZH4CEk-Ouxtq80q*&RF-ti}CZR3EP}(F141HkN@^U`}_M1 z_;E0^D(1+DW-NHrT3RZ(rs&e~!BeNoyMr*lqgwXWdw@_WD{j9JH#4q1LzK!f6_8P? zg{GWYWk^7+qAt54d{N7kpd=)zGg6|I(HiDcH_%!|m>0H4vVG;rY4`>*szTb53PplJ z?YYg-1jlGJK5&NX+Ty<^beBEH;2${ne1_uH58>l#fcu}qo5der!=9r2682_RB9SCm zkDRPQIK}gn7S%j>5v*MI^|};<@n9JSqEV%88|zZdZ8SV^>dWa7xB;0)!HiJGM{iMi zX1vTf3(BL#)OOi+UtBo_wPN4|be2=2@Iwlq0-+!mfn*f~vDh&7Qt{_SsAqXjtqW2( zWpd1A3WA|`5-~c@VhE1|vzYQhw30@Nc}V!FwOUHfmBq+Z8@Wu#S0R&8c)?AoHxp=$ zbVz-UGP#zyCdzGXuL@+{UM0tdJ$;zU;djz|QJQ*iWzI$D82i)Sqr(zBWnmwQC6TkyF{91KYStxLqf4M+QRAXubKT`af<3SxhH-m?%c|a9cR;AO<^kVzz5SlhH-Dv%KHC5Q delta 224 zcmX@|fbGZwwhdc24HNS#%QK3Ki}h1X%}oJPIkh|?yONsGQPg(&ew=eZ5F8O*1d`EYF(NTc?k5uvP4FXR zF^Fan;wmHJ>q=%JxKJ<~EfLfV*$dgoY-Zuk4hjacR-d=3daR1r_Yc(KY?|Bexz9b% zbDneR==KXow_kYmcc>%EQcrW5E#3{sh=6#5}5%(bOMZ6zzAL0Xu4HW`szORa%jH*x~V??EhfaI5oU-d4F&IuSfUa zIMo-IB}J9I6ime?C#>K|I)p+sXu0@c^VIzM<^3BMd-5q1Rb{kn$+&|5mx*)qLZwvA z>SN7Q_}H2GsbT-2ANPf{i@GM0LLw!NmyAnt&ccu|Tvpd>of^OR+k@^O5B1V$Sxilt zZ6#xM6eeoPDO;~XHax%iZ1;_wS;7NQ1Sf>fBt0&XxLVdR#~5oIp1U;N9S*L}C7Ut2;Bl z@p|{mNgr)3%2nsJi4+7rorMK9<&*?0J-_~P_lHT}NNtDLu6Cl=C#Ds7gmF0h@ZRZX zhJ&ZOPxUr(eR*Ix4Bbq->rYENz{`&JyLIfvfwM#4)pXokv zsO1IA&wTsvTTh+8cI}`)Z=|%&f_4Ut#CrDHTH`En3RGClZ|(q9Q?`J0W_ax{-97W$ z=cd;t-)mLsJTgD><*#0O>`Pzx;-gm@6wRBbTkm%Mse|F|A9Z_u16mwk<)aTTUIFi) z$uelCA{n&T0A6V+P(8>o_)&X!hNz>lwg&bAr&aXcu+54T3rXzflb?1!o6M@uCJC#n z1vyx!ASu_XtOO}Q)&Wm?thiR*QE``AX_tZv5>!egf{T*8V;9igR3R@_DNYP;O~$O3 zx+iz~YAGlDHC8TUAvc+f5|YtwN{Y+_n0NM=rN*P9XB@<5A+iAfu^Q;%JPDXqnrmb? zOU*SCA8YREnODLpZv#1IGBJhhlrfcrhsy=E>>o=woHU0Jg(o;eu+HOuy%xF%Z=uAp z4#yUD2~`mxS&~5nOGP^`b15nYM=Lmu?5h^iOuT>t+3gK~+nb&{aBI5Lju<5{RclYh z06;bd*1?`cR@yJy$*kppsMPMd@N}bGn^I~pHEy16z1=-5{y;2<=uOUrjkv} zJPtUXY6I1#8w6XTYsuF@h*!N-V%Q z<(;xAD3guXD}3!4@EwwC)ofEl4U(G8)1~o%cO=&Ww-AC1CuYtHn0{P$XKUD zU1zJ1uzV?8^$`X)E*_Q=C6HfAD)rbKTA7zt*G#;i>#v?bAE~x@#yzEt3M*a;OimjM zm&z!Q!VESJ{=I@UYfNPvZwYFMIarBec(6E+Ku6}G!Su!k@EC$w< z@EVziKV8Le+01(^ytBibPfm9~t!Yhk%2wP_D9W1_O}` z3qcALC?E*sQ6V>o0whu~2niA^Jt7TqsWb^ZEbHqL}1eKw?WQ8Jfg1l6cRu$)a*UQ`l-UpYGY z!=sZE#QPBMN9-UzfOr7$LBt8faOOjZ2N4e;P9Z*wco^{!#77YyLp*{wjW~nYMVv)^ z9PtUnClTjnM<@5b@WoD7;e3gOMP$+@dRwv*DRNFyTBZAEU*G$|_^H<}?VXwZ`>DNm zPIOY)Xmn+3Q>3H~C+(#t&q3?#qFX$1?9>cTymhfN%qmu&wWx`bi;;b{(tD9fDb9KE zu+dZV*E`YgJ^J%$RFPc_QLF694DTjMs^oMmMH}5e^ZMQ^?dC)MPcH49{ry4n&qq7$ zl?*jWqe~)Ta=?!nxM0mMcduoDoLVjGoSL_Ro{)NaFsjml`o0$=l0cHM0NlsrK{z!Hdn~NF4*AD@8;i zjxtzVObr=OEEcU^R#U8DRdn){Bn9mQvoG43NLevTU#$kc#X&I~4iut^K}sQ`4?3}} zEQV_SG!(r#^H7d#H|OpDdZ`ip#VgHcFGzoZ^_6cQUVmZ#=FNj{pH*r zp{JL`8_91M#H*WMzzhX(>q;I~lTmrFnj*lQn6PiUV~t z8E`b=&9n+7m;!+et7tU}fKMekpqPMB(A9+`WXgq|Be_H?lxI`+I49qDVia=N|L9cv zVuw3Z$XB4yP&p_C>*|s#E)G)b(}H+YXEHfX*_*0K62%laB_(XlCZ)Kz>sxO(znOGF z32AE;fpY<+1v~g;&cO-+;c;$R$ynk=B_nz5(2~P}dAt4JciVFZc9nX?LLt!`OHfD+ zx2#G-0^s8^aX41UF;g45v_`(MR;|-%1f}-A(<7I6Oui{^F0Q|QxjBD+&OHN1OEJNv zqyq{A+g!7dg)K*&jb3!PWer`DN@4^6n=lIS0K`bJa&lqzpT4;@=|Hd&@SNDIt6;Yjl%Q*O;V85;~j&s+CctD3c;&DNA#hj%4oNgg11fc?XO> zzAuG1zw`u*L?+t=6-Y!Oqd5*R@fLgsF7KIL$&?s~6&ln8;S6CED-gJhu`lFR`M|Z5 zAgpsnF=c#$a(IXg++3i{I~J(76gb(_-;$ddgNSDFX%8Xy1equp4`)`>KR)b-P2*LO_2ZmhVu=Ph{W4g8Lw>f|s5 z52KgS1B9IdZ+sHNJzU*swWQ*ztj<`<5&l3T8HX91J=4O(R!pyR1WirQF%P}Qa1+qd zTAa2KE|G;>W#HHwEM0H&8_XrvciC1S1z4q&pppV68gv*auIQ?C$Cw3@U6vX{bz+Jj zEp#7qFt6;Ss9@ltn|8 zqNQPmW+NGHX^JjB#A>5BcD>EXYh4sGl6WyZgMz#LKb~(-e~wmNud>750g<%2kjOSN z_99&|epqH~QOo6K^FlQ*ZO!z?nzhcSF_f;K9=p4H>>I0X&c6OIwXXmEo#xrmeQUeu zZ5O?JE9S!dwu|1q1^FKBwu|0&(c3P1@7>AQU2MDP{f`B6yXb8fy-oiOxc~c=?V^Wo cH@A!4dsfWtqPJc2mP_n>(VJn>`{RTE1)#B?&j0`b diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 475e4ab3727f3b078c8db5f11c28f41293096870..2fa1b04e9244b709d019deb9d2a6f09e7f91e258 100644 GIT binary patch delta 1506 zcmeBw!u9q}3(=1GL5;F?)%}tC=(k#tQQ!LEP6HU!5l1z<_5{=Ew zOpH!Gs%0(d34B z@5!=`GX>ygnJ8$O=~-G%zU%Xc6D~MeCvusRk)fWUp^=V)sga(Mp_!hcu?3I@T4Std zs%K=NXJ}zCd7^U+D_Gg&iw-`M=SLMy-r&NoXKA2k?(3vqtN;X=c?t%4M#WrQn7%Mo z&;Y5N{MN;NMEO_OYc*s0re{dQxak^Aq`=^DE0Uii(T%Q%ucG6H^T>QcO*ZQc{f!Q&N*n4NTIK zj1v>hEK^L=j4TY&ObiSxH~-}PZOUje+0a#l(^SF8z{cLyXgwR4Kr2HFw-+KpDY;h z2gwFTk7WvmK+_G4brg*CO!bU_$k;$f!PE#SX0B&xp=W3``CeoU8${7$hp4?kW7#IZ z^W+4nHSu-QFIE78%sd4HJ+opiE+YdY6J0|iT_d=~W(pc0m6PKW%qJ_j3XB9#a!yY5 z%4Y1Ie9_AaDXjfm!zTX?;376gc~N3?^6ZeX$-4um6OK@~$!mkt2uG@ENFpp!=Y(7% zH8K~3`cJP 0.9\n", "\n", "assert jaccard_similarity(predicted_outlier_issues_indices, outlier_issue_indices) > 0.9\n", - "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9" + "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9\n", + "\n", + "expected_issue_types = set([\"label\", \"outlier\", \"near_duplicate\", \"class_imbalance\"])\n", + "detected_issue_types = set(lab.get_issue_summary()[lab.get_issue_summary()[\"num_issues\"] > 0][\"issue_type\"])\n", + "assert detected_issue_types == expected_issue_types" ] }, { diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 56e8d1bf3..b9824ab45 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 8b93163c4..b7166e3ce 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index c1b45e474..b6b95ec10 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index 6e9290e43..e376e8908 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 24e66ab48..870c8b0b3 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 3272614cb..6fb014e5e 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 135aba345..96c243802 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index affe3fab6..e5351447a 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 9e41c026d..d2dfaabbc 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index f94895da2..77c9dddf6 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 4094f4eb1..ec76032d3 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 0c47799b0..0b89ef417 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index f8e222887..d2a2531ad 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 85, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 10, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 85, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 9, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 10, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 10, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 10, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 85, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 85, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 10, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 10, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 10, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108, 110], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 10, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108, 110], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": 10, "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105], "valuabl": [10, 21, 97], "formal": 10, "num_row": [10, 93], "met": [10, 55, 110], "identifier_column": 10, "binari": [10, 37, 51, 59, 65, 67, 101, 110], "column_identifi": 10, "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "identifier_column_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "strength": [10, 57, 71, 97], "scaling_factor": [10, 31, 57], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "identifiercolumnissuemanag": 10, "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 85, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105, 110], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105], "03": [83, 95, 97, 98, 100, 101, 105, 110], "04": [83, 95, 97, 105, 106], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "llm": 85, "rag": 85, "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "essenti": 85, "retriev": [85, 98], "augment": 85, "compani": [85, 99], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108], "827": 88, "99": [88, 97, 98, 100, 101], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 100], "233": 88, "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "lost_or_stolen_phon": [89, 96], "change_pin": [89, 96], "getting_spare_card": [89, 96], "apple_pay_or_google_pai": [89, 96], "card_about_to_expir": [89, 96], "visa_or_mastercard": [89, 96], "card_payment_fee_charg": [89, 96], "beneficiary_not_allow": [89, 96], "supported_cards_and_curr": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105, 110], "039122": 91, "044598": 91, "105": [91, 105], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 97, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105, 110], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "831": 93, "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "596": [93, 100], "493": 93, "060": 93, "929": [93, 98], "330": [93, 100, 105], "505": 93, "749": [93, 100], "476": [93, 100], "340": [93, 100], "971": [93, 96], "328": [93, 105], "310": 93, "635": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108, 110], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "523": [97, 100], "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "199": [97, 100, 105], "111": [97, 103, 108], "153": [97, 100, 105], "110": [97, 105], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": [97, 110], "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105], "252": [98, 100], "112": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 101], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "09": [100, 104, 105, 108], "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": [100, 110], "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "597": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "363": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "163": [100, 101], "193": [100, 101], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105, 110], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105, 110], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105], "174": 101, "150": [101, 103, 105, 110], "169": [101, 110], "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "912": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": 104, "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "968": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": 105, "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": 105, "239": 105, "209": 105, "202": 105, "230": [105, 110], "215": 105, "220": 105, "229": 105, "217": [105, 110], "237": 105, "207": 105, "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": 105, "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "39147774": 106, "82it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a01": 110, "852": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "4mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "identifi": [10, 97, 99, 100, 105], "column": [10, 95], "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Identifier Column Issue": [[10, "identifier-column-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Identifier Column Parameters": [[10, "identifier-column-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 85, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 10, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 85, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 9, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 10, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 10, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 10, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 85, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 85, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 10, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 10, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 10, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 10, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108, 110], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": [10, 93], "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105], "valuabl": [10, 21, 97], "formal": 10, "num_row": [10, 93], "met": [10, 55, 110], "identifier_column": 10, "binari": [10, 37, 51, 59, 65, 67, 101, 110], "column_identifi": 10, "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "identifier_column_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "strength": [10, 57, 71, 97], "scaling_factor": [10, 31, 57], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "identifiercolumnissuemanag": 10, "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105, 110], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 85, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105, 106], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105], "03": [83, 95, 97, 98, 100, 101, 105, 110], "04": [83, 95, 97, 105], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "llm": 85, "rag": 85, "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "essenti": 85, "retriev": [85, 98], "augment": 85, "compani": [85, 99], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108, 110], "827": 88, "99": [88, 97, 98, 100, 101, 110], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 100], "233": 88, "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "getting_spare_card": [89, 96], "supported_cards_and_curr": [89, 96], "card_payment_fee_charg": [89, 96], "change_pin": [89, 96], "beneficiary_not_allow": [89, 96], "apple_pay_or_google_pai": [89, 96], "visa_or_mastercard": [89, 96], "lost_or_stolen_phon": [89, 96], "card_about_to_expir": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105, 110], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105], "039122": 91, "044598": 91, "105": [91, 105], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 97, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105, 110], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105, 110], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "095": 93, "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "670": 93, "493": 93, "060": 93, "330": [93, 100, 105], "505": 93, "684": 93, "476": [93, 100], "340": [93, 100], "979": 93, "328": [93, 105], "310": 93, "681": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105, 110], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "524": 97, "991400": 97, "356924": 97, "363": [97, 100], "619581": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "199": [97, 100, 105], "111": [97, 103, 108], "153": [97, 100, 105], "110": [97, 105], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": [97, 110], "008": 97, "112": [97, 98, 100, 110], "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105], "252": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 101], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "749": 100, "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "09": [100, 104, 105, 108], "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": 100, "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "596": 100, "597": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "163": [100, 101], "193": [100, 101], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "523": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105, 110], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105], "174": 101, "150": [101, 103, 105], "169": 101, "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "912": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": 104, "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105, 110], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "968": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": 105, "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": [105, 110], "239": 105, "209": 105, "202": 105, "230": 105, "215": 105, "220": 105, "229": 105, "217": 105, "237": 105, "207": 105, "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": [105, 110], "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "105877447": 106, "96it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a00": 110, "718": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "7mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "identifi": [10, 97, 99, 100, 105], "column": [10, 95], "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Identifier Column Issue": [[10, "identifier-column-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Identifier Column Parameters": [[10, "identifier-column-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 20bfbcd37..6b3803556 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:54.086092Z", - "iopub.status.busy": "2024-12-25T19:51:54.085677Z", - "iopub.status.idle": "2024-12-25T19:51:55.340234Z", - "shell.execute_reply": "2024-12-25T19:51:55.339683Z" + "iopub.execute_input": "2024-12-26T11:12:51.774391Z", + "iopub.status.busy": "2024-12-26T11:12:51.774217Z", + "iopub.status.idle": "2024-12-26T11:12:53.059439Z", + "shell.execute_reply": "2024-12-26T11:12:53.058810Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:55.342513Z", - "iopub.status.busy": "2024-12-25T19:51:55.342040Z", - "iopub.status.idle": "2024-12-25T19:51:55.360755Z", - "shell.execute_reply": "2024-12-25T19:51:55.360241Z" + "iopub.execute_input": "2024-12-26T11:12:53.061807Z", + "iopub.status.busy": "2024-12-26T11:12:53.061374Z", + "iopub.status.idle": "2024-12-26T11:12:53.079758Z", + "shell.execute_reply": "2024-12-26T11:12:53.079184Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:55.362868Z", - "iopub.status.busy": "2024-12-25T19:51:55.362427Z", - "iopub.status.idle": "2024-12-25T19:51:55.540614Z", - "shell.execute_reply": "2024-12-25T19:51:55.540025Z" + "iopub.execute_input": "2024-12-26T11:12:53.081769Z", + "iopub.status.busy": "2024-12-26T11:12:53.081381Z", + "iopub.status.idle": "2024-12-26T11:12:53.245915Z", + "shell.execute_reply": "2024-12-26T11:12:53.245376Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:55.571459Z", - "iopub.status.busy": "2024-12-25T19:51:55.571268Z", - "iopub.status.idle": "2024-12-25T19:51:55.574736Z", - "shell.execute_reply": "2024-12-25T19:51:55.574293Z" + "iopub.execute_input": "2024-12-26T11:12:53.275805Z", + "iopub.status.busy": "2024-12-26T11:12:53.275619Z", + "iopub.status.idle": "2024-12-26T11:12:53.279106Z", + "shell.execute_reply": "2024-12-26T11:12:53.278663Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:55.576493Z", - "iopub.status.busy": "2024-12-25T19:51:55.576167Z", - "iopub.status.idle": "2024-12-25T19:51:55.583986Z", - "shell.execute_reply": "2024-12-25T19:51:55.583569Z" + "iopub.execute_input": "2024-12-26T11:12:53.280811Z", + "iopub.status.busy": "2024-12-26T11:12:53.280469Z", + "iopub.status.idle": "2024-12-26T11:12:53.288458Z", + "shell.execute_reply": "2024-12-26T11:12:53.288041Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:55.585801Z", - "iopub.status.busy": "2024-12-25T19:51:55.585439Z", - "iopub.status.idle": "2024-12-25T19:51:55.587876Z", - "shell.execute_reply": "2024-12-25T19:51:55.587423Z" + "iopub.execute_input": "2024-12-26T11:12:53.290396Z", + "iopub.status.busy": "2024-12-26T11:12:53.289981Z", + "iopub.status.idle": "2024-12-26T11:12:53.292602Z", + "shell.execute_reply": "2024-12-26T11:12:53.292161Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:55.589653Z", - "iopub.status.busy": "2024-12-25T19:51:55.589319Z", - "iopub.status.idle": "2024-12-25T19:51:56.106981Z", - "shell.execute_reply": "2024-12-25T19:51:56.106423Z" + "iopub.execute_input": "2024-12-26T11:12:53.294270Z", + "iopub.status.busy": "2024-12-26T11:12:53.293955Z", + "iopub.status.idle": "2024-12-26T11:12:53.806052Z", + "shell.execute_reply": "2024-12-26T11:12:53.805497Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:56.109156Z", - "iopub.status.busy": "2024-12-25T19:51:56.108796Z", - "iopub.status.idle": "2024-12-25T19:51:57.944884Z", - "shell.execute_reply": "2024-12-25T19:51:57.944214Z" + "iopub.execute_input": "2024-12-26T11:12:53.808216Z", + "iopub.status.busy": "2024-12-26T11:12:53.807837Z", + "iopub.status.idle": "2024-12-26T11:12:55.724386Z", + "shell.execute_reply": "2024-12-26T11:12:55.723705Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:57.947248Z", - "iopub.status.busy": "2024-12-25T19:51:57.946492Z", - "iopub.status.idle": "2024-12-25T19:51:57.956745Z", - "shell.execute_reply": "2024-12-25T19:51:57.956289Z" + "iopub.execute_input": "2024-12-26T11:12:55.726873Z", + "iopub.status.busy": "2024-12-26T11:12:55.726192Z", + "iopub.status.idle": "2024-12-26T11:12:55.736620Z", + "shell.execute_reply": "2024-12-26T11:12:55.736074Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:57.958488Z", - "iopub.status.busy": "2024-12-25T19:51:57.958169Z", - "iopub.status.idle": "2024-12-25T19:51:57.962158Z", - "shell.execute_reply": "2024-12-25T19:51:57.961670Z" + "iopub.execute_input": "2024-12-26T11:12:55.738378Z", + "iopub.status.busy": "2024-12-26T11:12:55.738117Z", + "iopub.status.idle": "2024-12-26T11:12:55.742311Z", + "shell.execute_reply": "2024-12-26T11:12:55.741903Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:57.963726Z", - "iopub.status.busy": "2024-12-25T19:51:57.963556Z", - "iopub.status.idle": "2024-12-25T19:51:57.971242Z", - "shell.execute_reply": "2024-12-25T19:51:57.970787Z" + "iopub.execute_input": "2024-12-26T11:12:55.744007Z", + "iopub.status.busy": "2024-12-26T11:12:55.743672Z", + "iopub.status.idle": "2024-12-26T11:12:55.750721Z", + "shell.execute_reply": "2024-12-26T11:12:55.750282Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:57.972845Z", - "iopub.status.busy": "2024-12-25T19:51:57.972675Z", - "iopub.status.idle": "2024-12-25T19:51:58.084662Z", - "shell.execute_reply": "2024-12-25T19:51:58.084188Z" + "iopub.execute_input": "2024-12-26T11:12:55.752323Z", + "iopub.status.busy": "2024-12-26T11:12:55.752051Z", + "iopub.status.idle": "2024-12-26T11:12:55.863585Z", + "shell.execute_reply": "2024-12-26T11:12:55.863090Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:58.086251Z", - "iopub.status.busy": "2024-12-25T19:51:58.086076Z", - "iopub.status.idle": "2024-12-25T19:51:58.088808Z", - "shell.execute_reply": "2024-12-25T19:51:58.088353Z" + "iopub.execute_input": "2024-12-26T11:12:55.865226Z", + "iopub.status.busy": "2024-12-26T11:12:55.864891Z", + "iopub.status.idle": "2024-12-26T11:12:55.867497Z", + "shell.execute_reply": "2024-12-26T11:12:55.867030Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:51:58.090460Z", - "iopub.status.busy": "2024-12-25T19:51:58.090135Z", - "iopub.status.idle": "2024-12-25T19:52:00.219716Z", - "shell.execute_reply": "2024-12-25T19:52:00.219061Z" + "iopub.execute_input": "2024-12-26T11:12:55.869229Z", + "iopub.status.busy": "2024-12-26T11:12:55.868908Z", + "iopub.status.idle": "2024-12-26T11:12:57.932040Z", + "shell.execute_reply": "2024-12-26T11:12:57.931382Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:00.222468Z", - "iopub.status.busy": "2024-12-25T19:52:00.221613Z", - "iopub.status.idle": "2024-12-25T19:52:00.233318Z", - "shell.execute_reply": "2024-12-25T19:52:00.232760Z" + "iopub.execute_input": "2024-12-26T11:12:57.934784Z", + "iopub.status.busy": "2024-12-26T11:12:57.933935Z", + "iopub.status.idle": "2024-12-26T11:12:57.945436Z", + "shell.execute_reply": "2024-12-26T11:12:57.944965Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:00.235276Z", - "iopub.status.busy": "2024-12-25T19:52:00.234721Z", - "iopub.status.idle": "2024-12-25T19:52:00.370457Z", - "shell.execute_reply": "2024-12-25T19:52:00.369861Z" + "iopub.execute_input": "2024-12-26T11:12:57.947178Z", + "iopub.status.busy": "2024-12-26T11:12:57.946824Z", + "iopub.status.idle": "2024-12-26T11:12:57.979945Z", + "shell.execute_reply": "2024-12-26T11:12:57.979509Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 302f87ff3..8e959479c 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -830,7 +830,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'supported_cards_and_currencies'}
+Classes: {'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_about_to_expire'}
 

Let’s print the first example in the train set.

@@ -893,43 +893,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1232,7 +1232,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 5625b3d41..4fbd5c640 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:03.618980Z", - "iopub.status.busy": "2024-12-25T19:52:03.618815Z", - "iopub.status.idle": "2024-12-25T19:52:06.835657Z", - "shell.execute_reply": "2024-12-25T19:52:06.835084Z" + "iopub.execute_input": "2024-12-26T11:13:01.023419Z", + "iopub.status.busy": "2024-12-26T11:13:01.023251Z", + "iopub.status.idle": "2024-12-26T11:13:04.095023Z", + "shell.execute_reply": "2024-12-26T11:13:04.094464Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:06.837803Z", - "iopub.status.busy": "2024-12-25T19:52:06.837349Z", - "iopub.status.idle": "2024-12-25T19:52:06.840860Z", - "shell.execute_reply": "2024-12-25T19:52:06.840298Z" + "iopub.execute_input": "2024-12-26T11:13:04.097222Z", + "iopub.status.busy": "2024-12-26T11:13:04.096738Z", + "iopub.status.idle": "2024-12-26T11:13:04.100142Z", + "shell.execute_reply": "2024-12-26T11:13:04.099676Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:06.842765Z", - "iopub.status.busy": "2024-12-25T19:52:06.842354Z", - "iopub.status.idle": "2024-12-25T19:52:06.845438Z", - "shell.execute_reply": "2024-12-25T19:52:06.844958Z" + "iopub.execute_input": "2024-12-26T11:13:04.102011Z", + "iopub.status.busy": "2024-12-26T11:13:04.101521Z", + "iopub.status.idle": "2024-12-26T11:13:04.104786Z", + "shell.execute_reply": "2024-12-26T11:13:04.104328Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:06.847087Z", - "iopub.status.busy": "2024-12-25T19:52:06.846770Z", - "iopub.status.idle": "2024-12-25T19:52:07.008708Z", - "shell.execute_reply": "2024-12-25T19:52:07.008142Z" + "iopub.execute_input": "2024-12-26T11:13:04.106294Z", + "iopub.status.busy": "2024-12-26T11:13:04.106121Z", + "iopub.status.idle": "2024-12-26T11:13:04.143243Z", + "shell.execute_reply": "2024-12-26T11:13:04.142762Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:07.010500Z", - "iopub.status.busy": "2024-12-25T19:52:07.010144Z", - "iopub.status.idle": "2024-12-25T19:52:07.013585Z", - "shell.execute_reply": "2024-12-25T19:52:07.013139Z" + "iopub.execute_input": "2024-12-26T11:13:04.144698Z", + "iopub.status.busy": "2024-12-26T11:13:04.144526Z", + "iopub.status.idle": "2024-12-26T11:13:04.148227Z", + "shell.execute_reply": "2024-12-26T11:13:04.147778Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:07.015185Z", - "iopub.status.busy": "2024-12-25T19:52:07.014859Z", - "iopub.status.idle": "2024-12-25T19:52:07.018008Z", - "shell.execute_reply": "2024-12-25T19:52:07.017550Z" + "iopub.execute_input": "2024-12-26T11:13:04.149726Z", + "iopub.status.busy": "2024-12-26T11:13:04.149554Z", + "iopub.status.idle": "2024-12-26T11:13:04.153061Z", + "shell.execute_reply": "2024-12-26T11:13:04.152592Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'change_pin', 'getting_spare_card', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'supported_cards_and_currencies'}\n" + "Classes: {'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_about_to_expire'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:07.019674Z", - "iopub.status.busy": "2024-12-25T19:52:07.019343Z", - "iopub.status.idle": "2024-12-25T19:52:07.022284Z", - "shell.execute_reply": "2024-12-25T19:52:07.021810Z" + "iopub.execute_input": "2024-12-26T11:13:04.154695Z", + "iopub.status.busy": "2024-12-26T11:13:04.154366Z", + "iopub.status.idle": "2024-12-26T11:13:04.157258Z", + "shell.execute_reply": "2024-12-26T11:13:04.156821Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:07.024292Z", - "iopub.status.busy": "2024-12-25T19:52:07.023932Z", - "iopub.status.idle": "2024-12-25T19:52:07.027299Z", - "shell.execute_reply": "2024-12-25T19:52:07.026833Z" + "iopub.execute_input": "2024-12-26T11:13:04.158974Z", + "iopub.status.busy": "2024-12-26T11:13:04.158624Z", + "iopub.status.idle": "2024-12-26T11:13:04.161786Z", + "shell.execute_reply": "2024-12-26T11:13:04.161363Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:07.028943Z", - "iopub.status.busy": "2024-12-25T19:52:07.028611Z", - "iopub.status.idle": "2024-12-25T19:52:14.387676Z", - "shell.execute_reply": "2024-12-25T19:52:14.387127Z" + "iopub.execute_input": "2024-12-26T11:13:04.163425Z", + "iopub.status.busy": "2024-12-26T11:13:04.163100Z", + "iopub.status.idle": "2024-12-26T11:13:10.192654Z", + "shell.execute_reply": "2024-12-26T11:13:10.191995Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1558d76ea31a4a208c5cbf04140337ef", + "model_id": "8edbc435f5e047f1adc1000c0096497a", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9da06a78d77644549022904744f420c0", + "model_id": "aacf1d257ee0467fa4d74774b86ba7ac", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d68fe0dc6b244e2eb911a82bb97da1c7", + "model_id": "9d342dd76ebd483b98f4216c9a90e299", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6b2ee6dd261a42c4bda6a98ca45ce302", + "model_id": "2aaecf46749440c3a703c26441ad1bd0", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6e90c39bd7ab43c1864795c7fbcd0c72", + "model_id": "a6b3ae86b8c94beebe1bad7f983f0fce", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c7f010c88b84f3895dee40de14c2188", + "model_id": "609d2adc3f9f431eb9e4a40f6fa7c90d", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8fa9c8be3de54cdeab7a730e8b5ff22a", + "model_id": "e4a471d9a9844396ad68e75f25bef9fa", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:14.390207Z", - "iopub.status.busy": "2024-12-25T19:52:14.389555Z", - "iopub.status.idle": "2024-12-25T19:52:14.392843Z", - "shell.execute_reply": "2024-12-25T19:52:14.392358Z" + "iopub.execute_input": "2024-12-26T11:13:10.195320Z", + "iopub.status.busy": "2024-12-26T11:13:10.194676Z", + "iopub.status.idle": "2024-12-26T11:13:10.197848Z", + "shell.execute_reply": "2024-12-26T11:13:10.197265Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:14.394544Z", - "iopub.status.busy": "2024-12-25T19:52:14.394216Z", - "iopub.status.idle": "2024-12-25T19:52:14.396676Z", - "shell.execute_reply": "2024-12-25T19:52:14.396236Z" + "iopub.execute_input": "2024-12-26T11:13:10.199635Z", + "iopub.status.busy": "2024-12-26T11:13:10.199339Z", + "iopub.status.idle": "2024-12-26T11:13:10.202036Z", + "shell.execute_reply": "2024-12-26T11:13:10.201577Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:14.398403Z", - "iopub.status.busy": "2024-12-25T19:52:14.398082Z", - "iopub.status.idle": "2024-12-25T19:52:15.374464Z", - "shell.execute_reply": "2024-12-25T19:52:15.373829Z" + "iopub.execute_input": "2024-12-26T11:13:10.203528Z", + "iopub.status.busy": "2024-12-26T11:13:10.203361Z", + "iopub.status.idle": "2024-12-26T11:13:11.138600Z", + "shell.execute_reply": "2024-12-26T11:13:11.137843Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.376499Z", - "iopub.status.busy": "2024-12-25T19:52:15.376267Z", - "iopub.status.idle": "2024-12-25T19:52:15.384123Z", - "shell.execute_reply": "2024-12-25T19:52:15.383574Z" + "iopub.execute_input": "2024-12-26T11:13:11.141190Z", + "iopub.status.busy": "2024-12-26T11:13:11.140669Z", + "iopub.status.idle": "2024-12-26T11:13:11.148371Z", + "shell.execute_reply": "2024-12-26T11:13:11.147903Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.386024Z", - "iopub.status.busy": "2024-12-25T19:52:15.385583Z", - "iopub.status.idle": "2024-12-25T19:52:15.389738Z", - "shell.execute_reply": "2024-12-25T19:52:15.389144Z" + "iopub.execute_input": "2024-12-26T11:13:11.150188Z", + "iopub.status.busy": "2024-12-26T11:13:11.149845Z", + "iopub.status.idle": "2024-12-26T11:13:11.154024Z", + "shell.execute_reply": "2024-12-26T11:13:11.153566Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.391321Z", - "iopub.status.busy": "2024-12-25T19:52:15.391017Z", - "iopub.status.idle": "2024-12-25T19:52:15.393940Z", - "shell.execute_reply": "2024-12-25T19:52:15.393443Z" + "iopub.execute_input": "2024-12-26T11:13:11.155964Z", + "iopub.status.busy": "2024-12-26T11:13:11.155519Z", + "iopub.status.idle": "2024-12-26T11:13:11.158910Z", + "shell.execute_reply": "2024-12-26T11:13:11.158373Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.395628Z", - "iopub.status.busy": "2024-12-25T19:52:15.395308Z", - "iopub.status.idle": "2024-12-25T19:52:15.398229Z", - "shell.execute_reply": "2024-12-25T19:52:15.397771Z" + "iopub.execute_input": "2024-12-26T11:13:11.160621Z", + "iopub.status.busy": "2024-12-26T11:13:11.160282Z", + "iopub.status.idle": "2024-12-26T11:13:11.163119Z", + "shell.execute_reply": "2024-12-26T11:13:11.162677Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.399799Z", - "iopub.status.busy": "2024-12-25T19:52:15.399495Z", - "iopub.status.idle": "2024-12-25T19:52:15.406269Z", - "shell.execute_reply": "2024-12-25T19:52:15.405823Z" + "iopub.execute_input": "2024-12-26T11:13:11.164909Z", + "iopub.status.busy": "2024-12-26T11:13:11.164517Z", + "iopub.status.idle": "2024-12-26T11:13:11.171445Z", + "shell.execute_reply": "2024-12-26T11:13:11.170967Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.408117Z", - "iopub.status.busy": "2024-12-25T19:52:15.407659Z", - "iopub.status.idle": "2024-12-25T19:52:15.635794Z", - "shell.execute_reply": "2024-12-25T19:52:15.635273Z" + "iopub.execute_input": "2024-12-26T11:13:11.173188Z", + "iopub.status.busy": "2024-12-26T11:13:11.172853Z", + "iopub.status.idle": "2024-12-26T11:13:11.400415Z", + "shell.execute_reply": "2024-12-26T11:13:11.399841Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.637871Z", - "iopub.status.busy": "2024-12-25T19:52:15.637480Z", - "iopub.status.idle": "2024-12-25T19:52:15.847865Z", - "shell.execute_reply": "2024-12-25T19:52:15.847321Z" + "iopub.execute_input": "2024-12-26T11:13:11.402683Z", + "iopub.status.busy": "2024-12-26T11:13:11.402275Z", + "iopub.status.idle": "2024-12-26T11:13:11.616200Z", + "shell.execute_reply": "2024-12-26T11:13:11.615626Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:15.850075Z", - "iopub.status.busy": "2024-12-25T19:52:15.849695Z", - "iopub.status.idle": "2024-12-25T19:52:15.853521Z", - "shell.execute_reply": "2024-12-25T19:52:15.853010Z" + "iopub.execute_input": "2024-12-26T11:13:11.619526Z", + "iopub.status.busy": "2024-12-26T11:13:11.618713Z", + "iopub.status.idle": "2024-12-26T11:13:11.623497Z", + "shell.execute_reply": "2024-12-26T11:13:11.622960Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01dfa435a7a446e4b440799ec4c2145f": { + "02362aab4b164cf7b42da5937a67916f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06a8ea65a9e14fca863e7ce52f2957ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0bff0fae7cfd49f0ada3973997be1129": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,7 +1209,7 @@ "width": null } }, - "0622352f21ee4d18a3bf008210362807": { + "112cc61d8b64490fb80c53dcc5e2cca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1188,15 +1224,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a506121f671e42e2a75239609dae16b4", + "layout": "IPY_MODEL_9de65da5da3d4ff09d297002249b0a04", "placeholder": "​", - "style": "IPY_MODEL_ef0e8282694f471fafd5102d862830de", + "style": "IPY_MODEL_707aa05f314a4d37801e96bdcb9bd20b", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": " 466k/466k [00:00<00:00, 16.9MB/s]" } }, - "09a1b80c37a946c6ac30c214eb09ab85": { + "16f2c8cb6fba4964a682612795225348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1212,83 +1248,33 @@ "description_width": "" } }, - "0a1d445f0d6b40dfbb73d426ba2df4e3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0a58c7ad194c44898726be9309e9f657": { + "191280d5cc1d4d26a65a12b01392bf65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29e649c725b44323b9c2e6eeaad8f7cc", - "placeholder": "​", - "style": "IPY_MODEL_fc18a6e298534b5a871027258c6c9966", + "layout": "IPY_MODEL_87c110aa94fd4c5e9e20cd1d0986648c", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b83ebddc1edb4eab89691e7061b3cd55", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": 2211.0 } }, - "0c8798bdcbc14893aa6943dd956c384e": { + "1f58bcc938044ac7b0cb2de3d66aec77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1303,38 +1289,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e20a561cad65497d8ec1271883bd84e6", + "layout": "IPY_MODEL_2e2deac288b0443e9b82a22e16ad3c14", "placeholder": "​", - "style": "IPY_MODEL_e17ec39d27b4427f9291bda2db45a9ea", + "style": "IPY_MODEL_02362aab4b164cf7b42da5937a67916f", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "README.md: 100%" } }, - "0ed0fc9426cf4f27855fd5c3a417d140": { + "25aefc81ce414f5a913c737cf91c6d51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5de6a7bfc13c4dbd919c00a6f2bf085c", - "placeholder": "​", - "style": "IPY_MODEL_5f8e7457da80482bba79c0fa3f75b938", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 194MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1087ec7b37b543659dffdbdf77713a3e": { + "26bc5abf30fe4313aa85437651bf3710": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1387,23 +1366,30 @@ "width": null } }, - "14cabef1254341be98227e0f518d8b31": { + "28da5929a198433a9bb1661c0522fed5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_48c529fad1e745bda72690727f54e6ab", + "placeholder": "​", + "style": "IPY_MODEL_a8abca2cee4f44ba96c96247437b6761", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 228MB/s]" } }, - "1558d76ea31a4a208c5cbf04140337ef": { + "2aaecf46749440c3a703c26441ad1bd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1418,16 +1404,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b6bdb338703d4f16a96beeeb16a90a96", - "IPY_MODEL_34aa21834476404d9cfeebc1bee32ea6", - "IPY_MODEL_412e6e721e2d423c8eb32f83e9251b43" + "IPY_MODEL_6313b5247adb4130b6fde9bcefa06c7c", + "IPY_MODEL_472efa31619d490d978f4d3601f56e7a", + "IPY_MODEL_28da5929a198433a9bb1661c0522fed5" ], - "layout": "IPY_MODEL_0a1d445f0d6b40dfbb73d426ba2df4e3", + "layout": "IPY_MODEL_c101a2bef35949a5a3406967b75aae14", "tabbable": null, "tooltip": null } }, - "18f4580f4df947938ae37e09a9368c0a": { + "2bb3d37b2d504114bb1e40b4c609d1ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1442,15 +1428,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a1dfcd5903464a32acd9dbe672b9e398", + "layout": "IPY_MODEL_85b6a86a7e184dd699598911c8f47c1c", "placeholder": "​", - "style": "IPY_MODEL_fbb6bca927a641819c55fb620e67d351", + "style": "IPY_MODEL_06a8ea65a9e14fca863e7ce52f2957ab", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 232k/232k [00:00<00:00, 32.9MB/s]" + } + }, + "2da4400dc4684f63aa3ec42b38ea0795": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82f65667ec5847c6bc58b901252cb962", + "placeholder": "​", + "style": "IPY_MODEL_3635935b1874431c83891dc648e434c6", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "1a43560b62f54e66b83c715d63a0fdc5": { + "2e2deac288b0443e9b82a22e16ad3c14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,46 +1512,77 @@ "width": null } }, - "1c8073e778064a7db8a77211c8a791cd": { + "3635935b1874431c83891dc648e434c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1cd2a531ceef424ab98443f5910e7f62": { + "38ac8bb757b64cf8adcecfc33be851c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_398fd0d8d1d34ef2abbe2f1f78a77dc5", - "placeholder": "​", - "style": "IPY_MODEL_b4feacb6ca7f4a989aca95dcdcb3c9e5", + "layout": "IPY_MODEL_be59f6ab5df04ff28fd35c5563bcdeca", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f0c349d7e67f435daf4f2de14743050d", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "472efa31619d490d978f4d3601f56e7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec48711c87634f84bb3b3bf1bdc5aaac", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9c32469b093d4e899d4ca608513db7c7", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 7.38kB/s]" + "value": 54245363.0 } }, - "21de38dd8df64f0698bc81945f3b2fa5": { + "48c529fad1e745bda72690727f54e6ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1595,25 +1635,30 @@ "width": null } }, - "2810f42966ec4c03a8cc66f6b2868e9e": { + "4a713fbc3d3049afb6c07620fe10a695": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a7639ee2c59452f9f9c4c1413f041f5", + "placeholder": "​", + "style": "IPY_MODEL_f88d5a30d4eb4a17b2a5a3c22404fecb", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" } }, - "29e649c725b44323b9c2e6eeaad8f7cc": { + "4cf3309f5ef94e0ea2e50fb33671ba1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1666,43 +1711,7 @@ "width": null } }, - "2be5999f24d8418095d599d3ac4f8cfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2d2eae4473894cbb81621704a4eac453": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31729a53c1b246519f657e9064cb492f": { + "568626d2ed9145dd9b049765b658cbf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1755,7 +1764,7 @@ "width": null } }, - "321fdb45c33746c4a49b4f4c76671d64": { + "5d60570e625e41ada94a944616fe712c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1808,112 +1817,118 @@ "width": null } }, - "34aa21834476404d9cfeebc1bee32ea6": { + "609d2adc3f9f431eb9e4a40f6fa7c90d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_66fda3878c5c4cfe84897ab42e5f1a37", + "IPY_MODEL_748a07db88724883b49c29364de86b68", + "IPY_MODEL_ab0615d56c774eea9944298e16b4a124" + ], + "layout": "IPY_MODEL_0bff0fae7cfd49f0ada3973997be1129", + "tabbable": null, + "tooltip": null + } + }, + "6313b5247adb4130b6fde9bcefa06c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f841f5326b1643cc882394e0c5da4f6c", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_14cabef1254341be98227e0f518d8b31", + "layout": "IPY_MODEL_f125760c6e0241e5bc395079dccb5988", + "placeholder": "​", + "style": "IPY_MODEL_78cac84f473f4809a08bf8ee8e9bbc3e", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": "pytorch_model.bin: 100%" } }, - "3645fdc49bc84af5860de8aa26c0877b": { - "model_module": "@jupyter-widgets/base", + "635b38e53c9e4be88103d282b8ee7f99": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "367feccfabd340a68f86291a38bb03ac": { + "6455689c2bd247b5a245b1d696cbcc5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3645fdc49bc84af5860de8aa26c0877b", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_664c513ae90b4b9fa53ad461be87313b", + "layout": "IPY_MODEL_4cf3309f5ef94e0ea2e50fb33671ba1e", + "placeholder": "​", + "style": "IPY_MODEL_af70ef20d693420ca9454976165628a1", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": " 391/391 [00:00<00:00, 69.2kB/s]" + } + }, + "66fda3878c5c4cfe84897ab42e5f1a37": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_568626d2ed9145dd9b049765b658cbf8", + "placeholder": "​", + "style": "IPY_MODEL_635b38e53c9e4be88103d282b8ee7f99", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "398fd0d8d1d34ef2abbe2f1f78a77dc5": { + "6da6b5ab9ad9424488cfeb66b82e1532": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1966,7 +1981,51 @@ "width": null } }, - "399022b2cdf5480ebc2322712e2b3792": { + "707aa05f314a4d37801e96bdcb9bd20b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "748a07db88724883b49c29364de86b68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f402da40fcd41a1a24992ef62c7546c", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d90189b4e54400d8d2debf3114b43c0", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "7567e757b12948a69d12909a0409013f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1984,7 +2043,7 @@ "text_color": null } }, - "3be81845a8624e28824f4eb0394ddbf7": { + "7663dfad4ba74782affb6b4de0f7f443": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2037,30 +2096,25 @@ "width": null } }, - "412e6e721e2d423c8eb32f83e9251b43": { + "78cac84f473f4809a08bf8ee8e9bbc3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_684057b48d6946bf97e2670180ed5c73", - "placeholder": "​", - "style": "IPY_MODEL_f712a5a6de7f4a689e306c851f083884", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 68.3kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4844e4e8b55644c789f351fb4411c876": { + "7adc337f8ea2440e9cf303a78dcfd727": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2113,7 +2167,7 @@ "width": null } }, - "58be6e4bb857490390eccbc76735dc9f": { + "7d90189b4e54400d8d2debf3114b43c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2129,7 +2183,7 @@ "description_width": "" } }, - "5dc653d03a374708a52c5334005dda78": { + "8037b52cc2f846729f49327207c49902": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2145,17 +2199,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_84a8ce947d7d47eeb79ebd43891e28f3", - "max": 665.0, + "layout": "IPY_MODEL_26bc5abf30fe4313aa85437651bf3710", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9795edf36e3b44678a094d982ed6199e", + "style": "IPY_MODEL_16f2c8cb6fba4964a682612795225348", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 466062.0 + } + }, + "80d62a8ba1a745aa94638c37b9f40bb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d60570e625e41ada94a944616fe712c", + "placeholder": "​", + "style": "IPY_MODEL_e5de4ed9bb404ffbb6a270493f6e545e", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "5de6a7bfc13c4dbd919c00a6f2bf085c": { + "82f65667ec5847c6bc58b901252cb962": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2208,25 +2285,7 @@ "width": null } }, - "5f8e7457da80482bba79c0fa3f75b938": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5fbb0c25ce2742118170a35453250697": { + "85b6a86a7e184dd699598911c8f47c1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2279,23 +2338,7 @@ "width": null } }, - "664c513ae90b4b9fa53ad461be87313b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "68358f8de1dd463cb0016609a9995ad1": { + "87c110aa94fd4c5e9e20cd1d0986648c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,7 +2391,7 @@ "width": null } }, - "684057b48d6946bf97e2670180ed5c73": { + "8a7639ee2c59452f9f9c4c1413f041f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2401,25 +2444,30 @@ "width": null } }, - "69cd80c8d5374736a177f5f0e17ae220": { + "8d24763770944277854f9e6bbc9ce4e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6da6b5ab9ad9424488cfeb66b82e1532", + "placeholder": "​", + "style": "IPY_MODEL_b5e1ad9796ab4f8cb8b5e84555e54e6a", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 389kB/s]" } }, - "6b2ee6dd261a42c4bda6a98ca45ce302": { + "8edbc435f5e047f1adc1000c0096497a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2434,57 +2482,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_cbe484bb7bde479aabeaac06be2529e2", - "IPY_MODEL_7984908caa6943a9a1ecf4c107646a7d", - "IPY_MODEL_0ed0fc9426cf4f27855fd5c3a417d140" + "IPY_MODEL_2da4400dc4684f63aa3ec42b38ea0795", + "IPY_MODEL_a3975a3aeb644bb3abc4c1e01f78e5a3", + "IPY_MODEL_6455689c2bd247b5a245b1d696cbcc5c" ], - "layout": "IPY_MODEL_01dfa435a7a446e4b440799ec4c2145f", + "layout": "IPY_MODEL_aefe7e0b374a4aad908e06b60a6114ed", "tabbable": null, "tooltip": null } }, - "6c27c784de954af6acee5cdbc1a86d86": { - "model_module": "@jupyter-widgets/controls", + "92c175cc03794016a60c2af6a23a1684": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21de38dd8df64f0698bc81945f3b2fa5", - "placeholder": "​", - "style": "IPY_MODEL_2810f42966ec4c03a8cc66f6b2868e9e", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "6cfdbb9ed06c4f8d8fabf06ea555abe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6dc381991b1b4eaa99173a6a18bf6fab": { + "9c32469b093d4e899d4ca608513db7c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2500,33 +2560,7 @@ "description_width": "" } }, - "6e052763f2fa4aa69d9558030a7a2971": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31729a53c1b246519f657e9064cb492f", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1c8073e778064a7db8a77211c8a791cd", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "6e90c39bd7ab43c1864795c7fbcd0c72": { + "9d342dd76ebd483b98f4216c9a90e299": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2541,42 +2575,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c8798bdcbc14893aa6943dd956c384e", - "IPY_MODEL_367feccfabd340a68f86291a38bb03ac", - "IPY_MODEL_e738d1acb24548019d2398cf5fc2057b" + "IPY_MODEL_4a713fbc3d3049afb6c07620fe10a695", + "IPY_MODEL_38ac8bb757b64cf8adcecfc33be851c5", + "IPY_MODEL_a68f131afc28461488028fb4d3765a08" ], - "layout": "IPY_MODEL_68358f8de1dd463cb0016609a9995ad1", + "layout": "IPY_MODEL_f452c8cf3ffe40d0950573b2ec6a62f9", "tabbable": null, "tooltip": null } }, - "7984908caa6943a9a1ecf4c107646a7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1a43560b62f54e66b83c715d63a0fdc5", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09a1b80c37a946c6ac30c214eb09ab85", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "7cc2418c6f5e48b68c9fb4a8ccde8a91": { + "9de65da5da3d4ff09d297002249b0a04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2629,7 +2637,7 @@ "width": null } }, - "84a8ce947d7d47eeb79ebd43891e28f3": { + "9f402da40fcd41a1a24992ef62c7546c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2682,25 +2690,7 @@ "width": null } }, - "88083decd91b403fa7386e1a6aa69e4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "89735856e4d14807a6c91a031c0e8444": { + "a3975a3aeb644bb3abc4c1e01f78e5a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2716,41 +2706,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df99ac46d95a4a0fa58eef2ceff05aa3", - "max": 231508.0, + "layout": "IPY_MODEL_b136feef66ee4409bc729f024941c0ed", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_58be6e4bb857490390eccbc76735dc9f", + "style": "IPY_MODEL_25aefc81ce414f5a913c737cf91c6d51", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 391.0 } }, - "8c7f010c88b84f3895dee40de14c2188": { + "a68f131afc28461488028fb4d3765a08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0a58c7ad194c44898726be9309e9f657", - "IPY_MODEL_6e052763f2fa4aa69d9558030a7a2971", - "IPY_MODEL_1cd2a531ceef424ab98443f5910e7f62" - ], - "layout": "IPY_MODEL_ad59c93a254d4dfb8a5bedc2231b6a43", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa53201340c7484da24633cd78b78a61", + "placeholder": "​", + "style": "IPY_MODEL_f6b6b468d23f44b49c1c94cb5d4e5cba", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 665/665 [00:00<00:00, 129kB/s]" } }, - "8fa9c8be3de54cdeab7a730e8b5ff22a": { + "a6b3ae86b8c94beebe1bad7f983f0fce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2765,32 +2754,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6c27c784de954af6acee5cdbc1a86d86", - "IPY_MODEL_89735856e4d14807a6c91a031c0e8444", - "IPY_MODEL_d28cc385bac0443f8ae9527ed2c84fb4" + "IPY_MODEL_80d62a8ba1a745aa94638c37b9f40bb8", + "IPY_MODEL_8037b52cc2f846729f49327207c49902", + "IPY_MODEL_112cc61d8b64490fb80c53dcc5e2cca2" ], - "layout": "IPY_MODEL_321fdb45c33746c4a49b4f4c76671d64", + "layout": "IPY_MODEL_7663dfad4ba74782affb6b4de0f7f443", "tabbable": null, "tooltip": null } }, - "9795edf36e3b44678a094d982ed6199e": { + "a8abca2cee4f44ba96c96247437b6761": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9da06a78d77644549022904744f420c0": { + "aacf1d257ee0467fa4d74774b86ba7ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2805,16 +2796,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0622352f21ee4d18a3bf008210362807", - "IPY_MODEL_bd9759e240d34745b7de9c70d38f069a", - "IPY_MODEL_d6317eaed7ff4eb99fc0d3d6a78dd325" + "IPY_MODEL_1f58bcc938044ac7b0cb2de3d66aec77", + "IPY_MODEL_191280d5cc1d4d26a65a12b01392bf65", + "IPY_MODEL_8d24763770944277854f9e6bbc9ce4e9" ], - "layout": "IPY_MODEL_7cc2418c6f5e48b68c9fb4a8ccde8a91", + "layout": "IPY_MODEL_7adc337f8ea2440e9cf303a78dcfd727", "tabbable": null, "tooltip": null } }, - "a1dfcd5903464a32acd9dbe672b9e398": { + "ab0615d56c774eea9944298e16b4a124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cc2a8e2598c04890894f3c006d3f7d67", + "placeholder": "​", + "style": "IPY_MODEL_fc41c9da8c6549bbb43136f929259efa", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.97kB/s]" + } + }, + "aefe7e0b374a4aad908e06b60a6114ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2867,7 +2881,25 @@ "width": null } }, - "a506121f671e42e2a75239609dae16b4": { + "af70ef20d693420ca9454976165628a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b136feef66ee4409bc729f024941c0ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2920,7 +2952,25 @@ "width": null } }, - "a913dbc0aa83466d977c8cb5a6fd6e84": { + "b5e1ad9796ab4f8cb8b5e84555e54e6a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b78b972a3ccf4713a84ed50a89f89e8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2973,7 +3023,39 @@ "width": null } }, - "ad59c93a254d4dfb8a5bedc2231b6a43": { + "b83ebddc1edb4eab89691e7061b3cd55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9afd5b21a674631a8eeb812d16e083a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "be59f6ab5df04ff28fd35c5563bcdeca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3026,7 +3108,7 @@ "width": null } }, - "b0d0b38c09c3473a816fdc1957a5d7b4": { + "c101a2bef35949a5a3406967b75aae14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3079,174 +3161,14 @@ "width": null } }, - "b4feacb6ca7f4a989aca95dcdcb3c9e5": { - "model_module": "@jupyter-widgets/controls", + "c285ed42bd0542b2bd264d0698adf4ae": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b6bdb338703d4f16a96beeeb16a90a96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_de471de396934256a7d0534368bbd3ed", - "placeholder": "​", - "style": "IPY_MODEL_69cd80c8d5374736a177f5f0e17ae220", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "bd9759e240d34745b7de9c70d38f069a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3be81845a8624e28824f4eb0394ddbf7", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6dc381991b1b4eaa99173a6a18bf6fab", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "cbe484bb7bde479aabeaac06be2529e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1087ec7b37b543659dffdbdf77713a3e", - "placeholder": "​", - "style": "IPY_MODEL_88083decd91b403fa7386e1a6aa69e4d", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "d28cc385bac0443f8ae9527ed2c84fb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b0d0b38c09c3473a816fdc1957a5d7b4", - "placeholder": "​", - "style": "IPY_MODEL_6cfdbb9ed06c4f8d8fabf06ea555abe7", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 4.17MB/s]" - } - }, - "d6317eaed7ff4eb99fc0d3d6a78dd325": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a913dbc0aa83466d977c8cb5a6fd6e84", - "placeholder": "​", - "style": "IPY_MODEL_2be5999f24d8418095d599d3ac4f8cfd", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 397kB/s]" - } - }, - "d68fe0dc6b244e2eb911a82bb97da1c7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18f4580f4df947938ae37e09a9368c0a", - "IPY_MODEL_5dc653d03a374708a52c5334005dda78", - "IPY_MODEL_f054183671cb4ec796673e53c0c35302" - ], - "layout": "IPY_MODEL_4844e4e8b55644c789f351fb4411c876", - "tabbable": null, - "tooltip": null - } - }, - "de471de396934256a7d0534368bbd3ed": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3292,7 +3214,7 @@ "width": null } }, - "df99ac46d95a4a0fa58eef2ceff05aa3": { + "cc2a8e2598c04890894f3c006d3f7d67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3345,7 +3267,31 @@ "width": null } }, - "e17ec39d27b4427f9291bda2db45a9ea": { + "e4a471d9a9844396ad68e75f25bef9fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fff9e966d4fb410398a582baf621b0b9", + "IPY_MODEL_e898ce839a7246c195ed940defce2f4f", + "IPY_MODEL_2bb3d37b2d504114bb1e40b4c609d1ae" + ], + "layout": "IPY_MODEL_c285ed42bd0542b2bd264d0698adf4ae", + "tabbable": null, + "tooltip": null + } + }, + "e5de4ed9bb404ffbb6a270493f6e545e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3363,7 +3309,33 @@ "text_color": null } }, - "e20a561cad65497d8ec1271883bd84e6": { + "e898ce839a7246c195ed940defce2f4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b78b972a3ccf4713a84ed50a89f89e8c", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b9afd5b21a674631a8eeb812d16e083a", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "ec48711c87634f84bb3b3bf1bdc5aaac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3416,89 +3388,76 @@ "width": null } }, - "e738d1acb24548019d2398cf5fc2057b": { + "f0c349d7e67f435daf4f2de14743050d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5fbb0c25ce2742118170a35453250697", - "placeholder": "​", - "style": "IPY_MODEL_2d2eae4473894cbb81621704a4eac453", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 3.59MB/s]" - } - }, - "ef0e8282694f471fafd5102d862830de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f054183671cb4ec796673e53c0c35302": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fd13a3f381cb467881f5118d253bccbc", - "placeholder": "​", - "style": "IPY_MODEL_399022b2cdf5480ebc2322712e2b3792", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 117kB/s]" + "bar_color": null, + "description_width": "" } }, - "f712a5a6de7f4a689e306c851f083884": { - "model_module": "@jupyter-widgets/controls", + "f125760c6e0241e5bc395079dccb5988": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f841f5326b1643cc882394e0c5da4f6c": { + "f452c8cf3ffe40d0950573b2ec6a62f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3551,7 +3510,7 @@ "width": null } }, - "fbb6bca927a641819c55fb620e67d351": { + "f6b6b468d23f44b49c1c94cb5d4e5cba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3569,7 +3528,7 @@ "text_color": null } }, - "fc18a6e298534b5a871027258c6c9966": { + "f88d5a30d4eb4a17b2a5a3c22404fecb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3587,7 +3546,7 @@ "text_color": null } }, - "fd13a3f381cb467881f5118d253bccbc": { + "fa53201340c7484da24633cd78b78a61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,6 +3598,47 @@ "visibility": null, "width": null } + }, + "fc41c9da8c6549bbb43136f929259efa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fff9e966d4fb410398a582baf621b0b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92c175cc03794016a60c2af6a23a1684", + "placeholder": "​", + "style": "IPY_MODEL_7567e757b12948a69d12909a0409013f", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index cad20e1e4..19a8f409a 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1360,7 +1360,7 @@

5. Use cleanlab to find label issues -{"state": {"e30f73a908a04d158afb360b132e796a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d2e5854065ab4e0cb30f96d75d56c16e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bfa09875dedd4ac6b5d03985ec41515d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e30f73a908a04d158afb360b132e796a", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d2e5854065ab4e0cb30f96d75d56c16e", "tabbable": null, "tooltip": null, "value": 2041.0}}, "e172eeeb31de4863a10603990311e1d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b3a7d9464ec642d8a151424702512d8a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "57c5795522fc4751a6a798478864967d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e172eeeb31de4863a10603990311e1d0", "placeholder": "\u200b", "style": "IPY_MODEL_b3a7d9464ec642d8a151424702512d8a", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "6919896963c44def93dbe4415f2a97f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b7072e5672ae4048a3401200849c9b94": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9941c2d6a38a4b279ece9fa1f0b3eb73": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6919896963c44def93dbe4415f2a97f1", "placeholder": "\u200b", "style": "IPY_MODEL_b7072e5672ae4048a3401200849c9b94", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007495kB/s]"}}, "d82bf85fab284ca5a31307e4852946be": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3ca32f10e94f41b4a16e4424ef9acab3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_57c5795522fc4751a6a798478864967d", "IPY_MODEL_bfa09875dedd4ac6b5d03985ec41515d", "IPY_MODEL_9941c2d6a38a4b279ece9fa1f0b3eb73"], "layout": "IPY_MODEL_d82bf85fab284ca5a31307e4852946be", "tabbable": null, "tooltip": null}}, "dde2cdd101954846b096b9f503050d5e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6ef4f30098164ce7b6e0ac0ed3f0a023": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3f8e28afe0da4561be202c461e5cff80": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dde2cdd101954846b096b9f503050d5e", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6ef4f30098164ce7b6e0ac0ed3f0a023", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "f3a16f7ad680477fad5eb6752c766548": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f27e8c69722142bdbb372e86c4c5cc0d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "75d1570a67494cebb53f08e5a8f4e342": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3a16f7ad680477fad5eb6752c766548", "placeholder": "\u200b", "style": "IPY_MODEL_f27e8c69722142bdbb372e86c4c5cc0d", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "df39e4caa4824d44b75f8a92745a16bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52fe1085b372479b91574a245d9aac87": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2beec21aeec54868aebf4c8741df0339": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df39e4caa4824d44b75f8a92745a16bf", "placeholder": "\u200b", "style": "IPY_MODEL_52fe1085b372479b91574a245d9aac87", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007156MB/s]"}}, "674cdc7f2bcc43b3bdef37d9c1286e3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b79463c008d54519834d042d00a90dec": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_75d1570a67494cebb53f08e5a8f4e342", "IPY_MODEL_3f8e28afe0da4561be202c461e5cff80", "IPY_MODEL_2beec21aeec54868aebf4c8741df0339"], "layout": "IPY_MODEL_674cdc7f2bcc43b3bdef37d9c1286e3c", "tabbable": null, "tooltip": null}}, "23fe2669da344dfcb3bcdbcf74d0b266": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8fe41ecdba84491abf81aa15945c2df7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "81d6a23f7823470eb530de61c6b633f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_23fe2669da344dfcb3bcdbcf74d0b266", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8fe41ecdba84491abf81aa15945c2df7", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d353d84094be4b35b1c3a04623fc511f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d3ede52d10d4dec869e9f3f2fe66c83": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "73ae8c5afcd040efbe40ceb5a5282a5d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d353d84094be4b35b1c3a04623fc511f", "placeholder": "\u200b", "style": "IPY_MODEL_0d3ede52d10d4dec869e9f3f2fe66c83", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "2132cd4d615d421d87ef2060a78caf89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56bdcd44a25c4d338253994661e47822": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f21180817e340bb995790312e67f91d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2132cd4d615d421d87ef2060a78caf89", "placeholder": "\u200b", "style": "IPY_MODEL_56bdcd44a25c4d338253994661e47822", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007586kB/s]"}}, "ac37687f966943b59746e69b8ea65a7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe70398713c14d0bbadbb276d883f725": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_73ae8c5afcd040efbe40ceb5a5282a5d", "IPY_MODEL_81d6a23f7823470eb530de61c6b633f2", "IPY_MODEL_3f21180817e340bb995790312e67f91d"], "layout": "IPY_MODEL_ac37687f966943b59746e69b8ea65a7d", "tabbable": null, "tooltip": null}}, "2832a3e82d3748cdaef5ddde7571de91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88fc4da1f6184c7bb6e4db718abe83e9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "77376d4e5abe42d5ab9329f43b2590c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2832a3e82d3748cdaef5ddde7571de91", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_88fc4da1f6184c7bb6e4db718abe83e9", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "7a3536433fa642bf95f71195fd029376": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "08d5a01c45c640db8b3280317e427d8f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a2344c8bea76488d877a5f35b582d835": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a3536433fa642bf95f71195fd029376", "placeholder": "\u200b", "style": "IPY_MODEL_08d5a01c45c640db8b3280317e427d8f", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "45d6053ab94c4d07bb187ff47b677248": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3108a16c2a6e47569354a94d42bdaede": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4e3fb6e5c264f6e8348c86cce27c677": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_45d6053ab94c4d07bb187ff47b677248", "placeholder": "\u200b", "style": "IPY_MODEL_3108a16c2a6e47569354a94d42bdaede", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007219MB/s]"}}, "86f44e387439434b880cb407e990060c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ccffa54b3735484999506220fb31ebad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a2344c8bea76488d877a5f35b582d835", "IPY_MODEL_77376d4e5abe42d5ab9329f43b2590c5", "IPY_MODEL_f4e3fb6e5c264f6e8348c86cce27c677"], "layout": "IPY_MODEL_86f44e387439434b880cb407e990060c", "tabbable": null, "tooltip": null}}, "1d11970e96784be2b3e6ba1baa57d74a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ff13b20944f4724be71ca409057d2c6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1cd89d6f16f3434dab455c43994c5be6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d11970e96784be2b3e6ba1baa57d74a", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0ff13b20944f4724be71ca409057d2c6", "tabbable": null, "tooltip": null, "value": 128619.0}}, "e540940f475e4a4cb6d6b11d65a208e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0f3e392230a43d9b9b8bfe51d06c13b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "46fc750f059c4ff0beb362ba445214de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e540940f475e4a4cb6d6b11d65a208e2", "placeholder": "\u200b", "style": "IPY_MODEL_e0f3e392230a43d9b9b8bfe51d06c13b", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "f523ed013f75451e924260483991eb0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64d4ac0e2bf042c1841745cc759aaf23": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "45bc8e89c99d40938c897dcb814f87b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f523ed013f75451e924260483991eb0e", "placeholder": "\u200b", "style": "IPY_MODEL_64d4ac0e2bf042c1841745cc759aaf23", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.00MB/s]"}}, "004190c8cabd42518da1eee5c4c7deca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e180de37b784b9c81b4205875033069": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_46fc750f059c4ff0beb362ba445214de", "IPY_MODEL_1cd89d6f16f3434dab455c43994c5be6", "IPY_MODEL_45bc8e89c99d40938c897dcb814f87b0"], "layout": "IPY_MODEL_004190c8cabd42518da1eee5c4c7deca", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"76c0c8ebd6654111953528fcbe91089c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33f9f1af0f104a8fbd920b1aa8606c99": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a411bf6d58de4d848c87ac1423bd633e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76c0c8ebd6654111953528fcbe91089c", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_33f9f1af0f104a8fbd920b1aa8606c99", "tabbable": null, "tooltip": null, "value": 2041.0}}, "fc5a22c932f1412f940afe16c8999b24": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "285159deece645a1bef178ba07b667ed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "39c875bde7a7428fa8454ae17a602b3b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc5a22c932f1412f940afe16c8999b24", "placeholder": "\u200b", "style": "IPY_MODEL_285159deece645a1bef178ba07b667ed", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "72308ef7badb4c83a4beb5d053b6d307": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "869557dab78b4e21b00c41e0c1335a5e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f30a2fe9f3b04a4e949ffe40c30dd7da": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72308ef7badb4c83a4beb5d053b6d307", "placeholder": "\u200b", "style": "IPY_MODEL_869557dab78b4e21b00c41e0c1335a5e", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007514kB/s]"}}, "216186838fef4ea08d426cc9ec73bb0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4af83c9ca15b4b2f88842eaecf14509b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_39c875bde7a7428fa8454ae17a602b3b", "IPY_MODEL_a411bf6d58de4d848c87ac1423bd633e", "IPY_MODEL_f30a2fe9f3b04a4e949ffe40c30dd7da"], "layout": "IPY_MODEL_216186838fef4ea08d426cc9ec73bb0c", "tabbable": null, "tooltip": null}}, "4786f4753ace4189a12a35d34a505b94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a26c57471bbd48e0b3637bdbeb6fce2b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11d690da30c04e478d4816579aaf5989": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4786f4753ace4189a12a35d34a505b94", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a26c57471bbd48e0b3637bdbeb6fce2b", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "0cd934061db14e688054c0ca67fbf005": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1af10feb502b47d5bc68fb10a3e60f3d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9f176ea80c8840cdbdf644caca260bab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cd934061db14e688054c0ca67fbf005", "placeholder": "\u200b", "style": "IPY_MODEL_1af10feb502b47d5bc68fb10a3e60f3d", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "c96d490d2e964a4baaa9f2a3c27bfb4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5de3e93bc1543e2afb9fd62b2e161f9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "acf2fce6066240c2a8e0b8e418e58c3e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c96d490d2e964a4baaa9f2a3c27bfb4d", "placeholder": "\u200b", "style": "IPY_MODEL_b5de3e93bc1543e2afb9fd62b2e161f9", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007200MB/s]"}}, "78db328f394d42e39b180ed9165817a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "804b1254833f44cd9de622c2ed8be0f9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9f176ea80c8840cdbdf644caca260bab", "IPY_MODEL_11d690da30c04e478d4816579aaf5989", "IPY_MODEL_acf2fce6066240c2a8e0b8e418e58c3e"], "layout": "IPY_MODEL_78db328f394d42e39b180ed9165817a3", "tabbable": null, "tooltip": null}}, "fab08c95312d4e19bfd54f569f3c2398": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d77d8bb0841a49828870a17858e17804": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "47534aad3eb94932a5d8ff63575a8093": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fab08c95312d4e19bfd54f569f3c2398", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d77d8bb0841a49828870a17858e17804", "tabbable": null, "tooltip": null, "value": 3201.0}}, "49885c4e16a54484964f8f55dfba0915": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bace139edc4646bdb8e0999e5e1ce4bc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4878b434594a4913aeccb6dc724d7180": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49885c4e16a54484964f8f55dfba0915", "placeholder": "\u200b", "style": "IPY_MODEL_bace139edc4646bdb8e0999e5e1ce4bc", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "4a470f8482fd4b098947dd73ec788784": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19b4ea4e85a24cf7880d72c69d99c514": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "151051e1ac94403c8065a29e5a6f3348": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a470f8482fd4b098947dd73ec788784", "placeholder": "\u200b", "style": "IPY_MODEL_19b4ea4e85a24cf7880d72c69d99c514", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007622kB/s]"}}, "7f20b079ab84440980e728b2c9d5bdaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8337bf4548c24d10bfe74a5af82f7589": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4878b434594a4913aeccb6dc724d7180", "IPY_MODEL_47534aad3eb94932a5d8ff63575a8093", "IPY_MODEL_151051e1ac94403c8065a29e5a6f3348"], "layout": "IPY_MODEL_7f20b079ab84440980e728b2c9d5bdaa", "tabbable": null, "tooltip": null}}, "030089328638423a8b3296afdfd5ec6e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d05945ce6e54ecbb79522c1b8a4539b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "25b40d39487b4834874c03740e321dba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_030089328638423a8b3296afdfd5ec6e", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0d05945ce6e54ecbb79522c1b8a4539b", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "1fe20031d39b4d3fa2f4ca6dc1f17aa4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85d12be593da466ba42de345346b4919": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f964b22be56f4f65a045712c864dd72a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1fe20031d39b4d3fa2f4ca6dc1f17aa4", "placeholder": "\u200b", "style": "IPY_MODEL_85d12be593da466ba42de345346b4919", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "04d2ebc50d144c19be73746ef292430a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4076c8cac0545f397270a25f2d25b86": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fca6fd36131b4182ada8aa875ff31199": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_04d2ebc50d144c19be73746ef292430a", "placeholder": "\u200b", "style": "IPY_MODEL_b4076c8cac0545f397270a25f2d25b86", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007247MB/s]"}}, "cf1a1cf766014109b4355a9395497dc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15b1a02368224072a210fba8ec973cb7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f964b22be56f4f65a045712c864dd72a", "IPY_MODEL_25b40d39487b4834874c03740e321dba", "IPY_MODEL_fca6fd36131b4182ada8aa875ff31199"], "layout": "IPY_MODEL_cf1a1cf766014109b4355a9395497dc7", "tabbable": null, "tooltip": null}}, "da9881d767c74265bd57003489b01c2b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5bc584fc01f041af889614bf071f830e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5c5b1c2f074c43b4815549e60ccdca99": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da9881d767c74265bd57003489b01c2b", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5bc584fc01f041af889614bf071f830e", "tabbable": null, "tooltip": null, "value": 128619.0}}, "611922c02cb243c3a87108b3c1df453f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ef520f04fb3441479e05cd5f4de6d2dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f2d01290ec664d02b83e74361a64d53d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_611922c02cb243c3a87108b3c1df453f", "placeholder": "\u200b", "style": "IPY_MODEL_ef520f04fb3441479e05cd5f4de6d2dd", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "992c69f15b60477383fe203c939a1359": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4245addde8fc429c88533c3a689fbd46": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a691a132b96644679f700ff4774b7a58": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_992c69f15b60477383fe203c939a1359", "placeholder": "\u200b", "style": "IPY_MODEL_4245addde8fc429c88533c3a689fbd46", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200718.9MB/s]"}}, "42ee4b2549844fd5b2ce6719d9893d9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55edb6390c5b4362a764e75e20504b30": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f2d01290ec664d02b83e74361a64d53d", "IPY_MODEL_5c5b1c2f074c43b4815549e60ccdca99", "IPY_MODEL_a691a132b96644679f700ff4774b7a58"], "layout": "IPY_MODEL_42ee4b2549844fd5b2ce6719d9893d9e", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 257ac93b7..c22003f35 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:19.214541Z", - "iopub.status.busy": "2024-12-25T19:52:19.214100Z", - "iopub.status.idle": "2024-12-25T19:52:24.455472Z", - "shell.execute_reply": "2024-12-25T19:52:24.454920Z" + "iopub.execute_input": "2024-12-26T11:13:15.042350Z", + "iopub.status.busy": "2024-12-26T11:13:15.041932Z", + "iopub.status.idle": "2024-12-26T11:13:20.368885Z", + "shell.execute_reply": "2024-12-26T11:13:20.368279Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:24.457673Z", - "iopub.status.busy": "2024-12-25T19:52:24.457067Z", - "iopub.status.idle": "2024-12-25T19:52:24.460370Z", - "shell.execute_reply": "2024-12-25T19:52:24.459815Z" + "iopub.execute_input": "2024-12-26T11:13:20.371352Z", + "iopub.status.busy": "2024-12-26T11:13:20.370794Z", + "iopub.status.idle": "2024-12-26T11:13:20.374093Z", + "shell.execute_reply": "2024-12-26T11:13:20.373638Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:24.461933Z", - "iopub.status.busy": "2024-12-25T19:52:24.461621Z", - "iopub.status.idle": "2024-12-25T19:52:24.466359Z", - "shell.execute_reply": "2024-12-25T19:52:24.465812Z" + "iopub.execute_input": "2024-12-26T11:13:20.375803Z", + "iopub.status.busy": "2024-12-26T11:13:20.375464Z", + "iopub.status.idle": "2024-12-26T11:13:20.380175Z", + "shell.execute_reply": "2024-12-26T11:13:20.379617Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:24.468187Z", - "iopub.status.busy": "2024-12-25T19:52:24.468012Z", - "iopub.status.idle": "2024-12-25T19:52:26.463907Z", - "shell.execute_reply": "2024-12-25T19:52:26.463059Z" + "iopub.execute_input": "2024-12-26T11:13:20.381816Z", + "iopub.status.busy": "2024-12-26T11:13:20.381495Z", + "iopub.status.idle": "2024-12-26T11:13:22.078636Z", + "shell.execute_reply": "2024-12-26T11:13:22.077730Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:26.466226Z", - "iopub.status.busy": "2024-12-25T19:52:26.466021Z", - "iopub.status.idle": "2024-12-25T19:52:26.477365Z", - "shell.execute_reply": "2024-12-25T19:52:26.476892Z" + "iopub.execute_input": "2024-12-26T11:13:22.081453Z", + "iopub.status.busy": "2024-12-26T11:13:22.080978Z", + "iopub.status.idle": "2024-12-26T11:13:22.092428Z", + "shell.execute_reply": "2024-12-26T11:13:22.091982Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:26.479115Z", - "iopub.status.busy": "2024-12-25T19:52:26.478780Z", - "iopub.status.idle": "2024-12-25T19:52:26.484060Z", - "shell.execute_reply": "2024-12-25T19:52:26.483595Z" + "iopub.execute_input": "2024-12-26T11:13:22.094324Z", + "iopub.status.busy": "2024-12-26T11:13:22.093899Z", + "iopub.status.idle": "2024-12-26T11:13:22.099569Z", + "shell.execute_reply": "2024-12-26T11:13:22.098969Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:26.485808Z", - "iopub.status.busy": "2024-12-25T19:52:26.485469Z", - "iopub.status.idle": "2024-12-25T19:52:26.954150Z", - "shell.execute_reply": "2024-12-25T19:52:26.953662Z" + "iopub.execute_input": "2024-12-26T11:13:22.101439Z", + "iopub.status.busy": "2024-12-26T11:13:22.101093Z", + "iopub.status.idle": "2024-12-26T11:13:22.536457Z", + "shell.execute_reply": "2024-12-26T11:13:22.535926Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:26.955994Z", - "iopub.status.busy": "2024-12-25T19:52:26.955637Z", - "iopub.status.idle": "2024-12-25T19:52:28.586129Z", - "shell.execute_reply": "2024-12-25T19:52:28.585600Z" + "iopub.execute_input": "2024-12-26T11:13:22.538453Z", + "iopub.status.busy": "2024-12-26T11:13:22.538081Z", + "iopub.status.idle": "2024-12-26T11:13:23.145588Z", + "shell.execute_reply": "2024-12-26T11:13:23.144982Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:28.588202Z", - "iopub.status.busy": "2024-12-25T19:52:28.587825Z", - "iopub.status.idle": "2024-12-25T19:52:28.606273Z", - "shell.execute_reply": "2024-12-25T19:52:28.605821Z" + "iopub.execute_input": "2024-12-26T11:13:23.147563Z", + "iopub.status.busy": "2024-12-26T11:13:23.147388Z", + "iopub.status.idle": "2024-12-26T11:13:23.165663Z", + "shell.execute_reply": "2024-12-26T11:13:23.165212Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:28.608116Z", - "iopub.status.busy": "2024-12-25T19:52:28.607777Z", - "iopub.status.idle": "2024-12-25T19:52:28.610833Z", - "shell.execute_reply": "2024-12-25T19:52:28.610394Z" + "iopub.execute_input": "2024-12-26T11:13:23.167162Z", + "iopub.status.busy": "2024-12-26T11:13:23.166979Z", + "iopub.status.idle": "2024-12-26T11:13:23.170108Z", + "shell.execute_reply": "2024-12-26T11:13:23.169661Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:28.612413Z", - "iopub.status.busy": "2024-12-25T19:52:28.612242Z", - "iopub.status.idle": "2024-12-25T19:52:42.764332Z", - "shell.execute_reply": "2024-12-25T19:52:42.763786Z" + "iopub.execute_input": "2024-12-26T11:13:23.171769Z", + "iopub.status.busy": "2024-12-26T11:13:23.171435Z", + "iopub.status.idle": "2024-12-26T11:13:36.983914Z", + "shell.execute_reply": "2024-12-26T11:13:36.983258Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:42.766535Z", - "iopub.status.busy": "2024-12-25T19:52:42.766157Z", - "iopub.status.idle": "2024-12-25T19:52:42.769972Z", - "shell.execute_reply": "2024-12-25T19:52:42.769510Z" + "iopub.execute_input": "2024-12-26T11:13:36.986468Z", + "iopub.status.busy": "2024-12-26T11:13:36.986062Z", + "iopub.status.idle": "2024-12-26T11:13:36.990077Z", + "shell.execute_reply": "2024-12-26T11:13:36.989606Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:42.771677Z", - "iopub.status.busy": "2024-12-25T19:52:42.771345Z", - "iopub.status.idle": "2024-12-25T19:52:43.509138Z", - "shell.execute_reply": "2024-12-25T19:52:43.508548Z" + "iopub.execute_input": "2024-12-26T11:13:36.991956Z", + "iopub.status.busy": "2024-12-26T11:13:36.991558Z", + "iopub.status.idle": "2024-12-26T11:13:37.738410Z", + "shell.execute_reply": "2024-12-26T11:13:37.737791Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.511436Z", - "iopub.status.busy": "2024-12-25T19:52:43.511042Z", - "iopub.status.idle": "2024-12-25T19:52:43.515804Z", - "shell.execute_reply": "2024-12-25T19:52:43.515315Z" + "iopub.execute_input": "2024-12-26T11:13:37.741631Z", + "iopub.status.busy": "2024-12-26T11:13:37.740793Z", + "iopub.status.idle": "2024-12-26T11:13:37.747217Z", + "shell.execute_reply": "2024-12-26T11:13:37.746688Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.517814Z", - "iopub.status.busy": "2024-12-25T19:52:43.517403Z", - "iopub.status.idle": "2024-12-25T19:52:43.629362Z", - "shell.execute_reply": "2024-12-25T19:52:43.628663Z" + "iopub.execute_input": "2024-12-26T11:13:37.750264Z", + "iopub.status.busy": "2024-12-26T11:13:37.749470Z", + "iopub.status.idle": "2024-12-26T11:13:37.870320Z", + "shell.execute_reply": "2024-12-26T11:13:37.869741Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.631316Z", - "iopub.status.busy": "2024-12-25T19:52:43.631116Z", - "iopub.status.idle": "2024-12-25T19:52:43.643977Z", - "shell.execute_reply": "2024-12-25T19:52:43.643488Z" + "iopub.execute_input": "2024-12-26T11:13:37.872483Z", + "iopub.status.busy": "2024-12-26T11:13:37.872024Z", + "iopub.status.idle": "2024-12-26T11:13:37.884785Z", + "shell.execute_reply": "2024-12-26T11:13:37.884223Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.645869Z", - "iopub.status.busy": "2024-12-25T19:52:43.645435Z", - "iopub.status.idle": "2024-12-25T19:52:43.653194Z", - "shell.execute_reply": "2024-12-25T19:52:43.652746Z" + "iopub.execute_input": "2024-12-26T11:13:37.886515Z", + "iopub.status.busy": "2024-12-26T11:13:37.886204Z", + "iopub.status.idle": "2024-12-26T11:13:37.894000Z", + "shell.execute_reply": "2024-12-26T11:13:37.893547Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.655000Z", - "iopub.status.busy": "2024-12-25T19:52:43.654523Z", - "iopub.status.idle": "2024-12-25T19:52:43.658958Z", - "shell.execute_reply": "2024-12-25T19:52:43.658376Z" + "iopub.execute_input": "2024-12-26T11:13:37.895650Z", + "iopub.status.busy": "2024-12-26T11:13:37.895471Z", + "iopub.status.idle": "2024-12-26T11:13:37.900069Z", + "shell.execute_reply": "2024-12-26T11:13:37.899506Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.660623Z", - "iopub.status.busy": "2024-12-25T19:52:43.660309Z", - "iopub.status.idle": "2024-12-25T19:52:43.665952Z", - "shell.execute_reply": "2024-12-25T19:52:43.665381Z" + "iopub.execute_input": "2024-12-26T11:13:37.901676Z", + "iopub.status.busy": "2024-12-26T11:13:37.901380Z", + "iopub.status.idle": "2024-12-26T11:13:37.906935Z", + "shell.execute_reply": "2024-12-26T11:13:37.906382Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.667736Z", - "iopub.status.busy": "2024-12-25T19:52:43.667413Z", - "iopub.status.idle": "2024-12-25T19:52:43.777402Z", - "shell.execute_reply": "2024-12-25T19:52:43.776931Z" + "iopub.execute_input": "2024-12-26T11:13:37.908882Z", + "iopub.status.busy": "2024-12-26T11:13:37.908464Z", + "iopub.status.idle": "2024-12-26T11:13:38.024945Z", + "shell.execute_reply": "2024-12-26T11:13:38.024480Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.779194Z", - "iopub.status.busy": "2024-12-25T19:52:43.778800Z", - "iopub.status.idle": "2024-12-25T19:52:43.881561Z", - "shell.execute_reply": "2024-12-25T19:52:43.880990Z" + "iopub.execute_input": "2024-12-26T11:13:38.026919Z", + "iopub.status.busy": "2024-12-26T11:13:38.026455Z", + "iopub.status.idle": "2024-12-26T11:13:38.129823Z", + "shell.execute_reply": "2024-12-26T11:13:38.129390Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.883425Z", - "iopub.status.busy": "2024-12-25T19:52:43.883093Z", - "iopub.status.idle": "2024-12-25T19:52:43.982508Z", - "shell.execute_reply": "2024-12-25T19:52:43.981943Z" + "iopub.execute_input": "2024-12-26T11:13:38.131372Z", + "iopub.status.busy": "2024-12-26T11:13:38.131197Z", + "iopub.status.idle": "2024-12-26T11:13:38.232591Z", + "shell.execute_reply": "2024-12-26T11:13:38.232051Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:43.984306Z", - "iopub.status.busy": "2024-12-25T19:52:43.983981Z", - "iopub.status.idle": "2024-12-25T19:52:44.084672Z", - "shell.execute_reply": "2024-12-25T19:52:44.084100Z" + "iopub.execute_input": "2024-12-26T11:13:38.234137Z", + "iopub.status.busy": "2024-12-26T11:13:38.233964Z", + "iopub.status.idle": "2024-12-26T11:13:38.338597Z", + "shell.execute_reply": "2024-12-26T11:13:38.338012Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:44.086422Z", - "iopub.status.busy": "2024-12-25T19:52:44.086108Z", - "iopub.status.idle": "2024-12-25T19:52:44.089248Z", - "shell.execute_reply": "2024-12-25T19:52:44.088787Z" + "iopub.execute_input": "2024-12-26T11:13:38.340743Z", + "iopub.status.busy": "2024-12-26T11:13:38.340376Z", + "iopub.status.idle": "2024-12-26T11:13:38.343601Z", + "shell.execute_reply": "2024-12-26T11:13:38.343139Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "004190c8cabd42518da1eee5c4c7deca": { + "030089328638423a8b3296afdfd5ec6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1445,85 +1445,7 @@ "width": null } }, - "08d5a01c45c640db8b3280317e427d8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d3ede52d10d4dec869e9f3f2fe66c83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0ff13b20944f4724be71ca409057d2c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1cd89d6f16f3434dab455c43994c5be6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d11970e96784be2b3e6ba1baa57d74a", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ff13b20944f4724be71ca409057d2c6", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "1d11970e96784be2b3e6ba1baa57d74a": { + "04d2ebc50d144c19be73746ef292430a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1576,7 +1498,7 @@ "width": null } }, - "2132cd4d615d421d87ef2060a78caf89": { + "0cd934061db14e688054c0ca67fbf005": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1629,7 +1551,132 @@ "width": null } }, - "23fe2669da344dfcb3bcdbcf74d0b266": { + "0d05945ce6e54ecbb79522c1b8a4539b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11d690da30c04e478d4816579aaf5989": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4786f4753ace4189a12a35d34a505b94", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a26c57471bbd48e0b3637bdbeb6fce2b", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "151051e1ac94403c8065a29e5a6f3348": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a470f8482fd4b098947dd73ec788784", + "placeholder": "​", + "style": "IPY_MODEL_19b4ea4e85a24cf7880d72c69d99c514", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 622kB/s]" + } + }, + "15b1a02368224072a210fba8ec973cb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f964b22be56f4f65a045712c864dd72a", + "IPY_MODEL_25b40d39487b4834874c03740e321dba", + "IPY_MODEL_fca6fd36131b4182ada8aa875ff31199" + ], + "layout": "IPY_MODEL_cf1a1cf766014109b4355a9395497dc7", + "tabbable": null, + "tooltip": null + } + }, + "19b4ea4e85a24cf7880d72c69d99c514": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1af10feb502b47d5bc68fb10a3e60f3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1fe20031d39b4d3fa2f4ca6dc1f17aa4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1682,7 +1729,7 @@ "width": null } }, - "2832a3e82d3748cdaef5ddde7571de91": { + "216186838fef4ea08d426cc9ec73bb0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1735,30 +1782,33 @@ "width": null } }, - "2beec21aeec54868aebf4c8741df0339": { + "25b40d39487b4834874c03740e321dba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df39e4caa4824d44b75f8a92745a16bf", - "placeholder": "​", - "style": "IPY_MODEL_52fe1085b372479b91574a245d9aac87", + "layout": "IPY_MODEL_030089328638423a8b3296afdfd5ec6e", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d05945ce6e54ecbb79522c1b8a4539b", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 156MB/s]" + "value": 15856877.0 } }, - "3108a16c2a6e47569354a94d42bdaede": { + "285159deece645a1bef178ba07b667ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1776,31 +1826,23 @@ "text_color": null } }, - "3ca32f10e94f41b4a16e4424ef9acab3": { + "33f9f1af0f104a8fbd920b1aa8606c99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_57c5795522fc4751a6a798478864967d", - "IPY_MODEL_bfa09875dedd4ac6b5d03985ec41515d", - "IPY_MODEL_9941c2d6a38a4b279ece9fa1f0b3eb73" - ], - "layout": "IPY_MODEL_d82bf85fab284ca5a31307e4852946be", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f21180817e340bb995790312e67f91d": { + "39c875bde7a7428fa8454ae17a602b3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1815,64 +1857,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2132cd4d615d421d87ef2060a78caf89", + "layout": "IPY_MODEL_fc5a22c932f1412f940afe16c8999b24", "placeholder": "​", - "style": "IPY_MODEL_56bdcd44a25c4d338253994661e47822", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 586kB/s]" - } - }, - "3f8e28afe0da4561be202c461e5cff80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dde2cdd101954846b096b9f503050d5e", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6ef4f30098164ce7b6e0ac0ed3f0a023", + "style": "IPY_MODEL_285159deece645a1bef178ba07b667ed", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": "hyperparams.yaml: 100%" } }, - "45bc8e89c99d40938c897dcb814f87b0": { + "4245addde8fc429c88533c3a689fbd46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f523ed013f75451e924260483991eb0e", - "placeholder": "​", - "style": "IPY_MODEL_64d4ac0e2bf042c1841745cc759aaf23", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.00MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "45d6053ab94c4d07bb187ff47b677248": { + "42ee4b2549844fd5b2ce6719d9893d9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1925,66 +1936,86 @@ "width": null } }, - "46fc750f059c4ff0beb362ba445214de": { + "47534aad3eb94932a5d8ff63575a8093": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e540940f475e4a4cb6d6b11d65a208e2", - "placeholder": "​", - "style": "IPY_MODEL_e0f3e392230a43d9b9b8bfe51d06c13b", + "layout": "IPY_MODEL_fab08c95312d4e19bfd54f569f3c2398", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d77d8bb0841a49828870a17858e17804", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "52fe1085b372479b91574a245d9aac87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 3201.0 } }, - "56bdcd44a25c4d338253994661e47822": { - "model_module": "@jupyter-widgets/controls", + "4786f4753ace4189a12a35d34a505b94": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "57c5795522fc4751a6a798478864967d": { + "4878b434594a4913aeccb6dc724d7180": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1999,33 +2030,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e172eeeb31de4863a10603990311e1d0", + "layout": "IPY_MODEL_49885c4e16a54484964f8f55dfba0915", "placeholder": "​", - "style": "IPY_MODEL_b3a7d9464ec642d8a151424702512d8a", + "style": "IPY_MODEL_bace139edc4646bdb8e0999e5e1ce4bc", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "64d4ac0e2bf042c1841745cc759aaf23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "674cdc7f2bcc43b3bdef37d9c1286e3c": { + "49885c4e16a54484964f8f55dfba0915": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,7 +2091,7 @@ "width": null } }, - "6919896963c44def93dbe4415f2a97f1": { + "4a470f8482fd4b098947dd73ec788784": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2131,69 +2144,71 @@ "width": null } }, - "6ef4f30098164ce7b6e0ac0ed3f0a023": { + "4af83c9ca15b4b2f88842eaecf14509b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_39c875bde7a7428fa8454ae17a602b3b", + "IPY_MODEL_a411bf6d58de4d848c87ac1423bd633e", + "IPY_MODEL_f30a2fe9f3b04a4e949ffe40c30dd7da" + ], + "layout": "IPY_MODEL_216186838fef4ea08d426cc9ec73bb0c", + "tabbable": null, + "tooltip": null } }, - "73ae8c5afcd040efbe40ceb5a5282a5d": { + "55edb6390c5b4362a764e75e20504b30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d353d84094be4b35b1c3a04623fc511f", - "placeholder": "​", - "style": "IPY_MODEL_0d3ede52d10d4dec869e9f3f2fe66c83", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f2d01290ec664d02b83e74361a64d53d", + "IPY_MODEL_5c5b1c2f074c43b4815549e60ccdca99", + "IPY_MODEL_a691a132b96644679f700ff4774b7a58" + ], + "layout": "IPY_MODEL_42ee4b2549844fd5b2ce6719d9893d9e", "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "tooltip": null } }, - "75d1570a67494cebb53f08e5a8f4e342": { + "5bc584fc01f041af889614bf071f830e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3a16f7ad680477fad5eb6752c766548", - "placeholder": "​", - "style": "IPY_MODEL_f27e8c69722142bdbb372e86c4c5cc0d", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "77376d4e5abe42d5ab9329f43b2590c5": { + "5c5b1c2f074c43b4815549e60ccdca99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2209,17 +2224,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2832a3e82d3748cdaef5ddde7571de91", - "max": 15856877.0, + "layout": "IPY_MODEL_da9881d767c74265bd57003489b01c2b", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_88fc4da1f6184c7bb6e4db718abe83e9", + "style": "IPY_MODEL_5bc584fc01f041af889614bf071f830e", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": 128619.0 } }, - "7a3536433fa642bf95f71195fd029376": { + "611922c02cb243c3a87108b3c1df453f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2272,33 +2287,7 @@ "width": null } }, - "81d6a23f7823470eb530de61c6b633f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23fe2669da344dfcb3bcdbcf74d0b266", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8fe41ecdba84491abf81aa15945c2df7", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "86f44e387439434b880cb407e990060c": { + "72308ef7badb4c83a4beb5d053b6d307": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2351,109 +2340,7 @@ "width": null } }, - "88fc4da1f6184c7bb6e4db718abe83e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8fe41ecdba84491abf81aa15945c2df7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9941c2d6a38a4b279ece9fa1f0b3eb73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6919896963c44def93dbe4415f2a97f1", - "placeholder": "​", - "style": "IPY_MODEL_b7072e5672ae4048a3401200849c9b94", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 495kB/s]" - } - }, - "9e180de37b784b9c81b4205875033069": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_46fc750f059c4ff0beb362ba445214de", - "IPY_MODEL_1cd89d6f16f3434dab455c43994c5be6", - "IPY_MODEL_45bc8e89c99d40938c897dcb814f87b0" - ], - "layout": "IPY_MODEL_004190c8cabd42518da1eee5c4c7deca", - "tabbable": null, - "tooltip": null - } - }, - "a2344c8bea76488d877a5f35b582d835": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a3536433fa642bf95f71195fd029376", - "placeholder": "​", - "style": "IPY_MODEL_08d5a01c45c640db8b3280317e427d8f", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "ac37687f966943b59746e69b8ea65a7d": { + "76c0c8ebd6654111953528fcbe91089c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2506,133 +2393,7 @@ "width": null } }, - "b3a7d9464ec642d8a151424702512d8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b7072e5672ae4048a3401200849c9b94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b79463c008d54519834d042d00a90dec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_75d1570a67494cebb53f08e5a8f4e342", - "IPY_MODEL_3f8e28afe0da4561be202c461e5cff80", - "IPY_MODEL_2beec21aeec54868aebf4c8741df0339" - ], - "layout": "IPY_MODEL_674cdc7f2bcc43b3bdef37d9c1286e3c", - "tabbable": null, - "tooltip": null - } - }, - "bfa09875dedd4ac6b5d03985ec41515d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e30f73a908a04d158afb360b132e796a", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d2e5854065ab4e0cb30f96d75d56c16e", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "ccffa54b3735484999506220fb31ebad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2344c8bea76488d877a5f35b582d835", - "IPY_MODEL_77376d4e5abe42d5ab9329f43b2590c5", - "IPY_MODEL_f4e3fb6e5c264f6e8348c86cce27c677" - ], - "layout": "IPY_MODEL_86f44e387439434b880cb407e990060c", - "tabbable": null, - "tooltip": null - } - }, - "d2e5854065ab4e0cb30f96d75d56c16e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d353d84094be4b35b1c3a04623fc511f": { + "78db328f394d42e39b180ed9165817a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2685,7 +2446,7 @@ "width": null } }, - "d82bf85fab284ca5a31307e4852946be": { + "7f20b079ab84440980e728b2c9d5bdaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2738,60 +2499,91 @@ "width": null } }, - "dde2cdd101954846b096b9f503050d5e": { - "model_module": "@jupyter-widgets/base", + "804b1254833f44cd9de622c2ed8be0f9": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9f176ea80c8840cdbdf644caca260bab", + "IPY_MODEL_11d690da30c04e478d4816579aaf5989", + "IPY_MODEL_acf2fce6066240c2a8e0b8e418e58c3e" + ], + "layout": "IPY_MODEL_78db328f394d42e39b180ed9165817a3", + "tabbable": null, + "tooltip": null + } + }, + "8337bf4548c24d10bfe74a5af82f7589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4878b434594a4913aeccb6dc724d7180", + "IPY_MODEL_47534aad3eb94932a5d8ff63575a8093", + "IPY_MODEL_151051e1ac94403c8065a29e5a6f3348" + ], + "layout": "IPY_MODEL_7f20b079ab84440980e728b2c9d5bdaa", + "tabbable": null, + "tooltip": null + } + }, + "85d12be593da466ba42de345346b4919": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "869557dab78b4e21b00c41e0c1335a5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "df39e4caa4824d44b75f8a92745a16bf": { + "992c69f15b60477383fe203c939a1359": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2844,7 +2636,154 @@ "width": null } }, - "e0f3e392230a43d9b9b8bfe51d06c13b": { + "9f176ea80c8840cdbdf644caca260bab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0cd934061db14e688054c0ca67fbf005", + "placeholder": "​", + "style": "IPY_MODEL_1af10feb502b47d5bc68fb10a3e60f3d", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "a26c57471bbd48e0b3637bdbeb6fce2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a411bf6d58de4d848c87ac1423bd633e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76c0c8ebd6654111953528fcbe91089c", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33f9f1af0f104a8fbd920b1aa8606c99", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "a691a132b96644679f700ff4774b7a58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_992c69f15b60477383fe203c939a1359", + "placeholder": "​", + "style": "IPY_MODEL_4245addde8fc429c88533c3a689fbd46", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 18.9MB/s]" + } + }, + "acf2fce6066240c2a8e0b8e418e58c3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c96d490d2e964a4baaa9f2a3c27bfb4d", + "placeholder": "​", + "style": "IPY_MODEL_b5de3e93bc1543e2afb9fd62b2e161f9", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 200MB/s]" + } + }, + "b4076c8cac0545f397270a25f2d25b86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b5de3e93bc1543e2afb9fd62b2e161f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bace139edc4646bdb8e0999e5e1ce4bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2862,7 +2801,7 @@ "text_color": null } }, - "e172eeeb31de4863a10603990311e1d0": { + "c96d490d2e964a4baaa9f2a3c27bfb4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2915,7 +2854,7 @@ "width": null } }, - "e30f73a908a04d158afb360b132e796a": { + "cf1a1cf766014109b4355a9395497dc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2968,7 +2907,23 @@ "width": null } }, - "e540940f475e4a4cb6d6b11d65a208e2": { + "d77d8bb0841a49828870a17858e17804": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "da9881d767c74265bd57003489b01c2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3021,7 +2976,7 @@ "width": null } }, - "f27e8c69722142bdbb372e86c4c5cc0d": { + "ef520f04fb3441479e05cd5f4de6d2dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3039,7 +2994,76 @@ "text_color": null } }, - "f3a16f7ad680477fad5eb6752c766548": { + "f2d01290ec664d02b83e74361a64d53d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_611922c02cb243c3a87108b3c1df453f", + "placeholder": "​", + "style": "IPY_MODEL_ef520f04fb3441479e05cd5f4de6d2dd", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "f30a2fe9f3b04a4e949ffe40c30dd7da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72308ef7badb4c83a4beb5d053b6d307", + "placeholder": "​", + "style": "IPY_MODEL_869557dab78b4e21b00c41e0c1335a5e", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 514kB/s]" + } + }, + "f964b22be56f4f65a045712c864dd72a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1fe20031d39b4d3fa2f4ca6dc1f17aa4", + "placeholder": "​", + "style": "IPY_MODEL_85d12be593da466ba42de345346b4919", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "fab08c95312d4e19bfd54f569f3c2398": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3092,30 +3116,7 @@ "width": null } }, - "f4e3fb6e5c264f6e8348c86cce27c677": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_45d6053ab94c4d07bb187ff47b677248", - "placeholder": "​", - "style": "IPY_MODEL_3108a16c2a6e47569354a94d42bdaede", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 219MB/s]" - } - }, - "f523ed013f75451e924260483991eb0e": { + "fc5a22c932f1412f940afe16c8999b24": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3168,28 +3169,27 @@ "width": null } }, - "fe70398713c14d0bbadbb276d883f725": { + "fca6fd36131b4182ada8aa875ff31199": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73ae8c5afcd040efbe40ceb5a5282a5d", - "IPY_MODEL_81d6a23f7823470eb530de61c6b633f2", - "IPY_MODEL_3f21180817e340bb995790312e67f91d" - ], - "layout": "IPY_MODEL_ac37687f966943b59746e69b8ea65a7d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_04d2ebc50d144c19be73746ef292430a", + "placeholder": "​", + "style": "IPY_MODEL_b4076c8cac0545f397270a25f2d25b86", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 247MB/s]" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 30a3de2e6..da6fd4816 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1304,7 +1304,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1579,7 +1579,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"dcc7668081e04577b1900ef724deac98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cb0acd6709f4061aa3158ed79b3b44d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2cff0ad65c4749efb67577bcb9af14a6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dcc7668081e04577b1900ef724deac98", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4cb0acd6709f4061aa3158ed79b3b44d", "tabbable": null, "tooltip": null, "value": 132.0}}, "29b3612c600c40f3a6567fee4a35a64a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5a445482d104d53bad5436983b222cd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5d9ecf469cb146729d1f0aaffe0041d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_29b3612c600c40f3a6567fee4a35a64a", "placeholder": "\u200b", "style": "IPY_MODEL_d5a445482d104d53bad5436983b222cd", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "72fd2c8136014f35ad0f4bbcb898fe94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f608b1f7ea09420f9efc3469c6d80b26": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7753a0d44d4f4a0fa66f6f5c7e9f0838": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72fd2c8136014f35ad0f4bbcb898fe94", "placeholder": "\u200b", "style": "IPY_MODEL_f608b1f7ea09420f9efc3469c6d80b26", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713253.41\u2007examples/s]"}}, "da7dc10197c34ef5a425d1ccc42771b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebdce73efae14737bfe4196161c1cdda": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5d9ecf469cb146729d1f0aaffe0041d7", "IPY_MODEL_2cff0ad65c4749efb67577bcb9af14a6", "IPY_MODEL_7753a0d44d4f4a0fa66f6f5c7e9f0838"], "layout": "IPY_MODEL_da7dc10197c34ef5a425d1ccc42771b6", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"42b8ae457cc941ab810fae566346828e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27219e5120b44767beeb8957a6281a61": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fc55b3ef96cb48cbad94c534635faf27": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_42b8ae457cc941ab810fae566346828e", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_27219e5120b44767beeb8957a6281a61", "tabbable": null, "tooltip": null, "value": 132.0}}, "a239c821b77640efb6075e9dcdaa3e64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96f16c7d67f84825ae1841491a9b3c0e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "16442c0c0b0a493f9637dcd7ed15483f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a239c821b77640efb6075e9dcdaa3e64", "placeholder": "\u200b", "style": "IPY_MODEL_96f16c7d67f84825ae1841491a9b3c0e", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "fea4c642e5404db9832f5133fab5ca9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee2c7e60997a4e3d969c4d496333daf2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0e56152f62444884bf3b77ec926495b2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fea4c642e5404db9832f5133fab5ca9a", "placeholder": "\u200b", "style": "IPY_MODEL_ee2c7e60997a4e3d969c4d496333daf2", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713406.82\u2007examples/s]"}}, "8ead750bad3f423c94c93c7f76e7068d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b8fb81fd52440f5855a9d816c644bc5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_16442c0c0b0a493f9637dcd7ed15483f", "IPY_MODEL_fc55b3ef96cb48cbad94c534635faf27", "IPY_MODEL_0e56152f62444884bf3b77ec926495b2"], "layout": "IPY_MODEL_8ead750bad3f423c94c93c7f76e7068d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 70fbb1141..875f160a3 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:48.208965Z", - "iopub.status.busy": "2024-12-25T19:52:48.208558Z", - "iopub.status.idle": "2024-12-25T19:52:49.410569Z", - "shell.execute_reply": "2024-12-25T19:52:49.410015Z" + "iopub.execute_input": "2024-12-26T11:13:41.599274Z", + "iopub.status.busy": "2024-12-26T11:13:41.598846Z", + "iopub.status.idle": "2024-12-26T11:13:42.810575Z", + "shell.execute_reply": "2024-12-26T11:13:42.809998Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:49.412726Z", - "iopub.status.busy": "2024-12-25T19:52:49.412261Z", - "iopub.status.idle": "2024-12-25T19:52:49.415351Z", - "shell.execute_reply": "2024-12-25T19:52:49.414900Z" + "iopub.execute_input": "2024-12-26T11:13:42.812844Z", + "iopub.status.busy": "2024-12-26T11:13:42.812417Z", + "iopub.status.idle": "2024-12-26T11:13:42.815661Z", + "shell.execute_reply": "2024-12-26T11:13:42.815223Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:49.417242Z", - "iopub.status.busy": "2024-12-25T19:52:49.416917Z", - "iopub.status.idle": "2024-12-25T19:52:49.425385Z", - "shell.execute_reply": "2024-12-25T19:52:49.424942Z" + "iopub.execute_input": "2024-12-26T11:13:42.817581Z", + "iopub.status.busy": "2024-12-26T11:13:42.817188Z", + "iopub.status.idle": "2024-12-26T11:13:42.826104Z", + "shell.execute_reply": "2024-12-26T11:13:42.825529Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:49.427030Z", - "iopub.status.busy": "2024-12-25T19:52:49.426696Z", - "iopub.status.idle": "2024-12-25T19:52:49.431316Z", - "shell.execute_reply": "2024-12-25T19:52:49.430903Z" + "iopub.execute_input": "2024-12-26T11:13:42.828019Z", + "iopub.status.busy": "2024-12-26T11:13:42.827676Z", + "iopub.status.idle": "2024-12-26T11:13:42.832289Z", + "shell.execute_reply": "2024-12-26T11:13:42.831837Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:49.432971Z", - "iopub.status.busy": "2024-12-25T19:52:49.432667Z", - "iopub.status.idle": "2024-12-25T19:52:49.622485Z", - "shell.execute_reply": "2024-12-25T19:52:49.621924Z" + "iopub.execute_input": "2024-12-26T11:13:42.834017Z", + "iopub.status.busy": "2024-12-26T11:13:42.833698Z", + "iopub.status.idle": "2024-12-26T11:13:43.015678Z", + "shell.execute_reply": "2024-12-26T11:13:43.015089Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:49.624548Z", - "iopub.status.busy": "2024-12-25T19:52:49.624188Z", - "iopub.status.idle": "2024-12-25T19:52:49.992892Z", - "shell.execute_reply": "2024-12-25T19:52:49.992332Z" + "iopub.execute_input": "2024-12-26T11:13:43.017540Z", + "iopub.status.busy": "2024-12-26T11:13:43.017364Z", + "iopub.status.idle": "2024-12-26T11:13:43.437837Z", + "shell.execute_reply": "2024-12-26T11:13:43.437240Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:49.994833Z", - "iopub.status.busy": "2024-12-25T19:52:49.994480Z", - "iopub.status.idle": "2024-12-25T19:52:50.017573Z", - "shell.execute_reply": "2024-12-25T19:52:50.017148Z" + "iopub.execute_input": "2024-12-26T11:13:43.439890Z", + "iopub.status.busy": "2024-12-26T11:13:43.439442Z", + "iopub.status.idle": "2024-12-26T11:13:43.463605Z", + "shell.execute_reply": "2024-12-26T11:13:43.462990Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:50.019296Z", - "iopub.status.busy": "2024-12-25T19:52:50.018959Z", - "iopub.status.idle": "2024-12-25T19:52:50.030386Z", - "shell.execute_reply": "2024-12-25T19:52:50.029918Z" + "iopub.execute_input": "2024-12-26T11:13:43.465451Z", + "iopub.status.busy": "2024-12-26T11:13:43.465102Z", + "iopub.status.idle": "2024-12-26T11:13:43.476534Z", + "shell.execute_reply": "2024-12-26T11:13:43.476068Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:50.032106Z", - "iopub.status.busy": "2024-12-25T19:52:50.031801Z", - "iopub.status.idle": "2024-12-25T19:52:52.005916Z", - "shell.execute_reply": "2024-12-25T19:52:52.005232Z" + "iopub.execute_input": "2024-12-26T11:13:43.478283Z", + "iopub.status.busy": "2024-12-26T11:13:43.477872Z", + "iopub.status.idle": "2024-12-26T11:13:45.421887Z", + "shell.execute_reply": "2024-12-26T11:13:45.421225Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:52.008093Z", - "iopub.status.busy": "2024-12-25T19:52:52.007651Z", - "iopub.status.idle": "2024-12-25T19:52:52.028108Z", - "shell.execute_reply": "2024-12-25T19:52:52.027581Z" + "iopub.execute_input": "2024-12-26T11:13:45.424182Z", + "iopub.status.busy": "2024-12-26T11:13:45.423724Z", + "iopub.status.idle": "2024-12-26T11:13:45.444640Z", + "shell.execute_reply": "2024-12-26T11:13:45.444048Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:52.029918Z", - "iopub.status.busy": "2024-12-25T19:52:52.029496Z", - "iopub.status.idle": "2024-12-25T19:52:52.047035Z", - "shell.execute_reply": "2024-12-25T19:52:52.046460Z" + "iopub.execute_input": "2024-12-26T11:13:45.446556Z", + "iopub.status.busy": "2024-12-26T11:13:45.446177Z", + "iopub.status.idle": "2024-12-26T11:13:45.464450Z", + "shell.execute_reply": "2024-12-26T11:13:45.463956Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:52.048722Z", - "iopub.status.busy": "2024-12-25T19:52:52.048381Z", - "iopub.status.idle": "2024-12-25T19:52:52.061955Z", - "shell.execute_reply": "2024-12-25T19:52:52.061487Z" + "iopub.execute_input": "2024-12-26T11:13:45.466149Z", + "iopub.status.busy": "2024-12-26T11:13:45.465966Z", + "iopub.status.idle": "2024-12-26T11:13:45.480527Z", + "shell.execute_reply": "2024-12-26T11:13:45.480053Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:52.063767Z", - "iopub.status.busy": "2024-12-25T19:52:52.063438Z", - "iopub.status.idle": "2024-12-25T19:52:52.082430Z", - "shell.execute_reply": "2024-12-25T19:52:52.081868Z" + "iopub.execute_input": "2024-12-26T11:13:45.482100Z", + "iopub.status.busy": "2024-12-26T11:13:45.481929Z", + "iopub.status.idle": "2024-12-26T11:13:45.501184Z", + "shell.execute_reply": "2024-12-26T11:13:45.500651Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ebdce73efae14737bfe4196161c1cdda", + "model_id": "4b8fb81fd52440f5855a9d816c644bc5", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:52.084115Z", - "iopub.status.busy": "2024-12-25T19:52:52.083738Z", - "iopub.status.idle": "2024-12-25T19:52:52.098209Z", - "shell.execute_reply": "2024-12-25T19:52:52.097692Z" + "iopub.execute_input": "2024-12-26T11:13:45.502986Z", + "iopub.status.busy": "2024-12-26T11:13:45.502672Z", + "iopub.status.idle": "2024-12-26T11:13:45.517278Z", + "shell.execute_reply": "2024-12-26T11:13:45.516725Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:52.099906Z", - "iopub.status.busy": "2024-12-25T19:52:52.099589Z", - "iopub.status.idle": "2024-12-25T19:52:52.105201Z", - "shell.execute_reply": "2024-12-25T19:52:52.104641Z" + "iopub.execute_input": "2024-12-26T11:13:45.519101Z", + "iopub.status.busy": "2024-12-26T11:13:45.518789Z", + "iopub.status.idle": "2024-12-26T11:13:45.524470Z", + "shell.execute_reply": "2024-12-26T11:13:45.524000Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:52.106980Z", - "iopub.status.busy": "2024-12-25T19:52:52.106573Z", - "iopub.status.idle": "2024-12-25T19:52:52.124534Z", - "shell.execute_reply": "2024-12-25T19:52:52.123949Z" + "iopub.execute_input": "2024-12-26T11:13:45.526121Z", + "iopub.status.busy": "2024-12-26T11:13:45.525850Z", + "iopub.status.idle": "2024-12-26T11:13:45.543185Z", + "shell.execute_reply": "2024-12-26T11:13:45.542698Z" } }, "outputs": [ @@ -1447,7 +1447,69 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "29b3612c600c40f3a6567fee4a35a64a": { + "0e56152f62444884bf3b77ec926495b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fea4c642e5404db9832f5133fab5ca9a", + "placeholder": "​", + "style": "IPY_MODEL_ee2c7e60997a4e3d969c4d496333daf2", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13406.82 examples/s]" + } + }, + "16442c0c0b0a493f9637dcd7ed15483f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a239c821b77640efb6075e9dcdaa3e64", + "placeholder": "​", + "style": "IPY_MODEL_96f16c7d67f84825ae1841491a9b3c0e", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "27219e5120b44767beeb8957a6281a61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "42b8ae457cc941ab810fae566346828e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,72 +1562,31 @@ "width": null } }, - "2cff0ad65c4749efb67577bcb9af14a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dcc7668081e04577b1900ef724deac98", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cb0acd6709f4061aa3158ed79b3b44d", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "4cb0acd6709f4061aa3158ed79b3b44d": { + "4b8fb81fd52440f5855a9d816c644bc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5d9ecf469cb146729d1f0aaffe0041d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_29b3612c600c40f3a6567fee4a35a64a", - "placeholder": "​", - "style": "IPY_MODEL_d5a445482d104d53bad5436983b222cd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_16442c0c0b0a493f9637dcd7ed15483f", + "IPY_MODEL_fc55b3ef96cb48cbad94c534635faf27", + "IPY_MODEL_0e56152f62444884bf3b77ec926495b2" + ], + "layout": "IPY_MODEL_8ead750bad3f423c94c93c7f76e7068d", "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "tooltip": null } }, - "72fd2c8136014f35ad0f4bbcb898fe94": { + "8ead750bad3f423c94c93c7f76e7068d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1618,30 +1639,7 @@ "width": null } }, - "7753a0d44d4f4a0fa66f6f5c7e9f0838": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_72fd2c8136014f35ad0f4bbcb898fe94", - "placeholder": "​", - "style": "IPY_MODEL_f608b1f7ea09420f9efc3469c6d80b26", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13253.41 examples/s]" - } - }, - "d5a445482d104d53bad5436983b222cd": { + "96f16c7d67f84825ae1841491a9b3c0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1659,7 +1657,7 @@ "text_color": null } }, - "da7dc10197c34ef5a425d1ccc42771b6": { + "a239c821b77640efb6075e9dcdaa3e64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1712,7 +1710,51 @@ "width": null } }, - "dcc7668081e04577b1900ef724deac98": { + "ee2c7e60997a4e3d969c4d496333daf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc55b3ef96cb48cbad94c534635faf27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42b8ae457cc941ab810fae566346828e", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_27219e5120b44767beeb8957a6281a61", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "fea4c642e5404db9832f5133fab5ca9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1764,48 +1806,6 @@ "visibility": null, "width": null } - }, - "ebdce73efae14737bfe4196161c1cdda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d9ecf469cb146729d1f0aaffe0041d7", - "IPY_MODEL_2cff0ad65c4749efb67577bcb9af14a6", - "IPY_MODEL_7753a0d44d4f4a0fa66f6f5c7e9f0838" - ], - "layout": "IPY_MODEL_da7dc10197c34ef5a425d1ccc42771b6", - "tabbable": null, - "tooltip": null - } - }, - "f608b1f7ea09420f9efc3469c6d80b26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 53bbf5326..e5ede439f 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:55.063841Z", - "iopub.status.busy": "2024-12-25T19:52:55.063492Z", - "iopub.status.idle": "2024-12-25T19:52:56.295051Z", - "shell.execute_reply": "2024-12-25T19:52:56.294491Z" + "iopub.execute_input": "2024-12-26T11:13:48.305061Z", + "iopub.status.busy": "2024-12-26T11:13:48.304529Z", + "iopub.status.idle": "2024-12-26T11:13:49.515730Z", + "shell.execute_reply": "2024-12-26T11:13:49.515128Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.297263Z", - "iopub.status.busy": "2024-12-25T19:52:56.296761Z", - "iopub.status.idle": "2024-12-25T19:52:56.299868Z", - "shell.execute_reply": "2024-12-25T19:52:56.299335Z" + "iopub.execute_input": "2024-12-26T11:13:49.517777Z", + "iopub.status.busy": "2024-12-26T11:13:49.517535Z", + "iopub.status.idle": "2024-12-26T11:13:49.520460Z", + "shell.execute_reply": "2024-12-26T11:13:49.520020Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.301876Z", - "iopub.status.busy": "2024-12-25T19:52:56.301469Z", - "iopub.status.idle": "2024-12-25T19:52:56.310799Z", - "shell.execute_reply": "2024-12-25T19:52:56.310336Z" + "iopub.execute_input": "2024-12-26T11:13:49.522172Z", + "iopub.status.busy": "2024-12-26T11:13:49.521996Z", + "iopub.status.idle": "2024-12-26T11:13:49.531091Z", + "shell.execute_reply": "2024-12-26T11:13:49.530568Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.312287Z", - "iopub.status.busy": "2024-12-25T19:52:56.312118Z", - "iopub.status.idle": "2024-12-25T19:52:56.316830Z", - "shell.execute_reply": "2024-12-25T19:52:56.316256Z" + "iopub.execute_input": "2024-12-26T11:13:49.533011Z", + "iopub.status.busy": "2024-12-26T11:13:49.532606Z", + "iopub.status.idle": "2024-12-26T11:13:49.537813Z", + "shell.execute_reply": "2024-12-26T11:13:49.537314Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.318719Z", - "iopub.status.busy": "2024-12-25T19:52:56.318536Z", - "iopub.status.idle": "2024-12-25T19:52:56.499940Z", - "shell.execute_reply": "2024-12-25T19:52:56.499462Z" + "iopub.execute_input": "2024-12-26T11:13:49.539686Z", + "iopub.status.busy": "2024-12-26T11:13:49.539360Z", + "iopub.status.idle": "2024-12-26T11:13:49.721380Z", + "shell.execute_reply": "2024-12-26T11:13:49.720794Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.501841Z", - "iopub.status.busy": "2024-12-25T19:52:56.501493Z", - "iopub.status.idle": "2024-12-25T19:52:56.950454Z", - "shell.execute_reply": "2024-12-25T19:52:56.949833Z" + "iopub.execute_input": "2024-12-26T11:13:49.723404Z", + "iopub.status.busy": "2024-12-26T11:13:49.723034Z", + "iopub.status.idle": "2024-12-26T11:13:50.097289Z", + "shell.execute_reply": "2024-12-26T11:13:50.096762Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.952464Z", - "iopub.status.busy": "2024-12-25T19:52:56.952127Z", - "iopub.status.idle": "2024-12-25T19:52:56.955089Z", - "shell.execute_reply": "2024-12-25T19:52:56.954507Z" + "iopub.execute_input": "2024-12-26T11:13:50.099438Z", + "iopub.status.busy": "2024-12-26T11:13:50.098977Z", + "iopub.status.idle": "2024-12-26T11:13:50.101942Z", + "shell.execute_reply": "2024-12-26T11:13:50.101468Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.956908Z", - "iopub.status.busy": "2024-12-25T19:52:56.956573Z", - "iopub.status.idle": "2024-12-25T19:52:56.991522Z", - "shell.execute_reply": "2024-12-25T19:52:56.991075Z" + "iopub.execute_input": "2024-12-26T11:13:50.103678Z", + "iopub.status.busy": "2024-12-26T11:13:50.103335Z", + "iopub.status.idle": "2024-12-26T11:13:50.137981Z", + "shell.execute_reply": "2024-12-26T11:13:50.137544Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:56.993180Z", - "iopub.status.busy": "2024-12-25T19:52:56.992852Z", - "iopub.status.idle": "2024-12-25T19:52:58.970488Z", - "shell.execute_reply": "2024-12-25T19:52:58.969803Z" + "iopub.execute_input": "2024-12-26T11:13:50.139690Z", + "iopub.status.busy": "2024-12-26T11:13:50.139376Z", + "iopub.status.idle": "2024-12-26T11:13:52.170834Z", + "shell.execute_reply": "2024-12-26T11:13:52.170250Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:58.972964Z", - "iopub.status.busy": "2024-12-25T19:52:58.972288Z", - "iopub.status.idle": "2024-12-25T19:52:58.990990Z", - "shell.execute_reply": "2024-12-25T19:52:58.990524Z" + "iopub.execute_input": "2024-12-26T11:13:52.173136Z", + "iopub.status.busy": "2024-12-26T11:13:52.172498Z", + "iopub.status.idle": "2024-12-26T11:13:52.191111Z", + "shell.execute_reply": "2024-12-26T11:13:52.190555Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:58.992799Z", - "iopub.status.busy": "2024-12-25T19:52:58.992384Z", - "iopub.status.idle": "2024-12-25T19:52:58.998852Z", - "shell.execute_reply": "2024-12-25T19:52:58.998343Z" + "iopub.execute_input": "2024-12-26T11:13:52.192711Z", + "iopub.status.busy": "2024-12-26T11:13:52.192539Z", + "iopub.status.idle": "2024-12-26T11:13:52.198758Z", + "shell.execute_reply": "2024-12-26T11:13:52.198317Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:59.000420Z", - "iopub.status.busy": "2024-12-25T19:52:59.000250Z", - "iopub.status.idle": "2024-12-25T19:52:59.006096Z", - "shell.execute_reply": "2024-12-25T19:52:59.005651Z" + "iopub.execute_input": "2024-12-26T11:13:52.200454Z", + "iopub.status.busy": "2024-12-26T11:13:52.200132Z", + "iopub.status.idle": "2024-12-26T11:13:52.205801Z", + "shell.execute_reply": "2024-12-26T11:13:52.205366Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:59.007593Z", - "iopub.status.busy": "2024-12-25T19:52:59.007424Z", - "iopub.status.idle": "2024-12-25T19:52:59.017666Z", - "shell.execute_reply": "2024-12-25T19:52:59.017132Z" + "iopub.execute_input": "2024-12-26T11:13:52.207506Z", + "iopub.status.busy": "2024-12-26T11:13:52.207178Z", + "iopub.status.idle": "2024-12-26T11:13:52.217564Z", + "shell.execute_reply": "2024-12-26T11:13:52.217000Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:59.019265Z", - "iopub.status.busy": "2024-12-25T19:52:59.019092Z", - "iopub.status.idle": "2024-12-25T19:52:59.028222Z", - "shell.execute_reply": "2024-12-25T19:52:59.027671Z" + "iopub.execute_input": "2024-12-26T11:13:52.219238Z", + "iopub.status.busy": "2024-12-26T11:13:52.218897Z", + "iopub.status.idle": "2024-12-26T11:13:52.227808Z", + "shell.execute_reply": "2024-12-26T11:13:52.227338Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:59.030063Z", - "iopub.status.busy": "2024-12-25T19:52:59.029661Z", - "iopub.status.idle": "2024-12-25T19:52:59.036727Z", - "shell.execute_reply": "2024-12-25T19:52:59.036146Z" + "iopub.execute_input": "2024-12-26T11:13:52.229523Z", + "iopub.status.busy": "2024-12-26T11:13:52.229204Z", + "iopub.status.idle": "2024-12-26T11:13:52.236086Z", + "shell.execute_reply": "2024-12-26T11:13:52.235508Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:59.038522Z", - "iopub.status.busy": "2024-12-25T19:52:59.038086Z", - "iopub.status.idle": "2024-12-25T19:52:59.047388Z", - "shell.execute_reply": "2024-12-25T19:52:59.046818Z" + "iopub.execute_input": "2024-12-26T11:13:52.237887Z", + "iopub.status.busy": "2024-12-26T11:13:52.237551Z", + "iopub.status.idle": "2024-12-26T11:13:52.246710Z", + "shell.execute_reply": "2024-12-26T11:13:52.246253Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:52:59.049389Z", - "iopub.status.busy": "2024-12-25T19:52:59.048858Z", - "iopub.status.idle": "2024-12-25T19:52:59.063602Z", - "shell.execute_reply": "2024-12-25T19:52:59.063163Z" + "iopub.execute_input": "2024-12-26T11:13:52.248366Z", + "iopub.status.busy": "2024-12-26T11:13:52.248053Z", + "iopub.status.idle": "2024-12-26T11:13:52.264956Z", + "shell.execute_reply": "2024-12-26T11:13:52.264380Z" }, "nbsphinx": "hidden" }, @@ -1613,7 +1613,11 @@ "assert roc_auc_score(Z, label_quality_scores) > 0.9\n", "\n", "assert jaccard_similarity(predicted_outlier_issues_indices, outlier_issue_indices) > 0.9\n", - "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9" + "assert jaccard_similarity(predicted_duplicate_issues_indices, duplicate_issue_indices) > 0.9\n", + "\n", + "expected_issue_types = set([\"label\", \"outlier\", \"near_duplicate\", \"class_imbalance\"])\n", + "detected_issue_types = set(lab.get_issue_summary()[lab.get_issue_summary()[\"num_issues\"] > 0][\"issue_type\"])\n", + "assert detected_issue_types == expected_issue_types" ] }, { diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 367f4f714..716a8cfd0 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -740,31 +740,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1077,7 +1077,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1109,7 +1109,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1141,7 +1141,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1933,35 +1933,35 @@

Dark images - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -2055,35 +2055,35 @@

Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2111,7 +2111,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 94873ef7e..1b03b5170 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:01.705444Z", - "iopub.status.busy": "2024-12-25T19:53:01.705271Z", - "iopub.status.idle": "2024-12-25T19:53:04.688692Z", - "shell.execute_reply": "2024-12-25T19:53:04.687824Z" + "iopub.execute_input": "2024-12-26T11:13:55.066377Z", + "iopub.status.busy": "2024-12-26T11:13:55.065970Z", + "iopub.status.idle": "2024-12-26T11:13:58.119624Z", + "shell.execute_reply": "2024-12-26T11:13:58.119002Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:04.691880Z", - "iopub.status.busy": "2024-12-25T19:53:04.691433Z", - "iopub.status.idle": "2024-12-25T19:53:04.696264Z", - "shell.execute_reply": "2024-12-25T19:53:04.695718Z" + "iopub.execute_input": "2024-12-26T11:13:58.122034Z", + "iopub.status.busy": "2024-12-26T11:13:58.121585Z", + "iopub.status.idle": "2024-12-26T11:13:58.125384Z", + "shell.execute_reply": "2024-12-26T11:13:58.124830Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:04.698398Z", - "iopub.status.busy": "2024-12-25T19:53:04.698049Z", - "iopub.status.idle": "2024-12-25T19:53:10.167848Z", - "shell.execute_reply": "2024-12-25T19:53:10.167290Z" + "iopub.execute_input": "2024-12-26T11:13:58.127346Z", + "iopub.status.busy": "2024-12-26T11:13:58.126912Z", + "iopub.status.idle": "2024-12-26T11:14:00.143229Z", + "shell.execute_reply": "2024-12-26T11:14:00.142729Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a93f09c26a99419f9408245e9fb75e1b", + "model_id": "f4ff351cea04464ea2c5aad09727e327", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "934aabfe9a994494aaaa79e9738430b9", + "model_id": "f184c01ff207409fa2616b01a03e66dc", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa83b3e0df7a491b9cc7bba0820ef6b9", + "model_id": "6b7f0209fffe464da1552b8f9bedb1f4", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "678375d8f3fe444fa525d34020ce8c94", + "model_id": "ff8e913873fc4844888676660631126b", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fa78b5b30b7439989237b5bd15fce38", + "model_id": "a4b545185c5d4644814ac73d51cff97d", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:10.169873Z", - "iopub.status.busy": "2024-12-25T19:53:10.169472Z", - "iopub.status.idle": "2024-12-25T19:53:10.173316Z", - "shell.execute_reply": "2024-12-25T19:53:10.172875Z" + "iopub.execute_input": "2024-12-26T11:14:00.145159Z", + "iopub.status.busy": "2024-12-26T11:14:00.144822Z", + "iopub.status.idle": "2024-12-26T11:14:00.148714Z", + "shell.execute_reply": "2024-12-26T11:14:00.148183Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:10.175009Z", - "iopub.status.busy": "2024-12-25T19:53:10.174657Z", - "iopub.status.idle": "2024-12-25T19:53:21.569153Z", - "shell.execute_reply": "2024-12-25T19:53:21.568622Z" + "iopub.execute_input": "2024-12-26T11:14:00.150618Z", + "iopub.status.busy": "2024-12-26T11:14:00.150211Z", + "iopub.status.idle": "2024-12-26T11:14:11.734138Z", + "shell.execute_reply": "2024-12-26T11:14:11.733604Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c87ed6354806472ab823ca636a72cbe0", + "model_id": "56549934bb8b4370915a9339138d273c", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:21.571354Z", - "iopub.status.busy": "2024-12-25T19:53:21.570979Z", - "iopub.status.idle": "2024-12-25T19:53:40.028612Z", - "shell.execute_reply": "2024-12-25T19:53:40.027995Z" + "iopub.execute_input": "2024-12-26T11:14:11.736360Z", + "iopub.status.busy": "2024-12-26T11:14:11.735961Z", + "iopub.status.idle": "2024-12-26T11:14:30.208190Z", + "shell.execute_reply": "2024-12-26T11:14:30.207511Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.030949Z", - "iopub.status.busy": "2024-12-25T19:53:40.030531Z", - "iopub.status.idle": "2024-12-25T19:53:40.035487Z", - "shell.execute_reply": "2024-12-25T19:53:40.034945Z" + "iopub.execute_input": "2024-12-26T11:14:30.210509Z", + "iopub.status.busy": "2024-12-26T11:14:30.210112Z", + "iopub.status.idle": "2024-12-26T11:14:30.215848Z", + "shell.execute_reply": "2024-12-26T11:14:30.215398Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.037073Z", - "iopub.status.busy": "2024-12-25T19:53:40.036898Z", - "iopub.status.idle": "2024-12-25T19:53:40.040953Z", - "shell.execute_reply": "2024-12-25T19:53:40.040516Z" + "iopub.execute_input": "2024-12-26T11:14:30.217523Z", + "iopub.status.busy": "2024-12-26T11:14:30.217190Z", + "iopub.status.idle": "2024-12-26T11:14:30.221153Z", + "shell.execute_reply": "2024-12-26T11:14:30.220723Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.042532Z", - "iopub.status.busy": "2024-12-25T19:53:40.042364Z", - "iopub.status.idle": "2024-12-25T19:53:40.051154Z", - "shell.execute_reply": "2024-12-25T19:53:40.050695Z" + "iopub.execute_input": "2024-12-26T11:14:30.222823Z", + "iopub.status.busy": "2024-12-26T11:14:30.222518Z", + "iopub.status.idle": "2024-12-26T11:14:30.231184Z", + "shell.execute_reply": "2024-12-26T11:14:30.230697Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.052671Z", - "iopub.status.busy": "2024-12-25T19:53:40.052504Z", - "iopub.status.idle": "2024-12-25T19:53:40.080849Z", - "shell.execute_reply": "2024-12-25T19:53:40.080351Z" + "iopub.execute_input": "2024-12-26T11:14:30.232928Z", + "iopub.status.busy": "2024-12-26T11:14:30.232600Z", + "iopub.status.idle": "2024-12-26T11:14:30.260562Z", + "shell.execute_reply": "2024-12-26T11:14:30.260132Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:53:40.082691Z", - "iopub.status.busy": "2024-12-25T19:53:40.082371Z", - "iopub.status.idle": "2024-12-25T19:54:13.516719Z", - "shell.execute_reply": "2024-12-25T19:54:13.516116Z" + "iopub.execute_input": "2024-12-26T11:14:30.262215Z", + "iopub.status.busy": "2024-12-26T11:14:30.261887Z", + "iopub.status.idle": "2024-12-26T11:15:03.917221Z", + "shell.execute_reply": "2024-12-26T11:15:03.916539Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.831\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.095\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.596\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.670\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1322c07edc3d44dfaa5ede7707e0b085", + "model_id": "17c4b74cddd74b6f83737f8b857249c6", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb6260a24a574052b8dc3b63327e49b0", + "model_id": "003790eac1da44cfacf5182c85bf1f62", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.929\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.835\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.749\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.684\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9e4d34f1dafd42108013827c12b7a9ec", + "model_id": "17744260742849c4988dd6d5d5b061a5", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a61ad2ad4b744a2ca9088d411dae337f", + "model_id": "d3a7e2a492de443e9fc34cd490473b54", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.971\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.979\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.635\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.681\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "51274f11c67a441d9675a667bf50664e", + "model_id": "7563e14e5ad24aa285a0d80e59cdd41e", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8e39e3083e0948878024a2772e960428", + "model_id": "5be8e4b7db7940b5a22aca8a89b771f1", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:54:13.518841Z", - "iopub.status.busy": "2024-12-25T19:54:13.518462Z", - "iopub.status.idle": "2024-12-25T19:54:13.534397Z", - "shell.execute_reply": "2024-12-25T19:54:13.533974Z" + "iopub.execute_input": "2024-12-26T11:15:03.919422Z", + "iopub.status.busy": "2024-12-26T11:15:03.919014Z", + "iopub.status.idle": "2024-12-26T11:15:03.936490Z", + "shell.execute_reply": "2024-12-26T11:15:03.936070Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:54:13.535991Z", - "iopub.status.busy": "2024-12-25T19:54:13.535695Z", - "iopub.status.idle": "2024-12-25T19:54:13.987080Z", - "shell.execute_reply": "2024-12-25T19:54:13.986440Z" + "iopub.execute_input": "2024-12-26T11:15:03.938233Z", + "iopub.status.busy": "2024-12-26T11:15:03.937940Z", + "iopub.status.idle": "2024-12-26T11:15:04.409277Z", + "shell.execute_reply": "2024-12-26T11:15:04.408645Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:54:13.989151Z", - "iopub.status.busy": "2024-12-25T19:54:13.988937Z", - "iopub.status.idle": "2024-12-25T19:56:03.939526Z", - "shell.execute_reply": "2024-12-25T19:56:03.938911Z" + "iopub.execute_input": "2024-12-26T11:15:04.411460Z", + "iopub.status.busy": "2024-12-26T11:15:04.411281Z", + "iopub.status.idle": "2024-12-26T11:16:56.028934Z", + "shell.execute_reply": "2024-12-26T11:16:56.028228Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6c55c29353e849aabd683fc81a40a89f", + "model_id": "a285b1fda3104d11b406b25e4e839fc7", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:03.941877Z", - "iopub.status.busy": "2024-12-25T19:56:03.941302Z", - "iopub.status.idle": "2024-12-25T19:56:04.393616Z", - "shell.execute_reply": "2024-12-25T19:56:04.393044Z" + "iopub.execute_input": "2024-12-26T11:16:56.031350Z", + "iopub.status.busy": "2024-12-26T11:16:56.030738Z", + "iopub.status.idle": "2024-12-26T11:16:56.486297Z", + "shell.execute_reply": "2024-12-26T11:16:56.485729Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.395960Z", - "iopub.status.busy": "2024-12-25T19:56:04.395458Z", - "iopub.status.idle": "2024-12-25T19:56:04.457746Z", - "shell.execute_reply": "2024-12-25T19:56:04.457251Z" + "iopub.execute_input": "2024-12-26T11:16:56.488560Z", + "iopub.status.busy": "2024-12-26T11:16:56.488025Z", + "iopub.status.idle": "2024-12-26T11:16:56.550966Z", + "shell.execute_reply": "2024-12-26T11:16:56.550375Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.459502Z", - "iopub.status.busy": "2024-12-25T19:56:04.459160Z", - "iopub.status.idle": "2024-12-25T19:56:04.467590Z", - "shell.execute_reply": "2024-12-25T19:56:04.467068Z" + "iopub.execute_input": "2024-12-26T11:16:56.552924Z", + "iopub.status.busy": "2024-12-26T11:16:56.552520Z", + "iopub.status.idle": "2024-12-26T11:16:56.561013Z", + "shell.execute_reply": "2024-12-26T11:16:56.560483Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.469332Z", - "iopub.status.busy": "2024-12-25T19:56:04.469012Z", - "iopub.status.idle": "2024-12-25T19:56:04.473595Z", - "shell.execute_reply": "2024-12-25T19:56:04.473171Z" + "iopub.execute_input": "2024-12-26T11:16:56.562714Z", + "iopub.status.busy": "2024-12-26T11:16:56.562329Z", + "iopub.status.idle": "2024-12-26T11:16:56.566960Z", + "shell.execute_reply": "2024-12-26T11:16:56.566522Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.475284Z", - "iopub.status.busy": "2024-12-25T19:56:04.474958Z", - "iopub.status.idle": "2024-12-25T19:56:04.979884Z", - "shell.execute_reply": "2024-12-25T19:56:04.979275Z" + "iopub.execute_input": "2024-12-26T11:16:56.568724Z", + "iopub.status.busy": "2024-12-26T11:16:56.568344Z", + "iopub.status.idle": "2024-12-26T11:16:57.079326Z", + "shell.execute_reply": "2024-12-26T11:16:57.078644Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.981542Z", - "iopub.status.busy": "2024-12-25T19:56:04.981352Z", - "iopub.status.idle": "2024-12-25T19:56:04.989933Z", - "shell.execute_reply": "2024-12-25T19:56:04.989460Z" + "iopub.execute_input": "2024-12-26T11:16:57.081252Z", + "iopub.status.busy": "2024-12-26T11:16:57.080929Z", + "iopub.status.idle": "2024-12-26T11:16:57.089455Z", + "shell.execute_reply": "2024-12-26T11:16:57.089003Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:04.991824Z", - "iopub.status.busy": "2024-12-25T19:56:04.991512Z", - "iopub.status.idle": "2024-12-25T19:56:04.998740Z", - "shell.execute_reply": "2024-12-25T19:56:04.998283Z" + "iopub.execute_input": "2024-12-26T11:16:57.091238Z", + "iopub.status.busy": "2024-12-26T11:16:57.090907Z", + "iopub.status.idle": "2024-12-26T11:16:57.098171Z", + "shell.execute_reply": "2024-12-26T11:16:57.097576Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.000387Z", - "iopub.status.busy": "2024-12-25T19:56:05.000097Z", - "iopub.status.idle": "2024-12-25T19:56:05.465349Z", - "shell.execute_reply": "2024-12-25T19:56:05.464760Z" + "iopub.execute_input": "2024-12-26T11:16:57.099812Z", + "iopub.status.busy": "2024-12-26T11:16:57.099490Z", + "iopub.status.idle": "2024-12-26T11:16:57.570286Z", + "shell.execute_reply": "2024-12-26T11:16:57.569667Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.467556Z", - "iopub.status.busy": "2024-12-25T19:56:05.467199Z", - "iopub.status.idle": "2024-12-25T19:56:05.483088Z", - "shell.execute_reply": "2024-12-25T19:56:05.482513Z" + "iopub.execute_input": "2024-12-26T11:16:57.572173Z", + "iopub.status.busy": "2024-12-26T11:16:57.571821Z", + "iopub.status.idle": "2024-12-26T11:16:57.588280Z", + "shell.execute_reply": "2024-12-26T11:16:57.587682Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.485050Z", - "iopub.status.busy": "2024-12-25T19:56:05.484707Z", - "iopub.status.idle": "2024-12-25T19:56:05.490317Z", - "shell.execute_reply": "2024-12-25T19:56:05.489832Z" + "iopub.execute_input": "2024-12-26T11:16:57.590160Z", + "iopub.status.busy": "2024-12-26T11:16:57.589877Z", + "iopub.status.idle": "2024-12-26T11:16:57.595490Z", + "shell.execute_reply": "2024-12-26T11:16:57.594976Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:05.491928Z", - "iopub.status.busy": "2024-12-25T19:56:05.491655Z", - "iopub.status.idle": "2024-12-25T19:56:06.250950Z", - "shell.execute_reply": "2024-12-25T19:56:06.250369Z" + "iopub.execute_input": "2024-12-26T11:16:57.597184Z", + "iopub.status.busy": "2024-12-26T11:16:57.596874Z", + "iopub.status.idle": "2024-12-26T11:16:58.379600Z", + "shell.execute_reply": "2024-12-26T11:16:58.379020Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.253117Z", - "iopub.status.busy": "2024-12-25T19:56:06.252908Z", - "iopub.status.idle": "2024-12-25T19:56:06.262943Z", - "shell.execute_reply": "2024-12-25T19:56:06.262395Z" + "iopub.execute_input": "2024-12-26T11:16:58.381970Z", + "iopub.status.busy": "2024-12-26T11:16:58.381440Z", + "iopub.status.idle": "2024-12-26T11:16:58.391525Z", + "shell.execute_reply": "2024-12-26T11:16:58.391001Z" } }, "outputs": [ @@ -2195,47 +2195,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.264906Z", - "iopub.status.busy": "2024-12-25T19:56:06.264707Z", - "iopub.status.idle": "2024-12-25T19:56:06.271397Z", - "shell.execute_reply": "2024-12-25T19:56:06.270865Z" + "iopub.execute_input": "2024-12-26T11:16:58.393653Z", + "iopub.status.busy": "2024-12-26T11:16:58.393160Z", + "iopub.status.idle": "2024-12-26T11:16:58.399378Z", + "shell.execute_reply": "2024-12-26T11:16:58.398771Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.273211Z", - "iopub.status.busy": "2024-12-25T19:56:06.273020Z", - "iopub.status.idle": "2024-12-25T19:56:06.475602Z", - "shell.execute_reply": "2024-12-25T19:56:06.475123Z" + "iopub.execute_input": "2024-12-26T11:16:58.401464Z", + "iopub.status.busy": "2024-12-26T11:16:58.401020Z", + "iopub.status.idle": "2024-12-26T11:16:58.603605Z", + "shell.execute_reply": "2024-12-26T11:16:58.603122Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.477438Z", - "iopub.status.busy": "2024-12-25T19:56:06.477143Z", - "iopub.status.idle": "2024-12-25T19:56:06.485181Z", - "shell.execute_reply": "2024-12-25T19:56:06.484606Z" + "iopub.execute_input": "2024-12-26T11:16:58.605460Z", + "iopub.status.busy": "2024-12-26T11:16:58.605128Z", + "iopub.status.idle": "2024-12-26T11:16:58.612456Z", + "shell.execute_reply": "2024-12-26T11:16:58.612006Z" } }, "outputs": [ @@ -2411,47 +2411,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.486840Z", - "iopub.status.busy": "2024-12-25T19:56:06.486534Z", - "iopub.status.idle": "2024-12-25T19:56:06.685034Z", - "shell.execute_reply": "2024-12-25T19:56:06.684448Z" + "iopub.execute_input": "2024-12-26T11:16:58.614075Z", + "iopub.status.busy": "2024-12-26T11:16:58.613743Z", + "iopub.status.idle": "2024-12-26T11:16:58.811358Z", + "shell.execute_reply": "2024-12-26T11:16:58.810899Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:06.686832Z", - "iopub.status.busy": "2024-12-25T19:56:06.686533Z", - "iopub.status.idle": "2024-12-25T19:56:06.691680Z", - "shell.execute_reply": "2024-12-25T19:56:06.691136Z" + "iopub.execute_input": "2024-12-26T11:16:58.813060Z", + "iopub.status.busy": "2024-12-26T11:16:58.812728Z", + "iopub.status.idle": "2024-12-26T11:16:58.817041Z", + "shell.execute_reply": "2024-12-26T11:16:58.816588Z" }, "nbsphinx": "hidden" }, @@ -2555,7 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01ef0e4f64fd423fbe151d5488934b01": { + "0024d4199dae41bf903390cc792ed260": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,141 +2608,119 @@ "width": null } }, - "02148a2720e94655aafde92af9b01dc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11f1be18e701489ba23a37eeb576e937", - "placeholder": "​", - "style": "IPY_MODEL_f8b15d0f74dc495aa140ae3e0a1fee1b", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.67it/s]" - } - }, - "044b1fe3eaba4fb1bd442fa7be32f390": { + "003790eac1da44cfacf5182c85bf1f62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e940b8484a44373862483908f8603db", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_907261e1e53b4107b218ca28d5c70b0f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_183345239f194ee48a5e5503db476c7d", + "IPY_MODEL_9caf4b4175f74931a8e29555d56a5cf4", + "IPY_MODEL_53b2f74e987b45a5bdfd6bbdf322ecb2" + ], + "layout": "IPY_MODEL_c3862f19726f43139736766e91ad2e8c", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "05387ecea2654c4f8cec1b7b53d91218": { + "02d3be24caec40e2ad95769ab44b473d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "05c88c06baa34af887bdc5deb3f0ca93": { + "03e822c4ea3c4f40ae61a20481bbcf71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36b8244290fa4b409d179f82afa754a0", - "placeholder": "​", - "style": "IPY_MODEL_2b1e2800f49c4ab88c17763e2fa3dc54", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 11.2MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "06cc74e6d9b14909aa898c1eec8bef7b": { + "07846f593d614c67bc252174f3b06df8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01ef0e4f64fd423fbe151d5488934b01", - "placeholder": "​", - "style": "IPY_MODEL_d6eb5c530ad84d28bbc95826d2099365", + "layout": "IPY_MODEL_4f77cb1e3a7c4d9f8d5d7f7fd0274af9", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c483682d58df45a7b94f7e5473449825", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": 60000.0 } }, - "082c0f49338e471a900df64e25963ce9": { + "07b4528c25f94cc2bfe65b20fc6f82fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bd401a460024bc48a31b717fb070608", - "placeholder": "​", - "style": "IPY_MODEL_54a11615b1a04569b980049043c6732f", + "layout": "IPY_MODEL_b6735ab9e73940ea9fd4d15752f0434b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_448ad094ea874b36b28dc064540626d0", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 2.0 } }, - "0a58eea28eb54bebbb8feee6050f88e4": { + "08032ec8e12548b1b5090e23e9c5cdad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2757,15 +2735,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ad0023111c034ae2bf185a8e7299a303", + "layout": "IPY_MODEL_145defe4f7d7455aa1644523fa0c63af", "placeholder": "​", - "style": "IPY_MODEL_aff9494e44414b9ca131464b7ef06d79", + "style": "IPY_MODEL_a595d095cbc049fca70f2b6cedb97861", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "100%" } }, - "0e3d1e5c544a45dbb3873f8a0048eb16": { + "0844beb068c049daa4758f29b95f56d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2783,84 +2761,30 @@ "text_color": null } }, - "11f1be18e701489ba23a37eeb576e937": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1322c07edc3d44dfaa5ede7707e0b085": { + "0fb863f8786844f2bd1f8aa6fa2ad8e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_57720e22f2764eed89ce3b7251e5c1d3", - "IPY_MODEL_fbfc9749611f42999cf827c6a91c4989", - "IPY_MODEL_02148a2720e94655aafde92af9b01dc4" - ], - "layout": "IPY_MODEL_14c9a4e0ae7f452ca437d86195e8563c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31d2057f74f747bb8e67fdc2d8f9b2ce", + "placeholder": "​", + "style": "IPY_MODEL_45975ae1a9b3496b823baf490fed9570", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "14c9a4e0ae7f452ca437d86195e8563c": { + "108812bccbd741fe97637c2274d2b4df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2913,7 +2837,23 @@ "width": null } }, - "16ed526bf9ba40bdb11e4012b829433e": { + "1090c715109041f69b16b3ea9e7cc89c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "145defe4f7d7455aa1644523fa0c63af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2966,30 +2906,7 @@ "width": null } }, - "18e38ac0e1f6478d9f7300a1682d8d0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0d516f5941c4557bdba5b1e744d2f72", - "placeholder": "​", - "style": "IPY_MODEL_811601011a024e32986e64a1513db2d5", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "19394f5d752743e78883476208a2b9ca": { + "14e2c08150ea43558eebd6f3486bafdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3042,7 +2959,7 @@ "width": null } }, - "21b1e1a335c84d29998713bd15e43580": { + "16d380e0df77435282bb3d529594c4b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3095,7 +3012,7 @@ "width": null } }, - "240b3517d93d46629dd6a70bbba5cf51": { + "16feba3a36064d3297c8c6a38338ea60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3110,15 +3027,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7e1ff3e34d3c49caad23eb7e9a2ffaf6", + "layout": "IPY_MODEL_9a4221150d324e0988f29b43c59df08a", "placeholder": "​", - "style": "IPY_MODEL_bb2c790001214f159330cf2a4dcf75f3", + "style": "IPY_MODEL_6eb643d5d4e340e99bf3820633dbce6e", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 282590.69 examples/s]" + "value": "100%" } }, - "242104ee0f4e4959a4153f4f20d06af3": { + "17744260742849c4988dd6d5d5b061a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3133,87 +3050,89 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_abfbff3a88c24b90924d46cc12cc6d30", - "IPY_MODEL_e37413872650482a92cd3a0263486b78", - "IPY_MODEL_c52a734ae4b443c494fb694c3022008c" + "IPY_MODEL_16feba3a36064d3297c8c6a38338ea60", + "IPY_MODEL_dceeba9e537e4860984cb37d3771557a", + "IPY_MODEL_7abf5d13f10d4fa097c867780436dc8f" ], - "layout": "IPY_MODEL_16ed526bf9ba40bdb11e4012b829433e", + "layout": "IPY_MODEL_1bb3b9d9df9e4de1be2a6e24171e8e0c", "tabbable": null, "tooltip": null } }, - "2a2ffb2a35184d118bfc8b003ecc387a": { - "model_module": "@jupyter-widgets/base", + "17c4b74cddd74b6f83737f8b857249c6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8648bb270a434d839bb63f51a140cc71", + "IPY_MODEL_d119ec5ae01c44198508b90ab13eac79", + "IPY_MODEL_f8285f59b8424d64abd192de82dd8836" + ], + "layout": "IPY_MODEL_67af2714ad5641808e4c38e47312c61a", + "tabbable": null, + "tooltip": null } }, - "2b1e2800f49c4ab88c17763e2fa3dc54": { + "183345239f194ee48a5e5503db476c7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65bf121055374645af97ac18ab95221d", + "placeholder": "​", + "style": "IPY_MODEL_c4dec36e37e3418b9d64683574cb2e59", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1a70712be579474db5f6c1904e32e1c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3f9915f8fa64a7f9f881537bc002d6d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bb7f0142c0f843aea52524450bd6d96f", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "2e9fb0892b8044baa8694687db5386a1": { + "1bb3b9d9df9e4de1be2a6e24171e8e0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3266,75 +3185,67 @@ "width": null } }, - "2f39aaa4c6a24d23b0766aea99ab3987": { + "1c119d3815a94d07a3a80110a36f2669": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cc052bc26c64436b2e556ba35239873", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_22c0ba4d74724adca55064fd1bb3a097", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "2fa78b5b30b7439989237b5bd15fce38": { + "1f5b860557574c59ad3c3cf7f6e1c093": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3d5bb862500b4baf8f1c036198559721", - "IPY_MODEL_aae19f3127584f9296ecf0b0ff7c695b", - "IPY_MODEL_6a88bb9d45604f988d52b903e7c0a94e" - ], - "layout": "IPY_MODEL_21b1e1a335c84d29998713bd15e43580", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "306ae28149d44a228735d2b7039937e6": { + "22c0ba4d74724adca55064fd1bb3a097": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a907dcb7d0e14bd69c92d3e6f6324ebb", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_92cdf07aa86d4657bb8fbd859a9bda76", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3375cbf361d04f8fb15d002f9dfb4097": { + "24297e5b0e604438877ede93f02b2859": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3387,7 +3298,7 @@ "width": null } }, - "33a1a9cfe2804fd88f467e7e9c20e1e1": { + "25451e345fcf4e2384e0fd87bffeae2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3440,7 +3351,87 @@ "width": null } }, - "36b8244290fa4b409d179f82afa754a0": { + "280605f687624aa6a5c57ceeffbe642b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "28173da4edf74648b7c8dc14dec217ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba552f3bea524d3f831f4a9b3346f6ac", + "placeholder": "​", + "style": "IPY_MODEL_7a2913cecf194812b334d9cc9c61fa2a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "29505eb3ce6041d9bbac0dc879dd4657": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3586af5ce2c4e0b804c724b9293a6a8", + "placeholder": "​", + "style": "IPY_MODEL_cd5d2dd9db804394ab64c453bbd07a35", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "2a549bb6200f4e8e8cc477a8cbd5e2b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31d2057f74f747bb8e67fdc2d8f9b2ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3493,7 +3484,7 @@ "width": null } }, - "3bd401a460024bc48a31b717fb070608": { + "320953a58ed1469888fce350ccdbabd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3546,7 +3537,48 @@ "width": null } }, - "3d55d37d80234295a5576da2f9f452ca": { + "32a164f3eb4f498888ac958438af9d1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3aeaf85820de4e5f8393777e189b3dce", + "placeholder": "​", + "style": "IPY_MODEL_9954a09e3a90435193ea01d218b5c117", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "39147631539c485fb6d9e35eb2bb0674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "39cc543d130b46e6aac550cff6755f21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3599,95 +3631,60 @@ "width": null } }, - "3d5bb862500b4baf8f1c036198559721": { - "model_module": "@jupyter-widgets/controls", + "3a8d9ea9e7ca47d3b7b8c7d7a76a920c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9c9484fe19843cd8242aebfa07bca87", - "placeholder": "​", - "style": "IPY_MODEL_64b65706677f48e88189730f1cf553d8", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "400f135f0fad41bcaa5fb9f34a254890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_595bac28c382411c8ed83dbe0664e5b6", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74a3baed822c485fa6e06f17073f1d15", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "44106118c38648c6ac9d419718f9521e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_924e788edbe6435683b771360d131993", - "placeholder": "​", - "style": "IPY_MODEL_e27f5a052608489ab13d73a95f127cc5", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.11MB/s]" - } - }, - "4639fa5c8f134aafb865cfea7833f138": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "478e293e37f940adb538a80b4cb2bbe7": { + "3aeaf85820de4e5f8393777e189b3dce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3740,23 +3737,7 @@ "width": null } }, - "48bb30d3288d428ebb1c738851326a6e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4b8e4ff862314d4a91f4d6b6ed79cf3a": { + "3bc507e5e47e4b72aeeea5869a5441ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3772,56 +3753,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_19394f5d752743e78883476208a2b9ca", - "max": 9015.0, + "layout": "IPY_MODEL_e1a99c2562404d3a8f24c1fed2c86e01", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a2916522c3814be0b065ab22fa354d72", + "style": "IPY_MODEL_98c1520586874449b9f3840a4fda7c0a", "tabbable": null, "tooltip": null, - "value": 9015.0 - } - }, - "4c784eb6ca0d44ec8fdbaa27388294a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cf1042a571f741ff8b4501247a7b737a", - "placeholder": "​", - "style": "IPY_MODEL_e0c0c52f1d0646b58bbd276a6a9fbada", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "4cd8eb69e49d4b77b074ad62dea1ca7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 40.0 } }, - "4f6e24c828674bf9a3827c768c11f3ef": { + "400b25482bb94f1ca7b8079db0f5db90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3874,43 +3816,60 @@ "width": null } }, - "4fd706c037d14d15a7401f06a4ea0329": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "500d900734f649c2b44bcc26d2e42db1": { - "model_module": "@jupyter-widgets/controls", + "4129b09b8f22418fa98b017137dbf26b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5084c1e9bea14b65a257b66df2adbb78": { + "41e1fd1ebc7048ca9f24a9114c77b296": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3963,121 +3922,41 @@ "width": null } }, - "51274f11c67a441d9675a667bf50664e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_58d229d42b9546979f53135e0452d384", - "IPY_MODEL_eecddcbb42544c72a337c357524f9ceb", - "IPY_MODEL_7052cd84faeb41cbb8eefcc2c3d010ed" - ], - "layout": "IPY_MODEL_e5303be63bba4080a74c6b8b79a11b89", - "tabbable": null, - "tooltip": null - } - }, - "54a11615b1a04569b980049043c6732f": { + "448ad094ea874b36b28dc064540626d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "55a91b252ecf4fbea6311de73ef07857": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4f6e24c828674bf9a3827c768c11f3ef", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_05387ecea2654c4f8cec1b7b53d91218", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "57720e22f2764eed89ce3b7251e5c1d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2e9fb0892b8044baa8694687db5386a1", - "placeholder": "​", - "style": "IPY_MODEL_77ae19f35bdf479f83f47b4c6e16bcf4", - "tabbable": null, - "tooltip": null, - "value": "100%" + "bar_color": null, + "description_width": "" } }, - "58d229d42b9546979f53135e0452d384": { + "45975ae1a9b3496b823baf490fed9570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a63d2d076f0454292f9cd0aec23805c", - "placeholder": "​", - "style": "IPY_MODEL_cfde35eed3174baa96aff79010b1bfe5", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "595bac28c382411c8ed83dbe0664e5b6": { + "46e7fffa8e484541b153c6f62bc59ab5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4130,25 +4009,56 @@ "width": null } }, - "596e17a7ea5c4da594dcf5a7db4d3871": { + "4841910b6f41431f8317ca2f2a18a816": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_610b357d582f4cb791c03e66cd02ddae", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_280605f687624aa6a5c57ceeffbe642b", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "4f0d3db3265d4e6bad4c6aaa33d19772": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83c8d2dfb00a4b0dae6ed23af048d7ea", + "placeholder": "​", + "style": "IPY_MODEL_1f5b860557574c59ad3c3cf7f6e1c093", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" } }, - "5df4998e41664c4f8bcdc8714ab169db": { + "4f77cb1e3a7c4d9f8d5d7f7fd0274af9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4201,7 +4111,7 @@ "width": null } }, - "60855c03fcde46e2a29f9ecc475a6aea": { + "5023d0218cbf4a69b63b5f6a6d54f073": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4254,43 +4164,7 @@ "width": null } }, - "622ac67ab7e543faaad674e9b119aec0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "64b65706677f48e88189730f1cf553d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6506d6af2c5b4243b845da2b7cdbca49": { + "5122f8d5afdf40dd8b74c186ca1cea9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4306,105 +4180,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8011b9b5b02c4cf199be26ba2deb66b1", - "max": 40.0, + "layout": "IPY_MODEL_b82f7d923f7f4968abb6823e332d8b5e", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9dd096994de646e3ad1bc4586397ab8b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "6726c970164f4f919919ab26f89162b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78d25c679de341d08c0c840991231657", - "placeholder": "​", - "style": "IPY_MODEL_692f4624632847709858c4b0c06097d1", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1290.32it/s]" - } - }, - "678375d8f3fe444fa525d34020ce8c94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_082c0f49338e471a900df64e25963ce9", - "IPY_MODEL_55a91b252ecf4fbea6311de73ef07857", - "IPY_MODEL_240b3517d93d46629dd6a70bbba5cf51" - ], - "layout": "IPY_MODEL_e3c740e55fb04953a2171d44514f5c58", - "tabbable": null, - "tooltip": null - } - }, - "692f4624632847709858c4b0c06097d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a88bb9d45604f988d52b903e7c0a94e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b29ea8e3efa946a68e18e9d12eb8af54", - "placeholder": "​", - "style": "IPY_MODEL_b5fee3c6d86a4afab187043597c9b238", + "style": "IPY_MODEL_e2947083f54343ac98ee23ccff13ec59", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 239640.28 examples/s]" + "value": 60000.0 } }, - "6b7642cc9871480cb4a8c2fba55fa10e": { + "527ac4413b0c45d9b0a4af216feac901": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4457,31 +4243,7 @@ "width": null } }, - "6c55c29353e849aabd683fc81a40a89f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fd4a2515950949cb8f82b42492b20107", - "IPY_MODEL_e0609713a8684c4089c523eb6a6fe2d4", - "IPY_MODEL_6726c970164f4f919919ab26f89162b3" - ], - "layout": "IPY_MODEL_da32f06b79e244038daed9c76595f0f1", - "tabbable": null, - "tooltip": null - } - }, - "7052cd84faeb41cbb8eefcc2c3d010ed": { + "53b2f74e987b45a5bdfd6bbdf322ecb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4496,15 +4258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_33a1a9cfe2804fd88f467e7e9c20e1e1", + "layout": "IPY_MODEL_4129b09b8f22418fa98b017137dbf26b", "placeholder": "​", - "style": "IPY_MODEL_2f39aaa4c6a24d23b0766aea99ab3987", + "style": "IPY_MODEL_03e822c4ea3c4f40ae61a20481bbcf71", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.28it/s]" + "value": " 40/40 [00:00<00:00, 56.94it/s]" } }, - "730b3acd812f4126ab76aa1bd5fdcc4b": { + "55a46f69a848418cba68dea3cc109113": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4557,23 +4319,49 @@ "width": null } }, - "73c8b4db66c0416691e571d2394b3936": { + "5621938c593842fa97157e9083b2d4a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "56549934bb8b4370915a9339138d273c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e190f8b319134def98c32b7a5016fae0", + "IPY_MODEL_5122f8d5afdf40dd8b74c186ca1cea9b", + "IPY_MODEL_a5a2adf4e9564a7a88a9efb53abeef28" + ], + "layout": "IPY_MODEL_3a8d9ea9e7ca47d3b7b8c7d7a76a920c", + "tabbable": null, + "tooltip": null } }, - "74a3baed822c485fa6e06f17073f1d15": { + "5938e19a245e488aa2bcf4f0fde7c061": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4589,7 +4377,49 @@ "description_width": "" } }, - "77ae19f35bdf479f83f47b4c6e16bcf4": { + "5ae2353a45d646d7967aa360871859f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5be8e4b7db7940b5a22aca8a89b771f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28173da4edf74648b7c8dc14dec217ff", + "IPY_MODEL_1a70712be579474db5f6c1904e32e1c1", + "IPY_MODEL_dca4ddc98aca4838b13b9761c90b4f59" + ], + "layout": "IPY_MODEL_41e1fd1ebc7048ca9f24a9114c77b296", + "tabbable": null, + "tooltip": null + } + }, + "5d4b1f89a6584fed9ae98aa5a9c0e273": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4607,7 +4437,7 @@ "text_color": null } }, - "78d25c679de341d08c0c840991231657": { + "610b357d582f4cb791c03e66cd02ddae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4660,7 +4490,7 @@ "width": null } }, - "7e1ff3e34d3c49caad23eb7e9a2ffaf6": { + "65bf121055374645af97ac18ab95221d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4713,7 +4543,7 @@ "width": null } }, - "7e940b8484a44373862483908f8603db": { + "67af2714ad5641808e4c38e47312c61a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,60 +4596,31 @@ "width": null } }, - "8011b9b5b02c4cf199be26ba2deb66b1": { - "model_module": "@jupyter-widgets/base", + "6b7f0209fffe464da1552b8f9bedb1f4": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_32a164f3eb4f498888ac958438af9d1f", + "IPY_MODEL_be69891db2c845979ef461306b5460fb", + "IPY_MODEL_9851708cece84eaa987d910cb56ec60c" + ], + "layout": "IPY_MODEL_f036d6b9c0df439c9d4fffc268c3b0f1", + "tabbable": null, + "tooltip": null } }, - "811601011a024e32986e64a1513db2d5": { + "6eb643d5d4e340e99bf3820633dbce6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4837,7 +4638,7 @@ "text_color": null } }, - "8499b3dd5f864e5a94cd507844cad1ec": { + "70796253deb141feb43e6bebd0f20e6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4890,7 +4691,30 @@ "width": null } }, - "88314cef04524d1a85daebcedae1ff6a": { + "739a2ac473004c7a83e7b1a1fb9123b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70796253deb141feb43e6bebd0f20e6f", + "placeholder": "​", + "style": "IPY_MODEL_7badc82ca5414a80a4b0c4c8dbdf64b8", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1134.53it/s]" + } + }, + "744805aa63e247828f784fdc45db35ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4943,60 +4767,49 @@ "width": null } }, - "8a5bad1c31144463b12bb75d6a6b5b75": { - "model_module": "@jupyter-widgets/base", + "7481d35dd38b40ca95bbd63bb1651e1c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7563e14e5ad24aa285a0d80e59cdd41e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0fb863f8786844f2bd1f8aa6fa2ad8e9", + "IPY_MODEL_d4c42aa05f13403e92e658224acba840", + "IPY_MODEL_f6b84b7b26fb4ad0b00a2080ca788f2c" + ], + "layout": "IPY_MODEL_5023d0218cbf4a69b63b5f6a6d54f073", + "tabbable": null, + "tooltip": null } }, - "8b86b62c9d534afd8d085de159583428": { + "76e72eb7a31f45e8814290f43be25bf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5014,7 +4827,7 @@ "text_color": null } }, - "8b9c8bbff9d6486bb4439bbea955d6e0": { + "76ecd7428dc541709a4f2d25d784354f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5067,7 +4880,7 @@ "width": null } }, - "8c83b7cde83d42628f45812c4d8dce86": { + "79d7f02883414d61b263c4320e04931e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5120,47 +4933,66 @@ "width": null } }, - "8e39e3083e0948878024a2772e960428": { + "7a2913cecf194812b334d9cc9c61fa2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7abf5d13f10d4fa097c867780436dc8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9bfa17fcc87439ca4912abd99217e06", - "IPY_MODEL_6506d6af2c5b4243b845da2b7cdbca49", - "IPY_MODEL_bbc4266819394f66bcab4138f525ee52" - ], - "layout": "IPY_MODEL_8499b3dd5f864e5a94cd507844cad1ec", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a87d6f090bc0457d8b0527479ed9c7a7", + "placeholder": "​", + "style": "IPY_MODEL_aa322526a97d415b9961408f9b40b143", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.71it/s]" } }, - "907261e1e53b4107b218ca28d5c70b0f": { + "7badc82ca5414a80a4b0c4c8dbdf64b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "924e788edbe6435683b771360d131993": { + "7daaf6a86ffd4834a065210fcab69a0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5193,109 +5025,45 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "927115af3d90415fad6e48adb17b5853": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "92cdf07aa86d4657bb8fbd859a9bda76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "934aabfe9a994494aaaa79e9738430b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0a58eea28eb54bebbb8feee6050f88e4", - "IPY_MODEL_a9cd43f674d94f75bce3d21255d73d31", - "IPY_MODEL_c25f6c7ea91642fb97bcdb19edfd2df4" - ], - "layout": "IPY_MODEL_2a2ffb2a35184d118bfc8b003ecc387a", - "tabbable": null, - "tooltip": null + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9703ef2bf4644e038e7a13e150314dbd": { + "7e88473ecb404a65a312d4d93fd0432e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a165db2b19a74c2f938c7d694e525926", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af604a97cad643f3af620c6334f9eb7e", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "985af320a2f44fd7a0a667374dada460": { + "7ff1a331657040b3b7124d2b8c47f45b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5348,7 +5116,7 @@ "width": null } }, - "9a63d2d076f0454292f9cd0aec23805c": { + "83c8d2dfb00a4b0dae6ed23af048d7ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5401,7 +5169,7 @@ "width": null } }, - "9cb1ff0574624b2d8d384461ce4bfd6d": { + "8648bb270a434d839bb63f51a140cc71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5416,15 +5184,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1351e71e76a4086beef3907d092a5f9", + "layout": "IPY_MODEL_bcef24339cc14f42903dbde4f7f78695", "placeholder": "​", - "style": "IPY_MODEL_f7cb68abf11143bbbca1129e9ea6889f", + "style": "IPY_MODEL_02d3be24caec40e2ad95769ab44b473d", "tabbable": null, "tooltip": null, "value": "100%" } }, - "9dd096994de646e3ad1bc4586397ab8b": { + "88dc41c0e97f4b8888b3446afe1c90c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5440,7 +5208,25 @@ "description_width": "" } }, - "9dd62db46f87480cbbc350933384ca97": { + "89546d3305f74c02a533a1c332bbdd76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8cc052bc26c64436b2e556ba35239873": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5493,7 +5279,111 @@ "width": null } }, - "9e3ccebb468146d0a1a77192630cbe6e": { + "8d0cb5d8af7f491696758ea40d39d4e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_25451e345fcf4e2384e0fd87bffeae2c", + "placeholder": "​", + "style": "IPY_MODEL_5ae2353a45d646d7967aa360871859f9", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 281094.35 examples/s]" + } + }, + "916c29ce2d2c435486a7af805806bac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd2e434696784834b978d928717fbe8d", + "IPY_MODEL_07b4528c25f94cc2bfe65b20fc6f82fd", + "IPY_MODEL_af460e7a258f4fa8809b6cafbe06cc18" + ], + "layout": "IPY_MODEL_e7124fe9cee740bcb7d840253a3fe518", + "tabbable": null, + "tooltip": null + } + }, + "9851708cece84eaa987d910cb56ec60c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_46e7fffa8e484541b153c6f62bc59ab5", + "placeholder": "​", + "style": "IPY_MODEL_76e72eb7a31f45e8814290f43be25bf5", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 58.8MB/s]" + } + }, + "98c1520586874449b9f3840a4fda7c0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9954a09e3a90435193ea01d218b5c117": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9a4221150d324e0988f29b43c59df08a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5546,31 +5436,25 @@ "width": null } }, - "9e4d34f1dafd42108013827c12b7a9ec": { + "9b3345d149374a3a9f53dee9312b6e4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9cb1ff0574624b2d8d384461ce4bfd6d", - "IPY_MODEL_306ae28149d44a228735d2b7039937e6", - "IPY_MODEL_cbef1fc290164ccf84ddd72eb12766f4" - ], - "layout": "IPY_MODEL_f572abdd053b484fa923c35c6c1b7441", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0d516f5941c4557bdba5b1e744d2f72": { + "9c776a9c550743feaef06995240b45d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5623,7 +5507,56 @@ "width": null } }, - "a165db2b19a74c2f938c7d694e525926": { + "9caf4b4175f74931a8e29555d56a5cf4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a66f243ae972404f8bbf95579e4fc3ee", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_da0691a3418941b79b09fe086ce38778", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "a02438583e914e80a9edeec461675c63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dbda3f69bdb3488887f2171a5013b4cd", + "placeholder": "​", + "style": "IPY_MODEL_7481d35dd38b40ca95bbd63bb1651e1c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.71it/s]" + } + }, + "a1474539b99c4c069e5a0cc75abd58a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5676,39 +5609,96 @@ "width": null } }, - "a1923fce48364b85a78a93b1a44e1052": { + "a285b1fda3104d11b406b25e4e839fc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d71ef26cdb624a41849c7f983bfa0323", + "IPY_MODEL_07846f593d614c67bc252174f3b06df8", + "IPY_MODEL_739a2ac473004c7a83e7b1a1fb9123b0" + ], + "layout": "IPY_MODEL_b42750a665994ab48977ebd7c912326c", + "tabbable": null, + "tooltip": null + } + }, + "a4b21b3edc0740768e50dae0093a1b40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d14aaa8956f742cf945328e790de0db9", + "placeholder": "​", + "style": "IPY_MODEL_9b3345d149374a3a9f53dee9312b6e4f", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 68.2MB/s]" + } + }, + "a4b545185c5d4644814ac73d51cff97d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e1bbf66f3b824ea6949f354f06559b2b", + "IPY_MODEL_1c119d3815a94d07a3a80110a36f2669", + "IPY_MODEL_d1c09326e39d4c7cb01e678c8242efbb" + ], + "layout": "IPY_MODEL_e278318c62f84b08a1cdca7849af9d5e", + "tabbable": null, + "tooltip": null } }, - "a2916522c3814be0b065ab22fa354d72": { + "a595d095cbc049fca70f2b6cedb97861": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2d6049e0027448686da307d11b43b57": { + "a5a2adf4e9564a7a88a9efb53abeef28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5723,15 +5713,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c83b7cde83d42628f45812c4d8dce86", + "layout": "IPY_MODEL_16d380e0df77435282bb3d529594c4b5", "placeholder": "​", - "style": "IPY_MODEL_500d900734f649c2b44bcc26d2e42db1", + "style": "IPY_MODEL_e139a6425bf74dc8a8502512c0687de1", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 60000/60000 [00:11<00:00, 5521.89 examples/s]" } }, - "a4a0713774214a97bf4107a3c0c0fa85": { + "a66f243ae972404f8bbf95579e4fc3ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5784,31 +5774,25 @@ "width": null } }, - "a61ad2ad4b744a2ca9088d411dae337f": { + "a71434c6d0e04c9d9f7254a31dcdf3a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18e38ac0e1f6478d9f7300a1682d8d0c", - "IPY_MODEL_9703ef2bf4644e038e7a13e150314dbd", - "IPY_MODEL_bec1f90f44b24feaa006c199f1565547" - ], - "layout": "IPY_MODEL_5df4998e41664c4f8bcdc8714ab169db", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a907dcb7d0e14bd69c92d3e6f6324ebb": { + "a87d6f090bc0457d8b0527479ed9c7a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5861,31 +5845,121 @@ "width": null } }, - "a93f09c26a99419f9408245e9fb75e1b": { + "aa322526a97d415b9961408f9b40b143": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab457040f53740fc9999e1d504d2a51c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "adffa2710a0545cfb5e6086c556a00a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aed4f72dda8b4590bef309071af45f33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2d6049e0027448686da307d11b43b57", - "IPY_MODEL_4b8e4ff862314d4a91f4d6b6ed79cf3a", - "IPY_MODEL_44106118c38648c6ac9d419718f9521e" - ], - "layout": "IPY_MODEL_b672f339ae614049a4596f0e403e1cd9", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ff1a331657040b3b7124d2b8c47f45b", + "placeholder": "​", + "style": "IPY_MODEL_0844beb068c049daa4758f29b95f56d9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.16MB/s]" + } + }, + "af460e7a258f4fa8809b6cafbe06cc18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f80d3f33b4b443f7b339cfa574c8808b", + "placeholder": "​", + "style": "IPY_MODEL_89546d3305f74c02a533a1c332bbdd76", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 593.80it/s]" + } + }, + "b0417747689248528d0b4d93bbcd4d6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a98cc419a4ac4859b8bec675330417c0": { + "b402346d9cd449999f208e13379066db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5938,7 +6012,7 @@ "width": null } }, - "a9c9484fe19843cd8242aebfa07bca87": { + "b42750a665994ab48977ebd7c912326c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5991,33 +6065,7 @@ "width": null } }, - "a9cd43f674d94f75bce3d21255d73d31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3d55d37d80234295a5576da2f9f452ca", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4639fa5c8f134aafb865cfea7833f138", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "a9dd5bd4c10f4b4285cadaf816f8c62b": { + "b6735ab9e73940ea9fd4d15752f0434b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6067,127 +6115,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "aa83b3e0df7a491b9cc7bba0820ef6b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c784eb6ca0d44ec8fdbaa27388294a9", - "IPY_MODEL_ab7d4cb17d174956af22fd23c819c1ab", - "IPY_MODEL_05c88c06baa34af887bdc5deb3f0ca93" - ], - "layout": "IPY_MODEL_e22c8ad4b22d439f8563b6b9a21e3daa", - "tabbable": null, - "tooltip": null - } - }, - "aae19f3127584f9296ecf0b0ff7c695b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9dd5bd4c10f4b4285cadaf816f8c62b", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_73c8b4db66c0416691e571d2394b3936", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "ab7d4cb17d174956af22fd23c819c1ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4a0713774214a97bf4107a3c0c0fa85", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cd8eb69e49d4b77b074ad62dea1ca7b", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 - } - }, - "abd13d8f3b444f92bc4aeb89a1d336a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "abfbff3a88c24b90924d46cc12cc6d30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3375cbf361d04f8fb15d002f9dfb4097", - "placeholder": "​", - "style": "IPY_MODEL_d545fba9366a46399c6ffeb3a5c4ae01", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "width": null } }, - "ad0023111c034ae2bf185a8e7299a303": { + "b82f7d923f7f4968abb6823e332d8b5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6240,41 +6171,7 @@ "width": null } }, - "af604a97cad643f3af620c6334f9eb7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "aff9494e44414b9ca131464b7ef06d79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b29ea8e3efa946a68e18e9d12eb8af54": { + "ba552f3bea524d3f831f4a9b3346f6ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6327,25 +6224,23 @@ "width": null } }, - "b5fee3c6d86a4afab187043597c9b238": { + "bb7f0142c0f843aea52524450bd6d96f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b672f339ae614049a4596f0e403e1cd9": { + "bcef24339cc14f42903dbde4f7f78695": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6398,30 +6293,59 @@ "width": null } }, - "b9bfa17fcc87439ca4912abd99217e06": { + "be69891db2c845979ef461306b5460fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60855c03fcde46e2a29f9ecc475a6aea", - "placeholder": "​", - "style": "IPY_MODEL_622ac67ab7e543faaad674e9b119aec0", + "layout": "IPY_MODEL_24297e5b0e604438877ede93f02b2859", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88dc41c0e97f4b8888b3446afe1c90c9", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 5175617.0 + } + }, + "bf5b6eb28fd24c3691f23018f9b05c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a1474539b99c4c069e5a0cc75abd58a5", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0417747689248528d0b4d93bbcd4d6e", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 } }, - "ba5b3c3ff51646fca6d9652fe7336d9e": { + "bf7fd900d1004498a79101df1571a72b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6474,95 +6398,23 @@ "width": null } }, - "bb2c790001214f159330cf2a4dcf75f3": { + "c317d4043f56465f849ce406ef98e3e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bb6260a24a574052b8dc3b63327e49b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f1eabe792beb46a2902e776898203d21", - "IPY_MODEL_044b1fe3eaba4fb1bd442fa7be32f390", - "IPY_MODEL_f301fa35fb38444389c42dbc43a712d6" - ], - "layout": "IPY_MODEL_985af320a2f44fd7a0a667374dada460", - "tabbable": null, - "tooltip": null - } - }, - "bbc4266819394f66bcab4138f525ee52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9dd62db46f87480cbbc350933384ca97", - "placeholder": "​", - "style": "IPY_MODEL_4fd706c037d14d15a7401f06a4ea0329", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.56it/s]" - } - }, - "bec1f90f44b24feaa006c199f1565547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a98cc419a4ac4859b8bec675330417c0", - "placeholder": "​", - "style": "IPY_MODEL_0e3d1e5c544a45dbb3873f8a0048eb16", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 52.81it/s]" + "bar_color": null, + "description_width": "" } }, - "c1351e71e76a4086beef3907d092a5f9": { + "c3862f19726f43139736766e91ad2e8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6615,100 +6467,23 @@ "width": null } }, - "c25f6c7ea91642fb97bcdb19edfd2df4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88314cef04524d1a85daebcedae1ff6a", - "placeholder": "​", - "style": "IPY_MODEL_8b86b62c9d534afd8d085de159583428", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 25.8MB/s]" - } - }, - "c52a734ae4b443c494fb694c3022008c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9e3ccebb468146d0a1a77192630cbe6e", - "placeholder": "​", - "style": "IPY_MODEL_dd6da14e6c594d2e8f1564582607dc05", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 591.41it/s]" - } - }, - "c87ed6354806472ab823ca636a72cbe0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_06cc74e6d9b14909aa898c1eec8bef7b", - "IPY_MODEL_400f135f0fad41bcaa5fb9f34a254890", - "IPY_MODEL_e9a71258239242e2acb3be22ed0e1c1b" - ], - "layout": "IPY_MODEL_cd69a0d246894dc8920bcab3063f96ca", - "tabbable": null, - "tooltip": null - } - }, - "cbef1fc290164ccf84ddd72eb12766f4": { + "c483682d58df45a7b94f7e5473449825": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a5bad1c31144463b12bb75d6a6b5b75", - "placeholder": "​", - "style": "IPY_MODEL_ee7c6f935b4046d290506bc6b5f71709", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.87it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ccb13c3a279949ac83416caf994e69b6": { + "c4dec36e37e3418b9d64683574cb2e59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6726,7 +6501,7 @@ "text_color": null } }, - "cd69a0d246894dc8920bcab3063f96ca": { + "cc7c887c523c4ddeb4e7b9558ec18b62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6779,7 +6554,51 @@ "width": null } }, - "cf1042a571f741ff8b4501247a7b737a": { + "cd5d2dd9db804394ab64c453bbd07a35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d119ec5ae01c44198508b90ab13eac79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_527ac4413b0c45d9b0a4af216feac901", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab457040f53740fc9999e1d504d2a51c", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "d14aaa8956f742cf945328e790de0db9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6832,61 +6651,54 @@ "width": null } }, - "cfde35eed3174baa96aff79010b1bfe5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d545fba9366a46399c6ffeb3a5c4ae01": { + "d1c09326e39d4c7cb01e678c8242efbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0024d4199dae41bf903390cc792ed260", + "placeholder": "​", + "style": "IPY_MODEL_fee2191facdb482e9c59a09be601e11f", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 239459.68 examples/s]" } }, - "d6eb5c530ad84d28bbc95826d2099365": { + "d3a7e2a492de443e9fc34cd490473b54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_08032ec8e12548b1b5090e23e9c5cdad", + "IPY_MODEL_3bc507e5e47e4b72aeeea5869a5441ff", + "IPY_MODEL_a02438583e914e80a9edeec461675c63" + ], + "layout": "IPY_MODEL_7daaf6a86ffd4834a065210fcab69a0b", + "tabbable": null, + "tooltip": null } }, - "d70ad9981d414c5891139e8c56004c3d": { + "d3f9915f8fa64a7f9f881537bc002d6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6939,7 +6751,79 @@ "width": null } }, - "d8b14dad19b04b49baca467358d63793": { + "d4c42aa05f13403e92e658224acba840": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76ecd7428dc541709a4f2d25d784354f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c317d4043f56465f849ce406ef98e3e6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "d55109f293164b738bf09e69c5fc4d72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_108812bccbd741fe97637c2274d2b4df", + "placeholder": "​", + "style": "IPY_MODEL_5621938c593842fa97157e9083b2d4a3", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "d71ef26cdb624a41849c7f983bfa0323": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_55a46f69a848418cba68dea3cc109113", + "placeholder": "​", + "style": "IPY_MODEL_5d4b1f89a6584fed9ae98aa5a9c0e273", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "da0691a3418941b79b09fe086ce38778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6955,7 +6839,7 @@ "description_width": "" } }, - "da32f06b79e244038daed9c76595f0f1": { + "dbda3f69bdb3488887f2171a5013b4cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7008,25 +6892,79 @@ "width": null } }, - "dd6da14e6c594d2e8f1564582607dc05": { + "dca4ddc98aca4838b13b9761c90b4f59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e37f3e1b31a7416eab193b86365be678", + "placeholder": "​", + "style": "IPY_MODEL_7e88473ecb404a65a312d4d93fd0432e", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.80it/s]" + } + }, + "dceeba9e537e4860984cb37d3771557a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_400b25482bb94f1ca7b8079db0f5db90", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5938e19a245e488aa2bcf4f0fde7c061", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "de854ac5201c498694e0f3f886f6fe2f": { + "dd2e434696784834b978d928717fbe8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cc7c887c523c4ddeb4e7b9558ec18b62", + "placeholder": "​", + "style": "IPY_MODEL_e19ca719e0774d509109acb9b2d96321", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e139a6425bf74dc8a8502512c0687de1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7044,33 +6982,30 @@ "text_color": null } }, - "e0609713a8684c4089c523eb6a6fe2d4": { + "e190f8b319134def98c32b7a5016fae0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b9c8bbff9d6486bb4439bbea955d6e0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_48bb30d3288d428ebb1c738851326a6e", + "layout": "IPY_MODEL_79d7f02883414d61b263c4320e04931e", + "placeholder": "​", + "style": "IPY_MODEL_a71434c6d0e04c9d9f7254a31dcdf3a0", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Map (num_proc=4): 100%" } }, - "e0c0c52f1d0646b58bbd276a6a9fbada": { + "e19ca719e0774d509109acb9b2d96321": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7088,7 +7023,83 @@ "text_color": null } }, - "e22c8ad4b22d439f8563b6b9a21e3daa": { + "e1a99c2562404d3a8f24c1fed2c86e01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e1bbf66f3b824ea6949f354f06559b2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c776a9c550743feaef06995240b45d2", + "placeholder": "​", + "style": "IPY_MODEL_39147631539c485fb6d9e35eb2bb0674", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "e278318c62f84b08a1cdca7849af9d5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7141,51 +7152,23 @@ "width": null } }, - "e27f5a052608489ab13d73a95f127cc5": { + "e2947083f54343ac98ee23ccff13ec59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e37413872650482a92cd3a0263486b78": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_478e293e37f940adb538a80b4cb2bbe7", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_927115af3d90415fad6e48adb17b5853", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "bar_color": null, + "description_width": "" } }, - "e3c740e55fb04953a2171d44514f5c58": { + "e3586af5ce2c4e0b804c724b9293a6a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7238,7 +7221,7 @@ "width": null } }, - "e5303be63bba4080a74c6b8b79a11b89": { + "e37f3e1b31a7416eab193b86365be678": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7291,48 +7274,60 @@ "width": null } }, - "e9a71258239242e2acb3be22ed0e1c1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ba5b3c3ff51646fca6d9652fe7336d9e", - "placeholder": "​", - "style": "IPY_MODEL_ccb13c3a279949ac83416caf994e69b6", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5702.30 examples/s]" - } - }, - "ee7c6f935b4046d290506bc6b5f71709": { - "model_module": "@jupyter-widgets/controls", + "e7124fe9cee740bcb7d840253a3fe518": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "eecddcbb42544c72a337c357524f9ceb": { + "ee6c43ae39da44d7be4afa23290fcbca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7348,63 +7343,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b7642cc9871480cb4a8c2fba55fa10e", - "max": 40.0, + "layout": "IPY_MODEL_bf7fd900d1004498a79101df1571a72b", + "max": 9015.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d8b14dad19b04b49baca467358d63793", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "f1eabe792beb46a2902e776898203d21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_730b3acd812f4126ab76aa1bd5fdcc4b", - "placeholder": "​", - "style": "IPY_MODEL_596e17a7ea5c4da594dcf5a7db4d3871", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "f301fa35fb38444389c42dbc43a712d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb974854b89d4edf815d2752adaf746a", - "placeholder": "​", - "style": "IPY_MODEL_de854ac5201c498694e0f3f886f6fe2f", + "style": "IPY_MODEL_1090c715109041f69b16b3ea9e7cc89c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 56.42it/s]" + "value": 9015.0 } }, - "f572abdd053b484fa923c35c6c1b7441": { + "f036d6b9c0df439c9d4fffc268c3b0f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7457,43 +7406,78 @@ "width": null } }, - "f7cb68abf11143bbbca1129e9ea6889f": { + "f184c01ff207409fa2616b01a03e66dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_29505eb3ce6041d9bbac0dc879dd4657", + "IPY_MODEL_bf5b6eb28fd24c3691f23018f9b05c7c", + "IPY_MODEL_a4b21b3edc0740768e50dae0093a1b40" + ], + "layout": "IPY_MODEL_b402346d9cd449999f208e13379066db", + "tabbable": null, + "tooltip": null } }, - "f8b15d0f74dc495aa140ae3e0a1fee1b": { + "f4ff351cea04464ea2c5aad09727e327": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d55109f293164b738bf09e69c5fc4d72", + "IPY_MODEL_ee6c43ae39da44d7be4afa23290fcbca", + "IPY_MODEL_aed4f72dda8b4590bef309071af45f33" + ], + "layout": "IPY_MODEL_14e2c08150ea43558eebd6f3486bafdb", + "tabbable": null, + "tooltip": null + } + }, + "f6b84b7b26fb4ad0b00a2080ca788f2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39cc543d130b46e6aac550cff6755f21", + "placeholder": "​", + "style": "IPY_MODEL_2a549bb6200f4e8e8cc477a8cbd5e2b6", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.13it/s]" } }, - "fb974854b89d4edf815d2752adaf746a": { + "f80d3f33b4b443f7b339cfa574c8808b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7546,53 +7530,69 @@ "width": null } }, - "fbfc9749611f42999cf827c6a91c4989": { + "f8285f59b8424d64abd192de82dd8836": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d70ad9981d414c5891139e8c56004c3d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a1923fce48364b85a78a93b1a44e1052", + "layout": "IPY_MODEL_320953a58ed1469888fce350ccdbabd5", + "placeholder": "​", + "style": "IPY_MODEL_adffa2710a0545cfb5e6086c556a00a3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 59.13it/s]" } }, - "fd4a2515950949cb8f82b42492b20107": { + "fee2191facdb482e9c59a09be601e11f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ff8e913873fc4844888676660631126b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5084c1e9bea14b65a257b66df2adbb78", - "placeholder": "​", - "style": "IPY_MODEL_abd13d8f3b444f92bc4aeb89a1d336a2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f0d3db3265d4e6bad4c6aaa33d19772", + "IPY_MODEL_4841910b6f41431f8317ca2f2a18a816", + "IPY_MODEL_8d0cb5d8af7f491696758ea40d39d4e2" + ], + "layout": "IPY_MODEL_744805aa63e247828f784fdc45db35ae", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 7758d68b1..719782b23 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:11.231213Z", - "iopub.status.busy": "2024-12-25T19:56:11.231043Z", - "iopub.status.idle": "2024-12-25T19:56:12.388108Z", - "shell.execute_reply": "2024-12-25T19:56:12.387478Z" + "iopub.execute_input": "2024-12-26T11:17:03.557721Z", + "iopub.status.busy": "2024-12-26T11:17:03.557546Z", + "iopub.status.idle": "2024-12-26T11:17:04.730101Z", + "shell.execute_reply": "2024-12-26T11:17:04.729544Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.390315Z", - "iopub.status.busy": "2024-12-25T19:56:12.390039Z", - "iopub.status.idle": "2024-12-25T19:56:12.408191Z", - "shell.execute_reply": "2024-12-25T19:56:12.407737Z" + "iopub.execute_input": "2024-12-26T11:17:04.732437Z", + "iopub.status.busy": "2024-12-26T11:17:04.732040Z", + "iopub.status.idle": "2024-12-26T11:17:04.750289Z", + "shell.execute_reply": "2024-12-26T11:17:04.749863Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.410021Z", - "iopub.status.busy": "2024-12-25T19:56:12.409654Z", - "iopub.status.idle": "2024-12-25T19:56:12.458335Z", - "shell.execute_reply": "2024-12-25T19:56:12.457750Z" + "iopub.execute_input": "2024-12-26T11:17:04.752376Z", + "iopub.status.busy": "2024-12-26T11:17:04.751975Z", + "iopub.status.idle": "2024-12-26T11:17:04.776395Z", + "shell.execute_reply": "2024-12-26T11:17:04.775527Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.460109Z", - "iopub.status.busy": "2024-12-25T19:56:12.459760Z", - "iopub.status.idle": "2024-12-25T19:56:12.463447Z", - "shell.execute_reply": "2024-12-25T19:56:12.463011Z" + "iopub.execute_input": "2024-12-26T11:17:04.778133Z", + "iopub.status.busy": "2024-12-26T11:17:04.777798Z", + "iopub.status.idle": "2024-12-26T11:17:04.781151Z", + "shell.execute_reply": "2024-12-26T11:17:04.780706Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.465178Z", - "iopub.status.busy": "2024-12-25T19:56:12.464856Z", - "iopub.status.idle": "2024-12-25T19:56:12.472469Z", - "shell.execute_reply": "2024-12-25T19:56:12.472036Z" + "iopub.execute_input": "2024-12-26T11:17:04.782958Z", + "iopub.status.busy": "2024-12-26T11:17:04.782549Z", + "iopub.status.idle": "2024-12-26T11:17:04.789809Z", + "shell.execute_reply": "2024-12-26T11:17:04.789376Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.474221Z", - "iopub.status.busy": "2024-12-25T19:56:12.473890Z", - "iopub.status.idle": "2024-12-25T19:56:12.476348Z", - "shell.execute_reply": "2024-12-25T19:56:12.475894Z" + "iopub.execute_input": "2024-12-26T11:17:04.791526Z", + "iopub.status.busy": "2024-12-26T11:17:04.791249Z", + "iopub.status.idle": "2024-12-26T11:17:04.793881Z", + "shell.execute_reply": "2024-12-26T11:17:04.793400Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:12.478121Z", - "iopub.status.busy": "2024-12-25T19:56:12.477803Z", - "iopub.status.idle": "2024-12-25T19:56:15.576844Z", - "shell.execute_reply": "2024-12-25T19:56:15.576206Z" + "iopub.execute_input": "2024-12-26T11:17:04.795572Z", + "iopub.status.busy": "2024-12-26T11:17:04.795309Z", + "iopub.status.idle": "2024-12-26T11:17:07.876050Z", + "shell.execute_reply": "2024-12-26T11:17:07.875511Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:15.578963Z", - "iopub.status.busy": "2024-12-25T19:56:15.578761Z", - "iopub.status.idle": "2024-12-25T19:56:15.588045Z", - "shell.execute_reply": "2024-12-25T19:56:15.587617Z" + "iopub.execute_input": "2024-12-26T11:17:07.878143Z", + "iopub.status.busy": "2024-12-26T11:17:07.877745Z", + "iopub.status.idle": "2024-12-26T11:17:07.887527Z", + "shell.execute_reply": "2024-12-26T11:17:07.887081Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:15.589615Z", - "iopub.status.busy": "2024-12-25T19:56:15.589443Z", - "iopub.status.idle": "2024-12-25T19:56:17.464513Z", - "shell.execute_reply": "2024-12-25T19:56:17.463858Z" + "iopub.execute_input": "2024-12-26T11:17:07.889358Z", + "iopub.status.busy": "2024-12-26T11:17:07.889032Z", + "iopub.status.idle": "2024-12-26T11:17:09.795289Z", + "shell.execute_reply": "2024-12-26T11:17:09.794573Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.466440Z", - "iopub.status.busy": "2024-12-25T19:56:17.466121Z", - "iopub.status.idle": "2024-12-25T19:56:17.485253Z", - "shell.execute_reply": "2024-12-25T19:56:17.484761Z" + "iopub.execute_input": "2024-12-26T11:17:09.797371Z", + "iopub.status.busy": "2024-12-26T11:17:09.796899Z", + "iopub.status.idle": "2024-12-26T11:17:09.815581Z", + "shell.execute_reply": "2024-12-26T11:17:09.815120Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.486975Z", - "iopub.status.busy": "2024-12-25T19:56:17.486788Z", - "iopub.status.idle": "2024-12-25T19:56:17.494859Z", - "shell.execute_reply": "2024-12-25T19:56:17.494405Z" + "iopub.execute_input": "2024-12-26T11:17:09.817301Z", + "iopub.status.busy": "2024-12-26T11:17:09.816940Z", + "iopub.status.idle": "2024-12-26T11:17:09.824808Z", + "shell.execute_reply": "2024-12-26T11:17:09.824343Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.496396Z", - "iopub.status.busy": "2024-12-25T19:56:17.496221Z", - "iopub.status.idle": "2024-12-25T19:56:17.505201Z", - "shell.execute_reply": "2024-12-25T19:56:17.504758Z" + "iopub.execute_input": "2024-12-26T11:17:09.826519Z", + "iopub.status.busy": "2024-12-26T11:17:09.826205Z", + "iopub.status.idle": "2024-12-26T11:17:09.835237Z", + "shell.execute_reply": "2024-12-26T11:17:09.834673Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.507059Z", - "iopub.status.busy": "2024-12-25T19:56:17.506642Z", - "iopub.status.idle": "2024-12-25T19:56:17.514587Z", - "shell.execute_reply": "2024-12-25T19:56:17.514016Z" + "iopub.execute_input": "2024-12-26T11:17:09.836873Z", + "iopub.status.busy": "2024-12-26T11:17:09.836602Z", + "iopub.status.idle": "2024-12-26T11:17:09.844481Z", + "shell.execute_reply": "2024-12-26T11:17:09.843930Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.516535Z", - "iopub.status.busy": "2024-12-25T19:56:17.516176Z", - "iopub.status.idle": "2024-12-25T19:56:17.525298Z", - "shell.execute_reply": "2024-12-25T19:56:17.524703Z" + "iopub.execute_input": "2024-12-26T11:17:09.846284Z", + "iopub.status.busy": "2024-12-26T11:17:09.845973Z", + "iopub.status.idle": "2024-12-26T11:17:09.854754Z", + "shell.execute_reply": "2024-12-26T11:17:09.854294Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.527072Z", - "iopub.status.busy": "2024-12-25T19:56:17.526787Z", - "iopub.status.idle": "2024-12-25T19:56:17.534514Z", - "shell.execute_reply": "2024-12-25T19:56:17.533947Z" + "iopub.execute_input": "2024-12-26T11:17:09.856381Z", + "iopub.status.busy": "2024-12-26T11:17:09.856075Z", + "iopub.status.idle": "2024-12-26T11:17:09.863563Z", + "shell.execute_reply": "2024-12-26T11:17:09.862918Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.536479Z", - "iopub.status.busy": "2024-12-25T19:56:17.535951Z", - "iopub.status.idle": "2024-12-25T19:56:17.543478Z", - "shell.execute_reply": "2024-12-25T19:56:17.543043Z" + "iopub.execute_input": "2024-12-26T11:17:09.865193Z", + "iopub.status.busy": "2024-12-26T11:17:09.865021Z", + "iopub.status.idle": "2024-12-26T11:17:09.872462Z", + "shell.execute_reply": "2024-12-26T11:17:09.871999Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:17.545334Z", - "iopub.status.busy": "2024-12-25T19:56:17.544998Z", - "iopub.status.idle": "2024-12-25T19:56:17.553214Z", - "shell.execute_reply": "2024-12-25T19:56:17.552758Z" + "iopub.execute_input": "2024-12-26T11:17:09.874085Z", + "iopub.status.busy": "2024-12-26T11:17:09.873918Z", + "iopub.status.idle": "2024-12-26T11:17:09.882269Z", + "shell.execute_reply": "2024-12-26T11:17:09.881800Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 250797233..4ffb03ed8 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -804,7 +804,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'change_pin'}
