From ff61f1f9124383276e8a7b36802e6ec39bb023d8 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Mon, 12 Aug 2024 19:05:52 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 114895 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16798543 -> 16798573 bytes master/.doctrees/index.doctree | Bin 43029 -> 43029 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1700 ++++----- .../nbsphinx/tutorials/datalab/audio.ipynb | 1158 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 306 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3268 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1178 +++--- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 650 ++-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 512 +-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1012 ++--- .../tutorials/token_classification.ipynb | 174 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 64488 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 233886 -> 233886 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333649 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 145906 -> 145906 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 454494 -> 454494 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 121626 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 150907 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 425652 -> 425652 bytes .../tutorials/dataset_health.doctree | Bin 329657 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199351 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 224033 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 68223 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 107891 -> 107891 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 20514 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 110660 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176679 -> 176715 bytes .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1700 ++++----- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1158 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 306 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 52 +- master/tutorials/datalab/image.ipynb | 3268 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 420 +-- master/tutorials/datalab/workflows.ipynb | 1178 +++--- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 650 ++-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 512 +-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1012 ++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 174 +- versioning.js | 2 +- 180 files changed, 12036 insertions(+), 11980 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 65daf4956..fa24fb80e 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: cf640450105409ea8d343a1d7dcfce96 +config: 63711693cfa13a0efc08c95b499d72cd tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index a54a984d90f73d46519dd8c7a5c61c187df5e706..f455e7903fac1ff5d320bc953a1a1659c1e1ba6d 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^9Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Yg@L(IN}`GJ<_^XHPBOG{axZ5D09{@p;Q#;t delta 117 zcmdlWxj}M6IHRG7u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Xp(RkQVQSLm4#ogZGPH4WFJ}Y*F&G|$ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index c8e69d2d04270e30eb532d1ed71e6b31464bdb45..d36ab97a159e447bbe21c04c681298d2d0faa218 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt-7yvXY@~vZHz2W))^X7Se45X`QZX!^l5bfTNHs?d_W_IsdYerL}wW zCjmz$GPS-JW@RNyYtQD5k{#sP+OzqaOg#sgwi>B*k{3Zen=7t*to{@w9m&n%5g~xxLM8T6ww4yRS7|<~D}e zM?e<6HCL&xomH&S1J-n7NsI>KM{jwsU@s)EF;;@h0+U8pg7ycCs?paVk|2lr*UeuX zkTPgQ`kJssZ!&^6Vru+UJ>Q~edS$WVkH&^vhB6Qa_}fh?JFj-Pv=@{*doOpHPu#7y zWoN{Ox=zPmlx(0k@vHR7Toy5AKKCSJ+74sx>wS)D)x|=fVa?1P#`KSqFn3~U9@g&p zl>ujdw_?EDygwIU?atL2sOku4s*`LmC!{m^K zJ%Y(2HZ}{Bg`GWz$rTRfgUMOh>=HmG*(5Jv=
20+)x2Wh+6H<&z8z^=gLsX}%X zCO_W8UcltpV%7-GfjXLUvF|z9ps%C+YBt~l#Qz`EPU^bDLW6*d?6Ol7Nau}COk5lN zu$)XD9}fVRBeUH$3@nHF+Z}iUi*7r|RXP*kCE#Ig#;}ldIc^1G(5H6(GX)hN>E=Dz zm^kq8CbQ`?i#&@$_c+-Tae2SYlj+qnK5`6msnugD%On}58|{Y;2N`5A4b9+NVHO!%&MGJC7b=88A@ZWoi_R!wUhcCOb2rcPd)_nedC$yDEM`wE zW={s0R$WycuBwezyF8wVJ6x+rwDY>hU8`$aO^4Q{yWN_mcXoK(RhlmD)gobYgna~L zv0L-?#`d)}0Qfsi>MvgH?d&e9aP?n~T35oYw{2&} zhodJGFG@7fo5WSdR6dKCv!DA?F>Q}I|Mk9vYL%s8pkb}dJ?6}h<1lw}c>&gz{K|qe zzgsn7Zo!{(uy*&_2(nGAbtWHU>Es;EMiw+@^mpf43i(1 zuop0Su8g&TbD)K$E7|uvY|yt*VIv##0^X|fp1aoON;tIkTYECksN2IGRI2b%IcXb1*f=Sa!7pSb<3%Ep51EfUiYlkVeBOjS8DZ04 zWR-H8F_SLai5K%Rnonbp8(VO4~6V@nE(I) diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index f06fafb29299337970d1d403ffeef4f413477652..025b7241e11ffbbe3c5451714703153c593802cd 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1JmPd2| delta 3571 zcmX@QLh$Gc!3~~_h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt>$}caouP`awe$+szA^R|}JFC0Os|UE(FAYn{yK8nk(%#6B*vw1#i~ zt~`+p&jM`?-z=ck!9=F53Yy$3WNO{48%(aPeFmZAYRxvTCs%8c*)?)Q_<}_Uxwfvc zUO{dM-*NcDOnT&OW_0~Ru48LGc9ZMa1HNr!I2N3K&jrpQ*Va#A=gGCzGkOcTT3h44 zkeiYilN!j49L`i*ahBV_XG8}+pf|45J5o6Nb01QF> z$s1ltY>$g#TrNPq{>l1x*tfT2GYYtpZHD-E?v0G1Mx^WC4h%)LHv*`Bc3QVW@C@^KavjLN%DCq`(;&1u_MizD-SKofqD(Ubw%9JyV2Hq!w~(k(^t_e7@cZ?-e_8IW!aI0H@o z5Td-D?IqJ|F$xUWTFV?KNVq_S2?SF)r^SLQ750oB&;ZmZ= zEM!HxF`&4y-2Ne&xt5GF0jzmCP_x|juQ|*el=uP>D%*jfvQv``pMVS5xSh?z-eSV&;(r`(yhlCziWErUr&-NvWx(X{M=$=H{se#^yaM>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt1gRZ;+v@QP5%YRi+(GNalE=`MN1OQ)lf=>Vd diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 45d22c3b7e25fb140c56f95a9a69aa512e455277..f5cc4b9e5f7ec60320c7c654a2e3e482cf4e2577 100644 GIT binary patch delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vIhOSacj|?Ugun9r~%wlqC0aWsLvXz}jY9aJ2%a}hP4NLw$ zwtA?;0a<4ON(@)-8mnV7(g4zLDH&kda4)h?Dtd1qM4_ew>~{14YJD^qMXl3uCu)sc z^`h1@!yeRncw_{yvQqLdY7C6J0Hds~L+h=(8eknrA;`MMmXVu@6t1v$6F-rxDtclv zg=AIHo~bZu?MWw5>*Y)ywLViGqt?}j8WbJR4x;E}t^>^)n|Y5~7iN(kWm#PbHun~_ z8uMRKbm+xJ;LtHr7)6Z@uY4$~dwmLMR!p~>eRo>n0ckbFd#(%SDy>dT<7(*T^|g&UgPJ#ch~Z z*?W-cd6?2^N-B-X5WA`s$-|X^2h%k55H#J^b1Y hnm1K1Ra|KSKetE zD~k5LxCm@IM)HHGvF23-MJ=yS0m+K)hS`@lVQd`2EIYf`4xLK@)==octO2c|P|5av zo?6@viEC2J2QTEI^Bpf1>5ytj>3V_P>k{;S}m~3ibn3j~9YMN%6YG`hrYG7=hlxApQ RVPI~Ql4xSQxtyh&2LNKp5~%ErUr&-NvWx(X{M=$=H{se#^y>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c SM#hGgK(&UcNt+uPqbmWPG7}*H diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 9af99f1fe84d204db139f952d8a9e589eed8a40c..4154d985d5fb64a0081fe9d7d9fb3b0a7d362369 100644 GIT binary patch delta 62 zcmZ2yxXy4xHlty7Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ<~fW);sAyM67>K8 delta 62 zcmZ2yxXy4xHlv}5u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLmIgCQ$04wtl#sB~S diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 5702a1d2b0e68049671caeb1afd386e7d11f6c1f..052409f0e6eb9652715218b6ca0f5cf712518191 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1g5Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ<{rk?x&WNq6Yu~4 delta 62 zcmdlUw>@q{G^3%3u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLm9>&$W07A_X!2kdN diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index c6cf8ca925c2d238047d2cc0779f414beb44f09c..820c9d91152b3ff93a20182193914df5d215ccce 100644 GIT binary patch delta 81 zcmX@Gg8#q@{tc;&M%k4WRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c jM#hGgh9<^_sY&{iV+E9(cQLl_VgzBP?YkJ6+b#hB-e?$H diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 2a2233fdccd8ce36e92a06654d27a4f5fcbd8daf..6e544a8d1045630a8bcf6bb009ee3aed8c377fd0 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4YMmNsy>}F& diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 8da589bc6f9c2dfc6a4013cf2a04bd1805a2aeca..5673d8fb79a00387c82013629569263b6e3122e8 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ|0Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Yg@L(IN}`GJ<~qjhf@Ek*6TZ&~0F$XCB>(^b delta 117 zcmX@AbyRDEFQcJ}u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Xp(RkQVQSLmI>zmSWN1qhzRw5%XJa47 diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 39a06ec42aef845732e32f2897f4dae7fe7dd6d3..0436becc1c7407575fd6a1b0c9907169227e35e7 100644 GIT binary patch delta 5702 zcmbtYZD>Z* zPRE9`o$tmSeqew2XP~a*Fy9|KCTzb3gA68P8*GCOHpH$&DU5x{-kU3TG-{<3; z^PGDRcjjZ)jC!_F(&4(;{!FC4 zJ{((jFtxr;jL;bksprb%(JzKG{Gc(FFw@ZUk<_(u1o6RSnTrjKv}aXGP_ zbDQ^oeG^TMg?zth1RHcx#9Mvh%Vf29+WZ+-1IJsxG9YM|@b2=6JDEQAx8DcSCQ57b z6#Q!3ht1xByF1Td-Lv6yaOstNC6UFZZVQ_tw8!8NyT@_w#o~0z6kjAC!8JGxJ*_)< zy7xSqf}eaIzLPni1OK4E08N0czIkA+hPs#>ULu|jeg}3@8OSrdpV-0ohN5U96wRfR zE`DPyiw43r5}2@G2QP|0C;VbXON$7f>cPw6z{D)rSDrfeZ6T;Ub7jCrqc|?6qHAoQ34z20+N9h zv{%E4R8F45cEg#=T#zz4MJRlUHQq^E6KU1Z8d;9&o#viewVa_Wvek+le$Q z@mPNcX^p%Yrx+TrXLdYtw3D7M(wI(FJDJwS5Y@<3H`VLd$upgd&{lbTAGP73HDqI& zS~T#M!Y{RaN9Yf@FNVYM&H!OIM~BE&8`h`CsZ?fTLt}v-c-D^ z09LQ$XZ^jndL^$3yaKATw_GfNj34IaAY;%mzP$1PR__>p9BRjE9pm@c>_$~*!h2BF zt2K>4o4B<0JuJ^@Zd|{@1I;uo&c};*{slkQCL8`YD4a}qFCJSf8aI536Nt;Ht(@Dq z3+$U{ZYt!P&Ewdh(<0dx5Z|V&#lx1buo^ho_MHJiyM=#;Ph1}y;$X*3AZ?|_-{kMJcixyhVKm7VHnxMxVW#WSxgOC4S48PPJ zFAmT1fA)cM5dPaHSKWCHyDPedxnOd`y&YhX*j$*zBHStZstoyhf`<6SgUV&lKpl>X zLc(sFJY2n1M5Cq)d5tfVvVz)OaCEMwkj%BvUuu7ldaz_V&CpC?b#Mixuz@Zj8CgZU zT{uzN$y3;FICGf~)1aFoG`>VmbkQcYwuWxG2&p<9p&>U;G~TbW7G+Trx$5OgZ%UI3 zynJahEr1Et@;1Cke*YqMyWp7JN+G3F-i5}(Hlj(wDz^m>xZO-mGKFUQiHW%mBA1o; z-R_h6e1h9iKYhMNb#Gm`+s(neu#uYE*v@#ogG+Go7?(vpTYe+VRjDswqRQ zF7Q(0m&?Eb`Umcd;c#3SA?)Vp6uD|cetCpSRrVld@Vq!A_Vtp#7}WGpH!HA+O-+r` zA$%DYG1(W9`e@wER^-_N^8c`o;qZi;t#FvshEuc---ErUr&-NvWx(X{M=$=H{se#^yHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt@dknaI#K*-v7wI;Fv`#kUYamnSd|~0uf&2%V$a4l)<=4-*p1~-~#RV)#STCVsl&K zJ|+rm|B}K?iT35`hbhr6l^sQi-&JyD$;@QH$dlOovET$Hwr3XqC)4kn%8SUiSY)$Y zWeg=rUaNi?8KJhBv3WNc+9oqLH*YRzS0bZC18ObUY}`}NO-Ax&Y|faxppAR-iCgNM zYiF2|6WUNCHiyreL{8sZ8HsGO;J@db zWH=g_u%^rKFp6$p#=&@(oDu|Rz;>VkWLEdF)9r;AMJGqh65ehi!nmEBJng6mF=Tt6 U1mia$GJ*iuvfD1G!}x>|0F!m%A^-pY diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 26a53893c8e5b0600d0ae2e7a1a6605d5c8c86ad..cc37b59e502348b3ebd63832afbd6013ea26c9e3 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt^2!TbM}KHu<4p!Q=(v0-HCp_z01$y_rm%R zvb6SWHc>JpPwT|Z>gsM}#1Al_CvMi)yh&ahP27A+Cy-oQ@9JG9!`96Y4Y#n96}pw1 z?X7w;$kJN4Id`!O8+lqM=Pu^moUrPXG8x(hACztWc}|I(BmvYq`R6&w&9^VJ@{n%x hX2A!4SxMJ6S@1#M=CjWXg~`wg$?^P~*Zrzy1ORwtLlOW0 diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 9e02b34a37800a5dd92af5aaf7694d65c64fe1d0..273a01f5e0482ea2073edef806051fd31acf8af7 100644 GIT binary patch delta 122 zcmcbsd{=pcKciuGWkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK fg@L(IN}`GJ<_5;O%tj<@)1Ul+U21bCYY7hkR6Zqq delta 122 zcmcbsd{=pcKck_Eu}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= ep(RkQVQSLm2FAI}MkH&~pZtJbYI7!Q2@e1gA|W0C diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 5f903ca07bbe0d2606a87dc1fd31f075c4e2151b..6de822b6181c142f497a282879685b393628ba2a 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgzRMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~1ccwJEd delta 1125 zcmeBu&(!;#X+t=pp^33clCedBiN3jcs!@`KWvXGCrMZ!XrJTorx^1X`2&x6u8OK`j9MLagz&_cqa4732%0g zG-e^+h|PR*Dr{tH=i7W<wCqph#@?8NmCY4Ox z4guPmcX))88vzah2Aj|MJ|-iT1CwjqW`_WIX0jb_uvso-GnrApIU!n>ywn~y8K`x$ hW;&ZK*$(I3e0qsCnL#$$A%J)C=_N9o*Dbp*003GfHUj_v diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 3f947394ad0f60821541b2683ce466a755745d8c..c6f1db7da7714ea367758f5bada1342598141607 100644 GIT binary patch delta 62 zcmew$^+9TbE0bY%Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ<}#*VTmX}v6Wjm* delta 62 zcmew$^+9TbE0dv#u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLmGNxZ#06C8ltpET3 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index bc87ec736aed955b8cd7e85f554fad93eacebe73..69eff02169a024505418d44b5100533e04492fdd 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<01-7ny8r+H delta 2628 zcmccdp5?}SmJQL2h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt1gR?~oTEzhJLJXu`c=JkSUv{!>k0wj!>doJDezB0Qb+e+8 z0Tb!kCMz0k*lc8agEYtUr-!tGay$xwcMl{6Vg*nXW6ywe^$xKQe6H ztmxgtOh%kG<}8_9A1yrjn-1UR#r|u^NKKO=Mo4V73GF1u&oJ$q!pRD4p!Uu6(RGyA z{3`Yp86gh$_rXLxN^HNA{D>0USEnx}BhofE=A7dqE4j>^+)&58S*1dSn@sHs%-AMR z=;E4Qtj;Jh*(%pzaz%ye=GiTW$#sr^v%qGH2^IXLJ7@F5`N3?YYXe67%+3Fnm2r@% z)oue58GhYdxJ#6r3Z`(^s?CXq(m2U*tfEoDL`%oP9t`TpX^ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index d931267fefe016af9a1f0f323f3b0a73703707ce..683bb6fa5d48984f687d87e5589ff7c3ea8c9807 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7w%L^xRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^ylB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OTFPK<5Ae delta 2632 zcmaERn&s_jmJNZ7wkF0VNyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgh9<^_sY&`N`N_rl#rdU0$*Gek+8b{^$T*h~C`F<%K&>UyIaL_>CkwF@lBKXbgBS1S$oW&rwH>5=_cAkbZTC-O zoBUxN&t#L>py|`a8C5r1Z9GI?0?3{me_ndBjz7=l{d*>mQPcp_5Zs8#`}eSJ7C*R# zy!tnLbNu;5JY>Zt$OUSf58wHuL6-LZ>G3>_tlO*D7~gV`X8ErUr&-NvWx(X{M=$=H{se#^yHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgh9<^_sY&`N`N_rl#rdU0$*GeYcNuR!$T*h~C`F<%K&?5G8<@Bzv$E8Yr+c#k z>t7b~v`$uFHQW4wOPiH!?aG^P3;1x6uYK}bS&qr?rT>v{!sfNIzLYsYc=A~d53(I# zIl11Ad-FHV(-g$P0z?916{D8hIjMKIv4W80Aj@IW+hH?J<)Bnc}{OO8wJ|0O|c}~c0HBN z7v_-}gl&@-tP$KCy`qo2Vxw*If;Ag>N%!~W#$5trXahDoCTErUr&-NvWx(X{M=$=H{se#^y)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NS%aUD1S delta 2506 zcmbRCjb++5mJN}Nh9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt?SEUyz|~vg3-H$?_}>q+1Bo**STwli22b)+!dVwF^%cNMYH$i%W!+ zJR>%D2y9>{Q|l)Q9r8k~bMp-;HZ}5Wojk)anmnDG*E*e}ETCC8`+78x>1AM4gW`&H z^L(#WOyqe0ZiKX752dcC3^+llD}+NjD0M|{*f~mF!5ejqnXKUKn(UA!H~D}Q-{xI$ zwdAD>kP*t8MN#g*zy*ePU@1 zxsj&e#=ZG+)hSN0l1=wyJzuWP$*mmZYTrGXf3sP?2zlDOCi{g8Y!;pQn~!wIZ+2Ya zPM)pZlizP(-|W3fj*WC%fz@2s^MyB@7>kfP*uX^j6yzYR&=B(q|~5$)(xJFhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>kme8w>V delta 3034 zcmZ3sg>~5$)(xJFh9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt>$}FOZ>avSCZkbc+Z^{>k5%3rV*XsJ(7-LyGWbP1ZOTvbBqE_T>^{ zB~SZiJ^>a!^0ZDqDEEX+oh$8xH>WF1mL*$zG?_X zi`^G8k?nYi&D`ESl-M5Udz2E}Uj?k7#P-PG{gl{#Kdgfi+w~%ADY3mM#*>+Xh-*sl zCsX_8hLkVlIehNqWA=QT12T@2m);j`ewFJ=UWhN+%vA7@JV!6uysbEzTw9-%o+H=R z*2+9`Z9P`Kom^W3>h;LAHL!6#8MbaVY>_3euISp#*`>u!Ru-tA{N96W^V^AL9As)& zm?^yZ*{ow^YTq2QB#Jyg*H7M`&AqvBRRg*H25DcjNmrgsfA236-aO~hDe_7VpyPqs zHLqVI)9;(t-;E{L-|O!RZa(`|oRds{>%SA+y!3r4dGVb-d4r79EPhQZ0 zjoAGD&vah0JOI`{eJ%$h=XOVK#$+B!4T+av+@e92A@!4@ShgQ`WV}jV6#&Y(tlIJOGkA6U_hs delta 62 zcmaDV^HgR-Fr%S~u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLm7RHA>05~iWo&W#< diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 65117eb9ae86667c054b9e592c97b80162bcecd9..c81e1549be9ee4042f43839faaa74dc5e9ced8ab 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^ybfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt>$}Ka!zs^1=9~=?9D%`6uhL6q0T$Q2Wfu0!G4{t62}SkgZ*Ovn;n5 zD|y;C{}t%sAW!S$9wm;=ky1?L1=~!ZcHzwyGF@ak9H>2-Om~9<{D|^@@&jCA^HR+Q za=k5JB(a%Y=OPo?j+fZHOTULq+cygs@iJ3j^MBJ7WZDc&<`SDbE#6b&?fw1S~Ie72psZo05 z+PX33J{h)dJ{WIBhBjdFy?67=BxdsBb?@d|Y17Dvn9U2bcW{xFhi6TGufw%jubiKo zOzmqMgf>ex=kSxMJ$pL$;+V?FWOwU zeJgoUT{O9FyUu2&Jqvlsay&@8^yKx|xi{yWYULr{h|TM-Gij2geb)9GM#dlHH56uT zx94U|WFy_)?H2_Z&DcrT2h5hUruVBb3Ql(2A+Y_kB;!R+@(kGyG^CD?EWJ(Jfvv(@ Fi~t%10!aV> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index c7f4a26de5872ec8194a09cb0f5dee5b1f3c4f7d..48e79e2c0185fc32513c40ddfe073083d6e731d6 100644 GIT binary patch delta 3021 zcmdmUn03!#)(zf_hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~z()#(Dq% delta 3021 zcmdmUn03!#)(zf_h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNtB66=3dA0+Mh$d5KeY5anetzD~UrJAqm*^TN*EdUS zZmVt}*ZUyt7iyO?k?jGA&5n&dWZJ&DzWFgFHtV#nAk$`Wu+8f{N{Q{dy&aU;Uf#K$6VUX`z&8XPJG6499O4oM%8@*|Y#$w23b%CojYy+EbPtBE!+ZngOEy z&&oJTY&Tf5mlE3#uh*l*_TwA3Qeu11)&}wlsNT&Jc5#zep)^fasOQ=oama;(tiq{j zvO}BT=7iIm$<_Yg67S~ASGJPtc#w9FyRXQ#-C;S;=8w;s$;&Q4zXP=!zvba1Gw2lR z*(Oi;%DtKSdm(uq$e8ZO!l<#;l(B)lVkTodQ2$z9vYZdLTYCF?A;x?j3JjPIG=O{i zU3tcB8f2N$H2uFjBinW#PsZEi<(;O<7pAanf8fXXh)n&{^TQZ9w%3L*?%^WK2YK6p I4eBS103Xg>ssI20 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index f36b85e07e46a7fd339d5d639042e81b03f0e647..b15f1987430a4411c30ab7a8cf71d040dfa5243e 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wbG9}U$pvu=&5gF>>^P&$M6pubAj!+dR_sP?@-lfz%7vzR$OU=1 zLAkK`NnA;}apMX_mRxfqT*=$XU*Nkx;M3>(eSXjHd9IhV*Gt-1y{0TMIx;peCIzjc zy}VDdc|=dIY!m%npHKG7K2cG8Hc9dNMTf(tl=XS+l9kn@+S#UsqXSJlC;ppfkCg*# zMW0E>X>}SHpMuB;-588o2xYWw&co`4nM>d(nC<2vvx@UHm|ujQR+wDEHy%8T2~E|k z%A$v|M~ExAKo5MebPB7?=*GI50tIFyOY^98Rz5|oe8nzcrN_#~RIulZa}F^6ZZD&% znqjo(NL?)&c(TEbqVtXSNZ_;hICHk-lhoXW+~HrGoGlULl>f|ywAOZl2QQ@J4o@=n z)=p@P)ZXho3(1&2z42svPxvk1z}R}fiMj)O$aAL-O$eFjeCWskETxJ+lxL7KZ8d|q zdD%z>(P!kfSM4f(zVeQIQ!2i>kxrql8Pu-g2RnypQ1@BNi-mw2M`!ViT*x@iVnH2? yTp6hT@(G!DG_gqUw*lZyqi8~B0z(Tg9J!z3=!|<_dD?%=(Si2Z7f<1jyYwF^$7a0% delta 2688 zcmbuA%_~Gv7{(jsj%zYTBn#pe8XHaL-aGDGWe~-bVuK_fGmOGU8Brr2Nm*z#4q1?o z4a&ldS7Ie)V`GIPk~JG)B_DJ17kFlS>(}pj&U@Z-ub0f%OXg^uNmdoruegU)r=|sD zzgrKmK3$XDI%6&$>(ynMF}=s9$qLh%s<43H$*Yr9zUdI?z||qj0F3X`$K@$KbQQ9X+G z9ILHC15eg_QFOlH9tnIF8|R+pd{UY^kvkm6$@~ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index c5236b4360253a2f116abb1d646bdfa5d9ab48bf..6e78eb86d7b653d191dcdc1d6e9f803d40c47a31 100644 GIT binary patch delta 2967 zcmaF)oaNErUr&-NvWx(X{M=$=H{se#^ypF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6?DeY4 delta 2967 zcmaF)oaN>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt^2!uaTi`dZQs@{bUxFLeg!VEXXx|vn}gl7SgqD7UX)vO1iemj7puG zw+l!LlCE_#qtYZYf(K}0&*T7=U8GwG)yX~iLWsT9S^bjS0uUxST0wz4`AsO_<_~H- zH%IicbCIWg zv*?T`WCq>l^>g*esboOGCa^|e^Ww$Z$qe<)0&5b;2(HZww-%EZNz*pp-X}tajo>0- zf+PRtEhnnUv03qB%Vf(dyqiB>tR|-@glX5iHj9^xmW+XRN0&^tm_Gb!=ugOf+ljQ^0xA&JOGkA6U_hs delta 62 zcmaDV^HgR-Fr%S~u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLm7RHA>05~iWo&W#< diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 768917be3bff38ce316b298f85b94c10ecfc3a92..7766178b3900ec07cf2f5bad106441e304173420 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4O0bDZ0}DZCmel*2?UiJJS-YE(FJ)CwEAKuRrq z8M~;)Y867kRuArlh`dO=lH5&nvuFfebQ2pvT@<5pyvf^r_Xm8Q@ALgW&+{HmWkX-t z&}aLY61;vbaw%e+=v2DxUaRa@+#Z{(_{V%co8RVB91fpsb&UCyo*voJ<#l&kDZ;VY(i~&!^4w`B??UWv7uuCbR=o z*Kq00yaB}b-7@mhxd_v_V5q7c{O?VTD@(3Hkak1wN`>+e+6JI7-yI8)=!e9tOE$|du-x*E3 cHQ|b(<~MmUew$6UK<>3)qeijxhz;-j2RgJ$TL1t6 delta 3483 zcmbuCUr1A77{>W(XIgU;Tj|6SB#4O0bIz9AxhT9ED3rrQOo?)Hwix|!;Vvp{=mIIV z@Gy2!jnyiIf>|%_gNVE+x{};YbhBs#U33#0L0uH1^LdlEdv*nPirnsCgzteNs)#-KzRli3ID&v}4^=OK6WK*5z^GewDw^@F67$a0oId@0F=oYI^S{5Ry|5gevbHL@>4zBW1%~$)Lgx)u^0kB36REUDcx&BQWCRC_+p4% zf&T3;qGNqKIESisoibr3AV(dimr&K^GZoZpA~1`pn#NxPs#FdgLr;10#RW9o+mQm$ ztg-niz57Ii-WRtUSCowc(KOQh|1u8xb81qVubo$7!qQDl%0n`!8NrXIx4X6*F&Nd?7aua$T#SZQUpEP)hN4@M>6W&C!Jj4cYobMWDA9i4T^2;P^=PMUj6bykI1s-GTJ0rwf blfF1=euL)|H`!zhq}E{7{~dkXIoR(+(^x`qJ<@NIj6ZcB1adDWG2y-sHnLMSqbH==~UQW*o8)H z9_Vy&6a}F~vh@(>-5TU5dNUz{l2H(3P>}>d??z|SH@)GxSxno`cXSV$~9cJ`)e{91WTu)IjDUu6y33$HFSoX3^QC zCvHQJ7H;4KL}qAAn8iZNQokdNjhv-l+Y4n-!&&;`jG|WWuC?W$b*OC|wKnYA3s@=c zvZE2DJ1+u8G49IJx!?+Kat4iQ=JXSwVM=)}Re)Pm-~AbCHa{uG zhF6JWf`Q6_b^?)!@dbS2;0S1^*sxEH`EMkECvTw(BfHhu zlQ+(Sb1Ua=p@t~0#@-R@Rb$VL)~T_7ye+7)SKVEz#@?8C16|hA!d6o5(H!(iR`BW8 zN*aGUr^7Dm=pG|oeUVs#(PCqJE!Ah5L7djS9m4uf)6IA90hHqTHa$3N^{k0rf7^i` za}odZbCVIWC&lS-4VeoL=pQOy!sXTq_R6$)y)4wRUSK;Vg`1M^tY){cnJ1-}o0&m2 z3oKQ&_^ylJg82d|C%X(TsB*b9l5s!N%gfpsgNnFpaFd12VlUC@J0* zQiq4>WP_hQgfjfE%0PfEZ$^4iPNHz1Y2;vnbz%!#eC9ZL;xRi4^75w%_Ph2UZ&A=+ delta 3812 zcmbuBT}V@57{__lv#qIXI#RQ&XkiI`_->2sM2UC^$Is-PJOAPQX(P?vuoNxE?PSIxLT=aXLHai#9Z+XBc-Df`lD&~nu z141<&DfJ`L1v~_a)AUuhQGn2CVwEz6K9deM3p8kXSOu92xZ!!D5eut8TO@a*k%Ub> zdbog-5SgYiK8J;tq06oi)^dh^?Z}rv1!w4sJAzs}cdsu6twXI7sI`9oKEO&bj}wh3 z)zJ$WrI;r}8xEgE`@DK|HENBVxPe-Yr)JTZX3snU3Z|t0LK!$kb={w#Vslecba;(4 z#!Xbxb6SVki%VF^J8&IJdJ+GAX%`Tg6kEhM4~~F#iVg>~nE!_R@#L*^eq@gpd*bFf zuy1wWtyCXr)?#mu_Gz)FM{Bj%Ki=V5>=pNxYq2-P-#~}8II!iEeKZd}$tph6Qce?3 z=MC6l9o=iDYcJxc-*WY%c+g!l^ z{M=%O>+7djJ>K}x?bV6tPhw@S>>jcyKC8Ptmi5D1G$f0aXu|PBtH4MrB1CW6&a=pprVoK0tSi%DRs;!Gv`03CgN>mE7)U w2F29H#-R-VTjfeWTiJxvqV7cg0n;hLIP1U$xNyx0%H(5q4CIwhlk9iRKOCP({Qv*} diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 7567381c99c389f5759f8deb180a5bb4038fc81b..d616a13871119dab4a1b3c18ecf4f6ccefb6fe2a 100644 GIT binary patch delta 4920 zcmb_gTS!v@80O^6xz$!pZJ`z+f@Qh0yd04-g1|^BMS5r|sJVr=P-Zua*1AxdIP;fg zH|njIYU)o8MDs!sVlOiY(=sffG!Zd_kZxxl33}{X4}1JB|9`&!JBKYys1_zvt%n42 z*{PE?r8S9mlQ}7+I8iJ#7amR)&9)+|HQAPIHA|9JOq7aj=G0VC+E!ecl*o008h}yT zt^$q;Dh>K~ML(3*hn$0u<>b&Ac)z+i7=yDzcNiPDoE@v~EyGl0(`)&q;T5R72+xnW z6^QzSb>{<7e;?@zL_Kyx4*I~tW2NQT)_F318l72{Vj$BN4Z9MCL3L84L7P5#_!?2kpJ2 z6h_yR8#slLqx+$Eq~gHHQBRScB^l0^=PAIIbKl@J0FxC@&~2ZZ@_pmLl`NroW~cv8I#$CjMlnPnmF?( ztt<7`OEv9B4aC%>2(gzHh-nwPKv@!D3qrb`?TFB0-+I{F`7Zz8`F`L3u!(o7iFc~@ zt%8`Bo9D>2dh$$?!reUhG=~RAd7zCB$@Tvuu z5>dag@K_@1Z_)yZsAn!IM_<_dOlbx-bso(gL(iji0h@{ zLdBVM;BBFH>U|Xt-)KM0hxg-&byKOOb!vdug*#al>MRlcxPO^ejGWvKXim2-#h_i zj{PAk03&~>fkwL47WCjn;ScR6Q>S67EPmZ?LlUph7`g1Ogp`I1XH#bsQNBOmqYWpO z!szP0fKwPby$`x06$eIM^Z@BulHqKBln-n<-yawQV6x%?x*SncRpd3WC6j3W{A3rh zB{6vQ!(@`|S(NkaE@(hz2o5b0O8DjQN~9%Z7tF6UNJ~V#E-IbSwSGzBoug4?1d|N6 zzq~}2eo9|WXU02$`Ta$prJrBd<0Sksx*S>fNe}cfYM|2MB#wL+{|8Oa5Aego6>Lut zvhLW0I?zT8Zwj}m1gJvfaVP|5X9(aIhbt^QC`RgFQaqKi8aIZ=b;1IWMBWO0@RmV% z563AE*HVAW`f&4nVIIC)`g19QI#`+}jNo2k6jXVBLpUQ{Sc-Ivl5s=$bA~XY1$-!f NKIy}|%)*>$e*kIWm=XX0 diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 582c58bd6a25b1549b2be549d01c2ad1edac448b..e8d4f16fc13a42bd20e5dfb99032604ad447fb89 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-m|a;>l~rY2tZ!&ymSSv>XqcF6YG9a_l$vUqW}0efZk}pjY@U>6 zXklSsZj_Q}V!XMA@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeMd;X=rGgXqaMYWMpV)nVe{D zWNc^&RBM=;w7G`yJ{#%UCU4{no&1nvKIu9)Z{++%hC9I)8uHYVZsFvQ0nwB93JP!b z<$c0Tp7zaq1^<#0NI;u6yGb75C)3txnwCstYK_(jkS9;;WOJWrvUHYiw(#vBBY-!5 z40uRRg7_FvwYfI9mb?(E+PpN(l!YvRCT-4*t|P;rz;u|jxh|fKlPp_fCii9WPL|7j LOrGw=eOb}~24^Wc diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index 745d75f5af392e6ef5ca91f577959a5c7862424b..649b77e2b6c2bca9ff0aa94444b525070bd93d4a 100644 GIT binary patch delta 3077 zcmbuA-%C?r7{^)Dp_8Ugb`vxRlno4e&(7vK8I{4%R8o$NQ7OimJ11%(j0)Ev5u}TZ zAbc(*7!isnEP0T2qc;fcfY1AReth5eJ*;{UtKN4* z9wqmrP`qDMA6`)6eOXnQiaC=Iik-2ngq^SyO|yimWo$*)g%-=2ag__6uU_{U8PPF1 zXf9zS|MG=#X^`IfX92OP+q~ZP1`(Tjj=#4zH3L>7dXpc8`a2yK-5sP#`W zj`q4Ycn7t996pa)UyZ`n7h@wx2tY|1HGSZw3@XXip--&c}B?pv8g?Go>OoyYz=LAABBd}h@` z>_${@ZS4Trw}U$74vv(esh{A!tr;XL|8Oc-TB&=dhr&;N9C$Cl85}oKuKY&s_emv< x-4^cNx&1#CI7filr_;j$UaCTNd2uB^_hAT0pv1*~hui`eK7sFCipBm$=U>n%$Fu+d delta 3077 zcmbuA-%C?r7{^)Dp_7(Qb`vxZj13Ap@7e5}W0VTRU!iei3{z3gbc-;gLE#V*LA+22 z!sjxAA)-jZl!s_HdNYD<46g(ca`VC_^w4tfGAw-KMCJa>-!Wg$SH6jfATaij~)^+T5j*%Jer-SMo zM)E&T5SRLC%{v8%Ej`Vfb*qTj(kJ=%t*UCkYK8~-O`x>_LWij}bn2XBGkjR%9J802 zruSysidqZ6a=bb91RZZs^CR)K^ui6O*h&8S$O{-rW?}eoA8L)Y!`43?)2Q`47DapA z>l{O^KYH$?)(=l%>vDfD62fxgE#*`nFAjvNoF|IQi3-pwyPp3-rdv+T@Y2XOU?hp2 zj*g(#zg8oFvY2SZmNLVY7ZJ42y_fAkv6mw%yy`|`ATmjh^YqxpIF$@9Q6|7zmXL?W zK7yakegTS>cAlG`!loRjx%oPtU1$n`eLso$`QgV=)GqORpEB5cr%-9*4&Po+A$BvY zaB1TJ*|&|_=6Vk0p{ZZvp6ziYDpxq=3$@g|bC-heJnZ|XfHSykBwsi~?)P;imE9U{ v-WmFz3hX1m?9E~3zK1XWkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ=B-S}xB#bj6g&U` delta 62 zcmew@^;>E~3zMOVu}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLmtxU(b08MBT4FCWD diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 89466f7662d90da7d8f4252edf8aba5385d54c02..c648086a061ab13ba799e9443715b294fbf38c4f 100644 GIT binary patch delta 1253 zcmdlng>AErUr&-NvWx(X{M=$=H{se#^yg*W3#8}h6-0u~hf+c$SGwlV?$KPGq; delta 1253 zcmdlng>A>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt5ds50kEIdVnmW(dH#g5824nJNX4?19@7FCw~wy*!