+Classes: {'supported_cards_and_currencies', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'apple_pay_or_google_pay'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 8fd7cb214..46f1322a7 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:20.348167Z", - "iopub.status.busy": "2024-12-25T19:56:20.348001Z", - "iopub.status.idle": "2024-12-25T19:56:23.162184Z", - "shell.execute_reply": "2024-12-25T19:56:23.161680Z" + "iopub.execute_input": "2024-12-26T11:17:12.554745Z", + "iopub.status.busy": "2024-12-26T11:17:12.554574Z", + "iopub.status.idle": "2024-12-26T11:17:15.446022Z", + "shell.execute_reply": "2024-12-26T11:17:15.445427Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.164239Z", - "iopub.status.busy": "2024-12-25T19:56:23.163949Z", - "iopub.status.idle": "2024-12-25T19:56:23.167268Z", - "shell.execute_reply": "2024-12-25T19:56:23.166816Z" + "iopub.execute_input": "2024-12-26T11:17:15.448227Z", + "iopub.status.busy": "2024-12-26T11:17:15.447923Z", + "iopub.status.idle": "2024-12-26T11:17:15.451436Z", + "shell.execute_reply": "2024-12-26T11:17:15.450954Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.168875Z", - "iopub.status.busy": "2024-12-25T19:56:23.168545Z", - "iopub.status.idle": "2024-12-25T19:56:23.171626Z", - "shell.execute_reply": "2024-12-25T19:56:23.171160Z" + "iopub.execute_input": "2024-12-26T11:17:15.452914Z", + "iopub.status.busy": "2024-12-26T11:17:15.452739Z", + "iopub.status.idle": "2024-12-26T11:17:15.455650Z", + "shell.execute_reply": "2024-12-26T11:17:15.455224Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.173355Z", - "iopub.status.busy": "2024-12-25T19:56:23.173014Z", - "iopub.status.idle": "2024-12-25T19:56:23.227446Z", - "shell.execute_reply": "2024-12-25T19:56:23.226893Z" + "iopub.execute_input": "2024-12-26T11:17:15.457278Z", + "iopub.status.busy": "2024-12-26T11:17:15.456933Z", + "iopub.status.idle": "2024-12-26T11:17:15.480938Z", + "shell.execute_reply": "2024-12-26T11:17:15.480487Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.229248Z", - "iopub.status.busy": "2024-12-25T19:56:23.228912Z", - "iopub.status.idle": "2024-12-25T19:56:23.232826Z", - "shell.execute_reply": "2024-12-25T19:56:23.232344Z" + "iopub.execute_input": "2024-12-26T11:17:15.482601Z", + "iopub.status.busy": "2024-12-26T11:17:15.482271Z", + "iopub.status.idle": "2024-12-26T11:17:15.486113Z", + "shell.execute_reply": "2024-12-26T11:17:15.485669Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'apple_pay_or_google_pay'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.234471Z", - "iopub.status.busy": "2024-12-25T19:56:23.234169Z", - "iopub.status.idle": "2024-12-25T19:56:23.236983Z", - "shell.execute_reply": "2024-12-25T19:56:23.236544Z" + "iopub.execute_input": "2024-12-26T11:17:15.487781Z", + "iopub.status.busy": "2024-12-26T11:17:15.487501Z", + "iopub.status.idle": "2024-12-26T11:17:15.490750Z", + "shell.execute_reply": "2024-12-26T11:17:15.490295Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:23.238690Z", - "iopub.status.busy": "2024-12-25T19:56:23.238516Z", - "iopub.status.idle": "2024-12-25T19:56:29.321329Z", - "shell.execute_reply": "2024-12-25T19:56:29.320771Z" + "iopub.execute_input": "2024-12-26T11:17:15.492414Z", + "iopub.status.busy": "2024-12-26T11:17:15.492239Z", + "iopub.status.idle": "2024-12-26T11:17:21.069939Z", + "shell.execute_reply": "2024-12-26T11:17:21.069233Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:29.323599Z", - "iopub.status.busy": "2024-12-25T19:56:29.323218Z", - "iopub.status.idle": "2024-12-25T19:56:30.190894Z", - "shell.execute_reply": "2024-12-25T19:56:30.190315Z" + "iopub.execute_input": "2024-12-26T11:17:21.072578Z", + "iopub.status.busy": "2024-12-26T11:17:21.071988Z", + "iopub.status.idle": "2024-12-26T11:17:21.978950Z", + "shell.execute_reply": "2024-12-26T11:17:21.978376Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.193317Z", - "iopub.status.busy": "2024-12-25T19:56:30.192784Z", - "iopub.status.idle": "2024-12-25T19:56:30.195798Z", - "shell.execute_reply": "2024-12-25T19:56:30.195309Z" + "iopub.execute_input": "2024-12-26T11:17:21.981255Z", + "iopub.status.busy": "2024-12-26T11:17:21.980872Z", + "iopub.status.idle": "2024-12-26T11:17:21.983774Z", + "shell.execute_reply": "2024-12-26T11:17:21.983259Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.197722Z", - "iopub.status.busy": "2024-12-25T19:56:30.197327Z", - "iopub.status.idle": "2024-12-25T19:56:30.384404Z", - "shell.execute_reply": "2024-12-25T19:56:30.383777Z" + "iopub.execute_input": "2024-12-26T11:17:21.985729Z", + "iopub.status.busy": "2024-12-26T11:17:21.985365Z", + "iopub.status.idle": "2024-12-26T11:17:22.176826Z", + "shell.execute_reply": "2024-12-26T11:17:22.176196Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.387750Z", - "iopub.status.busy": "2024-12-25T19:56:30.386980Z", - "iopub.status.idle": "2024-12-25T19:56:30.412023Z", - "shell.execute_reply": "2024-12-25T19:56:30.411504Z" + "iopub.execute_input": "2024-12-26T11:17:22.179229Z", + "iopub.status.busy": "2024-12-26T11:17:22.178802Z", + "iopub.status.idle": "2024-12-26T11:17:22.202825Z", + "shell.execute_reply": "2024-12-26T11:17:22.202313Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.414911Z", - "iopub.status.busy": "2024-12-25T19:56:30.414155Z", - "iopub.status.idle": "2024-12-25T19:56:30.423056Z", - "shell.execute_reply": "2024-12-25T19:56:30.422466Z" + "iopub.execute_input": "2024-12-26T11:17:22.204831Z", + "iopub.status.busy": "2024-12-26T11:17:22.204440Z", + "iopub.status.idle": "2024-12-26T11:17:22.214119Z", + "shell.execute_reply": "2024-12-26T11:17:22.213648Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.424844Z", - "iopub.status.busy": "2024-12-25T19:56:30.424525Z", - "iopub.status.idle": "2024-12-25T19:56:30.428872Z", - "shell.execute_reply": "2024-12-25T19:56:30.428309Z" + "iopub.execute_input": "2024-12-26T11:17:22.215939Z", + "iopub.status.busy": "2024-12-26T11:17:22.215621Z", + "iopub.status.idle": "2024-12-26T11:17:22.219962Z", + "shell.execute_reply": "2024-12-26T11:17:22.219400Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.430671Z", - "iopub.status.busy": "2024-12-25T19:56:30.430494Z", - "iopub.status.idle": "2024-12-25T19:56:30.436950Z", - "shell.execute_reply": "2024-12-25T19:56:30.436514Z" + "iopub.execute_input": "2024-12-26T11:17:22.221770Z", + "iopub.status.busy": "2024-12-26T11:17:22.221382Z", + "iopub.status.idle": "2024-12-26T11:17:22.227858Z", + "shell.execute_reply": "2024-12-26T11:17:22.227296Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.438751Z", - "iopub.status.busy": "2024-12-25T19:56:30.438444Z", - "iopub.status.idle": "2024-12-25T19:56:30.445101Z", - "shell.execute_reply": "2024-12-25T19:56:30.444528Z" + "iopub.execute_input": "2024-12-26T11:17:22.229626Z", + "iopub.status.busy": "2024-12-26T11:17:22.229227Z", + "iopub.status.idle": "2024-12-26T11:17:22.235900Z", + "shell.execute_reply": "2024-12-26T11:17:22.235345Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.446751Z", - "iopub.status.busy": "2024-12-25T19:56:30.446445Z", - "iopub.status.idle": "2024-12-25T19:56:30.452338Z", - "shell.execute_reply": "2024-12-25T19:56:30.451769Z" + "iopub.execute_input": "2024-12-26T11:17:22.237487Z", + "iopub.status.busy": "2024-12-26T11:17:22.237175Z", + "iopub.status.idle": "2024-12-26T11:17:22.242936Z", + "shell.execute_reply": "2024-12-26T11:17:22.242489Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.454336Z", - "iopub.status.busy": "2024-12-25T19:56:30.453905Z", - "iopub.status.idle": "2024-12-25T19:56:30.462596Z", - "shell.execute_reply": "2024-12-25T19:56:30.462131Z" + "iopub.execute_input": "2024-12-26T11:17:22.244547Z", + "iopub.status.busy": "2024-12-26T11:17:22.244376Z", + "iopub.status.idle": "2024-12-26T11:17:22.252712Z", + "shell.execute_reply": "2024-12-26T11:17:22.252253Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.464058Z", - "iopub.status.busy": "2024-12-25T19:56:30.463889Z", - "iopub.status.idle": "2024-12-25T19:56:30.469174Z", - "shell.execute_reply": "2024-12-25T19:56:30.468727Z" + "iopub.execute_input": "2024-12-26T11:17:22.254210Z", + "iopub.status.busy": "2024-12-26T11:17:22.254042Z", + "iopub.status.idle": "2024-12-26T11:17:22.259413Z", + "shell.execute_reply": "2024-12-26T11:17:22.258929Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.470700Z", - "iopub.status.busy": "2024-12-25T19:56:30.470527Z", - "iopub.status.idle": "2024-12-25T19:56:30.475963Z", - "shell.execute_reply": "2024-12-25T19:56:30.475509Z" + "iopub.execute_input": "2024-12-26T11:17:22.260873Z", + "iopub.status.busy": "2024-12-26T11:17:22.260703Z", + "iopub.status.idle": "2024-12-26T11:17:22.266082Z", + "shell.execute_reply": "2024-12-26T11:17:22.265634Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.477569Z", - "iopub.status.busy": "2024-12-25T19:56:30.477260Z", - "iopub.status.idle": "2024-12-25T19:56:30.481045Z", - "shell.execute_reply": "2024-12-25T19:56:30.480459Z" + "iopub.execute_input": "2024-12-26T11:17:22.267789Z", + "iopub.status.busy": "2024-12-26T11:17:22.267456Z", + "iopub.status.idle": "2024-12-26T11:17:22.270990Z", + "shell.execute_reply": "2024-12-26T11:17:22.270543Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:30.482747Z", - "iopub.status.busy": "2024-12-25T19:56:30.482572Z", - "iopub.status.idle": "2024-12-25T19:56:30.487722Z", - "shell.execute_reply": "2024-12-25T19:56:30.487263Z" + "iopub.execute_input": "2024-12-26T11:17:22.272660Z", + "iopub.status.busy": "2024-12-26T11:17:22.272339Z", + "iopub.status.idle": "2024-12-26T11:17:22.277717Z", + "shell.execute_reply": "2024-12-26T11:17:22.277159Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index b8886659f..9f44d2300 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -846,7 +846,7 @@

4. Identify Data Issues Using Datalab @@ -892,13 +892,13 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3516,16 +3516,16 @@

1. Load the Dataset
---2024-12-25 19:56:49--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+--2024-12-26 11:17:41--  https://s.cleanlab.ai/CIFAR-10-subset.zip
 Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
 Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
-CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.04s
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.008s
 
-2024-12-25 19:56:50 (26.3 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-12-26 11:17:41 (112 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3595,7 +3595,7 @@

2. Run Datalab Analysis
-
+
@@ -3818,35 +3818,35 @@

3. Interpret the Results - is_dark_issue dark_score + is_dark_issue 0 - True 0.237196 + True 1 - True 0.197229 + True 2 - True 0.254188 + True 3 - True 0.229170 + True 4 - True 0.208907 + True ... @@ -3855,28 +3855,28 @@

3. Interpret the ResultsFrog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 4a8ab4416..c7f81ee55 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:33.822787Z", - "iopub.status.busy": "2024-12-25T19:56:33.822622Z", - "iopub.status.idle": "2024-12-25T19:56:34.503013Z", - "shell.execute_reply": "2024-12-25T19:56:34.502383Z" + "iopub.execute_input": "2024-12-26T11:17:25.638853Z", + "iopub.status.busy": "2024-12-26T11:17:25.638436Z", + "iopub.status.idle": "2024-12-26T11:17:26.318059Z", + "shell.execute_reply": "2024-12-26T11:17:26.317500Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:34.505094Z", - "iopub.status.busy": "2024-12-25T19:56:34.504846Z", - "iopub.status.idle": "2024-12-25T19:56:34.637030Z", - "shell.execute_reply": "2024-12-25T19:56:34.636538Z" + "iopub.execute_input": "2024-12-26T11:17:26.320368Z", + "iopub.status.busy": "2024-12-26T11:17:26.319937Z", + "iopub.status.idle": "2024-12-26T11:17:26.449619Z", + "shell.execute_reply": "2024-12-26T11:17:26.449145Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:34.639053Z", - "iopub.status.busy": "2024-12-25T19:56:34.638585Z", - "iopub.status.idle": "2024-12-25T19:56:34.657606Z", - "shell.execute_reply": "2024-12-25T19:56:34.656947Z" + "iopub.execute_input": "2024-12-26T11:17:26.451455Z", + "iopub.status.busy": "2024-12-26T11:17:26.451083Z", + "iopub.status.idle": "2024-12-26T11:17:26.470452Z", + "shell.execute_reply": "2024-12-26T11:17:26.469872Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:34.659954Z", - "iopub.status.busy": "2024-12-25T19:56:34.659479Z", - "iopub.status.idle": "2024-12-25T19:56:37.134102Z", - "shell.execute_reply": "2024-12-25T19:56:37.133400Z" + "iopub.execute_input": "2024-12-26T11:17:26.472659Z", + "iopub.status.busy": "2024-12-26T11:17:26.472230Z", + "iopub.status.idle": "2024-12-26T11:17:28.999474Z", + "shell.execute_reply": "2024-12-26T11:17:28.998771Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 523 issues found in the dataset.\n" + "Audit complete. 524 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356924\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356924 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651838 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:37.136729Z", - "iopub.status.busy": "2024-12-25T19:56:37.136121Z", - "iopub.status.idle": "2024-12-25T19:56:46.773390Z", - "shell.execute_reply": "2024-12-25T19:56:46.772893Z" + "iopub.execute_input": "2024-12-26T11:17:29.001564Z", + "iopub.status.busy": "2024-12-26T11:17:29.001200Z", + "iopub.status.idle": "2024-12-26T11:17:37.670097Z", + "shell.execute_reply": "2024-12-26T11:17:37.669567Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:46.775356Z", - "iopub.status.busy": "2024-12-25T19:56:46.775028Z", - "iopub.status.idle": "2024-12-25T19:56:46.934893Z", - "shell.execute_reply": "2024-12-25T19:56:46.934248Z" + "iopub.execute_input": "2024-12-26T11:17:37.672065Z", + "iopub.status.busy": "2024-12-26T11:17:37.671720Z", + "iopub.status.idle": "2024-12-26T11:17:37.835364Z", + "shell.execute_reply": "2024-12-26T11:17:37.834655Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:46.937134Z", - "iopub.status.busy": "2024-12-25T19:56:46.936727Z", - "iopub.status.idle": "2024-12-25T19:56:48.246334Z", - "shell.execute_reply": "2024-12-25T19:56:48.245743Z" + "iopub.execute_input": "2024-12-26T11:17:37.837672Z", + "iopub.status.busy": "2024-12-26T11:17:37.837289Z", + "iopub.status.idle": "2024-12-26T11:17:39.289372Z", + "shell.execute_reply": "2024-12-26T11:17:39.288770Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.248219Z", - "iopub.status.busy": "2024-12-25T19:56:48.247871Z", - "iopub.status.idle": "2024-12-25T19:56:48.644563Z", - "shell.execute_reply": "2024-12-25T19:56:48.643974Z" + "iopub.execute_input": "2024-12-26T11:17:39.291271Z", + "iopub.status.busy": "2024-12-26T11:17:39.290934Z", + "iopub.status.idle": "2024-12-26T11:17:39.706868Z", + "shell.execute_reply": "2024-12-26T11:17:39.706284Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.647103Z", - "iopub.status.busy": "2024-12-25T19:56:48.646433Z", - "iopub.status.idle": "2024-12-25T19:56:48.659924Z", - "shell.execute_reply": "2024-12-25T19:56:48.659505Z" + "iopub.execute_input": "2024-12-26T11:17:39.708810Z", + "iopub.status.busy": "2024-12-26T11:17:39.708411Z", + "iopub.status.idle": "2024-12-26T11:17:39.721690Z", + "shell.execute_reply": "2024-12-26T11:17:39.721151Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.661631Z", - "iopub.status.busy": "2024-12-25T19:56:48.661326Z", - "iopub.status.idle": "2024-12-25T19:56:48.680098Z", - "shell.execute_reply": "2024-12-25T19:56:48.679526Z" + "iopub.execute_input": "2024-12-26T11:17:39.723563Z", + "iopub.status.busy": "2024-12-26T11:17:39.723161Z", + "iopub.status.idle": "2024-12-26T11:17:39.742607Z", + "shell.execute_reply": "2024-12-26T11:17:39.742042Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.681841Z", - "iopub.status.busy": "2024-12-25T19:56:48.681494Z", - "iopub.status.idle": "2024-12-25T19:56:48.913588Z", - "shell.execute_reply": "2024-12-25T19:56:48.913060Z" + "iopub.execute_input": "2024-12-26T11:17:39.744423Z", + "iopub.status.busy": "2024-12-26T11:17:39.744116Z", + "iopub.status.idle": "2024-12-26T11:17:39.992027Z", + "shell.execute_reply": "2024-12-26T11:17:39.991394Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.915617Z", - "iopub.status.busy": "2024-12-25T19:56:48.915439Z", - "iopub.status.idle": "2024-12-25T19:56:48.934301Z", - "shell.execute_reply": "2024-12-25T19:56:48.933668Z" + "iopub.execute_input": "2024-12-26T11:17:39.994216Z", + "iopub.status.busy": "2024-12-26T11:17:39.993801Z", + "iopub.status.idle": "2024-12-26T11:17:40.012818Z", + "shell.execute_reply": "2024-12-26T11:17:40.012223Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:48.936159Z", - "iopub.status.busy": "2024-12-25T19:56:48.935855Z", - "iopub.status.idle": "2024-12-25T19:56:49.105538Z", - "shell.execute_reply": "2024-12-25T19:56:49.105079Z" + "iopub.execute_input": "2024-12-26T11:17:40.014669Z", + "iopub.status.busy": "2024-12-26T11:17:40.014329Z", + "iopub.status.idle": "2024-12-26T11:17:40.182609Z", + "shell.execute_reply": "2024-12-26T11:17:40.182089Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.107422Z", - "iopub.status.busy": "2024-12-25T19:56:49.107084Z", - "iopub.status.idle": "2024-12-25T19:56:49.116883Z", - "shell.execute_reply": "2024-12-25T19:56:49.116445Z" + "iopub.execute_input": "2024-12-26T11:17:40.184368Z", + "iopub.status.busy": "2024-12-26T11:17:40.184189Z", + "iopub.status.idle": "2024-12-26T11:17:40.194055Z", + "shell.execute_reply": "2024-12-26T11:17:40.193607Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.118642Z", - "iopub.status.busy": "2024-12-25T19:56:49.118330Z", - "iopub.status.idle": "2024-12-25T19:56:49.127331Z", - "shell.execute_reply": "2024-12-25T19:56:49.126884Z" + "iopub.execute_input": "2024-12-26T11:17:40.195681Z", + "iopub.status.busy": "2024-12-26T11:17:40.195509Z", + "iopub.status.idle": "2024-12-26T11:17:40.205215Z", + "shell.execute_reply": "2024-12-26T11:17:40.204655Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.129088Z", - "iopub.status.busy": "2024-12-25T19:56:49.128766Z", - "iopub.status.idle": "2024-12-25T19:56:49.154844Z", - "shell.execute_reply": "2024-12-25T19:56:49.154359Z" + "iopub.execute_input": "2024-12-26T11:17:40.206844Z", + "iopub.status.busy": "2024-12-26T11:17:40.206670Z", + "iopub.status.idle": "2024-12-26T11:17:40.242356Z", + "shell.execute_reply": "2024-12-26T11:17:40.241892Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.156503Z", - "iopub.status.busy": "2024-12-25T19:56:49.156175Z", - "iopub.status.idle": "2024-12-25T19:56:49.158737Z", - "shell.execute_reply": "2024-12-25T19:56:49.158289Z" + "iopub.execute_input": "2024-12-26T11:17:40.243880Z", + "iopub.status.busy": "2024-12-26T11:17:40.243714Z", + "iopub.status.idle": "2024-12-26T11:17:40.246455Z", + "shell.execute_reply": "2024-12-26T11:17:40.245998Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.160490Z", - "iopub.status.busy": "2024-12-25T19:56:49.160169Z", - "iopub.status.idle": "2024-12-25T19:56:49.178541Z", - "shell.execute_reply": "2024-12-25T19:56:49.178080Z" + "iopub.execute_input": "2024-12-26T11:17:40.247973Z", + "iopub.status.busy": "2024-12-26T11:17:40.247809Z", + "iopub.status.idle": "2024-12-26T11:17:40.267302Z", + "shell.execute_reply": "2024-12-26T11:17:40.266831Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.180240Z", - "iopub.status.busy": "2024-12-25T19:56:49.179846Z", - "iopub.status.idle": "2024-12-25T19:56:49.184198Z", - "shell.execute_reply": "2024-12-25T19:56:49.183630Z" + "iopub.execute_input": "2024-12-26T11:17:40.268867Z", + "iopub.status.busy": "2024-12-26T11:17:40.268694Z", + "iopub.status.idle": "2024-12-26T11:17:40.273021Z", + "shell.execute_reply": "2024-12-26T11:17:40.272554Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.185796Z", - "iopub.status.busy": "2024-12-25T19:56:49.185600Z", - "iopub.status.idle": "2024-12-25T19:56:49.213262Z", - "shell.execute_reply": "2024-12-25T19:56:49.212705Z" + "iopub.execute_input": "2024-12-26T11:17:40.274712Z", + "iopub.status.busy": "2024-12-26T11:17:40.274388Z", + "iopub.status.idle": "2024-12-26T11:17:40.303277Z", + "shell.execute_reply": "2024-12-26T11:17:40.302688Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.215227Z", - "iopub.status.busy": "2024-12-25T19:56:49.214833Z", - "iopub.status.idle": "2024-12-25T19:56:49.526030Z", - "shell.execute_reply": "2024-12-25T19:56:49.525445Z" + "iopub.execute_input": "2024-12-26T11:17:40.304895Z", + "iopub.status.busy": "2024-12-26T11:17:40.304578Z", + "iopub.status.idle": "2024-12-26T11:17:40.673223Z", + "shell.execute_reply": "2024-12-26T11:17:40.672630Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.527945Z", - "iopub.status.busy": "2024-12-25T19:56:49.527528Z", - "iopub.status.idle": "2024-12-25T19:56:49.530458Z", - "shell.execute_reply": "2024-12-25T19:56:49.530001Z" + "iopub.execute_input": "2024-12-26T11:17:40.674930Z", + "iopub.status.busy": "2024-12-26T11:17:40.674608Z", + "iopub.status.idle": "2024-12-26T11:17:40.677810Z", + "shell.execute_reply": "2024-12-26T11:17:40.677265Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.532241Z", - "iopub.status.busy": "2024-12-25T19:56:49.531911Z", - "iopub.status.idle": "2024-12-25T19:56:49.544940Z", - "shell.execute_reply": "2024-12-25T19:56:49.544370Z" + "iopub.execute_input": "2024-12-26T11:17:40.679593Z", + "iopub.status.busy": "2024-12-26T11:17:40.679284Z", + "iopub.status.idle": "2024-12-26T11:17:40.692433Z", + "shell.execute_reply": "2024-12-26T11:17:40.691862Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.546721Z", - "iopub.status.busy": "2024-12-25T19:56:49.546417Z", - "iopub.status.idle": "2024-12-25T19:56:49.560176Z", - "shell.execute_reply": "2024-12-25T19:56:49.559616Z" + "iopub.execute_input": "2024-12-26T11:17:40.694248Z", + "iopub.status.busy": "2024-12-26T11:17:40.693797Z", + "iopub.status.idle": "2024-12-26T11:17:40.707306Z", + "shell.execute_reply": "2024-12-26T11:17:40.706869Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.562071Z", - "iopub.status.busy": "2024-12-25T19:56:49.561612Z", - "iopub.status.idle": "2024-12-25T19:56:49.571996Z", - "shell.execute_reply": "2024-12-25T19:56:49.571422Z" + "iopub.execute_input": "2024-12-26T11:17:40.708955Z", + "iopub.status.busy": "2024-12-26T11:17:40.708642Z", + "iopub.status.idle": "2024-12-26T11:17:40.718767Z", + "shell.execute_reply": "2024-12-26T11:17:40.718333Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.573875Z", - "iopub.status.busy": "2024-12-25T19:56:49.573466Z", - "iopub.status.idle": "2024-12-25T19:56:49.582837Z", - "shell.execute_reply": "2024-12-25T19:56:49.582280Z" + "iopub.execute_input": "2024-12-26T11:17:40.720514Z", + "iopub.status.busy": "2024-12-26T11:17:40.720133Z", + "iopub.status.idle": "2024-12-26T11:17:40.729314Z", + "shell.execute_reply": "2024-12-26T11:17:40.728762Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.584526Z", - "iopub.status.busy": "2024-12-25T19:56:49.584202Z", - "iopub.status.idle": "2024-12-25T19:56:49.587750Z", - "shell.execute_reply": "2024-12-25T19:56:49.587310Z" + "iopub.execute_input": "2024-12-26T11:17:40.731164Z", + "iopub.status.busy": "2024-12-26T11:17:40.730738Z", + "iopub.status.idle": "2024-12-26T11:17:40.734359Z", + "shell.execute_reply": "2024-12-26T11:17:40.733894Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.589303Z", - "iopub.status.busy": "2024-12-25T19:56:49.589133Z", - "iopub.status.idle": "2024-12-25T19:56:49.639398Z", - "shell.execute_reply": "2024-12-25T19:56:49.638973Z" + "iopub.execute_input": "2024-12-26T11:17:40.736017Z", + "iopub.status.busy": "2024-12-26T11:17:40.735707Z", + "iopub.status.idle": "2024-12-26T11:17:40.787444Z", + "shell.execute_reply": "2024-12-26T11:17:40.786864Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.641246Z", - "iopub.status.busy": "2024-12-25T19:56:49.640824Z", - "iopub.status.idle": "2024-12-25T19:56:49.646455Z", - "shell.execute_reply": "2024-12-25T19:56:49.645993Z" + "iopub.execute_input": "2024-12-26T11:17:40.789770Z", + "iopub.status.busy": "2024-12-26T11:17:40.789317Z", + "iopub.status.idle": "2024-12-26T11:17:40.794991Z", + "shell.execute_reply": "2024-12-26T11:17:40.794497Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.648122Z", - "iopub.status.busy": "2024-12-25T19:56:49.647790Z", - "iopub.status.idle": "2024-12-25T19:56:49.658207Z", - "shell.execute_reply": "2024-12-25T19:56:49.657655Z" + "iopub.execute_input": "2024-12-26T11:17:40.796790Z", + "iopub.status.busy": "2024-12-26T11:17:40.796427Z", + "iopub.status.idle": "2024-12-26T11:17:40.812668Z", + "shell.execute_reply": "2024-12-26T11:17:40.812102Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.659873Z", - "iopub.status.busy": "2024-12-25T19:56:49.659539Z", - "iopub.status.idle": "2024-12-25T19:56:49.840904Z", - "shell.execute_reply": "2024-12-25T19:56:49.840413Z" + "iopub.execute_input": "2024-12-26T11:17:40.814372Z", + "iopub.status.busy": "2024-12-26T11:17:40.813994Z", + "iopub.status.idle": "2024-12-26T11:17:41.029376Z", + "shell.execute_reply": "2024-12-26T11:17:41.028875Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.843000Z", - "iopub.status.busy": "2024-12-25T19:56:49.842597Z", - "iopub.status.idle": "2024-12-25T19:56:49.850726Z", - "shell.execute_reply": "2024-12-25T19:56:49.850171Z" + "iopub.execute_input": "2024-12-26T11:17:41.031171Z", + "iopub.status.busy": "2024-12-26T11:17:41.030821Z", + "iopub.status.idle": "2024-12-26T11:17:41.037821Z", + "shell.execute_reply": "2024-12-26T11:17:41.037360Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:49.852671Z", - "iopub.status.busy": "2024-12-25T19:56:49.852363Z", - "iopub.status.idle": "2024-12-25T19:56:50.477951Z", - "shell.execute_reply": "2024-12-25T19:56:50.477233Z" + "iopub.execute_input": "2024-12-26T11:17:41.039688Z", + "iopub.status.busy": "2024-12-26T11:17:41.039376Z", + "iopub.status.idle": "2024-12-26T11:17:41.396236Z", + "shell.execute_reply": "2024-12-26T11:17:41.395593Z" } }, "outputs": [ @@ -3767,7 +3767,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-12-25 19:56:49-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-12-26 11:17:41-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " @@ -3782,17 +3782,10 @@ "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", - "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.04s \r\n", + "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.008s \r\n", "\r\n", - "2024-12-25 19:56:50 (26.3 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-12-26 11:17:41 (112 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3808,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:50.480154Z", - "iopub.status.busy": "2024-12-25T19:56:50.479755Z", - "iopub.status.idle": "2024-12-25T19:56:52.369483Z", - "shell.execute_reply": "2024-12-25T19:56:52.368833Z" + "iopub.execute_input": "2024-12-26T11:17:41.398414Z", + "iopub.status.busy": "2024-12-26T11:17:41.398023Z", + "iopub.status.idle": "2024-12-26T11:17:43.318099Z", + "shell.execute_reply": "2024-12-26T11:17:43.317473Z" } }, "outputs": [], @@ -3857,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:52.371611Z", - "iopub.status.busy": "2024-12-25T19:56:52.371345Z", - "iopub.status.idle": "2024-12-25T19:56:52.991545Z", - "shell.execute_reply": "2024-12-25T19:56:52.990941Z" + "iopub.execute_input": "2024-12-26T11:17:43.320598Z", + "iopub.status.busy": "2024-12-26T11:17:43.320146Z", + "iopub.status.idle": "2024-12-26T11:17:43.972127Z", + "shell.execute_reply": "2024-12-26T11:17:43.971536Z" } }, "outputs": [ @@ -3875,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4517eefb74fa491eb59de22b68477da0", + "model_id": "1d9c2ded32704fc9b13d77ccfe221ea0", "version_major": 2, "version_minor": 0 }, @@ -4015,10 +4008,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:52.994080Z", - "iopub.status.busy": "2024-12-25T19:56:52.993497Z", - "iopub.status.idle": "2024-12-25T19:56:53.006856Z", - "shell.execute_reply": "2024-12-25T19:56:53.006357Z" + "iopub.execute_input": "2024-12-26T11:17:43.974722Z", + "iopub.status.busy": "2024-12-26T11:17:43.974139Z", + "iopub.status.idle": "2024-12-26T11:17:43.987758Z", + "shell.execute_reply": "2024-12-26T11:17:43.987248Z" } }, "outputs": [ @@ -4137,35 +4130,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " True\n", " 0.237196\n", + " True\n", " \n", " \n", " 1\n", - " True\n", " 0.197229\n", + " True\n", " \n", " \n", " 2\n", - " True\n", " 0.254188\n", + " True\n", " \n", " \n", " 3\n", - " True\n", " 0.229170\n", + " True\n", " \n", " \n", " 4\n", - " True\n", " 0.208907\n", + " True\n", " \n", " \n", " ...\n", @@ -4174,28 +4167,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4203,18 +4196,18 @@ "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 True 0.237196\n", - "1 True 0.197229\n", - "2 True 0.254188\n", - "3 True 0.229170\n", - "4 True 0.208907\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.237196 True\n", + "1 0.197229 True\n", + "2 0.254188 True\n", + "3 0.229170 True\n", + "4 0.208907 True\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4264,10 +4257,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:53.008909Z", - "iopub.status.busy": "2024-12-25T19:56:53.008422Z", - "iopub.status.idle": "2024-12-25T19:56:53.156900Z", - "shell.execute_reply": "2024-12-25T19:56:53.156397Z" + "iopub.execute_input": "2024-12-26T11:17:43.989823Z", + "iopub.status.busy": "2024-12-26T11:17:43.989318Z", + "iopub.status.idle": "2024-12-26T11:17:44.135582Z", + "shell.execute_reply": "2024-12-26T11:17:44.135177Z" } }, "outputs": [ @@ -4332,10 +4325,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:53.158748Z", - "iopub.status.busy": "2024-12-25T19:56:53.158572Z", - "iopub.status.idle": "2024-12-25T19:56:53.668661Z", - "shell.execute_reply": "2024-12-25T19:56:53.668123Z" + "iopub.execute_input": "2024-12-26T11:17:44.137233Z", + "iopub.status.busy": "2024-12-26T11:17:44.136844Z", + "iopub.status.idle": "2024-12-26T11:17:44.646483Z", + "shell.execute_reply": "2024-12-26T11:17:44.645824Z" }, "nbsphinx": "hidden" }, @@ -4351,7 +4344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c6e4394e4e604607a429313f8a4596c1", + "model_id": "422b3c757ced4c94bae58876e7d6b131", "version_major": 2, "version_minor": 0 }, @@ -4480,35 +4473,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " False\n", " 0.797509\n", + " False\n", " \n", " \n", " 1\n", - " False\n", " 0.663760\n", + " False\n", " \n", " \n", " 2\n", - " False\n", " 0.849826\n", + " False\n", " \n", " \n", " 3\n", - " False\n", " 0.773951\n", + " False\n", " \n", " \n", " 4\n", - " False\n", " 0.699518\n", + " False\n", " \n", " \n", " ...\n", @@ -4517,28 +4510,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4546,18 +4539,18 @@ "
" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 False 0.797509\n", - "1 False 0.663760\n", - "2 False 0.849826\n", - "3 False 0.773951\n", - "4 False 0.699518\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.797509 False\n", + "1 0.663760 False\n", + "2 0.849826 False\n", + "3 0.773951 False\n", + "4 0.699518 False\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4605,10 +4598,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:53.670727Z", - "iopub.status.busy": "2024-12-25T19:56:53.670344Z", - "iopub.status.idle": "2024-12-25T19:56:53.819686Z", - "shell.execute_reply": "2024-12-25T19:56:53.819099Z" + "iopub.execute_input": "2024-12-26T11:17:44.648395Z", + "iopub.status.busy": "2024-12-26T11:17:44.648202Z", + "iopub.status.idle": "2024-12-26T11:17:44.795498Z", + "shell.execute_reply": "2024-12-26T11:17:44.794928Z" }, "nbsphinx": "hidden" }, @@ -4660,51 +4653,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0b766a0604aa45c89493bad447e53a40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_29e6a0c164594f74b6a1d4c122c72935", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a788b912ae4949e590e5e50b38c58f44", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "1c104bcf74f64ce89f8b8e518822ad29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22e0692fd2694009bfd7bbd0b5e6e6dc": { + "10ecb954bb454d50848c4476cfc650d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4757,7 +4706,46 @@ "width": null } }, - "29e6a0c164594f74b6a1d4c122c72935": { + "14b0467bee524a9394e4475e6b4ee8d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a122a2a2f5c461d8a715a4f6abd3198", + "placeholder": "​", + "style": "IPY_MODEL_dff2ca8c3c71471692f0ce2207abe391", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 786.16it/s]" + } + }, + "15e5b0cc29d742ea9dd63569047801a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1c02c45e2b9c435b9731085071bb0b76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4810,7 +4798,107 @@ "width": null } }, - "2ca65d1dc0db40efac24af11bcb2098f": { + "1d9c2ded32704fc9b13d77ccfe221ea0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b62b6a9247914b5ea3542dd95b081f48", + "IPY_MODEL_d164481b458b4fd88f671470a650e6eb", + "IPY_MODEL_14b0467bee524a9394e4475e6b4ee8d4" + ], + "layout": "IPY_MODEL_74a776db28664ebfaceac7371d300793", + "tabbable": null, + "tooltip": null + } + }, + "2bd6a3f7493149f7b6807f2cc4ddaaf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "421f13711059410a9fbab0283a293f30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "422b3c757ced4c94bae58876e7d6b131": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8bce80871cb84509847cd8fad6d1661d", + "IPY_MODEL_9431a0d0e19245f190305ca7ed7a50da", + "IPY_MODEL_95bd48dee14e4d8bb9ab62b862ddd8f0" + ], + "layout": "IPY_MODEL_1c02c45e2b9c435b9731085071bb0b76", + "tabbable": null, + "tooltip": null + } + }, + "66705f4ce9ed45be8ef1c771e32b69e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "74a776db28664ebfaceac7371d300793": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4863,7 +4951,7 @@ "width": null } }, - "3a3b623b2ddf4ca0b3d1160544fd6673": { + "8bce80871cb84509847cd8fad6d1661d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4878,39 +4966,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c7897b13a9ff4f6cba97751e1b5be749", + "layout": "IPY_MODEL_db410ffcbaea42dcbb50bfe4131179eb", "placeholder": "​", - "style": "IPY_MODEL_1c104bcf74f64ce89f8b8e518822ad29", + "style": "IPY_MODEL_e5fbdf55049f4198bfedb99f5a7bae31", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 805.16it/s]" + "value": "100%" } }, - "4517eefb74fa491eb59de22b68477da0": { + "9431a0d0e19245f190305ca7ed7a50da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fee697edb6724d63992afece6eae25d1", - "IPY_MODEL_9e94ae3708a445109a2491e4265893a3", - "IPY_MODEL_3a3b623b2ddf4ca0b3d1160544fd6673" - ], - "layout": "IPY_MODEL_f6f4531b40ee4a4da06688f879655236", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ad52a23dfed547a0b379ba5798df5ac8", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_15e5b0cc29d742ea9dd63569047801a5", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "4a4d709ec3404d7aa95be070f333cdd0": { + "95bd48dee14e4d8bb9ab62b862ddd8f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4925,51 +5015,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_88945807938944e1a62aa1976f0fe020", + "layout": "IPY_MODEL_fae23f59ea104d4db363ce6aed1cb9e6", "placeholder": "​", - "style": "IPY_MODEL_cf898af33494487a8bafe375ae2eccfc", + "style": "IPY_MODEL_2bd6a3f7493149f7b6807f2cc4ddaaf0", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 711.82it/s]" } }, - "589b96693e1d4b42be5dc254acdaf3ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "654249e1f40d4fe087a86ef707f870a7": { - "model_module": "@jupyter-widgets/controls", + "9a122a2a2f5c461d8a715a4f6abd3198": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "66b2c88a03b647bab314b865b2f0c67a": { + "ad52a23dfed547a0b379ba5798df5ac8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5022,7 +5129,7 @@ "width": null } }, - "88945807938944e1a62aa1976f0fe020": { + "af45d51303ce4d418d6bbdc0c4170965": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5075,7 +5182,7 @@ "width": null } }, - "94427ca6883b4cf4932ee8953dc02acb": { + "b62b6a9247914b5ea3542dd95b081f48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5090,15 +5197,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ca65d1dc0db40efac24af11bcb2098f", + "layout": "IPY_MODEL_af45d51303ce4d418d6bbdc0c4170965", "placeholder": "​", - "style": "IPY_MODEL_654249e1f40d4fe087a86ef707f870a7", + "style": "IPY_MODEL_66705f4ce9ed45be8ef1c771e32b69e5", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 688.01it/s]" + "value": "100%" } }, - "9e94ae3708a445109a2491e4265893a3": { + "d164481b458b4fd88f671470a650e6eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5114,73 +5221,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_22e0692fd2694009bfd7bbd0b5e6e6dc", + "layout": "IPY_MODEL_10ecb954bb454d50848c4476cfc650d0", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ae2b3a3e703841ac8aad473296881f36", + "style": "IPY_MODEL_421f13711059410a9fbab0283a293f30", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "a788b912ae4949e590e5e50b38c58f44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ae2b3a3e703841ac8aad473296881f36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c6e4394e4e604607a429313f8a4596c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4a4d709ec3404d7aa95be070f333cdd0", - "IPY_MODEL_0b766a0604aa45c89493bad447e53a40", - "IPY_MODEL_94427ca6883b4cf4932ee8953dc02acb" - ], - "layout": "IPY_MODEL_d53a1034c87e4414986b5644d20bd802", - "tabbable": null, - "tooltip": null - } - }, - "c7897b13a9ff4f6cba97751e1b5be749": { + "db410ffcbaea42dcbb50bfe4131179eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5233,7 +5284,7 @@ "width": null } }, - "cf898af33494487a8bafe375ae2eccfc": { + "dff2ca8c3c71471692f0ce2207abe391": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5251,60 +5302,25 @@ "text_color": null } }, - "d53a1034c87e4414986b5644d20bd802": { - "model_module": "@jupyter-widgets/base", + "e5fbdf55049f4198bfedb99f5a7bae31": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f6f4531b40ee4a4da06688f879655236": { + "fae23f59ea104d4db363ce6aed1cb9e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5356,29 +5372,6 @@ "visibility": null, "width": null } - }, - "fee697edb6724d63992afece6eae25d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66b2c88a03b647bab314b865b2f0c67a", - "placeholder": "​", - "style": "IPY_MODEL_589b96693e1d4b42be5dc254acdaf3ce", - "tabbable": null, - "tooltip": null, - "value": "100%" - } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 7f0eac01b..e0188f875 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:57.874492Z", - "iopub.status.busy": "2024-12-25T19:56:57.874326Z", - "iopub.status.idle": "2024-12-25T19:56:59.015843Z", - "shell.execute_reply": "2024-12-25T19:56:59.015281Z" + "iopub.execute_input": "2024-12-26T11:17:48.965171Z", + "iopub.status.busy": "2024-12-26T11:17:48.965020Z", + "iopub.status.idle": "2024-12-26T11:17:50.132398Z", + "shell.execute_reply": "2024-12-26T11:17:50.131775Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:59.017801Z", - "iopub.status.busy": "2024-12-25T19:56:59.017533Z", - "iopub.status.idle": "2024-12-25T19:56:59.020424Z", - "shell.execute_reply": "2024-12-25T19:56:59.019980Z" + "iopub.execute_input": "2024-12-26T11:17:50.134585Z", + "iopub.status.busy": "2024-12-26T11:17:50.134302Z", + "iopub.status.idle": "2024-12-26T11:17:50.137254Z", + "shell.execute_reply": "2024-12-26T11:17:50.136723Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:59.022213Z", - "iopub.status.busy": "2024-12-25T19:56:59.021889Z", - "iopub.status.idle": "2024-12-25T19:56:59.033828Z", - "shell.execute_reply": "2024-12-25T19:56:59.033362Z" + "iopub.execute_input": "2024-12-26T11:17:50.139113Z", + "iopub.status.busy": "2024-12-26T11:17:50.138843Z", + "iopub.status.idle": "2024-12-26T11:17:50.150793Z", + "shell.execute_reply": "2024-12-26T11:17:50.150312Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:56:59.035430Z", - "iopub.status.busy": "2024-12-25T19:56:59.035258Z", - "iopub.status.idle": "2024-12-25T19:57:06.481645Z", - "shell.execute_reply": "2024-12-25T19:57:06.481124Z" + "iopub.execute_input": "2024-12-26T11:17:50.152520Z", + "iopub.status.busy": "2024-12-26T11:17:50.152187Z", + "iopub.status.idle": "2024-12-26T11:17:53.632326Z", + "shell.execute_reply": "2024-12-26T11:17:53.631833Z" }, "id": "dhTHOg8Pyv5G" }, @@ -694,13 +694,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -2184,13 +2178,7 @@ "\n", "\n", "🎯 Cifar100_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", "\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 20323b6e2..b40622b9a 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -844,13 +844,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1715,7 +1715,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 9e32026ee..64d3efcb0 