+iU0xOyNH-8Wa zW+GGX~_L=q^tjlp)aNY;~UH(0-n%r1)T&zEzh$bMhN=Pcxg z{RaWr&0Ez3g(=bRZgtR#O#Rc>Ycoo2ZY{MJp~wKoF2{QE3<%oJ%Ec%}hWEDvlTVu@ qd6pV)w=!ouPKKr6G&>!rS$KPeH{(eg@~k%k78Ly3H+L|$G6DeTg-mGx diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 1403b0ced95cb6716c266137c0fc438db23f457a..3ebfe7f813c6b00ec2230e96ebc14a8af1dbbcf1 100644 GIT binary patch delta 13101 zcmbuG`%{!<6vyYh7j%JTxq818iVWUZz!kI<6eGtJK}9h|QGpaMcnL4-B`FoP6mikV z94$4|QF0`=I^x~YAsdTy49vj`(#5-3C?-1Cv%Ag6uYC6p_A4(L!ssHELdXM6cc%QRYbzlcreA5m}QnGc8$`%!ugdOmkH9Li0VSoq=U618eN=pzKct^w=h2Bs&XhL8 zzAH5oX)%X%_qgr=)lO-bQDScTFo0-t1Uqr^K$O})a~~>QF?9qgoj3g@nyYEn7?i5c zNkFN8&V_TW$W1}1-!GVm=6c3D8e2 zk?Z=RRKtcSlzOFb0!sa*XaGt*v^fr?7JOQVQiHc;pwv#En^5V`JC~r++qR8x3y@6Z*YIKOh=Buv#I3Rc9eSeQ zew3PW3qI+h?rcS=+4p17ToWE1N2xph9)VH|YR{w8r*-f%;vfH3qSVwEa5oKTcnVUv zf@l<2VlGqZAC#NYjQmlp=1FT%ZC4}pK(&ue^Z?Z^3!vU;os)y89OWKsMd`@xk$h?A z()P3(7-rRf0Eaf!rt`_UIDw`&{?M!BYVvY_0XgD4*5o_?D~qS~*AP$8CIsWC<*wk=UhgX zUUT3cxX*M0OoE4&(u6=j?Ce}~Ia%P|$-XShS3F2f;64>p0-PnT%1N6NWa~M1Ps2^} z6kk@;uRsNyohuCzji6YVpHTBg4b=7#6`?)A(yJTXeOK%00J?dF6dO3;C0&5)U=2{b zILD~0g%gktLlCi}i-jqjym@qM#T#v9{;i{O5pG~hu(AXA%IX^b<ImPS)mVo0gE3xP~$!fL2W{@lj{8dkJ zD@6?v*?#J7(1oQ-9Pl$3*F!>5XSFpt7ljo2a(#$;pdA>y!@)!Jj92ftW5AycQV;vO zwEV9zr^J^0F~%bqjX_5g*T1jiQbzM6}FNAGl-1(rRo6%puJcf+$c+n{L2z z<`Z0nj>k0vd+$}R0{0QFli%SWq=P@N*soqk$AWO$EIq0k#FJ9Bq3LCK6%0$4>@My& zi0Uw{xmbQz)p%)*dJCOauAE+Z)!$RMTHK8*NK~)Wd^tW?3jlsS*r-Y}t}Q*>iY6{i zYbiSHRei;yby^y)O4ZEhYlE{?EDfKByBm^^h%1yG86KD}PN$2q2?Lm*cw`bh)0Al$;JcZApCJ3oCB{BqFHO~x)?4z|O1=}-iZ z#62;(U!w=$Y>R#rJ$YDq-9dYjePeZhxC^A%$R%;QwL91VqIjlW4r;l6mcC&KD)u^} zThXEkDK>JzDg8Y9_{S43>iO^#kYZ1sQ=xB02LP|Wt%t#lANfFk2<&)HeyTr1a+bPO zzVuvgfG@Oq_E%qShQELS#fDBM*g@$-}fEY=j$MbJ#HB zV2;{G`Dvc>sy!$NWR*y{XGX;>Jx&<!cyAZ9Bs(KCpZYprq7y?2BZyjg2eyh4gc5JT4K*nNsK2 z_M~JWEoPVQo!A?o+9>rJO3X4xrMNGe@J+g|lCvxtivUN2%)k z1eE&60yx+5oMe>x-J&UIuIKZzQR(Gn1*r6&6-j8WH6O&I)bpz*pwyCr1eCgC-BXlm zSw8@!8a9Tb)a#ojqtu^^2BXxYTVqjb;U^6!HE73ll-l((6Ds{__fk}Pcke7T*GKzu zQ7Rn_K&7@XVQT3SnEKvPc;}4#rXHvQ0nCCJ5Z{)aUZ1yR?R}G!8OBCs@HD^ zQEKuX_@oQJw;iQsK8QhcO?Y$)rSAG`G)gV3zl2hsG{Db@zyDi-Qd6G8-88uA2}tE~ zqOo9!xm2aUQEsw3`J!6QgVv(jo<{0}YX33OLsYxmkNTr^P70thlzXxrr6IRR@}-?i zI@21Id+Qb2faYuHO8F?aM|awWYA1!zdgP+cUaQr8Xe`QI6h_BT?GNF!53RGQKMe-B zoF7FOP-e{lnhh}Rmq=VYkUmGbJ!5Go$~DDN1j@Y~PjM*s+?zB8)qXXMHlf<85rn=H zaQR3=pQpHTG-U((PYiyWvRGc?1_NT2V&p@C9r`YBnhZgm;)&^G1R{2djWg(VP&|n% zW>E|*-ZPifRxQ6Nw}+j~y>jU_;5ZWb8`V)FWhn)S=Xq2K(Cr2+4T{`AvB)YQlQ7=W zW^m1ik-!%9DbTK>9-cDDt^qVXshMZzh~TfA>n`g6!(8U=jUb1WlE zulaBfJYcE;OKHH2F?;^<)lq9vh^Ihr|C9% zh%c(?7oY-;&XopD3GFz8j5n7~Q-=iVf`df-b{#$n#TL zbCywA2PYsMh9P2m7YkDwdGfgSiYMC2{A-|c1#aMoAY~WumDM@^%OVw1vlcoOq3nSJ zkzTcM38G_^4af>OcG1u`lmt{PF3(gn(Rrk7p)PMJd2k!sZCKiTj7&qvFp&=aqPn~O z|9P--x^fAPhNag{_(XJ6Byq9g#j!ccS~LbnVOiQN4nPN-qo%_P72#40LOOVHu2nhL z4GrY%X~ocNo4A)KQE0!h^y&eNXI@YapvBB4g<-e&{y>k zcaqg$k?EuE1zlLW!~*{Y<9tXM)lF@W&P5@`-rN|h9_|FjZg+4KedE-7t{CvA@#-;e zmmF>;tKP1Z!A(d94_-cAt#0E=AmXEJ)hHU6f<@ab^`R?PEUhMV!5mVZA&5e?q~!)I zXFkDI2t1`3*mJ*n1GtZHp8R$PAsu{qfO)W3O%V1c#WOjGO zK~#rmt;C92RpVtf>K$}iIdgjH)p%ds9^qCLN zuIHge6H;tszq9%!^zo0UT+s{QDImojJilDuiVgr?b5{?68{hI!e+2A!PI{t0MRJz9 z6u$aQZ-Oth`gpr}ahiwQaCF64I&=VjYT)>wAQCg=ja)@1w*rrrcdPvuDlC6ya?|HO D^5y}& diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index dbfc6b1eb97641f84543985b4425380125d3680e..6d8bd357cdc2e3678d45c7e253491712ef76accd 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZFXfvRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iLri4esZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Q)^2M*si- delta 1676 zcmeDE&D8swX+toht%*Nm->YJwtZ)BoC`zNs~GHu`dLE=5e2MW)T?6U8^nCg_oC^Z7(`a)WHXyy)inStexKJQ<`t tC#Q;&EPuytE-91YCSB|1gN@sDNY@4|#)CKiSy#YAme!!n?|08*1OO+_<3j)d diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 4596b15f60fc35bc28eba19f79f1a3cbeccd91cd..ed4310e77f0b9955196be499744d45fb095ea1ab 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^9Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Yg@L(IN}`GJ<_<dVQ;!H$QjijzejEJtrV!EQml7`yXr^G_3L|Ef@U?Tyu z2FnH?Xxh=?JaHYZ$oVE3YRw0HR(DY5A>U9lS>flZALtGId~Iu(n9k<|3$*04HP#d2 z-NC0soR9TfbCH(JPTt8EdRYq%=WEfRn~2`u|CyGW<=YQOyGW^7-mD)RA)!-N`{HFH z8DDxuBl+y|KH3ydaqCT-hUTovchk=M^1<>UYGD8SyUqi}g_Gk~KU_~aN7-~9F5u!` z81hiz7ya;?Fm$!#;R7HK5R;iJ4=0_oC_Y(hblPbV3 zw_$<`uh;LIf!z%Wd=KDCLxS-lY;H(!Y8GBMB&g0oobbHWx3J|oln6s!7u@6US8C)G zjv}Oqb63C{CHO>mbnN;CCSVutDnl#b=g2mgO!*2PHdh5NdsKoX9$x{4*v3TR`bcY?1yaWE+Bb}qHpWq6(O_Pd#=b_@kOta--Nk;vM^p4<_P3ceEL_;z4HzL9IAnk5qlNAariXeJuQL!K>jok!9X+X>&AWZ`i z1c}x~M=dB4v|tNrM;HXt)}NptD!ml1JqUs)g+v7p&Nhdf_uczG&-?Doelwe2ZOgB= zJxh@mjYJcXcskk}iNZkSrqi0N@d)Ao&N~CWli+xygU39 z#Q8+eH4n68cJfZX(92pdoUiqVy&!u3z-KHq$G0Ep?}AcuyxBZH3ZYY0`{HGgG?rdr zB%fX0k4^Cux84{Snztt3O*`+)hbo8Bz=8L7od?PTC(o~bxIXS2Wzz+^Bo_D5un&b_ z4A5_2=<3NM2T2_SlbNSLr<}7wzH+41IcFDsXf1_2Vx~wL;Dl-jzTc!yR3N_Gri&=N zUcYOGcDoV;9?%t6f^>;CyAqt9rPr#ebcEzhY840%IvkJDep%~yC%Pzs#8 zqPS6}Pr#*P*Do>&d&I5^wE{m!wjs;yTj=wkRQXt4w~evPr3e+mI1b zb8Lh24&vt?~qeZGc&b4VYNMBM>AN&ve#d;71|((gS`t20v}^=ik!%=>0YYIE#el!`QVe1XkTnY{*SYNzy6?gW%-&tC^n9q|R{ zQKDlRw0WI*9$#?~2-fbDs-?N8G-&kznrr=<0+iZfn}Jf#y#eRiQkI5NTQ-)Ux!!#f z4*2nwU!v4$+h(J=PW{EpC^c>eG#EL1IALcxN}aLm5t{2i`7D%rtuhj&*6&@3QopQ< zN2!0Qo`X`){^o0xnp^uSO5I%Nk4obXRiM(>juxP~Za@AOO07Q;gi6akfT_n%!qn2! z@XjeX^8l@|b}j`ilXMb)p*jFHyq7{aYi8M)Lw@~h%jSTIm+EarV@;W1COj>GU zbI~&Ao0$RS1_d)STB^@N*dA0HGJ=Jn+RjimfNCp7v1qi;#ba0p%IzD+7GtkDHd3Bu zl_)pa!Ya^wH%(%8lzYa?wxil_Vp$d1&(o%`M3ifNj(vh^>k?QEP-oisJiCB0A0@JM zfa$#as6Uw@4^X;x%u8$^$}LS{^U-|Qq%teYotMVaQ0}~R_5!L+%4GXcEnmox&jloA zs$P_NCWoyA_8#xqzzX@HVirJGm$Dd7973pJ8B0PPNW}0nRP0P3gpRCYPkH9BaShuH zIuujQS~g5^{~4Ub3akabZg8$#&ih;0BH(u7)uW`je9;aT#2;0#YwicF8;~$Kr=sEm zoN=VqdgwyzPc3^`u@8vnPaR}lyt$S&f(9fE978}cfBQW1<@ssS45~ZB<^x^hS^#0Q z8D9QxFEAtjRTFCilOSR6Y9JtXHZK2Dkyydt>nsIspzba<6gVwiy)VSRwEH%zLUx|s zf`8~`w}9lIXpQ^?XJ$Tii;_m~K4kX?p&+8HRd z`?{Yvi6TA#BVI&f!levEtha4@spy-~iINp=+g7V|6BveE8-9AM^d|6CtE=a)z9{+A zf|=4|7%v>YffHYlCcTT)UEeW6Y@|(@(#wd$Y@3u$OR}XsNTcfF@;s>$IO<4 z0lc$a=(o+%J4mPKy(Yxo^vM@eEb2g8+N63QXV)HYyedugLldv~my`rwX+j)GD<4WZ z77)+V$IDkhExjKu&lwDeOIFD9$^KJ$C~~an;+QG&u@NAd-^rAH`1<*BCul&z;J67B z=TcOWJP62}MBXcq=~b^+VYxgOfO1_t>@7Jp6i8R!ny(y?efdBQRBZiV5C#p%p{CQ1 zPBwT`{b~6=Ja+01aUaPY=mzJy!=X=QUt|IPp9L2V-h5fMWTu=JIp&AxdWdKSlci5K zdVAz>Q8r{+K?f2s%+o-zvz(z+7jH;=+5-n8RTLWYUNmgKp~>Tr{^zx|&M+?AgSfmY?sG#gdL!yR&xJ!Mb+j59hl7ETrPojfS44;d zDY4IR4;>0zS=0>}j3+KCcF$@dTzshCp!C3>1@vQNZHO}7vtvX!1oM&m4Q5{Sx#2~s z8KzXACjospMzO-nBg6qz94q5&XSN*#tC!9)WP#1)KyYj;T9IUTL?%B4%K-56twV!n0~4vScFsGWth@8iU+$y11!PU5-rpy7<;# z)dZN_c2Pxsx$Io;GP>TP*2CmEm(&Gt&I_-o$uK#+P2CBTE8Eo;m^|{Diu_E&Rqdsn zD)Qa7OFZj_x&hAljV`qmxG`MhU*A!$!v%}Dry{?7aFGu`Q11g|61_bhPWRv=bw6;` z@!7JroVp*Y$Y4rByc)PFoMp<|-J>eIFQ^JFG-)4$X@6&OI#9cWMna=TX)>^2dK%;y ztyLl9_)IOA-?V7gfUCo)rL0NXzk!Kd{C&{MkLGG&{O)sFII(9n@PDc<7ZNTzf&9N0 zMgVV0(T2LdF1Ed-eE=-R_x(utO*gt4k*= delta 15985 zcmbuGdsI}{6~@=OckaC~2#mu+e39a#N^2s6j6fSDh%taBMUe<1Do+E72&u6hqv$eX zqLyWxr6)yO7O{fT`kb1bR4X;w8Uhv*62;IUR;p68ik28Dk)F9zo0UK3oB#Q~-`@M| zbI#_>OkHnSU2oXY3}%U%5|uM0W>wVW=;-{&oS4{rOF?XOWK68ZV$HVX#YRS2EU~%S z(UDUuvEpwn`8oEjYyeQz1gAUvyq1Awl-jU&6-xc0Iv%C| zrDh&VJ^P!lP-CB(+MX4EWSI~9+@(Z|!O&#qh zb$4eSn(M9W|3RshHx8rJo83JCm4_{5YaQ!v+feMjyK?}nKAKkboJvN7bDg!jRV)F=Ns)6Pu5g zxxmZ}C^smWnbA^x8p8IV+K^E!4ApjpvO!c^IfhL|>s&I9b)ww<32Z6$nqwp7X;y`D zlOtFqn(wAaW=FYatZX}~{W^wKqy0Q%8cRgE*5}yAsJ1?V)dF>9#-N5;`vhtnHO)VV@;p|2?NJ4P|V*t&wP17nly{*&#;9+*SHoy*ldQE z|C>{UNB=2BYLf!xX6tZ3Gey&%-U4Y?98R+n9C+N*%uL zCr+Y>55S0*(713Z0}<Aa&Pwj1U`XQ>OGX;xN}HrBhC}ve&%a+opqE`A55C{ny>v#a~ zY!~`%i}W_qDSEF7u{VAExfFvs(3Wr@ z=jjvWE1;I%3zz2&1;nK*<%MMbu{<0()^u_7H2K&lkj(F7%07JkLb(exAYpLago*Pg zs#qQZWIuofz|elQ4wM&wY_=|^J? z-qdhfz7LO`xNz)uaf$({t_wDIMp zQwA>@vER__aY+C3+FEaz5bi---W2zlp%1+g^`7U#A(T4X3{4}!Kq#WmP!3l_hyy9H z-*68d3S3##4;qXoE-H4|cWuj-th;RtzqxT!ky!bQ2i&Q&8 zsYFi#`e2-5g_lQ&1E?ZgSr1IB>nIPmKx6yXe?O_vR?0;C>L|q4aKw(h2uv z#(?BQ<^>9Vqv#Gt(v_-7?r+Uq$J8|5vRP@xq%?7hQkRTrc~P4(go|fe6P13dyb2W1 z89WJ>E5Q7wC*E^M@peV<_ikkq&;)t}!etk55}Y`u?f^PoATy{*Q6IuP{RNYX|9iA8 zQ1wBlCmK0c%>&li^?oA6eq;_;{eZVRnrl@zAWtWs^r?$z@v~}7u=`EUb@A9#6*}d0 zaoc>gcLhl1LL9&gKU5Pj1DkztwjULpRhy6{6XBQBKN{6&#f$7u)rVXi#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y#f$7u)rVXi#h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt>rJ@{yr!@_wb1&6dnJm`S%0q;>MCHvY+5*$c_iUAFlw$23;*v`#+D zA-q|Zzn(lVmw~m13C?Ds!1mQ5VdRAx#P;1129#)DD)W+zpxeA(=>~a0R=L?xHQkV` y;7Z+W7p^Zrp4Q2B;li86GHlq$)PA5`b~9_fDhGMmHyLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3qc>tR delta 1139 zcmeBrz}oeIb%Qsfp^33clCedBiN3jcs!@`KWvXGCrMZ!XrJkxLnOZx!3z*5$>asbHzl4=Mt&`75No>v+-Ahg= zZB%ywYu_opfQdZYH=mR0BU3Bb=9jV}WCj^ndza!jGJErUr&-NvWx(X{M=$=H{se#^y%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt>rJGLfNeGNVMyW>w~8WNMupErUr&-NvWx(X{M=$=H{se#^ymhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5HEE8=2 delta 1690 zcmaDdi}lGY)(z2&h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt1gRKa-*BA$QPbCg#=b*kO0qGV_T`}2U(KXSEJsIii()m*ccT&-m~>?~x) zskvbnxwclD%poTcKIAUkywheP8yOA;YMm_Cz_Iy@^EYv_w8u=oBPqPOE9Mw#}!{Z|5OT`)2;TSr+7J-OeV)SWlj(W3~&)GaBlUWp5C$eCOYO)tj-O F5dfYf);a(H diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 0b5e7eedec19c251fa4dc1f1d87e0f1608805e2a..d1851c563d2a0278a18e7b5350a2b79e8eef86b0 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^ydx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNtATj$0S% z&e&WaxSokDTW4;5DKd#XTW4-|6+cX_t(T-eldH8~?ijgR<&|!b>(_%STgbK5USkK@ zwrY_RubUU@ULe=8)`m;T(7IXBl ztLn&%^Z3aEYEqjSTf51NIEZ$$ZVhrBzrJ65GwUQ3E;54-r2WF26XZI+%Sd#y?cx?n Uw5P3PBq!B+$Fe{0Qa!#XJ4`~F_Ll@A}%r3)GM{uT68#Ht5a;)r5 z3_CgukrdHGC0K268y0E3bfF?5B1%N5Aj;~YdWf?28AGYJS<@fzTWfva{`Q6aB4l|H zvRqNg65r0oCU29=pQU6ktaLe5MXktjDplnkPfk^iN6F3gI9<8rRm!48&fEo+YPKt@ zvZlhH<*%vVUg2RucP6_-9w-s3NV1ft#C#zbs-M13ZS1_M4#WAGxONkUvOaqXf0s}X z1`p%I))I=j^FI3!?(E>cNhd&O8Qj57r_7Cof;Tf~v5mJ(J&1K(W@af? zv&KKoT8X+2&F%tS&##*Yl6<^#Gm56VPNAi$ISDb)RA@YXaS1jN)!dfvvqP@c%$9HB zsfDRnydh2-}4k_m;I_RcpL$<85HJc+hPDFnK*_e0BLS ziVk~jAS0;;j>&_{$`5!`kg-$)LB6@R59zRh{@lI?snrt;*= ziUo6KySglFsPijE^IcujCtxV6ePrg#?$u(;>kZ?@58fw7?#}B5?;x&qgGF4tjvW`d zBdZ%M;L3+4%(Z}Ld_033iiT_U7pTJqI_2APU>AgIeg1tLT5I=@Ux2IL8$%lO*E-D< zt(3$A=0YkQaRO@_bgyS^nd8K(Z1UC|1-~YboJ+!ZeeYHhulIO~NgOXET3nPWW^t*M zKw~3&F`6Yw^pue;wkWe~h=La#KC%FLjEt5c1tzl3cG=b%@(Q_4{wSphtDl^RB1)Pr z1xBKj?I69t4w3J=@Y=;Zzm^#17lPnNu+m>H;%|VI;sE+xxsq%Tm5n+`ku?lkZ)&k z^B%bdOvc|*4l(C3i3Mi;UzvAL$i@F4v+5Z^{$0k>2-%+uVC#)37#((q>o189l@W5G zW`Z*oUS*3oJV2h#!Dh^>+w63FXCiF{_UcF*41rUL)FiSd(!#XJV+c8}PrwEo6?qCR zngN*huBGMik#oA_8pM4!O`R4wY@D-V>t31+R2ya!TWH4Q$bF5_o7mEYnPNbvivja7 SfrlYlfW3rDh5Q}PqrU+K3OhCc delta 5860 zcmb`LT}YEr9L70EXVdA{v~*@*RuUDZ@3zuiq!CCLeSnr`R*uaUI4ftOeat>yEBhwK ziC#t|MRd^zSRL>f6=~h{L4`y_l!#J6l+{Ib5oMishEjKX*7eKpd7l6O{LcsPi?HcM z*mT817C0SFucI*F%quAH*}a7>pR&PKU@vqj$~=#<-etEdimS#`V0S1k#pzId-n{ko zHH~?V^-Wu9d@SV7Wp~L#`6WsfNmlZVxGw}lwNnqMg`G1rU^qXWaM^&Ntk0Uk-z7JJ z!6W#vxq@Quyw5s>JKK2OgyW#I3~uA6GG@m^!CP2U#d@5@4J2oY3B6;9&6t{k*t+3W&07-(;SC zNikv0Y-g8=4RwCSXuh*+>Ua!gfyYL^=zaiOUVj8HfA~H+|oM(OPf(_yxFXJ#nO2d#%x2 z(MCxUU@oM>;e23iL+;hAJ$IaVmeb2kyA);2&UimgXT0&+6_$uc4(CWXijAdq%- zF0B=F&kzf6bw*&V{T?xj{>$V9aA1roq>Ahg^2Qc@M@JQaA=g>IcDrA$MBj5c8S?Ec zZrvx>fXVn<$|hz#A@RVh|10yZmt6P{GRvM3U8X^0W18lu91--*Ias4H!LuG_q zsOjL0MON7)4h@i}v#=TSYZfa_>`b9;z+N3`gD!9~g&IU&8ZFI=K8BFv+6y+|h$vEM z*)+hkXC?I}MbBxHYZedOG;>Pyuzt>pO?zlMP;G=wX{9+6qxaQAuVV}6=ZXQ1x&ZSr Sfk$Clg1v+)h5S2QM1KSICT-;a diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 6b6e6ec899f9ede8218b6a13c02eb3529b600f7d..480d362edfb9e38c22d1a1b87a2a5b9847e86875 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgtKj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGl=LvMrt delta 1199 zcmey>$@Hs}X+u1tp^33clCedBiN3jcs!@`KWvXGCrMZ!XrJ0%fO#D`76P?SE@imc><@3)n8OlCE`gA6`B>2app)Ag#w$MTN+Sm_nZL$z5g=n`ErUr&-NvWx(X{M=$=H{se#^yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~z;|TG{{r delta 1928 zcmbRJif#5Qwhe)dwkF0VNyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgh9<^_sY&`N`N_rl#rdU0$*Ge+x~gs7!dS})lp@g>pw_6#dzc%@)4BOLOA-rt zS|=Z85#D^9)0I5!(UTP{I438l3vb@Sw~vi17r=~=*eox$gS?PK7||kenTbMIu*h7d z*cEa|DRsp+#o3g)!cL`^0#|HKP`^Z}3+`(!XQnVVjP>47>WVW4&nO57VB(h89B&fI zO14M1H~U+4agwDycXPRmCmH_V{LxiXmvkGaJMuEdPCi#8w|QH!85!0h^v@_Y(j(9Q zn8|XAQj@n9t8bpM#E(ojfX&$4yDZ+BJU66I-tdBbbN4GHG9n!m1`z!|ACAb7ZvS?m y{-5lm>jT-lcsrjMqk0^9nrpT{Dq##IGsJ7QKPh8mu_4`NXuZe3y=gP!Ohy1y8W~ss diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index da45a97f20949b95e39a715f348a34c16018f4be..bbad241fd53b268b9a109cdbc4a0db695bd5ad4b 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgzd#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0OVvqM*si- delta 1023 zcmZo!!_=~dX@fVTp^33clCedBiN3jcs!@`KWvXGCrMZ!XrJJ8rB;q diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 529a352cc479844cf0074ad3d3d4bac50523654f..d6e473d872767419ca6ef9038630814fcad0babc 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y0u kYW*hWCr*~u)%*mT?RlQ>d0C_T@TmS$7 delta 527 zcmX@{m+{13#tq(#h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt%{TOBGm)v4-N@d946U)u$(wIgy<-LdB4UlT diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 9c6c3794d22d0ff2e417c4ce36669e610e8dfa7b..334c7e5931faf0dfcf9399e454df364e4e5afafc 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yg=ATrGuax delta 731 zcmccgg7MM|#tpuVh9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt5ds?~$P^UesmtMW#9ASP0ZQ`A!l4a^me_2_H-U*fn}OQJH)jhTW+q+x=6KP4w%L^xRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yW4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dg~s5CQ-I delta 1705 zcmdlyhh_5|mJP*>wkF0VNyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgh9<^_sY&`N`N_rl#rdU0$*GeArSvA>W4sHLA<-0|&aBO0%nKOF(>i@B4F& zbD-3FGHl#jDEo;F+kh#lf3vbeDH%3`wMHoCkZWs;Y8Sb-p3}I=Ojc4T-|Vj&MxKMq zH~Z=z5FyLf?8*0>1vl?^crG}3wwuuAXD>yR O$g(|aJFtkK#|Qu-pwiC( diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 0e9dcfe4accbf38e5349ede2308df895c5203dd5..a05d03d7c79e8b03ccb50e2d989f13a49459c08c 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNYbgx2Oj?&I5;8U})gW*ZCH3!A$vXBdpe$ugHfP=_Ws6)-XWAVT7tB@yDcW$q7n_yeBj^PF?< zIp3Rhe91VzWV}|$?EBmN0dK(3y1|~a(c`eW?e5xKo4vlKt}eGex6YoIS7&qN)zsVb z^KE(A9(RsI@v})lHDfK1BV5NZsR(Y=m=u?`1(G+&VqKvHk~T?O;&!A{z=ErPgPZqtw^d?*gcD#ySkhlo_i}Zps`%r5`-ogGxtj0aW_4;{qyu zDz6TeKC`(4J=3Bs0-#EZGXju>&-CUC#i;b`wpO&xp_g`|)N@7c09BS2&!WU{OB?_( z+}-m#51`Z=Wze@GG^eL_A-5jsqC{pLZGdfwlFQZK(Xh*B5ZyHKk2 z@TUM(S~`YMqNj5&Kvb`TSJodX(n4=RpDgKm8Kv5f-(Le#FZcFhRG*v{ooI)(rxsCa zUtc9kJ@N5Pl)7-%i&7W+FQU|~12DDt(f~^Bxv~kZ)qCwPRQj)ML8V55@33pQ3Za%( zG|PgKlM&F+mCNeUclDT5sUFqJrm^@~NbXc#pN^K=*#>M|tjHIBn>2%T+d6}E1$9s0 za>W(Y(rv~n<1r6$rkEM&Od|UgJ3D9CK&S><(qynN)~+Uob1UmxRSeZ2nGO`QI2{<{ z_-(#MNq3mZ@CwVu_JvdYZzA?h@mQKHV`dW+$0a^@vpCvc%hIrK=p%!u2KF{~LtSEr zpQTblfDK_2^2lKKA(n;xB;*unAF>$Ice4vv0w<{kQ3=oiIF+$NGhMpETCo1F=ub;F zfKKQ9-%Kawe_+ufYMz^=hZj zGXu8xouPVCMPQCu#g7l!KX^^4R25|9t4N`{k;&JurXRhT{7G@=E{hdvKlJnm<1yeC zq~=KeGS~V@13T+*=_NQcY4K;SdHYdzBx<`39<};ytK-qAi+ywLAhG4JD)x zdic>~u>Pz=sp7eQ9!DAP@M*LN)r7j<=LH5V1a0Z&N6`c9de2NRp5`8O86@>{FQ^qq zBsYo9NN%R+L9PRbiBy-1pjIh3nLxwC`~kR`!}^>r`E`&Vdc|2p!xWF9z#ZNMo`2Yd z_TA&{Kn&rY<>k~k#lHf2K&p5GfU3XRth`{wp9?%jsB{Z`{X72zi165oRI5fXi_$l! zejJN#4-&9rEe#VwNtd}olV{|L-3meMpyE2HR6)MSBeB-Q0u OBDBN`Nc}(fd;NbbAHcT& delta 7878 zcmbuE`%l|d7{+r>*A{7|E%)oT;H(KjM_UxSOj?&Il4fj3MkWrh+%^!(*cQW3GABy5 zWFdpEc(M!5Y-1t2u(`wX4ujD+S>_T5>d*wI0w%^EL`a;oBtkqbbAQ0Y?|q)ndpYlW zPQD#mG>!i<+Z-bYCyKH*^E+a(@Rk5YwNZHR5@)Q0%Y2>Js{l~!>IIwr@K+RMl|GSE zgG!&;(2n-BV50!2(&mW(WZ|CPc)^EC&urd@<~jJ%Hk5j{pbenPBHs*3{I<{q5X03y zw{0&A|Q0IVC#K3hPfUpw!;p zGL(A!;~OY-{!BeeUFf@jQaAO(RNuvZl-hmSjpkZ^^)FQVuWUx8W`fVKcc>hp7L_*1 zyx|iO(9o60ijjAXm{hA6(aXls_*h8p(O#d5min1GY+EeL=YN~9g7mDlCg}|t9>e9D zH>jsujFrV>9^$l*ndx*Q`xWb*Cu|^;fu3~f?29!k3B$9A^{yxkWsppJeJsuZhH>l` zU!|>fS;_PYb7K3#BmOrLyC-=pO%yY$1q#P2KKHXYdZUV^VRz_5gQz<8Hg-b2VrvUa zrG!>Ch)u{tgB=H1CiY3lBho%(F=Xsw=dlPpqzs}Gpayuf(R?diyv&-h`Y-EGN!E`} z=iJ}SAm)Bx(IRS&S?S&#)@#O65g{v5R>rs$7-+u~nW<%#S+IubyKj zZ1H?;3d8jbzHTM;=*i%Zi`#cttWfnZ(jSb+fLoB7 zBKecxSrtl~Kq*#!7BtYV)L7{GcwPuD->^P1jkln~x@W&pG`YB*ma=&+n#3cMYa96S zDC}5iA(PJvxrs&#_yKTlg-l49q(s6&n5g(weiY}MsI;7Sqx$g!(G;lS5#VTOA$_o# zA4vxD&penap6TOpl>QE%LX%J?)cHQoGhso{#x8yYZD8knR(kOiuSSoK4hC@)&Bp%^Sh~hh1p* zUET(SA^bDEgc>IKS3nI&iN^t``f9WMf)#(x^BAG%Hv0N^{s|DmBP&u?4PY!`V)1TU>Qld98H9l MSRSeWgTFWa2Msu@R{#J2 diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 4640f563d4be9f52192a24a1e743a8d15592b99a..0887700a3ef6350c9b2d421f7f5f0683b34409d6 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2w%L^xRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VBZ~k4 delta 1783 zcmcb6gz4@PrVYW2wkF0VNyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgh9<^_sY&`N`N_rl#rdU0$*GeKQ)MTwW!wjpA<-1D&IDoI&Ci(H7|GW@dH(|b z$=_HC$u=QmGbdXJ8`;_;HZ${HW1>KNy})ELwQo)kK18n80@40I5PFZU6uP delta 117 zcmaE(_C{@kH>076u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Xp(RkQVQSLm8pg$JWM~WEkl_XZeEc5} diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 5ca3e63574fccc04f601082a8fb9736cd1fb5cb7..e6d35fd22bf503a66a0beecf8dc604933ac82e2c 100644 GIT binary patch delta 4131 zcmbuC-%Ha`7{+pZ7iIeIL&DLc#Vz zLBb1a@6EwjPs~1GQ|lYL>`FilTy`jGI2Z~!!j6#YbcPhWGZ2DW5>n1_~|*dN!>UI}?=)Av0%Ig5LYn%t!< z+4{36cbT{-KXduZaJBl`hx5-5<4z^IND!s;k;J5qC@}-mMyIe>EG(E33n3;#bnG92 zi8BRdnx@nZm^I(`UW>*EHQbi04F7Dv&E#9TFCNe19>)+z`3xs*%~AO8+($*MV62K zdfI2i0TU%zLT%k}gY~@jAoh1=tq2d+`0kt*iC|vcN8@q0$f93rkc*L-S4VI$;v>`R zMdU>4D-vF)*@JKMg($g~o~-~aNpIz|r60?<_W$?Lu;ag5aI?4T!O~mJhve$e(3d9Y zM0zBwU?tk<0siqI%;6q_mkN_wUQr1a+%C)-Y?xsLw+XWb#$$j?rmVr51uh^7xadI` zSw5erhEK?IcYCir3CJ|`aS?@mQa|!W&P+3Km3EqN6rHX!vv+=y8dfS!y~iT(055 z(MwBID5XRFpd*{F2KZbzbYOS%juRJ7y||FfqRb3KJ{M6*vD-0&AzVgrVVQX$dV1s@ d6p`ALg|3Xl3;Z+Db78coM;W-e_-oJS{RNAlBFF#$ delta 4131 zcmbuCUr5tY6vsK`=Kf{oR2G#^Y9yw)-!|KRF<}o{4s;6^(L*6Fw=9#Awum)IF(1SV z;Re@2R08QK8(ioUMZkMQQ3%x>bimQPc}vZiiD*#kWc%%o1=@Q@D(z z+q|r^c&!d6rNKwAo6I|6D0zS+eP*`cd{~5*Ti74Zz)lHyS@ZWDI5|uD%5{ZHS-S0~ zzHphis1WmnDsZ)i*oQOE_v20_##k7o43N~gk=PSvW{6K@$YjbJWNdI2Nx(%9qR8_3 zSRH&qp1a+9!%;w{p`Tmr@L1~bOHM$BV7~3KCg_(Uxa$E$VhAf~hZnNQ0TRoklD}_; zbzF{!7SuomX{ELFRtvmELgYMFr!R8#1T0}eL?uSr7y=!iYzGrAQFBYp$c4)lTsZn^ zsRCtmpdXB6{nd3o(*r^5j^1+O!l@S*l6jP=LC|m!l@z-ja~Q&97#Ehg7h<9Z?tz{( atk~$%D7?Tw6B8Fk^Cpymmy3Vx*`mJ^HJ14R diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index fb2c95f9ff3c65caed40258cb158c16f88a2c78e..e708f15e740068bd261aa35f15e0f0d2bbbbc3b1 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgtf#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y-B?4K)A& delta 1709 zcmX@x#dWreYeO`np^33clCedBiN3jcs!@`KWvXGCrMZ!XrJos#NGPG_swDM#o)1NAK56JcBI)~|GI2IhI z@15_EYip_7B64j#==qqOMChoT2uk{_o2`T9iIEY^Q2p$ii!y)gBv1cj2LrC@-ESF1 zwo9on-Vh|;knMeDj7~|U>)*~elaZT?bbZr-`VzL!UCbEaNuK8D$?>*a+kswh;H1QW zh2I(PT99tQWJhJ!$qLRQ+c^xG6gVi*zsZuRR+TLMj+1x0%WU5p&$Nw|0{x6>Ot!LQ M>37%;O#AZ~0gyk?0ssI2 diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index e88493bd819afcec9f495eac76fdc933eef831a2..f7232c91e33b1effdc7f0f051eb8b21c489dc2a9 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgz-MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgR@fabN%d delta 1200 zcmX@z%W}GxWrHuHp^33clCedBiN3jcs!@`KWvXGCrMZ!XrJ3-Cwy1hTw2n^OM&){O#((_YQG>Uzqw*-4G#s{S0CC>uHzdX$Zb}* Yc!G~S+c!5n&{82wYua{4R>m$y08T|kv;Y7A diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 6a1cd6f99f761ac570096461d58e960ae0afa3f1..56fb8c8bb7d36d2e54620444bd58f935b6035c9d 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgzdMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFk$upP6(kL3)cPr?MB4r!{4A0H5mS2^`w2Wa{4> zz;}d9FN5sX+I(5y2@{!i1NCceE)|hvBUit{RpHHM(uPu$=;t@{sv%c@03X}ryz>g1 ZMKErUr&-NvWx(X{M=$=H{se#^yMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vRu1Ue delta 760 zcmaF+p6Ts-rVZ|lh9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt-JeImpqrk?9vR>9$SY$do+Up1qbVoe7f#cqAvk7ZBcD$&tlMkr5J` zm+~zj!`ndjgI%%ty#Nz=-iLWYeDfv|Sr+m{F6Ut_whs2r?qKtkRw=SAbFw&*rvm>5Kp=&d#O) diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index c70ff4db44a829262f2aa6c571ae408efc0690a9..e4edfa1d715dd59aeb58f37dc918d0d8408b683b 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt0_BHtfhTD42Bt;i>D+vk*@%fetw2kKCeLBZBTIMr=1uIeETn7Q b?7-8*O1iem4m>HF6NO@U$yg_K&uExkSy7c$Wn8RpXkwOPY>;S}m~3ibn3j~9YMN%6YG`hrYG7=hlxApQ XVPI~Ql4xSQc>-fEIokY~_i+ONQ=KD5 delta 117 zcmeB?>yg_K&uD03Y?5SbQDCBPZk}qCWMP?Vm}Y5iWMOG&Xqsr4VrgV#XlR+7Xl`U| WXbDtnn3}YC0%I>Z+WeUJaRUG+S03m9 diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index e593a9aa1a8bfa35804c84e40f434b2328d23be5..7e01f78be6461d30a64422960cceb7ea4b96deb3 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yHk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0MN1v;Q#;t delta 1704 zcmdlyiF5NL&JFI2h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNs}uW-;$wgp`hR9CroxsiGmWjTDL0CC08q> zdJ4H(MYPtDtF=&fJuB&naC4xs5ijZ5CI=elY*uhI@FZR9=Ekmx+imn2 zXOiiN=>-Z*;@g3NQ7u5810V*}tz`7cBhP^CUJ^`N+~nz<4%92RT}XwAMVTxE{I&y2 H{CSK3E)LGF diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index e3c4842188a5783cc01adcf84d436e601d62c679..1c6fd7eb2a07389a993a66feb3b889fba458c286 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^*xA~#l$uFielp4x#lAi!Z1lJaFvy2%$M0y2`?0 zWL8SOI3+tN+1Xl{Ml6+&g_UyUFPP^K_&v{i-qY!99#}RHEN4SZo?Tju&BT=XR=Ld` zR-~XDoN`HWB&2Dsh)a__9!*j_p@{7DN*-r8*rw>Ki~yDPjp?b}GW|~2!!$i*EejYm zi`OB!MkV>*1rXh!tFm2Wy=mVD{aA0YqsA#}d&gSiBvzh)t%;}|l;o(nM5$5#j2^Y6 z@g8kGZCXKFQ;uV>HQ|*&NpDUKrFrf=l-_vX07_|}KMQ(paeC~!1{(FWFHVEKgE>&^ z94P})3rGWFha(VGX*!uG#;87>tfTXb(N>Jp_UlU_M)mF2Dzbj=G-KQt7MaNXb~cG! zmHHphSI;JF-~>kjR%-<8tdx&;up8`KP`R0sT>(zeHOoYOD_P3b5DVvHA>0fJS~Iu& zVT~orGk1pRrg+glTL@*2&F87=j`jv4#e^KAzr);p&o}!3cmJ2f%_QE9O~OUL@CB~j NFl{xz7!pQ1e*s6f0IUE2 delta 2429 zcmbW&&ns+U7zgm)5u=UohYO`Fy|6`@FrK%>&owf$MaXalg-R`SfLf zM<5W@EZvCmc_X0d2Is#be9q7`&W+hfK=W}!e#@hl{f7~tGQmkZU07+~DtnlwhrCq< zqq2A%l5r|8&Xz!QgDxv~k@aSR8}#3OgB>+NvFcZ>H9>0aG1!`nc|b|th6|KBO^@hN z+gt9?)|1vXv^DKL0$Y=MCn)Jfi=woss|cmn`U^lQ6Aa}+&n-dsy;ne^oe3srWMHHK zYF#4VaLfhL@Z{k*L`_;qC4XSlUPv|4+4)2V#%cTcsT8C3_H!M%-*?(D?u@BS6(J9s z!LG{u4j61=)79Vvf5Ysj6ZWtQG1bGavEPCzWJ-PwI6?0sQ|+x(g)l8PSB!-S84_{l zZpFViOI79W9O-67**;sba>w#{nzpyQ*-0~{z!~b1yYJ7kH*oh~NkS%xK5P=9hLjI* O?T)nd;(Sz@`27ir8mUD9 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 548d9bef6c5bc92ec4b2a547eb067129f0c8bdc2..64c5b364e1b60e190427c8b0f4135d88c6d5b7c8 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+m|a;>l~rY2tZ!&ymSSv>XqcF6YG9a_l$vUqW}0efZk}pjY@U>6 zXklSsZj_Q}Vm!Hy@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WR07S@yi delta 1486 zcmZo@W@~6>+u+M+Xku)VWNcAjqHk`VYLsMQnQEA3X>Md;X=rGgXqaMYWMpV)nVe{D zWNc^&RBM=;G`WuPFd4c&s2Ocu!nBHoJgw7L)H3oat@)* zCcM0?WZCR8*+GhR^KKylcJj1uc94o7CyqX-fo$g3EGn~#i*%bee^5I?o~>@1^)+|* zlWyZ=sDme`?+hkW_kxqMn|*e*kr&M_lNX#++MK!nCVAe5Xuo+dnTc%2D{a1fB$X1| z&mW5+)Ar2^PKvOR>F^1Axi%YLI6y`s14lVXd(rK7L-K5&CdSCRy_lELluYZv`jsRY l)AY!*fBFGtMz-zD?u?lnlo;^bpD|9CECYErUr&-NvWx(X{M=$=H{se#^yP|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D;ZACd delta 2066 zcmZ4ggKhl}whiu#h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNs}uWcag4Zdf+Zb{mqk@wu_Lb*Lw0+@e(q$7BVyHPBu{0-n>cTJsbJ@ z4L0j5WRVeA)1meoY*trV%|xdCn+;S?P-J(TdLX%W1H;Z>bE?)FiuBLdEny+k?_m2E z8l_O=|H&pBDRTcM^A?Kie`2|pBK!4idnmHs)BXcR_8)g*WF= zxBR2X89-B3$x`5q$$uTSr*EiaWPt?Bt?7&k6yz=zm~rge`{puEk|Et;+ksW{Jw^Z( Cb0n+) diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 7793b90f30b57d94171c6752cbe7d9c8433fa120..6575994705135143cf9bac12199d1795d792104c 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#61Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK cg@L(IN}`GJ<`%|wGPF&ez$m&oklB+P0Od0z2><{9 delta 121 zcmbOwJ4<#$Fr%S~u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= bp(RkQVQSLm7RGimv`wDCD7rb2*^?Upr*$8z diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 552456de6993c96e8d421adff2ad4f00ee119f83..547e21cd46ce02a7d279693c106822bf831a22e0 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tURYtM<}1tKntw#)`fJ&oUt4nYt&GCP{bb0 zKx?F3OiTq`Ad4RFwea8KaDT>oe=I3i7mfW5cL}IG!UI|I~^ceS#b<2ww7ygao7b?tZ-MqLMAl%lTQ z=`qwbG8;!