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:08.595294Z", - "iopub.status.busy": "2024-12-25T19:57:08.594828Z", - "iopub.status.idle": "2024-12-25T19:57:09.784648Z", - "shell.execute_reply": "2024-12-25T19:57:09.784093Z" + "iopub.execute_input": "2024-12-26T11:17:55.880552Z", + "iopub.status.busy": "2024-12-26T11:17:55.880060Z", + "iopub.status.idle": "2024-12-26T11:17:57.078006Z", + "shell.execute_reply": "2024-12-26T11:17:57.077458Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:09.786815Z", - "iopub.status.busy": "2024-12-25T19:57:09.786555Z", - "iopub.status.idle": "2024-12-25T19:57:09.789987Z", - "shell.execute_reply": "2024-12-25T19:57:09.789512Z" + "iopub.execute_input": "2024-12-26T11:17:57.080465Z", + "iopub.status.busy": "2024-12-26T11:17:57.080014Z", + "iopub.status.idle": "2024-12-26T11:17:57.083213Z", + "shell.execute_reply": "2024-12-26T11:17:57.082768Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:09.791479Z", - "iopub.status.busy": "2024-12-25T19:57:09.791303Z", - "iopub.status.idle": "2024-12-25T19:57:13.023674Z", - "shell.execute_reply": "2024-12-25T19:57:13.023032Z" + "iopub.execute_input": "2024-12-26T11:17:57.084946Z", + "iopub.status.busy": "2024-12-26T11:17:57.084557Z", + "iopub.status.idle": "2024-12-26T11:18:00.383459Z", + "shell.execute_reply": "2024-12-26T11:18:00.382771Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.026393Z", - "iopub.status.busy": "2024-12-25T19:57:13.025576Z", - "iopub.status.idle": "2024-12-25T19:57:13.068874Z", - "shell.execute_reply": "2024-12-25T19:57:13.068277Z" + "iopub.execute_input": "2024-12-26T11:18:00.386119Z", + "iopub.status.busy": "2024-12-26T11:18:00.385433Z", + "iopub.status.idle": "2024-12-26T11:18:00.425121Z", + "shell.execute_reply": "2024-12-26T11:18:00.424475Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.071249Z", - "iopub.status.busy": "2024-12-25T19:57:13.070743Z", - "iopub.status.idle": "2024-12-25T19:57:13.110940Z", - "shell.execute_reply": "2024-12-25T19:57:13.110219Z" + "iopub.execute_input": "2024-12-26T11:18:00.427391Z", + "iopub.status.busy": "2024-12-26T11:18:00.427016Z", + "iopub.status.idle": "2024-12-26T11:18:00.466579Z", + "shell.execute_reply": "2024-12-26T11:18:00.465962Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.113348Z", - "iopub.status.busy": "2024-12-25T19:57:13.112924Z", - "iopub.status.idle": "2024-12-25T19:57:13.116127Z", - "shell.execute_reply": "2024-12-25T19:57:13.115616Z" + "iopub.execute_input": "2024-12-26T11:18:00.468778Z", + "iopub.status.busy": "2024-12-26T11:18:00.468516Z", + "iopub.status.idle": "2024-12-26T11:18:00.471918Z", + "shell.execute_reply": "2024-12-26T11:18:00.471427Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.117983Z", - "iopub.status.busy": "2024-12-25T19:57:13.117621Z", - "iopub.status.idle": "2024-12-25T19:57:13.120329Z", - "shell.execute_reply": "2024-12-25T19:57:13.119828Z" + "iopub.execute_input": "2024-12-26T11:18:00.473699Z", + "iopub.status.busy": "2024-12-26T11:18:00.473367Z", + "iopub.status.idle": "2024-12-26T11:18:00.475923Z", + "shell.execute_reply": "2024-12-26T11:18:00.475471Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.122364Z", - "iopub.status.busy": "2024-12-25T19:57:13.121910Z", - "iopub.status.idle": "2024-12-25T19:57:13.147016Z", - "shell.execute_reply": "2024-12-25T19:57:13.146416Z" + "iopub.execute_input": "2024-12-26T11:18:00.477696Z", + "iopub.status.busy": "2024-12-26T11:18:00.477366Z", + "iopub.status.idle": "2024-12-26T11:18:00.501865Z", + "shell.execute_reply": "2024-12-26T11:18:00.501314Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b748e781b1da4cf89a18f4b90d8ecccd", + "model_id": "7f8d699b7da8423e91ba308659fea302", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2dbf2d49879495096d2bdb84aaba49a", + "model_id": "56dfa11ba6604d54b082e1e795f55950", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.149763Z", - "iopub.status.busy": "2024-12-25T19:57:13.149291Z", - "iopub.status.idle": "2024-12-25T19:57:13.155938Z", - "shell.execute_reply": "2024-12-25T19:57:13.155404Z" + "iopub.execute_input": "2024-12-26T11:18:00.504716Z", + "iopub.status.busy": "2024-12-26T11:18:00.504455Z", + "iopub.status.idle": "2024-12-26T11:18:00.510853Z", + "shell.execute_reply": "2024-12-26T11:18:00.510404Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.157704Z", - "iopub.status.busy": "2024-12-25T19:57:13.157381Z", - "iopub.status.idle": "2024-12-25T19:57:13.160862Z", - "shell.execute_reply": "2024-12-25T19:57:13.160414Z" + "iopub.execute_input": "2024-12-26T11:18:00.512514Z", + "iopub.status.busy": "2024-12-26T11:18:00.512187Z", + "iopub.status.idle": "2024-12-26T11:18:00.515650Z", + "shell.execute_reply": "2024-12-26T11:18:00.515177Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.162510Z", - "iopub.status.busy": "2024-12-25T19:57:13.162179Z", - "iopub.status.idle": "2024-12-25T19:57:13.168479Z", - "shell.execute_reply": "2024-12-25T19:57:13.168030Z" + "iopub.execute_input": "2024-12-26T11:18:00.517475Z", + "iopub.status.busy": "2024-12-26T11:18:00.517044Z", + "iopub.status.idle": "2024-12-26T11:18:00.523643Z", + "shell.execute_reply": "2024-12-26T11:18:00.523082Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.170113Z", - "iopub.status.busy": "2024-12-25T19:57:13.169735Z", - "iopub.status.idle": "2024-12-25T19:57:13.213668Z", - "shell.execute_reply": "2024-12-25T19:57:13.212909Z" + "iopub.execute_input": "2024-12-26T11:18:00.525427Z", + "iopub.status.busy": "2024-12-26T11:18:00.525103Z", + "iopub.status.idle": "2024-12-26T11:18:00.568752Z", + "shell.execute_reply": "2024-12-26T11:18:00.568142Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.216014Z", - "iopub.status.busy": "2024-12-25T19:57:13.215617Z", - "iopub.status.idle": "2024-12-25T19:57:13.257769Z", - "shell.execute_reply": "2024-12-25T19:57:13.257136Z" + "iopub.execute_input": "2024-12-26T11:18:00.571054Z", + "iopub.status.busy": "2024-12-26T11:18:00.570547Z", + "iopub.status.idle": "2024-12-26T11:18:00.613494Z", + "shell.execute_reply": "2024-12-26T11:18:00.612888Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.259967Z", - "iopub.status.busy": "2024-12-25T19:57:13.259579Z", - "iopub.status.idle": "2024-12-25T19:57:13.392058Z", - "shell.execute_reply": "2024-12-25T19:57:13.391413Z" + "iopub.execute_input": "2024-12-26T11:18:00.615924Z", + "iopub.status.busy": "2024-12-26T11:18:00.615504Z", + "iopub.status.idle": "2024-12-26T11:18:00.750867Z", + "shell.execute_reply": "2024-12-26T11:18:00.750235Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:13.394678Z", - "iopub.status.busy": "2024-12-25T19:57:13.393847Z", - "iopub.status.idle": "2024-12-25T19:57:16.467412Z", - "shell.execute_reply": "2024-12-25T19:57:16.466799Z" + "iopub.execute_input": "2024-12-26T11:18:00.753347Z", + "iopub.status.busy": "2024-12-26T11:18:00.752692Z", + "iopub.status.idle": "2024-12-26T11:18:03.842906Z", + "shell.execute_reply": "2024-12-26T11:18:03.842284Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.469494Z", - "iopub.status.busy": "2024-12-25T19:57:16.469100Z", - "iopub.status.idle": "2024-12-25T19:57:16.527566Z", - "shell.execute_reply": "2024-12-25T19:57:16.527109Z" + "iopub.execute_input": "2024-12-26T11:18:03.844964Z", + "iopub.status.busy": "2024-12-26T11:18:03.844762Z", + "iopub.status.idle": "2024-12-26T11:18:03.903026Z", + "shell.execute_reply": "2024-12-26T11:18:03.902494Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.529237Z", - "iopub.status.busy": "2024-12-25T19:57:16.528903Z", - "iopub.status.idle": "2024-12-25T19:57:16.568175Z", - "shell.execute_reply": "2024-12-25T19:57:16.567704Z" + "iopub.execute_input": "2024-12-26T11:18:03.904823Z", + "iopub.status.busy": "2024-12-26T11:18:03.904528Z", + "iopub.status.idle": "2024-12-26T11:18:03.945605Z", + "shell.execute_reply": "2024-12-26T11:18:03.945030Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "44dd4128", + "id": "d3bc2a14", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "38aacef6", + "id": "042ccb7f", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "6354be62", + "id": "bc7578af", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "2c6f5bcb", + "id": "c4ff42cd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.569900Z", - "iopub.status.busy": "2024-12-25T19:57:16.569720Z", - "iopub.status.idle": "2024-12-25T19:57:16.577135Z", - "shell.execute_reply": "2024-12-25T19:57:16.576703Z" + "iopub.execute_input": "2024-12-26T11:18:03.947427Z", + "iopub.status.busy": "2024-12-26T11:18:03.947084Z", + "iopub.status.idle": "2024-12-26T11:18:03.954839Z", + "shell.execute_reply": "2024-12-26T11:18:03.954257Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ff7be5cd", + "id": "b51a6ed3", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "ee0394c5", + "id": "b76036f8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.578710Z", - "iopub.status.busy": "2024-12-25T19:57:16.578521Z", - "iopub.status.idle": "2024-12-25T19:57:16.597069Z", - "shell.execute_reply": "2024-12-25T19:57:16.596609Z" + "iopub.execute_input": "2024-12-26T11:18:03.956618Z", + "iopub.status.busy": "2024-12-26T11:18:03.956213Z", + "iopub.status.idle": "2024-12-26T11:18:03.974991Z", + "shell.execute_reply": "2024-12-26T11:18:03.974491Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "87a46690", + "id": "0fe26d00", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:16.598550Z", - "iopub.status.busy": "2024-12-25T19:57:16.598379Z", - "iopub.status.idle": "2024-12-25T19:57:16.601280Z", - "shell.execute_reply": "2024-12-25T19:57:16.600844Z" + "iopub.execute_input": "2024-12-26T11:18:03.976526Z", + "iopub.status.busy": "2024-12-26T11:18:03.976351Z", + "iopub.status.idle": "2024-12-26T11:18:03.979774Z", + "shell.execute_reply": "2024-12-26T11:18:03.979195Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "017fb85e8ae443789d4850cf617ba0cd": { + "0b4e059ed2654d9a8f359ef7f8fa1b10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1637,15 +1637,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_be0deca07dc24cafa7cb37ef0002b23a", + "layout": "IPY_MODEL_8f7a7305eb4c40c28cc5f6c2afd6268b", "placeholder": "​", - "style": "IPY_MODEL_dcd4a33935b1486bad143b50d88e8542", + "style": "IPY_MODEL_e187fbdd0f27481bb06831b553951234", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1558293.95it/s]" + "value": "number of examples processed for checking labels: " } }, - "0e341acb9d9b4b45b4878d73f8fcc982": { + "1218069996eb491389b3dd0c6b415bb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1660,31 +1660,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a53f4310f714b8cb3f7a4454fdca64c", + "layout": "IPY_MODEL_142137dade454d869c51f210ef7ca5c6", "placeholder": "​", - "style": "IPY_MODEL_d32bd143e8214bea9e5dc9536ca6326f", + "style": "IPY_MODEL_ae231fa0b1cb4defb1204a3dce6eaa85", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "3c8c0a5473d64d7097b02fc19dda51f0": { + "13f798e45d1d45fbbe14b6c7f5296980": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3e5f1c9eaf19470eb108efcfd499ed8c": { + "142137dade454d869c51f210ef7ca5c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1737,7 +1739,23 @@ "width": null } }, - "5943b9d4d0ff4a52a42995396a5dc881": { + "441d86bd84cf4e00ae8a5e720de1adf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "49514ebe06a54cbca89c2cb31613b38a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,30 +1808,31 @@ "width": null } }, - "5a0c8d4eb65c494c8f8b6a3113632a29": { + "56dfa11ba6604d54b082e1e795f55950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b2ef05b644ed4e799b4a419d2053f04f", - "placeholder": "​", - "style": "IPY_MODEL_7989a83812524fd78cded7d2e35145d6", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b4e059ed2654d9a8f359ef7f8fa1b10", + "IPY_MODEL_a428db43fa96425ca9f8277d83baad41", + "IPY_MODEL_f7f43bae74504fbabd125c2b8a2bb81e" + ], + "layout": "IPY_MODEL_753e218a43204de68532e49f09c06d46", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1007640.60it/s]" + "tooltip": null } }, - "62bee35cdf3b46f2a3fb6234b9e0568b": { + "753e218a43204de68532e49f09c06d46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1866,46 +1885,57 @@ "width": null } }, - "685806c801d94f3c9801a6b357429a8d": { + "79c00c9bf1b241ada13ae2c04bdc10b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_49514ebe06a54cbca89c2cb31613b38a", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_441d86bd84cf4e00ae8a5e720de1adf0", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "74aecffb59514c91b5ddfe03a15d6304": { + "7f8d699b7da8423e91ba308659fea302": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc4480e561914be18f7d0ffdfa2baa87", - "placeholder": "​", - "style": "IPY_MODEL_a8a4731de4314aaa87cdad2c8157dce1", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1218069996eb491389b3dd0c6b415bb4", + "IPY_MODEL_79c00c9bf1b241ada13ae2c04bdc10b2", + "IPY_MODEL_ec08dfad995748fb98a45a8b6466eb98" + ], + "layout": "IPY_MODEL_bb6b48e3cee245efa526c523dd847a6b", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "tooltip": null } }, - "7989a83812524fd78cded7d2e35145d6": { + "8ca73f0b304d43df9a7736740d679f24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1923,7 +1953,7 @@ "text_color": null } }, - "8a53f4310f714b8cb3f7a4454fdca64c": { + "8cbafe308e7a4550a1cd120c229c5f8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1976,7 +2006,7 @@ "width": null } }, - "a1546a6b484c4911ac796bb78d8045a9": { + "8f7a7305eb4c40c28cc5f6c2afd6268b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2029,49 +2059,67 @@ "width": null } }, - "a8a4731de4314aaa87cdad2c8157dce1": { + "95d6d0c2833643b786fd1bc98d7f7591": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b2dbf2d49879495096d2bdb84aaba49a": { + "a428db43fa96425ca9f8277d83baad41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_74aecffb59514c91b5ddfe03a15d6304", - "IPY_MODEL_b62e816c882249fd9ac71dfae480288d", - "IPY_MODEL_017fb85e8ae443789d4850cf617ba0cd" - ], - "layout": "IPY_MODEL_62bee35cdf3b46f2a3fb6234b9e0568b", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cbafe308e7a4550a1cd120c229c5f8f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_95d6d0c2833643b786fd1bc98d7f7591", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 + } + }, + "ae231fa0b1cb4defb1204a3dce6eaa85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b2ef05b644ed4e799b4a419d2053f04f": { + "bb6b48e3cee245efa526c523dd847a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2124,57 +2172,7 @@ "width": null } }, - "b62e816c882249fd9ac71dfae480288d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3e5f1c9eaf19470eb108efcfd499ed8c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_685806c801d94f3c9801a6b357429a8d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "b748e781b1da4cf89a18f4b90d8ecccd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e341acb9d9b4b45b4878d73f8fcc982", - "IPY_MODEL_d6b0a9cd38f74e34a5d675d37fecc78a", - "IPY_MODEL_5a0c8d4eb65c494c8f8b6a3113632a29" - ], - "layout": "IPY_MODEL_a1546a6b484c4911ac796bb78d8045a9", - "tabbable": null, - "tooltip": null - } - }, - "bc4480e561914be18f7d0ffdfa2baa87": { + "d1acb28c4c5f4397bc9893a8c1978205": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,7 +2225,7 @@ "width": null } }, - "be0deca07dc24cafa7cb37ef0002b23a": { + "da29f6a826dd45fb90257d7eed755ad1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,7 +2278,7 @@ "width": null } }, - "d32bd143e8214bea9e5dc9536ca6326f": { + "e187fbdd0f27481bb06831b553951234": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2298,48 +2296,50 @@ "text_color": null } }, - "d6b0a9cd38f74e34a5d675d37fecc78a": { + "ec08dfad995748fb98a45a8b6466eb98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5943b9d4d0ff4a52a42995396a5dc881", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3c8c0a5473d64d7097b02fc19dda51f0", + "layout": "IPY_MODEL_d1acb28c4c5f4397bc9893a8c1978205", + "placeholder": "​", + "style": "IPY_MODEL_8ca73f0b304d43df9a7736740d679f24", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1043514.95it/s]" } }, - "dcd4a33935b1486bad143b50d88e8542": { + "f7f43bae74504fbabd125c2b8a2bb81e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_da29f6a826dd45fb90257d7eed755ad1", + "placeholder": "​", + "style": "IPY_MODEL_13f798e45d1d45fbbe14b6c7f5296980", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1552640.85it/s]" } } }, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index f34efd99d..bd456d994 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:19.685102Z", - "iopub.status.busy": "2024-12-25T19:57:19.684695Z", - "iopub.status.idle": "2024-12-25T19:57:20.856518Z", - "shell.execute_reply": "2024-12-25T19:57:20.855897Z" + "iopub.execute_input": "2024-12-26T11:18:07.467336Z", + "iopub.status.busy": "2024-12-26T11:18:07.466918Z", + "iopub.status.idle": "2024-12-26T11:18:08.637919Z", + "shell.execute_reply": "2024-12-26T11:18:08.637348Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:20.859033Z", - "iopub.status.busy": "2024-12-25T19:57:20.858494Z", - "iopub.status.idle": "2024-12-25T19:57:20.862118Z", - "shell.execute_reply": "2024-12-25T19:57:20.861685Z" + "iopub.execute_input": "2024-12-26T11:18:08.640116Z", + "iopub.status.busy": "2024-12-26T11:18:08.639697Z", + "iopub.status.idle": "2024-12-26T11:18:08.643495Z", + "shell.execute_reply": "2024-12-26T11:18:08.642990Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:20.863699Z", - "iopub.status.busy": "2024-12-25T19:57:20.863524Z", - "iopub.status.idle": "2024-12-25T19:57:21.361035Z", - "shell.execute_reply": "2024-12-25T19:57:21.360465Z" + "iopub.execute_input": "2024-12-26T11:18:08.645274Z", + "iopub.status.busy": "2024-12-26T11:18:08.644938Z", + "iopub.status.idle": "2024-12-26T11:18:08.838114Z", + "shell.execute_reply": "2024-12-26T11:18:08.837547Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.362730Z", - "iopub.status.busy": "2024-12-25T19:57:21.362553Z", - "iopub.status.idle": "2024-12-25T19:57:21.368414Z", - "shell.execute_reply": "2024-12-25T19:57:21.367967Z" + "iopub.execute_input": "2024-12-26T11:18:08.839774Z", + "iopub.status.busy": "2024-12-26T11:18:08.839599Z", + "iopub.status.idle": "2024-12-26T11:18:08.845341Z", + "shell.execute_reply": "2024-12-26T11:18:08.844796Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.370080Z", - "iopub.status.busy": "2024-12-25T19:57:21.369806Z", - "iopub.status.idle": "2024-12-25T19:57:21.376490Z", - "shell.execute_reply": "2024-12-25T19:57:21.376057Z" + "iopub.execute_input": "2024-12-26T11:18:08.847227Z", + "iopub.status.busy": "2024-12-26T11:18:08.847028Z", + "iopub.status.idle": "2024-12-26T11:18:08.854024Z", + "shell.execute_reply": "2024-12-26T11:18:08.853543Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.378355Z", - "iopub.status.busy": "2024-12-25T19:57:21.377928Z", - "iopub.status.idle": "2024-12-25T19:57:21.382744Z", - "shell.execute_reply": "2024-12-25T19:57:21.382191Z" + "iopub.execute_input": "2024-12-26T11:18:08.855655Z", + "iopub.status.busy": "2024-12-26T11:18:08.855484Z", + "iopub.status.idle": "2024-12-26T11:18:08.860454Z", + "shell.execute_reply": "2024-12-26T11:18:08.859885Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.384523Z", - "iopub.status.busy": "2024-12-25T19:57:21.384192Z", - "iopub.status.idle": "2024-12-25T19:57:21.389561Z", - "shell.execute_reply": "2024-12-25T19:57:21.389128Z" + "iopub.execute_input": "2024-12-26T11:18:08.862158Z", + "iopub.status.busy": "2024-12-26T11:18:08.861991Z", + "iopub.status.idle": "2024-12-26T11:18:08.868015Z", + "shell.execute_reply": "2024-12-26T11:18:08.867564Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.391315Z", - "iopub.status.busy": "2024-12-25T19:57:21.390987Z", - "iopub.status.idle": "2024-12-25T19:57:21.394720Z", - "shell.execute_reply": "2024-12-25T19:57:21.394282Z" + "iopub.execute_input": "2024-12-26T11:18:08.869456Z", + "iopub.status.busy": "2024-12-26T11:18:08.869286Z", + "iopub.status.idle": "2024-12-26T11:18:08.873262Z", + "shell.execute_reply": "2024-12-26T11:18:08.872853Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.396420Z", - "iopub.status.busy": "2024-12-25T19:57:21.396106Z", - "iopub.status.idle": "2024-12-25T19:57:21.460280Z", - "shell.execute_reply": "2024-12-25T19:57:21.459641Z" + "iopub.execute_input": "2024-12-26T11:18:08.874714Z", + "iopub.status.busy": "2024-12-26T11:18:08.874551Z", + "iopub.status.idle": "2024-12-26T11:18:08.939042Z", + "shell.execute_reply": "2024-12-26T11:18:08.938440Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.462522Z", - "iopub.status.busy": "2024-12-25T19:57:21.461976Z", - "iopub.status.idle": "2024-12-25T19:57:21.472629Z", - "shell.execute_reply": "2024-12-25T19:57:21.472137Z" + "iopub.execute_input": "2024-12-26T11:18:08.941104Z", + "iopub.status.busy": "2024-12-26T11:18:08.940905Z", + "iopub.status.idle": "2024-12-26T11:18:08.951803Z", + "shell.execute_reply": "2024-12-26T11:18:08.951244Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.475143Z", - "iopub.status.busy": "2024-12-25T19:57:21.474405Z", - "iopub.status.idle": "2024-12-25T19:57:21.495179Z", - "shell.execute_reply": "2024-12-25T19:57:21.494687Z" + "iopub.execute_input": "2024-12-26T11:18:08.953664Z", + "iopub.status.busy": "2024-12-26T11:18:08.953471Z", + "iopub.status.idle": "2024-12-26T11:18:08.973309Z", + "shell.execute_reply": "2024-12-26T11:18:08.972806Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.497970Z", - "iopub.status.busy": "2024-12-25T19:57:21.497218Z", - "iopub.status.idle": "2024-12-25T19:57:21.502535Z", - "shell.execute_reply": "2024-12-25T19:57:21.502041Z" + "iopub.execute_input": "2024-12-26T11:18:08.975242Z", + "iopub.status.busy": "2024-12-26T11:18:08.974854Z", + "iopub.status.idle": "2024-12-26T11:18:08.978814Z", + "shell.execute_reply": "2024-12-26T11:18:08.978332Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.505342Z", - "iopub.status.busy": "2024-12-25T19:57:21.504613Z", - "iopub.status.idle": "2024-12-25T19:57:21.510162Z", - "shell.execute_reply": "2024-12-25T19:57:21.509664Z" + "iopub.execute_input": "2024-12-26T11:18:08.980719Z", + "iopub.status.busy": "2024-12-26T11:18:08.980352Z", + "iopub.status.idle": "2024-12-26T11:18:08.984509Z", + "shell.execute_reply": "2024-12-26T11:18:08.984027Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.512949Z", - "iopub.status.busy": "2024-12-25T19:57:21.512223Z", - "iopub.status.idle": "2024-12-25T19:57:21.524160Z", - "shell.execute_reply": "2024-12-25T19:57:21.523763Z" + "iopub.execute_input": "2024-12-26T11:18:08.986406Z", + "iopub.status.busy": "2024-12-26T11:18:08.986034Z", + "iopub.status.idle": "2024-12-26T11:18:08.997341Z", + "shell.execute_reply": "2024-12-26T11:18:08.996859Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.526029Z", - "iopub.status.busy": "2024-12-25T19:57:21.525860Z", - "iopub.status.idle": "2024-12-25T19:57:21.530489Z", - "shell.execute_reply": "2024-12-25T19:57:21.529945Z" + "iopub.execute_input": "2024-12-26T11:18:08.999221Z", + "iopub.status.busy": "2024-12-26T11:18:08.998836Z", + "iopub.status.idle": "2024-12-26T11:18:09.003159Z", + "shell.execute_reply": "2024-12-26T11:18:09.002601Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.532255Z", - "iopub.status.busy": "2024-12-25T19:57:21.532076Z", - "iopub.status.idle": "2024-12-25T19:57:21.643030Z", - "shell.execute_reply": "2024-12-25T19:57:21.642477Z" + "iopub.execute_input": "2024-12-26T11:18:09.004700Z", + "iopub.status.busy": "2024-12-26T11:18:09.004532Z", + "iopub.status.idle": "2024-12-26T11:18:09.114185Z", + "shell.execute_reply": "2024-12-26T11:18:09.113707Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.645034Z", - "iopub.status.busy": "2024-12-25T19:57:21.644710Z", - "iopub.status.idle": "2024-12-25T19:57:21.650645Z", - "shell.execute_reply": "2024-12-25T19:57:21.650122Z" + "iopub.execute_input": "2024-12-26T11:18:09.117162Z", + "iopub.status.busy": "2024-12-26T11:18:09.116821Z", + "iopub.status.idle": "2024-12-26T11:18:09.125950Z", + "shell.execute_reply": "2024-12-26T11:18:09.125353Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:21.652495Z", - "iopub.status.busy": "2024-12-25T19:57:21.652193Z", - "iopub.status.idle": "2024-12-25T19:57:23.556545Z", - "shell.execute_reply": "2024-12-25T19:57:23.555919Z" + "iopub.execute_input": "2024-12-26T11:18:09.127960Z", + "iopub.status.busy": "2024-12-26T11:18:09.127458Z", + "iopub.status.idle": "2024-12-26T11:18:11.075427Z", + "shell.execute_reply": "2024-12-26T11:18:11.074722Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.559096Z", - "iopub.status.busy": "2024-12-25T19:57:23.558551Z", - "iopub.status.idle": "2024-12-25T19:57:23.571462Z", - "shell.execute_reply": "2024-12-25T19:57:23.570953Z" + "iopub.execute_input": "2024-12-26T11:18:11.078436Z", + "iopub.status.busy": "2024-12-26T11:18:11.077344Z", + "iopub.status.idle": "2024-12-26T11:18:11.091993Z", + "shell.execute_reply": "2024-12-26T11:18:11.091479Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.573438Z", - "iopub.status.busy": "2024-12-25T19:57:23.573057Z", - "iopub.status.idle": "2024-12-25T19:57:23.575961Z", - "shell.execute_reply": "2024-12-25T19:57:23.575467Z" + "iopub.execute_input": "2024-12-26T11:18:11.094953Z", + "iopub.status.busy": "2024-12-26T11:18:11.094192Z", + "iopub.status.idle": "2024-12-26T11:18:11.097875Z", + "shell.execute_reply": "2024-12-26T11:18:11.097371Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.577841Z", - "iopub.status.busy": "2024-12-25T19:57:23.577440Z", - "iopub.status.idle": "2024-12-25T19:57:23.581922Z", - "shell.execute_reply": "2024-12-25T19:57:23.581385Z" + "iopub.execute_input": "2024-12-26T11:18:11.100839Z", + "iopub.status.busy": "2024-12-26T11:18:11.100086Z", + "iopub.status.idle": "2024-12-26T11:18:11.105362Z", + "shell.execute_reply": "2024-12-26T11:18:11.104848Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.583831Z", - "iopub.status.busy": "2024-12-25T19:57:23.583450Z", - "iopub.status.idle": "2024-12-25T19:57:23.593849Z", - "shell.execute_reply": "2024-12-25T19:57:23.593340Z" + "iopub.execute_input": "2024-12-26T11:18:11.108271Z", + "iopub.status.busy": "2024-12-26T11:18:11.107516Z", + "iopub.status.idle": "2024-12-26T11:18:11.137278Z", + "shell.execute_reply": "2024-12-26T11:18:11.136793Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:23.596593Z", - "iopub.status.busy": "2024-12-25T19:57:23.595876Z", - "iopub.status.idle": "2024-12-25T19:57:24.114670Z", - "shell.execute_reply": "2024-12-25T19:57:24.114113Z" + "iopub.execute_input": "2024-12-26T11:18:11.140038Z", + "iopub.status.busy": "2024-12-26T11:18:11.139319Z", + "iopub.status.idle": "2024-12-26T11:18:11.656593Z", + "shell.execute_reply": "2024-12-26T11:18:11.656055Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.117979Z", - "iopub.status.busy": "2024-12-25T19:57:24.117207Z", - "iopub.status.idle": "2024-12-25T19:57:24.248280Z", - "shell.execute_reply": "2024-12-25T19:57:24.247667Z" + "iopub.execute_input": "2024-12-26T11:18:11.659773Z", + "iopub.status.busy": "2024-12-26T11:18:11.659019Z", + "iopub.status.idle": "2024-12-26T11:18:11.794107Z", + "shell.execute_reply": "2024-12-26T11:18:11.793500Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.251603Z", - "iopub.status.busy": "2024-12-25T19:57:24.250824Z", - "iopub.status.idle": "2024-12-25T19:57:24.258977Z", - "shell.execute_reply": "2024-12-25T19:57:24.258474Z" + "iopub.execute_input": "2024-12-26T11:18:11.797009Z", + "iopub.status.busy": "2024-12-26T11:18:11.796225Z", + "iopub.status.idle": "2024-12-26T11:18:11.804495Z", + "shell.execute_reply": "2024-12-26T11:18:11.803978Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.261826Z", - "iopub.status.busy": "2024-12-25T19:57:24.261065Z", - "iopub.status.idle": "2024-12-25T19:57:24.268418Z", - "shell.execute_reply": "2024-12-25T19:57:24.267919Z" + "iopub.execute_input": "2024-12-26T11:18:11.807373Z", + "iopub.status.busy": "2024-12-26T11:18:11.806596Z", + "iopub.status.idle": "2024-12-26T11:18:11.814045Z", + "shell.execute_reply": "2024-12-26T11:18:11.813536Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.271245Z", - "iopub.status.busy": "2024-12-25T19:57:24.270494Z", - "iopub.status.idle": "2024-12-25T19:57:24.277195Z", - "shell.execute_reply": "2024-12-25T19:57:24.276693Z" + "iopub.execute_input": "2024-12-26T11:18:11.816895Z", + "iopub.status.busy": "2024-12-26T11:18:11.816143Z", + "iopub.status.idle": "2024-12-26T11:18:11.822893Z", + "shell.execute_reply": "2024-12-26T11:18:11.822394Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.279984Z", - "iopub.status.busy": "2024-12-25T19:57:24.279251Z", - "iopub.status.idle": "2024-12-25T19:57:24.284869Z", - "shell.execute_reply": "2024-12-25T19:57:24.284329Z" + "iopub.execute_input": "2024-12-26T11:18:11.825702Z", + "iopub.status.busy": "2024-12-26T11:18:11.824964Z", + "iopub.status.idle": "2024-12-26T11:18:11.830510Z", + "shell.execute_reply": "2024-12-26T11:18:11.830013Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.287722Z", - "iopub.status.busy": "2024-12-25T19:57:24.286983Z", - "iopub.status.idle": "2024-12-25T19:57:24.292057Z", - "shell.execute_reply": "2024-12-25T19:57:24.291505Z" + "iopub.execute_input": "2024-12-26T11:18:11.833348Z", + "iopub.status.busy": "2024-12-26T11:18:11.832608Z", + "iopub.status.idle": "2024-12-26T11:18:11.837883Z", + "shell.execute_reply": "2024-12-26T11:18:11.837455Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.293920Z", - "iopub.status.busy": "2024-12-25T19:57:24.293748Z", - "iopub.status.idle": "2024-12-25T19:57:24.368500Z", - "shell.execute_reply": "2024-12-25T19:57:24.368005Z" + "iopub.execute_input": "2024-12-26T11:18:11.839626Z", + "iopub.status.busy": "2024-12-26T11:18:11.839229Z", + "iopub.status.idle": "2024-12-26T11:18:11.913135Z", + "shell.execute_reply": "2024-12-26T11:18:11.912657Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.370667Z", - "iopub.status.busy": "2024-12-25T19:57:24.370241Z", - "iopub.status.idle": "2024-12-25T19:57:24.386796Z", - "shell.execute_reply": "2024-12-25T19:57:24.386297Z" + "iopub.execute_input": "2024-12-26T11:18:11.914820Z", + "iopub.status.busy": "2024-12-26T11:18:11.914652Z", + "iopub.status.idle": "2024-12-26T11:18:11.922882Z", + "shell.execute_reply": "2024-12-26T11:18:11.922386Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.389550Z", - "iopub.status.busy": "2024-12-25T19:57:24.388729Z", - "iopub.status.idle": "2024-12-25T19:57:24.392017Z", - "shell.execute_reply": "2024-12-25T19:57:24.391578Z" + "iopub.execute_input": "2024-12-26T11:18:11.924818Z", + "iopub.status.busy": "2024-12-26T11:18:11.924444Z", + "iopub.status.idle": "2024-12-26T11:18:11.927238Z", + "shell.execute_reply": "2024-12-26T11:18:11.926719Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.393710Z", - "iopub.status.busy": "2024-12-25T19:57:24.393510Z", - "iopub.status.idle": "2024-12-25T19:57:24.403415Z", - "shell.execute_reply": "2024-12-25T19:57:24.402851Z" + "iopub.execute_input": "2024-12-26T11:18:11.929426Z", + "iopub.status.busy": "2024-12-26T11:18:11.928846Z", + "iopub.status.idle": "2024-12-26T11:18:11.938318Z", + "shell.execute_reply": "2024-12-26T11:18:11.937750Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.405188Z", - "iopub.status.busy": "2024-12-25T19:57:24.405018Z", - "iopub.status.idle": "2024-12-25T19:57:24.411482Z", - "shell.execute_reply": "2024-12-25T19:57:24.410907Z" + "iopub.execute_input": "2024-12-26T11:18:11.940107Z", + "iopub.status.busy": "2024-12-26T11:18:11.939935Z", + "iopub.status.idle": "2024-12-26T11:18:11.946384Z", + "shell.execute_reply": "2024-12-26T11:18:11.945922Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.413032Z", - "iopub.status.busy": "2024-12-25T19:57:24.412864Z", - "iopub.status.idle": "2024-12-25T19:57:24.416145Z", - "shell.execute_reply": "2024-12-25T19:57:24.415589Z" + "iopub.execute_input": "2024-12-26T11:18:11.948111Z", + "iopub.status.busy": "2024-12-26T11:18:11.947779Z", + "iopub.status.idle": "2024-12-26T11:18:11.951204Z", + "shell.execute_reply": "2024-12-26T11:18:11.950704Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:24.417615Z", - "iopub.status.busy": "2024-12-25T19:57:24.417447Z", - "iopub.status.idle": "2024-12-25T19:57:28.448500Z", - "shell.execute_reply": "2024-12-25T19:57:28.447808Z" + "iopub.execute_input": "2024-12-26T11:18:11.952823Z", + "iopub.status.busy": "2024-12-26T11:18:11.952493Z", + "iopub.status.idle": "2024-12-26T11:18:15.883748Z", + "shell.execute_reply": "2024-12-26T11:18:15.883191Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:28.451222Z", - "iopub.status.busy": "2024-12-25T19:57:28.450485Z", - "iopub.status.idle": "2024-12-25T19:57:28.455115Z", - "shell.execute_reply": "2024-12-25T19:57:28.454599Z" + "iopub.execute_input": "2024-12-26T11:18:15.886742Z", + "iopub.status.busy": "2024-12-26T11:18:15.885999Z", + "iopub.status.idle": "2024-12-26T11:18:15.890239Z", + "shell.execute_reply": "2024-12-26T11:18:15.889822Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:28.456975Z", - "iopub.status.busy": "2024-12-25T19:57:28.456619Z", - "iopub.status.idle": "2024-12-25T19:57:28.459456Z", - "shell.execute_reply": "2024-12-25T19:57:28.458992Z" + "iopub.execute_input": "2024-12-26T11:18:15.892081Z", + "iopub.status.busy": "2024-12-26T11:18:15.891905Z", + "iopub.status.idle": "2024-12-26T11:18:15.894750Z", + "shell.execute_reply": "2024-12-26T11:18:15.894187Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 82142b049..6a6f39888 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:31.641735Z", - "iopub.status.busy": "2024-12-25T19:57:31.641237Z", - "iopub.status.idle": "2024-12-25T19:57:32.843351Z", - "shell.execute_reply": "2024-12-25T19:57:32.842798Z" + "iopub.execute_input": "2024-12-26T11:18:19.021279Z", + "iopub.status.busy": "2024-12-26T11:18:19.020867Z", + "iopub.status.idle": "2024-12-26T11:18:20.254927Z", + "shell.execute_reply": "2024-12-26T11:18:20.254347Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:32.845479Z", - "iopub.status.busy": "2024-12-25T19:57:32.845122Z", - "iopub.status.idle": "2024-12-25T19:57:33.024082Z", - "shell.execute_reply": "2024-12-25T19:57:33.023539Z" + "iopub.execute_input": "2024-12-26T11:18:20.256913Z", + "iopub.status.busy": "2024-12-26T11:18:20.256593Z", + "iopub.status.idle": "2024-12-26T11:18:20.435616Z", + "shell.execute_reply": "2024-12-26T11:18:20.435130Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.026060Z", - "iopub.status.busy": "2024-12-25T19:57:33.025870Z", - "iopub.status.idle": "2024-12-25T19:57:33.037924Z", - "shell.execute_reply": "2024-12-25T19:57:33.037452Z" + "iopub.execute_input": "2024-12-26T11:18:20.437660Z", + "iopub.status.busy": "2024-12-26T11:18:20.437303Z", + "iopub.status.idle": "2024-12-26T11:18:20.448941Z", + "shell.execute_reply": "2024-12-26T11:18:20.448512Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.039578Z", - "iopub.status.busy": "2024-12-25T19:57:33.039400Z", - "iopub.status.idle": "2024-12-25T19:57:33.273946Z", - "shell.execute_reply": "2024-12-25T19:57:33.273341Z" + "iopub.execute_input": "2024-12-26T11:18:20.450644Z", + "iopub.status.busy": "2024-12-26T11:18:20.450300Z", + "iopub.status.idle": "2024-12-26T11:18:20.686380Z", + "shell.execute_reply": "2024-12-26T11:18:20.685778Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.276026Z", - "iopub.status.busy": "2024-12-25T19:57:33.275685Z", - "iopub.status.idle": "2024-12-25T19:57:33.302127Z", - "shell.execute_reply": "2024-12-25T19:57:33.301649Z" + "iopub.execute_input": "2024-12-26T11:18:20.688424Z", + "iopub.status.busy": "2024-12-26T11:18:20.688124Z", + "iopub.status.idle": "2024-12-26T11:18:20.714631Z", + "shell.execute_reply": "2024-12-26T11:18:20.714189Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:33.303851Z", - "iopub.status.busy": "2024-12-25T19:57:33.303515Z", - "iopub.status.idle": "2024-12-25T19:57:35.321380Z", - "shell.execute_reply": "2024-12-25T19:57:35.320843Z" + "iopub.execute_input": "2024-12-26T11:18:20.716302Z", + "iopub.status.busy": "2024-12-26T11:18:20.715978Z", + "iopub.status.idle": "2024-12-26T11:18:22.755411Z", + "shell.execute_reply": "2024-12-26T11:18:22.754784Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:35.323442Z", - "iopub.status.busy": "2024-12-25T19:57:35.322986Z", - "iopub.status.idle": "2024-12-25T19:57:35.341288Z", - "shell.execute_reply": "2024-12-25T19:57:35.340830Z" + "iopub.execute_input": "2024-12-26T11:18:22.757587Z", + "iopub.status.busy": "2024-12-26T11:18:22.757028Z", + "iopub.status.idle": "2024-12-26T11:18:22.775324Z", + "shell.execute_reply": "2024-12-26T11:18:22.774810Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:35.342877Z", - "iopub.status.busy": "2024-12-25T19:57:35.342694Z", - "iopub.status.idle": "2024-12-25T19:57:36.899328Z", - "shell.execute_reply": "2024-12-25T19:57:36.898747Z" + "iopub.execute_input": "2024-12-26T11:18:22.777035Z", + "iopub.status.busy": "2024-12-26T11:18:22.776679Z", + "iopub.status.idle": "2024-12-26T11:18:24.344636Z", + "shell.execute_reply": "2024-12-26T11:18:24.344076Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:36.901596Z", - "iopub.status.busy": "2024-12-25T19:57:36.900927Z", - "iopub.status.idle": "2024-12-25T19:57:36.915066Z", - "shell.execute_reply": "2024-12-25T19:57:36.914502Z" + "iopub.execute_input": "2024-12-26T11:18:24.347189Z", + "iopub.status.busy": "2024-12-26T11:18:24.346296Z", + "iopub.status.idle": "2024-12-26T11:18:24.360147Z", + "shell.execute_reply": "2024-12-26T11:18:24.359667Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:36.916900Z", - "iopub.status.busy": "2024-12-25T19:57:36.916592Z", - "iopub.status.idle": "2024-12-25T19:57:36.997097Z", - "shell.execute_reply": "2024-12-25T19:57:36.996456Z" + "iopub.execute_input": "2024-12-26T11:18:24.361819Z", + "iopub.status.busy": "2024-12-26T11:18:24.361546Z", + "iopub.status.idle": "2024-12-26T11:18:24.443072Z", + "shell.execute_reply": "2024-12-26T11:18:24.442431Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:36.999149Z", - "iopub.status.busy": "2024-12-25T19:57:36.998907Z", - "iopub.status.idle": "2024-12-25T19:57:37.213188Z", - "shell.execute_reply": "2024-12-25T19:57:37.212615Z" + "iopub.execute_input": "2024-12-26T11:18:24.445318Z", + "iopub.status.busy": "2024-12-26T11:18:24.444842Z", + "iopub.status.idle": "2024-12-26T11:18:24.663437Z", + "shell.execute_reply": "2024-12-26T11:18:24.662912Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.215102Z", - "iopub.status.busy": "2024-12-25T19:57:37.214736Z", - "iopub.status.idle": "2024-12-25T19:57:37.231765Z", - "shell.execute_reply": "2024-12-25T19:57:37.231317Z" + "iopub.execute_input": "2024-12-26T11:18:24.665282Z", + "iopub.status.busy": "2024-12-26T11:18:24.664918Z", + "iopub.status.idle": "2024-12-26T11:18:24.681904Z", + "shell.execute_reply": "2024-12-26T11:18:24.681462Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.233438Z", - "iopub.status.busy": "2024-12-25T19:57:37.233107Z", - "iopub.status.idle": "2024-12-25T19:57:37.242581Z", - "shell.execute_reply": "2024-12-25T19:57:37.242145Z" + "iopub.execute_input": "2024-12-26T11:18:24.683596Z", + "iopub.status.busy": "2024-12-26T11:18:24.683317Z", + "iopub.status.idle": "2024-12-26T11:18:24.693159Z", + "shell.execute_reply": "2024-12-26T11:18:24.692602Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.244290Z", - "iopub.status.busy": "2024-12-25T19:57:37.244017Z", - "iopub.status.idle": "2024-12-25T19:57:37.338842Z", - "shell.execute_reply": "2024-12-25T19:57:37.338271Z" + "iopub.execute_input": "2024-12-26T11:18:24.694774Z", + "iopub.status.busy": "2024-12-26T11:18:24.694596Z", + "iopub.status.idle": "2024-12-26T11:18:24.791831Z", + "shell.execute_reply": "2024-12-26T11:18:24.791184Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.340766Z", - "iopub.status.busy": "2024-12-25T19:57:37.340523Z", - "iopub.status.idle": "2024-12-25T19:57:37.478288Z", - "shell.execute_reply": "2024-12-25T19:57:37.477695Z" + "iopub.execute_input": "2024-12-26T11:18:24.793627Z", + "iopub.status.busy": "2024-12-26T11:18:24.793398Z", + "iopub.status.idle": "2024-12-26T11:18:24.928109Z", + "shell.execute_reply": "2024-12-26T11:18:24.927283Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.480103Z", - "iopub.status.busy": "2024-12-25T19:57:37.479866Z", - "iopub.status.idle": "2024-12-25T19:57:37.483600Z", - "shell.execute_reply": "2024-12-25T19:57:37.483137Z" + "iopub.execute_input": "2024-12-26T11:18:24.929978Z", + "iopub.status.busy": "2024-12-26T11:18:24.929741Z", + "iopub.status.idle": "2024-12-26T11:18:24.933390Z", + "shell.execute_reply": "2024-12-26T11:18:24.932933Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.485248Z", - "iopub.status.busy": "2024-12-25T19:57:37.485077Z", - "iopub.status.idle": "2024-12-25T19:57:37.488596Z", - "shell.execute_reply": "2024-12-25T19:57:37.488153Z" + "iopub.execute_input": "2024-12-26T11:18:24.935289Z", + "iopub.status.busy": "2024-12-26T11:18:24.934811Z", + "iopub.status.idle": "2024-12-26T11:18:24.938732Z", + "shell.execute_reply": "2024-12-26T11:18:24.938262Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.490117Z", - "iopub.status.busy": "2024-12-25T19:57:37.489945Z", - "iopub.status.idle": "2024-12-25T19:57:37.529361Z", - "shell.execute_reply": "2024-12-25T19:57:37.528844Z" + "iopub.execute_input": "2024-12-26T11:18:24.940469Z", + "iopub.status.busy": "2024-12-26T11:18:24.940159Z", + "iopub.status.idle": "2024-12-26T11:18:24.977088Z", + "shell.execute_reply": "2024-12-26T11:18:24.976626Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.531115Z", - "iopub.status.busy": "2024-12-25T19:57:37.530915Z", - "iopub.status.idle": "2024-12-25T19:57:37.573535Z", - "shell.execute_reply": "2024-12-25T19:57:37.573022Z" + "iopub.execute_input": "2024-12-26T11:18:24.978808Z", + "iopub.status.busy": "2024-12-26T11:18:24.978479Z", + "iopub.status.idle": "2024-12-26T11:18:25.019590Z", + "shell.execute_reply": "2024-12-26T11:18:25.019093Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.575284Z", - "iopub.status.busy": "2024-12-25T19:57:37.575108Z", - "iopub.status.idle": "2024-12-25T19:57:37.677988Z", - "shell.execute_reply": "2024-12-25T19:57:37.677139Z" + "iopub.execute_input": "2024-12-26T11:18:25.021336Z", + "iopub.status.busy": "2024-12-26T11:18:25.020999Z", + "iopub.status.idle": "2024-12-26T11:18:25.121520Z", + "shell.execute_reply": "2024-12-26T11:18:25.120916Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.680161Z", - "iopub.status.busy": "2024-12-25T19:57:37.679815Z", - "iopub.status.idle": "2024-12-25T19:57:37.778846Z", - "shell.execute_reply": "2024-12-25T19:57:37.778300Z" + "iopub.execute_input": "2024-12-26T11:18:25.123877Z", + "iopub.status.busy": "2024-12-26T11:18:25.123473Z", + "iopub.status.idle": "2024-12-26T11:18:25.228708Z", + "shell.execute_reply": "2024-12-26T11:18:25.228059Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.780747Z", - "iopub.status.busy": "2024-12-25T19:57:37.780406Z", - "iopub.status.idle": "2024-12-25T19:57:37.990772Z", - "shell.execute_reply": "2024-12-25T19:57:37.990280Z" + "iopub.execute_input": "2024-12-26T11:18:25.230888Z", + "iopub.status.busy": "2024-12-26T11:18:25.230515Z", + "iopub.status.idle": "2024-12-26T11:18:25.441527Z", + "shell.execute_reply": "2024-12-26T11:18:25.441057Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:37.992748Z", - "iopub.status.busy": "2024-12-25T19:57:37.992403Z", - "iopub.status.idle": "2024-12-25T19:57:38.209201Z", - "shell.execute_reply": "2024-12-25T19:57:38.208646Z" + "iopub.execute_input": "2024-12-26T11:18:25.443422Z", + "iopub.status.busy": "2024-12-26T11:18:25.443051Z", + "iopub.status.idle": "2024-12-26T11:18:25.672933Z", + "shell.execute_reply": "2024-12-26T11:18:25.672348Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:38.211137Z", - "iopub.status.busy": "2024-12-25T19:57:38.210932Z", - "iopub.status.idle": "2024-12-25T19:57:38.217551Z", - "shell.execute_reply": "2024-12-25T19:57:38.216997Z" + "iopub.execute_input": "2024-12-26T11:18:25.674949Z", + "iopub.status.busy": "2024-12-26T11:18:25.674708Z", + "iopub.status.idle": "2024-12-26T11:18:25.681170Z", + "shell.execute_reply": "2024-12-26T11:18:25.680629Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:38.219232Z", - "iopub.status.busy": "2024-12-25T19:57:38.218919Z", - "iopub.status.idle": "2024-12-25T19:57:38.437508Z", - "shell.execute_reply": "2024-12-25T19:57:38.437019Z" + "iopub.execute_input": "2024-12-26T11:18:25.682870Z", + "iopub.status.busy": "2024-12-26T11:18:25.682559Z", + "iopub.status.idle": "2024-12-26T11:18:25.901457Z", + "shell.execute_reply": "2024-12-26T11:18:25.900975Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:38.439315Z", - "iopub.status.busy": "2024-12-25T19:57:38.439129Z", - "iopub.status.idle": "2024-12-25T19:57:39.507473Z", - "shell.execute_reply": "2024-12-25T19:57:39.506930Z" + "iopub.execute_input": "2024-12-26T11:18:25.903223Z", + "iopub.status.busy": "2024-12-26T11:18:25.902861Z", + "iopub.status.idle": "2024-12-26T11:18:26.969135Z", + "shell.execute_reply": "2024-12-26T11:18:26.968530Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 0c6c5a137..d090bb7c4 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:43.882483Z", - "iopub.status.busy": "2024-12-25T19:57:43.882328Z", - "iopub.status.idle": "2024-12-25T19:57:45.033942Z", - "shell.execute_reply": "2024-12-25T19:57:45.033364Z" + "iopub.execute_input": "2024-12-26T11:18:30.549778Z", + "iopub.status.busy": "2024-12-26T11:18:30.549610Z", + "iopub.status.idle": "2024-12-26T11:18:31.709962Z", + "shell.execute_reply": "2024-12-26T11:18:31.709426Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.036103Z", - "iopub.status.busy": "2024-12-25T19:57:45.035666Z", - "iopub.status.idle": "2024-12-25T19:57:45.038796Z", - "shell.execute_reply": "2024-12-25T19:57:45.038344Z" + "iopub.execute_input": "2024-12-26T11:18:31.712134Z", + "iopub.status.busy": "2024-12-26T11:18:31.711767Z", + "iopub.status.idle": "2024-12-26T11:18:31.714748Z", + "shell.execute_reply": "2024-12-26T11:18:31.714298Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.040531Z", - "iopub.status.busy": "2024-12-25T19:57:45.040194Z", - "iopub.status.idle": "2024-12-25T19:57:45.047839Z", - "shell.execute_reply": "2024-12-25T19:57:45.047410Z" + "iopub.execute_input": "2024-12-26T11:18:31.716603Z", + "iopub.status.busy": "2024-12-26T11:18:31.716278Z", + "iopub.status.idle": "2024-12-26T11:18:31.724116Z", + "shell.execute_reply": "2024-12-26T11:18:31.723621Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.049443Z", - "iopub.status.busy": "2024-12-25T19:57:45.049099Z", - "iopub.status.idle": "2024-12-25T19:57:45.098344Z", - "shell.execute_reply": "2024-12-25T19:57:45.097747Z" + "iopub.execute_input": "2024-12-26T11:18:31.725703Z", + "iopub.status.busy": "2024-12-26T11:18:31.725385Z", + "iopub.status.idle": "2024-12-26T11:18:31.774424Z", + "shell.execute_reply": "2024-12-26T11:18:31.773812Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.100160Z", - "iopub.status.busy": "2024-12-25T19:57:45.099819Z", - "iopub.status.idle": "2024-12-25T19:57:45.116437Z", - "shell.execute_reply": "2024-12-25T19:57:45.116010Z" + "iopub.execute_input": "2024-12-26T11:18:31.776605Z", + "iopub.status.busy": "2024-12-26T11:18:31.776063Z", + "iopub.status.idle": "2024-12-26T11:18:31.793237Z", + "shell.execute_reply": "2024-12-26T11:18:31.792657Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.118003Z", - "iopub.status.busy": "2024-12-25T19:57:45.117735Z", - "iopub.status.idle": "2024-12-25T19:57:45.121482Z", - "shell.execute_reply": "2024-12-25T19:57:45.120964Z" + "iopub.execute_input": "2024-12-26T11:18:31.794993Z", + "iopub.status.busy": "2024-12-26T11:18:31.794822Z", + "iopub.status.idle": "2024-12-26T11:18:31.798479Z", + "shell.execute_reply": "2024-12-26T11:18:31.798049Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.123322Z", - "iopub.status.busy": "2024-12-25T19:57:45.122994Z", - "iopub.status.idle": "2024-12-25T19:57:45.137120Z", - "shell.execute_reply": "2024-12-25T19:57:45.136687Z" + "iopub.execute_input": "2024-12-26T11:18:31.800119Z", + "iopub.status.busy": "2024-12-26T11:18:31.799952Z", + "iopub.status.idle": "2024-12-26T11:18:31.815286Z", + "shell.execute_reply": "2024-12-26T11:18:31.814826Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.138652Z", - "iopub.status.busy": "2024-12-25T19:57:45.138478Z", - "iopub.status.idle": "2024-12-25T19:57:45.165477Z", - "shell.execute_reply": "2024-12-25T19:57:45.164909Z" + "iopub.execute_input": "2024-12-26T11:18:31.817003Z", + "iopub.status.busy": "2024-12-26T11:18:31.816631Z", + "iopub.status.idle": "2024-12-26T11:18:31.843214Z", + "shell.execute_reply": "2024-12-26T11:18:31.842639Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:45.167427Z", - "iopub.status.busy": "2024-12-25T19:57:45.167004Z", - "iopub.status.idle": "2024-12-25T19:57:47.047124Z", - "shell.execute_reply": "2024-12-25T19:57:47.046555Z" + "iopub.execute_input": "2024-12-26T11:18:31.845018Z", + "iopub.status.busy": "2024-12-26T11:18:31.844700Z", + "iopub.status.idle": "2024-12-26T11:18:33.744473Z", + "shell.execute_reply": "2024-12-26T11:18:33.743856Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.049149Z", - "iopub.status.busy": "2024-12-25T19:57:47.048867Z", - "iopub.status.idle": "2024-12-25T19:57:47.055392Z", - "shell.execute_reply": "2024-12-25T19:57:47.054961Z" + "iopub.execute_input": "2024-12-26T11:18:33.746552Z", + "iopub.status.busy": "2024-12-26T11:18:33.746267Z", + "iopub.status.idle": "2024-12-26T11:18:33.752975Z", + "shell.execute_reply": "2024-12-26T11:18:33.752545Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.056887Z", - "iopub.status.busy": "2024-12-25T19:57:47.056716Z", - "iopub.status.idle": "2024-12-25T19:57:47.069083Z", - "shell.execute_reply": "2024-12-25T19:57:47.068643Z" + "iopub.execute_input": "2024-12-26T11:18:33.754707Z", + "iopub.status.busy": "2024-12-26T11:18:33.754342Z", + "iopub.status.idle": "2024-12-26T11:18:33.767105Z", + "shell.execute_reply": "2024-12-26T11:18:33.766599Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.070565Z", - "iopub.status.busy": "2024-12-25T19:57:47.070394Z", - "iopub.status.idle": "2024-12-25T19:57:47.076740Z", - "shell.execute_reply": "2024-12-25T19:57:47.076319Z" + "iopub.execute_input": "2024-12-26T11:18:33.768977Z", + "iopub.status.busy": "2024-12-26T11:18:33.768653Z", + "iopub.status.idle": "2024-12-26T11:18:33.775091Z", + "shell.execute_reply": "2024-12-26T11:18:33.774549Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.078447Z", - "iopub.status.busy": "2024-12-25T19:57:47.078142Z", - "iopub.status.idle": "2024-12-25T19:57:47.080678Z", - "shell.execute_reply": "2024-12-25T19:57:47.080235Z" + "iopub.execute_input": "2024-12-26T11:18:33.776815Z", + "iopub.status.busy": "2024-12-26T11:18:33.776645Z", + "iopub.status.idle": "2024-12-26T11:18:33.779497Z", + "shell.execute_reply": "2024-12-26T11:18:33.778927Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.082422Z", - "iopub.status.busy": "2024-12-25T19:57:47.082039Z", - "iopub.status.idle": "2024-12-25T19:57:47.085647Z", - "shell.execute_reply": "2024-12-25T19:57:47.085098Z" + "iopub.execute_input": "2024-12-26T11:18:33.781267Z", + "iopub.status.busy": "2024-12-26T11:18:33.781087Z", + "iopub.status.idle": "2024-12-26T11:18:33.784968Z", + "shell.execute_reply": "2024-12-26T11:18:33.784444Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.087364Z", - "iopub.status.busy": "2024-12-25T19:57:47.087064Z", - "iopub.status.idle": "2024-12-25T19:57:47.089776Z", - "shell.execute_reply": "2024-12-25T19:57:47.089226Z" + "iopub.execute_input": "2024-12-26T11:18:33.786843Z", + "iopub.status.busy": "2024-12-26T11:18:33.786457Z", + "iopub.status.idle": "2024-12-26T11:18:33.789163Z", + "shell.execute_reply": "2024-12-26T11:18:33.788659Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.091403Z", - "iopub.status.busy": "2024-12-25T19:57:47.091102Z", - "iopub.status.idle": "2024-12-25T19:57:47.095083Z", - "shell.execute_reply": "2024-12-25T19:57:47.094581Z" + "iopub.execute_input": "2024-12-26T11:18:33.790604Z", + "iopub.status.busy": "2024-12-26T11:18:33.790436Z", + "iopub.status.idle": "2024-12-26T11:18:33.794625Z", + "shell.execute_reply": "2024-12-26T11:18:33.794165Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.096860Z", - "iopub.status.busy": "2024-12-25T19:57:47.096540Z", - "iopub.status.idle": "2024-12-25T19:57:47.125818Z", - "shell.execute_reply": "2024-12-25T19:57:47.125298Z" + "iopub.execute_input": "2024-12-26T11:18:33.796345Z", + "iopub.status.busy": "2024-12-26T11:18:33.796042Z", + "iopub.status.idle": "2024-12-26T11:18:33.825523Z", + "shell.execute_reply": "2024-12-26T11:18:33.824952Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:47.127607Z", - "iopub.status.busy": "2024-12-25T19:57:47.127266Z", - "iopub.status.idle": "2024-12-25T19:57:47.131790Z", - "shell.execute_reply": "2024-12-25T19:57:47.131235Z" + "iopub.execute_input": "2024-12-26T11:18:33.827517Z", + "iopub.status.busy": "2024-12-26T11:18:33.827065Z", + "iopub.status.idle": "2024-12-26T11:18:33.831764Z", + "shell.execute_reply": "2024-12-26T11:18:33.831173Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 3d3e305e2..814ee7e91 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:49.982133Z", - "iopub.status.busy": "2024-12-25T19:57:49.981738Z", - "iopub.status.idle": "2024-12-25T19:57:51.183595Z", - "shell.execute_reply": "2024-12-25T19:57:51.182972Z" + "iopub.execute_input": "2024-12-26T11:18:36.574427Z", + "iopub.status.busy": "2024-12-26T11:18:36.574255Z", + "iopub.status.idle": "2024-12-26T11:18:37.797986Z", + "shell.execute_reply": "2024-12-26T11:18:37.797422Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:51.186058Z", - "iopub.status.busy": "2024-12-25T19:57:51.185478Z", - "iopub.status.idle": "2024-12-25T19:57:51.382771Z", - "shell.execute_reply": "2024-12-25T19:57:51.382193Z" + "iopub.execute_input": "2024-12-26T11:18:37.800089Z", + "iopub.status.busy": "2024-12-26T11:18:37.799817Z", + "iopub.status.idle": "2024-12-26T11:18:37.995964Z", + "shell.execute_reply": "2024-12-26T11:18:37.995414Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:51.384853Z", - "iopub.status.busy": "2024-12-25T19:57:51.384569Z", - "iopub.status.idle": "2024-12-25T19:57:51.397435Z", - "shell.execute_reply": "2024-12-25T19:57:51.396867Z" + "iopub.execute_input": "2024-12-26T11:18:37.998059Z", + "iopub.status.busy": "2024-12-26T11:18:37.997627Z", + "iopub.status.idle": "2024-12-26T11:18:38.010201Z", + "shell.execute_reply": "2024-12-26T11:18:38.009754Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:51.399225Z", - "iopub.status.busy": "2024-12-25T19:57:51.398918Z", - "iopub.status.idle": "2024-12-25T19:57:54.021154Z", - "shell.execute_reply": "2024-12-25T19:57:54.020647Z" + "iopub.execute_input": "2024-12-26T11:18:38.011896Z", + "iopub.status.busy": "2024-12-26T11:18:38.011719Z", + "iopub.status.idle": "2024-12-26T11:18:40.589429Z", + "shell.execute_reply": "2024-12-26T11:18:40.588890Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:54.023126Z", - "iopub.status.busy": "2024-12-25T19:57:54.022758Z", - "iopub.status.idle": "2024-12-25T19:57:55.384943Z", - "shell.execute_reply": "2024-12-25T19:57:55.384368Z" + "iopub.execute_input": "2024-12-26T11:18:40.591387Z", + "iopub.status.busy": "2024-12-26T11:18:40.591080Z", + "iopub.status.idle": "2024-12-26T11:18:41.928189Z", + "shell.execute_reply": "2024-12-26T11:18:41.927648Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:55.386927Z", - "iopub.status.busy": "2024-12-25T19:57:55.386579Z", - "iopub.status.idle": "2024-12-25T19:57:55.390137Z", - "shell.execute_reply": "2024-12-25T19:57:55.389711Z" + "iopub.execute_input": "2024-12-26T11:18:41.930185Z", + "iopub.status.busy": "2024-12-26T11:18:41.929813Z", + "iopub.status.idle": "2024-12-26T11:18:41.933365Z", + "shell.execute_reply": "2024-12-26T11:18:41.932918Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:55.391790Z", - "iopub.status.busy": "2024-12-25T19:57:55.391444Z", - "iopub.status.idle": "2024-12-25T19:57:57.381059Z", - "shell.execute_reply": "2024-12-25T19:57:57.380471Z" + "iopub.execute_input": "2024-12-26T11:18:41.935096Z", + "iopub.status.busy": "2024-12-26T11:18:41.934768Z", + "iopub.status.idle": "2024-12-26T11:18:43.978507Z", + "shell.execute_reply": "2024-12-26T11:18:43.977797Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:57.383429Z", - "iopub.status.busy": "2024-12-25T19:57:57.382844Z", - "iopub.status.idle": "2024-12-25T19:57:57.390717Z", - "shell.execute_reply": "2024-12-25T19:57:57.390265Z" + "iopub.execute_input": "2024-12-26T11:18:43.980627Z", + "iopub.status.busy": "2024-12-26T11:18:43.980250Z", + "iopub.status.idle": "2024-12-26T11:18:43.988845Z", + "shell.execute_reply": "2024-12-26T11:18:43.988382Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:57.392433Z", - "iopub.status.busy": "2024-12-25T19:57:57.392102Z", - "iopub.status.idle": "2024-12-25T19:57:59.971452Z", - "shell.execute_reply": "2024-12-25T19:57:59.970924Z" + "iopub.execute_input": "2024-12-26T11:18:43.990402Z", + "iopub.status.busy": "2024-12-26T11:18:43.990241Z", + "iopub.status.idle": "2024-12-26T11:18:46.524108Z", + "shell.execute_reply": "2024-12-26T11:18:46.523589Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:59.973144Z", - "iopub.status.busy": "2024-12-25T19:57:59.972957Z", - "iopub.status.idle": "2024-12-25T19:57:59.976686Z", - "shell.execute_reply": "2024-12-25T19:57:59.976233Z" + "iopub.execute_input": "2024-12-26T11:18:46.526054Z", + "iopub.status.busy": "2024-12-26T11:18:46.525692Z", + "iopub.status.idle": "2024-12-26T11:18:46.529054Z", + "shell.execute_reply": "2024-12-26T11:18:46.528625Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:59.978526Z", - "iopub.status.busy": "2024-12-25T19:57:59.978089Z", - "iopub.status.idle": "2024-12-25T19:57:59.981700Z", - "shell.execute_reply": "2024-12-25T19:57:59.981234Z" + "iopub.execute_input": "2024-12-26T11:18:46.530794Z", + "iopub.status.busy": "2024-12-26T11:18:46.530467Z", + "iopub.status.idle": "2024-12-26T11:18:46.534058Z", + "shell.execute_reply": "2024-12-26T11:18:46.533463Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:57:59.983447Z", - "iopub.status.busy": "2024-12-25T19:57:59.983116Z", - "iopub.status.idle": "2024-12-25T19:57:59.986425Z", - "shell.execute_reply": "2024-12-25T19:57:59.985987Z" + "iopub.execute_input": "2024-12-26T11:18:46.536031Z", + "iopub.status.busy": "2024-12-26T11:18:46.535633Z", + "iopub.status.idle": "2024-12-26T11:18:46.538951Z", + "shell.execute_reply": "2024-12-26T11:18:46.538371Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 5b77bd5a4..ab30a2ade 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:02.435140Z", - "iopub.status.busy": "2024-12-25T19:58:02.434968Z", - "iopub.status.idle": "2024-12-25T19:58:03.634083Z", - "shell.execute_reply": "2024-12-25T19:58:03.633513Z" + "iopub.execute_input": "2024-12-26T11:18:49.144518Z", + "iopub.status.busy": "2024-12-26T11:18:49.144348Z", + "iopub.status.idle": "2024-12-26T11:18:50.358514Z", + "shell.execute_reply": "2024-12-26T11:18:50.357961Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:03.636159Z", - "iopub.status.busy": "2024-12-25T19:58:03.635747Z", - "iopub.status.idle": "2024-12-25T19:58:05.904045Z", - "shell.execute_reply": "2024-12-25T19:58:05.903344Z" + "iopub.execute_input": "2024-12-26T11:18:50.360603Z", + "iopub.status.busy": "2024-12-26T11:18:50.360234Z", + "iopub.status.idle": "2024-12-26T11:18:51.352874Z", + "shell.execute_reply": "2024-12-26T11:18:51.352047Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:05.906149Z", - "iopub.status.busy": "2024-12-25T19:58:05.905951Z", - "iopub.status.idle": "2024-12-25T19:58:05.909343Z", - "shell.execute_reply": "2024-12-25T19:58:05.908783Z" + "iopub.execute_input": "2024-12-26T11:18:51.355306Z", + "iopub.status.busy": "2024-12-26T11:18:51.354833Z", + "iopub.status.idle": "2024-12-26T11:18:51.358325Z", + "shell.execute_reply": "2024-12-26T11:18:51.357788Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:05.911022Z", - "iopub.status.busy": "2024-12-25T19:58:05.910847Z", - "iopub.status.idle": "2024-12-25T19:58:05.917719Z", - "shell.execute_reply": "2024-12-25T19:58:05.917286Z" + "iopub.execute_input": "2024-12-26T11:18:51.359902Z", + "iopub.status.busy": "2024-12-26T11:18:51.359723Z", + "iopub.status.idle": "2024-12-26T11:18:51.366111Z", + "shell.execute_reply": "2024-12-26T11:18:51.365549Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:05.919214Z", - "iopub.status.busy": "2024-12-25T19:58:05.919045Z", - "iopub.status.idle": "2024-12-25T19:58:06.412582Z", - "shell.execute_reply": "2024-12-25T19:58:06.412008Z" + "iopub.execute_input": "2024-12-26T11:18:51.367999Z", + "iopub.status.busy": "2024-12-26T11:18:51.367657Z", + "iopub.status.idle": "2024-12-26T11:18:51.857369Z", + "shell.execute_reply": "2024-12-26T11:18:51.856744Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:06.415071Z", - "iopub.status.busy": "2024-12-25T19:58:06.414625Z", - "iopub.status.idle": "2024-12-25T19:58:06.419978Z", - "shell.execute_reply": "2024-12-25T19:58:06.419415Z" + "iopub.execute_input": "2024-12-26T11:18:51.859704Z", + "iopub.status.busy": "2024-12-26T11:18:51.859297Z", + "iopub.status.idle": "2024-12-26T11:18:51.864546Z", + "shell.execute_reply": "2024-12-26T11:18:51.864106Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:06.421832Z", - "iopub.status.busy": "2024-12-25T19:58:06.421441Z", - "iopub.status.idle": "2024-12-25T19:58:06.425547Z", - "shell.execute_reply": "2024-12-25T19:58:06.425130Z" + "iopub.execute_input": "2024-12-26T11:18:51.866118Z", + "iopub.status.busy": "2024-12-26T11:18:51.865945Z", + "iopub.status.idle": "2024-12-26T11:18:51.869982Z", + "shell.execute_reply": "2024-12-26T11:18:51.869426Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:06.427283Z", - "iopub.status.busy": "2024-12-25T19:58:06.426878Z", - "iopub.status.idle": "2024-12-25T19:58:07.387920Z", - "shell.execute_reply": "2024-12-25T19:58:07.387290Z" + "iopub.execute_input": "2024-12-26T11:18:51.871749Z", + "iopub.status.busy": "2024-12-26T11:18:51.871447Z", + "iopub.status.idle": "2024-12-26T11:18:52.777961Z", + "shell.execute_reply": "2024-12-26T11:18:52.777372Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:07.389996Z", - "iopub.status.busy": "2024-12-25T19:58:07.389594Z", - "iopub.status.idle": "2024-12-25T19:58:07.598119Z", - "shell.execute_reply": "2024-12-25T19:58:07.597664Z" + "iopub.execute_input": "2024-12-26T11:18:52.779857Z", + "iopub.status.busy": "2024-12-26T11:18:52.779660Z", + "iopub.status.idle": "2024-12-26T11:18:52.986710Z", + "shell.execute_reply": "2024-12-26T11:18:52.986212Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:07.599928Z", - "iopub.status.busy": "2024-12-25T19:58:07.599597Z", - "iopub.status.idle": "2024-12-25T19:58:07.603911Z", - "shell.execute_reply": "2024-12-25T19:58:07.603453Z" + "iopub.execute_input": "2024-12-26T11:18:52.988363Z", + "iopub.status.busy": "2024-12-26T11:18:52.988083Z", + "iopub.status.idle": "2024-12-26T11:18:52.992225Z", + "shell.execute_reply": "2024-12-26T11:18:52.991781Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:07.605668Z", - "iopub.status.busy": "2024-12-25T19:58:07.605321Z", - "iopub.status.idle": "2024-12-25T19:58:08.063457Z", - "shell.execute_reply": "2024-12-25T19:58:08.062708Z" + "iopub.execute_input": "2024-12-26T11:18:52.993829Z", + "iopub.status.busy": "2024-12-26T11:18:52.993653Z", + "iopub.status.idle": "2024-12-26T11:18:53.465269Z", + "shell.execute_reply": "2024-12-26T11:18:53.464673Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:08.066563Z", - "iopub.status.busy": "2024-12-25T19:58:08.066056Z", - "iopub.status.idle": "2024-12-25T19:58:08.406694Z", - "shell.execute_reply": "2024-12-25T19:58:08.406104Z" + "iopub.execute_input": "2024-12-26T11:18:53.467346Z", + "iopub.status.busy": "2024-12-26T11:18:53.467163Z", + "iopub.status.idle": "2024-12-26T11:18:53.797907Z", + "shell.execute_reply": "2024-12-26T11:18:53.797349Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:08.408573Z", - "iopub.status.busy": "2024-12-25T19:58:08.408170Z", - "iopub.status.idle": "2024-12-25T19:58:08.778833Z", - "shell.execute_reply": "2024-12-25T19:58:08.778193Z" + "iopub.execute_input": "2024-12-26T11:18:53.799851Z", + "iopub.status.busy": "2024-12-26T11:18:53.799519Z", + "iopub.status.idle": "2024-12-26T11:18:54.134085Z", + "shell.execute_reply": "2024-12-26T11:18:54.133547Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:08.781314Z", - "iopub.status.busy": "2024-12-25T19:58:08.780975Z", - "iopub.status.idle": "2024-12-25T19:58:09.233170Z", - "shell.execute_reply": "2024-12-25T19:58:09.232616Z" + "iopub.execute_input": "2024-12-26T11:18:54.136573Z", + "iopub.status.busy": "2024-12-26T11:18:54.136260Z", + "iopub.status.idle": "2024-12-26T11:18:54.547622Z", + "shell.execute_reply": "2024-12-26T11:18:54.547062Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:09.237262Z", - "iopub.status.busy": "2024-12-25T19:58:09.236861Z", - "iopub.status.idle": "2024-12-25T19:58:09.690569Z", - "shell.execute_reply": "2024-12-25T19:58:09.690037Z" + "iopub.execute_input": "2024-12-26T11:18:54.551547Z", + "iopub.status.busy": "2024-12-26T11:18:54.551172Z", + "iopub.status.idle": "2024-12-26T11:18:54.998554Z", + "shell.execute_reply": "2024-12-26T11:18:54.997931Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:09.692920Z", - "iopub.status.busy": "2024-12-25T19:58:09.692573Z", - "iopub.status.idle": "2024-12-25T19:58:09.908313Z", - "shell.execute_reply": "2024-12-25T19:58:09.907772Z" + "iopub.execute_input": "2024-12-26T11:18:55.000960Z", + "iopub.status.busy": "2024-12-26T11:18:55.000597Z", + "iopub.status.idle": "2024-12-26T11:18:55.217164Z", + "shell.execute_reply": "2024-12-26T11:18:55.216558Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:09.910030Z", - "iopub.status.busy": "2024-12-25T19:58:09.909753Z", - "iopub.status.idle": "2024-12-25T19:58:10.113594Z", - "shell.execute_reply": "2024-12-25T19:58:10.112993Z" + "iopub.execute_input": "2024-12-26T11:18:55.219171Z", + "iopub.status.busy": "2024-12-26T11:18:55.218620Z", + "iopub.status.idle": "2024-12-26T11:18:55.417253Z", + "shell.execute_reply": "2024-12-26T11:18:55.416685Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:10.115653Z", - "iopub.status.busy": "2024-12-25T19:58:10.115245Z", - "iopub.status.idle": "2024-12-25T19:58:10.118240Z", - "shell.execute_reply": "2024-12-25T19:58:10.117783Z" + "iopub.execute_input": "2024-12-26T11:18:55.418931Z", + "iopub.status.busy": "2024-12-26T11:18:55.418633Z", + "iopub.status.idle": "2024-12-26T11:18:55.421560Z", + "shell.execute_reply": "2024-12-26T11:18:55.421004Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:10.119856Z", - "iopub.status.busy": "2024-12-25T19:58:10.119533Z", - "iopub.status.idle": "2024-12-25T19:58:11.073714Z", - "shell.execute_reply": "2024-12-25T19:58:11.073100Z" + "iopub.execute_input": "2024-12-26T11:18:55.423217Z", + "iopub.status.busy": "2024-12-26T11:18:55.423001Z", + "iopub.status.idle": "2024-12-26T11:18:56.390302Z", + "shell.execute_reply": "2024-12-26T11:18:56.389693Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:11.075598Z", - "iopub.status.busy": "2024-12-25T19:58:11.075320Z", - "iopub.status.idle": "2024-12-25T19:58:11.207757Z", - "shell.execute_reply": "2024-12-25T19:58:11.207268Z" + "iopub.execute_input": "2024-12-26T11:18:56.392146Z", + "iopub.status.busy": "2024-12-26T11:18:56.391957Z", + "iopub.status.idle": "2024-12-26T11:18:56.529309Z", + "shell.execute_reply": "2024-12-26T11:18:56.528861Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:11.209578Z", - "iopub.status.busy": "2024-12-25T19:58:11.209233Z", - "iopub.status.idle": "2024-12-25T19:58:11.440377Z", - "shell.execute_reply": "2024-12-25T19:58:11.439915Z" + "iopub.execute_input": "2024-12-26T11:18:56.530853Z", + "iopub.status.busy": "2024-12-26T11:18:56.530641Z", + "iopub.status.idle": "2024-12-26T11:18:56.670921Z", + "shell.execute_reply": "2024-12-26T11:18:56.670506Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:11.441995Z", - "iopub.status.busy": "2024-12-25T19:58:11.441826Z", - "iopub.status.idle": "2024-12-25T19:58:12.192202Z", - "shell.execute_reply": "2024-12-25T19:58:12.191616Z" + "iopub.execute_input": "2024-12-26T11:18:56.672563Z", + "iopub.status.busy": "2024-12-26T11:18:56.672246Z", + "iopub.status.idle": "2024-12-26T11:18:57.424420Z", + "shell.execute_reply": "2024-12-26T11:18:57.423871Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:12.193892Z", - "iopub.status.busy": "2024-12-25T19:58:12.193715Z", - "iopub.status.idle": "2024-12-25T19:58:12.197399Z", - "shell.execute_reply": "2024-12-25T19:58:12.196837Z" + "iopub.execute_input": "2024-12-26T11:18:57.426188Z", + "iopub.status.busy": "2024-12-26T11:18:57.426012Z", + "iopub.status.idle": "2024-12-26T11:18:57.429607Z", + "shell.execute_reply": "2024-12-26T11:18:57.429166Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 1d09ee3ba..5ffa698b4 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -793,7 +793,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:04<00:00, 39147774.82it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 105877447.96it/s]
 

-
+
@@ -1143,7 +1143,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index d9b948860..4fee540c4 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:14.467565Z", - "iopub.status.busy": "2024-12-25T19:58:14.467399Z", - "iopub.status.idle": "2024-12-25T19:58:17.309325Z", - "shell.execute_reply": "2024-12-25T19:58:17.308788Z" + "iopub.execute_input": "2024-12-26T11:18:59.577561Z", + "iopub.status.busy": "2024-12-26T11:18:59.577161Z", + "iopub.status.idle": "2024-12-26T11:19:02.539005Z", + "shell.execute_reply": "2024-12-26T11:19:02.538345Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:17.311311Z", - "iopub.status.busy": "2024-12-25T19:58:17.311031Z", - "iopub.status.idle": "2024-12-25T19:58:17.627892Z", - "shell.execute_reply": "2024-12-25T19:58:17.627336Z" + "iopub.execute_input": "2024-12-26T11:19:02.541736Z", + "iopub.status.busy": "2024-12-26T11:19:02.541224Z", + "iopub.status.idle": "2024-12-26T11:19:02.875636Z", + "shell.execute_reply": "2024-12-26T11:19:02.875057Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:17.630134Z", - "iopub.status.busy": "2024-12-25T19:58:17.629676Z", - "iopub.status.idle": "2024-12-25T19:58:17.633614Z", - "shell.execute_reply": "2024-12-25T19:58:17.633198Z" + "iopub.execute_input": "2024-12-26T11:19:02.877694Z", + "iopub.status.busy": "2024-12-26T11:19:02.877403Z", + "iopub.status.idle": "2024-12-26T11:19:02.881924Z", + "shell.execute_reply": "2024-12-26T11:19:02.881367Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:17.635357Z", - "iopub.status.busy": "2024-12-25T19:58:17.635023Z", - "iopub.status.idle": "2024-12-25T19:58:25.624475Z", - "shell.execute_reply": "2024-12-25T19:58:25.623880Z" + "iopub.execute_input": "2024-12-26T11:19:02.883827Z", + "iopub.status.busy": "2024-12-26T11:19:02.883504Z", + "iopub.status.idle": "2024-12-26T11:19:07.561891Z", + "shell.execute_reply": "2024-12-26T11:19:07.561358Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<11:44, 242022.82it/s]" + " 1%| | 1736704/170498071 [00:00<00:11, 15274773.50it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<03:00, 942802.44it/s]" + " 8%|▊ | 12976128/170498071 [00:00<00:02, 69339408.63it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<01:02, 2695287.41it/s]" + " 14%|█▍ | 23625728/170498071 [00:00<00:01, 85724727.85it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3604480/170498071 [00:00<00:17, 9439955.62it/s]" + " 21%|██ | 35028992/170498071 [00:00<00:01, 96620932.89it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9535488/170498071 [00:00<00:06, 23937167.81it/s]" + " 27%|██▋ | 46366720/170498071 [00:00<00:01, 102518077.11it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12976128/170498071 [00:00<00:05, 26583497.19it/s]" + " 34%|███▍ | 57769984/170498071 [00:00<00:01, 106377707.63it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17858560/170498071 [00:00<00:04, 33072538.78it/s]" + " 41%|████ | 69107712/170498071 [00:00<00:00, 108639675.19it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22151168/170498071 [00:00<00:04, 35353762.95it/s]" + " 47%|████▋ | 80052224/170498071 [00:00<00:00, 108167347.03it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 26181632/170498071 [00:01<00:03, 36642486.34it/s]" + " 54%|█████▎ | 91553792/170498071 [00:00<00:00, 110203204.46it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 31424512/170498071 [00:01<00:03, 40579398.24it/s]" + " 60%|██████ | 102825984/170498071 [00:01<00:00, 110965301.78it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35586048/170498071 [00:01<00:03, 39563767.23it/s]" + " 67%|██████▋ | 114294784/170498071 [00:01<00:00, 112080003.57it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 40992768/170498071 [00:01<00:02, 43415892.14it/s]" + " 74%|███████▎ | 125632512/170498071 [00:01<00:00, 112417015.15it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45416448/170498071 [00:01<00:03, 41494932.50it/s]" + " 80%|████████ | 137101312/170498071 [00:01<00:00, 113031193.28it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 50561024/170498071 [00:01<00:02, 44261831.23it/s]" + " 87%|████████▋ | 148537344/170498071 [00:01<00:00, 113361611.22it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 55050240/170498071 [00:01<00:02, 42223327.68it/s]" + " 94%|█████████▍| 159907840/170498071 [00:01<00:00, 113380930.47it/s]" ] }, { @@ -372,199 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 60227584/170498071 [00:01<00:02, 42579104.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 38%|███▊ | 64782336/170498071 [00:01<00:02, 43373100.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 41%|████ | 69500928/170498071 [00:02<00:02, 43787332.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 43%|████▎ | 73924608/170498071 [00:02<00:02, 42802215.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 46%|████▋ | 78905344/170498071 [00:02<00:02, 44783330.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 49%|████▉ | 83427328/170498071 [00:02<00:02, 42798381.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88473600/170498071 [00:02<00:01, 44776737.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 92995584/170498071 [00:02<00:01, 42855032.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 97976320/170498071 [00:02<00:01, 44560517.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 102465536/170498071 [00:02<00:01, 42737114.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107446272/170498071 [00:02<00:01, 44653588.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 111968256/170498071 [00:03<00:01, 42702467.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 116850688/170498071 [00:03<00:01, 44392111.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121339904/170498071 [00:03<00:01, 42567313.24it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126255104/170498071 [00:03<00:00, 44391722.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130744320/170498071 [00:03<00:00, 42498226.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|███████▉ | 135593984/170498071 [00:03<00:00, 44171582.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 140050432/170498071 [00:03<00:00, 42322590.24it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 144998400/170498071 [00:03<00:00, 44301791.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 149487616/170498071 [00:03<00:00, 42360243.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 154566656/170498071 [00:03<00:00, 44658032.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 159088640/170498071 [00:04<00:00, 42593430.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 164102144/170498071 [00:04<00:00, 44687146.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 168624128/170498071 [00:04<00:00, 42503489.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 39147774.82it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 105877447.96it/s]" ] }, { @@ -682,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:25.626401Z", - "iopub.status.busy": "2024-12-25T19:58:25.626082Z", - "iopub.status.idle": "2024-12-25T19:58:25.630847Z", - "shell.execute_reply": "2024-12-25T19:58:25.630300Z" + "iopub.execute_input": "2024-12-26T11:19:07.563705Z", + "iopub.status.busy": "2024-12-26T11:19:07.563524Z", + "iopub.status.idle": "2024-12-26T11:19:07.568302Z", + "shell.execute_reply": "2024-12-26T11:19:07.567848Z" }, "nbsphinx": "hidden" }, @@ -736,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:25.632491Z", - "iopub.status.busy": "2024-12-25T19:58:25.632174Z", - "iopub.status.idle": "2024-12-25T19:58:26.175295Z", - "shell.execute_reply": "2024-12-25T19:58:26.174711Z" + "iopub.execute_input": "2024-12-26T11:19:07.569940Z", + "iopub.status.busy": "2024-12-26T11:19:07.569628Z", + "iopub.status.idle": "2024-12-26T11:19:08.117081Z", + "shell.execute_reply": "2024-12-26T11:19:08.116562Z" } }, "outputs": [ @@ -772,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:26.177042Z", - "iopub.status.busy": "2024-12-25T19:58:26.176734Z", - "iopub.status.idle": "2024-12-25T19:58:26.692473Z", - "shell.execute_reply": "2024-12-25T19:58:26.691848Z" + "iopub.execute_input": "2024-12-26T11:19:08.119028Z", + "iopub.status.busy": "2024-12-26T11:19:08.118660Z", + "iopub.status.idle": "2024-12-26T11:19:08.635485Z", + "shell.execute_reply": "2024-12-26T11:19:08.634881Z" } }, "outputs": [ @@ -813,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:26.694362Z", - "iopub.status.busy": "2024-12-25T19:58:26.694075Z", - "iopub.status.idle": "2024-12-25T19:58:26.697616Z", - "shell.execute_reply": "2024-12-25T19:58:26.697045Z" + "iopub.execute_input": "2024-12-26T11:19:08.637408Z", + "iopub.status.busy": "2024-12-26T11:19:08.636999Z", + "iopub.status.idle": "2024-12-26T11:19:08.640586Z", + "shell.execute_reply": "2024-12-26T11:19:08.640118Z" } }, "outputs": [], @@ -839,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:26.699728Z", - "iopub.status.busy": "2024-12-25T19:58:26.699396Z", - "iopub.status.idle": "2024-12-25T19:58:39.441767Z", - "shell.execute_reply": "2024-12-25T19:58:39.441171Z" + "iopub.execute_input": "2024-12-26T11:19:08.642250Z", + "iopub.status.busy": "2024-12-26T11:19:08.641931Z", + "iopub.status.idle": "2024-12-26T11:19:21.098343Z", + "shell.execute_reply": "2024-12-26T11:19:21.097701Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8d985fce871343fda1b32911225e82d5", + "model_id": "53d0acc6ef16419393e1196568fa0d59", "version_major": 2, "version_minor": 0 }, @@ -908,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:39.443706Z", - "iopub.status.busy": "2024-12-25T19:58:39.443354Z", - "iopub.status.idle": "2024-12-25T19:58:41.514645Z", - "shell.execute_reply": "2024-12-25T19:58:41.514173Z" + "iopub.execute_input": "2024-12-26T11:19:21.100330Z", + "iopub.status.busy": "2024-12-26T11:19:21.100133Z", + "iopub.status.idle": "2024-12-26T11:19:23.248251Z", + "shell.execute_reply": "2024-12-26T11:19:23.247642Z" } }, "outputs": [ @@ -955,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:41.516574Z", - "iopub.status.busy": "2024-12-25T19:58:41.516212Z", - "iopub.status.idle": "2024-12-25T19:58:41.738716Z", - "shell.execute_reply": "2024-12-25T19:58:41.738128Z" + "iopub.execute_input": "2024-12-26T11:19:23.250701Z", + "iopub.status.busy": "2024-12-26T11:19:23.250280Z", + "iopub.status.idle": "2024-12-26T11:19:23.508410Z", + "shell.execute_reply": "2024-12-26T11:19:23.507868Z" } }, "outputs": [ @@ -994,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:41.740544Z", - "iopub.status.busy": "2024-12-25T19:58:41.740363Z", - "iopub.status.idle": "2024-12-25T19:58:42.395028Z", - "shell.execute_reply": "2024-12-25T19:58:42.394422Z" + "iopub.execute_input": "2024-12-26T11:19:23.510739Z", + "iopub.status.busy": "2024-12-26T11:19:23.510321Z", + "iopub.status.idle": "2024-12-26T11:19:24.207595Z", + "shell.execute_reply": "2024-12-26T11:19:24.206986Z" } }, "outputs": [ @@ -1047,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:42.397102Z", - "iopub.status.busy": "2024-12-25T19:58:42.396923Z", - "iopub.status.idle": "2024-12-25T19:58:42.687202Z", - "shell.execute_reply": "2024-12-25T19:58:42.686602Z" + "iopub.execute_input": "2024-12-26T11:19:24.210301Z", + "iopub.status.busy": "2024-12-26T11:19:24.209831Z", + "iopub.status.idle": "2024-12-26T11:19:24.549671Z", + "shell.execute_reply": "2024-12-26T11:19:24.549207Z" } }, "outputs": [ @@ -1098,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:42.689278Z", - "iopub.status.busy": "2024-12-25T19:58:42.689104Z", - "iopub.status.idle": "2024-12-25T19:58:42.919174Z", - "shell.execute_reply": "2024-12-25T19:58:42.918636Z" + "iopub.execute_input": "2024-12-26T11:19:24.551507Z", + "iopub.status.busy": "2024-12-26T11:19:24.551186Z", + "iopub.status.idle": "2024-12-26T11:19:24.795066Z", + "shell.execute_reply": "2024-12-26T11:19:24.794493Z" } }, "outputs": [ @@ -1157,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:42.922755Z", - "iopub.status.busy": "2024-12-25T19:58:42.921991Z", - "iopub.status.idle": "2024-12-25T19:58:43.019622Z", - "shell.execute_reply": "2024-12-25T19:58:43.019139Z" + "iopub.execute_input": "2024-12-26T11:19:24.797562Z", + "iopub.status.busy": "2024-12-26T11:19:24.797115Z", + "iopub.status.idle": "2024-12-26T11:19:24.929780Z", + "shell.execute_reply": "2024-12-26T11:19:24.929268Z" } }, "outputs": [], @@ -1181,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:43.022340Z", - "iopub.status.busy": "2024-12-25T19:58:43.021729Z", - "iopub.status.idle": "2024-12-25T19:58:53.698857Z", - "shell.execute_reply": "2024-12-25T19:58:53.698258Z" + "iopub.execute_input": "2024-12-26T11:19:24.931991Z", + "iopub.status.busy": "2024-12-26T11:19:24.931513Z", + "iopub.status.idle": "2024-12-26T11:19:35.886393Z", + "shell.execute_reply": "2024-12-26T11:19:35.885775Z" } }, "outputs": [ @@ -1221,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:53.700949Z", - "iopub.status.busy": "2024-12-25T19:58:53.700457Z", - "iopub.status.idle": "2024-12-25T19:58:55.844108Z", - "shell.execute_reply": "2024-12-25T19:58:55.843597Z" + "iopub.execute_input": "2024-12-26T11:19:35.888506Z", + "iopub.status.busy": "2024-12-26T11:19:35.888187Z", + "iopub.status.idle": "2024-12-26T11:19:38.112557Z", + "shell.execute_reply": "2024-12-26T11:19:38.111963Z" } }, "outputs": [ @@ -1255,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:55.846412Z", - "iopub.status.busy": "2024-12-25T19:58:55.845813Z", - "iopub.status.idle": "2024-12-25T19:58:56.054313Z", - "shell.execute_reply": "2024-12-25T19:58:56.053798Z" + "iopub.execute_input": "2024-12-26T11:19:38.115196Z", + "iopub.status.busy": "2024-12-26T11:19:38.114524Z", + "iopub.status.idle": "2024-12-26T11:19:38.332153Z", + "shell.execute_reply": "2024-12-26T11:19:38.331635Z" } }, "outputs": [], @@ -1272,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:56.056359Z", - "iopub.status.busy": "2024-12-25T19:58:56.055925Z", - "iopub.status.idle": "2024-12-25T19:58:56.059159Z", - "shell.execute_reply": "2024-12-25T19:58:56.058726Z" + "iopub.execute_input": "2024-12-26T11:19:38.334277Z", + "iopub.status.busy": "2024-12-26T11:19:38.333932Z", + "iopub.status.idle": "2024-12-26T11:19:38.337007Z", + "shell.execute_reply": "2024-12-26T11:19:38.336562Z" } }, "outputs": [], @@ -1313,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:58:56.060944Z", - "iopub.status.busy": "2024-12-25T19:58:56.060630Z", - "iopub.status.idle": "2024-12-25T19:58:56.068742Z", - "shell.execute_reply": "2024-12-25T19:58:56.068319Z" + "iopub.execute_input": "2024-12-26T11:19:38.338736Z", + "iopub.status.busy": "2024-12-26T11:19:38.338409Z", + "iopub.status.idle": "2024-12-26T11:19:38.346389Z", + "shell.execute_reply": "2024-12-26T11:19:38.345944Z" }, "nbsphinx": "hidden" }, @@ -1361,7 +1169,72 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "138ce5630c6a49d69c98aa57b2de09b8": { + "2d8132f06b5d4efa8bbe426e8063fa0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6ba9b0c85f0c47cd87407c9100e1efd0", + "placeholder": "​", + "style": "IPY_MODEL_80fd9b326c104f51b73bfa2048678fa7", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 239MB/s]" + } + }, + "34587ff1a8ae45f99f602b8c360aba6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "53d0acc6ef16419393e1196568fa0d59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78bd76de52a24fc98b30142f2160b51b", + "IPY_MODEL_ea7f6f0bfc2e48c48aeabe3746879bd8", + "IPY_MODEL_2d8132f06b5d4efa8bbe426e8063fa0a" + ], + "layout": "IPY_MODEL_bcd708d22bec4cfb9872dafde27a6d89", + "tabbable": null, + "tooltip": null + } + }, + "6ba9b0c85f0c47cd87407c9100e1efd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1414,33 +1287,30 @@ "width": null } }, - "17d2441570d948c3af49db21e9cd324a": { + "78bd76de52a24fc98b30142f2160b51b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38c24467b27d4211858132a790d487e8", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7510d8c2b966466ea92ce214aa702c5a", + "layout": "IPY_MODEL_7a481ddce8a34af2830981918d3d3d09", + "placeholder": "​", + "style": "IPY_MODEL_34587ff1a8ae45f99f602b8c360aba6e", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": "model.safetensors: 100%" } }, - "38c24467b27d4211858132a790d487e8": { + "7a481ddce8a34af2830981918d3d3d09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1493,7 +1363,7 @@ "width": null } }, - "65023da24d0847f289aba69ae93d31ce": { + "80fd9b326c104f51b73bfa2048678fa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1511,30 +1381,7 @@ "text_color": null } }, - "6e5c539e87254a96b41cf468456f807b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff1abd65b79f4f6a9224cb644ebc2edd", - "placeholder": "​", - "style": "IPY_MODEL_a4ce244a61e64fd295da1866337a4e27", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 216MB/s]" - } - }, - "7510d8c2b966466ea92ce214aa702c5a": { + "971fc0f882c445d6844aa4f9fdd6d6fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1550,72 +1397,7 @@ "description_width": "" } }, - "84529579ceca47c29c6f32d7c4a49146": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a64060dac43048c3b73f25e183dc5da6", - "placeholder": "​", - "style": "IPY_MODEL_65023da24d0847f289aba69ae93d31ce", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "8d985fce871343fda1b32911225e82d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_84529579ceca47c29c6f32d7c4a49146", - "IPY_MODEL_17d2441570d948c3af49db21e9cd324a", - "IPY_MODEL_6e5c539e87254a96b41cf468456f807b" - ], - "layout": "IPY_MODEL_138ce5630c6a49d69c98aa57b2de09b8", - "tabbable": null, - "tooltip": null - } - }, - "a4ce244a61e64fd295da1866337a4e27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a64060dac43048c3b73f25e183dc5da6": { + "bcd708d22bec4cfb9872dafde27a6d89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,7 +1450,33 @@ "width": null } }, - "ff1abd65b79f4f6a9224cb644ebc2edd": { + "ea7f6f0bfc2e48c48aeabe3746879bd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee02b92b7bcb42b99a64449aa96031e8", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_971fc0f882c445d6844aa4f9fdd6d6fd", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "ee02b92b7bcb42b99a64449aa96031e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 5c44675f3..e2bc15331 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:00.282383Z", - "iopub.status.busy": "2024-12-25T19:59:00.281930Z", - "iopub.status.idle": "2024-12-25T19:59:01.485197Z", - "shell.execute_reply": "2024-12-25T19:59:01.484654Z" + "iopub.execute_input": "2024-12-26T11:19:42.481269Z", + "iopub.status.busy": "2024-12-26T11:19:42.481094Z", + "iopub.status.idle": "2024-12-26T11:19:43.708370Z", + "shell.execute_reply": "2024-12-26T11:19:43.707673Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.487375Z", - "iopub.status.busy": "2024-12-25T19:59:01.486857Z", - "iopub.status.idle": "2024-12-25T19:59:01.504767Z", - "shell.execute_reply": "2024-12-25T19:59:01.504195Z" + "iopub.execute_input": "2024-12-26T11:19:43.710808Z", + "iopub.status.busy": "2024-12-26T11:19:43.710308Z", + "iopub.status.idle": "2024-12-26T11:19:43.731917Z", + "shell.execute_reply": "2024-12-26T11:19:43.731408Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.506880Z", - "iopub.status.busy": "2024-12-25T19:59:01.506310Z", - "iopub.status.idle": "2024-12-25T19:59:01.509512Z", - "shell.execute_reply": "2024-12-25T19:59:01.509080Z" + "iopub.execute_input": "2024-12-26T11:19:43.733765Z", + "iopub.status.busy": "2024-12-26T11:19:43.733363Z", + "iopub.status.idle": "2024-12-26T11:19:43.736480Z", + "shell.execute_reply": "2024-12-26T11:19:43.735939Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.511338Z", - "iopub.status.busy": "2024-12-25T19:59:01.510937Z", - "iopub.status.idle": "2024-12-25T19:59:01.804178Z", - "shell.execute_reply": "2024-12-25T19:59:01.803707Z" + "iopub.execute_input": "2024-12-26T11:19:43.738294Z", + "iopub.status.busy": "2024-12-26T11:19:43.737977Z", + "iopub.status.idle": "2024-12-26T11:19:43.799687Z", + "shell.execute_reply": "2024-12-26T11:19:43.799240Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.806005Z", - "iopub.status.busy": "2024-12-25T19:59:01.805696Z", - "iopub.status.idle": "2024-12-25T19:59:01.983200Z", - "shell.execute_reply": "2024-12-25T19:59:01.982600Z" + "iopub.execute_input": "2024-12-26T11:19:43.801379Z", + "iopub.status.busy": "2024-12-26T11:19:43.801116Z", + "iopub.status.idle": "2024-12-26T11:19:43.981986Z", + "shell.execute_reply": "2024-12-26T11:19:43.981404Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:01.985218Z", - "iopub.status.busy": "2024-12-25T19:59:01.985032Z", - "iopub.status.idle": "2024-12-25T19:59:02.191100Z", - "shell.execute_reply": "2024-12-25T19:59:02.190569Z" + "iopub.execute_input": "2024-12-26T11:19:43.984030Z", + "iopub.status.busy": "2024-12-26T11:19:43.983668Z", + "iopub.status.idle": "2024-12-26T11:19:44.225950Z", + "shell.execute_reply": "2024-12-26T11:19:44.225449Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.192932Z", - "iopub.status.busy": "2024-12-25T19:59:02.192574Z", - "iopub.status.idle": "2024-12-25T19:59:02.196850Z", - "shell.execute_reply": "2024-12-25T19:59:02.196396Z" + "iopub.execute_input": "2024-12-26T11:19:44.227657Z", + "iopub.status.busy": "2024-12-26T11:19:44.227475Z", + "iopub.status.idle": "2024-12-26T11:19:44.231827Z", + "shell.execute_reply": "2024-12-26T11:19:44.231378Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.198510Z", - "iopub.status.busy": "2024-12-25T19:59:02.198180Z", - "iopub.status.idle": "2024-12-25T19:59:02.203719Z", - "shell.execute_reply": "2024-12-25T19:59:02.203279Z" + "iopub.execute_input": "2024-12-26T11:19:44.233467Z", + "iopub.status.busy": "2024-12-26T11:19:44.233127Z", + "iopub.status.idle": "2024-12-26T11:19:44.238664Z", + "shell.execute_reply": "2024-12-26T11:19:44.238243Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.205490Z", - "iopub.status.busy": "2024-12-25T19:59:02.205168Z", - "iopub.status.idle": "2024-12-25T19:59:02.207978Z", - "shell.execute_reply": "2024-12-25T19:59:02.207551Z" + "iopub.execute_input": "2024-12-26T11:19:44.240385Z", + "iopub.status.busy": "2024-12-26T11:19:44.240089Z", + "iopub.status.idle": "2024-12-26T11:19:44.242788Z", + "shell.execute_reply": "2024-12-26T11:19:44.242225Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:02.209532Z", - "iopub.status.busy": "2024-12-25T19:59:02.209269Z", - "iopub.status.idle": "2024-12-25T19:59:11.055160Z", - "shell.execute_reply": "2024-12-25T19:59:11.054613Z" + "iopub.execute_input": "2024-12-26T11:19:44.244409Z", + "iopub.status.busy": "2024-12-26T11:19:44.244236Z", + "iopub.status.idle": "2024-12-26T11:19:53.106361Z", + "shell.execute_reply": "2024-12-26T11:19:53.105691Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.057392Z", - "iopub.status.busy": "2024-12-25T19:59:11.056991Z", - "iopub.status.idle": "2024-12-25T19:59:11.064335Z", - "shell.execute_reply": "2024-12-25T19:59:11.063766Z" + "iopub.execute_input": "2024-12-26T11:19:53.108847Z", + "iopub.status.busy": "2024-12-26T11:19:53.108299Z", + "iopub.status.idle": "2024-12-26T11:19:53.115551Z", + "shell.execute_reply": "2024-12-26T11:19:53.115101Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.066103Z", - "iopub.status.busy": "2024-12-25T19:59:11.065796Z", - "iopub.status.idle": "2024-12-25T19:59:11.069539Z", - "shell.execute_reply": "2024-12-25T19:59:11.068979Z" + "iopub.execute_input": "2024-12-26T11:19:53.117223Z", + "iopub.status.busy": "2024-12-26T11:19:53.116883Z", + "iopub.status.idle": "2024-12-26T11:19:53.120305Z", + "shell.execute_reply": "2024-12-26T11:19:53.119866Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.071214Z", - "iopub.status.busy": "2024-12-25T19:59:11.070900Z", - "iopub.status.idle": "2024-12-25T19:59:11.073909Z", - "shell.execute_reply": "2024-12-25T19:59:11.073443Z" + "iopub.execute_input": "2024-12-26T11:19:53.121863Z", + "iopub.status.busy": "2024-12-26T11:19:53.121551Z", + "iopub.status.idle": "2024-12-26T11:19:53.124862Z", + "shell.execute_reply": "2024-12-26T11:19:53.124312Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.075575Z", - "iopub.status.busy": "2024-12-25T19:59:11.075242Z", - "iopub.status.idle": "2024-12-25T19:59:11.078164Z", - "shell.execute_reply": "2024-12-25T19:59:11.077725Z" + "iopub.execute_input": "2024-12-26T11:19:53.126669Z", + "iopub.status.busy": "2024-12-26T11:19:53.126332Z", + "iopub.status.idle": "2024-12-26T11:19:53.129559Z", + "shell.execute_reply": "2024-12-26T11:19:53.128974Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.079935Z", - "iopub.status.busy": "2024-12-25T19:59:11.079498Z", - "iopub.status.idle": "2024-12-25T19:59:11.087442Z", - "shell.execute_reply": "2024-12-25T19:59:11.087009Z" + "iopub.execute_input": "2024-12-26T11:19:53.131337Z", + "iopub.status.busy": "2024-12-26T11:19:53.131047Z", + "iopub.status.idle": "2024-12-26T11:19:53.139532Z", + "shell.execute_reply": "2024-12-26T11:19:53.138943Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.089004Z", - "iopub.status.busy": "2024-12-25T19:59:11.088830Z", - "iopub.status.idle": "2024-12-25T19:59:11.091354Z", - "shell.execute_reply": "2024-12-25T19:59:11.090921Z" + "iopub.execute_input": "2024-12-26T11:19:53.141322Z", + "iopub.status.busy": "2024-12-26T11:19:53.141015Z", + "iopub.status.idle": "2024-12-26T11:19:53.143707Z", + "shell.execute_reply": "2024-12-26T11:19:53.143163Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.093083Z", - "iopub.status.busy": "2024-12-25T19:59:11.092767Z", - "iopub.status.idle": "2024-12-25T19:59:11.217691Z", - "shell.execute_reply": "2024-12-25T19:59:11.217084Z" + "iopub.execute_input": "2024-12-26T11:19:53.145382Z", + "iopub.status.busy": "2024-12-26T11:19:53.145210Z", + "iopub.status.idle": "2024-12-26T11:19:53.269728Z", + "shell.execute_reply": "2024-12-26T11:19:53.269231Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.219658Z", - "iopub.status.busy": "2024-12-25T19:59:11.219323Z", - "iopub.status.idle": "2024-12-25T19:59:11.326108Z", - "shell.execute_reply": "2024-12-25T19:59:11.325518Z" + "iopub.execute_input": "2024-12-26T11:19:53.271517Z", + "iopub.status.busy": "2024-12-26T11:19:53.271135Z", + "iopub.status.idle": "2024-12-26T11:19:53.379346Z", + "shell.execute_reply": "2024-12-26T11:19:53.378826Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.328189Z", - "iopub.status.busy": "2024-12-25T19:59:11.327811Z", - "iopub.status.idle": "2024-12-25T19:59:11.830223Z", - "shell.execute_reply": "2024-12-25T19:59:11.829609Z" + "iopub.execute_input": "2024-12-26T11:19:53.381283Z", + "iopub.status.busy": "2024-12-26T11:19:53.380874Z", + "iopub.status.idle": "2024-12-26T11:19:53.880530Z", + "shell.execute_reply": "2024-12-26T11:19:53.879975Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.832395Z", - "iopub.status.busy": "2024-12-25T19:59:11.832002Z", - "iopub.status.idle": "2024-12-25T19:59:11.938761Z", - "shell.execute_reply": "2024-12-25T19:59:11.938213Z" + "iopub.execute_input": "2024-12-26T11:19:53.882464Z", + "iopub.status.busy": "2024-12-26T11:19:53.882058Z", + "iopub.status.idle": "2024-12-26T11:19:53.978522Z", + "shell.execute_reply": "2024-12-26T11:19:53.977938Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.940788Z", - "iopub.status.busy": "2024-12-25T19:59:11.940351Z", - "iopub.status.idle": "2024-12-25T19:59:11.948851Z", - "shell.execute_reply": "2024-12-25T19:59:11.948391Z" + "iopub.execute_input": "2024-12-26T11:19:53.980438Z", + "iopub.status.busy": "2024-12-26T11:19:53.980098Z", + "iopub.status.idle": "2024-12-26T11:19:53.988661Z", + "shell.execute_reply": "2024-12-26T11:19:53.988113Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.950677Z", - "iopub.status.busy": "2024-12-25T19:59:11.950222Z", - "iopub.status.idle": "2024-12-25T19:59:11.953002Z", - "shell.execute_reply": "2024-12-25T19:59:11.952558Z" + "iopub.execute_input": "2024-12-26T11:19:53.990429Z", + "iopub.status.busy": "2024-12-26T11:19:53.990120Z", + "iopub.status.idle": "2024-12-26T11:19:53.992882Z", + "shell.execute_reply": "2024-12-26T11:19:53.992419Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:11.954765Z", - "iopub.status.busy": "2024-12-25T19:59:11.954435Z", - "iopub.status.idle": "2024-12-25T19:59:17.639825Z", - "shell.execute_reply": "2024-12-25T19:59:17.639255Z" + "iopub.execute_input": "2024-12-26T11:19:53.994653Z", + "iopub.status.busy": "2024-12-26T11:19:53.994314Z", + "iopub.status.idle": "2024-12-26T11:19:59.591495Z", + "shell.execute_reply": "2024-12-26T11:19:59.590894Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:17.641984Z", - "iopub.status.busy": "2024-12-25T19:59:17.641554Z", - "iopub.status.idle": "2024-12-25T19:59:17.650274Z", - "shell.execute_reply": "2024-12-25T19:59:17.649717Z" + "iopub.execute_input": "2024-12-26T11:19:59.593355Z", + "iopub.status.busy": "2024-12-26T11:19:59.593167Z", + "iopub.status.idle": "2024-12-26T11:19:59.601997Z", + "shell.execute_reply": "2024-12-26T11:19:59.601497Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:17.652219Z", - "iopub.status.busy": "2024-12-25T19:59:17.651839Z", - "iopub.status.idle": "2024-12-25T19:59:17.715828Z", - "shell.execute_reply": "2024-12-25T19:59:17.715246Z" + "iopub.execute_input": "2024-12-26T11:19:59.603738Z", + "iopub.status.busy": "2024-12-26T11:19:59.603560Z", + "iopub.status.idle": "2024-12-26T11:19:59.671984Z", + "shell.execute_reply": "2024-12-26T11:19:59.671399Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 2aeb55556..aa6247d49 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -813,13 +813,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1209,7 +1209,7 @@