-Epwfy>zY^PsOyh;cx;!)v$5S=Cl=mJI-zAzC$z6EZRSyWctD9G3t4iF zw9>1Dv&@@vrH<9`{x&6@vfGtYz-IkV!O^WGHkgk=Ufx<>m8)d)n3b)fXjJjom!fjS z&a8BHTYwn-;#$&K!I=DuYVYvts&eWeMPHWNIlnl5(3e;BYiPT*_8cUJiSU z2cglGT;|chAWn>HT;IjgXtb26*qy45ND-1E*MN&fvQc*e6C~N5UYf6GVW783zIDG_ z%vUV=M(!eOfCYgwPr{9Ss*7o~wu3o=ftykwsSvaQu|LmJchl8=HUX?~o`kuC?eu<- zHDm(zf4&!+>Ei`9pf5oopRChtsM5Rw$t(uI>}%_yI(Kax~K$On6qv-Td z5UW%~OkZe5U1vuKMb})OK+*14D}V}T{3n3PMv92LH|!`{d-DT;ir{V7(SGMO;F!+y z^u2><7e((MM_tc6It#c8{c$EXO(SBS-T{v3BdU2aispG`ay#nU`7DaM_P;1aT?11i zsH-uPKwT}fU8w7-SLLYdk2!d3mnU+t-CQT;-%PlmWl<-zuPtrnQF^#vNgxYZa*eb+ zphUCHn{uU&)$ranC4+L>m6O0`{ZGMpN=dFWAA`KSwY(}%$>DJuTS2jy;&&`Y<*2m8@sm=(CL_f!fH_(sCr_He|x#Xne4gt)%>1_7)F9 zqpNw$uYo~yjA`7xlUZrFl&RRAsy3tuNs;To#Uk0LJAet2YR>@8)w3wj+a&*Wzgx_o zSn40Sn{3Uj6{vX%Zse2QOrzDE%mobGv;s+mRyz>;^K5k&UF&7zzzXLnm`m6}@B3Lp z7GVG9d9jf`USxglMJN=IZHf(4npYs1MIV@bExmN9O~@qvn>d$=JLuC|HGrNU$>&+_ Q7W0YAaaBh0H6FMA1^{tnng9R* diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 06e949c8ca11c84bd5a332ad60a8712beab76070..50802bcc0516520be133940813da64e9dc50035a 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt62+ZSS}7rsKWbVpCVCoH@*3A#Zw~-UR55(g(t4bvslI2*Z&A+{K7y-vmhUfqQ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index fc3256396ea0392edbcfa148f05a792efc01ecf1..868715fe0d0d02d7677f23ee2f13a585dd9d4a46 100644 GIT binary patch delta 525 zcmdmUpK;H9#tq(#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt0_BR~nJ5OMh}8x6I@oW`oI*Z2XfqG4+sX#O5Amejdq#FcIHO^9Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK fg@L(IN}`GJ<_^YMMkA87=}(@(BDUF=xt<#UIP4_R delta 122 zcmX>jdq#FcIHRG7u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= ep(RkQVQSLm4#rwWBa*f0PoBUcw%M1to*Mx6!60)0 diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index c3d9857ff1a35f7e3b4b92d700d6c26829cf5303..3da0423784c09ed903ce15552bc81f8d26955c11 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-ALUG%2 delta 707 zcmX>!f%(t`<_+$Qh9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNs}uWACjRErUr&-NvWx(X{M=$=H{se#^yikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20gtXce*gdg delta 1026 zcmbO`n`Q27mJPm)h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt5dsUy-hB`bBO=|III$9GS?|8$Ed|Yaw}BeJ1;J@lXCBD7^V7n<6V^ zW{7X@_RuRlgiT>)gI&X6I=Zgw#ZoA~cPKo~LTdszr>)#Gc Hi)R=Cb|o2) diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index b6470322b8c396aefc349acf28aecd15026c9277..7e487f3b736715a9306368e4b64ca8bd67562d01 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yn?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dgp$m+1fi delta 483 zcmX?gh4IuC#tq(#h9<@)NyZihCi>>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt0_B|C6EXE_>`|PUgidWNE!cmaeGD34E%X(>e3VvovaR0^bg1GHq_) g7TUa3XfZkAdzU?GGD!PZk+@*8Y|q^MHY1i104S!0aR2}S diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 900839f52be23433bc8fc2b316034c197934c508..172d9bb105c8d09c22960589b3a7d67f75a4bea7 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BBWkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK fg@L(IN}`GJ<{6CZ8I4HRrayTfi`?ev%*VL_Wuzt% delta 122 zcmca7cTa9ZI-{Y9u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= ep(RkQVQSLm8I0>0jY!s}KY1UE+~(=b$GHI`h#|88 diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 06822659f857204dd7b922259fa033d7ef914c86..4d4ce6605e4262d48dcfef5965128ec3e360c19a 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgtL#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1ORbF*g*gQ delta 699 zcmZp_#@v35d4oHnp^33clCedBiN3jcs!@`KWvXGCrMZ!XrJErUr&-NvWx(X{M=$=H{se#^y5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c zM#hGgK(&UcNt^2!naI($k!cMR>9$SY$P_=_-;|MO@=w-6vb4uc*1yU>nO9VJvm|>A zD@8_#Z`R;FK!)Feo`AVReDiGnx#Wcd%m|6iZ-iPYaK&a`(b<%`AV#8wnf##KTp}}z z5)Z7B6HX!1_JmgP&56xLWZJ$tp*6CYOq)A@2yKq|sYs^HlR?@gelG`QLJ~79C<|=| IW}#X}07woP?f?J) diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index f9884755caba25c17f12ec7e8e2433053244e165..a03c210d2b4e5224f51ddcf62ec3467d85caddba 100644 GIT binary patch delta 379263 zcmb?^b$C=qxc5CP+1Nxo731=&DtdqAFJH)-$?VwWz8UdL&k=IQw!Bxu;QH zJ?@NEK74q}(9t8J`sJDJgG4Q>)u>#tMszhtxhV8+Zlb=eJA=11j}13BS2?7*`n_=I&j#~etnV#^ZR;QlmT9A4^AA= zm;chs#GmUE23|Z)GlJNZkP7^q9%imQa87iW=Nps>;K#ay!R?fgFp!fH;w#EDgJsK} z2J;2wWPGbmk;osFd<0j31ACf<@&(~$l5+;*-M;If*R;s59m#+3uN@}HLD6UvsuaiY@A%?$J^ z+_O)=p-Cu5s(@un>{U?TWxbNQSH@X(myo3q((R;X?H^ zdJ}s`U^i*J@xy=L#mWEP+4|3zt`t!P6y6S%a&v{i`X-))ghL$=M;1o7h-p3Ec$jA4 z6U$bX5@+MAbOm^WJ+f!wAY|vSG)+!#+zNK4fq`TW0SDGR4?(e4pFa?8;=T=tP+lEj z11a0a$@rHEo=_y_Afte11fY^^cAHRq{WG&%VD|5gLunwOb~K3(CVdZDK1?%c|B)AT zyupzgB|-^`!xXh}gDr8--N+IsAZz)|W?^B;D;Rogb0<()y6?~c!Dw|N9D+<&hLitT@M}7l@YWAQ5p_UPN25v*(VYT5^77CDTKO?sI+Oa!!-o*BKgthz*O?% zPC{va%O=zrLf!lf2(^z;lbrJjb&yc)sx2f`A)y@Mxr91Tr~!s8gnB@zzBTg*bre%+ zvipew`GNcxd`O@c5o&nicEb9RP@N0%3B?oY@z`C2+CeCJ#%@9_Ce+g90=1h^L3j3& z-yRdHX#YM!{YI#?b8-6#`IL}d?+Mf@LUpKrfc!RFVC{c|Q0oZwY5h?`ohDTB34!{R zP{$t?lHWEEs?Lh@gnCD)jl~xTwV6<}(t2JZGWqQ$p{g~yLa6zK zicJ!zPlR&Kx<-CmL8$8&ZW8Jap(Zc7MW|PVYIOJxq5dLN%)K;$JW0q-ogb1P^9j|E zdqk+^gnF}6pl%RKeo>&-5bE!vj|t~ILQR?Zlu&;Y%Bg=wsAq&qs4P&c3AL%(^EC3~ zF+yg^UJ~jBp%$bH)Dl7+J|a+C2vz^0Ks_SVn2B@6c<@?Fs2jQk5=^}z)T9Mtd@%Jh zp#o>zC)5=}t(nqNmWF?PNXV*FFKRILl2C_N3DkN*<%A5@;@^%FDs4!kAWXd{)WAuH zbeNh$sPH|5gE6(AQ2ho}*JJ81p@x>17%;V!P)kMo3>j&NEFk0^2O<&m3!#3C4>w|J zBca}!-w|pLp}1Q4Cj46tq5AI~WyREULe+U8Q0EBMqtXc*{_O&x4*C2~Sxn6(RK|)L ztQCYCI4!36TaMh1z%xkGGClsg&#gVgdac5#0P^AzDl-=&l;fss;D?M??QuNW+EN^TA|9ftI{-<%ae`?3C;Oi>zjD$fV z_}I}7kgGE*dH2eC{3)Z&j!uFfZA#Uj0G@aMLI2g-Z`lXhdC`Y+PG} zRG(Lk_u+rZ4B*|FHHk5hhzdNH{>#YN{#b+QGvfJ!ne~x+#iXx#X%T`!D{L&y57}tp zI(boLSsK1aR$Z(#w~{cg&Zo|!S*S66i6r*fCQuF}sf&p|IWd~U1^PsykS9}i4?=*sUoBXXh^q~59IgH5%Q zuRd=scZNSbZyvXgw2Pk?0AecD_QSs(B=X|46f&xYUsf`noUsIG!!*wVayrGT___1D z|0|O#&ELp7vUSKl=lKWQs`76(srb*^ba*}Q%O9Mk;d2&*@^2TEM+^^0AIMq!nyoa2 zBNkeCtT-M6@)nx;(9OO7?c$^S%|#A=ZH7{T=X@+rgfKK*Yo_HLo27ieMP?aZ0ASVe zX!Osq1grLuAGBSMMi(WBu{PK6LBP$qFan>jB!Kr{TpCHnqcp%QHZGY&Tk1$Pe`1M} zA2v6J&srSy5B>?m42XY+hoA4c*u^d8r!98yDWM8}=2CzD!qzCnv728wvMPUQS$Y26 z#yj;YL*O6A= z)}7|RtPJOV<-=EnaT`cGJTykGm4f*B-Tbko(9m81ISA|gjxc=Vy?3jt@$U6;=*P|U z$0`cEG{H{#M><;9*5F=~?*CDVa}<01$=b+&NqUp8mgemn93Z87vW(Zw)$kD;$f+0^ ze{db{GoH^`--?@0+<ggf3@7m7q27ZIrkL{&n0--gDt*veM^4v zhDtb9c-w|>6!3Tngj@fw05kFxHLTg?CRyGwuQI=Np&8N7Pp^d0^}!9UzR6yy}}xG;i$zVidlGZZx%v2%pFVnoV-UPv;$9>YDQlAa3pY5Xcjb&V!J3Uxr0y4=h^+B*{X zzgn)~pX?jSC+^Dt8~QF)@cs5@Amz96g9^s+&ky+W3yvm%!r}R9e!zir5O+3T!M{I{ z!EMYNb?pod;aL9R>2V;g+zmOO zR5%Eu{L)%@6p8} z+GSU2TEubNL39gc1OE7(Z45AiI4hny z!Tfqn5?hqp&W0??Tc-57!L3O=R@AbIhhu8IlVyzjV0jBrT7N^l{^y$~?LLJ8NC z5ejBWxfvW02u8@btF&lRaF7;n`+AG({kgk>@L;KmW4I~=P*h;|RDuc(cT7sU1$XpZ z5~K74%FoEHq*4`FxUD6Ds%+y1Q=9H^aET>>y5{6sPz%;^aUZFGjY@NyN`ktp47W!R z5Kb<~t?_hFp8G}04jT+-RpdI#0dTo>@Jmf@HWhYR9ga2Nkz;}ZLY2eZ7_K>$So1yi zBP|Z7&#f2S55s=s_Dh5S{20ew6#9n6Ex95gf8mJ^++E60(3M-qswgPf@x%|<2i)<8 zfjzn25<%U}WbS|uqv^gP0)!|7`wP4Jh#9gG?iH4|;Xu{;i4Z;^^j@YikJ#gbVHV*`XOhb?z=iv+ji@8_bZ+hPxM z&8QwZzj1LwG5?gO1QX7Biv<_BCzN$h5jTZ~KvAv{uDq8xEazyJdC zfwxMFno#*`M~akGtIicgjcIX5RnZr!%5SwqD`?n^ttYxc8TvL79cA`snbkqGidjDb`>cy7j^=FBZlYbZXy_@@Q^{kJMUhms^ns%5v^ZdxsE{(m zjTS}A|GSMLnoBBjU`~|^4MF$>QSN_75Efu#RzB5`6%WjwC|b_4j!T5%81Uk$$PS`@ zlBnS2$)d+1kTSi38lIabx}y||M;C~8azb(TLXn6vtXzz`6l&Wp6}_jmU6*?q2Co#| zEG;l}J1NShV2Z0Eg-ob*-4-382!GxYoutJ}_e4su!0_&&XbOvqJzD+DU|7_)8CbVs zXfTLhAlAa@=c28GG~mrE(Zmt}+FN4TN`%^}EyPu5v9OKUOmpN@J8>sk+o!X51I>m~N#e0mp;=zCxE%$v3=n^zi4mS6 zJ|qeQ7X{ckPW+fMY)ccLrbRwOTtFFmOcZBO!QM?4 zPo*Mc&G6QSWQosGUddeX&n!-*5lliw4V2GBUBJ)t#a0HFAf(<9W#$^eYCyhBJcA7; z1y)%uenxYs(kgK;R+#Tri+c$60bACIXS2fGSufs5rCGL-U7B^9#5yX?nJr?#Dvc~p zj9TNF036F_kp?19dCYQgmv|PdAU=DrO_~4|4v2rD z#pegbtEsB1j))ijcR}Hxqi8Vx@9l_WaKmx&bgE#(Q)0#`D+P`}EzV>d#ZzEzp}0Sl zA>y2PE~_ft&x`$;?V!5kozZq*VR3_C&i6&)wahZa+z>CNc6eDVUczdJ$lKzB%)Xd& zS3Hc$V0ggpi>437hnZ#A`dGY%%8>j_ynxjXE1!$=n0@i#m3Rb|A^i=z9k#y}pJcW} z$Oo?-ivDDe$>2}oCX5Te7C<&^m^oh}NwJZIAINt~w4k7;*aWwRNOse4E47q_ar$Zj z`pz7t1Ov)R{NYcfC4i2JWy2(gY4J;02|D#b_5>ZvOVo6=GOm*37-eW%Me++>HE6$+ zv=0z?$2F4Nk_*LwEj)t4nr$RUX|1-aqyhzN(^K+01*_g$(wO!(H(64i7Ju(2L3?B( zL(TxnXqK}cp2c7!$f+PVz%RojUj*a9z|oR(bV2ueiX@AwGIyqACtXc-;UyEPq;Gzf zyz&tQdAH1Kfx;D%QdBG128oplU3rt_DJ@pmB5}}S_dLmWw3xeH@{Vc+q2vUu<#$Pv zsAP(L5;d(YS0J&`jyoKY)S!~BIxbPr;{MYT1#NcatmG`!V)rG9k=EWTl5C}5Yp+Yr z)7lxgB!5yF=HHRjQV6=;e=2!L5uW`a@l2HK-bhB!X3-xc8+`@d7b58`if~IJeMyVA zeWaTy?{Z)1L0UV^Uz$SYeW#MTC_~vGsb_!rMkl>Md5iSYd6YNZBK?VR+1UzCc1R~s z?^()7YxxUOCs&fTvk1j=@zTGkVQ#gQ?qWGrajToO3)mOkO$!{c-zUR09i*H@*r)C7 zB7MyuIz))asCjnxlzLKaUT^6*Y7N}1*tPfN@Y~)wPU3^ zX2hwD6N6y8pQN5BK0VPZ|Juo3`Kx3~1E~D1W=pLsDUB9(allq{_)M5KUs_fw7<}Ji zY59_X1%SZkgM47>O6h!R|I%x{@}o1qb*TNDZ<2PW^8cDAol7GudAGEfGIT7E{=s5H zq*Zf}bGdvVC?3$n4;1Ljso=*W(!K^kzfm`(tr+K23Y#nIrG))%OS@A+i|?*8$MgU_Yxx`% zrZ-fg)7!w>J{b&-gb1}7^;~j8A9PiSOdD+)`*fi0IuPe$X1TOS!mYU8FhAI$N z1PhaWQhd25Fm{;FIEJAM5W!Tt8}snwD4&WfvFbsHgzLuoJfa?4k?J#p#%Anz9|?`v zHWPhnFsKa=O!J9kY3I!Hxk97MZ>|rzGD@OrVYW{f8eP7Ne12e9>p`S*aw=OG3<)0UEX%ob2a_FgYYsf&@NP${$P%QjKFwr(JsPm7-$%C^vAL1Wnty55-D z+{@drrI+_rD=%+e8`*ivJHNA+w{2GsZ+@be^ehb z$7_a~3%tC4{_N#lvB=Atv_!U*;+9$E<$bW)%bT^<%iChTtbp>mws?7OZ}sv{-{$3Q znlHOfr7$SA4o1};68tO1u811k$ZBX zKr8p;LLZ&nlMCha^0w3gyiHz_;ero7H6dJQfo)35s~EWZAofsbLvW#vd@+Nb_;we# zGe-V_WfFSTMIHfF-^&9<+>Y&q0;}?Nj9Q|GWHvV5AL_C$j`U zX*^YNos!8?6?3Lv+IBxN2Goren=k`d~s5K%^#^VC`1wji?7Jbu#7|mv&(I% z5>C1F;z;1AuP}k7 zpA;t8wt-@Yj9LM#{z0Jy@xG|Kd7Pp)%hd1Z6+%^%F%J_EQQ#}5Mx{N74>1cb&3eoso>ZFc?u1KV=?Vix?)oXvqgEAv-)f9G5D73G_Pz`t|M&o@!B-6mI>}YAwbHKw z2NvpmEug?OxISDHWfTU*f*KR$t=2r4C6JKyQpNY85f4#Hv3wUMtcN;#O^+V?RwZtE_-=Wz~{P4F$m$G;MN_u}Ku?!H^_ zv2T*^#*%2MhqLoz|J z&h^i3KN2jLO8XsQ*%)l8;y>JbaiqNnZV&fcjm^+0!tWKfTC-Yym2vP*XyQkLPZj6) z1c$(=3CRzkC?A#XWnK(C96UJ?kd< zwO|=UF%m#XVPJnqHy;sbUZ@+w%YG3 zw%^Zd{d}>1R&DZgV0#_O_q)yz0N~&L*}YHjPqzZUBfU z)%~wykJPX0fA0UnBT6 z;+1~#CmE!e;7>B>=0tyzK}#kJ$IerQqh-23y0Ua1j>z&K$>1SC;y>rvb`#(~`kLX4 z`Tk?o9*^19`+v`51DsO?vy{?L3IEvS{|OIHFSZIU`hFLai*T@ifrsEN|yi4EQ+0G8V>Bku&n!1-4K;#oo#HwNvm2e91RhT8TL?!;blBVenT zkAI^EiMIn7&YD65HJD*e0;pYc=z0_|oMll(8k?U4YzP2NJBW1f+J}INN~{GOEK@F$ zf~dos208+iM>taXUa73)OG@7vl~;tiQfB2yIjP(1QXUfO#)m4?MWimMjIxf%y0u^pszQ8JvO1_&TQ2+3Jpl{3&& zBZDK=pnP{F%gIuN)f;x|p}fPg8$*p7XOC0L!GgF7S}^Y6NMCrfuX23=_!tzSgG)v! zlhN}^SUBTYWj_YzVf_4Y%4n9Pp|UB#wPQ*(7;sKy$nNufIgq84SAa3&mA|0}Xpm&k zI7Nw``yj=4Q^a>6c>ntVDq=icS53q zcAuC6gW|d2l)ur?#-NP{VEddvbZas3jY%BHlBN_%535N6#U&91UiAsY&u!yjx{D%^ zAzgt-D>%b9utJGs=^79?kIEud1+vU%URi3Y1E-ZpmZYG--c*(w!GSDSLcOy183IqU z@vq709p-{u(d0+=1vxOB{OHWdc)5 zkWWw*7Fb9ZLa)LDSq2)fflLvB*Gd#P+0lWmsDb{f$Sg~K<-pS{r$ewFz)`4_fg?W# zR)iC31TJKCw*WJxVi!~P^4?|P{qF+Xvs~yPmi;jhy+5E?pcJ0?G4K?tK-mZdB9u)m z%Wh(rrA10Vu(@5J5Ag44ihxtv1m>^`127guSf5$W-V$k4-2?r>fPAM3#w7*5@DrBJ zEe8cMT@C(<`23(X0Cpc5xFC?^77UmWc!I8GA59Dt>4n-)ivnvU3B|@D)h)Un{!XSk zY7}aNoT@URLb2%&szVHS9YG{hWFS!s?C7l0f`rO}=&_M5Dy9d65Lo;CL{%7-v__ID zlCHZ)_f_qo3O4AkLN`LCU!culAusu*(;JHPrJvxSA8bLRK{&}iGM!A{*)K~#zDSqe`*WK-< z;NtD7pMx0$AvqHB24OWjhyF{?57UAdQK2$;^Q7u0v5XCA89~P- zRW6OpTbEV)e1*u&y`x%&UTJ}YwA&L^H-^k2b0|cb>=C2})!%#4tM&&~W=Z5Xf`oaI zJ}~Jom4@cY6i)3)uhwF91g)K`P;a7{)-q7No8|lgFvqs0q#ys9saRio#sh!slLSC=b^zEbcaUTp@ds_Gt~ za$}@x!;atR`r=1*c|lF`D^asc6ZI^*c>5fuW?ctjg{2VnUO*KrXz5jOT5GR@n)d3; z%dq`v z1Bw5fRCQOWVD3iaku!+7V<)IDGDj6c^oL6)sWa$M7Cl>ikLlqN&q+|Yc9A-Z<8tu{ zUUZeU0VjnWm#E8#vvb<3!Q5qPhVzCHo%C%&0N~73>hn_IY}d^SLd)*gfZ4yO8DH<` z27x=D8bIZ8`y*iS2K8+*D16ury`?5s-BTnK8|SIF`3l9reQNY^1;XIGqIOe;Hdob7 zTAXrS-BKbjJiVnp86Xsoy--i2xLseXUsHzeAJiW>fuY}@>Trs%?vr}5TBwaxYF5!^ z@6{UgEM$Sby9PeiYJQMX2BYSNnY&G1a0q%;))X*IoyewcpxpD+0_RuJY!`unzcx|B zF4Z+Nq(bpiZ4DYpN$rssjoS}&8>eXqDm2kB-MNZ8LtnI!!ta`DcKC9C!nbWTLnY{# z+)4An!CewmSwBv*i&d4V15ZuxT&iYMFsR;szZ%Y&r>P(oiWlZ<=F;NmMVbhaP`h)9 zrW`H4&C%4M#ri8WiL?k;Y0z9xz(%goKw2BKUbBpX{jpI~gVxr{)eNA;JzKra#%BVvSRT{6Ze!+Id?u zhSt}=r+GuU8$Z&_q_vNpXztTu@pBD&_<>+7eW}?-i#`7EcCCD)Swd^~zSS(I#lG(~ z^*B#|hd*c-zT+VdNoHV*fUo=yt_1!J|oAi$)R!9IGeCp=aewdfgQ0x{jJ4f=)| z?z3pka^c6vZmlQe%9qi4Lhko+T2IKSBfOYRqr56CuAud}yGmtkU9S~pRM9q~-9D(Q z-As#Xs%ux%VwalQ+8%CzxC7w6@3i%)vO#sU%cwPu)YW?8R9#=&fijG3p!I}ztwvf; za9WyZJ;C`g&TGU0EwrAjC~oC#wycfTlNEj1Ydv9T>g??;sjIiQ!bESg+1<69s0{Hv zwI1)j=%c0Hg=PAAZ8LI!7F~=XrhhtA+x{EVgF2&-pZX5>igtaZHh}^+8>8*)VTQ=5 z{?tX+CwN`tnBsNOuhYFQlFanFC??A*M%El}C!%>?MGj?q^`E}LYwcQ#z4}jC>ec`C zGH2}KgFF$sOB=MGb}>yC zbetBG^g#z`v8pkse}K?zd#RwmXzhVALFi>xMD(3ygLc#6#PFbBX|ZEO5PB$!Fj%94 z&}>eMaTS8j>V#r+!=Nj^LebnZ$TJLZt%E`Wh1yCzg3w!uNV9dlg2K?w9nU^@Qi41Q zyJB$AcG^Xsp+T*web0>c>XtP&XaGeBOb@z75k5@~a?xTGA7rEP+jU`3Ps)37Nze+F z(A%`lUa%jx1ihnfX^|g9$hbsT$o_S{tm>-KMn)y$(I4OXOW+)^U_!r&V`{GHkT#EP8>VsEY0yb=J{X9l9bz zn#I-Ay`;SHKj_eV&PZ*ohPvaF*U(bembxXqz0PCb_nmY@Y0!@Cp^Ktmdwc58+bamd zsNOpC`eIT{>Zcn=E%|z=?k-jHVY==kZT81_T^VZMa#=c$yVvu&ebmRJ7VEB4++Is{ z!_@-r^IWfWwrtgXqG0>B>pb)7c&OV(tG=3L-FwRW`vsk6){MBUJ5PDFS9NGLO2DMobp^C|@rEv*%24%=ZVpwx z=(#SFHXHFu7f(%n`7hm2YO~H?bVbx=4dub7C|D`q;C0mM#p>X`)Hn;q|(v?QfoZx3vh8~-O zV`vxKVQ?fJ<=!3--cA+TeLDCJWhl5De3@#z?pE-odf@Q516B~9|C1TcDy5gOoSnfd zeqMD^3ZI4RcS^Wja80znt{5F3SJJP<$63|%wMFQ7x`rM-yuStV^rP_cSvR5mrXE5+!+Ys-al6ueg?f{=ZX3ynEo_b{|+BtPt&7Y zWp}}?nfk-{IAW#%?#$9}!gS$m{YHFD<@K%5Q2>1~SKkmfjsp56xaTuJ>#Jc}zF4qe zyQTW8n69*3e;NNCuv)OdPiyrZas7?;`WPuX+H>`%G5GT>dh}G>E@4f&Z-?F&{0;Ro zI3!PB4zn-auD^%bCPKa2!v+zXSdJKyd!qCxYrfJQsp$$4h~4)E|PgW8VtS{^NsySL-hU zZ|&a#U!O1feHg!t$UsbeRBFJc&X*fVtj7Bqdi$WCcd871u+(H#k1YseHHO}};rbv$ z3O<_khW_7hfGC4O1~(ZDf5|YL!$6YbnaemcW-$$3T)Ip{{`>MXetUBq_Ew6!6?X3VipP z2zVRg3?vDJKfX!0Kop>_%slVZcoXdt!ha1+5 zxNOk8`%pdHG|Eto;XEWieT)_Sy{nlX#B5i|z|=+P=&oDe=u)wY9hGt+>hRFv^J`^7Wea0JXEa&JwFm^EAZ0Z6WlMF2P(jt@|!u^By zCK*%`ko!xT8u&~%tpD$dL4?(fQImeKc&1^TNa%jRYy-=!C#d^=@aH*(rz|HlNn_VM z!!#lN+K6T+R9ks=3gSYHyYBZNZU6XSnm7y7vPgzLlL$8 z#clr=fd2W00@lEQC@_2^V9f3`KQJal;tTs07|@o7mjjKc*g7QLbOosQ484_8I4G>HKymZE3VY!&& z5yT&)AAO<%es7UZzn(LEVNDVw428P!&X5dGUoezrxeA2D>IG+9H=wg|-Y5c>uNkx; ztH@}AQN?Jo7vd@FHcLD~)B)4&WT;(#F#Lf*4eH2@DtP#w;S}R=&=m}PWblJ1iX4n_ zC?Eh5LCv2SdND>&SJ?2CA%rn_x`JkJ4QhzvhFJ@OfWjq*F;dz9hsvmc$}a}XKL?#U zVxwo!IVm+V4mtuhK-hA4-pAOPQOSS89FrT{3qv)m=x^-FX!te|DP5@~;ut{MF+)$- zUSnj99HNyUKx2;$rWlMOR#kxN_!AQzduo8D7UKuDv8RoILWZ4qoAG-h zmhlQlw1UxfjOZf=SV0&bYeXlGN%2EnBlJmNHXwVCg9eAUh zwf^hHLVA#xGIF#hFRIXt=8xRgSTU1nr??g2xA_(ur} zxOcg+KFg^ygwPdCi!{Z-TkDL?Snlsa2(7@&Ek-}Mf2;8fOVE1}075`F@I^I8mnfPA zR)ERdjYky>7DoP!0|oaH*59X%a=355u~_ksRYlSPBVAP#A2ZgY*diH~5o*U@R|tc7!Rrj0bVS{O{zSbg|SFG@JnXd1w*{Wn+)lL=lc z!~ue$a+^vEXS#$;x?(jAqS|(Jm{>k5@eOt)TA`#K!G-T#GUdmKrbt9pn zjA!nhWuu_aO07a#;B=-$f2@;I?4#)IJ^i>Vd|54Q1UO}+Ld z%9>z+5QE7wZFYx}WsU#^9i2@-(e%mdTB7v%hiqITdkR4mw9iW7I}6B)G&O<;dz&&# zk~rvv9AobW;8~<1h^lGwf%c&$_Nfsm^%W33V=~-yfkilU#=RLtmq9j5I3V1@c_lBp z61XzS#CTb$G|1JN{XyPj(>sQ#>+DNYCs<{wDM-Wt_~UfbBqSF6eU_;V%bFj9&D&$K z1IvAMX=Xu=Nn0~>RpikADfqANsF9w^pz7E@0ycgm(8XPIG)Js zKJD8~Bak-%$TzXP$`q+e@Re{UG_7DsV-JEI1fDW|FT8JJ$}UrPWH$J8uL-?~4#3bu zCJ7F?vcH;?zUWx}jH#Rg9g{8#$Jw_`=UL7HdHQBqMR=SX1lvC_JwQ@|*k`7Vj84wZ z6U*Sr=cZ2#7KBKWUD!IAuTAI`NdUHbYdV6D=JzHMmdp0Zw7Dd5jsM%k^prZ1D-|oY zy{{R)ybS=S*qmPyIc7-AOi!qLQ z!@>f!`3R#$K>QD3au}>NH)A=Q<(0$~Y<_}G;$t))V3dT!?l_bAHG@guGK<-cWA}i~ zj9%Xbz|Su8_L9gU4K?>=7_#BAvgSM3BNHRcEV+W3Pa>g^y`TYR)+Xk3t_@HCmVP-MQNlDxb z$Q7Fd;LCC5U0CSZ<&8R6kYPT-Dl~xu2u>zEcKZE9vl6euT1+*c#G>1$n=50HThBJT z@zgmw+gzV9AbW!>qgf6U7MWWz2Lwg{2tfsQ6xP?_hoto|Yl*oo9&<=sKgcn^k|8;- ztTl(TtdL3AwlYrMI;v6P%E59?xj|-VpWE z3ma9w-+Ue${rVyEJZ9tOoPA=0VaLsLyun;}%DfbZVai!^J!aThSIq|S8A!DtWx$9Q z;P@r;S&yxAFPnd0)*a#Q!@@PYX>QH96739bJ~5kNll#KB#$D^G1C#HWHG*ey9+|hW z#2K2)Izt59AA6?hEAuk!nHO)(zv6V*{@#2LA4h&PLq@4PZQo-F<-l!KySkw8iP{H* zi7d+*#xrzNUupgfdUn37*zyaD8@5!m&I0fH2dUsH9}BtiFe*f-OpoDz zBbN=vR|ZbyYgo`@fy7jSwJd8H(&1l#X|*jH8k@^w zElgjR#E1|X{~dZ!B#!Z3y)EebxTLtWpJf0o+6Gy^qs6|%EF)?0%_z$WS}aVppjQHt zW+TU2X49f+ie(hK=Mdwrf94Qc=@;medO!%ymmS`xzO@}+2sVxbj}h)MXz(o z@)><`4%?yG6-zXAS=KcRdb*#~hTO8?&)H*!hIcLBp-*<<;=D)RW-FgqDpKBuFDyFB zpnPjN#PVJsqH)0==;{A2l`KIJy*wgHOw;=;1U{j8IyKP{V9hTZges z@E&E&AjfX?0aq8c3W9&@ttfG@qrpytN8{#ZYp~E47-_Sz+&|*&3Zkyu)L$1|UTqeJ zTF0SJtYP1VmAAHKm|G$0q9(^J1h2L=8wR>nwlbd5ECW(rKSd94bRDVyG5O6@uvHan zZ-y-qADwE3@|xBpj#m{);GplU!7^^CaMtzA_tp&zV;q|D%Y(up~g$X-HWeJU!exl6s@!3A6PDg?h))fk&c>BB+y%CQL zU;8dvWqv~O;w@{kOei*ggr-=bSm%kgxl|}Fducs}E+XSmZ_In^5z5fwqjfngO8>H= zcSsS2lb@{HXm7K9Z0H$lQaj(zW@8x3g_ugv*c@QTEL8+ts*jA3ZEBf^}KvE5Qp1XzNqNzWJ|>#0Z_s^sjW!oDDt016!*rBSe4a=B^)X15a8?J?O>)0v=AR)+!t7}bcaxo(A#o2Z+ zNQ6LF!=cS>8(9JeHHP5F1iK2vY(&xBpp|VMgJKZDFx@=waZ3>Vp^Hr_MMh}S-B!q8 z1mYHPk}ZH?^n$4IQ0##GWZN0mzWepF85#NpMDTtCZI?tyfO>;%=UD~#GQ_517T~Yp zwrf~`%cE=;SOu6n##WhGfZS9Y`WVYCFek%ykyU`W@wO!_BRmS;`QYXPo3Lug{-L)7 zzMNt^Ako~CpoOJka8l161N$fT88A1wE=ZYYYXE#_+D0-6>FK8|95%}q%wnpq2&r>y z#n@h5=h@DdNE8>av0QEgSQLni_6bXIZBYrO$XR0B%{Y7!*Oi6Mme~riDE5`M6D2ap z^;Ncx40}*w5U@Yd<_{tRU9;e#jW%>|%PqKNv+X#Cj$^mjnC?a=F7MhG!A3#16g;03 zHWilNEnwH(D_{rgw^e1i;z6)q{BF~L!YPg!aKmu{_P|L2HuJPCjv2OdW!Dopt4Kgx zdCi8t5p@fWx?w~272JZc#X=AMw*~tA9h;W5Cz$)(Hh^Ky5*$`|`H2z?%y$~0^1Uqy zPe5c!p7P1|l6fe>m@rOcM>n3_f_YMVYqZ>e3SavImbE(Zkwa-$W}gf*L0)Aag=Z=( zB$yazN0+Ip+Dx!nkUa@^woPvjVooF62`D@l763OG?I&^Ujot@#!QucO?HWg4n!a|n`+QJ20Cq&v$VZ*klWPgfvuT#xFi7{_eK!GHrCp=ll zzD~t9b`XTH>_n9htl!+8g5}C@Z672@$1+{)?`7!d=xIln+i$_gz3k|6I~o}J*el}t zdnxub%%3#Oz84=|qwNtW4q=Nl`$Mc(&GB}o2Wv^-JU@BY2Xx5^HG%SfIi^D8G`kWz z)|zQ2d3bMzAj^hX_RY+}8F}U|+UETkX#yRW+WW)2Y`Y8hacRDNJ~QUP!n+DkpmI)z zzbzHuo-VT=_XD#7lN*B18||wZ+(h0hzY8<~}QA+C^M@nLoi@}cOEJG?X>d(TuKf~rg>;58`?Qo!Ve-TU! zaa3ly;p?M)7D%{_W~+p9jujYD5+NX-iFAaqES8asvp`@qhZ+3kH3@ZDfX4qgEe*?$@Cn1KjbeYAsV0Z()w9po78{;>2| z2U@@v!8fT6w16*y=hGeKSQhXEHg}Rkhaxdtmpv(LDC|5{2%Evvg)pf#!;#7o9%vZu z`*m+{X1=2(%ih3?BJ2%bFLt1PP!Vju%z^d>MX>a02ihAH!Jzeyu`Fp#;K|-#&KAc? zmc4-oLD(B`ha6~cPy`1bb)daL5xjfGf%XPP@Y*E@+8Y$X)mI#7Z%_pLUv;3pK@nVb z+ky55MbP=cf%XPP=-xC3+8Y!>_Vq2{*1H;+k(1sC)ySi!JfWO_7t)QIu&5ED9R{cHc$(geYMWz zEa8ouL)P#{~V9c{99r!KUsRae~(6_i!t2r-<1c8%kI$7=o^K_?#SHE+1WLZ>r5x`L{L$%gFVwZn`#grk21z^tMB^JBb#7gyv2e z{1WfXrKT)s>D*HSY#Z#*+R3zG!8$?|j_9StBnS_6aPDRl1lI24e8}uhB!dk~x_Sk9 zl;}LbCI`TR{5M-WJ$+ zkaL9)(BShh)@a!YSB`MLV|3C^IAOH&3bn|9an8ML{@Dq2Y0fvyGQ7@k9;Y&#p1>}{ zut`pq%NY z{&kn^O-x|_k%;cl{EKrE%gT~q;q3vry9K-==&B zy4#5qt&t%v%Fw(@2zuE)sXbdGWFsxksuN<93bp&{ga`zVzC~AnTK}={o&{~A!S(*NSdo2JRuu`WO%uANDRY>1rW?oh}PU@j>{94 z|Bl`vn-~&{+%A>UO$w{`2^s9e<-rXDL-f*sJai91@(<_^)y{LvG~*M?R)*4HA(>JT z3r95ssHwbyC3nttOK_B%Y=^1x7 zgk_oe4{7d&Fg-QrL1+oG{s?gj_iGP$8nTi`mFrcBqN*iCsHIp|c;Cns27i7Va+sQG z;D?aB5(E@cGz|Lu8S<(m-lH&AKZWE|xt4z^nOsoCx$gcSh;&)(+D1iM?Bim2f62dW zA0cT4OF*=3(aJB zkbu75dHcOk%Uip+jw_YrJ#JquSXkNJ<$>yIcsOi3*i|eQ z4Bv31t98i?uRP}r0_iGzcS-E`$?#FC%Ow#Ma*lVQ)2hV3>n6FF_OxI9i@Gs^wplJE z%$nlbM_t=>x(jV=Ne^{qxayZEZOEN$i{`n|H&lr`zi=?y3vEz| zp!-(1&<2$he_7*d${JBHVUufJpdhMkpQ{F|sIZ{Gb%~0$_E#6$oD$JYr(I}sN{X6` zF0?r%#cP+m8N1?&3vEtG?WJND+MJSN+j}mwIVDBiV;9<-l489VF0?r%#qzIR!%E_& z`Vj4Crpvh#Aoft`K+ss?X4qjtw4-B6wOH%3NRTztT??#-p?1)(g}V!gle<~oOzeS* z1M$J7=;o@P!o5-qVj9WS;G@6$I79G#gKC3WO7|(20Q(9PqYW2sCMzB6P6+@fuE=$8 zgUkIzB#61El$+&R&Nui<=q%%|&azDT76x=|;Z}n#$J|EYs?OrF?jHne!Z+pJS0zMZ zSX{vkr63_CKm*rRbN`ASs6yt3X*JyFaWhh^@SPjYN~HL)mix7!DEvFdolg-C*LNSG z3=120n>B0XZKnIt{em{rHFHm8c}nwtYsPYO+gB7EV=%r#ST_+=ws9}^c(0wCJ&}yIJ-x{{plObpKYeEJRUegIflk1rLrXY15Wwxj+=u9> zICYeJeThfK{4ws|DBhJ+_b(;JgU!?3Oiw3y>^}$=Oms`7f-f&lD^X64f?YD*OfN~t z(m*t~HKn$BKHJT5Hp8RTC^(LHGhNsHicmY-eUye$@B(*k2|P6lF8$g4S4pCK6dbbH zjjp?sgsYTOLTUCcbF*AV1Yd2_e5D(Gz@12=T2rE|7zO#Y?&y*%6FNe4Y4HlnIeL#i z@gU)~u;(@k7nss^x;wC3BK!y7mr(TRYrQh5Q2(oYTFJ1w#NIQ(zJ=~XC9zUGh#6Lj z?Eg$qa@l=KCak9J-*gADEZ)Cr>VXxueelq2x4$r$z~TpP^hiEg%j|jNUQdf7p12Rt zVxwnn^yP2D;Qzw?ix5!ow^!~^AEEa1doM!KM=!#>zq|;&{`Ml2{o+Nq&xJOjGJG!! z9nP}D{Hov0`uDUzsSQP6I&IKR3v!=E1c4u2k;uEnF>Rnq8G4%&Oes@^mS|ZY4{%oy zbv2w?VxBH^P|1W>od_2$_FgxK9{7K(eRX_P$M^OpAxhkUAPJUicC*>+Zjy~|R^q;k zySoMmS|mVAae`%VD^Ab?Lvbjsp;++%MM`msQ+UsvJG-=ffB*FC_n&6i-g)kG&YU?j zXXIQ5#*_SBJp`_I*@sl86}3Zh`5aYSKLiybf7O%lDsk`EEi?r7ep$0V3=4q}nH7)8 zLY~=Xz=g^Xc3`wCy{it{WlNum`+7ojLvlzgW)s*VxCkX46Wx*$(wXZsEF%O$ZYKDf zoDc}PS@CW`NUkk9h!ZcAMKlc=kJ%Ic${Eg{iYG^hcME~dVMgw+ULg>Fvtr+YArODF zV%HHN5P!3xYE+0NHhEVZ0`WKdRX#oh;%`ZJ1ANa5b8z~c80WZuscoX?hRSxV7FCRt+ccYkEPCP%*pa*7Y*D){+IG)#;+^Avf$r%9C$}U{)zCZ}p_^w?o=uCXZGG zQnPlb4{;k6TCKEuO1PN7{`lPxKT)Uj$^DQmm}P>0;Eydm7J^x|2at{8+5lPq3{sEg zJ_~^jDAv|~FGKbrtQHU{-T5j6wJg9YcX<=Cn{$YIAF>zA;mU^))Di&WFzK(5t0ITl zgF+8sDb%$OMMe9Jg3dAYB3DC*OX$y74&|<)sK_2Ttfd3oLt*m|%)yt$dxavllqtZ> za}W*clz-?>tQ38!gg)dxsB865%yDC;)5KYyjDPUQjeH0OjIdg0gPevC-hN5EAuLybS&@-HkJO|u9s1Ihs&fd`WO9&i{%_C~PY; z8Txe%g>7Y4jPGuJuR~Akucvy2zCaF8b4l?gxr8WxNOmJRVWE}D?jtGH#rQ93Na)N; zeE6r=z6njlnhdQN8M;gC(zI-BD1^vNmXY5HMg8llzSR7E=w|k-FZG`gx|TQN*-4=n zc(tu1q4zO!S*GN|Zufl1{&BTocfxWduhJZ=qQmA{Rr+dvXa{6d_Wv4o6|M?3W5O=r zDx!!H*W9vDh`5-hyf%eG#Knp?wuVB)#fm3(g!V(u`TC2&R_gxHWtd=#F}227JI;kd zoW&@`UkZgdixt=1423w06@R!N3UL-I_I?-&aTY5^KMI97ixs=Q2!%L{6(7D1g*b~9 zSAGbEIExi8ehKBXWV*MKBo}Q7OG?o% zEAe>jO1zuYI1k}_*Y zFPBT|@CL9~Ni6MlN^RB2%xFm>dQ63v)}TLXB(R9WG*J>SfkhNnEKHQlL3(NyhXs?X zsgh5m&L534Nl>~3^93>%WwzTYaV8rTPaLT-LsA*z^OoL`^dZ;mq`^ey7S@J5$dY)H zcI_mNiIXWlPb&jGW0LS4?Zh03lLM((*~Eu5D3IJhO#K8v3VE|XAU(TUU zOUY6khrR@0;#ii3WvwLZFb+*1BcRl!UY#Uo9mspXrUCR-H%S~O^0R^w0CSCuE8*Y;c>ar0#wSf$t?5n+jLvjh{SGgNjwd({>RDonQ`kdIp=KE%DZ zpC2)*@{aXK!q`i|^EIlDf;ng0U zl>}nE$G;dthwYzm!lqtI_;G-t*Ck8s8BY>^OM*F94cr#fvI+?%+J}4a5*=^;7xyHX zEk5@8eh(z5K%Z51dnADaWkRcwtB)m^O-}~X?x_S7>9fk6Ur2u993uaeU_NigV79)N zpdx)%Irp6eKKsh_aO;C)EzVIcrp-S|j*3k>TNPG@MOkkbc8VLuM8`19nPVoCvvU|K z+K0-cNzhG+dub;~y*$}HY%3o^%syerP9oyb{k~y!k;64dSP~F+nYYvUYGIfw8dm8@ zyBR@2v`Y0b)OTq91#_cj7_1aA`&kzJzu={;6NXxe_!qCE^}@DrUK2yH7Afjp)R%8q zm?|f6WLi=h!>W?Shw2ZZdsD*(qG9%bcMrB6 zTh*>k%BzOYr7KKf8fS5W^So(T7TVk`uzY9Rv1QnOKBj(ZAJz~#BOFaWkGtnldZG?| zFz|jYKbq7n3_gCvW@9sYgbn9oeQ=*J)OIY>Dt`f7Bfcny@2vL?gFu4K3QqSAgFu26 z*B6DoK^qaYJ_Mz39hbs&+(67t+!vd}#HVW`|&@QUf;9o*=pVUrOvP6`OleCp*&!yxEqe7@Ni20?%E+a|uW z=xEpu-XPlJVGvNW2OLg@LD0{NaleE?(9eoHE`>qR&x(Vtg+b8IiYqF@An0esslSEE z(MDPEUIHsW5waTM_1jyI!d{}Wz&xD9JGgINguO?@eE#%DWg#g~4;t`3OoDV(eJI43 zA$E2ziCrb>UBq;Ng}dH5sUt0Lka{@Sy`-&Oq^N~qpElASRPH8yj#(HGDif$2Oip)@ zwjl}Cq<-YNqYUFR0cyIquNvwlU0(@QbHP`78KD{gno9@zOOIn52~_@ue69##=ex=C zWi2XGubR@GjzEWHF1uMr`q>`-aihKzlPA;y4+)b)rKnr8Rs^!U17v#Gv{A}Wc6&>u zsh~C5ST22q37-D}JT~DFK9B;W=|Uj&5zLb0#!4}{O#ovqJs&5<#7~4(Zl5TfBec{9 ztrU|Eh+!1#q^JmrRrWVZw+jSLrb-WD&A4g06cs)(0!^}{n*{Ax$20*_eCaPeZBbT~0- zq;A_gNmmMeVO2L&U$Ekc6YYc^(svkN{S^kHtzhcfTl%BWID7g^F-Hl$qOoYn+)w({ zHc|{Gph&tvAhl%>sljRl0G^tZG~^O6H<2;TIo+ot5D@BX}VxeY(6pRjC7DNYTN%JMP))2^(^A^ z$m+&YRb>=OWAVRW5{AjD+YUnj#)sT! zAZr63!;$%uf`&50&|@`+udV4%$BdAv9YJf`#>g;76D{I0$RL{Ytqc_b{R`&KIN5T0 zAocwO8736@7h26p;5Kcy)Ssrv4hp1(m&lIUj#hPs3>7K;OSa(IG8jB7$YUZqVLPb_ zb7jZ>2bv05AloC5y1Phr)OJ!MmdH>c-M=(d?FZR7fz;v^GE97JMWfⅇ54BhqW?H zAYug)Txt-VR322mZbcyNuF8a+G8r9AWk(%=lWw<-K0!bf zgTUK+WDb~#?myXyScmq@t_dx<WT&DZ zo%oxqKW0JqD^~3%GGE~<96Zyl{<-YBZGfgynIHY_qin3ZP4-&i9PUa(T*JFzR*J3S zQKNVG7Ml?v_{ZEWV8-@ZtNM zVKOnyC8qk}JPp$2df^o?f1x|1;iEAVc&l1S@UeU1SNy6d!{-T*n`6S^P;v!Liw{S| zy8nb0FLg>2!-eshzR`w5uvB2p*(_dj`-%v1o_JK%#=QuecO{(h&^p?Nrb`lEvOXcZ2jVg-$B9}b~n1r6yO-o+MMUN}PrYe)%I1|1a;UQU|T-aUiM&4&Uflt07wCFEXGu!@>o(kN?zk{ zX|N7I3LoPjQfl@r9CH@#AE-g}!}D-A%#iXgn3u1@U)zhk-n|LOoV)rLAbA&V#CUKE zOucQJ*{$86{2)Ig3}XZRPdU5(_cIj^Foa?Du* zE8zC#ayRZnYqpkSmItg*f@cn*$J)qWa{qF&gB)|i^k0BOI>}Kda~aI0VR9|YEKQ1a zP7XAv43J;r&Ddm+{4mzM7#sf~@`qS96cB=W zn^lakk;tM^a@2O%SG6=4Bmb4FCGk7FNiwy(8Yl0J9umqY$-_wT#`?YJlBx3FG1E{c zl(JMVCvf<-D=nWRKZuF)ExM^m+F6rTJzp+AU>lYt9aMF?YLooFGszo2D1gk`DEA}f z)8y6Z*&XskKE~GAEw{%S7lC%DY0YTmynU~HyeHPuO&8@#F@^V-yU*&KFmrXZPuFB)k^RL2N(EP%6T?*HA2V#!kj(#Oy zDt-s&`BQm2M7T@=!JSW%7QL0j$y+8?uTOF~c`FpRHIFF9bQ8dxLiD}DbLbuCh@F_| zm?4yp2=}Lb0wdtwEhF}T6`Ly};3^d>)>B5nR8Ze(kT3m16;YQz z5ELH)M{wB#i?k7N1eXCv_55_7}`jLs|wb;N_W zCCwvJ(J(^aDuuL01kxJyq*dETY(bjoEK>OXo;#h_JtERs>`^xhBi#GHs2TLp(RhW5N2(ZP*eN|R)gfF}`{-7dB? zQ{Lc7AZhS40&$p;jMge9lMyc?g6V^25mzt+odp52&H{CR77uv`{TUJBK)hSR)zU`q zBHkl33Rov;)`y4&7&icw*NeAqXW1({`;u!-!vd&hfWoVi$VpL6fmtqKu41T0LhYye=*AyR>g z?SaTi`az|D+*8bC?nNt3V>xWlC{S@c<4_c@c*i-6NK%~t?;KVE494%Xw~sI=s&E5c zo~pR=-`_5D|C4lRy5bAcHc!%`EJZx$us2tMIkChz%*$6iL30>uRzMDVW(nUnQv8C| zL*ph2)CvU?Ah5XtvavA^_ggBCVmYj7t+3;Ma94W;W;uwlDekC%oDz%;>8dz^Wz)L5 zVku(IO?+l5&a$Nk>f2Y**-0caexTwUf(T$;rtJqSPziupq`l$lQJQ$&cQh=R{8dP#Z%r%D;D87>|CPQi_n13EiTjI9~6*pjakBom5NhXYc#J` zjKsuFz~LwHE61Um6sTO7fUtph*S`-pF{QQL#MPapI~D$z@Sb7qOHlAE&FHd@`2yhkWkzHOZijab(L!w=5VFJ^n?3${@vfk8p_eC5=i3i`TsgT=(us9h@WW>_rKxyGG7K zOCVrFQm)9FV&|v7ctt|8IL3LokF_|+FA|dPuwSDCBHv(6@-Rs%{2u$$TJ<95aOx*Q zB99?G<_5yRzLQ1r;e)P~FenHni`5*6MjI}&d)fD=fs z=0(D%8<{>gnj&HGh!ux6h}_DH$&Dh1df~j!2J*aTq?oaNPp8OiXELG(giAGhMJ9-I z4%)TQ`bJg%NLa37FMl^65|wU@wX5((@r;jrP$Z-ZV2G|mBVnDA6@MQV*%A}^F>vP1 zOn2mi>Ef}GO)&nW{p!dWELA{2Nn{ab$|L}YsRFvpj)YVJOsMN~B4NRj71u6|gau1h zBugXbB3wU(S1j{Ev^dmTQrh0ziC*0q3Com>L(6@UuuRE{r;kR$G9@b>K5K3FY3Ho% z-sF5FWC~ypOuQNi%al;`rEa$(%Q)DvyOFR=$sTz7FcOw2S+U}AWD(}L1Z&YR&m-B# z6?@YauOd;~AQr=LrjUaDGD6?NaKC}*x+(Y)Wnd*`mnx*+ww>(K3OO36#C*UBR(vF- z@k&o}t-A69qA_pFlM9>P*v%y=5+!C|8Gt6z zBVo!%h$$F_%JNF^Zcl}B9Zq`_X;GxI17GHi?9gHFfmJR0Kj^UA3fMY zSy|B2>DJ0JoN6Z0=(bAKc>+O<(g>LG_wKIbXW|xiQjQSl)aa(%grma{DIlWqdjFkL z5cTRM+Rem1O3c^#{t5QJuW}h?;1N(rMYYGyR5wUD3Cx(D9HMkU`q^Hz*9c_=!o?9r z11fuwvjbI*IJ2mx{g;aL-S)W>niF=`& zH)$(X$tjtr+-oJ-W3n;=v&gMls2ond(W*w%!?Tsktd3>)T;)~4u{2$vT=U<}l>#co z_!Ou&hR$E2#9dN^$^CcOqQlFSm`^`ixCPN=>rw8B_S>S25+)QYwxfiA>N8o^TImiY zYCFOT@Y7D^L_wRWdz6TeKoBd=(Y?wum>voMBgl~6st$C;VP!8Q!a%Zdo6?2uJE@dl zx;JnT5eOhS2|lPx=^5ok&acVL;k27A%WtI;;v{ml4OXc6v`sq|YSIQ==F_Jg zRBXaFw6h8^VWWW29clU_D9qDPlRS9oK+-M;x!MIPTH->Dyr0hbnN2x4RG2%ZG992mZWp&!FSk(im;eoX9d)0KoL)lMM z6=U`WU~pi|oxxN+LuItH`<18~cxI5@GgZh>lEBxQma3fTu34%zmF#|{o#%jug1>X; zsZiIsU-W!Zmu!5cQj)}lD$KbCD*!EBq{_!QODlpvA()I?s`>_Dj24u5I%S#aFsOz! zT#4zB#0o?Js0t~M4|S#6R;la-ZSPpCdW#u~t(Y`%v&!2C$gy#%-9c4Mj7K9a9zC0z?4FleRssN^t~fe>kJsAlO!eb1I4Oci4H=E3jbN=c4Kh`+Hf{ z!U6t${Ftb z-u5o)5L^1Mo~%6=>PaPT>P3Pz9Pw1I7p$SkPyHFQ?ro7Zfqto~j>8NLRs;eF-o({O zO=!>R>O+DTX8kXIrLsJvfe_^Dl^OHKC>`zi(LfEmTt`n`1tlo=h4GTgrX<4Lh zLz>5`{mJPfHKuz5R70|aVWvseW`{*blNJar`n{7m#$6ARD{|-$= z=nO%0(>OJ;jm_`l)!%cqjGm;Pi&TrqX7^86;@T&}jqjMzY=n5M5%59RGs zzD7L@%OPN$IvLHuVS~Cq=kWa|^-L^>lbh88IgEL$x*Haz$2Rpn4%2Q2rd22?R*zPO z?{0Mq{`wJn)zh$2?AfROjF}Yz_YO4whIG;7*NZSuYg)5j z0KIZa9gQ5x8#+37L-i4{@6t_A)KA2z z3*GQS-3PO)$`n`8{k|`G{@C7;?)aoWhbAq+(Aruc}3z!`Kodvc0@P0_|Hn3Uy9_ zA^4wfP(aVsjrtRFi~|sIL_PEki&~1%0|kU>7%O0w={*A`uN{?9zaZW$OtKmghHy+B z70iwDU2N0?G@bqR9($2gU5c8nNRGlzBEeA!FhMoi1=1J#C`V4rIXz0^W_N>3uRJM; zl#g)qCheMdULqk4qiT{(O9%Or@&eyTGNVD%YlLT3E%OPQ`8+g$l=Q3SOaE#ZHOa~D zlCTt*OE%8Ql8{d=qA&p_z*Z+-1D-gOnD6Y{6PjP>OJZ9^H9;^eyc?~i&s#-7s@qHS zK)WdTpui;vfud03nE*xr%!%Z7>g+;(>Kuhx!2y)0((xs=$llRWELilX&$~qRast$!CkdTxAF zx<7Dw(aan`BNj&O$1IFkfhhow066+|Thu9`6YcsbD#`=?K06Y%r7p4=$nybFfi&n* z)cGnvlr360*+sixMiNF;fFl6sOrG9qCr6Xg^ZCGO9YQ{Z}+EJx^_2$cy` zb|RBZF_@5*y?u!}CbAN#tqb%a6^&vr`vQyyz*J%D@b#L+ti+flpqNYB#nckFv%hH> z)0eaQ*d}HyqFn^M?d@W+k(w2_IMef8V%}6DvPyvg^k$Ek<4Cz0QF&p^E_V^<)9{!d z>_vTV8Wr;`PO?S>5MAhj;+RQDv*QR?#>BJ~^-R;o#eBz$*Cxcw;>F@AF{63WcY4es zM^T8wr7=e_;{!B`_+k<`KL)c@2>?CBRihRQVk-HGdhD|?1~ZHTR)4x=Q_MA_3j5Qb zA7fy}hV`AL+hQ;)SB%4j?J=kYJyu!yQw%K3GY)hYR;T^xr=JeS96?%Df7u;qcX%-dqnUH}HBGcryl4fH2cG-j3;yHLIp~V&Hx&gNeQu zGYJdR;eO0bL=T~$5lG<6UZ3?x3?}qrIvw&j=04)}!YrXbwR;xRm~-g*B4#R91#@1; zoI!UE*EcbcVUg*f^E&&T{3Km@{Y&RqZt<&S8jy2JI|Y zJ8Dj%+oFoArZ4AE>ZU;s#Qo_>cg+(thnC)&F`UCwUk$<9WSGC^4Z1B3RMCv&987^4 z%(fisUgN849-;LR5M<@Byf&W0^*T0i=pLf6^v%N(4cbTj8Kyag)L}(R4#|c$}|U$T`e260hjRxt z1L)_*nkAgW#%7v1SdaOrxn>B415=`7YfTa7FtIIuo?=FC%_;QgWml-#!}V~szh)uU9=wV)sC`YQ#OZ@Hmf3Ch zp_-*w4(o?$Fq3O>cB>enDd&3dD%Sjf<3G}AZ-yV>}Dkyxr3&S8$t!H=L<=W6Ql5!7>` z26O6i4Z0Xu>YpvyLDs-rEV z?G_Cj$Ya*|b}Qa8RNFOoAXoI2KwlE_lV$+c$P;&JK5)xO->X5cp7*CC_GxBvq3Rse zjQa0vD2(h)IFYy`_yM)|Q4QvD9zAzl1E29>t+M)*X5xPrKy<+uPiyX>dr0eYn2?AZ z?*F1eFQW!t&?wQ?`S_Bi8RyXW3O*|T?yBY>S`Uw|YZ`G51-I}~*vJaaat;%9SJV5y zHz_@LSCh$YQuY8JiZy#^LnwCpkp_-2GQ;fpL^J)rOCcKO{HL01%n2Lt`;ADkN3078 zdan@==abqVDYxnH*Vd(zPj9h-fCxILd2WDTiplU4YI2yAN zdFW$r`fJVDF&HbmeL2BIl)993Qm0<*ON5PE0IJcl`mrZ52MifP?WkB^vM@VkBpt7a zt%_+M0fqw1a?x7oMNO;{b3=pCshJw<#?JYXea6`9NVQNvx#lFcuuD$tN=|HFe(YOE z@z+^w23y~k>X7j z4T|qXKaki!w59>33SB!d_Ov**(D4gnuXEW3E{?Uw9M)zkoOmR~gT#3UDoE6-*k@Ry z0+h)#at+vlsO~NsW8ZVTE&MU|XU;iwdu$zSA0-Cw-^|v=r5mQ-D%{9SX@3waPg}E zK~(WJ@3{TE02>0wJI6qn92GNkv5F;BOg1*1=FHNar;E$ zAgRsbim=@i;A_z)&Ex*!TsyUkYmK(9k$vI<$fS})uD=W2tFy_i)4O?b0^2Dq{Wj3AD}%8 zgVS6f&t2RLu{rC$ja$Th^11hM?!5T)V;rPHXBOJ&OB`SLp^5hKuI}QmjXmSPaIfCk zJHA>i@z<#l@n`t2y(8l=L{KPKK0bF+_`Ehx*0 zlx#}#AUmdcD`>!!_*!T|ELdA;&uQ^L)kG>&Xg?>i=}cNO{k<$+Y8xAX@g{}k^&RPk z4e_%*M2$AuZPloJuhkZA?Tatxwy^&|e4Ia)e#Ecw-emuoGzFoT;xSjTSf>J%L*P4v z`J4Ui_#2$q^E>gYF`*tnHYe@g#|My&AJhGaepZ4fDZiM}h?c#Mmtl@~3V;*F7XG7lnImh13u9SBl!bM;u3};XE80vv`*;COqQ}G^7S zOghErLUyNRxR8w(Gaz3xO&?Fcot5B>Nwxx(#3cQS>PZ6DC5Uq)+GtV24la1DB?-TA z5q&o%jN*NH+3tiZT-wR|6TWb17yO*C&P|lI+1Z3<2x%$snu#>t0b-*C-AaIu?XoW1 z=6-@@^wB&_SjSnue3W46*cFcx)cn_a&k{Cqk$-!h5Wpv|mER^*<N)q{@ zaC%Rg_y-sDc6g#iRA+Uff{U82PrSxORi`F;@S-Ur@plfEore~+Iq@2nQA)2iN$ifC zJTZhi6nf}f@zw*K(>F0loJ-Q9LlWIEjnMx4#IEA9@59lF$3#a&4vb4gOiU?Y@qJ8s zY+_;9(KT>08<~i?A(C#y_>Ov4&Rr!5Ge&i@TZ#&B|hZ6Va<`mJA4dU za5C`^UYt{&*b6hI9(^B73S$4EG~jmPc5YJF?f__{EuK6hoZVM(vK2`Wb=o#oR~@9|0Q*u@FDaA8tDdMN=ad(+`7k`8hK3RWkD z@_}~T#-#D?$eBBxwmWGb#%=^%)3XPX?702iK9poxhTU=`$+G-C`b5%9ZzMJ1ZJ#xr zhF(vK=DoLPMH1o=fw&Y1Snjm*?WBFYrDN_UJwVP;P2|g;Np9jcf%170dToaS%pR`2 z)9;eXu-%0`Rb;KFt6a3p#rXkg<*CKwYGu6#uzW}#O_mew>!tm`ZEcvZ7Cz6wCUv_4 zwT}@)s&EFP5qW-D<3yfEKX#g#tVq_bLYSIx zZ<@fpX-`t2*H$L$blS%VlyeQW4QO?Pwl+p8p)%Q%rNx{Jgt|kv=V&`RlEn?AKBUN` z-GHNCOwXIOnC}Kqpa5SAXRoi(REs$d4hY4xQ!}kIW;>NtuGvysW-oHM(pozktAgOR z+OwFEhjCckUb~HR=-f$*xgNk^$~tRNhZ|Yt!QHfdIEObqwBxXPi0Gw79Z44j=%XFX zIYjr7u4BzSZ6r<)h~BweLjJr!6K~iyfzFJ2)_7q?cxD_wnM&IojiP;;+T?v~Z9?=rOeA z0_{p(^j)Ogz>DV=Yu{r=Wstog&0nFNjTE>cfy%W=^TXNzI(L;e&6TN;99gM_WEzvT zkW6EQ zOLKnLezq9y6Rnn;=;{|*e_lNO+WKpa586un*T~P>8NB$5eX_-z%N&wdal`H8lsu6? z@TIc#fh+FG=lKJBJd-Waa$= zW$$#b2^tKMxh$*82{-L^0*ZI&FcYPmKUV{iSs>ATQGUGf!sve&hp4-GLU z_rh$=2smVo)(}kEnUnj`9eK(1FkPF$6f{fbiLB>0Nbcsqh!Ov$$;%N+V)6lCr%EEs zp_a*GkT3*bg6PLq$@e*>m+g~Lhhqg*F|5Rn$^9?}4nlP$i~1zTh-q#ncTX~pycZG>B!_bOz_Fr=-nUq((-A^ zD-ivaFocr0$2Dl!++>HEB&kxn0McwuvLC7V0>t`k1Jf3bY1vO$W9mwT7m#&YgFC&u zGx@Wx*!y0dPJZbn7GK{;ZtW@-J3dIZcN2?)UM5$A#crXeF8-AKqZ5CilCBjmmb>ag z9mQXry>uN#v!LJj>NFx}da#NvmH%3`x^4k~_E50S!$quiN1|(qHcF5xkUWjhjl}ga zrj|fbD^j<|763X)sY89!-qQ4ebg){Nfb^$ahz`*@O!j3f1+p?mcia{&klL|2Os+yJ z1KKN2=jbe2#TcEgD!0M4*}7WXf_}}@U9%G(I8>m6g9*$sXP9-*EX9VpQ2y-kCOSA2 z!XCKNO!pfvo@t?ji3t03bt@f2fvniMt?ox&ly=a;?i2g8~FpCqjeK`am`p=0Ds`@ zI4kvAt$f?8)&=tirmoYy;4dy&Z*73#8+CE~fx}yLb{ygIR^4g-?6&PX z)b}sJ9tM)+YdRO2xL5a+5A%oAwOj{RD+TJL^cP((oSiaQPrCiQE=P1<#P_NW6ZQ%e zDNt0_7qvO+i|#P@Y>gfD*SW_udh3VsUrz<-=WvfXu%^B%*V~g|eFC?txcYjyyu_Mj zx==;4$p z6KYz49+gK#5bCYTsvAQiJ!Wx_>E={p{TI&WdUHLphm=uWOFaaDOsG3;^_Y)?GB!in z>r*jneXR1_PI|arE-JRGe)E5C9||x#k+aOHhMK18 z&v287oPq5w!w6ve(!!Z~C(il%QvFn`S-bStMDE}2);HtapX|r>)M13dx4Yx$PU8;h)gEFi zd~;U6lZ%mlUhl!h==7`pFj9;`wEU)i9q$Ascl6yk^U4pfonR0F#Co*dLwyuCo#l`9 zyZ8j8@ToqJlRooGzZkPl1bu%H(N{9~kv>bKTxjG+eHCX>@h$8Pn>qcO&IY8z{)+8M z`??rHxeP1a4V^gg8oq`P{MXQ`1_hrTcMdXy@dp;wGmJn=2FH&QAG^`LGK0iHoMnAb z7*LngKusbT0Wc@JTV=3Jr;DQvhj?=|))@96nRcPD)N|T{Oy6(HBztoVn1Ri@u(oP{ zt^pBh(HD7!1sKDJdTmI}Mh3*%4ZYpSkm5kR)6G64rnvz#^8$oEEXDDR7KS4Tv56Jn zODn@Zdy&i8wgyZBBP*1DdqWyVmA9uGS`&SLLp^aJs#aG6OemRluJgkC zy1kI<;grJZ(mn?G8WUp^-p}wok_`p%#$vjOMHCO(W~iZNC9=j3QsPe=Za`&Gvw{%- zb0PViIy=$oqYMe6wrS@vh7ewy|DB;5vMIlz8z&hcTxU!lO*I@rO!6o&-NmV_pKWDz zcaC8thLy_O*nxPh0g>S=f^cNfl+}eUTx@u2Cz4#V)Ub*-ar@;4Ow3?;fhQfe!hmr@ z#DWk^3Z`XvlWAS$p=9GK!)b)QS)edS37{_j5?YtFhWdV@-Ot}+z$^y?Rx!P|*HD4+ zPptBw1BP+DVLT2Qkn$AMW`_-^oYsuP!J`IP%VGV$^$EiQTzeGLwI>azoYss(%o#%$ z&Y`T_fJslvVE#O3K;^V%m3v+?z*hsA9-jS*Z;OPh22@UK#$n$Lt1r%~z}w`^+Xhrl zYsR7KZ&p3bzmM0${RcP~&NvKxWEjoc!tDuO4~?H1Ag48J(z-7Un4H#(P1;LC1&7hR zHek-(Fqq+Q45+kwtg_pC10+*sqI~z!fH`-=U`~B9pc1yS${oL0Ioz-_V$MJ@n9xc_ zRAOsZd4-b^E*UUA1h^W}dT3SIh)QhDIGlDjTD*2AFC)TZQh-5yu%5kM>1Tv*&@vUQ z2r#0Z<&!E#R8DKgp?h`XSkB?Eniv%b^MPWT9c26sF?$j#->PFQO2ePV z(X?Tr@hI9HP9|Hsh2CI9d+BjTBi=*SN;6V!4)-$fCK;P$yv<>xxkkhVA+dvGCrbfn?tEsfJT2k$ntb=hge|=JCyb30FF`}|rGZh@}ZiHjI%oHZ|GA{e?DiAH|W^W@Zn>FL$+z$j0 zIV>4~A2Xg58By7+8Hd4xjgZBe=^<^HaWz&Ci@q_Ujt(;pwMH7Zat?Qj@lGOoj1iN~ znyS7vnz>h)`Mq%!Rt0~IH=+_*GZlO@$#{*cpzBoQIxL5ury21x>IO4l?jf2&#%$wy zEQb}PHkf1NTq7iNV&)jPz=+u86T9WSg~r?HH3<0<<9p6Q^Mi3KRuA)+8&Qd@!5&7_ z=+(w$oWp~)_%0D&W^B)4)@{I#n7$_R<9 znJCZB8WHznMN$0E89n*FM$|5k_{;h)QYA^sxVdaWd!7`jHX6in{s_BPyje<1pc=u@~py z^a3B0=f5;!Qd(08pWqA~v+snrm;j90y))M5PEYgEh`EEx^w8)NgpneVf-mSOY}@P< zd=MtDlrn)+IO3RsIoio2@pVo?C9{Ug9Z0!PN|3nO2YIY}bG2^bf5tElEa)2 zNI@=kFkYcFqG}4<$z{g!v3d&9i*c+5HB%r7Hp6nSor3Ip9II`elzQmhFHn#RttCkr z?;!4Z?F>)xMvgj+jtc=W7us8qa!K^~v{6)wCz{?DO^O$}Tr;*K?HZqwih&t@D5VjF z^wp^QD?()<_jNS_sjElPiH4Nnm^1$jM#x`HA!Fh?%xO;xLN$7?AO$ir36?|0G)zgw zTvTUZU-MUg+cxD6V)|-98Ady|PZ{haQhL%g1(H}ZcFTLFKoV7Nb`23Kqf>c zTf&}{Du~mH6d=FFglkZ*J=wGx`frt^DM{Q=JDyH?&keQrxfIA+&8QhJq$DD{XJfMQ zKx}0SS*vB-@nzgVTPp+eCQWXqc#@NkQk&3b6)C9HaY8eYGiM;3HcMTd|1hO1T0VgB zp}9{|%DCQKU!=_OMD}X(kNnl!=A`cBO6%&Fitpk8>QAe>q;^4=moTC3K)tw0&D5vdC>6n}kUoXk=a<^4eBpz-)KBHB)Ko1=g)G+W zf$H+q+gSb-a!?aAYaxL(g#^|{&csfeic2~q47oz?Y67{dJJF}c)Eyj=X4qgFfaph# z<)rfdbRs+T4PqRiFU+Zam{|za>q2hE#yQcYO;aIR8*8ljty9NfG6n%yGooz{0$CDR z(^^HT&Z3$~%#c(}pl$&Tq&Y)VA#F8d*t|G(Fv6Uu-GtN-jGCZccM4h3AoU%4|NU91 z!>b@%3=?L_q`0YcXj!Tb;CR#W~zbgACHFq3_*I%k@W)W~Tl%gS7YI6gTqaUD|USpcYZzk7-FRBCocU z(jnz6qnPKIei9RMEv=E>|KDk(mDSSqh&0j^u=oiEIx{F8GDtIK`|74c3Takc8J7M6 zF>fIN+=di-B*f7+%JiBT3$P%#5y&Gwovu))zi<;dtx8UZWYUaYxgi~rNwZ>$^mIrj z&5DMG>6Rsnn@!RonKb*gcgysdn7M_jQ+la8qWz&>KQR$;-+t+kJ(`i|I3OLeN3&wB zZ_*)qG%H^DE*-K*v*OBG>5x5|701s>hwRZ}aeg{vk7mV(>(fUf#2`SY^S=^DQ%D@W z0+TcPA6TBW@Id+%E?L%YYJJT12A)ap|X&2x{lZ>uZ+r=Dc&of zBW7km)@VkuY(Yi{ra2h1wktAvFm?HoYil$5AbbYn2r!;v6!6EojNiG*+}n_0L`(hG zPZ>VK2Yp7+lx-Pu%tVsO2QW){V{Y7&0hy$k%6gy3fSbpx=y4|FBNm-ylBSSJx+!wB zXe}U=(E67$4q@CiNZ5ozCh49?EjJO;Q2P@|BJD)K`90$f?;(Bu$bd}JOgrtLXTS|) zR&4z`V;pA6%%&%2+%l_Dh{V&xu1PLd&cp=Z0u}|VwcNrccxHaVm_EbtsFn#isRY@` zm>QXwt#T$B!1&X7H8UZTG}F_8;7m76doZw%UlNn)w2;iY7=yAPc#G+zTS_uF%S2AK z8f4mI+U`Y%%vQ9leWpKx4u#4)!o~ORoSF$qq?vktEXjl<(yVxOMkXYYX2lz`G9igH zE8Z#1ge20eSanGzB#~ytS}QUki8L$zwLUWxv$z0!nvlf{lcv(RLzx#a1Fr?alP*1( z37MoBouV_DkV%>q*Imq9hUv$E+nAK>PMS>H-p$O!cq4{Tejv%0>KTS!cy&A)lPGF#Gue76mNJR?Z36tjZY0jjoZ^ zR$R4zTqUa$LU9xje7K4I5S(=cyEa21@pBt-L5{SJ$-?B1X1!O)AH53lNAtEC6`uu} zqgk`<*Jn9lY?keIeW}QFqHQy>0x`}K?vpkr-hH9rJxo~(MfeusmU44a=$u`b6dp?VrY-tq?cqKn?3=9NTzlI_W=-YAMq{!D@#3}b zvf$eiOs9h;WPQtvZd0-b^Ww~stQEYNH7jc*@8-XjW?l6WtNpw>YYA_aqD@(ccrj~7 z)?{A1zb|VGFRnS7wU!q=ByPdVuUp!*a?@iVXN3q!PQ&yCd zSX^hHjoNy%Xlo&|nMkoJyS|wC=&Vb2Rc_~RJ+m>Fq!<|hl+zUN>_h0rX9#T zL-GP_WHYx)cDZeAf&;Vrb2iIrWKXj}*>d`zW_B)SpXsZ1e-E~@=~XuylL+rC*0y@t zmu=IHF*KVmGLsi!*|r#>oTkdMSKFqWWf9qy^i)-V`TPj#A2~HPuOpM>`E%Wh4;9P z%{HQ$3NRF4j<||q@0yxjfHsEbwX@ym;@R1_Z&eDj9|3^?f)m-T>JUIaoXQ?dpOI`x zlf<%zbX%DH8q>_Gwb^5+_wwxLh{_Zy_lK27(*BpK{&YuKcJs>c55qtwe?qrs`_NdL z-2l^y0Nb7DO9mIyA9iKe!MFnpLQOhsZ}#sz(k$AaJ%!KxeGg|la08Sa&8~%zT{JbJ zQD)c9cBU1lvOn^cc>YT^<}+&KT(_KA^v18*+hP#T6Dp4;1yhGO(QL1rp4=fE@y)Tw zzTZFRR#nj@^0p;&ViKj%uO7N%9+E9{bF)9^I}wN&L)2D;7_gf*&lV*XImMp z&jzLBY~at{$g)1WAjkS_TAuY;=YpIq{Mi$YtkjL)t#?|V4c?t|iz~dz$lwo8=IvTs_l} zFFoOwyPj)vyhrX*UQF=HwV356@7#G@L#wLhT1>c0V6Mf4y=qvWJy$dLJlD{+`nlg> z4u@Fsmj%*0^4zQ{b{E9&8_Z704Is(=x_OY#M<3K6n^JN|AZ*NAmwGf<*H>5RQdB)EAlCc%gRBS;oRhquU`P)Wq9(k6GdO+pp6%?0nw6!f@5 z?lPOO8g|P4LByiY-EspFtxiG6hnNWx)Ei!^b#f%80o_eBv2X5^N@Q|$s{pDUkh|Q8 z$wyxf&4qDB5S8YP%KgZHZ8|QuK1^MOUnft=jTMcBUYMQ>V@GkD*1mMsoZQN;;sYC( z=3d9_{Q|qrWXYObFRCod1;5RhmF&rd)gh+&$OG6`6k!R#I@7{~xv)*lBq=_e`z>Nz zB8;f_(A+?x-#pw=$kqz~`F%(mTH{piVn>np*>ky&-i`5|e=!%4BIe(3f!wSv^wp)@ z4%~LST+M|9l}wJr>$&hLWma^!nY#ru+XX)|mh`xnyUgx^=q2~J=`JH9@8=Fe*gEr# zi4StmA?mhym#d_`ALf=}4krnfNsX=f!F2Ac+*z2O1qg72>dTvaA5!mg?o^xrEm+>l z)GxWH?9V_!1gK%3x5QrLa>^lZye(WFIOe5cru0@W`&{$jhyl~fY4CQhn@w+(`l{qa$UsY_uROAuI>Z6{Ax&pRuKW40`^6&i_naGi#DHT=8xvOD9+Dc zBNkUBG|G1tCCzD>4+k-r29LDMKaI3wMgg`d_CBdiiWl~Ef|+P*KdS4VKeDnY=%8*E zLB9;hzif-3U*F%Taku{%^d^zl_hHUzs=Q%=~Y-3C5P@Z{rXA zwIF{IZ{4{oteWs&m%kFTWd#k*-1SAfqvXZb{67#Ljtw%Y~K@q(&cb|M+Cefu%H8NbtFFy<9ML*H$;CtAF~Mxbz70V3;9)P+Y|ZM zVL}q$(1+xn$=`<)f@5two8JaAcd@XkMwGXppML6O_M@jRD;IJzrsXWD319ve+0}ag`)S{d^jD>ia)>0Z_BGiITgTV z3HECjw}Qj`fh3QD3z)$SnEBa}hWDChk_FWZFrV(Qb{pcYEbt=hY7{*F?@c$;upppR zQjkJx*D9EYnDF!Zm(g$5lG+^$f=M4`0gq#U2rFpmL`>-|e27j{kokwM;D7&)Lb73lQ5|{|DxGx&pud4ZCK> zf(M+PDXn0cjg2Z;OAy_XUVzEb`+vxpo?Y-AXLmifVAB7Dog}|t10pW{KiJJ~Q~;SU zSciygS}^&4!tR@91$7a@nS~vNK3nWSa`i0&=(er}u{L%v38}raz= z--5@^Vv!6kc*u(-qY5BgW)E~8EqGv7OdMMP%aE-2;oE|FwkX|OQ&5xWIu_KR`I8Ei zqJU)Z!~#FEDcn?@?w?kG*@U)ejacAaM0s1zD4<;4dZh(>xR5Uv7VPH5y(_Hp&Rk`c zxBHrcg|-M;yE%M}v7~1KpRw-QSn#bgYfAF_28*O)X~BEMcx#o^@(yY1vYvB8WyW-Hbt-C3nOY)tw){Gns_<7NbTgH6#nmV@d2<~l z4K(E<;*fvnh}4{Da;3o|O(igW1Rq5%jx_Nu{9>%hrq07u2JrByNG7Fvx+xo$6ol5D zGT(Hat8CbEQ=zB$>&GpoXvCrgm!}mux6icS?!6enT-k5h{ok9L{B5Fm*#z6y2Tbn} zC_W3#od^Uf{$%gc>E5LHNWM4S^|R?E!c7ps8bMkfF=67C>5k^nWdBVQpDu1WYHHvN z3UWMax`B|&f(Fxxa?>S@EMF0toi`n}2P#3AOdD*Xvf#2Q7~!YLS1OaPn$8MTTHY}I zh@?V6#|lI+&REbTcTLX(0wwoNTag5WMh>F>4^5qI(?!-Frh@_%_opUIZceLG?N?tR zcAj}bbp10^h;5XXy%Z^Rer+nVNjtaSm=4)SW#9+X4naGLzigzk_Ood_BJ!u8-)f#f zpkG}Ff4bMtjERTnivaUWkb?eJ&FqJ?*&|5s2OT&O8WBEa;O7EPRqV&7v$4 zH_2j>qf5+_vFr!~-ZIlXL!g*eYMzgADloywu(O*fPMel2GH*wC*{{>4isMfL$gaia zX9$!7yBow1)Ox!jD&&1eCL7w;9!USa;zf%Fo1t6V0A-5Hzzrf;aAPmktRc!iVt5i*TWJK z5tiIE!xx!ZBkjIzUT+hdI(N-3n9Wg3BSn*@KQT;)Em{S>Mg> zCfQ`;8#mm&Ft`N>?qqN+p5moYBv7O{6j~_$otb-gY5Tq3*Iy_7Bbm8(?|tSuXU?3F zI}+ts7aQw`t(>BMZ zL`H-_e5hH}MBZhK+C(j{gKh#5V6~>RkdC&E($yu){si@Vhp6$qwx)Le5BMRcww^Zl zZI>vf9;w2O<7b1!^byM+b3{tV3avJFMA5hXhuabZAxwu*93(C${g*rjB&>|#zZ+< z(7L~RQdEc~M|!}FD5gz~Oevwv_HS+GE{d{5%WnF2#%t$C?WkL&P4KE0MKv?ynkl;$ z!Av;XOi5fCwVHG1*mG4B>~2V`7I$11Wye*=c)+Hp8w}GwNCpV;x;;@W2P9y4xf8=& z4U%X-RC6-Q5w%(1)ER9SH@8IVZ64YqpPDFpeDHV_VpL;445+ybZAF}QKB^Oo--Gu? zV4q7-qZq5}ez@T^CgoEl;@s;|lk4JbTB0p?q8j6sKSvcZsyv9a_c<8!y4=?j-?$f* zU`y>64|)+5Xe*eF%il#Uv*t|Jw_Y^NiKf>3yH)f)0T(@D6FrZAAk`(h1^>WOk7$@x zNuM3tIJzst*EpgijvyY`GCGB)b)s|h)jCOw+xbPWCmN5fV%G`|dPYlu)EnEoysx4zY@fj3-kFQyOSzs(jzb=fHvN-;~DUGCppDu}>&AWve zE21~>zF=rov^5{qu8)qZlP^F%c!U#5KOSw3<=dlwu;={jz(dgn-WQxZQb%84Ouzx( zJsSOMo!lfPi-GJ+UVNuB(fxQgue}ugl+WkHAEIHSMrsrCAETF8aZ!ib=zjDy7p%D( z-L-Dz#we6GHy9G~U9>~Eu7TD6{LhrVU2^rAsHlL+nL@!#sw|<-q#gd^@{0c z&XJ4j6SJi5d5r;E#It=rC^MJIBVD@elMC#jIl40+36Pyb)A5MWtiSj*YWl2c9VoS4phuTxWK%D3pU7!SU!TRhs7af8Ojz_K7J^sz}X z19(ZjrpLH4%-{NxmkPi5%oF*pjj==rx0fh!_eC)aY&dpLR>dr@TgDM=4A@tB_ugn* zOfoOSEF1&-B2aOpyJIk)hpi6ByybJY)3KOJ{TNL3(sulUI9-`dX{+j z<(Q^*D~ekHulh=iIoEE$jjqMi=kqb7HU@U8q;mDR7n96Ks~^Tx)veJ2sx(L5zr}Pw zB{ibXxbLf&p>-310Ac_f#ru%z4>6aWIN}TKh0pjAocRrfu=1FS^SP<;Fw3rpv>?z= z%mX?J%LORLbNB#QJ0WBl3;+7j`{hufGwO2rnFU$x^yJ?={n@{+@j||V!k%=}Al~UG z?8sp2MwE-}1VWLI=BYD!*-zL2ZwV6iwm`QR4|hgp-GmHNv8#wsh03~MA;5CQ zYiA0p%{ZQ!bA;P@o`FbM$wwc~6V~T*!g8^&hL7G|F6>&T#GSNH>!Vg{Z5rXzRYC{e z0G_QA#xk^UNA@6H38#VG3nOC9ue>ig`>RyJt*m1lPN z&_&@xfnYISds&!o4q>xv!pUY3ZoDD9LBdJ5g^t;Y$g+@?0Ac_f#$YH!?PB!OH`WHFTg5iOz8{75 zRveq5X0a?2xc&m@g}*hA?Z;>i94`#K-q+(O723wK3~c_5(mA_WMV%-SRe9l`9b&KZ zyv{nuvTO(PH(oxjv2FhYULV|JVaHf%P@5aZvg~{OH(q}}1~1r}@O5 z{Pzu@zuKx7wrL()_#f~JY84CHgHnC@w~bw0cV3g*#a?4AiWrKbjAfvM=9%x+XU_OZ z_t;qs%?wVv6v4As>?2z={CMU*1#Ydwan%L>qTomhLJ>VNU!L7}T{f42rNT`=1 z>z%Qkv3XJK5C-8fAoRB6M7}yQ){}FA*lc1fZ1q8@EuCqSK7V#>kRx|@|BBcaJojH$ z$EGr@xJ18J#};GYzKex6yxhitquuFP>=-_$j+`-ZUGTjrr@CJ<<&?z_rkuL}lPRax z-!SD=!7WoxwYeR;gwNG0_hYxg*+nF$=D&`;!ewPu#qY6P@xe3S#_s1Im4AwD$SY=o zAZ`qcVjxST=w;+XTlA?xTz%B;zSa#NbBqf#=j3&8i;H6{{TwU?*u}iY);Eni#nT()vs}|%$-J0zK)y8KcIUb2SZ@=ZswP`&y4v>8-U)Z zp;P>6!DG@gjX*7(<2N(ZAErU0*}hUo?C%o)ltsl`uRm*ndK`<7L<#NUv%4;4|3YL$ z@^Qe5V8h#EZX) z*VHX{rY1ae!Sjd42itOpx8vf~b>nzQ`p_EPzVXZj-<8F8G(&?_KJKWEEZ!AWh~ho* z2vt1O!i29%FeQNY%!{|j-kNyWJD;j!V{-f*&dTsoeLOU~=v_@lJT$v#)ITd8zQ)k# zWJCNDdoDVDRQzQAZj15pNPZMC) zh@RmDYqaOg5ZDR!V5~KETA%R9hNI`OGhqZnW_`uRfDMQGQKF9f5}@}+qpBkbL40)0 z$pjlddgN?ECoWq3LjnxC&__>QNjT3-y6#3oDN`**iV+k7j4m|CTrDOm5Lu$r_Y)c* z`1r=M#fGt1+n`7XQDc1eL4rApW&G+W)}inxknd#Y96bJEf)|UvjW8_3_3&;gs&E%I z=Zg7;rwQ2>f>p@-Rl+3(mt{n2k9WOJU|PBN6=BYsgpKupN}qR3S@acX=lcYf58UW0 z!sJg0i-F3Vb|RMLj9+o)3q&^$y zMIL4#2i@`JgpcTZD35qfYtbnxFI6A67Jq7x*1C>3oX;e5HslRURWEjmx6ADb-lV3~bKrI+T5T=8Io zD34We3b0WPM2MvefL>?Tu>uQVHE~Zgh^*b&3K92 z;KRPCtrZY^bWQX<(LTP;g=24WHrTILbePLz; zf!KqH^RkKfTS9AWGchzhSK)WZig0+CARf=k!A&e?+G2omXdx44@f=nu z#G_a_)F{Pwne`B(7Q?D{s)q+!@n}{K4$0!HEG=}ZhsmkpOFV~+bTP}xR}^MLhB%4k z^BR45SB`io&mlQaJc(5gC|`V(nZuW2G3;1P^J0FPcrq)8Q{`f&Wv|?Qw&@FQw}qC ziN~?p!@k{Orv2|IhunQ)1<&FB0r5yy4t9sw+L4q)fz&%yhccnm9t0msF+n9IeP zlVSXf|yBK@9s2QV!`?#j{zn zVf8gJ(@aOoVb%?CI?utmmc6Rzaa;Tgqbcaoi>G2WZhcqW4`z}>hTxKWVpz^i^%C|- zJcU&+y2tFCFmPJS(^>mmT*%W2c+Fm76MhpnXEqg|x8gN?HeGusW>|;AS)APm@mXdL zWuL|4cn?!hVxz6862? zB2!O3{$1+JC=PmH| zkrJ{@jO5FOu@WCXT5poXi;wzElicT{ZDvb;Phef(Rkq@2%@ zG4~`7SP&zAlJ!B62C*Z4_E1vH(p372@Z_;%iXAU3p7KUw$+9gRII(ba{=qZ%oeiap zO{IKdJt^=FK44UJ5gssTuTikVf*lTDV|~a zKxr{A!uz47yO)PcH#l&D&6G)@-K+OW$5rD;;8TFt+!ktr;8)2DrOi;~WbgNjtGH zqIvS-sniMAdm)XrG}?^*cWHeFMx?#o3kDeg?)_Wo7QSHY{V3hb`@Qj>r7$s#6s?_+ zvQ_*|%X+e9d=#6R?&>XM#`a8zmFzVCfQyan93OpUYkIBH-t=06gXy&vPO?kzhNCh_BV z87wEI)^T8>40hO}(c@EPLztCKQ(H1q#(&kuzTcX>h1*uvhyq&AQcw|bi|kA6PINJ8CYWII<~Sm)}qA^WDzX(2_UiPc`c0G416rp z@Qe;Vm9=1C#Ock~@YD@0`zW(S=gj49xZ;&8$E3W0Z;i?e`a|{$3tw96lO!-C!Ov8| z&A+hmrJZj@eTf75;vl!iz<0cnDo(YPyRhW02@?Zm4zJMB&T>0ug=Ri~=7@ZJ zP71`WJ>*YKMLoHZoNp7vc*@zE9V7`1NnGRk+P09BjhslAtG1<_Z${xYt>yRle%9iS za#&7EAF%V2e`1!ccIU%}ct(gkg0%)h1OWkp1(t=$EsSmi?e1n&%&PA4L9G0+ytll8 z5fe}9Ctt>Fvw+kDR}YjUzSAm;lp6<60;A-xMJH8ew^(^sUd7|Ya%1yTE0zDivYG-4 zOHT~*;|5wIzp&ffa*A&0a+Vq3UuXMezI^6@=Jg$-MA|lmE-3Rzqzzg&OKyu!WXQz~ zRlXosJ_s+)lrv2LATOif967^k3JmYUl-{*yaFKiu8}D4YC;7Hwxsb(EK>8fOjtcqK zdO$=wTE4n2M0Ssn_hhk86Ook@&FM(mN?K!}W*FK0QI&Lq&81#+gjXC{E9i{({>$T!RCW+Mxh%b8BQ03tHHV~sq- z0Z5RqW7SwLX0&=4e!N$n1=3*20eLZtZw5B;Sn-`a#+qk?Pu0j17;`!v0g@X&cwU}D zIJLVZ@6O063OWAz%nAQ-Rc>ttNP-*kJB-DEM>5=!XAn;JZ_9xI;{ueruik1?p?3xpGfjW~Ojq z=m22A{Y12W&_)64R@UNqc8U$=5cYFYz!=I}9OkYV#>iKQJ~vc2;iioh&X58}_)TL4 zPdL*{(SU(40>T_H0$?lLqM4!(;h)q}ahULJ*G>WJYu4g-?G>=TW-VURQPIQ#!ef4l zF)XWypv=&!(i`0kRU8tWn;x~g8%gkXX@l0n_6{%ooB%tL# zE4t%NBNXce6b9>}6}`>4=>Ay625&A}l&5fYW}r*Z5uiJup<;zIO1-9#q5KI7mSZLX zY8a}Xt)N>uy5SxZ6?$Isy;Bt|YYB{iUbuFe;t(e@+A@n73j?`G9>xPHSSEmdr4&9- z0h@1;jKyOYDQsEF0|CPhm5TA!s9kcVJ6^Y5kyMXDqUM_vX>7SU3<07wl5ba7;>Md5 za0(eUzM1;NYkKaC3tYb)?IIny>@P%R_&*Ar96)ZbHQJCP@3Z`v? z=*xmPicFrvs6P}eb7CpX{&xzd)m8N6$d8INp2PQ_SvcUCUlfg4S`d(Y0($&F8CaEU zp=8X*1XOxUIRO`0Dd9|L>aP~qDx0!2z=6$hwB`Lf`?=0Awc+IhWoPt0PU%W+*`isF z%AeV+l*6ocRz9gm`Bl3qTQe$aIJ$l5p*ddHNEu)`cX^gOvS|eTmTgyfVs9U16{7}u z)IrUaxA+P?thMqeU#-_~tK7y%&$m;0@~-wn7bVQ1psw}@KP7CLPosuF<#?7Md#d=` z{gg26qGpgM+SNc+fSdGE-mv8IvwnZ&?<_qS6D*!FNLk2><~htH+VkNi(YB6I_GYXZ zKzsd^R=6lZd6%<4bS2)HDNChF)?&%QqIs?J9I&@Sna0y!lxU)#sWH(HNK$$;*7U=X zPdd=QrdPISHXn*GDMNXOGjLpytqfw(=GLRiXdG6goXIylYDX!J4Uf37N|uHPK|}>x zlnz)pPPvG0bJUxpWNCAJ#qyr4{K0`Ud5ZIXpe0WY{qs159_8zAR0C!Exm(KKaN~$|Vf-2!&aATFKPXpf9I>uY@(! zG#lQWQ?jhvr7+ztu(>q)@}*14Jf4H-3Ok3TKPtzwRPew-Mw=V>(G8^qqe06sv^VDQ zO^xiu4MldrpcKO5_=o#rZIqvC`>Wo%TuvQilv6*V?0W1}L? zUbU2^Q9;DPGa9HyT5)P=?WOv{(u$yJ0UURHu(>Lm7o~S=m9c@;psh)kYwc7c80)}-3PCHP1pE7|pt>h{iLM2z`1alHAQj8GG>Fot*t98;5lXOWCH1tMNrpo`Ofrn_ zrE160l%VOHzoN88Kk1bLD6PNh1Dl(RK@??jhH@k}3{b(^A8OUl2dUaIjG@tCs;>h{ zxH4K*W-i!(lDL~oQ{p<>zU0|4^5*21chs&A}7InO4jSiXb;P&w{5Nu_0}C+W-Lsj3(CfWY7x zs;z9wEyo*Xs#2H<9Q#(ah7d?csulm900tp^S$qr?zS$zx4eg1(02V(6QYg{z z3Y9fJv`c011UBR=3?6hzHIh*-3g>`Ruc%ts0I}({s#GXs_`?I$4+01;JX9swLKya1 zWn%$hpFdQuhycMKRTIc_2h9>sljkN`BnAT=eAqkDyFP?>IwsBmW#RlTiE)+?o(oEZ zPt+T5VrXI_UE2oH6U@KHC%TY!To+TIx(KS-$ay{Led>4O*{!6 z5)W4;!d`6~u)8|(2nnxh5;r(NI5szN_E5ImQKFaAR5qyN^+anV$@6qY^55WCNcZ>8 z+Tiy`5}$(?Pv5@qavk!VhYJo1`T zO8lF|!{ol_M@}i5J}2%c*JVRjQ5wNSfC+o1rm7|Ggk^=AQ`#uCpFLa~rm2q+Wp$gat|CgjJ74{hTwh+I z9!jp8uTozo7V>sA_ultw)Q5;gPus3OPNWv@S5IJR!2z>0YA1N=3H5hIk+JrIdJ==6 z7~sAohF^VyqdDc4dNrXJ@KBvkGH?Ae^$3!ApMF!%Bw|hfpbjVDd4YzCx5`XI)lzJs znMCee+H1O!0vF++X-wXix@!86>*ekm9Z`?Hr)C37CW8m+hdX;~q6pcMZ8T*J!jjsc z9|DlZct(58PC}=D7mj`tKTS0e^HQj0AxR-4LbH=xw;HHPAYpl=Cfkm!d`F-e8&yql zg+yZjPr{XDTZLv5W0lCkA%L^O!_=By#1^MzYT6K%)%lvqMCrXtHBDJ;3-m+VVYPxc zf>{j4h~SMTPuH-t00AIr zZk47p*9yEnLo)+r+6`*zj7HAYoMA8p9xoVs&eH_3Sg#47=|asHn0ZOKbXua>SQjp9 zmTH)`4KZ=qze4kp=W<|`W*sA!>MG6lI;mvjI?Y9%hI*rhrJY11!pk;kYFOGwygC}9 z^uro!v?aNPD-NmFcv_>~c}?B1_JAh74$?KmfZ7q}fkKAk^(QpLVDcx4+Mdy*!K7Le z9e++!kB=_6q`AmPORs7quo99y@c6do5r6mIea${Ty7jTf6INrB2X4I99QJ0+J+y4S zwmC{)9snPn-LzvIIjR3>q0MEL+JxwU1KVhy+j1NO{I!qlxoD?e+I}tB=uSiL%Y9wZ z4=Xjz(8nJd*C(;gc$r$;(v~BBEnVxuFjR!W2w)R;s?EbiS~!fIM!QyM%UMkdb>EgyLsmNP1-39*c3}0 z_8GxuZl=&7SxS5K{c$a8)q$Yu@SGC~dGBpmqC}1-wJd}FBh$4lQN;~yIPQ5$+m)pr zF(Dv8utd`}Db}d*SuM+a6eCnJSEUr3)8?3ix}ILrUS!a?5iJvs{y`hYQqsO6jJ&Fa zA%@K;>$;X@ZZiSGpyl^0<9tRIQRsI15HT*fuPts$sE`h(y;;&HmUfZ}6K}Cf8fzig zjDzbZb+&_0(=aL59>SkmCS9}7k(5d9 zyYx?*1scMu1|&5hzaJT#lt=D|MJ9bD_k*L8rjzUAaY?Xq`eqz0N@_%&(@T?@T0%HE zF=@IjgpJdazF3nmKdBQ52bL#ICC~pjGU+CHe&^UEDZz1_loU;VPnwl<&yCSK@Up5T zp_fsYw#Sneus9;BOF&A&s_&Dw6K)MICe0zb*>F9{i^z25e$oqafA8a@jwF2eJP8w7 zmc2^4K%UF~NOidLZZcJ2o>?+g;cUy~3FPr6cF7Lp@eU5j$>jQ5mt?BKX70%!h-#WP zOddz>uWXWhjKJwyCx4-#Z!&a2HsfCY$>&Mv6qvk=gr|a%_mgmZNb&^|CWIyLAfZFI z(2c?x@YnWLO*9XBCQktSg`WYpzNa5Sl0*@S>?8f4;0j3;PTNz|XI5OF->k;PD z1o5vEl4C4DQT?YSvusukuTQ5-KJHFW?#1Gu2>?1I>u7_Y%u4>P9x%B*Cz-`To0zCj zav4k8#(8lv)3zz_UO9T11_N3z9~H>(tYyjN^+62k+*@x-USuP9jgR7FnHhx5_a>K^ zL%8%{asv`pA5DJg0Aba|E1(j5EE)hM$rh$@61xCa(oB+~rB~18WEy{FV&6 zzrV)!e&@n%ZYmm(&LXx%yGGP(ZXmokJ1JfK$! zRm81`6sm~leNzy5Zrs2WDA#bm5``veQoQFXQ+6}HkGrcQWA| zi9yl4aD%iImI@mKpXPQzfEKcbWhqS=3OoXkG*ofZ+7e$KopQuQP>UDNO@RdlwK#QN z3M??F#hwdNU>LU+-&~k7p*e)w11V4)*Wzx6Ql?l!c=C8kuci=M-%Ej^`dWPHehQqZ zQH#esNrBPhTHNq?$|`bw;C0Fk2wt{C9VaBiHcVbRXRfmB8l!XVHf0NQZHWN6lAI}2$i!BmnM%Re=HY~yuH?12yU$othgrakq(0*7x1w?=PuP;e_Ubxv?nlJ2&% z;3L)+>A*pM#K9#xaL^y|{Zbt`=#O|!xy}I`7sg|Ccg!K2KS>9U`Xf%CqO*chit}dc zeg9&A?!{_?yTu^O9sT8+8sY@d6mgo$jlRD@W4A6Pv3ukp~-}3(iZjIoh z9#m`>bk_*)Z9nR?L_dvg>DG|zBX@OiL=Mk~x-Kkoj9i);hZG??ceJ2=T4OADp_}Un zf@}@y;Ep$b))g^WH2RA9Xlbeg@~}zu!GUI}!2%S1Xs9*zHA}6n50sspQ)!mnbxDP; z@JGDJEtQ(W;0CE@$hAkqR7WCe8?RLOI`- z=bu_b?r#lD9ZTK|>Be1~_efn}1J_IYbMI#lNIgKF^Ba^}>JQ=Ol2mG9W6Dw&5LJ4Q zPTk2ePYJ}%L2B`oSF=Wx#tHQ<Zo+W@*P6)f9)qzX4ycuzlJH7h|b;&@PQHHJy8; zb!Si*XLbY_JzknxA3H{*SrPqtM5a+QdpshInptIZ8a1;hVH(w+dt4edvsThHYGx5C z?s+$L8a1uS8v!rxx_>|U~h?1up+rQ*e)+{t(Kk*v;+!;VAI!h@RW)*_*j` z&+X9XEk$-n`n*$H^uE4c$Iuw?TbB-VdtLS3$l6iQGX7x%utYt#mbzi3lm0!67dFDM z^b+A+VYRz{p^cytE%MTzWK)9>Wp>sF!MY}WCq@By1gjSMYxRK2omToSb)qt)jlQ&Q zRK~Q|?Vd^e`G*iEfV2@2ZnlBBS*~S?cAlRN~|GX9<-yB0WoW^c85jSihg8wM!AU z)TTGYP*+a01uC?OHbJlN&s+*99Mq5g9R-zm=_0+K4}=%?>3_3?@c2u>90ah+K?hmtujzZvvjJ6kQV8^m~&L#HQfg{X`e2r&*vyg zXqOJFexuSou{qiCYW0}o?!a0_tLwB9Kqas>6=(iy`_HO_V}lE=(lp;M!4p6`r`&hf@f?q zJ~I*&B7%uU4jBuI}UyCH-4n&n+lxg)RVPw$5-uvbYRiG&m*09;G%;b3w@|8J*CK`>p*^KW)Z& zz-W+^K^@VVu(9=S~K61}m}jE_dJle#TmIUHu^A7QvnK zG$W5?T#`zB_1cWnyLv3uJSkg*)zOi0y!vrDkqq`AlL&@J8WL zSx)#@edZZ+N(q0Toq3K`UhG_yIfj)Ewk^qAV#kr#JwDT)Wlg+MEJo{5b6@Z(+hpzJ zw1HAOW-(e$8lKxJi)q~>2$6>8`)0wqcxt^q0a=sStTzpR6PWdiF+ca1X2)lU2b-114pq*|KHH0Nij+795X8#6km? zWx1lv%q&mbdwJGz#(WxpM^`1Mb-8YZ{RW~nnT$a6i=z;@ZE8R*QE=K7=S zy9-_M#P->bVI}?ur86GWIr}%*O^HM&`eyHi9WqE%7?6F!ii>vYmfak-aUpjVy|PE} z4;+ce4rD1Oz+o^q5#oH`Y?d7rBVx0~ob#O8FZ(;#{sxF4)sXCQ39nY(!G_VO~S7x@?vjmcoRjX4^4j5TY+% z(Py9GIc&?!p2ez%t6AAhYf&hN^4#p-cn)Lovl({H#v=-{H?TNyNWS0SXKLIi&$hNj zPh6Gm_}#?p7mUS^hb8kgaN3mYv#`@9@lu25WXoamdlKEdB)dU>=&AXs;i# zzvmxlTALjKn`Mz_Gwx*%KhuKz~vhbb9*_M3tkEhuQOdSoooLKJb`jc1LTiiLZ zw^--+G8hzgw#&(c?Y{`&S&ee~bN&xM^3F-(?wF6S~Y{qN$OV*a&}vK+FP7)dQ!onzG0s+63yeC;9E=k#Q$hruX1 zq34dzosn#0jwQF0uT^#q98W@xVqQT`97}7?1d9RoCa;_!6LMzrLcE-s(}a&Uot@Kx z7dQdsjAO}Inp&6jIi4JU-Qt{lJC6UGH96NAjk*&C#BfT|1&`d4lgmqCiF0=I)X(qB z+0VP!B?nCTD*P^I3}0nGK9lo`k3PGUGn9XA@U@&A#schzeQxK#DoC0+%kSkhWiVah z3jybsoN0X7JNPnZE>BJSCZ`QA=aP>mJ9{a}9nF|8ekd|6$_MqlozoaQS?7lE)Ft-0 z9ayRJh`;1GU=PRK5sqB3DD=uT3gOc-*C<4M`&?sTS=S|ZIkON;19Cf{Ubn%*^!ZUC z=-?HYDBLAD*MS!