Get label quality scores -{"state": {"3821afc153ec405dadad55a3682d160d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b454ee3ffc6046ef954867e20cb57e1a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11837a9bb59d40baaf6fa16afdaadfc4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3821afc153ec405dadad55a3682d160d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b454ee3ffc6046ef954867e20cb57e1a", "tabbable": null, "tooltip": null, "value": 30.0}}, "917765207fd6459a8a888ec09086d04d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55ed20968b6a46c997b6ef586f3665f1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "199c434bf86945f69f9b8075052fd992": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_917765207fd6459a8a888ec09086d04d", "placeholder": "\u200b", "style": "IPY_MODEL_55ed20968b6a46c997b6ef586f3665f1", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "19ba421ae0b449b1a66e5fadc35e6412": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6592e3c84c14a38a998e365b4d29090": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ec43c803c84a4ab5ba1101b8a3c96f90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19ba421ae0b449b1a66e5fadc35e6412", "placeholder": "\u200b", "style": "IPY_MODEL_e6592e3c84c14a38a998e365b4d29090", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007818.93it/s]"}}, "92a72fb667274da5b24a133eef8484a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f078ebe90b9435b86ed20cb9dc11623": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_199c434bf86945f69f9b8075052fd992", "IPY_MODEL_11837a9bb59d40baaf6fa16afdaadfc4", "IPY_MODEL_ec43c803c84a4ab5ba1101b8a3c96f90"], "layout": "IPY_MODEL_92a72fb667274da5b24a133eef8484a9", "tabbable": null, "tooltip": null}}, "2c5b5be4b6bf4da0869521ae6582bb56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "feb24c052b9c459e8c43719c4af22c35": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ab76a901b0b141eb87cb56b693ba7066": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2c5b5be4b6bf4da0869521ae6582bb56", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_feb24c052b9c459e8c43719c4af22c35", "tabbable": null, "tooltip": null, "value": 30.0}}, "57eacc48851b4a82999dd48d82626f3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fc30ce799234559ac3ba32aea5e2bfa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "526e5cec709048a3b6a7ac01cde97741": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57eacc48851b4a82999dd48d82626f3b", "placeholder": "\u200b", "style": "IPY_MODEL_1fc30ce799234559ac3ba32aea5e2bfa", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "7cb248ae8d604620993f7c7e7b2d848c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75d479cd85f34144bca9cc206fd5ccb6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a2016ff0a9de421097009dda600ef577": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7cb248ae8d604620993f7c7e7b2d848c", "placeholder": "\u200b", "style": "IPY_MODEL_75d479cd85f34144bca9cc206fd5ccb6", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.16it/s]"}}, "9e6765d48646453e90f2310104f1c9ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "126b53f966cb4c359c3818489a33d7b7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_526e5cec709048a3b6a7ac01cde97741", "IPY_MODEL_ab76a901b0b141eb87cb56b693ba7066", "IPY_MODEL_a2016ff0a9de421097009dda600ef577"], "layout": "IPY_MODEL_9e6765d48646453e90f2310104f1c9ad", "tabbable": null, "tooltip": null}}, "560dcbc83717455a96dfd01e969b3d53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93a131219661413f999048b492b47ac2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cb5ea717d7334d269f299f05b3485470": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_560dcbc83717455a96dfd01e969b3d53", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_93a131219661413f999048b492b47ac2", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "fa341faae4a24f93833b09a64f347e7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a71e66ca1b724a84b237fc1872008bea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1b3fbc10c1f84c0f991b2cb1c24e4ae0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa341faae4a24f93833b09a64f347e7e", "placeholder": "\u200b", "style": "IPY_MODEL_a71e66ca1b724a84b237fc1872008bea", "tabbable": null, "tooltip": null, "value": "100%"}}, "97bb5d6c5e2c44adbc87ab786c019ad2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eed4c931003046ca954d7beb69db94ad": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4f9ea06775294d4f901c8e2b34b01f8c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97bb5d6c5e2c44adbc87ab786c019ad2", "placeholder": "\u200b", "style": "IPY_MODEL_eed4c931003046ca954d7beb69db94ad", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007159340.29it/s]"}}, "22bd1b090b13488fa60cb5ab52cd6cc8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5992bf8d30fc4c7bb98d61880d4229dd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1b3fbc10c1f84c0f991b2cb1c24e4ae0", "IPY_MODEL_cb5ea717d7334d269f299f05b3485470", "IPY_MODEL_4f9ea06775294d4f901c8e2b34b01f8c"], "layout": "IPY_MODEL_22bd1b090b13488fa60cb5ab52cd6cc8", "tabbable": null, "tooltip": null}}, "85e4b96e547c4c6c9953ae4a722698c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f314e7f1f7564dbba340c574c3989466": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "74421c231860403ca7bbfe736b774d07": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_85e4b96e547c4c6c9953ae4a722698c0", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f314e7f1f7564dbba340c574c3989466", "tabbable": null, "tooltip": null, "value": 30.0}}, "d6f8b0a842204ecab6690b5d6fcd6172": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c877d1305dc94b1fada69d4465c46680": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "703b556c4b70497fa104d6ef797cb592": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d6f8b0a842204ecab6690b5d6fcd6172", "placeholder": "\u200b", "style": "IPY_MODEL_c877d1305dc94b1fada69d4465c46680", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "8ce1671d0dd04e029dc592d9365157ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93a4c17de7244be0aac6f663132d4671": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1e333bb6499c4951979c5e3e8abf6b07": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ce1671d0dd04e029dc592d9365157ff", "placeholder": "\u200b", "style": "IPY_MODEL_93a4c17de7244be0aac6f663132d4671", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.46it/s]"}}, "f97adf93863e40d6b9b2b3f559699b97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2b97bab32d845c3811412c73bee3531": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_703b556c4b70497fa104d6ef797cb592", "IPY_MODEL_74421c231860403ca7bbfe736b774d07", "IPY_MODEL_1e333bb6499c4951979c5e3e8abf6b07"], "layout": "IPY_MODEL_f97adf93863e40d6b9b2b3f559699b97", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"1631e6fcd57f4673b06b315cd792ad65": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3aa4bf8503d41938bc5f753bdbbbfb0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "edb2a176eabb47cdab368aa51a109fbd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1631e6fcd57f4673b06b315cd792ad65", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c3aa4bf8503d41938bc5f753bdbbbfb0", "tabbable": null, "tooltip": null, "value": 30.0}}, "5ff6c9b8c97e40cc956f569d3ed9af97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3722a40b6c7944a6aa68bfc09d7b610d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b7fe28f8936b4a0c97d07a172821ab33": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ff6c9b8c97e40cc956f569d3ed9af97", "placeholder": "\u200b", "style": "IPY_MODEL_3722a40b6c7944a6aa68bfc09d7b610d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "7a93d2d9032f4cdbb7335fbbc4ff091e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8115a88c9d843f68471b07d1b859b77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3005b6e2fdb4496a8eb849d21d22416e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a93d2d9032f4cdbb7335fbbc4ff091e", "placeholder": "\u200b", "style": "IPY_MODEL_e8115a88c9d843f68471b07d1b859b77", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007831.75it/s]"}}, "6117876fc6664795937768745ca4e52b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f2583bff0ceb49ac9af4aa3cb0f8d4a7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b7fe28f8936b4a0c97d07a172821ab33", "IPY_MODEL_edb2a176eabb47cdab368aa51a109fbd", "IPY_MODEL_3005b6e2fdb4496a8eb849d21d22416e"], "layout": "IPY_MODEL_6117876fc6664795937768745ca4e52b", "tabbable": null, "tooltip": null}}, "496d475bfc2b4667aa7a1310471d57a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb3b677fa59a4752b99657d242501459": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f9d6c073f7bc453ca14dff271c9d172b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_496d475bfc2b4667aa7a1310471d57a9", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fb3b677fa59a4752b99657d242501459", "tabbable": null, "tooltip": null, "value": 30.0}}, "a1e2fc40a8b149858a5db2e4912ee806": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f74dc2eebf5e47a681c62015b31ecb55": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3690ced5e4b14ab3a75d73475a36c271": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a1e2fc40a8b149858a5db2e4912ee806", "placeholder": "\u200b", "style": "IPY_MODEL_f74dc2eebf5e47a681c62015b31ecb55", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "9207297a485546bcad8266f409b21a27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c35aab094ae4a7899209303e09788ce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7e58cc450ac741a0a74e3891dee2ba84": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9207297a485546bcad8266f409b21a27", "placeholder": "\u200b", "style": "IPY_MODEL_5c35aab094ae4a7899209303e09788ce", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.18it/s]"}}, "38452ee6f3394e65aad660645940d239": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8d14b2c91054e7c80705b43aae4fa31": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3690ced5e4b14ab3a75d73475a36c271", "IPY_MODEL_f9d6c073f7bc453ca14dff271c9d172b", "IPY_MODEL_7e58cc450ac741a0a74e3891dee2ba84"], "layout": "IPY_MODEL_38452ee6f3394e65aad660645940d239", "tabbable": null, "tooltip": null}}, "71712bea7b5d4b449b62cf6b28558a0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50c9c14f924e4d8d9deffdf3c5f730c2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4d029a4812c748c6a9536f37f00c6e36": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71712bea7b5d4b449b62cf6b28558a0e", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_50c9c14f924e4d8d9deffdf3c5f730c2", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "c040b7f5ee4e4bdfa95d140992c9fb08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fc2d6bd5ceb4489a1f5985a68327561": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e1bbb69fe5534b80826767ac7878d50f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c040b7f5ee4e4bdfa95d140992c9fb08", "placeholder": "\u200b", "style": "IPY_MODEL_1fc2d6bd5ceb4489a1f5985a68327561", "tabbable": null, "tooltip": null, "value": "100%"}}, "60ded59cd92d4caab46a91e16593f76e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba4986bdb9504a38b4bd5c80533c792c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e918a744267f4182b51a555282cd3752": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60ded59cd92d4caab46a91e16593f76e", "placeholder": "\u200b", "style": "IPY_MODEL_ba4986bdb9504a38b4bd5c80533c792c", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007159257.76it/s]"}}, "69b6e769d2454c50b5d29827ca26d693": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "49cae2f1b757468ea311c5db902ccf61": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e1bbb69fe5534b80826767ac7878d50f", "IPY_MODEL_4d029a4812c748c6a9536f37f00c6e36", "IPY_MODEL_e918a744267f4182b51a555282cd3752"], "layout": "IPY_MODEL_69b6e769d2454c50b5d29827ca26d693", "tabbable": null, "tooltip": null}}, "055556d3f9744ae482fc3a071c630d54": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66789565a503414884357e0373cd0163": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5053d511fc8649508dfb50e5cc7b8a4f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_055556d3f9744ae482fc3a071c630d54", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_66789565a503414884357e0373cd0163", "tabbable": null, "tooltip": null, "value": 30.0}}, "5879e2cd17ee4e4db912ec53a7dfaffa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d14048fd8e9f40368b734a3d24d7430f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "01131108f9b3472c9174c4c3f7114ef4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5879e2cd17ee4e4db912ec53a7dfaffa", "placeholder": "\u200b", "style": "IPY_MODEL_d14048fd8e9f40368b734a3d24d7430f", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "f7e9514017b2434ca548367c45dae422": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "29cdfbce5ff64ba4bda713cd9199f385": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "907201e234e649869bdfad15729474ff": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f7e9514017b2434ca548367c45dae422", "placeholder": "\u200b", "style": "IPY_MODEL_29cdfbce5ff64ba4bda713cd9199f385", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.34it/s]"}}, "27f13c0dd9b140eb8c593160761e12c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e438b3fc6cac4216915e7c5dd064065e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_01131108f9b3472c9174c4c3f7114ef4", "IPY_MODEL_5053d511fc8649508dfb50e5cc7b8a4f", "IPY_MODEL_907201e234e649869bdfad15729474ff"], "layout": "IPY_MODEL_27f13c0dd9b140eb8c593160761e12c3", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index b9b1cc24f..7b67cb498 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:20.782702Z", - "iopub.status.busy": "2024-12-25T19:59:20.782547Z", - "iopub.status.idle": "2024-12-25T19:59:22.768406Z", - "shell.execute_reply": "2024-12-25T19:59:22.767708Z" + "iopub.execute_input": "2024-12-26T11:20:03.694939Z", + "iopub.status.busy": "2024-12-26T11:20:03.694765Z", + "iopub.status.idle": "2024-12-26T11:20:05.297830Z", + "shell.execute_reply": "2024-12-26T11:20:05.297132Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T19:59:22.770537Z", - "iopub.status.busy": "2024-12-25T19:59:22.770356Z", - "iopub.status.idle": "2024-12-25T20:00:10.545245Z", - "shell.execute_reply": "2024-12-25T20:00:10.544614Z" + "iopub.execute_input": "2024-12-26T11:20:05.299850Z", + "iopub.status.busy": "2024-12-26T11:20:05.299611Z", + "iopub.status.idle": "2024-12-26T11:20:50.645887Z", + "shell.execute_reply": "2024-12-26T11:20:50.645127Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:10.547292Z", - "iopub.status.busy": "2024-12-25T20:00:10.547099Z", - "iopub.status.idle": "2024-12-25T20:00:11.702506Z", - "shell.execute_reply": "2024-12-25T20:00:11.701960Z" + "iopub.execute_input": "2024-12-26T11:20:50.648149Z", + "iopub.status.busy": "2024-12-26T11:20:50.647950Z", + "iopub.status.idle": "2024-12-26T11:20:51.812406Z", + "shell.execute_reply": "2024-12-26T11:20:51.811854Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.704658Z", - "iopub.status.busy": "2024-12-25T20:00:11.704189Z", - "iopub.status.idle": "2024-12-25T20:00:11.707524Z", - "shell.execute_reply": "2024-12-25T20:00:11.706971Z" + "iopub.execute_input": "2024-12-26T11:20:51.814535Z", + "iopub.status.busy": "2024-12-26T11:20:51.814115Z", + "iopub.status.idle": "2024-12-26T11:20:51.817488Z", + "shell.execute_reply": "2024-12-26T11:20:51.816952Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.709315Z", - "iopub.status.busy": "2024-12-25T20:00:11.708983Z", - "iopub.status.idle": "2024-12-25T20:00:11.712713Z", - "shell.execute_reply": "2024-12-25T20:00:11.712264Z" + "iopub.execute_input": "2024-12-26T11:20:51.819365Z", + "iopub.status.busy": "2024-12-26T11:20:51.818953Z", + "iopub.status.idle": "2024-12-26T11:20:51.823234Z", + "shell.execute_reply": "2024-12-26T11:20:51.822704Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.714656Z", - "iopub.status.busy": "2024-12-25T20:00:11.714246Z", - "iopub.status.idle": "2024-12-25T20:00:11.717725Z", - "shell.execute_reply": "2024-12-25T20:00:11.717259Z" + "iopub.execute_input": "2024-12-26T11:20:51.825455Z", + "iopub.status.busy": "2024-12-26T11:20:51.825081Z", + "iopub.status.idle": "2024-12-26T11:20:51.829049Z", + "shell.execute_reply": "2024-12-26T11:20:51.828483Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.719325Z", - "iopub.status.busy": "2024-12-25T20:00:11.719005Z", - "iopub.status.idle": "2024-12-25T20:00:11.721734Z", - "shell.execute_reply": "2024-12-25T20:00:11.721266Z" + "iopub.execute_input": "2024-12-26T11:20:51.830768Z", + "iopub.status.busy": "2024-12-26T11:20:51.830442Z", + "iopub.status.idle": "2024-12-26T11:20:51.833301Z", + "shell.execute_reply": "2024-12-26T11:20:51.832864Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:11.723332Z", - "iopub.status.busy": "2024-12-25T20:00:11.723004Z", - "iopub.status.idle": "2024-12-25T20:00:49.741854Z", - "shell.execute_reply": "2024-12-25T20:00:49.741190Z" + "iopub.execute_input": "2024-12-26T11:20:51.835132Z", + "iopub.status.busy": "2024-12-26T11:20:51.834552Z", + "iopub.status.idle": "2024-12-26T11:21:29.428044Z", + "shell.execute_reply": "2024-12-26T11:21:29.427380Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f078ebe90b9435b86ed20cb9dc11623", + "model_id": "f2583bff0ceb49ac9af4aa3cb0f8d4a7", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "126b53f966cb4c359c3818489a33d7b7", + "model_id": "e8d14b2c91054e7c80705b43aae4fa31", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:49.743882Z", - "iopub.status.busy": "2024-12-25T20:00:49.743686Z", - "iopub.status.idle": "2024-12-25T20:00:50.420769Z", - "shell.execute_reply": "2024-12-25T20:00:50.420268Z" + "iopub.execute_input": "2024-12-26T11:21:29.430265Z", + "iopub.status.busy": "2024-12-26T11:21:29.430006Z", + "iopub.status.idle": "2024-12-26T11:21:30.105491Z", + "shell.execute_reply": "2024-12-26T11:21:30.105010Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:50.422698Z", - "iopub.status.busy": "2024-12-25T20:00:50.422384Z", - "iopub.status.idle": "2024-12-25T20:00:53.418886Z", - "shell.execute_reply": "2024-12-25T20:00:53.418313Z" + "iopub.execute_input": "2024-12-26T11:21:30.107303Z", + "iopub.status.busy": "2024-12-26T11:21:30.107003Z", + "iopub.status.idle": "2024-12-26T11:21:33.216703Z", + "shell.execute_reply": "2024-12-26T11:21:33.216177Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:00:53.420625Z", - "iopub.status.busy": "2024-12-25T20:00:53.420441Z", - "iopub.status.idle": "2024-12-25T20:01:25.147857Z", - "shell.execute_reply": "2024-12-25T20:01:25.147293Z" + "iopub.execute_input": "2024-12-26T11:21:33.218409Z", + "iopub.status.busy": "2024-12-26T11:21:33.218228Z", + "iopub.status.idle": "2024-12-26T11:22:04.974296Z", + "shell.execute_reply": "2024-12-26T11:22:04.973821Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5992bf8d30fc4c7bb98d61880d4229dd", + "model_id": "49cae2f1b757468ea311c5db902ccf61", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:25.149605Z", - "iopub.status.busy": "2024-12-25T20:01:25.149426Z", - "iopub.status.idle": "2024-12-25T20:01:40.869620Z", - "shell.execute_reply": "2024-12-25T20:01:40.869063Z" + "iopub.execute_input": "2024-12-26T11:22:04.976041Z", + "iopub.status.busy": "2024-12-26T11:22:04.975769Z", + "iopub.status.idle": "2024-12-26T11:22:20.434198Z", + "shell.execute_reply": "2024-12-26T11:22:20.433615Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:40.871634Z", - "iopub.status.busy": "2024-12-25T20:01:40.871279Z", - "iopub.status.idle": "2024-12-25T20:01:44.711812Z", - "shell.execute_reply": "2024-12-25T20:01:44.711207Z" + "iopub.execute_input": "2024-12-26T11:22:20.436470Z", + "iopub.status.busy": "2024-12-26T11:22:20.436102Z", + "iopub.status.idle": "2024-12-26T11:22:24.261916Z", + "shell.execute_reply": "2024-12-26T11:22:24.261387Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:44.713623Z", - "iopub.status.busy": "2024-12-25T20:01:44.713445Z", - "iopub.status.idle": "2024-12-25T20:01:46.187654Z", - "shell.execute_reply": "2024-12-25T20:01:46.187094Z" + "iopub.execute_input": "2024-12-26T11:22:24.263708Z", + "iopub.status.busy": "2024-12-26T11:22:24.263360Z", + "iopub.status.idle": "2024-12-26T11:22:25.776699Z", + "shell.execute_reply": "2024-12-26T11:22:25.776181Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2b97bab32d845c3811412c73bee3531", + "model_id": "e438b3fc6cac4216915e7c5dd064065e", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:46.189685Z", - "iopub.status.busy": "2024-12-25T20:01:46.189487Z", - "iopub.status.idle": "2024-12-25T20:01:46.217215Z", - "shell.execute_reply": "2024-12-25T20:01:46.216652Z" + "iopub.execute_input": "2024-12-26T11:22:25.778515Z", + "iopub.status.busy": "2024-12-26T11:22:25.778166Z", + "iopub.status.idle": "2024-12-26T11:22:25.809966Z", + "shell.execute_reply": "2024-12-26T11:22:25.809401Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:46.219221Z", - "iopub.status.busy": "2024-12-25T20:01:46.218874Z", - "iopub.status.idle": "2024-12-25T20:01:52.359441Z", - "shell.execute_reply": "2024-12-25T20:01:52.358942Z" + "iopub.execute_input": "2024-12-26T11:22:25.812167Z", + "iopub.status.busy": "2024-12-26T11:22:25.811783Z", + "iopub.status.idle": "2024-12-26T11:22:31.979303Z", + "shell.execute_reply": "2024-12-26T11:22:31.978723Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:52.361257Z", - "iopub.status.busy": "2024-12-25T20:01:52.360970Z", - "iopub.status.idle": "2024-12-25T20:01:52.417551Z", - "shell.execute_reply": "2024-12-25T20:01:52.416916Z" + "iopub.execute_input": "2024-12-26T11:22:31.981178Z", + "iopub.status.busy": "2024-12-26T11:22:31.980821Z", + "iopub.status.idle": "2024-12-26T11:22:32.036858Z", + "shell.execute_reply": "2024-12-26T11:22:32.036273Z" }, "nbsphinx": "hidden" }, @@ -1038,57 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11837a9bb59d40baaf6fa16afdaadfc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3821afc153ec405dadad55a3682d160d", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b454ee3ffc6046ef954867e20cb57e1a", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "126b53f966cb4c359c3818489a33d7b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_526e5cec709048a3b6a7ac01cde97741", - "IPY_MODEL_ab76a901b0b141eb87cb56b693ba7066", - "IPY_MODEL_a2016ff0a9de421097009dda600ef577" - ], - "layout": "IPY_MODEL_9e6765d48646453e90f2310104f1c9ad", - "tabbable": null, - "tooltip": null - } - }, - "199c434bf86945f69f9b8075052fd992": { + "01131108f9b3472c9174c4c3f7114ef4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1103,15 +1053,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_917765207fd6459a8a888ec09086d04d", + "layout": "IPY_MODEL_5879e2cd17ee4e4db912ec53a7dfaffa", "placeholder": "​", - "style": "IPY_MODEL_55ed20968b6a46c997b6ef586f3665f1", + "style": "IPY_MODEL_d14048fd8e9f40368b734a3d24d7430f", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "images processed using softmin: 100%" } }, - "19ba421ae0b449b1a66e5fadc35e6412": { + "055556d3f9744ae482fc3a071c630d54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1164,71 +1114,7 @@ "width": null } }, - "1b3fbc10c1f84c0f991b2cb1c24e4ae0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa341faae4a24f93833b09a64f347e7e", - "placeholder": "​", - "style": "IPY_MODEL_a71e66ca1b724a84b237fc1872008bea", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "1e333bb6499c4951979c5e3e8abf6b07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ce1671d0dd04e029dc592d9365157ff", - "placeholder": "​", - "style": "IPY_MODEL_93a4c17de7244be0aac6f663132d4671", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.46it/s]" - } - }, - "1fc30ce799234559ac3ba32aea5e2bfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "22bd1b090b13488fa60cb5ab52cd6cc8": { + "1631e6fcd57f4673b06b315cd792ad65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1281,60 +1167,25 @@ "width": null } }, - "2c5b5be4b6bf4da0869521ae6582bb56": { - "model_module": "@jupyter-widgets/base", + "1fc2d6bd5ceb4489a1f5985a68327561": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3821afc153ec405dadad55a3682d160d": { + "27f13c0dd9b140eb8c593160761e12c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1387,31 +1238,25 @@ "width": null } }, - "3f078ebe90b9435b86ed20cb9dc11623": { + "29cdfbce5ff64ba4bda713cd9199f385": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_199c434bf86945f69f9b8075052fd992", - "IPY_MODEL_11837a9bb59d40baaf6fa16afdaadfc4", - "IPY_MODEL_ec43c803c84a4ab5ba1101b8a3c96f90" - ], - "layout": "IPY_MODEL_92a72fb667274da5b24a133eef8484a9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4f9ea06775294d4f901c8e2b34b01f8c": { + "3005b6e2fdb4496a8eb849d21d22416e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1426,15 +1271,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_97bb5d6c5e2c44adbc87ab786c019ad2", + "layout": "IPY_MODEL_7a93d2d9032f4cdbb7335fbbc4ff091e", "placeholder": "​", - "style": "IPY_MODEL_eed4c931003046ca954d7beb69db94ad", + "style": "IPY_MODEL_e8115a88c9d843f68471b07d1b859b77", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 159340.29it/s]" + "value": " 30/30 [00:00<00:00, 831.75it/s]" } }, - "526e5cec709048a3b6a7ac01cde97741": { + "3690ced5e4b14ab3a75d73475a36c271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1449,15 +1294,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57eacc48851b4a82999dd48d82626f3b", + "layout": "IPY_MODEL_a1e2fc40a8b149858a5db2e4912ee806", "placeholder": "​", - "style": "IPY_MODEL_1fc30ce799234559ac3ba32aea5e2bfa", + "style": "IPY_MODEL_f74dc2eebf5e47a681c62015b31ecb55", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: 100%" } }, - "55ed20968b6a46c997b6ef586f3665f1": { + "3722a40b6c7944a6aa68bfc09d7b610d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1475,7 +1320,7 @@ "text_color": null } }, - "560dcbc83717455a96dfd01e969b3d53": { + "38452ee6f3394e65aad660645940d239": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1528,7 +1373,7 @@ "width": null } }, - "57eacc48851b4a82999dd48d82626f3b": { + "496d475bfc2b4667aa7a1310471d57a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1581,7 +1426,7 @@ "width": null } }, - "5992bf8d30fc4c7bb98d61880d4229dd": { + "49cae2f1b757468ea311c5db902ccf61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1596,39 +1441,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1b3fbc10c1f84c0f991b2cb1c24e4ae0", - "IPY_MODEL_cb5ea717d7334d269f299f05b3485470", - "IPY_MODEL_4f9ea06775294d4f901c8e2b34b01f8c" + "IPY_MODEL_e1bbb69fe5534b80826767ac7878d50f", + "IPY_MODEL_4d029a4812c748c6a9536f37f00c6e36", + "IPY_MODEL_e918a744267f4182b51a555282cd3752" ], - "layout": "IPY_MODEL_22bd1b090b13488fa60cb5ab52cd6cc8", + "layout": "IPY_MODEL_69b6e769d2454c50b5d29827ca26d693", "tabbable": null, "tooltip": null } }, - "703b556c4b70497fa104d6ef797cb592": { + "4d029a4812c748c6a9536f37f00c6e36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6f8b0a842204ecab6690b5d6fcd6172", - "placeholder": "​", - "style": "IPY_MODEL_c877d1305dc94b1fada69d4465c46680", + "layout": "IPY_MODEL_71712bea7b5d4b449b62cf6b28558a0e", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_50c9c14f924e4d8d9deffdf3c5f730c2", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": 4997683.0 } }, - "74421c231860403ca7bbfe736b774d07": { + "5053d511fc8649508dfb50e5cc7b8a4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1644,35 +1492,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_85e4b96e547c4c6c9953ae4a722698c0", + "layout": "IPY_MODEL_055556d3f9744ae482fc3a071c630d54", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f314e7f1f7564dbba340c574c3989466", + "style": "IPY_MODEL_66789565a503414884357e0373cd0163", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "75d479cd85f34144bca9cc206fd5ccb6": { + "50c9c14f924e4d8d9deffdf3c5f730c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7cb248ae8d604620993f7c7e7b2d848c": { + "5879e2cd17ee4e4db912ec53a7dfaffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1725,7 +1571,25 @@ "width": null } }, - "85e4b96e547c4c6c9953ae4a722698c0": { + "5c35aab094ae4a7899209303e09788ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ff6c9b8c97e40cc956f569d3ed9af97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1778,7 +1642,7 @@ "width": null } }, - "8ce1671d0dd04e029dc592d9365157ff": { + "60ded59cd92d4caab46a91e16593f76e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1831,7 +1695,7 @@ "width": null } }, - "917765207fd6459a8a888ec09086d04d": { + "6117876fc6664795937768745ca4e52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1884,7 +1748,23 @@ "width": null } }, - "92a72fb667274da5b24a133eef8484a9": { + "66789565a503414884357e0373cd0163": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "69b6e769d2454c50b5d29827ca26d693": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1937,48 +1817,14 @@ "width": null } }, - "93a131219661413f999048b492b47ac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "93a4c17de7244be0aac6f663132d4671": { - "model_module": "@jupyter-widgets/controls", + "71712bea7b5d4b449b62cf6b28558a0e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "97bb5d6c5e2c44adbc87ab786c019ad2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2024,7 +1870,7 @@ "width": null } }, - "9e6765d48646453e90f2310104f1c9ad": { + "7a93d2d9032f4cdbb7335fbbc4ff091e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2077,7 +1923,7 @@ "width": null } }, - "a2016ff0a9de421097009dda600ef577": { + "7e58cc450ac741a0a74e3891dee2ba84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2092,99 +1938,167 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7cb248ae8d604620993f7c7e7b2d848c", + "layout": "IPY_MODEL_9207297a485546bcad8266f409b21a27", "placeholder": "​", - "style": "IPY_MODEL_75d479cd85f34144bca9cc206fd5ccb6", + "style": "IPY_MODEL_5c35aab094ae4a7899209303e09788ce", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.16it/s]" + "value": " 30/30 [00:25<00:00,  1.18it/s]" } }, - "a71e66ca1b724a84b237fc1872008bea": { + "907201e234e649869bdfad15729474ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7e9514017b2434ca548367c45dae422", + "placeholder": "​", + "style": "IPY_MODEL_29cdfbce5ff64ba4bda713cd9199f385", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.34it/s]" } }, - "ab76a901b0b141eb87cb56b693ba7066": { - "model_module": "@jupyter-widgets/controls", + "9207297a485546bcad8266f409b21a27": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c5b5be4b6bf4da0869521ae6582bb56", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_feb24c052b9c459e8c43719c4af22c35", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b2b97bab32d845c3811412c73bee3531": { - "model_module": "@jupyter-widgets/controls", + "a1e2fc40a8b149858a5db2e4912ee806": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_703b556c4b70497fa104d6ef797cb592", - "IPY_MODEL_74421c231860403ca7bbfe736b774d07", - "IPY_MODEL_1e333bb6499c4951979c5e3e8abf6b07" - ], - "layout": "IPY_MODEL_f97adf93863e40d6b9b2b3f559699b97", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b454ee3ffc6046ef954867e20cb57e1a": { + "b7fe28f8936b4a0c97d07a172821ab33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5ff6c9b8c97e40cc956f569d3ed9af97", + "placeholder": "​", + "style": "IPY_MODEL_3722a40b6c7944a6aa68bfc09d7b610d", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "c877d1305dc94b1fada69d4465c46680": { + "ba4986bdb9504a38b4bd5c80533c792c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2202,33 +2116,7 @@ "text_color": null } }, - "cb5ea717d7334d269f299f05b3485470": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_560dcbc83717455a96dfd01e969b3d53", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_93a131219661413f999048b492b47ac2", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "d6f8b0a842204ecab6690b5d6fcd6172": { + "c040b7f5ee4e4bdfa95d140992c9fb08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,7 +2169,23 @@ "width": null } }, - "e6592e3c84c14a38a998e365b4d29090": { + "c3aa4bf8503d41938bc5f753bdbbbfb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d14048fd8e9f40368b734a3d24d7430f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2299,7 +2203,7 @@ "text_color": null } }, - "ec43c803c84a4ab5ba1101b8a3c96f90": { + "e1bbb69fe5534b80826767ac7878d50f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2314,15 +2218,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_19ba421ae0b449b1a66e5fadc35e6412", + "layout": "IPY_MODEL_c040b7f5ee4e4bdfa95d140992c9fb08", "placeholder": "​", - "style": "IPY_MODEL_e6592e3c84c14a38a998e365b4d29090", + "style": "IPY_MODEL_1fc2d6bd5ceb4489a1f5985a68327561", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 818.93it/s]" + "value": "100%" } }, - "eed4c931003046ca954d7beb69db94ad": { + "e438b3fc6cac4216915e7c5dd064065e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_01131108f9b3472c9174c4c3f7114ef4", + "IPY_MODEL_5053d511fc8649508dfb50e5cc7b8a4f", + "IPY_MODEL_907201e234e649869bdfad15729474ff" + ], + "layout": "IPY_MODEL_27f13c0dd9b140eb8c593160761e12c3", + "tabbable": null, + "tooltip": null + } + }, + "e8115a88c9d843f68471b07d1b859b77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2340,23 +2268,122 @@ "text_color": null } }, - "f314e7f1f7564dbba340c574c3989466": { + "e8d14b2c91054e7c80705b43aae4fa31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3690ced5e4b14ab3a75d73475a36c271", + "IPY_MODEL_f9d6c073f7bc453ca14dff271c9d172b", + "IPY_MODEL_7e58cc450ac741a0a74e3891dee2ba84" + ], + "layout": "IPY_MODEL_38452ee6f3394e65aad660645940d239", + "tabbable": null, + "tooltip": null + } + }, + "e918a744267f4182b51a555282cd3752": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60ded59cd92d4caab46a91e16593f76e", + "placeholder": "​", + "style": "IPY_MODEL_ba4986bdb9504a38b4bd5c80533c792c", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 159257.76it/s]" + } + }, + "edb2a176eabb47cdab368aa51a109fbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1631e6fcd57f4673b06b315cd792ad65", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c3aa4bf8503d41938bc5f753bdbbbfb0", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "f2583bff0ceb49ac9af4aa3cb0f8d4a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b7fe28f8936b4a0c97d07a172821ab33", + "IPY_MODEL_edb2a176eabb47cdab368aa51a109fbd", + "IPY_MODEL_3005b6e2fdb4496a8eb849d21d22416e" + ], + "layout": "IPY_MODEL_6117876fc6664795937768745ca4e52b", + "tabbable": null, + "tooltip": null + } + }, + "f74dc2eebf5e47a681c62015b31ecb55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f97adf93863e40d6b9b2b3f559699b97": { + "f7e9514017b2434ca548367c45dae422": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2409,60 +2436,33 @@ "width": null } }, - "fa341faae4a24f93833b09a64f347e7e": { - "model_module": "@jupyter-widgets/base", + "f9d6c073f7bc453ca14dff271c9d172b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_496d475bfc2b4667aa7a1310471d57a9", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb3b677fa59a4752b99657d242501459", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "feb24c052b9c459e8c43719c4af22c35": { + "fb3b677fa59a4752b99657d242501459": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 74e6111ee..bae450864 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -723,16 +723,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index f9ba9dfb8..dba540da7 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:54.726908Z", - "iopub.status.busy": "2024-12-25T20:01:54.726509Z", - "iopub.status.idle": "2024-12-25T20:01:56.537837Z", - "shell.execute_reply": "2024-12-25T20:01:56.537132Z" + "iopub.execute_input": "2024-12-26T11:22:34.399535Z", + "iopub.status.busy": "2024-12-26T11:22:34.399359Z", + "iopub.status.idle": "2024-12-26T11:22:35.626063Z", + "shell.execute_reply": "2024-12-26T11:22:35.625451Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-12-25 20:01:54-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-12-26 11:22:34-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.162, 2400:52e0:1a01::852:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.162|:443... connected.\r\n" + "185.93.1.249, 2400:52e0:1a00::718:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -117,7 +125,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-12-25 20:01:55 (6.27 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-12-26 11:22:34 (6.99 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,22 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-12-25 20:01:55-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.10.213, 3.5.25.230, 52.217.98.12, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.10.213|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-12-26 11:22:35-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.21.112, 52.216.138.219, 3.5.20.180, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.21.112|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -173,25 +168,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 2%[ ] 347.63K 1.50MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 35%[======> ] 5.73M 12.7MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 25.4MB/s in 0.6s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 90.7MB/s in 0.2s \r\n", "\r\n", - "2024-12-25 20:01:56 (25.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-12-26 11:22:35 (90.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -208,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:56.540013Z", - "iopub.status.busy": "2024-12-25T20:01:56.539655Z", - "iopub.status.idle": "2024-12-25T20:01:57.840343Z", - "shell.execute_reply": "2024-12-25T20:01:57.839800Z" + "iopub.execute_input": "2024-12-26T11:22:35.628276Z", + "iopub.status.busy": "2024-12-26T11:22:35.627815Z", + "iopub.status.idle": "2024-12-26T11:22:36.881130Z", + "shell.execute_reply": "2024-12-26T11:22:36.880584Z" }, "nbsphinx": "hidden" }, @@ -222,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5af8d4082b11c38f8b7570e43c687f5a0d81d2d1\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -248,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:57.842471Z", - "iopub.status.busy": "2024-12-25T20:01:57.842031Z", - "iopub.status.idle": "2024-12-25T20:01:57.845420Z", - "shell.execute_reply": "2024-12-25T20:01:57.844959Z" + "iopub.execute_input": "2024-12-26T11:22:36.883250Z", + "iopub.status.busy": "2024-12-26T11:22:36.882823Z", + "iopub.status.idle": "2024-12-26T11:22:36.885969Z", + "shell.execute_reply": "2024-12-26T11:22:36.885534Z" } }, "outputs": [], @@ -301,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:57.847288Z", - "iopub.status.busy": "2024-12-25T20:01:57.846778Z", - "iopub.status.idle": "2024-12-25T20:01:57.849819Z", - "shell.execute_reply": "2024-12-25T20:01:57.849357Z" + "iopub.execute_input": "2024-12-26T11:22:36.887827Z", + "iopub.status.busy": "2024-12-26T11:22:36.887411Z", + "iopub.status.idle": "2024-12-26T11:22:36.890577Z", + "shell.execute_reply": "2024-12-26T11:22:36.890018Z" }, "nbsphinx": "hidden" }, @@ -322,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:01:57.851403Z", - "iopub.status.busy": "2024-12-25T20:01:57.851071Z", - "iopub.status.idle": "2024-12-25T20:02:06.941982Z", - "shell.execute_reply": "2024-12-25T20:02:06.941457Z" + "iopub.execute_input": "2024-12-26T11:22:36.892329Z", + "iopub.status.busy": "2024-12-26T11:22:36.892034Z", + "iopub.status.idle": "2024-12-26T11:22:45.825758Z", + "shell.execute_reply": "2024-12-26T11:22:45.825130Z" } }, "outputs": [], @@ -399,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:06.944086Z", - "iopub.status.busy": "2024-12-25T20:02:06.943664Z", - "iopub.status.idle": "2024-12-25T20:02:06.949108Z", - "shell.execute_reply": "2024-12-25T20:02:06.948614Z" + "iopub.execute_input": "2024-12-26T11:22:45.827886Z", + "iopub.status.busy": "2024-12-26T11:22:45.827689Z", + "iopub.status.idle": "2024-12-26T11:22:45.833299Z", + "shell.execute_reply": "2024-12-26T11:22:45.832816Z" }, "nbsphinx": "hidden" }, @@ -442,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:06.950667Z", - "iopub.status.busy": "2024-12-25T20:02:06.950499Z", - "iopub.status.idle": "2024-12-25T20:02:07.296228Z", - "shell.execute_reply": "2024-12-25T20:02:07.295706Z" + "iopub.execute_input": "2024-12-26T11:22:45.835174Z", + "iopub.status.busy": "2024-12-26T11:22:45.834729Z", + "iopub.status.idle": "2024-12-26T11:22:46.171040Z", + "shell.execute_reply": "2024-12-26T11:22:46.170385Z" } }, "outputs": [], @@ -482,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:07.298257Z", - "iopub.status.busy": "2024-12-25T20:02:07.297924Z", - "iopub.status.idle": "2024-12-25T20:02:07.302355Z", - "shell.execute_reply": "2024-12-25T20:02:07.301803Z" + "iopub.execute_input": "2024-12-26T11:22:46.173102Z", + "iopub.status.busy": "2024-12-26T11:22:46.172908Z", + "iopub.status.idle": "2024-12-26T11:22:46.177360Z", + "shell.execute_reply": "2024-12-26T11:22:46.176796Z" } }, "outputs": [ @@ -557,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:07.304191Z", - "iopub.status.busy": "2024-12-25T20:02:07.303860Z", - "iopub.status.idle": "2024-12-25T20:02:09.878059Z", - "shell.execute_reply": "2024-12-25T20:02:09.877342Z" + "iopub.execute_input": "2024-12-26T11:22:46.179081Z", + "iopub.status.busy": "2024-12-26T11:22:46.178687Z", + "iopub.status.idle": "2024-12-26T11:22:48.779826Z", + "shell.execute_reply": "2024-12-26T11:22:48.778992Z" } }, "outputs": [], @@ -582,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.880922Z", - "iopub.status.busy": "2024-12-25T20:02:09.880097Z", - "iopub.status.idle": "2024-12-25T20:02:09.884088Z", - "shell.execute_reply": "2024-12-25T20:02:09.883640Z" + "iopub.execute_input": "2024-12-26T11:22:48.782644Z", + "iopub.status.busy": "2024-12-26T11:22:48.781849Z", + "iopub.status.idle": "2024-12-26T11:22:48.786175Z", + "shell.execute_reply": "2024-12-26T11:22:48.785709Z" } }, "outputs": [ @@ -621,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.885802Z", - "iopub.status.busy": "2024-12-25T20:02:09.885454Z", - "iopub.status.idle": "2024-12-25T20:02:09.890377Z", - "shell.execute_reply": "2024-12-25T20:02:09.889927Z" + "iopub.execute_input": "2024-12-26T11:22:48.787842Z", + "iopub.status.busy": "2024-12-26T11:22:48.787479Z", + "iopub.status.idle": "2024-12-26T11:22:48.792857Z", + "shell.execute_reply": "2024-12-26T11:22:48.792300Z" } }, "outputs": [ @@ -802,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.892118Z", - "iopub.status.busy": "2024-12-25T20:02:09.891795Z", - "iopub.status.idle": "2024-12-25T20:02:09.917983Z", - "shell.execute_reply": "2024-12-25T20:02:09.917489Z" + "iopub.execute_input": "2024-12-26T11:22:48.794737Z", + "iopub.status.busy": "2024-12-26T11:22:48.794304Z", + "iopub.status.idle": "2024-12-26T11:22:48.821061Z", + "shell.execute_reply": "2024-12-26T11:22:48.820448Z" } }, "outputs": [ @@ -907,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.919765Z", - "iopub.status.busy": "2024-12-25T20:02:09.919437Z", - "iopub.status.idle": "2024-12-25T20:02:09.923542Z", - "shell.execute_reply": "2024-12-25T20:02:09.923102Z" + "iopub.execute_input": "2024-12-26T11:22:48.822853Z", + "iopub.status.busy": "2024-12-26T11:22:48.822532Z", + "iopub.status.idle": "2024-12-26T11:22:48.826924Z", + "shell.execute_reply": "2024-12-26T11:22:48.826422Z" } }, "outputs": [ @@ -984,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:09.925289Z", - "iopub.status.busy": "2024-12-25T20:02:09.924966Z", - "iopub.status.idle": "2024-12-25T20:02:11.332437Z", - "shell.execute_reply": "2024-12-25T20:02:11.331933Z" + "iopub.execute_input": "2024-12-26T11:22:48.828667Z", + "iopub.status.busy": "2024-12-26T11:22:48.828255Z", + "iopub.status.idle": "2024-12-26T11:22:50.298040Z", + "shell.execute_reply": "2024-12-26T11:22:50.297508Z" } }, "outputs": [ @@ -1159,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-12-25T20:02:11.334378Z", - "iopub.status.busy": "2024-12-25T20:02:11.333943Z", - "iopub.status.idle": "2024-12-25T20:02:11.339264Z", - "shell.execute_reply": "2024-12-25T20:02:11.338667Z" + "iopub.execute_input": "2024-12-26T11:22:50.299994Z", + "iopub.status.busy": "2024-12-26T11:22:50.299646Z", + "iopub.status.idle": "2024-12-26T11:22:50.303852Z", + "shell.execute_reply": "2024-12-26T11:22:50.303241Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index c97c87958..4d22fb6ec 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.7.0", - commit_hash: "5af8d4082b11c38f8b7570e43c687f5a0d81d2d1", + commit_hash: "c2fdd17545fe60f8a64dc05b58bbc99170dd0d6c", }; \ No newline at end of file