&s%!2*W^p*|UvlcB)e*Tc$L)Bw6P{+56Dq*ddgh+ub0fK*Nj%5F zCh@)*VG?hCZ0-pLqr%V*^cDy{psljp7yrIO#Lx`B%~HTdb~L!-x60fENE?qx%zbWw z=4hvpSr{GBgp}Ov|DFm0D$UUCu6dStwl22`OLhRMzG&j&TyIo<*x-nx^tn^a1U0xe zGdHLs10f?E%g_Y88->;iP?r_aa(xr^$-#j``XEX_IsUwtI^45JkhY7SWPUG6Ie>qmE{=MO>W z#}96SpP$LiA(^c@m-}1*;fM>l6|N9oyq7Dng0Rce+-{Z-roPH;N5VOOtHGD{8R9@?xWhq1v>k-yrw!N1@8TN6D)PJFl7Tin&R;gPCk>YmKN=*2SNsj` zew$kc9ciGiBz)$6hlbYtGTNt(exOrX+hWZPEDv{Eqecm;qg{K|zW)o>EeDi)I zp&=-*6=U-&8hdri+hgMTEIg0t&^5{xkm@7H=UJBcOaHu9gjlP=dDKik56Pou@^Dz* zNk|KCjme{CQW~2_&16`79yOCDqC9FQAH;bnB%3v=Jeuth>O9z0um*pdn)im_PR`7G z%_y)CExX#uk!(L=hYopkaKfGQ^Sq5E1dSe_2dgMx*GoKoLLN)2gX9{Y1nfrQfVETd zB1qP)nVu&k2KISo-W78F!<;-VLfv_M4e%Y!)*HTeDhJeaOigFTMr`4EkTp2|B*LaVcRFn6K` zKe?P|OA6wf8+mZPat%IxJFkNcxqg%f`_$B6-SfQu3^Ts)9kcv-kUr;crdi}4hQv^$ zef}nfLIqf<+_L0l_47v%mam-hpAhM8x#W}bg@-oG-@{@DfE(@#7-Yi3{ z)Ir?tYp_E}F_sHZH+??C_jS%CQj~_VmZ@l+9t6LVo9}?q#v00yA|t=0(e&nL?#ES9q+4xv|NS`{$75Q2zU68kx zQjF)U$Y(kE69d+DQg}YC%b!j-P2I>9@Q>T_^B8l24sCS6o_q4cd$TwnesIJOTYt(Y zweQZ{f_EfK)9V$y@PJU}S+JIr2y34LSeI6VPc$o7L&D4!1+W824fbzUaGR7I*N)up z7dvsk7kA-)@8Ji(yVm@D(&o6XDB@{uAoA&7;D*v83w-8wFL1@{Lks)}=*=(=WL!56 zWI&IC%OsJeeYr$#^y7XX`wjQ|Hv)Q{%pY^a}*xj+!=qkSOAA}&}hyN1?$YXXyd5e(ZObg zR$PWvC0Z5QayN6G3(YLJ=!6D^FYW7~inb)bype6o!fEJ^pveGqyJaEE3A0;U6&_=t zac5ZJAQaxVkl)zxOY6epj3^jT_OMv)|4ji}1UrjlXntrR412F)ANB@h$)7eRI@YnU z6`bIQnmD5mzJ+VpJ#D+qaQDZR87PDWpvA{JO3pcTh7=fG~sHz~j zIg)FN?D5OZg%4*E4CNz_+8;6)|@wr{%5?S#|vQqwF-$&6)ye{X|6h5IN3~4 zh5gPJ!cLu4_`CCk^H`dI|C@^cx+9M8$3m$S2tdamPyABIbe`7#D;YZPD&cWqdwY;! z%$q_v1@8 zN*V6hrYNitgxc^TSh-S#yY()DRhL!Rxo^=j^82U84CxRw!b(CIhmL68%7jtD`MJSfQV?qqHc@j zBmyH!Fml>coK5CLEVx=-o5eMOOsO&BWX-|=1_ELvNS zW4iH35lf5tucA|?`1a8vrr9k23l^1n_3@$wJj)TMil+WI`otBdi{wnh6uimsy6m!H zh!7vTP&CgOeV49v$NIZPBmRRd0$6Kq95wzy(KQR2N4WRXB5P|dD*ml#FsBoY-xMw9 zA4vIFbV9&A5b?R_B!Ab_ytsyszO^YfK5)*i_?RX4>?)VyQadgh;8lEtN3irMUcyIr zHY@hyA9&lb7#e59xbdOR#bbHg*g(^3?Sf6OT@5MT&huRqUd*zuE&6H`iiG0ET=TR` zTv=ai`%UqBM^5FZV~ZQsN#z)@&Fwj%44Pu2j;HC1jXHjuQT&-J()e9&@o+wxP*~iG zSHSeL;ye7^k)w-cwj9{YsV21?oo-S~_RQkLHrxY!7n&aMSZsRW_>y7?j~lSkr0$Qa zil6XF{IRaM9iMmpTZ>QeckQc-nGWqGI>z8o_gZrLlzmtHkX4^}+KJ*%W}I+~&J>Gz zF|03`wA$>NNvoyTi$C$)C*L+{^~t^BQvPn?qhfPDI_+68;-kT@iWl&>cit9nV>$N6 zXjZfiIV||Z^&jYw2z@L{SgJL$A$YZAi4#LB5=U5-gt53Hcu&C{cyMTB3EwFl)35|O zr90U>r2r~Ihi+)wk_lO^SmRi7+zi#uNp?ovT}xPYQ!xVi;>~U)Ul{t4h$3XZDs@G* z$1N<-_h~~q<8sfEat2-h70VVy=A=a8H%&?`?U7sK6nE6OE$nW7yHANH?%A#+z>*4% zM|CNIMitQk9u!pa&W4M|^eTA-=h%|F!-OR|{()1X5-%(6?jOpMg90vkGO+}FDSb9y zQ?h}N1}2qs;FHMImmIU^9_XJ}a)+h4_7`hdihM~!t!h-sK8E^|81r1q5_h!B`?(D| zzp=0}zB{^PH>1A2zwUKkVO8SB?RD=vuB4qn@C?1YC-j)Tw@ni~b$p4JB^tecZBw*4 z*uNv9``$O2##|T)|F7HLPw<6KbGKb@8lm#(CCY!V66`#qB!s1m!g~^KC*K1bOP$g4 zxg{(uOhAdnFHuPs3&CpSv$%xid@F(hgC-?iXrpTFl9G)qPTquq!o&17*nI`S0H>oX zOIH1Rts)Z|<*9bET z`|K!5bOb4BZ+PC(64(}hH4gf|#zm8O$$e3#P2Olw6+zWTl?bwjr!N-fZ? z=}w*Tt6rti%pwyk3|N669Vc?T!KIl*lm(Hcr-{fKQRxnnQJ%6=*xCtHpe`-7gK&99 zDOEvQR;e?&E-NX884s(m*O*e+6=F4hFt!vnL0OHrk1y>`?!TN?y2l#A^{BLrVderc zpRa{$t>6^bJKeIWbUA}9nw(zdj#6v%VM~!3HQG|jvgmHaj#3qdjSPQgDPZvO8wU0l z4wR1Mrcl?fE`?KIPNBnlN>8u>O~k$TmC6{%V_*SOXHFs4Bc&|c(ZTBzao*8V7lyPE zeYyAX(#7?F!0nTzEdGdM^g3O7i=~+YFQ+2txLM+Z=SrD84ne?QE|d;%1`!0yv)o~q znNl-r!6~eKQu>n>gxz14!o|~KbKQj{jqct30*&zej?8~Tb4md zJcVyqmF3$*7~{rWdp9WS=?d4fc4hRv&K=6=dpA3l!Tv3$@Pf`|7s>nj;4;|W=oAhQ z<$iw=R(8P_t`GMu(^x{-W^mbamam^6p%i5tf~MT9;}(`&Q|@t0*+dp+^%pEV(v)+; z&^KHO@^NnKp{`6rls7Dg6V}VX3G;m(C+wtxGJEnnswksMbsb$smHJ{l_x!<$-1F&^ z%dQfod^4LH|@VQT&(KiN>KOXaa$1 zu<{jx7igyKWG}qBYk55eec)@|%8Q$$%-mkiSR*Tc2%{h*DpQo7bU<73db!}xjPm=? zEhl$7=YgAJ(Q@)6#G7r69Zd6WRc^Y_bLEFir5 zxO|TpgiD^6!@R#2c+$&qIM8hg*Te4rsr-+BUnk*=&*i}mf+cvheZ@1t!rwNk5LiGs z*Q?^X6@=NXE1c{g9PL-(MDBkZTydP-7x%3A&J04I-WAs75Vq@IF_?sgK^5>#VF~UK zS@DGY?h#W_kKFf+ulPu>B^5A9cL}yvR{TM(Ei@I4Eg@`{S^-nU;J&^BPBq`k$uwzv z#gTt66Y^_cUKYruF>Z>M^%q!S$+U{@EZ=bn@OS{mx6#N_ zcb@?NV2vtRCtBVjVx8d6X@TO^d|BX$Yy}G&pv8kn`OMk4uq7%QILZr|e_7B1?H@d< zJDUAvL3@-lXw;B@^}=_8h3?2<$f&2Tc_}$ci991)BG)T(ay8kB%4}3&zOa#9VzM$l zNh6VGrlg}g<_o=%>+n(DX#22H4Us@Ix)JJPvCs#l3?J1P?KfZ83JL0OZ-@>lN7qL$ z%@!v7m#{6-n&G3iqfE<%9%#JPLKj<(871~9a#Ry^pZwc7VpIbZF=Vs{YG%E#2@*vC z&zY7Bo1=jvMs;I-8D~e08W-Xdq)pWLYC{9G+C)`gkjhULs0s56^9>2~_t*Gq)j??M z%Ucuv`KgG=nGNyPNuw6q`h@!X`zp0TeqiJQfy$r&Rbp76+E*Kt80sJ7rwk6Jh~EG3 z6jJt>)d&mcj+$)i6A%`r4ABOJB!(!JfxfDs(8MrOYC_doxCjgO zOcNZUQb7p}3JMGhRw?~88jXLVuO?WnRQoDb9O6GdMG-q}9JSxp$3HYo=^K(57N8FG z4Gaql3sw4QLo~rb0sg+)5WmDw4)GtKqKGGVjjFWuQHBL-m7351rP4nj&`%Sj3RU|l zH9^7J098n$O0DD&|M4k`IQY9!=WKmc{@Rc*->}fcz~GR;#GphaWRS`~G&CR}C>XpE z&+#9hqKNO$jcR(^M;jXKAE*xT3-Q&21qLgFLbXA@fdR^3wO>%E2C|BCYWVur(JH|| zK1^Mi&yLYm|M(&sXKE)FcK31_b)6)S3`wqB2+$mguJr z4ZvAV$7Gm$`zHE=5`7a@n$Vy?ty&%C9~KxC60BB%?ZYo9Yu{)$eCWZqlLg*tzeGQ! zZmMR6&#=qRrx0R1q3U#fl94f z8RQ?N^-olXfx&3~akIiPhXmdM0f|aKFi8K9U{zp^SggpdA*%d=njG~D*QE6$K*dWagi?bF`5nHO| z_dNIB9d`-goBgJ^h^bd7sz&{i;)vG8FFjw_0NO<~gG$8cMBs z!4VTLJ$uwuSB=k(Qe5Ut$y3xK#VaXlUb7U7;h|9st>ha1lr!rt>XNufa={>$r)DMe zOMVnN9yj$H=bUuPkw=|)PQp;M+ox9In=3!+?D67*5p{#JNmUXf^K}QLJ=4uON={{F z6?4=*ZxuboG+dn?&|N=UT+Co}bDpZY^sH7;bEcu?ExVwr%pgQn5xXv~8x&0|I@(b4 zwp(y)C#N!U3$|yfbhxLQMLj1*j;U{*R`EG&o_MEu&MDdWtc`+byrXWSxMACzUYUaK zS*FgCtTUF3eBLRzX3oniIX7n+rJR4wp*J%oH6!ok9SUWe9;s~GG)%Rm=w`vzY}e-G zbu%SAq5j@f#wsYLi6*DJj>R70y1Hg*T3*-mJWUjg%=Jvd*j(LkU?%0NJ~mGkvv$nc zH=|pYoi90hNtT;dca?%sq&15)WWn)#T98`Ur2_px_1KAWmP(y$*JU-cOAfodD&D)e zZm7SZ`;s50(kzj>r)qhHO{PG)yp^*GdR|2dC>B-!np5gnBNB4egIZ)0at%7e67xQo zGj@V*8*QdnAtzN~w@@;2R<2+dosy|q4i(Gm?9sW_O2w-cVb|>XVSRmSRzlZwm|+Q{ zQg1)QXzsWcD^_M$Lap>*hGjLwRBX#NSgEy~o-euVM1_*+DS1~_Y$aM+YFNaXez_7u zl|@q3^QPRsot)wtswuMnQ#UxAV(Gl6nYz^Dsj&7T*uCpP%TU)&z7rORLaa5{+h!D z!?WZt7){5`l~gU~Xm%b&tH8)}*b7v>5G@1iwytJ)Qdc%2NIM<_(6w!54)X|Qfu+LMbg!tP zSma@@x^rfi4BN7;SQg8fh5DoMCq+du3~F1-v$lzmZ_XL&PoE{2XF0?49F$+S;9OoW z#|-oc9ENMf)*{Vj zgE9%V68$b;yr0;#uD)xgRLm==K#p7D0IrlwderhtD2T!Eb3&yg&7Az?x8V2-6R3>XNdT*1)Af`#mQp@x`{ zu_AuAU)@)-@fm9+vEakiinwrWU7w7>6f;y-b9C2S!8F;GSwQt-(c-*j>i)j{4rJ`6=98ckhQP4G2x2dzg z;I(;d0SS3}V)H`{YC0}U&KK8wvRW11#JW)<*tiQGrVz)`wH%vqUgsQU7`lg6=V!ar zUD72}EbtF?WW7~#re1VVDoUDFD4Gs~RPi_eY7YA=x`;ucS!D`L!J?keDRi8xbDA?a z*NQ3n)}em(-1;A-GI4oYx+P}Yi}jk=JVok4MiY8&e{q>zH*NyE)=6!&L^MJR&D~~_ z=RCP2u$CLHRX~gPN{Y{7g|-xb@)RiLgZxeVE@6Jf_lwtl#-PT>498-zed>f(vx52c zmme{|82WLQ66)asx1YOKcdIe-PL2Z$yBCTH+KHiPm^DFPhX6=dN zj;))Pn00Uh+kR}_-Wf;LOD@x$Q@5KdsvMW{`I2QR28X|#8mS{`PjeV-E(dCb9jaK& zYX#e4JMbL2{fWj8*k}VqG0l#xv(zeBKUiuM%`tVSC{L9f?kq#hKJ;dml;;-zqVgYM~k~16(b*kdH zc`L6KQJM3qF5DSg2m7-(&pE40x|p*y%my6%^Bk*-m^vPhZI`jOAK0 zb%oZlitKf&OvScG=c!r6iObYBH>n^xdDlcEFVI$)l?*Z2Ww8%WlO>Nm zo$0E3>~;l|`y#eEPTD1%eGg+uxCV?P2_*`>h<1t$m@xa}SyNlvgOfkFGcG~EP ztW|bF^Vm|=l3Id4!Vp;od@B0bS7U=eWjf>XqnsT$Zz5zLaqW>hL!C4XDDX6i5d$aJuA zV+q0Nfl;-jvl5w_t0U$x;^ZTO#aZ%{c|R&Dsv#YEMHU$x;^ZTQi}Qq_k4xi<$@ z8-CS>zvqjVsttcP9=K}5Z@oFFXj)Yp{{O$*@GX%Yw7$2m{qP6Jc1c9<`%9Pq;K)v? z5B+W1=YP4gXg+*ruT>N7{J|HA>JT_@tuU5%58g8O`n!L?=Q=)f{p;_(evX!U)9?NA z^_`zdy&?MEGw--G7uy!VAaGE)02I0I))kK{Ia4zfZhm}jvA7T`8bFc?g(41Hz)=Aw zsdfguwTYhq7%;C0a1jt7$k`khPmZ1E=G`z0_^KGDKV_+S2M2-JJPV%K z^x(Wxk~94T^w&iX&FeKH?{Qscai!=`0m|uu2LyxD3UH&Py~=Jg3E-bns0t7ciC*K@ zjhjfE9&&jwpL!{WdqB}G0Xnzo22=65+LxsVS%W)(VXGdfBaI6`oFH5?ubH+)utY8n z2|0RV+xzuuIzB@&?Snav_|7HuW5>6S6*!J^>#BHdmjYR%5sAho%e3|&t& zE?ogQ0m*X!Khd!G+$f3)eorgnkKwD^SKpqR1%e>9Guq#jd$EJhE3{9Y&{CC4g-k+) zq^rk)nS!e+xQGEkvAO;QifHO8&>@u@955MbcpaMsb;1R!0$e(m1D2=eRa12>@NxX0 z051~#%(?-QYd}#gT0j-K+f}@r=H4c8qljwUmXPUgAGfnp_2V-5dKTD^a8#jz zOD>zL3!)hi8VZ9Zx1PY~(8_~dlM6rr&qNnYu&%OdYQ=(v&r{J1b%_uGhF_auqnzOT z23}J!9T4#B%4!K`A6)2saC_{;3E7H%-`}cc5_6R}?CEP8x{2@j_2b&R34kHD3V^B| zki4wLI98TiS`<%P-OaHW21uKXgAWqEPKqsI*KFGW&B1HqEM>4>IA#dX4Z$e!J*0KG z$jilzOh@gwtHrljK|(A?cUe57Cbm+-{VwpFz)65XCgG5*HOwB%k>16$Kd3#^mfuL_ z1PnLx27p-31y_&vrRiu^o?(f5g>;>^1<3TkkreD#!9Y{fEf7cwLmJE`E@yN+F0-Dd zWLE{um4KMOvp9d40hD_7Vkb@-=_u`6I)LXm=qf|-g&?x=}O$GaIVrH zp0e`dE*Y?jj9Q%AEJkI{#w9MN7F4`z7>J6TjGs23W6|-YJf3|x#Ih~hayPLR$Drr& ze$+wO%d>Cbg9G+ACeOTZr*74fG7a&|uWhOynPF>HQK)b})9|ohzh!=#a+a!k3oUih;jz5v;?jj-%WN3lwk`` z&Jc_l;;`d0wnJB<*nF*MZ~nM`fcWbR^qs>7>K20`eNv zS}7W4AiltETlf>;sH~N2^y4Da4$m%DekF7j2w}_#ebixx^5REjhZz~)Y&p9X##|Fy zDbakx>T%&5!^?zYmDG+w&g06TxAD41iwCjGLB$PMP8`_`{BCl1wXh_hHOc|3yDEP5 zDmXyVZ#h`L&{^9ls-+T#7(kc|5p*<%c}qgP+HoK>!s!_Lyv66NiYK?%Ps_&V?3F^N z(hGLf@13!v)1p)G415#WztDqCQ^A)W4|@(YS_H9oacp&dqfGpEDI&eM0+;L!2$5?iH#by4(3`?)*;Y7A?K1%Kd3)7qXC}I z*$$q@5^K$QvSb4B^gO(QaN%?PjZZ8BT&bW7soxJ^rJ}Z(W+32$ zQ&+JFuDwJlIWPkl#}%H%*dyeMba~4F}hSOA63go)$&obd{iwT9W5?Z%SQ)uPSx^JwR}`99~E=l z|7*)f1V!1q%MEk(N-gyXV0-2lj$IodOYZpc&cVVrmiL)Eec%mzZuF-QylF`{Vu*6n zPeem}re)w%i(5Y;lVB6GOtYk7cMJljCZ-CaX+A&Vrn5fI5;hMP`;tZMr~(lJh{uW{ zK92>It7DxY2hkNLKG58K8iraRBpBEOkRY~-zcW|ydDpUpx|fWicZC3-Vi9hIVtTqs zY!)I68HA_dCIk2j_?IvkSa{Eul(o2bGg;5OVV5!XWAT4Vp!T>b!vgv(U~H<(mhnz^~`o4=YMS_U^W z@;(jxPL7bZc?VPlXdNm|R4^@!^|R^Kt*f|qiObjx0%;{?Ohgz}9CFajN2c={ulER4 zM%XA~q7dsvaR}=}3>0E@7W~<}8mI@Cd$wh8gqGnpG17DGN@M^mpTrg-ctCWU!u=9~ ziLjk|7Pupf)$)QK2nhB<9jj`akQIb$jmy>6LPz?9Y{UDMO?T9F6Bp%f-fu5UQ))FL z$sDnG2(hz(Fo09x%BR5nIHp~bs}W!v7RUuXirJGm&i#HXx89MO727o(!g~R>iW!$3 zgMlS9nS%i*J4$>sqHbVPjpU`wIPp~H8w`=|y>f3c^w67+ug<#atgFsCLOpeuqyG

$sh!fIua=&h{KnGYeFef^z%HC2*iECZ-DBxM9|URp06innWz< zvv7d8>dghCI}ts3`hbNa#fiCv-Nh~X!f|54n+p#9{6qu&+qN$lkZPA;sCZ?^g5L5~ zyWU!GsMxUNn!Ux}jfIoNj2#Om?>VJU$`S3~(pr{LVuHOe`}xJF^~djAa8KtfXix?h z4W1{q8TbF-FcppPfxu|<#12%$mPt$%w9LcrFPPLfi{_{RuK-61=9xgbj!tMe8*~Otu6}<7!ofm%CBc+L3`Yg0MTPm=r_N{!&-U|=j)6WC_PwAUf_|pV2sqeyG z!Jl_%*}wE%IC)QLjulJ$E&Nl57e_7HAxobUJ>QwwWkkXQ7!FPoq!1Vg#Wwg4fFuGZ z+Dg=niK&804;{LYW;6&1E#rQ1!YL6EOUp|fCAb>G9TJsSk7ySXQw49d4p{hpkFL2| z!ncQm_GWY8P?63p?AaL@ar;I+CqA9e5Z^D=Ad#AZtoYbm_=gU^wl7T3 z(qE5FQtR)s7czV~h!EY20AZ{=IilJDIMqORmB0}f2=kQ-23tBll~{A+f_?q(9wu8| zm9d~qvjEWmFk_4GT?EXuJYZvR04NN=V4+A#fByltqMe#N3b;*;;M+E?6m#iD`oZwHG5E?v}D ztRC~DVdC8@!oM9Xu9DwfIBP?#|LmoU&Px3^azAUz#tHt{u3U6|XEFNPMMK5res>P( z+>>y^vp@a$5V8KDWdlWa$}L@b5K+!DdUE6!3%E&aPQMBNlf6>_g zY5^X+al=5d{HjI27b9mc8ZOohxO3Qlp&1tb_2;9-=2?rZ|8^+`i{>$Ndy9*&S+wlG z+ASx~Sv2gwSpfg;x<$RZi;>@DF?s36McKX?sgJsv>B(rBIR%~yLezQ?ia4MuaeRt` zdRxHQK~h2iff)=&3+RJ95UmdWI;aMIbIr{wQfUjMT@f#+644LQOHC|I02EE>kpi`f z*w$qw__h!fAD^ir?CTp&$;4-x7tMDqIwTEDP}0fZ+l_Wgs8xt01QWj(m{hx1@Q4kHUj>2riC&8JS%r#+ zfVOIDJXon3f^x_13M-GB*E!c{gmuTF$YdmPZh#UG@wys#a)`h%qn0G+2o`eAT7b5R zIuFYa^bc$d^Z2BAocu0aKWw-PQK zk53tkAH@(yzt9yT!0Zx4KQ4a{4;@KUl$f{l-stn;qOobtH1c$67Co9#f?K7(ob(1& zA+OMVVvw_XK(J$gcZEF-e=jZpKv2tyNiXdJ)3j|>RLE`!$F5k?1-3-2cASaus3{c) zbWe!bFbHubK37kulrK5g$OUD>1kJ8B+hBId)F|pUi--j}9(@{BT9R7j9ZnjqPsrqp zyVS&5BSdx#4pE`=NkZpzi1v{%GE42JT0(2d;KSmho%04~;;R(IV~%1E+xS6oF96P3 zGM=EXdpHiU_^7xYa*Go2r_dI-Xpp_a;FMfNssptJ{twI|V!ZpQ59i&H%CP=J72;t4 z;qrw`q&yC?7HvyRT+Y}^IL)HlpZIL^;?SoXfQiRvE9tWo@ygQ;eQ;93wG6FOQe?4z zGKLs*mI_@GJ`Y|o^70}oIc|AuZAHlz0QG~b^H-i;RJqQPG%%7q1z0>6Klt$x*PC%m z3f_l96_x@P4;^}e64U1NB~hI3Y(myS41Fb=kabCn{At7KX)F+UUg0c)5sd?!Bu~+} z%aMx)lm$ZFwzzeR?`Iq6N8ht-PUy%1688eOR>9*k$<>KD;Qar(k#*0rGhk@Hjz za|~gu8+giMp9~n6GVxg#rJI*t6Q5_WI|mm(+qX8rvAJVi{|Owx+e|e=m}7Jy;CK-z z6RbK=qo5bDR-jPjbt`nRk+#G*L!F?&ts7e*zMqu#^Cw||c9?B+d0e|yc$XlKh^v*@ zaLm@RpJpqCrBIT6*@R@z8`4OyS}fMjxs}G;;{0V2D8-#teq}CG=vR z`pUZ1sWcuPR1vo};w3k8 z;UN^QDB&KL&|e++%MylahdBzTUtHtKyVrnEFq2R#dGmT;hKXt5SXzY9i%x?%gi`>G zUM5(vo)x~K?x?<;ToQv?cEE1rCRmb!36UD#M(sW!$C3gf%Oo_7-v~M^* z;#~?-gF5UcvB<_|YB7r={V_J%&@*xVnTu=0^TS0pgS9>H;++gv351;`9S>^!D|PNn z90G&ren^Z6bqyR$Ku$PDbK;U-&$viIZHu=kzIG8xBZz;1ITS9b0s;0FQ+i$DD=bg5 z_>Hogvap7{qY2qY%!o?eKlBM(!_?aAtfn#xJF9`I0hx7K*J%Cqh6^E(OH^^7xK6b zsRE}zLy@n8wuuliFaYI>;T-Ebb@2-@iN$6to`(A&8=o&cXF*(!ZyTa_#${Q|7a*s> z0G?A}PGJ<`5er8cSA_7>gd-DDQcheboCVzX2qHu0GM%KwTT+Kb=dZx4qXza^lYzkM zg5pV(3=Jba^lmzrqD4n!KbbcyqzcO>SiFCCX*J8$Dnt|J=J$EIh6-0e z+9|iP3_B=lk*=EX*HRe_Tn-Aqq7!LJ)r#=eNp6)4@l=Rhz{DzPMh^U4p2~3CVTC17 zgo(>~5G+8(3t=OHno2UnlyLJl@ysuQ{o^)_uuTDtQBsZprAktUA+YUV)5SOpR4|bd z-3o(})NUaYWUDoZW>tht#S#nB&4c_0rq?qX@$+T(B47+1pumf3K+EQF$}6xKTDD}I zW13=-4l zF7Drr018fR&Jt^m5yR4i)xe!ygHsrW9tK#6&|>Jua+q-Z_cw3GD?5__D~PtQgl_48 z$xRrKX8U7YLUU<>8Kk*>aMsr1YZMUTW*{Upfv6C5BM(plvPTEAwI7^)2oW}$%RKKx4oTsGLh zGVxg}LJ^Bk$|PkSoV%YAi+j{)%wxy{3-CPY(r+HpS59iKBrk$)vfoTdd*^?RVOax% z8)VDe$`V5iQ=~M5Vg$m%qZ2huT=T2lRDvuHP{0uc0>maEkmT(?RHYJ`3WK7*>7cDd zyNS&f!n|-~QlgklBd*RnF5TKQqZecgmS|q|T{$IKoJ=st7^VqVMj*Msu1`DzETu$3 zkaVL&LxDYveGa1&bH)J18yJ8?6NoJlu&gp1ZzS=cTooauRiGsW{9KA6-DDH8Rm6J_ z6H+Q6*Pt`{>J10fI<>ah<`h=sZk{6;=6u5101#mVW2CV*xFC`=LIDPBxCy8e8HlLW z_EC!M8m~i0sf0n<(WoEaU_qE0$?Bd-s8z+N-xceiiu&g<)QI|m?Haqd#a$8>L=!X; zOJUHdT%}=VWA$)M6fBDfdXF~m5matDOR2lQz!-H)zC zTtY)^+{Q*9SsUZC4yRc;$2wKWS(f3bf<_PFA+&p3p-CQX7|d8Y6cr8C3HjP; zh?~IbDPiLj5gVRez)oba%A<~PPMo%ch*#3{w`@gNDaFGt@IxKg502n5L@3XyRT za{vrOvT8c9b48-h| z+=B*@Cq=;P8P2fyywNY@MwXm;a1xVqEM4OK1qg{t3GNw)pGrAppcGh0b&HUlp#uc# zDf^XWQ$ddt3H*`N-XIlmrwVwlgdsbbg>3O$k7?L}AoC?m3^Dz1MX*fV9gIl3iq8<= z2Y1UnwI()0F=cwaDsI1YYp;x)`3^`bVk{BzkS*D@nI3TKVK@ZL8ZP!}c){r$ToVW$ z$9#dLF(@a>J(s_Z&*2IpT*-_{I2mrRVMpY|#$^Csxo(k2uqxAPEcEDMfS!a*!)vnm zJl#;qg{t#_TCLV{+DKc!X&B#TW~ue~H7HA*uee%qCzP){AOnGAp`er)ILt8>*A+B6D!LtI{F~{5XTG@D^^BATLRkTwh!}7fph;FLKLN?E=8bA z6_Y89n;ZhrSERCvvBoBfU>n^^8YMl#wYeDVWe_Sb6AWcc$3%F-%_qF=oqEcWdod=& zW-S?UwWN##^(vTRsD>EWy4Wnw6TD`5d$gx*1;njztN-(m#jC_c?p-aChm%fM?IuoF0mcQC5T-Kv@U1Mg1o6_g_%?bkmdPB#K*--6qjkBEUM}F zJVV3%rn|)8G)owUTLvJJPi4?USa~_l737JL$kGw9FR^{mxLgbf9E-WhrY@+oo(wOF zMcnmK-m!LI;NXTASO^P54zlfF301kNN2NyFZ+F`ln=8z|n;&XWYhrU1YqmDn;S^Kb zUyE_I&tgW%ILw}$NlX9(lII;haEU%Q!vjf8ERMQi%F4l!p2+P&T-S8KeIyLV4ihY) z#VP@QGYM6aI&*~kz{&yGg-IY)55RIvHGuq7LTNS zKOnqsa29jWL5P)V0Zf#mjUy&LLS~*TbhcbCLKLJKAxtgB!@`a3!dZ;S+IiTpF?N7c z3Dy1Z>K6P9s4`tf)x}mW4gdHFW8f=bgDm7LWAk2a(PA^Uqr+Hy#{JfdNMY1~s<13b zUosfb30=sd1O`BZAlh*AT%iPEit(^u{{s3|DiH;}h>@zqB7xVC1D(B&h3;2#&=}Dc zJvizK;wXc1djPkYeLB{2d4-aXh}{!1Bto%_pBa zvq~^#xaC9J&^bmb;EEvC)@`5jAlAeLw}Q6%Vtm(hxO7e$j_oaq1h$WBvNo*l3AK{p zA)^_FSz9tC6s5(GTYp``ZcwQJtP-|Zy4DA*_S`981ZQ8v7=;yq-L9yio5>S6Mt)#H z5}Fve)~ET>(R5tF876F`_MRAKs6 znEsx8C^{V1sxbXMdIwZt`c;_z=f=~h!t?=JC19VcF#XSW5U9fRt1$g4Ouq`#@8BI! zh3U7tHB@2xRhT~4^;MXDTQf%$rvLBm0aciO6{g=Y`d<~MpGiPOS7G{l@(rlM^s6v^ zuI=No@>Q6AjC(*8rhgSK!wHD?Dono$)33txKi4&&3e#`zd{BkyS7G{9n0`k$k`5^1 zDolTmE&^4Ueif!)@u28{`>4Y7_v{`}h3Qve`fWJ^sxbX3O#gGd1gbFoDonq<@4;@E zzTuC{FFB@1YL`$??Q@KH_<|)5s~7ywcfNc6clApr;${eW4si)32?_4gMWbX8sF#4J zx|J{C&#PD(4mQ{tNBBcTK%BXC`p#bBlXEWXAvRsOB%j*l>)&4T^Sx5{gzR7YUbbZT ze@1%Mx9;72#HV6*@3||kTEgdt{)(%X{-$%*CK5MMBZ-fXv!+UDY^~(T5X?CPhaPww zBMPts<}8H*EGcn70d~<3maa-n8B&0qe%;bvbV*F>PrPAi@6M^;hfQ(*%}WRUXHAhk ze`ins1+ny?a~F47mK94sTY8{ad&0G2M6cAcL88lNOGk_E9(Qee@!QKX;>6FE?kkp` zaBX(+eamXZrN>`;;{Wn*{9mV*rBdP+`?ewCu`bIF5PH{TBl?fej`P0dUUY8ptaE0b zchNW=MXESwn7IGsYe$GdotF(0*L8uC>;t>tU0i}?6qvH*suGtq5UcatCVZXiF1aCHPf!$S6ngm+QH(wZj>uE?b@N@ zwW-$*6UR-v_K^SZ9di%szKqXp{$bshA2}pT+;~)16P5}%5eVij{e=m=L(B*W4G5(v z2jpIz6O#o)v3~UORf#G6X=9c*cG)i}-$m#D`oiwwj^#fX<|_v*f3cHT{LDc$BA}#m z#xKu&(IGjP+3&9~ZhzxmvGamE#`!eo;kkHyg!r;3O>FhnE3%=`+&e=n{;JYZ@tk$8a24k~BRl+YjyiyGY zPREqNmmO2?sbAD~9WyJM8S1}x4c)(|u2J{YH{q8Zv)@zisA2bHzt=OHC19yo_LoL2 z8jt;2W)BoSyEgR}H}`I8{qlh48jp>Bzv8*Z6C&}q&o!PDi9?@n{Awg#{Cwk?k+}K! z#;--PZ0(0FPjKKnxBm63SDi;YM3+`S%%HUDTFEY`o=*i}6IVq;C)U#6v- z28&zzHjQfg<;4T|GDv>#ON}+rJI{Kl@vum|eYe=WTU^(#>EI}V`*P#qkvO@3(`k|T z>C25r_o$RgJn)akp+ecx*hQT8O4~xIA}G{`Efn|OR~oa?UvGM)aZ)5cFrewENc`rO z#v>we%D|?>cGp4`*ZjS4NcjG4TO0Rnlku8=wPt+u*2YZq*XM6-Y%S;XK~1gAyH9ha z($ktNby5a5P1>Ckah6`9d9y>Bx{ALyH|`g`aNXdhBibgK@==&*RGX5xpHjr&51-uD zxNqCkBM+tvf?s;RS}9}gtCccd|7zngQARU|wyihh4YEu74x=PkOEKnBDoo>L-WY z)ZuLh7txJn@ut5)=l<)p#&ncR`t{2DJ{?}^+|{pFI`@_lO|8>o+lb0I%ht5*h@6xZ=b`^*0XxpEL2>LU4=XZBh`t$Z3mHzzuj>?qYnr-^>?w6WjgH3%$&W5)t zfBNiOmEzw&veIB@zg=mt$)lQ1YWtR;Xu(?sztgyH)HIt%wXL}swx2S((!MiBS7t(b zXJeaE5l18F#xXR~bvxURGAkTq)5kQ8i!#}@v+=0iB_VF>>#~#NU!L)9Wtd&_Ze{tK zv0o+spX}GRd{)%I@=veWRq5XccC}sX>~Pdg8b_kx?=_B&3bA!;)8yTSu){)sFW)6 zVdLbmfDH$>9bQg227}~JepnfU3rG~z=g^NTMY;K-N>QHvs8W=Ef31wI3;x=8Y_H0? zO8_?JR8{L@N7X5}gcnexz(s;RXrPD(YkcE!!9)^~`RR;3_Hr>53| zT-~XuZ9$@Cd$!#)HY({pohxs6&u%S-Xzbjs9Jy$jw5dSvE|r2D-lbBISzRixaSyH( zWMtP$L1uJqYO{K%VrrW1n7$V;e5q?w>-OcJ*o8VH2O%P|95@9 zdemw?>r{_g)uWcE9<>6KShNFkc&Z+?szg|m9pYCX|ck6P8EmZ%=Jsz)tps2BhB zqn6K6YklXQ#1Vu(1^x*|G@f_;FriOrQrmtx^SF6K#dTAf-e~(}zdv3#M)bbwnhD~G zBbvr__yt?$mzy5#QF*cW)0dm<-H-mDBb!b+Sj^pa`#ArGtD7cgy4eRC_Q5$v>}qN{ zO`Nf!X<{c;^>0|wG#bK-OMCXz;B1+o*b`JOt42w)`)gV)p~Y7<9W4HEN7MNK@D*K~ znp)bvVxBC(_wH;`{tpUpN_b5?=B}p0zvwGIZ2O1pTA))(+_bVOozM&;S2sDrzNhK) zTk`+tJwER_Kb`ep_k?1KXpnHg5uP%ysaioJOg&-Wp;0r$nq6D2Pfj&u>Vl#E1y42| zu_`M`he2jQe`!kcAowJT@RPu*P=GK4lFjgqiK&7&-gN1mcYP(3gIb6PsH$d^Aaj9B zEN5A!Nh1lcD2-`xpM7D7bQg)>9M%-VI50Xu`b$<0#Q`;bfByAn5`EHtJOb zBqs)Np4gpGL=a2Y&}{DZVfcgF2?7^MYO-2D5SEaw6GY3-#OE4N1tAaE%Z_fVV>;NNylnmpiOBi?ODaUZfUK{!|< zqCT1{;D!q+3RhZrb^hq-@tA`8D$;*WY~VV(OE#J?J(G?_7c#mQeF{ zE)Vqsq3L1jBOG?bA_zqbv;c&GCpa^&gk8mhxTD02pcQipA^F3KXX;m_YGN}L&4&ps zDbJ8&1rm$i>6}4S{UP5 zj{*?K_fQA^&4i)Zfm|k`=_&z;Gw~Hu!ua~l@2xvh9MpT|@zouzx}#NhwA~?yt2^4i z?WWZot-7Oqj?VG_Lp$2^Cstb`J7|4x|J&16E*z3t7@)`>9_{blSt$K)=;BYhaAo(s z{sZWK7r`6)3g1}XXYQIyR`R)v&yV=5;`3vF%_VmqJ0YtnB^~y3wd6u30!@m`S+Rsy z07MRM0S4a)X1})aZeaFFi34nNrM*!y)ci&x3 zrPhal`v>p6yYm-CH~XLb^zQn{vM$u$FwsNG262X)S6r_I6?)#3JoT^_M@RU?RKbD! z+)M8HUaze5Q!w(HW_x-OHMsyv9L6?>h`vy7!Cohi@bl8~iG+LD!eMiNdG$U1FR#A$ zlX0nM{S805_oJ6Oy?m7Dch9_IGcJb<9U2gL)L^WE{#KH(!KI_+Q2pFuq~StaEQuQ- zONKC2cO5i%r3f9Hk;{3is)h&l@X!G#Bpwz}aS$E?H5ttqeh#QTO%8O>*oO=~5h-PS z-io+r^Xii_NqL7nZDZ?tk8M5PyP9odrGPpeE-c5@C2=EXea^E~H(#=Jo#SB+1|>yo>jFb+0ng*&=ltBKEcW3QEC#q7P;4-_Z2tRAVu!>Aj%S|iuy9OBs=W3d5o(o-No$w3!r z<_oZ~Yl~7^Dis*s$*48{#@S$SiF`=XaIAgZ!fs2lr>_I4HaTev&hYb;9ls_$1_crwOu^F1BaJD7nC>l?%-%m_uwvB6@Z7>Pj z8b%710;sN3)AcabK;|u}-60YRxi`}k9SThgYTF{zb9`Tr0}pdY0q*6Tz_t;M(M-u8 znPx%Ds$oZ>&bkJ}7wm5ZXn$Nq(qpYprQ+Wc$a zZ^R;&gCg2x^_S&WbY06CKD^3|x`cfvWIt_gX}AH7*x0`E+Ov2ij8mt5>V$^d%@Lc9 zuatnqZLB~=vQwReT3kM`y7wjRLae)(qE4vC6qT^5R`fTq~`>K22 z=jdqvulK&lJg}_Kec$bo`nA8H=M9H+7Ei9)nf7N4zpv95Gz|r>cQ}Uz2aw&V2pUu-#OUdd-6m7?E1xw5yQo^{?7h^9m2o# z=!ZHD5%)Zn>m`2w^Sye`tv~xAK0oF2Gr#`qhkrOsEZF?;IRE%7A3o*`G5SixpKpG+ zlb$i8KFLL=Uf`T=a$93*upk#ToojL3(fk#e<#(n0tM~FTQY55R9`5d+pGtb8m^x

PJ9F#HYj+Wz6!C{;c~RS=c2pt*<`#$mGtc$0`H8<_ovLqwg|5Xn`5$h`Hw4 zadX$CANALyADhxg)TbXE=MS6k*fTj%GivQPzfb-#Wq^3YeQcaxy!^52)8f4Chyxcr zHfn%)=T^kCS3S0+pLl;fV*VG8O&cN1RfsSC`LSCDh{G>OoWK3Cn{4sWpAnB7wf4&c z#UZ~y{E4}Cbaydm=zS9(p0sxFFIb&#tF;`l zaq_}_#ZwQiJ?e8)xZM^G6H^{q`{}^kp&_MeyBDO6Sh&CV-cQ$F__;q17tLel_7f?rIse1dy6aT&yYqQ>qrPtZ-r~G75I>x}?($*clQP{r|BQ7` zU-4a?Z+D%)?z(SgjS>bxj{A8yqaj7d32#pN* z&WB1kU&2nMIi91_dLjNGv>KK`%s3!&tdeWyIBzq_iO`~PACtrCrAhK+X~KxlRuwNl zx9+Riglsj5KA9+HJ-@DRTDO!!4!{Y>7)pp;6TFh*a?*#U90Fzco{&KKEMN*2D~@77 z`>n#5jCm8gfFx8lFl%A*@!hX21{;&p3ex&bP>&qON5_>Wj$#Q=j%|Sg0zb1}@{-47 zY37ByWuBUpotV~T{i!t?hF}LHi!`HRKGQg>!2@qV?QARg(3>MZ1-jJT6a3WHIfI zIwi~0h|N)Ufhp$gSU2_{#W?ARiI<)|Dg&2#IHGM{fJtz;}75I z=O6!#^;7ms{V~)GAGvyczb~v%{qVD$eT7~Bi#~JJ>(~40^&76+o-H_BOSJzHwDz%1}4{@f8~{=`tqit&7gzIWs)Z zeEoYHFYJ{1bJ!HbH`}}O!`E#5!k5x>r_SBT=a+nb#pl<2e#7Utd>-fX1fSpW`8}T} z`8>tvX+F>Jd6v&6KAZXcfzKcL{E5$>`TT{?b9|oX^8%k2`MkvEWq<12SBzp-XG>>K zXKMt23EB@BBDahV8klZ6fQ3U)bz-XEj<@*EE8Ov_RuLqjWjiI!$#MPT6y>c2h)ur8 zgAfegn3yVf-|sBm8HYG##FpRn5?8%~IBGgMo-~RS1~D&qHzhs$O1LawMAGCiR6q;6_n$?6Si!*P7LkG zyC3|6%;wR7h^PHUit`U5^S{5aCR3Q3-i{O_&VR;tq?Ffo25>uX{FW zxc&ys{|VP@nF2U+ZoFOMCFXLd#q^7ZMg>Tp*IH(1{?8`lSO}EDq#Pw+RTUF!w-z&n z0?kFc6HtV}T1D@`JXeePtfPn{yYny1{V|K6lJFd2AGu#mA*D4bk0mx)h> zINai`QM3vXCPTTI!3in?*p1E-!WDYKb}WT+ufiXLfbcBAJRIsP$2Z_*5}$ESYGw2DROSVo2g7N1>9QnZ{WE&oV(+Rn@n`wKC z$!BaGmoDkR9!jiz4!xpqnBYEM(V#MNifqsRh9?$rd`#F&1sC#z{7w5VsZY&{@0t$t zC1F5z@E%EMDajq16(5eM8cYpk69CdJg}Qyi@epaoETm2Z)J3 zvbdNvAM*@56z&E_iTMO3FONHyK`-Gr!YGzik9~k{Sw-hr^khchrK%M34rk5V}=hCbfwrux8aBpK)1398QbAz9G|f%sE8$&e19trpqA#;YFZoE7FH+h zL#hF~j1?HPk4aov#VwS$RM8Yn@&N^3g03jLsCAyjcahQ_7ZN`*^Bq#hHk((HURqi4 z*XH^`nS@$}Zd#kx)pyN!7GNaS7U{H@GnpG2vDHhqV|pIOLo-yc(i-CtGk4K)z~K~& z+*>%BSqK1nj_vpx@7=lrPe?4HP6=?Ki-QpWusnZJvOUarIP4V^vH4fb$Pg`=kSk7g zW44}@kgM1r$EVa1F@0jL%@qs$i(-hfsN#s_;2GC+m84ed#JqW#ynXOd}n2zo3pc}=k0MXP^0PkY)PC!zw%BF>^Hy||re7Fa$&QjtRT{GxkOnfT0$ zqTlzosu^4xV{=vy7pmBmZ9bfRj8SOgtBBhrOGW`zF>flEI7^I5TM0c=GZx-k;9QHi zpn+K{=ng8eaPwcDw&dMw-1fv|cks~*etXy~sV%c{q+&p8uTk7dA2tt4*OxS=oG{IB8z< zKD9=ztw^*{mVeH>D9alRcgDUSbHprP0%$` zif4Y@Y>9VoY#v-~pw_5#VaIfApdRAIbMNXcPF~o&Ftu20TiAS9)Pup$IZX`zVRO&_ z^YOFsw&v62`1zW+VtMm0apKbE9{=eeI!Zjdtl8VY-LQxmNn+NWO~b^dhUTL>jHHpG z`MLk)Ao}g{<}h$xwPn=yqlcE+Htax_p8uPR&UgOPq4Ixcz4`tBa+I*t*kaS2&3jiH zBv^ZW8sxXv_gMU!ZmBQHf5ZxX+X(T1y6qs*{MA$svDMr*LChcDyX)MHw$0CIuTJ@E z>RsXPU;cBdMT{I@9wokUK=};uey%+F*6rn?V&?(nqlI>Gd9*mLuG3)g?E`u2If=&= z4dnr1`+?=j;-Le0yyKyk5#n11@%R&)$C-D|>MAxJRGuo{{W6aSX}s#p@%;Mi(L83J zE7yv*<>Nkw^LWaHazSXdNV7MWyNfLo%3l?O&f)QuM|eEDw)_oIn9gJHmiKD;vkOk) zu{Dpr;=GA`_tj~9w{v#C-s1U*6ms*|c|7AO6|nrq@?PQ$g(N9imbFUxwA8Y&t`jDe z2a6L_emctHr=O@){ezQ{$m;9jNm+)VV!zZ#^3ZWS4*p4|pD=YY$T{*?z5F$CsQe-Q zMxSmXo1^Gg%NMjh4ipdOO(;@_2{fZ@XGNp8HK6zkPTAeZ-X(#duT}quHXk^G-wx-g1#m zx^I{~I`2%V5j$rj)-a zZaEa`oyl(w7RMaHOMiF*kI$Sopr3g32>zmz&g0W}jO!z`FY~x;Jdex1Op`1<1Sx3Z zkw@~wnP>4>e`NVv;#N6aANkIk{l&PWcwcvy$C?xF>o0CQigW{IZr^BsTD@$!ei?{hwL^f)p~$x#=iJMVbXjgZ~_+0^nNu}wZ+ z#(WNI^pz7x{0%t^Nqnk!c`6daXQ(*tMA9{!#^dS}X}a&r#+h(Z`E0RNK?;ht@g$P; zmnD6B-u8XP;V1KW(3w02`935cPd=tRrePYrc+e?4JuZiC@TX1k@y7@8c>5jOM~QJ$ zdF*sX>!02xAO9+Iq{yd<-iIM=*>z$MF?$+K@VBq>IRCfXCyV1xC0$nb(|xCwi(;G1 z`?f!BKVHoG3O`IeoyYFY+jTMMt33Yp7#=4M*)dei|0-|kBWKk`A8kKWoPHX=9w5uI zZ?_#^6MawTF?V2?c#?QfKH72-%a}VdBKI{O)nLRsJI)aA$;SnpZTN zYsZQ+cW7elH+WnnSIc?dDF2U8+6v;T(SKBNu|5=ajDy{pBE=JH333I8CqEbtyd|rH`caXDPiTrB|i&fRx^q(q<`rETvba)Z>Rp|CG{TDLp5p z(NcOuN{W;kq;%L1XCeMdipR?@g_OP~rA8?gq_j**7fb05DP1k4*Q9iVl(tD}iIiTH z(p^$|SxOH|=^-htm(m}k^pupIl+p`QdKzig`L9dyr}E1Wq_j~=Us{UvzLfTsQnQry zmC{-%jg!(!DdnW}6DduR(hsF{vXq{e(wS27rSvT+y&|Q{rSummT`Q$u%#z|QQhZiQ zw@GQ8l51X94Wmmr30eShPD)Qn>2xVQEG17$O;VaEr7c}%AzmfLRr1Sv zDJ_q_jp#Ka$cqDg91LPfF=sDLpTx+oklHl-5Y;eJO31(q~fov6Ol* zNBU4o!;og3zf_82<(Dr=Nte=_QkpEKT~azpO7}?V3@QCyO6N-HZ&JEUN(-fQjg;0) z>1HYYT1v~L^q`b}ETs)n`k9pOmC`Rym*Ra=d{#=2N$F)Nt&q}oDeaWfU#0X%DRsUb z>CaN?E2TwJszJK^#x9r5@Gf0+)uR2+ZxQ`U<=4f>+3o#Aa|@c`@N>%#q+0x^&Mp5> zO1x#fHltOW+)Mo7yz;SPs{LA+(m(wC@>MDM++Q?Lf1{T;K9$n_UKf_1ZS&>g`qUxf zlyz_R^bftL{6zG_$6tM|*R5xKdXQLG=MV7DnOS}<`XM_i_+fu>|KLuzGG9_|4u9~M zUsnE2N}O=^>oY=a_KhpbCyU1}cs(k~H?AySnv&1`#rofrdx^Ielt+k7i|^_05BZ<+ z{OFg-_r4zdQX`bVckLqXZ|U95fBU=T$D^ND-1}xPf7AEN|A?L^o!k;7&)(Cyo8NO* z`H#^r%{!?qS)@hgkSn_SHP@7%kA8We`ORM9qIu;S@xXc8NBgJFDgQS5W%426-_(fN z3$GX|`d+`ir+?WG${T{8Yr?lpzhwJxzkY6|MDlGuZ|m79tlFnfhgGW)+55V55z5V1 z_7kV9eWRcM{0(hi6#d+H{@dOBS8gi*B`iUM^#;|urTl4_<0{G@y>@q@l?yKKCyw3t zMt}d0GllcY8)N*8D1Rp<#eU-8YhLdyUTm104r}uAlJdsrm-)}X z(c6DyY59%t*?;i1@_Vg6z4m%3!u}Q{t%e$}_^#!q4w#fIoUcIT}`D9w=X#lF$9c{Yz>4`WN=@ zBW9HM?&m+ZrhIuy9Pr6&Gs45nhKEq&@B6HEW*qv{^0!m+xxfGD&&umVQ9Q7oojkj# zPoHo?Jnol&9{m!GsAnH94{bPMpI-j@UzC3z{qV`njM+!mqvYN3VxL}O_RD>`i>oee z>FK}pX!+59OEdWg0|ta0^5)v|!{N_9xxO2v3<@yoxdDB|{EJ`f>A$_P@{WDJ_xe6! z{d%;&bKdMTNNife&;R;W`N8NNOsWr}cgUjp6!oL%`J7iM;Z>_!x(nsQzN19;;{n~m zKOgb?O7()77u4c`5&e3I?$^K8&ma9%`FGLV8P|h51+67!*xRG}_8qZLSMl!Degnlt zceV8MFWprBX_O;{8SS6-he{jCXR+eyeqH_Pe=7eoB}(3#X^}nc0B8+wYw0Gw_12p+ zbLAl^`P|=s_4)FQNc3JT9~X)1UMkOw#L2J7wIxXVn=NuI2jUaW zGQlm6zhR0^%3HQP36BxKf0f}g{3+%~u#%eP@^3})9R^qH>3E=++d`80dr>2jOh`$w zzsS7K+VW5TgV)Rd3cqRCUVe!$UfwRJYmnrmLt7^J!`?2Rm=g8*w`Noh*u%s}@9@Sq z3vWeLb9c(u^4#BF@oxF-NZjW=IbMTr8{RJ$LQyRLTe-VG@Wb-b=%)=Im7k16eqyx_ z{@}`gl%I;k)BaW75sHg!DuYhewOq8N~A87d~vykm%e@$eRwf#CPSH7##N zBEK`}gKvk9Y*`VBzaQ1YxDCF&YfQ`Ap(wt7U`s#oY|HIk#iOs?-rs+6Y|D*NqVx7| zt+-F3YdVF0`qucClcEI2*S55F&E|4sNZf&*1qiCG;!aYCA7_EZZI}URZnjim{VgjukVPM_Pcta8k>#lzi^* zubte&Fp{Dee?-ggQw{##j*wj(eDlvETQ>8}Q%ALYjJEK=_8Kwk3J#}%HRsF6wwx?# z9%+5$&yH=mA|;>ui(t8V_Ch*v#UF<54L^6JqybC9z&KOG95q5p{quZWYaicR=_owXuy{6&Z`fSC6Z?GnX`6KmtNtG*YMb=CTz1 zr&3+yW|-h*T>ioSu{J$C0!A4-&V#Ar7^f+&w8xZekaz%Pcww&PHZ_M*WZjTRy0aM8 zGkBlrXN@efg{h&7#+mZiT$OT{hE$>Wks%P<LNkgVF%XjKrv4O|5j!nh%|v1L~B6 zZWtKuMm3v3>gpYp4Pf@t$4o7Cc9hYTvd2I7qV#*1%6GHm{N>8|odPAPNyTEC&_ z&%b1{8>o9AtPgL=zqkS`QMI(aycqt6>@NiUDXyhCf>JX>%TvvR!EU1CRnu0TGG>A~ zBF#OlCdKwH?@sY9=$^^fV3o9VHOC=c;ia@5^Sy1lqLV|0bN=P&@olA;=yBI{=c9tf*n1`{I%E|^>H||_ElA0awNgK& z)YVnpsN)^0CDa9c10D@pwrLg@as%cU=;Du?ePQk!crTF^_zLwpOdMCd$!8_zMnlRiA zkN8(N|NdG^9S+(gYDaLR>!P1( zU^9RhSmJtJGuG$811P4h-BXONFFT9z_?G4t6t=6pmnOTX8=8;n6t4A?{pHJjq#oWh zmP5=5rKT2`c~xB)7Z5@?Op+v!XM`3c^k!8WJF0vsaksS@OCnB+nbd;(&fTloQBYa z^)hD}&I?m7GnOCio0>u>WzvJr@pO)$3s)N;?PT&d1S<578% z8P;ccOL#9hr|n0v?RCdx-0O32$yiKDB%sGfOGqFNV|Ep5izm((PZ=~K~78W0{l%~j5l|NRF>t{%zU>@Yy zil+Z;E+g*DlrqGTP94yIK74P6zg8216gXQ7FO#|E$Tv#B20;_&r4i5@rS$s2eX1%_ z7nmPwbQZa=Z{Sj~l~GcqtZ+ifNGWfXa7_=ES}f-`Q=EDsl(-Qe-YW1>r4DGbRCX_U zLcDP9-G{#Lf?6!I%#4K}f>={_0q5{QZI37zXl;sjqFwlE`}7qIoqV})he?A zm5Hoh)lH=DkW-QiO4(_K7xuCnTtq&bZobFdk&gCL{6+d6Gd2nk#J7$6%uhKOK&&aA z%&Hnp7dD6J8f?RU*#lh@cMh822r&;VRaKH%>^p3Jq{Zz!DwP^j zp#wjo3!V{f!g$OKYs`^s0b~-fBg>2hDMxZuGJmaFllK+(os^=+gnW;dlZ2fzTXhP| z3m09MGXJXNuX#f$Xa0|b@n@?>YO9(f=cIbhuiDtlRedzQ_vC{4h(-|*$6&4g0`hr7Y+;iK_KIWQQdd+Kfv^|@xwFdP=1*QKI+J^)h6w=N3b z1Xo;w)BKLVX~xzH@BotCC?ap0@9Q|+@2ce2sao}ql-;ts=5snZbU4`4@0qcU&B=F^ zvw;2QYE3_q+|Nu>E||=@Wgf29K$l#LbZeLb-yX-?1x?8_o1D^;EdF$uv2^AjIGgD~ zEFJ3T1+(jfde-i!`6h=Z!Z z(n$|?C}ioT2X_~?#OuKdMJ%KB;5tvsU@b^UmOzn{YUmr@%X}<1wY=${08pkCsu>_& z`dJ?81tKy|&t!OUOK&}RrKF|19&A|J(o+wv4YptxNmh<9fC;o?ea(+e@z36!$bBrCEAm27VD7k}5WK*?ySbuUBb*|9g$o!Yj9&s?s) z1>(*;atDI21Hn91X>}~J=+)4I3CrY^E|!{;M;+7hU@iT6cfqoS%%;p!-CR~t+8zgsK9+T~R+ zzoD@sqaw66_Gtfqv@y18R9T7-QH#*$Es^hc9W7b^X(RLa42{Bts@7;pMy#`;0u9BU z;Ei2Q#|gKyicxfTOIyP=&3oF~-I8Pg61xGQFQSO@d>(JYBNHUCTX$_Veh8XD&QGWEHB<_5ja=_jW>}!F(>+!RFtacIXWPeLX z3SA4MTYrEh5mLGqN-aCZ<|VLy2nUjJJ}$#92ON(nwMvO&2^P2)O!4{3;zym59tP0Z zbG7`$*+EkD{!KYh%T=5nVu3DVN~#q{fiX!BOVC(QDEn5eBI4#S3wD^8{Gl#R@~}H^=KUs?I32o=R2v(T9zO=L@-(KeO zV#=46nFbm37wFMXTsTPaOEC;Jrdj^dNR)a2+wKcCC*vu#t;z1%j@yJ}3(oC0C5~9J z!+WZYX^gzF7e`|UW4tqFSYVnE44~A9ma=K_b=<`0nQ~+iSB7G?SW1idS(cSL51%WR zAxjW-T2jYdG&V}n=hQWYwWO#r*CKRWZuZjHW>)XCeRX`OdPUWTE>y$Oa=rN$9O1|$ z0%wsg;QtLbl@Wf6EH*tM&h{#b$i-46GMD#K3rCnN9^ND)g4%CL`)$^l1 z4Uqq!<<9&G`BxO3R!GUoOHN$*jN5g5Y0kxi9%A$=%MP84_E!|$R$ET!IG@n|q#*a7 zn_EkWVQVbAbjsWB&^B~U5XDx3cpYeoa!0I{9j%qK2x@e}J&==J>J_6~tszxkthZpB zlF51b;;Cz?SY!tfIv|Mdysr~L4R?8Zh-sTFJ2iHJ{y_V=mtwa`Y07K5K-2%$@x1QF zK4#q@O6-C&_bof+gkbgpWE|w}c6P6J4lP?L*6z(~I(J37u)urBD~-6Lr&d$3q3hWe z_Nxz?b^3s1x6YF<8fufezO>*h_IuAC`fm+H#$gLQJI)u|qxgrL>Z&h=CZG==AN?;o zfgQJBW9zz6(?Mv|hhw^M1_+$4y#KiSQU=uZ5Z)&(IDO&V<@E;f{&&fg-wNLxOL;n) zShp}$?1=2TpRr&Qfyulh9q(uL7SZSAXxO8Yf%apQ14IZYpnn&>;koS)(j^grJw@pmZWzp>K38-t5B(aU!hV%u3O-iaiw5K zJgLlAvi92>MUdNMbn@bx7VNi3vOxFa^nf|@r_z907~zFeTDei~H^}Y4U8&HRCl_)p zAlGu8mnX9|PN36|KCoaV$4q0FW4mLe+44Zgy<) zyq8jmND2;VN>N6?CZRMq0*C#3UR$tG<0L#DnS+~DrY-eRtMhLy+jNTT5<-`7F&<*a zdnq(pnk|+8HR*Y}t zMoBArka_akh_V`McU6W2S}*HltS|H|a{EU&6Q~8&p)#RZP{z7UZ#eWwDG?iHU2LFP z&u~GBFQyMGi_VXKj$2CC%gPQ%(4XLYRHCE3n+H<5kHbT3D{qDHN{UFSDEpC_R&Rk> zhOolZaVElZKVB`}#Ez;~tkh&AE*wRP%xc!_I#07k)+kD9+7k2lx8`nC!`J2^{;pw# z8RjfvUqViv)UpPWXGiedIn&&onk<6P=o@8)!DXJN9Zg+i6&Sjw$8LiQZkmk5$0kbJ5mF(9iCir5| z)ZPMQ`0xcY5_j6j0p&>UiLu9r*HHfPBMzvC+;2BREQc#k(|ANN1@DS67S#LNiyaD@v zE2?4KvS+p^Lg`alU^GTpujpjiOF|k#t(>%mkQwHV9{5=a3Y*;mWsQfuD3N4^=f+*| zrkmMIydPsNqgO4X@<%0j(AaSp`Bbk)I9eKS#af%wWdBltC%$Ey5_EATGG}vmVWLwu zNgim4qm!(q^~{~4ScC3<4xeoLQshMKQovfm>~fksaVEbKZ7Ya>X5cXR1@Kuxy05q$tfjD7S;^AtwAFwJ%pgmYa63t*e-^#M;_9g1F;| zeRPX=nrBRaC`4AQ3z*qi7OrD>w<{!WEwjS0Wy*pFnDp`9?XW?y^>a6&{FtXGSRF7W zu9NC5-mJ7rQ!3TLoA00wf(~0l#a}<=DI3`>oRN5up4S|?h!b~y&g(3!9l_MFT`}RZ z-r4B_ZG5Na%!@wohf;|7b9Y+qm`tFj_wOI|&(tn!k}25)-uZMzbp!nQnl z%Fpd~*>=A4_Ui{8qUjDRoNjIgTZ<=Q?L3!;wS!JKV}b1^bf_#SW$slZiNA8ovZ?_sNlK6K1g^Jtzb zM5jbh#^>z{kzb>BaIPA+a~HA4oc2jXW?74CDWL@`@u*7fqS|fV4JV|9iJ1Z)1fOk< zpra{H_harUX)J+bJy}iqP_gYRV7ZCIt|4b+)0v`qSF!Ek7Hn$oOHcYtbJHyMm*-?t znFkv)p48~j!*KHZvVEXPyu0E8u@kojeQ|bmT4RqgPP~6WHTidCltX!YI4&2fMi9HuaH*q2lEYS!B)C z*wp2lAWv_>(Q;3>m#6->tr>JH-R>)b?^s6~=;SBp2>ve3KUaDU9vJDdxz=uF5wI?36MznZMy8zinDM8;XHo-Puv zC{k_Kw>pVeEEgNviliNXSecI2>*PisZa@bs4mpcCHFu-($QnjrtvUq?kB3rtB}HJp zhQ%Z^!EN>wkDpkV8OUuNEt`HR$crFCJ{0?TmkJa(9{Z** z18vx|XEKaFPIV$|L6mW?OORL`Y{N8Sid0@=Y>3UQS-W-UJqu!^`s}Xk9M0711W(VW!KcGv4BzqwW{i_>JzVCN-(`4kxr&2~vJb)HSt!o=f7aqad z$g9<&bUoV?gT#3w-BawSZ-YP2I4^H7%l^{oSd12<*cRQfNjqw7dAgXg) z*~S=T(4Tmu=61yX?vuzK9-_%-Hn@J@glc``X~c{~wtP@XR$(##LO3#|OK` z=t3N(efBlyjgE%#awLFb^_gJXV4zFi;wX;~O-+Mr9nE*Y@2BS`f=@3C-iow z)q{GMp;JE`3=s8)Vp=f^w;<;3Lw{Z782x~LBj}J}Wfw2-} zrOsk9%RuUyKIO!Y@iwS*j)ZsVB~mBa{?Tw)ZZG02QUdz=(v(p!OSVaJ1{BJMWa8uH zK6Eh~E8O~D+LF<`*C713NbN~|7ek?EU+7zsyu0;vr{F1ALwJ5=!#)u6uzAh>+V()l zhpmXp?t8A`>Y07r_!dm&&$XC*v}J!^ z(Pgd;rjRMJ+JtKR(&|)nN9qq~8k@`E^KIBKz)T zaN5EC-XGc8uNT>{2OwDlHd#OXn_HwTwO#u-GTqX@s7NE83^EZmhp^z~^zc(0IxDVH zL)S$O@X;<=|GdfuZ;zSK*^r?8Dy{4}pr}~7#s-tik-U)y?NvmiuC*ynPQB?c)2jyf z)AYL-A>P3_wO$%lPAHuKf)h}LQtf@qYUG@awp}_Il?$YW&-(_D*YvF(B72h!#~@rI zXuX#@6B-jpDK`fAQI(kxHq$m|_lb-hQY!PSo${e?A$arseCXy5I3q81N{!Chq3KRe z7DmPK&{yQ{wP8n!lRJgNRXi3pxFiwZVcPMR_pc5>Ayt`)X*cqq)J4YcaV*Mvd}rTx z#)|fbxDZkGS80-%lF|`+9Ff>X{VmR0;5Iu{3@ErH+y=eiOoKV`^dU|h=f=5dC#y-B zvd{i6##N>`Us`*1v%i>e+$IckJr$XKSYRo_{VL*rvpxK{Y~aP|eW`dqvFxN&6PeGU zn(`kFFrGql7XF3p>Nlrs8HNjD>uDQ&>v_>I8+b;bC~Z6oHS@Tw-GARXsRI#$@{%L% zc>^CT-RTK+;O!NHRxcKv#tQ8JZ*pb3RcW6)yt*&aC37M+hDre%6XeVPPNT8NL;^YUUmDx zniL#2(4D*|PV^A1AK9=w%w)c`#pEXo1{M(`pVotZoUY@41U2XfumV$-ER@hZ`r-R-mB!SYm3@uAXe;R_D%=1z`MA8R2pv=QNrPGSyv4)h1Lo0uDDSy4ejuB)Y z-tFal8gCsENOyPO7?D5S%l^a;v$6axM30wW`&{j9$@77S=zI^H-ONfcXf(VaYRHEu$C}DeobMt$-mp#L9 zQnd4y1-*R$YtIi&wDJYlMbm@wBE#2?ZbHzXc$=q#zrCo7hRbapftJHWc%8D1m2YMg zrG3SbGUpVes%#1S6oU-<6EDASdOY%{$dM!T<>IrFvSRh`Kd4I?0p+J z-~m1j=vW%HTP8k~mbIH^L@#meUIl}p;~e;PL(0h7A?Q!ihbAr~yGkN9+kU_)WQ$Nc z?2JZ+L(Al}?^HZj;fGHrn5ApD9ed}@!k$CTPmx!8?x?C_Y&rW`ogy6oE$@{3qeAKQ z4+n8Oyn-D&mYfhrBfFl-yw%|KxgFb;70yD&Sw1$# zpd%ljg$x#LFXdz5CHTZLBazX;4x7rj_BEE@qasT)wuA_^lblMDAWn9+!@e^Qz6tge z7rNS?>o}j(-RUm77xXgwdfELsr0qqB8hz});L7+fkW;?Y*1w+|Pe@eB;E@Wz45%g?DU)j0bEOejC7OLhpqPOxX{IFHkh{$Etpx?%nxI}9ds za$`UVC42*~@0hI~Vu$<1WVjNZ^y8>6!uUgY!iVtwV%sn~R2Y+ac@Q_z9*T`=yIqfD zPtsBSi<%hlN$%Pf&p#vWIB4NCtg9OaPi}y>S-#M>Ppc;tBqKGRUx}Gq;v=3xWAmD` zdWs!}t<@I+Sny#~zZzelLIM@SSLa+9@APnP`QOr?pXAI)AS0|(nUj}DXlXf$eLY#* zej{wZc?h?!ob1Hq;uHEplycI|P54Z+!=@GN24hb6tteB>GZ!YMn(`BL10YpZSY zIR9l;5xdZiH2_Dl9E@FV_om#nA4J9o{FFSbuI zNL-(zuh&kEfCDZSCr5JY5m}u4vZe-UqOy|g@YI+rONBpfUyg6Pe4LhU-U<{E>94m> zyj&rB12`-lUSJUOSJ|<5(tbA#5?(V(q~rto%9E<4qbDAU+v&0=zT4*PiJYI2--7+v zcaB_ZUu=*;&1j0;b#~lTkhplV!M@c%P5q&kSmTCmLLxtW3?k-jl1)U=UmmAj4%cJRj0t-vHo^4#MWhj2Q zqf6dfOOYM#3w{?4>1qbX>!| zezRj&`omus96SOwo94fEj!Wa;?NtmC$9E8?WRG*u<&1rZ9{lpGJwXqu=VTT7zqc0? z$rtRi4AkeURB!SN1-vCyfqu-kw>9kKi*{7_5=L>S5SL`PPcH)#h)1S=p!OkHWpw$& zUKL{>0xLBCPy2UTknT2iM2W6B_L(}#e$9SF5AMHV|4|PPx@BLbC%9;{Hx?c4*xO?T zPy%9tXRE#<-$3VF*_bO!0UkgL{}W;J$Z-Ycfu;N8uYISL`qBR%OR9J~Li z9oLd%kjk`hG!VO=%UVy5hC#z~THjGjbJ(&HFYLA8$u-9Uu=hW9xYQhc_R_vW5B~I8 zww+_!zm=AWgGul0m9*gA4Gw%n#gPwO9QeqHgJoPD3!rj#V5Z@%uGMK7aQbe$IqDb? z!u8=mN3!VR#d3$D65lt zS8?DlK$6mWII4)$2uFlYIbY3zRR$M$qlTlc9{e=YA-6SUjXtmC7^=q}tL=CU9d!fh z1`nMLqmDPtKHwzm7<5IVq~p=>obMgJ1|ouEcMh~7z zbYNO>?4VH&Oe+rhCOPnd3kO?`m1E1nL*pE)_29?}j-T{k=`W;^GDGGh2b2;AM^16n z&~w;4)iG6z#f3tgFE;$z0X;9dH2lIeM?XDPqh!bYk4S_=#-ieBisPnEzx}P0?EIu% zzH^MyNf&227U{upvmCh0z}5J{=!n&0pU;t<&#_<4b3m&*9jt)!t-!)mXuG2=edyw}2V=K8pk9IF_Sp_u6AljF>425t zVEx?=tado)z1MM658l~_>8!=3?{~mfFvH}74je{tkbZSM(qrj}p(^-k!%xpRI?~w1nj=|EY&_$Di3W~0a?Z*@ z;b7bIj){8k!Uac~9-Nd7t*tRMyzJm zicQ5q+f9oDjv5D3Yz};}$-%=82R=ODp#MW@nmD-gk>k7`oBGtTN006C+~Lq;yS#Ah z*JFcUI-cpVVQ=J==N#6&bF9=EI(=~L)niMzD0n%68AcRR;PP>BLSdym{wG>ia#IoI zsvf(@Q~6Dg9pCbg5@4(!`-x`rR=7RI+(L~lyeq+U)NDy zyl$;DHprkqt(>B?5ewQV@ft2Zv{io8Ny=AB1M#4p60YObzQt=0E!rz4owZ&^10vpIUd(jt1 zW5^j7abuL@da%|w1zJFIiD%=LU-Sg*8(1gGn%>_44TPsoo700yC~C(>cr2YJ%K<^q zUtmDse##(Ce_$^xVy7x|bP@)nzaH#8OhCI?R-1A*c`jz3-JCIxY(&6j)27%$Cx~Oe_Xv=g4l9xEM57$}I;=&6mQ$ z!K?)e9yQ~jBUM>zNS3d+#u)hN)|kTlZflG$KiV4O#V@wTxbSnWG5-8kYmD|#Ym6Je z(u#EQiPo4x{61?;b$*-`Eb?VmM9NoLV*>d}))*gtk2S`XA7e#2`4THw%<}b8q>zuW zf=9l<3Lu|fjq&EUS7ScmhgX5gS65Lr`Q$3n%jZ@RDc@Q}0{PG?F!{=Aj2}O-3Ksdk zDiX-YRbvA9W!0Es{H!XX4FBR$JW2rIj{8DO6Nq#03S<5FM&aK}##tLR>uQnI2PTO`~4 z^1eO*f9gNF+jzncsEqyXkx0COvV zB^N1xdKSRE3t+wlF#iHr^8#4Q0+^Hw*)vj1QWK?MNKDE}YT}*bJ)bZtl}>76ZUO9m z0nAhYvlPUj*JP$rFQq2h3Sf=`m|6gPB%p`$6Fw!)E-y+QN}VA%yQIZiKR0QS=^H*Ng2gy{u{KNrB(6~HzWzG5n|}rQtPe zocHL4On!r^Yyh}LQ#L4{yGzxNTrSgTV1~0)bfePMUAN79C}|@ikJ0{(Nbro@egT$C zoqth!x$72t9qs%D4c|_#o0NfuWE}ElPxs)a$5JHq>=O;&D2-1?6UoLR+yWF#JKwwkg2| zEA8E;R1BB88=TjmSrgc^l$|hmf1&>+)`fpMBylCZ-KInsUQy-ku-=QQ_jctg!+!d6 zyAtjr6|XD>x;7#45Ea@14hPlQp@dh1uL)A+M7OT4c>f(gL)h(@}mD;65`e?3E;#w&Dgv4{yW0%say>w<}e#x!i?_6&!{T=Dp%BWMH zBkD*y871{U`YW!B8&Yo6>34x8cIk$nh5aPcQhL2h32yLCCx1T~l-W}xMcM=;F9S1> zz}~RTeig99=x^}z$sEaanmX-Pf|I3g0q;*5(A+V0j}a-|V*u$M14#E6K)S~OHVsJK z08Dzv0Ma`K_(ucs<$hq&I|h*6F@W@r0i;?7*b=3|Z5oj7F=C~A3?SWO0O=kBNcR|E z2?gy@Ipvqe|BSr)GxFlk$ZJ0%|Cff57k)-w_ZfNFXXI6%kr#bNtog7!H1e9y$V)yW zdsarCmPTIh8F{&9_nMqc3= zd4Xr-^_@{J?~+lxoIggMI7Xf(Mqb+)d1+_lm7S3nc1B*;8QI}6@}kbjYdRxKzLAC9 z$Wm_P^_-EHb4He8Ba5$**K$U7SBxyG$woG3MwZmsEU2?tPG_^2&Soi{%|bex?U#{7 zbT&)qY!=Yjyn36>;yIh8b2ba-Y?e(UFWhGHx@|Tu+h(&^&St4J`mj{aW}%!7nS8oW ziNpVjbrwp9VK0pp*!|c`r!`P^zcL8e_xqJ3fWP-Ei2(5jz^ULs9p+AXbLqsq;vsDJ%l|Vg>E0>$f#ej_oC43Upey6UzN_lDjjBQ z;$dbvbr=O%$a+|51W@jX(h6Ys5!hS{{d`1e0bo7?)n%cuqe?%3X-Adr09TGGJpm#z zVUH{{HIq3HXDTg$8IB>(zbWjP(ke_^;KYisyorf-ArBLme6u8Rc`neOJ9+%CGOY1; z$FN^?la3uj(wpRZ9F4k39gZt)0n#*Z_c+taWic3*rL+TWSC-P;`=-pj=l@_|uNv@P z(s88|S zm=<}OX){kV?doZ!MV(QadC487#PF|C?Qdq%<5NmCn!X~?i{>9!+>!k787|iStP&0E z^RpPPEJ{18bdXt}g(PHA)pHoiEc*H!nvz8q&v9h&^Bg(sJVzcpk2VlpKab=@6)&I- zL{l%I5=4Jq04GtUi|7KPX%{h+h}1y!Y-IqjdD)OyA~hRQN!0g}G6LYlCAmXLT zDpLTaUR5T0^B*Klxd^8I*|_uSu10DP0YAAM;=i<$S{Qs|a+GNR4|A}ud5=b2d;zL!<{qzTrm$7?y(eXDZHW%%> zL5Fi0t9B2Y*EeY8J(O^Z4&76R1C+my1h;7UePnivydR+2w`kS_j(qz-`NHd#?BJ>& zP~W)!(c`}qeAaz8ye@aaEmBO%7vN7YBj;Om$*hb9Xl7w-hea6+EX<1HE>klr1miOO zWQBsdOhs&vh|4s=hKgOL`!;2a*JW8wTrv2UtBO7qUvX< z_amkqdxV;trO3zVl(V$_u`<$2ZoMWZeu@ft)*-_yR7k!tN*U`adQtXu%(b(W^aRfG zS-SK@iPzY@8iRdkV`>_#;&z&RI+P!FTU`?MKTAuWLRX)qS5Hy7Jyhx$YP^TOdxnAA zLvNoclf2~qZsNSw$Yb1RlMA?5s~ouA{Dz&oK5zEWntxD@W0d(12JINtc!|k*jOM+> zz#O9&FVPRjDDD+{JM)%&JCyr68w~TFii%~d6 zzVA@NGpg|pI`0|Heuv0s^ynQ}o>ABLNdAnDyjO;JJ(JD8G8Hwg|Mk)YwGG9dse*3< zAES?-(cBL>{&_~~2h`!&(jMwi{2o>ZAS&3PO3E~YngDRupoU;k^WLDw0Ss_aM*^I2 zQ4;~`e4>s8*zk!u9w4v~GRdWsLh2v@Qz7PzbyY_JJM5~C0jOS>u^$UFr@>7fjL4yG zjGcE=hgHj!Rqnn5Ro;Og%`gS50;*}Hb&|Xen_W_AQS(orJyPA(PYvtnguD7RK#L;k zR{%$fsNVoYd#GPi=6vX@V;<_4h-l=grU3lvsZIlE=%r5f;w+Q4AWjjp9nHi>oudw#)Vwy@JYZ z|AQh+s>8K+`c{>|a{{@NYf}ldcRN)miS}-%jV0A@0jic#L)@2hSKV@*Z1*yFOvV&B) zmaQGkAT1bjvYcK9LwJ@`&oZ3ZjxwCwFNDFk5YFXN2?EVsOCk{DuO`xb+$N|r6mDHjKB_R5rAvCTMqVckp zdw#=iRO1XQSI58|pvl!4J5e2Ddw@#R;0h+xPQ|{mqpQ@j0qc>y?GE#olMvv0Z;{CArkR~5B_3ft+f{PSX z2ZL}C|3r%^b&(F&fmB{3-@2&lMH*Na1zx1}by3nqQtGNvh9gv_9?~7B#`V;p-tssw zvGsnGbYTA{WN4~}P-N=E@@|^8J5Dd_VTK;3&h;^kj?=FC=&R%8-T><7I8AP#js`F{ zP=^C_YzQTKoc1<^hB{7_8mS`y7By01!?+Ch`zRyy!6&*(wVQxyg=CYVG3uO6T^p-? z0Jb+)v6)0Kwa9i&FrBmM=O$=RHvQcMjm)NYP0{Ju^kY+weAtweH*1Cw%%N%0U)J%Y&=xTF*;J_o7eBcLSLR#`F1KP!uIO|PTy4n(R%oSm&`Mfd8hN<~)9TNW znSA2LDYDsgz7KE>%a}u8bowy|TSZLd9>K2QMlufH*Iq#=hWRuRA<=Hg5GxQevu`_c9ci}!x>cRyc z)__-6h;ud#?8+@W)RlAb?WXoeF8x7Ix?|Q^$+rh|wUs*cKnGZ9aSyc#z@;8g z0ahx}6UxU*<9n*r4Zl-*Pb7FrM|+}nFR4^7U@NI!FR-kn#k~-@lGI*kz)EV-8zroy zHNDYdT;1=jwhdb;tM(oCz!FDe+gfvDT438(ulXzL+y?{yibNmGxmOg>SB>*}CDW|J zzHj2@yELG`8paP&l!QS#Wg(!O{STmb;D@*eR zV!#*E(t%vF#{;>Dc7xz?E~bNnxZI+HF%1?|!eC6a#dLNsMsq(o24kk|r-nl?jQc5d z2o&Fbx}kycL)E%CS?@a(oQG)YPzd!QIx!Rq>=2b02J>`?CJloy9HPs^FsBYth2iRV z0Go%SCl8VL2&8jRwGpVbLyp3kcBu8H7^*oLwdN-X=J&P*I2D3}E{;GY98@6@v%o=L zCL;MMT9&BB@Lqf3X}Qtf1zYRd829fBRMX$`x<_KJ+;o>?9F>SM&VM7I<4E+3N(GO!V(u?TE7}Q`9 zRT--`2N*e))9o0`EHB2wJT9Wf<1j>vXwEpsvNcd*JS^xU>OCG4brI2cH5%aBcrLHx z1m^5N0i(ExwoTwXpH6^IT0{*ea)K!n)z7`S0poU|hgR;U@bPE`J_q-w_Y>8^8g1)t z(3S3>Rq56b$1D+B5|XK0yzspl44|<1ZP^{Sw`Mg06fCeS3l`OojG6 zLE|)Vcq%eGL5079h@GH58rc37H2Mj8^A&8eycU#r#e&MLwbAykReW8F50~?5euCD1 zt;SYju1_7{+KC@c9%m|f?U$E|5jfQ3LBbt$BSr1$B~OhKv*l^gk@{K+{-ihc8%%>8wEP>$%}KiU4H7)3f4+fzeNNrJ zg?)WahrUJRUApltYIv8b%uwqXmQmacM82izGtgsi>GBK+=vxZ=4)f+Mefb^4{4HJh z4ny;n!e=rzX(ke^rKK}5!`6~A6D6#rw%=oht)t*fsk`RMIiOPgn5EZ5SrSy&~nrJl2)-PY31*(l)wWzR-a9+0mQL;8Sv z88J&9&&O`EZ^!Yr9*EyO$50yAaf6hZL=O}zWbmTc2IUnsiN5|%)(dVed0=2)F zy!Mq?uM!TbKCMdO3-CY-K3*&tpv?&;wyFx^9Bitls_c^>Z{Km9gWg%u;F*Dz}g7EmAvFlBaTs*Kit_I2ea;njp5qNt`|rrfsAfGIA-s`T-rglv*st zkT0dw#h@*v8;e1EN3RxR$lp=>CFs$Ic-0jv$PKcrmG~~2T@lBh?Q7GtMJQ_ny<38r zxPdw?Mbguhv=p*_nvO0-V@^}?G|*1dur$mO6Rl2D%ixURumlR-l)yr-B>0<3l3Jz- zZ>t~2e*N(J!|Q9!Z5-=?eX*W$&pu67p#+Y@^Qn6$V0TfYX3;ogfnDN-60D(Z60D%J z609b>1oy~o8A`b!^BH{i<9u4b$jgU!Epz_*Z@Po8U*Pc0t|C8|;PQ`8FNw2C@OaEL}r z;Gnq@oT5z^3iSg$5b{|S}B_-d?j+aK+PmLLH#AzN?%Fv zf|g6Lg9Jbmd1{!r6KC%Ewat`g?pi+2CAB5+d}?bPy6e=t zJRqY4PiZ4S6M6KWn2Lk<{Cs-7%gcwANEq;Z>OOfMuhn568Gb@eKU1g#cc_U38>z1Z zOX*7q-Vp&bk>~7*9ynLe&*$@$ynLK9`6KGf)I92Gdis<40YmU~H8$K#bRiw?*8Fs} z9Kt)()nF}ZlG|Qc#wYHya|Hf8GJcI3`5jVd97}NlOyBD#0{svsw)bYtLr23c#Js zupSmFy9K({LgTlsGi{7K+)58dzxeRupETV%y+1TWIn&w8KJ|wlQbu zcIbW!C2dzr0nFO2c6Q^F%Wl^wA;-HYJ=?C9g?22y1M2i|8o5IahZc)`fw#^#?SS8Q zlN>u>$8Sg z8}4GTc$XTd9c%Xa0ABpyKR?t~ZX=S0j#&ckcDp&tjl0qBH_3AkRv=Qf|8?$uSguPHc}OiwFZQF~FHxfd z5YS5$cR;PJ@ovGh(LycdmY7)-n*9>(KLGp2)u=&{2US0Wn;%r`1E847^z%XN0dQHN zboHPbRItEOht!gwqQE);D60(3IE3N5PnQm1Fz-{uuWCgND^HVtRcjkw)8=0>Jg-Ul z6{7r_svid5Ynp#Vtw383!?6M7u-Xs+e8JS>h#H`Am7(!R&~MDz(vU-!j^N-ShgMux z!)eG-l#lRHh;R-WGSwLXGc%dtWhP`Sht^zC18Mv*^hpk7UqQ}Sj-mV<`XJ+L9Ov-Z z<5AJ`7b$bv}c(BnU_fb;zg>wz5V^BZ>Ca_HP|SZd}_;}hyg zcj){7C3b9Ppkr>Pl63L}Br}JCPhzlgXwFH_P1Qih-!UIi_*EQfUHe__s3q;%1|Qo^ zD;`YkPC;gKX!$8fRt`n{fhzi*h7*=U$8wNj`f2zMXvS%rWaLoCGYr;TQ>)P5XVAAf zRQD_h7YIj-q34Md$+$7!V&!FL})@g>U8@8>aLbExD6?zcG?)Jeb$ z7a3H$saB+n3+ktI`65(Z4*u^H!cj6??dQp@Hg`AtZ(c<*m;!=m!8$4GuA3(Um9PQVp43}Fmm1P!9}rd^ z&{_Z(%TEC?jOD5ApYYIlEGy8wKh+?FF`#AX%%5uMe~s!VS0T_ms#U4mRn8nki+zi$ zoH@ofg!WzK8e@=y$Z{3>i$}V}zXo|ojv5LI2Du#llEYjWT`7|o*eX=*npy#2j4s^f zYtVIQ?KSL6?@PsO^$~E$QgiP@BIH6@#h*NM!Yo`G1%4V+goZN z!Wi*BPVE@aWdd(hHZ^yZ%W1;DubOuKfUX>A`cZO;RyRW+drSv1qcEUF2LCX2e5G0n1Q zyBWqTi%M9q8J|VT7HE$w%C%rWH;X!0G5fRVkd-5YZ5(N|siOn=#)w)pVd9MC%LeirDIk89}GGwA3w^v^R0 z!3z3+eVuiD7C9I1Db|+aPO;+dvbejuI}{mQio=6Lp=b*Sr??ci2PwL+I20CNoW(oy z;KjMWoXngT_TJC!A9Ip#PLdOynWvMa{JZG#{_0~BJpD{;!%sgxz4{Fa9Mn(!+<%I~ z-eDqJK~LY|wzUFhVxYlR(DL_~&sI=|53qOzZTNsuvVu;3Kppe_y$!^SkI_pZa>qnR z=x;xEUPNhdp~el(f}z{TC83O;FyB5T*Qe-h5QRQRZ-;pBIeG`gyf4ua5EZ^gZ-#iK z#lmmV>)@;SJ$enqzu(z6<45#*_=^2R;cnC3pLm12J>T1$hwEZfMf=30n!@z@s`&s+*$>-gqki1+c?H`m)-245i`GXq3DA2S#q zd0b3trXkbEEDd)qUo#ZqpfA$6Lmd(z{W}Z%%=PeW@MBgtp}879PeK@ShZZDaUzx;6 z_YU1mY%YNql7xN9lbXxn+mRHRaV~A*?@~RYB^^tF)2E)KH}i%L=n~Jn;Gn@nu%w7a zCNtY%Vba;;W-j`X%xn&Kv*c!Zd>;~-!c0$Fk|P}st__hg1&rd5RtePCCusP@Z4*#3 z3r{DV#%9ex1=E=|662d{m1Af1_K3~)-lR1rQ9&;=5n@(K1zWGsom8mTD>NoGN_vGd zr!nV4>`7x1ME$hpLWrkn&87MamlAodhQk&jW`LgqAxtA)%k zh+c)!Pmj^}!sa3fD#9>-QPwdrL`6Gh9&`IlQG(Wz1mx{Y%go z)O64o-Cjv6=7~oQOPf`&Eu0yjDrGVKpxnGHa(+us%9>Ll`j*4cdrL9p%<1X)3!21} zkb=6X3A$fUA52?sX>oaT9DcP(U%{*g(X#?--~qjZphZ2GIhvZ) z;qKiOnQog9f-j^si)L-izu-&X z);tDrx2<^sVpTiy82)2r#-pC?O*f4z4p;ULD9%>8-N8Hvv7n3YNhi_mDU!g29=@@Y7!YVyqWpoTFZ4*OSvf-ILR=-^)oq(u4GI`Cs~T45VMr;PhJqlGvmAau8`s1TCV+aD@6}Ig2f0 zStXr|^Bv=2&1WvtK!hga*cUktO@j}c#&eo;#+!rSi!*`a^`Br4gzw=5GYF#PL~|I# zrHSZ|`>F0Eb1cN!Nvv6Nve^&5wUf=^5SgZM4#876?86i^AHMgQ$~l~zYIe}YofC%Q z&I!|XId&S?W$-jE;j3v}ih99Zip{}hppL>{=mf6RQTj|b6J*-2dehfcNJ(ALAAGy^ z>fU)!$FBV_8FJ&Mp@`{bBm5BjZMsJS)yi6)1b{UJVtAj3=4 zd?xzcCE7RBR6igiURttdnuYNtPv%*81UgLZXW{9Gef|_S3vGLxKF>lI!$&!@arZw? zw`QY~j#KkFxO*L^Yjbd$IZo~8;!b*;ZqLQ7@Hh>aXU>55HV=1);}jB#JKJ&c55wer zoOXrbMsS>}%}0$Nr^xwcE(qj+*SQ6z`V6G~0<%T}^|1t=66&^3K-*`S87N?(S(1J( zFjGJw1>vbDie?cS8K3qL3L8bnLZlZ(j~1elqp0~Ja|p!QMJRd{m08Si%VO5dyu=&< zxM&H(gi9HYU266Pj9!W=i=wv6FlR>5`DNzNUq0;_mXOA;G~1`ppZ4(Q9Q;uaF4TFE z*^c~ImF{uf1s*RXHH8gr!n%7s7W!9|-eV=bGoa4n|DC`z}^9P!I{JouQ0I?q9E z9$jnJrkVX~B*dKz^|{`h2xVH2sX2-=ZZLzBbKy3X$5#yMg044$Dz7nHE?8&!lBte_ zLbT!=xnNs2qUEC~-zIa4&T3H&M8k!4Ox9Udp$rii@z9Cj7;7WUq3~tc%=I&OGX`lC z{n*USF>njl-NP+hKaI9>s~p~H4u(q6ZLG3(8%BH-`EF;G;oC7Dqv-K=bAZnNu=?r; z7iv5j*@tg8%f#z5NEP$o4$dg|PP4bx?A-&JxRBRWThn`RU|=_;`+XOI^z?S2nKtxwUh0^f9&CIm&G^!(%E}TX;4W+VY5H*w{&mg@}s(2PJNuhN9Ec$#X)i}rE=s9E= zN)^sy%!Jax^9)N|fN`O;^#Z1~P|9-=^%qKWFQU(d(zlB+0J&X4&j_XHOPH5JseKg3 zyAj0^np`$#>yMUpCc(eTaG}Z<%qHr17Jn$Wy~4(wxq|lqd?EEW9ue94!T35T`fs%3 zJ}Pk)J$fIlyov$2k5XU5J#8Pkw0M5a%m!b=>uBm_)b6@j!GD>an?pM2pFjEq_Uh5I zOMi^9WwiS`M#DkMcEhX+(c=bEI!IABFj5Xum7A!ZgY@T3l>H!8x`h%Qq}{jhc6N~3 z+(zXeqR_cZ)0YENrC^ED?W3V0!*A>2^a@fx4)ty1s!!2KDM1W5&Dc<^3JdmiG>xRy#hLMyGMZI968YpK9vlzuI3eT+vqj@%7j;8gzCESyCB zR}-e()74prvb;2l@!24loafSof6W&9yPkN{P_%f{=;%wcv>XQFgH(n-fw6Px%oB8+ zxm4t-*&1TTQ?m`k)2Ddom`k;u;SN5RmOV3DP~pRPRrvG_KYPrj2G7k_5bK}gnPe{c zykK8vEe^b3m835*X691oml%L^Y0pcuF@*Ok*6j2O4-<3g&sP`{bICs%&zCSKnj@Tw z#zW^^%5HKhBTbI*w-)&=PHdcIwuj0+%WRX5|F_HEA*qXc_zlAE0;&cYdr*>%wAq81 zWFx)sAj^$Z?=`yYM%wopW!^{uZ&*xwgTij4mv7A8nfX&BuhXb9bwPRw?DrdfmE`2I z5xvDEb&+DdoVq}!;?PrS`;qwt@YUbf9oZ-wBx!D{2f|2BVAJw9a_*fS&L^0JEI^P{$2R-XTa zZ1l1^;~ONu*j8nT`mwDs5a(iB)6?<4)^A}^yP+H>~hDaUX>IvbBZw-cc7vJg+(be1P3vt<-eU*KX`D&WzV^v6?zGXr;INlNWM?b59 z+G{^;Y-2SQ^R-4oXREI@1R`4kYbeCx1l96zN<2j7j<49lgldcn6Y4g37kvdXZuRyIInn~C(!z9BRvl6cUqHn5M{BO4^8QvQh~@r>b&u}*Tje1#rbky` zpFcHAZ&kx55{uGX#UU=Hx4J?U&45_zDKvxC2H#Cs8BmS$DNjaZGoOMpT0QXNI3~jn z8Z^&@p7NazXF?X=>1QTu0K|aIRwH~Dbu6=0A0kPBm0kO?Qi}kq8NP*z2te(wqvrvr zl6BNB3u3LK3t3QIXQ)(Gs|v)ZtmtNE=v7v07(~}>&^$vovLPD}HOyrdq1xH4gmAaW zZsmZOnafH`VcD%ra39TOWudFttrBo2$!(RQDmkpWaL>wNO@>I2$0|z=b6TZ+)E)}P zq3zyOd6%mw9nWcHMDT;0RuPEgxnLq^RUQJ#7llB|4Iq%{C7=Xm}xv(-&kGvRe7PP*v05h&NWqFV0Q_3tM#% z5?R<5oc!+p%4$P{%A#xhO_^hR%F%)11mLb5oUy)*lE#HoYJawFITBWTk)`@moP4YIQnS z3G*PwZ%REXqfIx_?8??muf^C99piH`O{s!eZ85E=X_chRRnesu)0>)BPMT4bgIm`dZoQsFKCBsJgWX;&W}Q9QCh(xnVJ#tzq?nKpy32 za7`;8+{mFZ1QPECfpoh=Ajwt`NUa|P5~@Id)vI%eSo3RI@Q^niHQ0fpqIp!zLI@ zoOl`9-vn*XIkbjA;<>4BQ!A~H+E2xJRS_rhC4ZTY)-^@FJ*V$YF@-*-4$V+a&uM=% zYX(HUb}0A6=9t~^X>~jF;vg5gP108A9w}R30)9@lTUZ+*mbJH~Vm>Yh_@OLUOu z)UX3;;af|qAl&&{q5nLmV;x}h`Bs=QkY6jSrM4t~IUgFhA~Yk7Xl<4Gk8xL9qk*4O zhBj!==XALvk_>Ib<|OU}bKQt*^P>{LP_U!VDn*j9Sp6cy{!zCyQ7uiKX&)( zh~dme7Ea>Vt@EJX0loTm?xFtK&nA~c7_3$0fT7uGWG6JsYn<+fV}Z_fvNFT{suOP4 zjAmmTgm=fljp>Yg=q5_v1)Xyf_3eUwxQXs`vBDuR<8-3CU2%ulM0vX5xr@h6QM%R5 zD(t;U6<|dpU4ZO?xCv~cmVrD|Z3*O5GIX~l0wSA9I)M_@rU&{37k#hcL*tvHUxfC+ zY;l&B^|8uR_MW(LpQY+OF*~tVah&JK)9jI+C>YN=MW|FS-0{v*;l8jgp@AkjOYID+ z*Y8#Oz(5D(x@_{F3@7%+Q_5M&*w4yC(Y>u&I^LB&JOqqBCX?h%!{GOfw+IhU{hMOeXc>6hGOvhJjQVh{WAzRiWq7% z7}I|Y-5hKMLj+I3bhU5@>)jh-&G6=25|5~F!>#-XZa*B)pE2}cIPNPk zRB(hfDIx2Poaz%RBuh0K7>p;b$Y9Hd;*GF!#4Ulnk|I!460QC4Y{_$Z8<7|J}u%1ix5TV>(iG}`I_v3!P=jq;Dd91cTg zScPfr7*5GE2Hg==G!~OT;)lS7_hUJ~$}Vn;nKRL5@yB7#K@rArE8Uxphli)*tn#{` z^XB_d;(e>qQ;qRfWsS})LU((&Dg#A~w|Z;z$8sO?YQMS$b(>)2MOtY1qI7HmCPZ%b zDpYnN1`xNsYBMx@dmT|)yv8I<|J=^SXze5`3EXIGf4VfuN(MJtyaEKOtPVu)$ry*+ z*v0A1WXxdP;$^A*6ix)q-UhyH6YMR#i{K~%uq3ers@yzeI_2RxNAwv44-9X z`cKOom}S-aPs=o#jXIl09p+)y|7SKHo95Av*;X?@EQX9_JP$`V%}#GB;;uA#4(fOw zMa{9oAOh#I_%auLk7IZ8+DS*|;n9;-N>JlaJiE=K`Jot~N9b!PX5S-}Jq+XE2rXNN z@wXuiQ{xdzu-vLlCFUdI5ei*yHKBj!<01bDWm$oi8MOc{c7!5U;DI^LUTO`8$gvF5&k^dh4A1CnW*-PxI1K{E&4hqm!4NQMo+CWWNRiIrpN7HJE5Q`!bYjE!z7CRa}cFj}z2?8|tF; zI?N&`sQWtHtWVII7ZbV4d_kq3Y?c zJ7~RDb%K14^c3}x&d)}m(`S7Z^k>+3EH~ZItXEG zu|7g{-fC@vNVpBpd2G}W2pCd;l5MyA;f6I8AbM}dlL;F#8Ui*{qTn4?+y9RtwRU1G zupzZ*=ggh0V;gKvAkE!{p};ncfq*$BXy$J8j}!EAHyaI`22ifOR#G4smY$mKMVWR| zr!y!;GB@4|cT!0=CNJ)hMd^qeePSowKZ9OZbsrjOC#~3rO5RC#&*Et;bU!*7VxL1t zEN}qt#yfFJoz;xY1J+QVovI?YeZc)^&hF-P^dN33JE>qK?AS?PBdyaACk|PcAr>6A zc0$xXf`PG;ktkqsS-G`1@alF8e9k-$(w*G0of^c2Mo3GbN>ku@K zoWv72*y!t43(9i}Lu)6^JZ0^H*n9)sVg6~Wp0=o*kNw7y<_s!}i#`?tMH~!)(p4im zi~AcFae`7fhxaBf*oOa<>HT>;1aO&}5?!zw>fjuovBaSFo;FnLBAzgI($b689zU*( zGT*pYg&)SfFyr1mMQP6^%(PtaQj{qQy@5+#omNHRL7A&S6&IzSMB}dD=M1iao>b>= zbSbWezT|%ukM%pi4{=wsZ1g&_8>G!}LOso+U@CeU&lkTDtB53O)JZY!Chuc>KHMobK5=x?yFS6T06<@*v-zQdEZ?!|BaX1V8urNNtpIA*a`IeKiczg0wj;FZAY@xQVkl^&E zD9IN3^3*y4ao`zx;}(jFwu;f*=XmwsLYYmxvi*3D7hO*EuUvNL3Vwl`B%4r!{9fW& zoek*c6-irPqVd8g*(*Fxa4y{;kU>rIjmBW(TpD2)C(QbsRRaj*G8$2rn&{V&3oNUf zkJ{eR2+QkBS)Lv!NvkZ>0ViFSig}Q5B#rUF@<=j0m`x+8<2(H3vg9?Uf=K%G+8Pfr z@{LN2?!7_la?%xP#9O=phS9dSK-cJ@k0&P;d570Ajz0(jQL9s$_n5snKIYQ*_~nWd z$wf=vQAmQ{h z#+vD)wyHE@TG|!3@e}4aPHhlG`_Fjnx{8gR`{A(BEzGsrpHD!PJaGVvt>sT(j65mq`A?dw6eIbIqJwv^&E%5P-glCkG zClCUS+ztZC^+3yqC-fAd8@`^5T01voOyDWZQOZ(q0#6p;hyM0HP{G^_)5Kzub*^+q*!HpQDDI}Sv82+<$G?^z8?_6pW$Ck!Z!i=<7p<`fE1vE8$ z{*KQH&ZvM|?u7+ltRLV2*3atrj3x;=IJMvc{sSFfFGq9loC+30d@{WNy`Xn(}-2d30T&IK?MQt zn=_~+;B`9&RRj#`z@VCdR~pn1(6SS2)BiY>@5-Q_fYKuvG!UScuEF+3 z0_^H&s=!m#O3TKvMhgdU{j_p?MzLuKc7+*jg!G!t5!wl8I-fxY0S6Z|=p-QC8U|ei zG}_3Zn}BQE8FUvA_W*;Q3|z|4*MBlGL}lVx27LtlxWb^H0K04h6|h&%vBnSwaAAi! zKHd@(wKZG;-l_5SJug*#u2G7}0%VY}4&W5VIX=U}E}{sYARwj5V3L5ASZxQ5DFW2; zJAi2d?t2(a7f{^wg-M8zJwF)C5}?-QA(1%()c&IY^8`HgVh|>vN?ZmD1T>G&V4;9H zJ`5J~_~X*=^kuSCRBk36Zi~!rz^8##BFA1lcePkCy_S->_pxxa6?() z)rzx;5s*xSFAiX{zBxYQWn?*~;Przdh z5(`M7qa+h>OoNmH_Lk!`(g=v<(!^iLRt+)=7*L7h1PFLgfk8F_nJO~KDWHJ{c?9&- zY2+8MygElI)LPyDxK5{3V^UO97HE|c0!r0ljZy-zqEfYXSpgF@s34$-j#60wwmDW& zstIsSsn4XQkf?eL>IfLCHR=nP+K@FG3Ao&VK~n)PtMy#<`spr3&JSjve+2RguoeFT{dafng71%qJ%wrDU? zK*pA=F-CwrAjS!>2gF1H_7IpNz#amwU?KJp2oYcpf!PA=AuvyXJp|?pup4}#0DA~5 z5nvC2Q|tFa2b1r*h65y z0DA~T3b2R35droPI4-~*0w)F7J^r)+yThN;z=i3|?(r8z#qRN!1=v0QssOvk-wP9)DMW-Qyn!;0}-Hug5~{9{*H;-Q!;fuzP&80K3O~1lT?PtpK~ne-L1I_)iS@ z`OEI{Uq!|4@jnFEJ>Cn;9Dlp_$8`YD`0*W|fyJ+CnE49Wq(MRfcQkM%5n{(lF2IhH zN`M_FtpdElwA5hECcOjLij0oW=s%Q$GYcp_j6oIwvs{{F6LL|590E!X=Qz0pJkubL zfXX9SBcFir8Wa%lLW4pAGLPaYMcSzOpNld=lVYN>UxN|?)CTUT(?0~Hoy4HDfO{I0 z6)<-)Ym^rd5X_*W09TypOezc6t3g!(>qA(hx`6338PpU|einn;0t(JyP*;Fj1q|Ek z3$RLO`0`3`Pm)?q)DXK*T-G+IX4>-xg0&+iLa8!V$!EphPpR&dY4b=Uw$a5xtiAtOo3{DFe{*u920f$~O zI4@vlG=qx*+FJ~w1gw6?;EI5t_W-#6T@~_Gkuc-B0JU2ez%2!2gD!wO4&dsz=lG1p zA6fr_fOOv&JQA=(gMS_1GU|P2m8T9dUTW}MK;ECM@lrtlSh1B^(EG zI>iBrWDu1tsTgDu;7ZLPKtMb!i$|2K0@ONrfb0SirDKp&KtF#5xdr6R5SxF0$g2pi zUT=|=RSGzO3tPzX8R@cda1jB8@-rwVV21`J1av9D8h;3gRgghx4b=EEG$|`8Y9&63 zQeHr!Vhkz@P^U~lqq2bXB^Xo{@K;F&)di@NCJ?2jfT0Rt{M8nsmhD5Ot^%@Q9Y6yG zE~pOl9EWoPGjPgBR|1h-INx6&_Ef%RKEfc4utKI3f#7l*eO@>ewm9R;YvEs$ep z0pn{h=qlh+O$LDiUespLL%_W{40;I&uE(HvTXp|sLoYRE(pOYgHet|TfI1ihh71(2 zMT5Z#98-l=TLD62r~|mL!yTWIpd|;76wtj*>{#mlJ6g!kF03+E!1%5V#tA6ejll!~ zQ5sAVFtR&qOcAiY2ZLz>TJ>ZwT>%$c9>-u3A}Y1}Gnge{mj-hLWE{X6^90zXpRd4M zRUHelu>eZ9&;eW>iyfcw5nClr33C}sg`6G65ta*>Gn_%VfXO2mtP-Hk06`vW1k@VM zV4VQ9O9C`D2uMAS!6psV`12djWV5L3oxotLfN2vMY!{$5O+czU1=xk%qW~ZE@l|W= za{!nAfa5a`Pv!(7T|$P3FgYyXiv~vpM9gH3;{s~WVsJu0v<80(Xfc~LP764y!C42m z3}Y^5C^;3L>R5fL6M@ayFC)B&vj-0>NMmveG21vFd7AX>n605$$B zAye10%4-2RHZXWA;K@b??*$}}VDM4EpBj7;ppIZcE?)%f-pSyb0xm8}rd>>ah{`k# zVzqM$tG1v(BC!Q{?_&^Gfvu{3YW%~%+W}l1zK+kRdx(Sm1e`vpfXhfEq|RTgl0?8) z4U!31bc!`n2&i+KK`H@XHAo}i&{@_Y_ly`^`{e(e90cwj4q*__PISr}`DEf>wstfo_ zgPH;szGRKs0+POB;HoQRm?rfF+|!_;fI-n5r?G%)9tKSXsNFhXYI6bEUNdMZV7dma zZGii)UCHefxv6?`&#xS(qXW3sJ3Bt()LRbjDxd?-m_??60@QvU06hfQDH;m6RTjq+ z#!(u5+o|7Q6yZGjOZdZYoWei>HR5uF!2&L55G0^kJk}T{;2#Y}2>9mB8lwbYXApk= z93y0?FRQo&sMCI6=y(Ak8cY-r8ykc`W3m9XV+g=h0d`@hD{x(v9w!1RjhO&0CS3a2 z5`G{FhtCy|H5G$U0pBw-m@nW|HU^}?N0moMf1a)vE5N%~tjWU~%N)RYuHce#c!zu( zzS0Rd-e|B|z^#I;u~xw3stnc(Q2UmkU>gOT)F47Y@9M0v#Q`oOss@v74l&l$Vz5KN zirNfz3FuUp!5#sz>oIT(NLQc1egUl;FgPfnN<#*&LqgQPC@}trfa8rB923y334=cc zl)ynqh;mYZIvEMzlz-~Aap6tHR_gU14j4QB8} zK;xkdo(X6@iopvF)cvQvi^(fd`7nWjDWJ#{1|9*orZIRU;NM^d@BRm7F!&(gcnE_S z0k38O;QsSjh&tj4wfI%QHx0fEP@Bm>`2sncytpJJ%@IJtxgn$_u{2{>W0&A2OFzz~ovI@A^j4U^qloyq#TMQ}+ zNc#_i$^tUoWl&YX<9iIM3s5Ix!PJ@p)Yk6+brj%TT^jzY??3e&!liHM_>9$0IYMIr z_nt9mDj?kp2F(S;{lTE6fY?77v=%T@gSHx|@fQ$_e^zcUDwDk!bQI7!4uj4Dn#E<% zRY0ov3<3qXHRvJWqBm>w5|G#z0OPN>kQhbqR3KoqAA|k^)VW^J7$`vP`U5anz{|u8 zf&^?!!eE$yO-UJyV8G+=RB|SxMCD5g24e)|NX@_{U|~82;{~X5z+lKk0ckTZm@FVN zfWcG&g|p)1Y{Ur`vLZXH%n;z8lfg^@YKtL6nJr*iUIudow9L;SRDe1+3{mC_h+l*O zDd6Icn7Aa9MWPbB41*;C)ZRl#WSM}cl^CoLFsmwql>!!3Q(%6-?q0FfpRxLXAvIWa zEdcKSYC0QMlgWBf39rpyqkt227(@uzQJ29M0o5Ba*d`!ha|SyEWNpb{mw?Kx(f%mb z9wGDFFmMa-Z^vN2fbH!W92Ahd1A{{X!n-jzB0!yfhFp#bP#Yrw{Mlap{>2qgzdMtY zqH;%rQv%c$Nr-bsz!we92?*}V8W#jK?8V@cfb$w$7SPgVu*%;;4rp*qK*rvzaYF$0 zXK+hEnSl)c5pZV^gS!I03}$d&fZBu!g?ZRsJ^ynB6dKCpv8dD<#^8y71j89T6R>Fl zgBJqSiEc>sl>khz3RntURs9Tyx+(C+0X<#nOWSvjS8dOv!aoS8K@4I9Ovj5UG(HQk zll-Q@GnGdV{3{O{KOMl6x)-*T(ZPQ%>x0ObT6xX&6D z1YE{1jL@hgAnGB5DgxBWdC;gPz&5L<0_bD<@H}X^>NtcAt>^fR^jHCo@CE`h10vGIc;G`a~;hwuS(7cj;vo&r5PsPWJBp$^{zF+^oWTn2pvjPhmBPe77H3d+=3@N?4q*L- zj?WmMmxC7zD437IQXc=DLY+cPmWxW(q71?XT=;{*Dgj-~FjynNs~UrK0&KH3D)5rK zeJ$45>;M-Vy4CUWX@;o%?E?1Kw*_>==}oZWt^&C6slyf- zJa9nIQtJ8hk>fQYCUf||0@Oxl(0D4~Z7_r90;DD51O%^S@J&FiRSbRz@LnB{fB%cs(W#*L zYgi?=fEVi+#1(L71B3Vi>TY7-BcM(Mg9HLbZ()#7z=>@P5(Bt&!z|g(B&nzj+QA^X z0CmhHS|X(Yb+#lxY5@)RFi0z)_g)760;akdWDu}=zl%vGA!^4rq#7W=?lRdF*r@st zPM}m8IUT@VJGbLAk{spWyaLi5XOLfjI+PL#6lB2Tuk#5eg+-JEh zVBmGus3*Yt7J~)?p5129NI*~59VShL#JS6$nShj!8MF|vU4vEv%Kyt6Z3L*3Hc?yc z1nhdwpo0K)$|f{Ab#(owKDsKE&8mWM(xy`B?f|Zzo{rCG3IrHIetZ;+4?X;@{50NaXT3g9tAe%Bu905)s1<1@---~`4BP^WyN7~=$t z%)wxS2I~2HRxT!!6v2ZwX5@SfraFN02zGpY3@DPEA>d*u)}N^W9%`|;1P9tdV~ztj zfq9P437!w>x~O>Wn)?Sg2GK;0TKypV6--2QL+%_UwcHas}3@1aL&80xK23<0^h2 zY{wdF9Kb2Ab9}syAM`i46j`Vu+|dyt9KaE_I6fzMy8_>oe);yC!7c}|{vO9?-0R4} zZUHa4GuSV{=mmi1|ARsz2D8c`0nuX^91-wh8iQjBtX5W})Bnak;Q+ScFUM!Jox}R4 z1>9P|;H(2&M$M&6&O5{?w35L^0qQta)K!##1?w1G5%75fgR26v?P73UfZB5qY1~u* zZ#l7yQ8@b#!1a$Jcw3PF$lr4S7v+KDGu9sE6dnm^f0n_&0%Aomcq$;rH3rWWz^gzk zMD){I5?i;GyG$5ReB3J=f}WTKkG4f{0RXK3_$5MNrLsza zgN-?bVh-RGN;p2_5KhBI3V$eYPw9_o!k~-;SihX(bAl@>uwLok)B06h4&eyZ9G}s+ z8K+l6z^rx*YAG;Zr4XwNgSrmj1nN6JV^UWRZYbcT!Jx5#GlKvy|1?$P*B?<@IDnIE z<@k)L!#RaE3Yf}-vU<{O?*P{C==hxAE(-iQNe4Or`pCbB<25Rd=L~uYh&`P_Zv}px zHTpS#a~$CKjGuE^e~^G3ix~_N;9kREr~>%?0PWv!6O$1R;Uq^nKEr<(2agrdCW66u z0e+hqOcF4ED}$*5=4@jyT>v)6RNZH0C-wfL%rH{!U@}KklIwg!1=w~j5MW!jNPunG zQUSJQD+JhuhM0tW48uwMZer!e6FlSolHslgEe8+9JX1=yLM6kum_T7aF+IRSPq7X=^}e*U^F z#Lnib0y|XMd?VSi8xG*I-Ew?R@ErwSDE;(jSpU8QSpT8pQ(J$ky8Bmv>%=i8&xBwP zP^I!xK*Ey@OaV1dGk7f^h0gSy0NaX>3jD3i!q%WF(a!?1bYbw#rN}0w(zY%)>rY9< z&Nnu;+|*^$`3B`S;wi-GV(UrJq!Q3wwwvl0wM+ zI}B0_z+R$CBb|WsI*$wj>`XH&a8_Bdv^|$4t7zDX=1_nQ|ImvK&+SqKzX8TFipFp@ z`5eHO7jS&W>_;42SU{_%42lU@^MXN10aITwC@lcnkE)WC6Hqip&!82B*x6JOU}sZZ zfSpY(0d_WZ72uZ4+k#8qK!L@oXc0aP8asfC)|7qx{`v1`wyT8`Zp8b>ptXS88nhD- z=Lc(a6wo&o=g~#L^wkAWdjA+mJJbLTQ*F9ZP`cx zwq;`k*p`h`z{M40n>JBYlxeVRiUPM(74FHvAlLz1g)0xpAuJWkIliv>(d$6%R&f3!xpfGygr)dFlg*C`O84DX(hJNib^ur1rHfqMV5 zP1`0a+B9RQ0Nb)X0&L6nDZn=cY}KkN?4W>R`Yv(U0bF569iP!KGwc7!=vC2IG*!)$M z?V$j>u>T5ptV{n)!2Bv4<)wg`8khn$RAUX-Ya#Z1^_>8_3O@?4tLU=;yNbREu&d~& z0K1A}cX1lZuA+E0!1IS)M?Q-1?Afy$o8~8R>?%qu8V|d(Ml#W`t0<)ayGGIouxrF$ zfUXgjkx__UB>@WHUpe?OLN{kN2XG(C;rN{3+zRl-_f1cH`5eId1stF8swP`qSU{dS zK79W#Cd9r8mK5+s-xW&>uqW4Y0#-EQR4WSbX~Lk2fUMfA>H^+tPz%8Io8@&y#m={Z z0^BIr^Hz1j#sY5lVbIJ0T-X+l&%o}tO24%L`<~cNK;I6~!1H%UAwD|EE&}YH5GcTI z_?`l6vw91NrPJsq;EDzV1=xlUVZiqvwj|6LCMvceBL�j!_^+b&Z9;?IC!#v$bJl_32^sk;F=)>o35%Fn{w7*<&)VBrV`8wDgD$zZd9Ng8YufK7WFLbwoGnF#J16!=6JYnv_5$p_*-3!i zH@gb3`(}3mcHitJVBUN^y1toq(-J8Eh1A@EC*5Ho*KJ z?eG8T^+{+=n8NdCxqA)a7ut(0cQo+ z6>vd-T>()7>fL#IC1=tmEO9M6k+ZAv}RO|}4FTk#VM*{2$cp|{Afae123V5Z! z3DqAWUT~dR4&eUq+U0nS4!1b`oq#_sF!(4S&SeIl1*E>o;G2LJI*p$K)E?C653##B zRvgwKo&)gz@5ij-;}GMIM-2P~1Z$1N0#@syBoh$%oTH=^utaO55nz|zUw~a)S4JUr zc>@I4<;^C*E^kf&c6sv%u*;iYfL-1~0_@@zwE_CSUEUI+Vwbm+0K2?p1=!`SAiyqf zWd(S`sOH13z11ARtzE9mRKjiZi$To?3UOpz;20c z0_>L9DZp-tJp$~O*k=Ruf4eCTii+J5hXvRzaZG^S5+?-MEpbYK-4bU7*e!8Efum|Z ze9bL^@6R2=L*$C%v%`&R3h*yU*i&3J-AxCu{%yzS{Lpk)z?P(}|3CmGWAIo&-*mqG z{Pk4G^E9mTLO@_T2GIhdHSh>H=g%5%1*Fn;eh^?A{z-ss*;fFUE}L!I4^e?>s<2+z za9V5FmcAgK`o@nX2ADDhjb}ts=m-wYmV?)LH^;Q|l_g`M$5l*)(tfS7{^1 zr}kS{C248{j6d7Z7NYW{1go?b@K%F%0%lfVjgA7+m1WRHz+|lvC?Hy!)l-1B(`EEl zge#~-2q)4{forP9mQ7_aP~zD64iRAIJ4}F`???f5zGD;!SBd^?$%&5B0MB1sK@%i= zQ7sOiEZ{&r2Ga!W)L@2yD@|ErmVk^pkGTS{CA_NjFafp|ui89Q3*@wZjTwKg1KhXCv&uTs#P$g3p1TQk@z z8g?H01?Qk0`+ZeTqAf(>NZe{{O28+jT<1?SI#u5@7$k?yP{NJvfC60_=Zi zMF}XX|26lw0Q-M+*99mm)cCt4#7^~&06UTU3UHU)qPyfH2e9G)IzD66U^eTS0BmEg zs_&(MwK@UQ1}J|4-3G5kW%qcF^G?9&i3~mpum{Fx0k&D+6yUK`W*$fRDH?VzvAa7Z z(Yd&cctY%Kd=%hBdgvL;&jDQ6M2^p}$7@mncBUx=*i&9=0Rd*(GO^`KntvTQIND)sl^g4R%r1=-GrcnMI=hx)&k2?ly8?7SF|{% z1(wCAu-#fJpEg0LFP0$YYoR_Bf=_(`1ff3cfly!PK&Wq7Ak;@45b6sG z2=!qEg!(=J;=LB?|E}<smYYqSL*Y|Ag%g5qvFURfALPkI;X^zLeev}pYuck)>Gw*JnGIXvPwPGyH8$u+;S z%+zP7$Io};uPjsO{ex^iKH=odV<^ioPu5gLN_Q;mB)t2#AWAq4m9XbmR?v6*uihLq zW*G9`@hi(3`rwc+9T?{E!})D02TJ&66=!_FR@+J6hk1(Q^rPj&Jy}Bg9pgZ^1TwWW z#n+{5E9;ivvw&1nMo#r)5B+)EM>XdmTSaw_IdovEr;utRd_Kz&BdPHSPk!IO9Pffr z$TI0koWU{z21c@X&R=Z7@!xc2pJjOdH<(1j)4#y1G;SoS8XvLh{E%YSl*Kw0ajNv# zuK^UTbWi?*O0W&tsp0*|_{#2czl3F{Iipa!XMRChLg&Et^P?QwDQW&gZ0Dc9DJ4C@ z@UjiVDSWgi9km~g=Dhkln=#sx5~uSZJcsYaUxWNp7X4qpzz4WoI#%?jkV=Prl(B#R zhEx9WzX+Fp3!(bcJU%pXjK|Mg4bwRx8EH zZvRR%h1S2qmf&+5^H*BH71jq2F?-Zy zow~Tx<-NMBR+oe7@?2fssLKg;xuY(=eR0{WT!Yo6uezL7m!ax1SzQcu30IeG>heTg z2B^yjbvdjqF@4m}YTcAGj!Lkza#`v!T3tw8W~s|!b-AuC9n|HEy2Mv8jw#nEb@^Le zcB;!Gb!nw8bJb;^y4+HiD0SJWE;H2S6)uI0SSpzb%0EqAdZ^1Xb-AD}_tmAXx_noc z=I+JgJ*~ast2o=)K+%8fjYDcNW z9Q<^P=1=id#Tmf2rg%ywQRX8|-Gm`xDAQC=nbhhg44<+ULfwQRc2d8op3-~-9DG}7 z+f+{#7zmh#&X4dU3&lL+Yg9*zGzc=nDgQK&I`6x~G*7XF%EmFc$yP-mJ#cw4P^WR8 z_;dsl0ZxlLJZ)?pU$m)q(Jv&b1jci>Z?Gq{M)5t$6E`U?>`I-&aaG3Y zPMVbuuw6k$;Y6`w4Z(?372^B5UtaRuyi!v=`5LRs;li#x4II~1oXezH;iir&O)JNh zslDS`iKCW`S5tjgzjphse)Bkapn8ZlCgNNpeI!y}9B8Cn*Km@Nc4c1UxD1?Kq?reY z7HL-|oK~b=2~Ie!WjLNlv$TIJm%H)aH{H{FeQ@u){AP@+t$I{9KEK9=T@$}LuG+D2 zBn`8*aUIvb_>SwakK=ma>$sZwIj+q(eaHC6J*V;8j^)a$hkBy~_Mz8%$3MsR^4isM zwBtI3t=~0^#)j_NH5mJ}8-Kd<&wAUeW@A!m++Pa9uG}je*CgzCu31}bb*^3E*yCKg zQm%7cXT&uh+nF2WzI^TNi~On7D~2%+n~&>#%uiz1abuHeVOJ$= zA8xF0mu~s4S%v`h_F?S6HrsmJ?|^HzE65me){FZ|&MbN9b+Ld1?uUcl`Q%7-TSW-L zR@Hi^?CaR0+PLlhvGCo%!~yE%#i;NDgk96HgEPB=j6N}(SeC5WO1V$1f48w{o-0Z> zOWN4>9?4U&ZLr=gIm+L0g=ADN_oCbHuIA5tPU+_^1j4RiMIG0~V#?(X@qT|SRlshg zRkjugyZoBjt{`J}#n`Gi6ZVWX9MzP-E98Z24(C zaC`52AC)7IdP6fFW1maCt7g7Uj>{igPHL6~drcZ^_TGDcxnz0uCTCne1Hi60=N#7s z?CYpm>PwER&}G{dWV|^H%joi~q$#OUhQevwrBi)4n!=@C2#vgB9BdQl9@q9m?T(q%d#X_mJL2&h ztC1$aaXrKyc*b@2^8+8^CC#Eh0M01KUjLO|2ed ze<|&ngngy7>jyTJ(ykiVNlLp$V+$$mnswiCWyPjZ#&LJdsE@}>2ddX?;}iCLvbT%E zW>4DX!Y)tR)uBUN+cnW}Tu;SSySKx>^mkmd2HLJ5;|KPa8baX*%B7>IM)gv->+Jp5 zK543}D%Vb!l=PM#~Ct^laD*suf zv>r2v-rB=`*Ku9F@3>xJKk{^w&}Hg6=W36A5T@^z-q0syH8yIbRmh~OO?|5hR}HFUi$RYn8aSE-Togw#T~}cNyLM(-?YIKgIIcMB9oI)J+t+%5o5Y2M`kF1k3VrRmx6N_w!IFH< zLa-KJyJlb!zIOeE)%WZwWc0$idkrUJ!M%2^#7cYZI=tU;)x^?zW3GGpn$JhF7u%>> zpeUBc>qYhR|8!iVPB^YQSOl*_(_{6!vC%#H%;!PHT)cXHGuEE#b?l|F=v=#!-*8+< zvF=>6rvEsuLs)2T$G{46?HZ1i9p^m|6XPXUxFzY`w5MEQjOT zfc4nMNB73HUjwT7VXndREf!cC+uT=Qd@Y>I@0}v=u>jh5=T4IBTb~AA_uZpAe*5!8 zg>Nb(P7j2zYZ4Y1YuCxajw}9H#}y~ob_HSiPJA_V=Kj$yyL)B!?_t4>SF4oXVXd%U zW!xESgte>oO2@SatAaJ#j-RQtD+PW@(ysFO^+>x`|Ax&hX=f zUh?aYUmmpU8kXuBkKG$`{Rrw_Ui~y_T*te*UbR~pYi_kG0~XtA*Ey`R)vl^oUaMVi zu&&m4<8CwShqa`!`aRRAlgQg%Li-9UVD)0!Wa%7N(M*o(GS<54(6d1+^j;}TWyie%nP9o1Ug&rQ>lE1) PWQ2u!qjiFUx)l6B{TQB_ delta 377577 zcmb@vcU%;?|3Cho?Mqp)Fq5l9^r4_viP=@51{YhskRudFGi{$s{wG*^)IGvNPx}>-VV2l`6+q zs-99gqFS|t==kb25~BLls1{wlMpRUlxTxMWqNAgtYV?Y$7F{W-1}Yns5I^fmZ<)JN zZbRmbSym~z=fEKe34?P@*1>}Ikv~*I|5vwFh(!O*$&|*&4Nd6Xf5@E78WE|3Qt+R< z_W$oD+1qyAzbDF;bM&LARp1C@RW3WIpW=vOXF3DeP5q@z1#q^aP6uMP7yGk+JIrkT z_zG-#zgleXFcmmCO0Q#Qmn#p7w82W%oJ>WpfeCR*1LNW&dL<7_N(HALr#S?fffyl> z9o);P^h+Itg1By2WW0wm88X zJk5#Hv0Fm?LAKTv$bKmA%l7CQz#a*;p}MMORdk@JZY?=GILOY1MATr1_AsK>H9#2| zqhL>mMX*`UK=xipC=-C#YS@`w#Y{!8{9)&cnmL(Dk9v}ar4H<$FoZo*(at&(Dx-eX zWZQ>SWbB~rtrARI&(3oCgQDvrMc>uy9hZuHDwR!f+Su1UDk^+Eh(qF%2C(*o3T#1| zoNZmf#&#|j!nV6qPmoy-Y#AOE%BsQ)Y+I)Zq-W?w>N%Nyo|=974@^Z=vik-yI*_)v zM8`%2SrL;hUy_|{TtpZX4l=Hm3uo`fnL+H*Xlw~5n02ms5GZ(#RMs?@7%q^t2Zx}3 zgkoRt_9fPxlPTt`yd}iQwyCIRfI00;sstb;e_${F+#h9v*tS9b!0&Kt z6~R~i-8Kls7pK`-rg!z+EfEnFRR7I*4jXqdlpPXeW7~#lKvvRx3410ioHr=&OP+6K zw}u#SyCCCn8uGtxF1AgDR_qX`g>is8^`1MB)$64=q6L`_P|vi{fg1L>%{N~|h2qRG znBCRan_cKsGkRd3nx;oq@%`q@ec}es$uxo}_}s|WL3*@+<=&+hgy(SrwtY`KV*nY) zGc;_Q9x`6NylPQFGkCc>!;CV#zuFW0J>kHboMw<{PgD`FMP>Ma^7yFR>{&tOzWHJd zs)TI~+CEM*vYPTLq$VSB;X64|Hq@v6yITjb=i-fSlPM7{A9iOeS{X4ry=#R3|8ZEX zA?%^p*x!u|h>IswSz&k$Y=#!kT?mx3Fk2E#Y_8y<2Spy+wtpyzo=QPx_UBME@`M?{ zfl+$9dqDB#oQDh|Y}-rq*_`qw&L!>!)njJ!qP5xfBD50$HN?B1{u3YW1Vwuk22q!5Ql@;x6z6n7#an#QygAw8>fS@;&H%= zM?>aYoU%P5B1jw$?WH0^4IU}E5P8)j3=avcx?CtKK}Iab39ySJZ^{_5N{@z{XcQc1 zB(i{%ZR4cKK4dsb>sLPabN{Nsv_+!-{O32ReskjIQC3OfTOx(E8AznZL~2w#oJc2# zBwII@NLPt8X!1BBl@MvZ>sKOeA=0WJIq4{o%wsueK9TxP#e+6F(9uMKPJc zY$MX%Tb#6>NOirYkaIhT)Yy+D(m^8K8a9_mD~KfUnNOsPMA}h_ll~%7YQX|>?usZ4 z_rAd;PP|D@W}R6?PCg~l#%)W8lux7=!(hVYw?Y@^tdx&(kol1?}OxIF_9YIE+o=v zB2`qKBhnHgg++5xDUm+Au9I`eiL^BIDUt3HNhW?qq*+9&6jDN@hgeFJ-tEYVkI2dK z`JA+!NGIY;Nzpkw z6Dciw&iDa4; zK+bI>lJKg5NQa1Ye6EQ|yNEP?hnYy{i3F~vapEc>rnGX9lh29t@gpa(L>iRqB4}O@T`SBHe!X#Scp#h$LOVTZyGL zM9T0Uslrk=k%peHqsG$jL^>VzNMOr&RLIq43Og3sR9<8wQSH2uo~CzjR`sr2gy*JvvnJhUmZh)o_E z&Aep?=jqt%L+$LEEe?5BA|Cx`&Iw_27FQHx_GRx(Zpl^{W@h_rF2^n(-kKekqmT_u z?%RK8YX4qrc za@AH0?<>qoyvis_w2^f0 z*I5l%^Z45Au(5IM;dQtv4xPO)HUV`9Uu|%A;>OisQBfwGy)(uJau{Z8d0~P={5eMS!9K z7CdWejD&CyX$aS&e(le!f%;e-Rvo~iqW}bQq^q&;L5#mot@kI~!B`d8qtDRgI^&Ma8 z{?YgEEuooQA89m?&DyMEQN!#ayJTTiRA7^*z{Qyj+4B>+dAiTmpVrkoD-mBW5tqyctg254s3k!&y{Mot+fJ-*P8jpdBMqNZ zPmV9VxE}^&K@A%*SBkv~Da(M^6tgwv&S6for{~UPmXKO)=K6xVm1}!rA1EbcaNt#0 zCF z%p-Qgrt0j##U?4fq~j*gc*0g*LCc1bz*-s(!MehH4p_v|2`Vm3WN{P2=hP8oI$8TD1A8jZhe;&EQR#3MYhJ2Awf3T5;A*{S)loBhof92fNQMvB zIsuH2wTjj6%unuxe3rQ+!WR%&eJw!ppB z*gA8GD`11Lk$e-M%0*9GO)Q+T3WZVQ+5|lL*Dv4-}z{$KvcaTLdzlvGsKcBYP#J zr1nov8XAramz9VoIJk#xfdOA-{tI^yYV$m5Gm=^Lt>tg=f#V0q$fdE3*k$u&=<23p zR}9Z!H|A)+8w1d&98Y|2-y%6{-Ks#E#j_>cuE(c#&#)jx8c5ygTO-jJ8N{%p(VMxx zta6(dYtF+1+-DNc_!!JpFz49Axt*8?ta)1`+aII=J_sh`6Dnl6v(|<~lhK zIkgT&rj5nHc6%PiIf5?SKQNF4Q}DttR=dW;d?G4eoL`OIw;&2RFP{G(l9>~M-7se$ zNSZPYj}v$vgpW@49F>9e)KY)cD?BH{y&AkTmA$=dJllWgSg<#>RL+jrF#;3}E0v(k zE4KUYv7#!GJu9)XyGMbf%sF!Q`OcSMaRDo5KW-nUsn#ZM z-|tUnR_2a6U|^U9sK7v=e6m}``W;SZXC6g=N77lpW9aWt2AhSBWgV0=V?jph?qRI* zU^=TrMU=X&fa-|rmgmN@9nOvgW73ggYF#ulCG5V7 zQOr^D?`!-oyZ54ueSgu$tS86Luq`h2V4kq+FV$uiR@HKh+#@OOt47A^r3`;Sz=~7 zLkPieDRZ6A8s!Y+vv<8b+4VlmeU3a>rer7{xB%o8*gTb?T+JL4lV-s^9g{%Go+3Q<@pRP#i`p~SxZs5+x-j?o0tG#pb=19_xw6 zGZUHp5?Z}^5CKAzf_;TOCHX^`NS=4SkxT%e?KhrjFXQ@nauRci?@jJBrmIhx+AdTu z0dVhp=8%c>1{}*}G$2JRFv3IIm`i2T6vhS!TL#5 z!)5bNxpOe~tS4J=k$J`!-F=Oj!n;7nn@ow6(@FaW%yc=IefgYu$RBe+0IqhaiTJ*;es_oqSf`N1)@G*G&{e@Lfw!7Tn~sNy7w%e1VwJ zf+*R)*D*vFl1dEo7{rygGzDS53O4_H3~mZG01ExU%$+4-u&`mvo^ako!3vt`TpSeE z1*OFTD~S9>q=Z){3!Vy?$MDbJ1g{k+g$o475M7wDNT9~Y=PVIy#d4En0;v$CF)O&^ z@v8)-<&fO&q+kuM_u-nrAVsO>uHX_b|MZ^V22PJW5Lj@%hmQsGX-w#*yO2U{sBUYp zZe?l!XtO}5flCK_ScR0N`OxP9Ij~Xo;fy=KOC;W(yuSyf%!s&zzVIe-=VWMyr#(6kd zxB%m)Pv>NHmhcWf|ArN=r?Cd_cErFcpePaa01M{}%@n#sNc|v+rQeYn!24|B5;}|& zSapT41pB;ewQvM2#*b@+y^&hL@^!-Hv>5l+3pZjOvo_N6Shq>2#XRIglnk@)V(EKhBZ)BB&1nTlJJPQD?C7Lg4y?l z!!QBaBYG3GdMrFhOTT$oF3g7+_lBQSxKH}o3Fdn-IitpUe- zP6Nk3(mP?mXJJdqNmn}{9X8CAFA}9#(0GIOaC%^%=oCJll_dI&=8k}SJ{1A7qh)&d zb(rWYQU?4wN^}p;iSA7iWn-GZ&JZ2LbC%YuXfCF6f1!xM>BHq*cM4XDs$#nD{t$&> zT0xscpK~=oMz{VBsl#Yimu~y!cNgJ+}?*hB0H8%1)^{XN}C@RHOKAE zJuWifbn|JE0hc>=R&)pR`Qx%E6w4Q{i4Nd;^KXjoV|m;ikr$Sy+!M8uqx4d-NP_Wh zz7mm(&w@9i$+(>Ty=adYN^c9qFOm9wKPwXBYUd>4efacjFY!67)dU}LI&S`q zW{@}l+ok*vaT`jmoj}gcXELxXAl|?c&KxP0dI+x_E7q17SOWGr;wA9sU&INx6MH9e zotQtF>qKy-*o-^TaF#fXCYI2(DF#?-4xa(j=8MZCBu>|Rmy`|87x+CNEP>-!iRWY1 zy0skZm+QnaSoQTbiHBm=dAZ_M*p0gE62HL5TNH=|l)Y#R3PZlCV9{amuX=YcM%@;7 zpuFPnaItsA$(UH-L-7I}Y>7|A`>24~>Z16g3>?4f}SG1XEsAV*o+Wcal^@oH)np{F6lJMWHx!O=u3%`$;MS<*MfG zVW)V>W}48$Fc87iM8*bj=XCzCFj10%N8NhEB;zPXA3%sHcQt3>$x)I@G~Vb&h=A+H zN}gcrvEwC6uop&6koaS-Y&=oYoT9gI|8J5AntJvu$yMx4pIFIE-2SwAk|gX+9~VhF zQOs{3>S5w|I-?H*F*8O=AaF>@{SRTV^aIw=mvT}m8U~=at~4Dpo770U7awobM7kEI z&znm3<20wa^eDd8j%v%Duil?oh@-A>kv=0Or}2%v_npivLmn163ThyaA%gc%Sg%F_Nl0*G25>kiceWO|yBomAdF zNS4hh3iMBrO`+wGHdvNO699z6h!L{kJcqwW$;Q!gkdKkMXd;_%*fn0Zfaj2qA)7?Y zVbm|O?$oyEJ<+3wXOm?#mn71acT;3n#GG3d&5$M2cID})`u2m=xSL{p4h!L zvd28J8|!6@Xc5I5WaD^ZYz~dGxc*JpB74iTnVKh?P0MCozHAJ&GjH7?TgV4g_ucdX zHF%F~J`ZCokPW2mivNDudtM{vL$b-VFwuu)(G&|HfJXW{;MQTWH)u1ozY><7l-=+F z!0FP$qN}nHnn8;o_P8rnz)3e{rCitGq&qUSm5W^UTHlkM<@5$4AIjSBm%3R`Wh%aG zZi%ceH%dU!YZ=;VL8{$&BWuGKsP$g9%a=PUm&oG-xa`S zvT?QK?|6j%_2gY>E()k`5x~|+ZUoCd%Z>1-Ci3l4qAjqdv0MY%c%g%BW8}5Vj4g%A zj`BaeIN~RJ${#Da?4cC7TaVL+$lZEO9wxU+xB|<@$n&`?H|#T6-a^J5Jup-LT2J9x zTk_?NV1;$^a4*g$l5*v03ZH-oC!VL`+UMy(ae=1?r~i~|c~5wAM1GX_k5k9xPx+%q z&&b#E#>+S_|H^~Sx*_kyTUY#0-a^XtHm*c|nC5XZv2J?0Tn~|TfAQnGT-C>`I%Qx* z01Sp*MGBBPB|xnAQh|bQG9~P&@Q!A{BAr(th&>ad0&V)sE5qOYz1&m7BLQAvyfcdf zz1${0W%hELe6!8Vt+0zOFSo)rmGj!jR~s1S^+v(zWAKk&V|a~zsqGcVdsT8XuaCT^ zjPB@ljn`;G53hrK#QhNKRlsMxO;y!$C1dsO(~iPs@sS-YNjZQ`?|OT3J{Td#iU)t%zbz+AgeO`u$PFBs1G;5D1~ z)S7bdE)@5yzG0P9co*_9CR2M~@Zr3t#Nw^w2Ny+NDK)c%ria z=2i4wL)4;%gTlRwc#rK-%R9)AYkp2kZ@2T>V!W^O-s1DKx7$tcboO@Z7v(u~ zPqs==?-1U0Nxi-0Gz%&;epQD>$==%nxItmvB=2@KV?4$I2q%=>yav)NZyU_b^nOOm z31it|$O7-ie0--Z@^)V^e_G<5!jFwt)_CvdeQ*6*?~lAP@-}%Zd39dO_dZ48I^e&p zxoaI`f=>g!lPjWqZc$xEtNP^eh8|JF=M-%14$#txKJEbB zG})6KG}V)>IL)Uyk1#pQryqq$0g16e&-09c{orMS)93q)RdFV^toLa^r6?S=1Tk3Q zt$?pK`F!Sw$*)^IHf_I?%BDDkzQVYDKKXorhV1tkR&v}&!RtHdtVi{2u6R_x;I>Eg zb?*DLa<`dKg2*FF90o8{}C6x3yX z-M20c^L;1sL)GSmzAO2ms@FQeVz!5F@ESqP=3)hCbH(>E1wg&c#Rkykxy3y1nXea|f7Q1Qjaz?*0y^LH zrP&$%PZ0EBu6w@x7U`w8e9;!^tDx;&-;HJLp$Q^bJH^!!{F9s=hCcC4p_xQ_Q1YMo z9`QweBAcymy!V}`V6MV=sbYf|rGCDO%M3~%DHIL8P+HNTKu-y;!T^(EiVUU8oC>t3 z_bMD3q{tGWR1~6!!R0zcE8gPz&8sWWHjArpbuGmpO&K-jg{^4?E7~e%FeUi)$R`wl z$V)9CGN;%VRGTR13F@30sRn1RRgeMYXoU>EYp<9@qs-+Ye)Zvtj*90r(TFPpRM`qr zdMGHKGynw99MtZu;GJ}4PsMa0(vZ2AVhx3cFd9T?3}s)M&l{(Zfdw(q8ZhqhNH2JM zfMUHbqC@;^=_o~_015K3im{a3^2aHnXu<~f3sF;m8^;tXkaS+D2a)f)R{&WGSv0IW zL2*>XltB3u1$r%`1U{Uq*oMLM%|-Yd0=TN^g{geHuAq6)@eQc*O~pQ1t-z$)ihh{ISd{Q>y4hIU@AMuRi(1wr>@G zp)dwbKht_hGMw@S4Q+JVOwOC_hjt*B0572*W!%QY>LNcOZTs-L#BT^D&|2;VHz03JhTeL=)0B~!3`ZIL zHen5fnEhy81Rw;4Tl_9i6L@O#TZakEar)6rZV7=qEY<&t zqF;IV@JGMSG>>o)j~4S<_;~|sYd)bIz+1{nR>?7BBW|m4MP81j?6qj#^QwylgB?LHcQ}|A<8xQc&ky$ zQk>RGS8m7YUz3#kalP%+lp|?Y`9yVTmo-vwbYRO$@Zn75B5LO#F#RH08A1B~;PSBP zY-Jm2f9?4gEih^{j;{o62N=Y#%R=Q6YF-4(6j0s>vX`2qpv!rq5)=ko#lZ4N5eUyO zR_@mR`ym!D7F*0ad`}FOxyV#y000O;45TUET5!9UH5e|*Q!Wgk!~=ETDCMB_dGt?u zey9eNMg~dY?UTx1@U?_29ETSw+tWBHaTJUW5&C`v2bGtV1=vN;UQwR*LTUCr5RC?dA$e@Sr*m?5IZ+Q0uw$d)i`QKGAa^XjfAS& zSpHS6+KZ#CfuHIG&8=mkoSZOY+WVV1`m#Zl5pFwo@vn8qy$FEl17c)okP1Hb;_J`^) z#kh^IT=>UF^llb5+~CxUAn^6=UME_NyuvU!c=Asv?iD?z3vLiaT0Qpy+n-C;@WC7 ztj&k{b=8%_nTpmg0*HF|C7BYcpp zj=^b_mFmGb{e86>T}(g1e!r`aU^#NV8hxnYBfPs&-5kqdIqLB^-LRD_H)xxB9WJlS zSKq?N|Jts;fymRQd1#S33Z>j@SUc{j$KZoi9;ihkl>YEU zy%ft=pQ-=CY2kA=)w2urns{2 zC-qX?@`k_F)sdX{K*K3esJV_$t0Wrq@sf}5wOm6K(9cKH6(2vS(6kYwRO_!fjj``* zH9avldR5FH6pYn)0bip=3j6Cc=o>5_;ar0Ty@2}>jxlLm-xY&<12rZYI&;mXA(l0V zXozJGRL~I1GT|Cx*;>){u-=qs2|96t6!1^ z-KhTvZ=`DaW5(a~SZ5T{C z!Z*`76-H)pZKcoV`tWKF$1Qgr*M~6+IGuzo;rcLg8P|t<%eiu^R&qL-u!hq~?0QZo z7dLQtO*V7oWLr4A!dy-#8IZ#}xr4*2wwo*Weh;S;SitF|(?L!rGY@k-Zy(jX!a6y3 zMl&4yeX|Q1^z!&e=yO@q9jA#`HIwl1mp3)&ZSarq-EFRZ$yhmi{wS0H0XZ&NBH%N=7|QSPgMTI=Ib^7XRz0d*7{$=X-A#^S)7(L_>aT&RtNig z<9g^PYtV;*(4bS^{{&8lRrJ4z(-z_W=*1=!Qjz{RcwwDr|2tZg+MD`6@j|J0dw&uH zFFW{0`ytuY+dmb@)`GtNHRLEgpW;uvmmT7N2;+24^-sY4-#41$mp;~iJTCt=&A%9z zFP`dO38yyJKOEaXW|9AJeE#rK|6Cj)z3fZKhp<^S%v=7FulMcuGp)y3-|n2V0Djp>^}}S^Y)qlQryg(&s@1q zfBO%?$B!}EFWx9U;;Vg*)sU~$9>DcSskNC{mT0xFu>2uFi{9i!!D`Z~@bPtK?Q48| ziB(%shtlI!wZ&L%u%31@I{$l}hFV;#ZewjRE*92QdkvqKwb%B=T1x4xCB1*tO^aU7 zN0HoHTNjt#*hh;#CGZjU@27o+>2(~aosPA2FID>n)4Y_ z7F}{bLc=NT70l<=8Lb|t-siMrbl!PhE5-7Gi&`?WTCQmCV_A4zi#~OL)OzQGgSBW2fwZ zFBreWrhqmWXEh9{gQM}m@qj~^*B_??M7Vs;m4L^X?}9r4dmA#_@Pxt)>Nd$R!kNK3 z5zVrao3q4dY-vv*p1s;y|FTfif&9oFcGpeevlC)<{rT*dcn|L0-X1!W`s%WIuxbN5bbcA+p~Iwj zsvQ{Yp)+u(?hKFHa<~p{ASOBs8?8&^kFFi7vkH)L$kq79cpci#ON#W%(7oYH51Oc( z!5{URqI<|^h0}Csw;(BdAXB%E&rY75Q>+z4xdAf^y;ki)f?=B2cVWEt}J6GUwH|;@>yX`#U zakmf0JaAP`de~1q?J>3Gtgb#nhDhVx`Nqzi*KOvrGcW4U&Nf25@nv0YUR8E5Aag_| z@FGy}4@<7-{^m=3zUJ}KO}9Kw@u5i9g;zxHdmg6v2KB2TyCQK6zT({>4*m)K}dmo93FFvlVpu?%$OIk$SxpZqn;NNjapQHobdT_~O*NhlLg8 z^x-_jolw1dSTI-ga2XV?cMl7{9v1pl(YuEQV-3A~SV*X;cdNXxmZ#dR zI(qk5kWydo9t&DE*1N}o15G`xRc_&__O_*`wLLLUUm5+`0bn|3yeX5jM59$rn)9iJ6DRS9Botx;D>n}Z1<)H3FK_>uPr;rU# zQuuk0zEsAnhsDG7>jkKhw!KnyaMLJ#b&9)L?6fgv@MULf9jKe9l!B>?(LJo#H2r;M z2VjJuO+orzeGu51uBX{ohp&uvUnopXgpGnu1 zfpFn$eKE}~GQ@o#bk5cP#&g&U=s7%{uWwJ`ui&N5&>pnet@j2g>-A*coIm_)ss3*v zrxx)_{R9fNe1~d*RaWUg(kSS^U~a6@r|_!kzE1yZS$ILzTPcm-{1+wHMtwR@DQ~lW zYFQ{@16bg*9Q`$3_m{T)F93b=^#!z!0g+=!MBrFr6)hZ4pdZWk^!)*SN*Q{pfnWdB zQ~kn-TlpG*5G2s=u-;Hcw>qZx1CdYk;o!{?s&UoL$Qz~{(^Gw+-h%)(wYo2X*U#wn zG|vUT!K7T$tAO`geKa_9UjMZWc0xk}hPw5aJ`tY2s4qwJWC79Y1eA~Ua*%aTFN4!> z;t2%yCvfG49{nWpHG>gG7U^Sn&&s+>>seeY5VbOl(j~s}RDj`+P{->?4N7?Mf&LWb zIME4Y9ew5vZavleLgZtC)VweZL@?JV~FKz>}RBQ&_jrITU<<+#)nAVe9wATe~O>>7`7OlIiJ4d1YmkD(8xy5qp# zYJ(h9e4_sWBq4KO;fu$G<;~H~-QP zfNd;>29(~?9_oS(qomxZGd#$^k2>eV3=Q~ECpgkT^TiE35Jms?$>lt?O+4uDgEBNdm4GqiqY}dvH z^iD6Hhoiflh7El7X){mRB`rKizeN~h;GK1b)-?Nj5JCs=VvE5W?%Qgh+MDS? z00;qX-->Lj1vOgxMZ?5A!x5TSOObtJK*2+V_2sld2KVkW6v??jPuTAc^rB;ihJ2t` zIcXR~VaM-UQNSvv3=Jqlo+Aqp*}G!SvtL{=#Pa?gchxY1%jVxQ45D=RZ|dOJ=*jmC zG;4HspH-lBseyl=YEws}KLfiwF!U9Gl;c0D!TCp2aq%6t1!|ud?v+KKgrWuh{>>Cwxx}R&M>B(aV%xmIs;T$0eW>XQoV_pU`&AK z`-WN!JkZJG`3*bMdVT^xU;$(vHLDA?_j4%F*4_9E9|E~OX+z*2jF>p8Fo4Jff25fs zqk02CR)nz`JkZaWN$LDufbUQvdYeRGtOO!!qA;+g8mX>Rh|M=Fw8?+C@gfZ+{8Ry= zhZCDc%t3A&-__ix%HZlGBlTmFqG!c^Ab+y)HO0l`>nhms?jU1T6CqT8mJ#p3Gsk%+XRg0hmsD0ghfW0os<{@AdCQz zy(~cvw=6cUqFH((81&oI`1kSxRvOWUn1f*Y8sj=TeUAq(ieqK4%cN^6`kR*<7K;R=_|x?{XRb3?}6Hq8a!ZDfDg z`H}GvVhQS%7-?RLL_p)`ku*Mu)ds+V@%0C@vUdDzA5LQ_6v5D@)L7n!Ku-F5STr=+GGn8;)=Q$bmX zeDOBjp)eE<7S7Uh6ebZK78a;Xhbf7GHjP7NFhFB!O>?pIFfj(0o?(?p45s~*Oo(m9 z8BMP#RWch^GMlDjhuv>6UBLs>LZ>OOEM&w%rU4Y=He6obbPtHcg{3C+YzY*!ZEz0CKz=iNT6hrZ5=Z%v9h@ zVbho0O{2fP@5iYm>SvR`MvrI00tsFhi)QHmg`hhHiNd{vVo7z(wA0q&Spak0s8)@-tsXCao)Kni2 zGQ@`;Wt(0~5znh@O%-XT#Kgt2cbG!Kw5*yM(f~jWB*WNkCiHV}Tr1%5RulRSueC-a z{59V+fkySX9f;cLiPu#H;1G%d$ADt&80TlWvbymuzF=lviY z`N0G!S$E6Z9T>zgEAY~*DJU-pTuw8D;mv8*SH<2iTp0K}jV12XwuAs>?ZBo$VL|Jq zzXtg$;c7`B+MqRXTve4WZHxfoKOe_ATI7D{w8P z-5_%54Bi=6)C)Az1gV=-Tkv=1KpBvyc&p)rrh(_JoR9bI7g&xnB3w2wFp1Av1_%Dg zX9o-m9LZ?r%<_8Ypv%fC(;GWG6 z{DnW-dv#z-zS{nrz$W}rL!PJF;vJr9Pxg4KjXe;UL-SnUt&wIxc|K4HZygVuBL<@8 zqqJ~xVc?^(*u5Df;y>#KoLycx4@1ZMCB9Cre>{L!ZO1Ai2AW#>Ne zR9p2duo7SPacQ8IFQ9lE_$STBS4g+hb>`L}_Em8JoWYpGg{0fygV3x2g*LMh{w*@! zq*j0j8z5{6P}WpQKwm$z3LKuHQNn69RTc&u^D>+B+M`Z%)X&G9#~%$> zn1}L;*{U)Rqq*+m&O$_JCf~&!dUqGwn#=(lI2dU$)9l@FE3!Z7BHUm#>v=0(bb9)* zD9Aic%JnQX%=}YXBA36Y)vavaz+40`x3wMy;;Wb`Z*PWx8Lx}c+aP2wdwy#r>`>L* zk78xSMzJO+t7%SPn2Rv!N3%i7{KegWJ=4IvfnvNvJJiF_7fgzM;Dd(d?Lv?;FF^%2 zH8n@0=fybtvbotvGc{1fnR|d4ZOsa}wv`!uv>bzhq&DVR6dW-YL|8LL9H;P3=AU?a z^L{o@;*W-PH&fk(@h}C5sS2!_hi>}jcQz~PCI(3V^PkLI>N~#>A!l*qz}5sa%^nhj zkPZr!!E*R_AM-?-Q5PX3LQArFkrW(E>Z66Hhnq+8*7#`@RU8t;9;3~jX>M%d$^cbX zz}WF-r4MJ%jNi;Q-iTXgm}~Oczh|2l)ApD&0Z{{D0U-ZAn0Aw^?C!aGzYv zUTlu%4XashUP0&5i4XzKp^U9WfGU@V>sFg@@YbBS)|^90gv0V)Z~mE&|J04<{xrkC zTTMRTOgEbeF3UADKAhX-?K96ROIHb^45Z(bN#LggW`~R)2~L<-%DL>_3+59Hm)(2G zEJZt^@$hx&jyX}vW!pYM7g;V_=b5>!n9DAIVLm3|vSZ$v5Ay}ueK4afcLYKF$&9`- zPqHUJo44_;&5~ID;{9~Kx5Yv+l5;*4tG3v{_L<6XxJ+rG`n_NhjtE9CpEgYMb1@y3x`i6C&Y3jAc6o5rmZu3bvJ#z|^*ujWoXU4dH!z z%X^xk+k*g(wza6hiwH{(P&nD*4{9E>(CpK2Tge|b?qLy&k#bu0vJ_G%hgeCNVDY6G z!yu}RKIL!|v|``jRyv@M*Z^1}1Q2 zl;t8VfjMI=Rj4(PGv0Cs6PTT0xkO7KW`boY%{U)7&$5$D8|F3cCxS1gSoVw5H$`Y> zDIb#1r+4z8xc*6V66=GMxt1otYldYc1wYip0XS@?C4fdjr1JRLmLja6o^vf{|2+YS zF!HF|mM^rN!)@PKOw%?X{Ii!@cF~Mkq;l)!mO@Oxy2^6m-*=uPaC5b#E6r*X5m*Hx z{G2o4;*A!xedQ+Hve|N+LFw2n7OFkp2yp?39boYWkZ;tP5!7PX6cBqu zWtvxP?+#xCTYsj}t_KCgE^->7r6SkYUn8uiuwvU)wie^Q*QsuuL=(XTzCh&Y15ehm zu2WJBAZ~=vd2vb!Y}D48f_de4v<{Y`G^B_1ofM_EK34Q>{U&_c*NUF4qj93YwGux5 zAjOKlrE?P|472XRsdKb798Gm#yEN-#+^?DwtZ~$iQ+Vx}1oX@fGJvp8wy99@n^l1g zYtFQiuzWC`cQI&$rH}##CtSam#(@Tm7>NG>6t}6kS4OHb7>F^);3E-?YvEN$0Gxxj7Xz z@N|Jy=?kvR{aFhPr_kVHyJ0gz+iB}1bdv%zl%BOxJ(NL>K-5TInz0FWk1$k#sh6zW zU2%~9CNdNhU$D}w1-`?hSvw*CVnBcR_hsutbQb|@=IssZu77Vkh_F&99dH8-zhm9T z8|L*r>&}1QJV4EFfWJMk9;Y^UmAe(U<}QkR4*VLfd^_6>BB7 z-4v?uK(&(DzLtqg6>l5*xj~{Aor0PRcwy*-UcvOU?W83G(!VI=Fived#IvcUwbASs z^=Rf&fUPafSc?D_a%+VQi_M=S1J~G4&xn@bV23S;W@{M2oe5&^TD@Rw1=~s<*FW5Y zdpp8rpqXqFT)*lz6)0LBdKIpy=^=fjmJPjnj73t0)RFVDGxu#1;JfIGGU!Qwi@VWHCEfyfwo^L1{*w7%mit}ZDctB zl;b*y;9o;*=nG)@q7DBTZkx_cCSbGCHW6jSa1C%vfpTMQCwbkA(rjmV-QQ2QnP?US zgniB=n-;liMeV#vp{cO@RF7BvGR@;Zt)|pZNs#&&~0>RN9bNHGjR)Wk5F-|Iv5=8zQz^QSF^r}N7ZTO4|pf<5ZZ z8QUZDs03$=FWYwTmdd|s!;e4k(Q(&pPQJjFyS8K=A?lHBBcCmOW~B(b|R(PN-?8S=+dq zQ^4y#+Pl(>xE=&>gmEaqq6PLq@M2rJZt%A{_7R*mp}K(`J+H((p`ocgk!EE3uV#9- zvX3u=efaOzp%qY+0K~SnOX1fx_8eZ71?}xLQ%}MWIg1aPlt4fFvF7QPD>|&=_ zl@S+$wY%9L({jKeVS%Ea9wJZT?EA~0Z3~>z%TBdG`li!GeeCEvzr@wY^taQj)V^UE z2H0tqN?5U3ApQM)?|HpL%ftGE?SF7i4gMZR>oFW2h@EY*z*Qsce^Hw3pD@3UwqNBn zl{C)2ht6*Q1k|S4-~11Fz0R;7=Xss}^?$)@*d#mEQx}gJIkg+7+K=+QUQe^bvg>Qk zbUW2cscv3AAbqoIAhgf5@1s~xK?JjlW~(S^-o0Kjf_;a>dqLA5_DM7oS%O8DCNJ)V zs(`g=d?#3%Z=WI{S1_2l!`_YZf}aHtEWbW!wBN1*b!*xA^-1y`J6fNRtIUo+?W1X? zV}y6k5j*#|!gSm|O2{!@cgl`-l@jb`XVH!eS}(!a+|nfEyd5n~2%`9s9W6~r_Q7Sl zm1bs!h|dFsAx;-a9~;sRJ+QLND1BfcX!Ft@4mP&0&hsy&TXhlLeIZO_; zA|cs1P6t|%kZfiJ2U?MkY^N{>T9J^fIl_TfBqZCmsspV^NcQXx4zwa6*_m}5XhlM@ zdmB2?iiBi;Z|Z1H>6^2Ft@yqOFG&VLSB%3+slB=QdB-3)x|5?kB|;W(FD??{mF|wZ z6yp@Wnx;ZDdp9x6F>W1U>*t{P{a*4=y>&uN;^<+%fT;NYNtDX zN52)2n4$uIO>j_caQP>y1+JXvI78zW-^jJP6l8);raLZ+L1@1eEzr$$px+bBMo&Lu zSw~m&d3sFt@_D?%rFc1kEMkvM5Sukv52 z3YR%+mSxZe!IiBVz)He+(KH1j7@y(qIzJE(vdcYG}JJFPuv|h1|vn$Qq^jkZ~ zQvbY{UD(Nq?qw5fQD-OB+x!?CqN$UZo8`d6an8W9x$5SZ4zhpF3$z*9UpX%?v@(3x z&l$$eR$z@JXT!3MW^R0LFCDlr3|XJdFz{nEP&mXH29(z;R)jwdaTcLpal+BkbfmLm z*%YrhZ}$i3O1$l*UV}vVWW3WUBGWHupWs9{Vo5XWCON6ruHWp7nlXZ(vYZN-HO0A? zH*L>pPPBj}E!3IrY*eOTA^ z6D>qZ_K)A4t!O<8#%^-1^W&&m_Bwx{r3woQoR@iOYY#cmB9u@wo_3-|D9NfXIng4N zWN%#dMC{6|PP7OmM=uvS(IS*&e|q3Vi%^o)K6Ro+D9JV~b)rQm$%egl4l9e98bP#< znI>a@xz`j7dY2Renu}Z%3oD4$ZdAe6*69kLSLmt@*25t5QhPgB4-g}B(R{aD0MXzxeadR0$eG+;Au@p3pY4j zUj>BY?qC6G&O7nW?|LF|P{yGl`_9xgTIy7DY6`fp5cw_zSqWOl_KS3?9dKVYf0`7a1W8GYf zIa0%Wx@hjZd=K|B)Qw&z-&}bt%!6$B|k*$VIa* z`5rDX*>$u`v4%X$0=Eoyjps&vS6{4uVh9NN|Ku0P6( z2HU2)s9t{J_1+c~&2ZUa!90v8H{T`+EJl7G9RKNmP4!z}gB`sU%`cwvA=TU|(apiENDrf%>NbOnf zqIz)ny{6i(a&6*BDSt0Z#PEG&*Sez0FiU6)vKs{lb5DPY(c?p!JM!Q9SM-2?e`{0q zkiIZ&hpP+CQ$P=1?AIVAsM|1PJk%X>{YDFwU+4;_nX`Im)EyQ~)_q1Oy5c$|U&$})kZh}+v$aR97%Q1Jag^ma?MIyTe+N1sp}8oNbu-O zSCE8EiT-})u6yl+yYAdis4j>c$*5t!FRm?I(Ml^-%eExCppNP~vcEG9i&`qJou z1}HQ^Qt+usyawbHhx>yT&In|~qPm@+QW12Q;gly;29;&{-WK4NAZlqir+~TIpux1v zL3U730$BmWo2H=sBEk?nF$STx%mio;Uy&`SB{v(b!FKKxL4T5_6thkIDQ!z6elC`lsqix zk(A{6jtknsSuH9ph+k~HPY-f(XDdz#O6KZr$PC)ZM^Hv5)AbPW{QyCP8hWx<~q~QOt_MHJy9Z}mKNR?g{M6j{TF3YmJz*3hj^rh@B z_FjU$Veg8X7^6n9G4>X_#ujz#qOn(uEiv{U6~*4;H{~uQzVDwL-ap>)vh&>MoH=vm z%-orCD?UW_#FtlvKCc#^IwB`rv?27zYK$Anm`uhaZEP-~&Fuzeq6RxdR{`P&_BQvX zpU4F#>Tcwz zIzAmE#zVxocq;TYKnwze@s=~8=O7kCD$hm2GC~qkY!32554uLgvJ!rDDYU;mA=Zzc z%I$iY_{-u2qCmXpYUnjva(m>BP)J4(>m%K<>#flCkQlHM0R`0)kuQ{v5!FVDcWuLY zGW_FrLVbuj@wNM*2O*RFf1!^rITi|8Und|N`5Yhp{4CTF=R6DDPIXq}MJOcM27$wP z*UM1Q?4DKb@+Nc-CD8DF=ozSy{qZ3bG?QlpCVvjSLI}+6B7!9QU=R&#MW9JLtE{yb zU8D-|a}u40Dxl0+1e%}|0&DRASJ75VAk0H_?7tJh1Y;g`c6)q9C;oeN#B|WdUqsGc zm!jr@B1lFFhEX#}1e$V_%5%{swMfWSwz|IPC>5trBm#B_h9<>PVWQh$Cqnp0v2(bH zF@EPCzQqEq-rYU zhhz~b0AvbLG;id}j}<1Qi%1HRQf$f;krX7QIM66cfrKLrwy6BE8(Oj}_(y!8F^9d> zl*2AE9fp72s!;|I}h+A8}ei|*3jEiV?mfkc{AeI>mbd7}Lj>N!*$psO*5tFiVxuC_b# zMg4*5>R&bYDO@G8K;}M#BuC-%p1JEqBr!=T{<2X-l692g(_2L(Sw|_}wL>%(7>4!d zvz^pZ(K5(vhY_rt>FhWsBFQ?4&0P|aWF4h={&f*a)=`RQ-WQQ%9i_PKL(vg>ZS+V) zl692g7SBZ_Sw|`U{k4cB>nOz~A4DWsM=3u1g$)>ZLk)2oXxpMP50L{qEyt5}jH)TF zMeSy`tC;nRw(eri#Z$Zz{0v3odrox16UdLWHLN8j$vR4LMt~S}`i|NpUJ@eyg@QC` zAU+NzRuM`j@bv9F_K=9zSN6;@nV4)AFU2nuV%8vgR9p$;qs7_a(TqH+4*o?gCP{8e zaZ$XOB)KWY9TLT>fzFc6Z9>qMRPiU94ScU`aJm@sp)fXg>#$Yqh{H3)9uSwb^tQMU z`qM@df}}2C?a+fPu{-L}L2REm1;g{FGSD+-vG95~FcuuD!+ooc-o(6O%nXOt%+yh@T7UxU^49wurF1OG?G1Lb2aL zF-a%O?lw9k?&!daB`3rwLbXR{#Q_lC@fAhVWBVtZs8%;c!VB|ZSH(+h8BY{`Lk!tl zOt>w^>u-u7Q)x^pYlZfIeowp!*8YoezXxK_M4EATc_b#=t7xmCD^J9b*MkhE!&5P6 zGR-P?elFfAaEN>*-Uijf*4JXte425{c_$_xU}bu^@j<*6%Aw^a@loESvz1|xRP~I^ z&o*JF1jCqQ9|qZX%U~QG!$6a3Qh6+j9COc=96*)eDXw8#g)zk96$b1i91oXzhcy6> z*8;*4zp%?fJ58(|205lsDIGtT=^q&O7!o6W1#>MZjBJ%=_OmSH|ALpIei&%_{}r#J z4a2qwye5gD7Rhzb_2nHFrUr%pW6_s)k4d1lE!Y9OM}}Pk4+aW#m@7;CiOGxOvygcl z(~`mvRtqgY)MzN)ml`$*40HXvd*rZXn|gt$tXBA3yuuu&cH|LGMf0#Mu(?}dg%`f| zt;6mMW9p}lVU2+y;aH^W^vVN!b_?rm%Q?>I5jIj7;zRm`fnHcLWl~(UBp}2USM&`d zM^0HFaJqjO*|E!tKMxFh1GXE|;EwFvDJJJm10Y9EpKlHu&-VPTofwt~nX^*>K3)Ii z$1sxfh6yE^9!56$vf|s>VPvB(E8d+O21;)7B5yNoc$4uWm4|@-War3KRlV;NFf&Jcx ziGhBp4<<88^1-^Z$fkzm4j_VH^V;HsawinCJ+BV#Z6_glVszhYyl`(PNh63O@oFdO zfn_d|3djgYDLMo3yf8Pvc8=X*y}Ngxw4E5186i6o#S zqm>9~PbZSoVADp4u+7<1B1sj@p|ebK2QqX17xwssL-0uyL7Gk{Q6KHNy4u7_AYm$j znTyZINg&fF#42}8l*|#DtY)$V5^*z_BCP~8hhmj|4H9y4k9Jh_XQ~7elQNj*=@QT! zidAlwCD|-+sGTE$MClA>X08M@hhmjO&642)hfVpCmC(LjuZd*8;36uTLwn&|+^MDH zkN^|gR5v%y5DSjdp_e4At>GOHyn+Y2Nsg${zdfjUSf6c4@=dPv?uTzM4?nSq61 z=iZWEgoZlZR|46TUj@i=3R(I|o>q?+gYg?ESs?H_I2hFOU-8lnmAwBy;N>wwLJn-Q z4t{FX|AoHHV|o*TvRFb+<}8(z3!JYnCyt+U{$-_v98G2PN35=VTKd|`yYA~HTL2Hn zg130XJyb@_TOEPe}&b z@+f5T8OdN_p!fbw0-BLAbyHYOK2<={bTN**E=kB_j1}koF3AVeEgd8wZ&m{$9FTY( z`KH(T>k`mH1>wW_pGuw!3h{g)*}*+3{^N~=Ot_dh zM?OeM1|?QB|1DWt4dZv9v&=a-%~5LYSUsGj){Yh9A{7Ip-!4@zjeGh_qaYJdG8%Cd zY_20ECrz2SH-n{Q0?LXT8cMDDm@k(4f}3}-C4yusp&vr9lS|1tZU){^A+`3;$4V)g zH?q51qNGj0&r!rloseg<1_Asft3E+Wj&L*BK}k{#6c)EPNXdd1!)cHvEpfJ4Oy4zT zqWdjdh9j9t3OGKB*u<O1MSO~ zLiT%F0s8S-mAZ+POv-N>$)_MgT1d?mQq(p53(Y(=C8RHb(G%qLOTc7 zC1J5 zG}WRAnDm)M!IY*HOCcMEtBBN^AqCC1st`hEOUX(n>vo@z6!dKgDwOA3sR0t0R1pbX zAl)kvdAUdmN&i!YHEM|zGzF|esQr_4g1~0u3MphxUWFxJB|RxLc+GWE$W)~YYw~(& znSj-6lN545x(e&*W+~|18bc`kHM|X4)G$m)k~9QMkJ@oFGVOu)bt|d_-`Xp+0~=Ho z%%M{0pF%rs`c(=!CjBpIB{=2q{|PVAG3gG0*RvD<7re%ul7d3mufz*FD<$hd%pKf0 z2e;L#1}Ho)1*J=>;k2R3*a&*Ohnc<*U&x|&SV{}zh z!Z(e>wU8;{zoGcsNxPQe$A?ox?%L0jnOy4pL6;6gWz-evMU#ksS>$?TIAJCuZz zx0b9pYhgHfYsref%fiW9OIG}CWjJ|j$%;1X!-WYFezY-M37K71nVX{Q9{XTNZ=A9{ z{6qDyh*7abX1#Iez2P=c1I5IHeFVFB>qImJk2oD3Xk+u1o~#^(JkExLC(DK1WiB(d z9qsYQv*9i62qHOM8H02?WL|jwh47AcHWl=oWna|m5BM{RGRa}fHdn$yhb=pk0jZn&_~cj@);k2Q!u3vY*i0E|Es4HLBS5JMuB$D?{tvO53BD|Pr$_&BQI z%xB?;VSK6}gYk!oa2LpM^Dkz>_{Gcc*S3Vz!#Cjvt4|8O3pYU4D6FI!ZrddL%Z<>X zhf(nccUeu^fIGcpkQt>FRD$z-WT15kD?$QZ>?hkzsNmKCvH|wwdNx>g$%b54){||a z*Om=rRvt-#3N~*42205+y71}j}477mp70j$O*h}n(Q3hJf z_=;4=T-gmuN^h3^UVTyy`7+Q_!dIkrH<7KTqzanLPFIK2_Ledi>KI+y${?pizhZT) zo$Lkm8oN8mAPcTvp$#pNfz}fk%%!%QK9TS zWP#L5Dh>A-Ap4UxUHV`dBxigTknd30LnswYgbATdRW_=cEEbKCfffp?<(EX9X?(5$h@Ieg{)6; z+`dmX(H-iT%ok+}o=~^L0g)%3c3PHA?Slm-&(6x`P?{6Z%V1xuC($7$53r>mjenPs zBYYJ&>WVBA96J@>AdOAuz?jT|2SGOCj(sUx%0K&3@l@6UFzdwx!Ij25Q{T$SaoGyo z=97#Zm#x^A6;TZ75CrZ=r0W%)jc+?f?1D^b8A92pa9`XfAcCBft-v?xMv#-T71$z* zASY!jaF#rR9L%i1K8gqyzFkp9kdv|%*gZaioRlS^Xd=i-*$SLvh#)6rEAWVn2$EW% z0vBXQ^n_0fUfiqCKjPw*AEAM$#@fH@^DVZ;EhAFFFvMvEm5}s5h@}7NiEDL?*a9@d zSx8YH?tzJIxylGRr{!+5#Q40upJfgnqJ?H zjW|M^YyS@sL6CiyM31x3k{=`5!<+=G>xR!wjo3+C1D-rRVujy-N5X`~BC0Xw3ooyZ z5PYG2W5f)g?v~@#TO!U-jSblz@gvog{qBf#s;QiVU`;JRF-Ibr{CD{fk#7NRb~J+I zyr{sTCn9G0!$8L2p0^@8k<5g2+kjtr#6AEF+c8kuxI6&mKaJQ402r&0PeG$zM1FB=0fS{*2@VFxy8^ZQGuuUg9)`-jkT_88iPb^!Bakqv zk`2Y00#h+-E?+!SEWbkzYEab_M#v$#nFyJaI3ZFFns>9xAC&SdJ%l!odU7jk3%s6d9M-gz z+X#MecSregC`{2ea+(x^_6^ikegX>9w!3^OAaq7vGv#O5LIL*fEALE>6H+1*2g%O? zh!CvHxZ@BxD6K84JZiYyOEA&JqvVkFCI&NRjNBU%z_7}5$H{#J4tu|Yb6EJj+yHSG zjKhP;a$kXi>ooagXj?okmcIscRZKWs=Z`Nzpiat!xH1RktXSn+^W{&4PI_|@oWrgq z@_hge&~9-V7yTrEVjVJ8%1=RC!LnLD8Zt>D9Co5H8yoe;qD^v8mPmrI0coS;Yy*EC zzEflAF1ascmd>#DC&-0-+6|7%hl62m{4TGJXP%eu03(>apM>D7oARfS6(J@{nfGfq zvOTkY08V-$_j5+c{XG0|m)G)vK*zBGF~nyF>$;+*pXEFNMD)W;c+7h_ITb)XD?a{3 zz7sNiXOs(lp7^3>#X|znv-@>@P*S(BZ?K(Xq>U~5^w!f42RcX21CyuNc$I5pAn*71 zH;+h?^P6#A?p0YF>=Q{7=TJ$a{UYB$w%0I8it9!C;Gl+)a|P-rLL-j>o#h6^z`m76 zdJEK7MO5+~7Fk)$R#sAXj*83xtm@#gDUrWBa9#H?MuH55Kpe$aawEz22ALK&nj`7y zYpT#;`H@?NVsewnVIDAdvjJ7~jO1UD-dhl9bmVk{dPOGiAOm+TtbC%feRQ}IBHjBqcHiLMLj;kYQ zu+#p2#gPLcff5Da`)Rt&j-;pksbp8@MAFm#w77O*Bt7j42~7iX_`+7>CyTBk5s(O6T;^NP5_x77w4TZ2W2GDjUDq`AB-$pZ;Ldl}LKn zpB8K0h@^-8Y4O;dNP5_x7T-RMq=)@!@#d4rfnZ(S9v13qX7!Y)?%{CBSys?%e~O`K*d`?Ti%i?I^Zrr z3R{Sc(#q(4Jq2WehtwU%CjzY+C?1j%MCt}!sIgc9+5bSWCgCGtibnvKf=Oi=Im<*J zA1qhQhv{$<9vG?U1Q`t(_vtFddU9lla>$EOEQE4csaAkKA;>uNjaQJ*95W6LlHht6 zs!@QltPl>pP+5+`3C%UBe9%;lvJak>rkGI!CB@bE!--i6da|2p=t#DrH%vplFnNFp z*h-9@J1T6cAS+w16rT98N#SYFC}G#8ik*;n!YVX_g{->~0M?6q@WED!nt~Z$YpYlQ zQ_v(F-ChCO1wbXieG3%p1P@(h7bxcbceB6*7DK!VsW%SKU!nk={iBr; zsqBTcZxroN_iG9t6q2okOiT&XK-7A*f^Q>5lin(}p&QE;j(GHP#TY>~?yD4#_Zt)% z6X>&oKS*4!SpMHNjI0cU@v@&mjtTeMqKFcri*4IMq7a0ctlvv^C_wKdDgk!xQcM!m z+GMX{6+j=AP)GME&Oo{-0T_jb_EvVnD-J7q0TBkFjoTDXc>hU-7}C=T2abRUf&+Cy zT}sXWu4rs%`2nT%p zx#AW?f&Uv;`&Tem_rG8vg2g=F2te+Yw%Laif9~5h=2^x&E zJ}I_wyxAVgmDPa5gySCIq^u(<@>WLk*XIih6t*__rK571;CW`&R6@n1uu0g(Re2h0 z84O{iyK<_)Ce2H^2B;-Wusp%Ns9r5)2pZN~8Ax`zEB8V?j$lpxxHLqmgeruXqdy`5 z?#vA$w+70~+~2%!pv;1@LKQ(zNS^x(3Ka^KC|>~e%Td-{QuII{BuXEY7Owo2bE_*; zE`=%{o1>Jg1UKlURvv-ibnK!Wh^85pPME}W4Fxy&i(Y9B=N6?Z0pT37!n)%}Y04-_ zU}r@Lp)JYk6&ylLgTpwS$T_AGhnE1Vwg)&V2l|lhPX1{m@wni0Uwb z0iF3J^+sV5%z+|7Qh5;S+g|C6N>377l@C;w102P_Q0y^@?~EK+6y9H$ikunWXmH5T>#!P6Q4xJ-GNXaqH0sRSe;`8OCMVE(8q zUgV6otx}RL?0fN!waT}EQMn3tamW)Ftl6w|_aY?O7W)ndmHkQEq4S57BjKu#MGX1c zVP#hemUc{8R9!Gcz+7?r2>&dE2g z2N4|dA@XnPJLACjO2{6ye?#F-AIU&McqRS~8Oi<)#uhAQeNkSmmbDTIJ<-k$4PCIi zgDRgkdq*c#Xf--`ELEB(T6<39j>RsjMbuJ`xT}7qmNL*s^*3N8^j~t<#9wNu;sC?P zzfllD@kGuJDujCmstytR=6y9aNVSg|bBzY7jg;~)A{9CKu@^6qs$RIDyW?#$k-V?F zs3cYeJhv`J^?H{(;Y+cqwzjBfzO5HdO;CLX$b;(dROO-4B-N$=?glFBI^a6Vs(pYq zsYD1ttp}>wp_Z{KUvzq)3g7@JRAaQMNF_|z7pJIt)?lhZbuv_t#e6GZFm98n0%b~J z2uTA~PMEx_YUP9e^sC{AoxV|#{F$`P(6r8~zA&{nMg-O!7k5#m02`elgy6y5R0hbt z1*>R~xrbG;{7e z!sy7@*v_g>aq*p%UE*U^aq&uJOh;uwyh^21#(&c>Ru!d;C%;v8?!;^m6Rd63BjPx| zlE}#Kz(i_GEFr=VDr;-)ofrR zaot>*q1stJHZij++3ZBsWK%Im)d(;OQ==QocSxLDq$2xlm}|-ZNmUHfO%a~CTxAOw zyD5<(oW4pm%obJnI(VaVYg99#9Q@X)lEED8HmLdwHuC)@IERy)Rf7Z=%T`r4s3<+Q zsqP6d9dUz{>F6qiQ8Qe$+nIG^iAN_pAN}T4yJmcSN-fG8-m>H$latRWKv3WCJ4C#zg~7xuOUsZmqzJO zgj0TTq+H-%XrZurCl7bv2@_K1op!f{m; z+3?BcJMUtn9zcweb&u-=45eyQRCq;l6f|mVf*4G2oelx`xh~3HAm*4JC3dlyLAPrL zA#?Lu-l#(}_e&_Waa0geY<2ZTWhU=PG$TLiHNX`smw5%F#Vy>$_;cf^$qr~+(l2#q zF1{0v%34J&gW(0Djs44=QS5iN?Ger^^hU95qMH48sG0R=`yyTMs9;>tCaSE4%@%y1 zLsYsgxjKCl1sT060TBUoKsg1SozTwCQIHiKfm%L~k}A4H^|H6wg4*_qS_G356FI#A z(_O1bt#CzQ)Lfz)G-*H-AfT?oIXE!N2M`%l0Sp`x^%Eshdw3LJOKTNQ{)niIY7vPW z9W{s&*-#V(h*7GDTpb(L65yn*07 zs}49MB9M;g>5VoHc#eH^Z6%?)SshJ2UB3kni;Lb$sms%&H@lMS&HU*8HOaMc+vrse z8|{ONRz?NldY_{qkxG?1tdDWSSzn@G*CEWcbz=UY8V_g? zGtQA*7f50*)`4q0_}@O+3%yK>*>3ZMA5nOo9<%blLnAV@`Qz&uF*bnU1oe9uW5yk_ zVwMA%hgC+TvIClIj+q6Z&Yr%+5))aYWJyaebhAke4 zEGvxJ?aFaJjg0xpmZ^Kwn3!*2k~KjD&FIsxI2aWSo#nsM5MnD2P$&mUrD z@lw%`F=KhjdwR?wd(QuGNz75ectYEkKNJPbkAbXF5`Z2&5Nfp`riKqwVV{jLfI*jX z>5rFeiun_$z5Y1(mze&%6_;*{fh<@t3KzD=fY$L?WyQ{z!JGo#4OM7={A5qe6|fe% z?~lpn6iyw8`4MKz{qd)RF-L$F)gO008q=OrxOg1i5Kbp!E&!rHZb)O!#B}BqUYEhm zQT$sBC=(>Jg@qTaT5!7z*Mjc%nA>1mID93hH`hYSHMkZAU60wrQ4F_Y`a>b{&piHjOI@b@8*oD$@K=xK6wCo?$lEvO zXD0@#AAz;t7i^`lydIpw)%w+-&^=TwbjrhGHP|)13R52gYoWc&+9OKkYOrs98mWeR z#~~`U5Q2xtz|FCWIF`2sO|}BdlqA(F&Z^Emff7JhL7B8y?O>0Q&??OL$*^eUEa!8cLP&+lBZtCDa^CLweVZMdLo3vxr6Ef`0u9b zC7i;>7V0@rH~FZgdMJbfQ=xrZ^*~NxQhWGdvA=^Flu(mVNc={7I+pTb;P;OV><|vJJss}>*c;YVg2W}MU`_#a-@cwwze)UYwrT#(nnE%cNlX1Km zrxAAqK7RH-s)iiT!{?5xk8t{{PpK#Uclz8{T|BM62OhWDmXYX#tC{cIRfRsS^+#Pi$w?^p$ z_*|>S!)na6Zaq>D;xcqCS5JqUp$d|a1?LR}kU=_(=obk7M4ac*wjRktLf8yzC#Lnh;_Z?z^J@TJ;^_^m` zfM0}>wn(;RFOpWB_lN~{amL0Ocl3_EW=CBOHr0v+Z7yTx@%W9}9bXEH{T5o1oNK7q)2+?Ki|;1!@Hols_F<`#NREuH>}#=f%FYXZMaaiT&9P2#wy2Ng0T{ ze-pcv+mF0kY%Pc_GGPgpC%)7pRs;#@%o65tJ!7at*Nort2;nW8ZUo zE&L_+SI#$edu)AZzeF1jkPhYgM@j+8+!gDCyX}r$$npL6!z~vR)Htx>PM?W&ML)bq zorpgkkF`K0!vtm@7iGb3v7;g1_+ri2?yp#PR8t=7Q}VdB1-spjUCn#;k^9xq4*_is z(GMF|dfO64!Jet#;C0Vq-$G!RU|&APy5h(Wv9PR;#HX(!2u#7-JmX4vhq+}F_l_Io zBfGc&u602VeLW^vjloTMDmKm=wf9KyK_2TjwB%6=KSk4@<3u#@J`FZi6I^<9yJ^&T%1lV3WB0%q~!Bi#W)f+=^ZoH)|R9nKLcu z5Z4xLSfl&I`Ju_hiGuPjbdQsOl}E6ooYKyLah?33PG7S*)sMzp0wwtrI3+}|>YxW} z;=EAV>_ksAY;$Tc8a^W~0&T*n(b#@Q+=M_jvMg91mjrHY_Y-lhXia@(0X}{(ZUO6B zwz~Gn=4ezjUVk(Wv_MH48WZ4XaJLx!B6TKi_FG&Yv^^0)aKVbpaa*`6dwC`926!M@ z?4MQ(wRK5bgMA*y4RWSRM{{4rLEi7NK0xs5qRbCO@yGnr;?aT+q)iJ$(nu=tH*wEd zlQwu8w}^Y=bMNC^dFkoLxXxUdf-iA=Ne3s|#yh*R8cp5fzi?09*)zU&U3PD3MEn_k zuXkkp1+XgHspH-7+30w8$kGS11%l9yd)m{9@j`^QOB3(s0qkbjoEzT}$_A0jJ~TRB zkDr_3OS$?EwuwK=RW+|&{4!q3?GV40m+EwikM@RgEgKjg3+75H`y%bOlrHGeAi{dx zr1%gVJtTe+*XEs(R@S>mTUqxhia*O)=Z%ZEha9?NHcFJ_fQmPzxuG4?JmuK$$N0Kn zA*@(iaL;M+JA;6Vr0wQ_Hl0aJ#(%AkmsF1pf$>CzWsU6dh7Iwv-B@>Nvd5}T**>c_ zZ|sjR|#a}y#95(6teS@0%8LAE%#QhKgQQ#qsg}V375FFIyod< z1I~wA;=XPPEr3nl5|PTTxUEM*FW%X&)Jdq#J!y@Qgke0K{IOxeCH~ieii9cruU^p! zqxoN##3c*^hAFMkw1V^lxU(UlBXI46A^4!DtrHz^kGzCCyy4rK6V~wgeC-wq>uNHy zxX>wKk2@YrajW#U)nRC!XhW`a36n<~16*CO+jotD$#dAwW(V?{`II zA&E87zO)Pn)|5D}PGWta>{VE49_E83R10Z(=Zu1M$(J zi7pV;clczle`bN(=+6SmXM|iJu{=A@zEo(y3%# zzJGS&B;I7L<|h8k9ck^AiPQMK9cvOFK=A39g6eKg3_u&tXUK8k#>9ruF#r>oM!>b< zeAM?&#tuAkf8s)*6b!)^Z#tCtkavJJM-p%Ip=H6z#K*ier!27-BqAPrpO_Mvun)t2 zw-UE=Q@VOD5imu^1nN0=F5~}7ya%ysf?z@JwKIp{jxQ50F)Wn%CK2%799f}!aGSS@ z{@jwre@J`_X#cv67a%>NqOM;KB?@9N3KXZ$f=uFCyDszIbmbcL|0(cji>EN+7B@ns$qQg zK#~o&xm$;lghkRVN0Nkv>9Hr0W_kj7Ay3<^=~#3%DVq1yo;Q;KFY@_f9f5Mioo^-W z=j|JFC+Pt&$~2=duaaE&>b;^O3B2-x3Cv!uxYO^F) zFy_hwy8$>#qLKKapW-`YqUFh&)c_NtXO9s%d+d&G>NGXcI<4jj0Oed`O+F6PYwAG; z0a_XD&C)-%ViPy&tmX#g2b5X0!xUsDWmE2MHKJbkFjyd<~|V*>%Z4H*^#SpGQT#Srs+@re`KcS zEWMV@(fnaUu7&e7SLii+fo40s+Ah-Uqt^qAHO@d08{@ncn%O|98Y5D+2 z(xf>HnnFibYDn6NDH@V?VzZ_uWauZ_Z;U+EPyErF0ZJ8qvrUr*CP`uNMXdSG!P=62 z_i5B%R>_Aobx_Y08aeL&t0oi53KN)>m4x1()SQI2AbNUB^H#7&p6bbOp#0BF8_cROXHQ_If2eZ?1O)kC8d9GZxTqxYZHhxzuJM&q$IiOox+n#0Au{jekBdi=UsWVP}zwXSKKE$Ino9_yW7+quZu~Z;$ZWPvmKL^ zyr)`h>&+;yjaF%rKLb$ub<=ghiQ42pY|*B5W4v&vA-Naig$Tt#Yc%>0)WMS65AVoL zZV2hc493(VSxD+UKR>yf9V3Q(n@(p7do(_vA7`yxzT&A)_$`#00PgWOiz06M|a|PQC<1 zD2XE}`dST64!}=GC&xkNjf}^Q;&S3^Da@m3$&&${7BQIi)647Nu(`>0L1@J8F)k=E zFV_XNoRjR0ZhlD)#C^6A^X3M%Y$w#9x+3}%v`(XU#dmfk|Lx6t;EU7AFFbhh^|j=- z&b;`|gJfG5UL5=)xpqxnT>L5d7xKQ3cHD1jXxj+IGH0#Gp5Jx!(0;>B1CQ|5sySzT z&|jM>+^rR;T_F7SP>9yeiC4QV*0u&4CXp%tJ&n+ghV?V1mH<>YQoFZ00C=)O3;LA2 zwfzI|5S2CoGC)@%pia?RNJiu;fR!=Yp>!xXs3&rndXdep2(X+J|g<`=R?RKFUK3^LkJfi6$Z7-qt+fwaY;RjciSMqJQ zS{ow#VCp*UbK$|oKMM`ujYnPd7(!n}dRMT?OTphv*Un(~4`P%M|WT7wgUggBmU%s(C@{ zMFXUEXw6lf51JRD1IAj*c}A}v<+>TXb0URWw;iUi_4wCV-3Bfr8keY>0)=^;q>C3| zVstu41WwFsJ>I9UWHTyF_brso^>kf|z(!@%ZGyt=&(`f1V5XULpu`(gsJG@y-RPU> zHbB{&YO4Dpu({e&2kas1v9`5t2Dfi?yS;8Fl+DnNx>U#-9&6^g1v-)@pSoEzt*dVH zf9HS+%r0QKITby=uB(H>`|12}U_afo8vpQU`v&Sf1m#>G3hfP3k#Ve>JB}T$bK&iU z8;{cY3r=VFIGq$od^k2uq6W#L()keqE@{9?pn-FLtcaX2c@)VZT2J(@V6ie63p=-C5wd?j&+Ju$iO($3z3 zZf;H1pb0B=@_#f8`ALw_FmKjEyW&3{j& zWHQa#t^4yI{J-6!Ya#G2FNJpA;p`FZZ`-@!xPv;C8z1LJoYn0TBuPK7a}y*f_+57x zD9K=4c3rpbpWUMPwywLtzUBjHw-}5FY(w1Pp^kiforPG-pXhcA!Aap$9r*+SyL;xP zZZR-U8H{u_^gb-DGmiYI^LPA53$(J;Zx&<-a?}HzdDR2labG9BNDySDtG+;BU&mYj zLAWcbrI!ogbLU`vnDB!|4fUgd;&nxZ9g>~#9;sep_YcWF$n~HjV#J4XL_`ps@E)b! z8gv&$>kkPH(^ReB3#8ixlSQG^ZZ;?QTGzg8J!I^wT$x){nxh9y$?)@B{Q^i&Aobdz zpeB02IuE|pM4w_u1P^VgKl0y4H$H6y%^5v?!UG*Dk5IU!N=phMutZ3o5K`)?U1U}(-X&?PCs+l_d^pNy= zlnN$-jfZp&s~m2)-7r1*H0BAu5V9|a!B7rR(y9nVTB&zaVil)kZD?mCkb(7BD8Up{xrZ7Sjj-P z3XrcT`WH+!K1pP0t?FYtDqWqbxse;`pgLQyrdsM3EcP{ z-UJC(^q`#2jKKbD+~LOGgd5?^TY6B&XGWmbU9N%2_u(42{{ZHq8G&Js^kZoge0&1e zK+~uCJru+HxgPQ|i}6T%p}$EnM6dNLptd;jjUJSvjuCKqukTI?4Em^F2_3{+f$o8Z@svP$5JY$`gfZA~7p#FB^$jJI zz~Dv(!0Hz#@O!8Ml-rqUU`&`{1|{GfZrBLzf&FC$P-bUFz)iskEKz|8Y>%$S^XJF% z4)`%1)B*Lc3}bQQM8i?A37kykoj{>CfSvFJg8}XX>!uknHGzv6a2t%xGTfpV0XYW9 z5e8-nS-FM)I=T49YybzRdo2dg%!v^&H!-ZFLcDDTHbvaLg#nbxnGxvI+Ay6EC~0Q^ zysE&r+8G{#t#EiJ!)7YGtTSBpDP0Vp1kOzM!`%&JH|+^DqL*O{)Dd0pZ2+ZjW&|Aj z5%z>Y@c{T(P(IKAO5V%}3>jkBO9{jbH|&6FV9^KzXge<>P2xkG_%SP2My#Cr6V%#`ufb3vk zits&WaHlU28eTMjUYgKp*0@WCzLdv{-wo5C=A^p9okRFF_~Ld&%b`L@?-@YZnORGeJ}^w71aco4z)P2_9~(fqnHhl}o*H^l0&gndv*o-O21sUR zOr|*x>9eJ8A+scG^UlzSIyBKo!zgIuHTgtlc?3iI1w2pMHai7AO_J3}`GG!vyM4+! zs0`kYDWF`;r2RXgGOv_i{`QQdVeU=UIn^@-IBD;M3EB&a@vC17aOHt965)tiDSIi< zW4hZ2DDgHqN|pidzwzz!w=wXdJj5d1=k=*0=w6{k$3UYDIq*%hAR2^>clAtyxO zoN#Y>$|Zt{Q=?LX!R)@MQ#{b+pxAG4*Z7oF2+Y_+DNQiRx||FN(`aRyvbi=Q8JEZ4 zN&1wLknQyhhNfM{Bn99)J3w!;BGktBOes@{)!_b(Q<^}IbTg!?q|4v7Pq_`{Lr{j} z&K*;RI1oP9x~6QWyk_-GaisrW&@bgOB(DbLhe@8~WP1V<`(26{Vv0;imTdXu_bCaG zH`NS*D7gsf+o@FKbe~u>1Oy zML@G`idyX;J&a{sUa>7D5~%E^n84834{LU(JfTua_oj#d+x;+6+qb};+7WG9O**On z(Uc@=fQ?V5I8*=A_FT$&%1n77B^%iFnxc&dVrycOR9Q+9W3Pd&k|BAbX17w@(aA@t z&2WpGDWK$ML{Cl8nKLBSGs~--_b{a^SU3XXg>%YN*3s#Nu*qWpBhqkP`FhY)vyAROW6k<%T5(K%?V@b8-P>C&n>Aw5Rpi|F6eq}oC99k zJoPU+FimcoIs=jthaj~;nwCTwYbIq}cVMa`Q4k6pn))rE-&qj@aQ3j&&(!f{6{UU; zupeymLux2QJEUHBOtO9X(T87}l{y8IC7Fq_WOCe8JZycc7UIgR2wv!hDa8S|*ql12 z4k7gXRB9JUOR@30DhqPXozyMVjK4gnh8Yt$Z@l+WY7)emQ9_ucFNWp0qJb>UeT+!% zV+ZW=E|od^9UoJjL8-+k98G_WN%~_=O=7+C{n8*W!kAD5Xd-opVYSmXPzQNAFfE8) zUj?NNqK>ggy|hd8|N4e$p04DYADQMs|KCZO7FL&BC+DSIr}cZ7)80WWhcz|LW{gNS zV>z;K^S}?e#>A(gk2X=GP2jvSqKnd-~2C~XV9?i!nRnqDW4Pip~4XN(E>bRem2Jc;plD9s0T zSf3Vx&(BHQN>w&-5$D)p3FqjuEbRv6`0}ST3FQ13Q(;x!;@cb2Kq&*69tq6sx&T+r zDw7Puy@ASVMYA09^u&myCtigM&ZUvm8Ygh~>s(p-n_OA1Zl&F%%DQ+bt&J~$C^O)y z+{B)TQ(VxOcWD*XfLesTKc*!)5mKfa>E)E1#yE1o%H@+Cnr|aPS*jF6Jvr! zU*qHP!Rg`DyKiieexF)jNm#lK#77gncBs%TAr7}wqz6Ho*^1zTNM7RUc!etcxeFnL zlGDSeD=gKg|3HZv)6?%$SEy{9zJT68(=2@|z2CNV`cIItUs;e|;tFV9Qm-G+Y}>bA zI!T^FrdJ3^#h65t;Ft`Qez1dDW54?W;V( zh~yFOj~i<!f@^Vy6vJ*F^B)zjU=nEe_E;r*N6>hYN3%9&!Mlu!d&Nms4sZeLT zX4IwE@*WxQX}t%9FyTliZHr0rU_VH>Oe@pO!}WQ;`D0AROtM8C_nw&{cP7^b3o>FL z3TK?!ugK^@1Vbm*W>R;C@j{#KG1O&yful1zK*Jl$4g-k|YZ`OleZ$OM}_ zw;5WzFlj1|JCu0=GWuB&-0{+rnFlGyf-{+FIttFen7IYgBMD+tRJ84QP`t%O7Hr?4^un?h^;xJ|imtGLDnef-R9}U((EO=Bx;^ zg2i9TntEojy}ECDXB7jSA4SCkbt=F^AV#Us(bxbL9!mGbt@>r{rH-KXh%ELda>eMZ zMO1gG&fr3=Fw}HAF^iA>&Gcs-_z^(;;e1-8b2#*D($StO0ph#k?Sw3vo=wk z7i`M9K(FyTvKG+mrTtk4>2>bWtX=fluAWww zMHty;#dL)cuy3DrC`{D*w0a6@6m2Y~3fZPMLXJ;VHL`D<@gwm|$TP_Z+2~XS)K6pF zQ9aGx&>7EBnKq{ww*ea&SEL$WR*%KpOye(1K4t z<&BLq>6kILxzQFZ6h%S=$q5x5b9BIxR>n~jb5&d8G$JOB?O^Of1KO3Hjbg}jz{=JR zRTLV%aqphSCsccE(CO31_zG<1gtr|gm{%yvlLL%vDa*mbj7oZ4J=%B*u;j^yGm4D< z{MP7y0hx3p4#72VaD@8@+HW zHs(WGlE8LHy5b>4_@~{*`jFmXMF_&f_Zk19(}99g<3bvg+a5OhQmd$vNW+1lFV|EpGH zH=~08y_O5McRd%Z%LXo3*rx0~RPcM-`QMlC;D68E#sBWHC;J%{{L8P|kPIqR@MIg@ z=w!A(*p4b6U)^DpT=p8ZSupB{1P+dbjZw|JWEL8b5JkYlFO?{vvw7Bnv#W(w*gmJHfc2zP&a!G@H7>~ciDO~MZaD#fR>wqF41G<}WV&9zd8l+pW$W1dKXSoB@7Je}-C)1u6v&ZCo6z(>kkkiPK-<|Sf zPAoSUd|`Ud2H^)Y=j6CJ^B-(nnsXJh?oIf0MoZS@cwoi)oNO;Ex8l7yQw8lu9)Pwa z2SxiJ`NGW%7ah*|7BHwFM%8mzP5{zv9%)Z=T#|qO8rlxmIhC{6-pc&!xt!es z^Z6HZ7QpPLGpc$HNoVPVUtY@TBv??FD>)>CAMLp~@oLTvp=ftKXA2}OCEjE_>Txe; znay-bJHM^cO{qo z&bgljE~i~{A*)rDP+#0~cSA;X0+5O${c|?}4ufF#2D$ektN-MoN>th`&zt6bt;xOT z!N}Y`!Dvc!8$Wbep6i2(zvKks{&~61kioC=0r;6Y_qhXWZv4D?u831g?|wXz`y01;eEn4J2Z6(1=W~DXYNjZ9dJ+8!PCdC@*h~eaVg1-Z-&I-WNeD*{$<>2!B7)A@4NMju{1#8M}L42pY4n zuOs^VXj>nw?VdNfCKq&YH>;pu2IO6?j-XXfal?a#<`vrU7JD-?uZAE;&2f2m1?j#_ z%$r|RXwsQ^BLowSEy>#^{NVF~yvaiA&RtQd3Ey>jDbbpYT;DOup*W2jKf>_WQvHIVIL@P%_!%goAeHh1=NN$C-QbLLF@$@Ild( zSn7!O{F?VmwV0Z(lE(GiUv7uQil!Y=z@|~&sPLfK8MVJi{?PewUI74JA7JW)+Z@S@ zgE%2lc?8lO&x3qml+{>Y-%IL zjXX#6sleicPhHB}Xpi;|$n(R+SMxqX!skj@OkgLuF(L8ECwb(9C{$iN_i5hm_PjXm zRo*CDUi5sMw@moKukZ5O3)P|=Obys?y>V9;6N%v%LXw;50%Tw#%zSKYcA$>Z;7qhI z&;(h>uIfad3X=y~SI6`O(0B(*%NwAIP9_BotZP~VnFLfKAdT1r$%kqMFrhvQlQ6^m zDa_Q`0Ttt>UdSWTw6_|9nJ__(hB)JY@e0PBqD?1kIVDZ32{JeM3UF?m3G~w7E11@a zrc!~IEZGG4)Yw;m-)T)g5P$R)ObdhQfxye0W`fMYzXIHnZUSXF{R$@CX!=gzbv4H{ zxjLpr4K^5y^Gq8cQ_`<^&2D1)LEshH+%%>7yhgMzHGs^=C@)N0!X`U3cXCrdysfJ# zwmSW%IjXnIeca8DA=4(SI0^WEhbxR92_Z>?vp`X^=SwGS{fo4yrTBToZ?kHW%A-TfR8jEcDms|AL8GJ)bZ)=7)TWHjPyQ%1gFiOQCQ%&@ zl?S3P2h1-4CgZixQh>+|#23&1)$9%FJ_KPDYJJ2EnTAZaw~R%l*UduIx8%EZQSu-RrzZEbTZz(fhg1ERUgcj$`hiy3<`6crrfO4y_7F;%mK$KgBF!_r4tiYz{ zHS7aDWHToc_0u{fZSr&`JJZ*?tQ zfIfm_VS=^Nnaeg$V)+d+4iWXVM~gn=AY5BviK)TB&^v|22bDe};pns|%P^q492ViS z_U`y#oaGuf1iUHHa>0iAH9T8mIU*E$X)WZ1BK5tve!8WH9WO30TJ}PgOPNrG_sn(C zQM>kaaQ()Xv-VuFhmEb0sajeYG?{EY zqqe%ByQM#{^R>r|dRb-*q*D7@4uMJKjknZAtq*Jb@QFc|nl(AIzs6WDf|(J-Vu9JS z?<`%w%z{6e{qTp$mNc#|6gS!0u49WWQ=s$^gWWRIGDG0lw8SzQ;&ezjz?Ha z7Fi%4Vy#+XD>_x~hjuTvJOd0e2lnL0pt9qZhB#^|Ofi)RD08_5w8CbkfZA@e2(i}e z6_!_a=*yctFEnqh1+tyDiWWf)#&6bHV9Q4TBo~Y~ZLpA!7c*X(%@)YJ+^=}`-(u+m zF~>?6OvF1TP*U%(0KPkiDzRt-1mk`?Ej0i}T?u34=QZL=El2FRsyvQZAOWhCS3d51 z)M5|S5+>GtQc%$PQx?#YnqUO^_}OU-C}(?>C`DzJ&DHX}1rmW(Vf}o;@*`9&wA1I~ z7nd!=1l^3hVwqkI2a=Bu|7mGhJvK|OTgb<6S?}6&%K|y6QKg&ucPvhj*uaVqjhg?` zcq~qRY;p2IBd+H8q1m6w7*gz;ABd;^ZOP+Wn_ZsYw;D=|M)40DyJI`s`~i?iuZk;! z39-u$tUe4PFka|Pug2|=*&!dY*V9T%a0E)n{B?paFL%jbT@7{R<6O6VkLuW18g}%| zzbsh%Gw*yz?pUjM`Pkx{U#mK7@^QUd`7Z@FjRNx_`P-}56xYcwfdotxp+ukGio5L( z_47@F+ioS!|NpGLb$nDu+dlp-aUmWE0g~Vj8&A-L;!cu{>}EB)kxe%4o&d#*6$W=H z?hGvyEmqteLXqNLiu1eA%mv#E!M&@}^Tn%UW@{;}H4=`h*It$W1xyj-@0N8DyKUVm3R^T>NgaGgqKlH+dQ2xG@AdqBj(+L-6czz7j< z{|D^b3y+G3IA=?mF|3zI{K7LnW^x7M-I|Cm4C|yJ;%RNL&>r`<4RKCRL_gS&3VPP~ zSb0PS*QYZYFapt@77^C?Ms-9OZ>t09q9_PZEYS|jD0h5qWQ3yyX>qrWiwL%)RQpYi z7{~RB-bgi5^VSy4z3%6SSI&yqQY*d$%Bse%FYZ4#;!+*jIoLiIW~-6TLBfKFnYaG)ug#NVzulgl|XIFX*H+SHgKe02SH#&AW!V$Ha?bH#i zmo>FSM{MrfBcEdt_IUTf2*jz&-WX7GIeKU~>r_Mso{$Ci4aYubBdR$Y$==xGGMDlN z%k{>&S0i}d6_|!q&C!Ni5e@OuKO%}aRZa%_6b8Mj5PRZlcOv3!iT~mO&msbBMQ?G% zyNHF>w9bj^M8dpf5-I+&irgup$$d7FGg*ODm&j(Uz=HabF!Pa=9n~EA^j=J3d`Cc=9LM#8*T zGF)gdFp@=tbHgM1v39aURAd@w+eCDO-~lc;P!h>?psmoVe1$Kh3Y+uq9C zp~()`epnnEX$)CC<&i%#quVPZ_ps!3Rb+S0==E>Uo?2T)*y8Jk$SgKsRAxo;e0KUq zCAJ6v>yerETe2hP^ES3772Bdy8IjJ&t1Obd)^f!@g^_C+-y0>7b84*sf{y`zI&X*N z-?-w~k&(}-uj07TkuZgs)afQ;P4<5|E^;5qb-@QGM6PB9s(*-_QmaZYI5y0M*F3gE z*fOdCK8hmmn9+*#=WJs|dNC(b&J+3n&B(%2@RRwGQ(0V?yf|_V3kHK%L|U_C;_Aql zS_K2-gNHkz^n;PsSh+d!ygd!H{r5!Xv0!j=UoC@y@c|C__WsBhwThF3EC#YunD|ad zBYU$rpLjO%F|%{R`N&5ssk|6D--^12!_7!|(M~)?dpnYAqnNKIG79BQ-$4Zb7U>YC zuV)2Igm-kxHDn5Z0sa9R|B%dpPQk%CKTSxe&NneM*e@j1*Edk@s}1$@^Ysl)PzU?@ z`-Val^VMm-MrgD!;juGLe-PP-wp?h=)5t}&s)qs~0zfacXLXPb{`@R*a_xN71V{qW z&{vTgn7=r^iCp~Op-PZ*{*EmEZ!%r?KJo)&`pc(Co`V^`I>EO(@cR;Zxpu*r;GHmw zvcc=kqY`RYQ%qRsW_5%GhC#~%D_XaIc8D6qs>INGQP)|O=+-c56V2V$ENU04Jtvz- zscdMK3F{bT#frxIMLn-w<4VX)?i1yV<{lTjVyhleUCb%DnD3(I*WTP1u;Uop_XDC} zjuol)qM=cZnB*O!qs&-=p3_U`?_7HG`%TaZi{eo{s{l#q3 z?M_rOOK!U#wW4<26HuW!@_rrFj?T^K^)hO3?PL%DF#uMx*s<+H)Hx^WS99zou#!39}9A8Nv9_Kb8pyU7v&sS$7z<20*Z%IA8AyCrO0(A4Lvt)lQ1R`i&IIXM1 zt~OFJm<~N8JL&+b2jLQ)UAn#z(F^zcPQrCGoe2hmreM>jU8u63WM1u+bhf|bGSBNr z6Cc5Hu<~VyBu^l9Y1n^*RJ#a?4^OXOAceuBm+(XdqeT5to0T^1_>D}`)C?pdTPbu< zN-lw8VoROms5xBEq)2>uLYeUy{^(1w#0#A?SGwYz*^-e0c6gyAs5b8Ej{y_*Yu$yP zmPyV*h{5|SBnO4-xGG6HPm^I{iz`P<8i3qX8SBPN)U|>`0Ox{NPLaTId%Lh|x@5n= zvN@7$7Ot0ON*W6~elu5cO}L(2B;h)N)5IPP8!oZK8&*i*`~fDylU0&vp1$n2m1_8c1lhPzjyDFtP`&3dq|MO8xKg13%@H4QENpV zk^Ii{0>Q}1PYA-^=(kgnHKN%l>$Kz%M|3c?EYo~i+n`Rr4za+$oRK^giDu)K=OhK@ zaBXr~GTscXYp+SJ3DgPz}!_*#ng z(iZaBy~biR>yd{rPJNoL6=6i3KirEP2cm9jZ#ArReEXu2zoR8~m4qy?^TZ zT(aH_ImueV);zByJo`@yfEWOW@c0YdEJM%5(KaaED!LvPf0Wo;Q8t6kqIqU6eFNx) ze>9Ko&EXHo1cQOs`#O|Tk!>{33q=!_Afp#PX&0@k6(tJuhePyL#_NQ0G|yfc|HjM5 zHM;eGf!7E3=p~HTdXMNC9M%5cc)e{9-S@x1>t&CL^L@rB6^AiO}3AXhE0it@P+@1i-tMdBzayL4XeILa*jG0zEhE8 zazgZcmaMOfo@7mPu_3y?IZfWoitfwP(*xlvkoDH+j@Z07dJu>37!Z0|QjsrJMSIc^ zh|R`E!#)^c&aGYW!YR=(@tufKFfBUJktTm#9Nmm@f3Z9|m1lY4i*3;*7`Siep$#{; zf|U}2r8*pl9?2}V@2JUAvyTgwQtfNyg1eoKhHnQ%0*mt|OWnO)0iyA->P-YP?nq2K4vb@ z8#5z+Ta*!b-yLu08Usrni4a$N#&qHtWqpf?0I@B;)hFf_t4L>u#=zS%V&LbJ7;tBj z{4PEQ7Dkh9;ZtjdA7a@_s|19=?4bW-f={3avXa2hmME+~IJHk2TQ^s&^#D z6@?v$hIK5bV&a$#?=HmbW!5-)HD)(U&Z&vnz|0kYF9yDV5g|L>k6Fu-PaedyU4#W;YacyF=JI~|(USkC6geH2&)|)X9R+v0- zj}3=SqERDf)Wb8DW5L8Xm|l2h!`Q#;P`rg+vC03r-b{EHI8HR9Q0xo@m&Ca2xCs99z!OH~NOC2kz26cDN0(E}qvnR#z*-td6_yf@ckm4YH+x zH8HW;S}~lzF4hCzQp9#NLp#kIyQ5Z$SlBd88taLNYhrn3<9`)ifJWPA#yVhcU2GZk zZ@e}+_7-(2yuc6(-7cX*VqHcobh}8>FDn+liIC*@yx2$fG&#CD78b6N+-9R=)hs!E zd@b#BLw>(LUOzRq4V4~0nI0>ym1hco2mr0{o|&;1nan@UjSYnDI0ZqUE;7lyWr<1V zs%5bonMmKQihakNW$+f0CYEoH9m5Lr_%(JFN3YXpmiMBA^yNg=!C0P2u3uyQp7xHo z@=)v>juusTe}Yb2e*$~Vos9KG$0Tvy$n*DDjwSZrAW4J?=&pG9(O5VE=OB7~B6b%? zFfek%z-=c1jNnm#I^)zJm5j> z0TEoC9>pFLuGb&O!YPsm@uO$4Yi!^;^Ihydj_#A`sd(Mz*sDC%;$Jlph8x$3Yh?~} zdRxZ*)fTQ@eBxE$HqbD8| zALq%TB}5SB-hn#sUJ=Jp2LymZy7t0P6*s{gjacODj81Cf*71o`i9067MQ})hfr!5u zef(dkaUA^^L6k}yVu)+b(Mk$8Yw)w|xHOKCL~cfKvnBdbM6sMuHAoOc0u)V?cMNo`W5C#=&rmNT}Ht z7s!%79geeM$$cl{I?&{{^KtM#g%mwQ}6-@8h_>HGf4I|0!-BWivfgS{q%r#j`}xYdkUKE153l(h{bcLzYsW zFBM<0npjJp*N)9aTj>PGCbzDX=UjuYY|c1Hx%OH!A~Z&@pt2sG?JS+oDD`)f@=R^% z=q1Uwa_K^rT&a}WvfF;sO7}1oO;46u@l28W zCoh%O#gi9HwcG*%LPv8d;Ke0Oz-=p~uo{in2d^`^K-mWAE5^BMt0}iHmcrgcr0mLH zO}QDnrLL^(wEfbqJabQoe3On!?Qy{|sh(FpL=eWFkT#`4;yq`it*t2EcbBEYzR5yG zJapBRoPOQp$da4VjjTZZTgF(058jquViK=^Xp%VZvGk}d1sndi3C#PQDf#5R33u&B z6K=+56Rwv?Hj3$Ni-pXd!zVE4>=mb`D$x4QQg^)4Mdrygb*Y}LK9zG@W7$Z?YA;)$b-d z&(VRLazfS}%eu?BracQcqg6VkHyRx-;~CZgKpO4lZSE=C=Y%p2z`9FD1Fx4HEYrIl4N z4)+peBX~JDB+D-G3?7Ic#;3~8G7cH(GM@e$fmxFwOXB&mM{eGpBU`{YB!wx z7}3MA@v>2zdRXyhf{dHOoJq1mMxpss{_rqtn#`7)!u(k zt|^a%L-u+Z?EXTkh3zJO4k4RmT<>`ZhYwq2upK|)FlD>!dtQIo`Lm2`_c_8Lcc)Cn zINaSOtK#Kgw}-DoNjNOoCrf1v-DoDR1o5pK~<(Fk#lPn2`sn=xbjDzz{{-&Z^ zjqFcOS1_Pwk7Zii^0utEh!_Ny-jTryZcP7#MpA!a7D;b@YPh~}nj{htE z8XNao)|A^-eEydG#LRU0oophnO6)$!PH=N5|1A5Sac~#Kb4SmxI`Lf7x{15CwTOou zWr=GXwTkC%(cf9e2Xp8FtL@^=S=7jP;D7v5$N26XkEc;%v`f5}so5Bud33zRjE=h-ur7;=MGJb!H{XcAw|IM_Ci=N@WwZV^9(<7JMZhiL35 zjxU3?*uTPw(Rao1u4tG{=7~=P#Lwm&Ktkxl@P4H{|(jtG*`>L*lzIb+%Jfd^1>)D+u^g zv{AqxWB4ks2^ImYC00x0do!X~X%cm`+9Yb<1e2)mwI)$FCdPZS+is=CH?56)=E$o& z-T_@ZX6=e+WyQaR)!Blie-;}hJzElgfu}_?N@|Yb0V8R!z?-Y$>oOai9u@Dyl6A(# zd$FYN5AkwBOt>5m;y?o9gz_|d%h3)WP=;CV**%vQwD;fz5P z8#h`NUzb^<^ZNK(%pKcrjK9co-Ecg7gdk3OV|#pr4NZpci{EHRlV&I4`8EYVA?ty9 zWIS$$o;-|ifZflba1g!1P}u1EZd>ci8?g#LwvL=dusk!l zh(|~hD*j+8k7o{$Y%hoT(!>F}JIIGIJuYyOKW6n}Zaw)?R-n*B&g<)8XhU;(Q#{N| z-h;{0(%UG{=_c}YPB#z30K1(rEov=?ofU{Ez1qr+5!t-G9Hu{#+Ap=ttrv^ zx$;d+k}HMsa7&uozCzxZSw%WhzK}-}@a!JQXN=qpmyeT=bfj@6c9zk>dd-$|t(h{x zB7n7`$JQmyl^d9i?k4uwsLT)45us~Vmz-Lmp`l>&&&r;9B{uga!Kvj2{7pGA$fxtJHby{ zE_&yHhn|yXP@2f?GIPXjSLF6Q?hQ364%uYdx#E>K<%3wHvArYb*feFUd5{3Wl;8~G3c`|!7XJ*y)-KFW8n@HhIi9Hz_(e76o$ zEMu9Lbrdl3fe3-kOt}UNg|RaeY^C^}6>zapoMg$Dwx-*b*qd&Pb1>c3%t>*Um9=tF z4CYqOWM739iuYF7p$GjMy5mRn74Y?+^nQZtD_Aq`(^zqU+wFu0V0geX7K>b(DU1rc z(Ody*1Bh-`w=~Hc-`XUvOIwq?*V>uXggYoAx#g|Ne(Z=m#lsum#r}%-tcC9%U=;O6 zuwomxs091xQ%Za6-C4n22x9+k3YY~$g#6ImB=6xclVnqSDtP-UJrFV9sUtFT9MMnl ziHWmppi!JDgA}|k`u`RC{tyNGGK!0bD{8nSnJVY88`=<~fTPG^$6)Lft>AAH1S||# zK`g|6h*w}%C-7^x5=%8Y8wC|BI(jv&GV zFg)N2s}M&>8_pZMI1A;6%kBZk3a#&7WejpZG^p+;E$r2+pVZ%ZPk>$;FG-G=Y2-u zh1#vOamC4p6tJ|2INqzHMz!8NrZ~kTz0eL~z($PYp>vA<92_x>9b3R=r9vxOa!(P? zDs+s`?#GH|9DIbAXFX6S%Xk;`#X)H;>|ErAD_<&dnBw~XZB$&~ zTg9I|Y`=Mc177pdM7ik~KFVbHt*Q&Jiv-FTD34|lEY()&!ed+$A_l}9rqL13N;_VS z;?MPzZmcayZlGknfGAHTe>VdV-O=t-N=w|{M|qrav~8w@CE+B--E6L8eJA`=OXVFl z%9__+3F}lz0XtviCti8br>*xr@Z?}+ICs-7ARs`nz=}|%1=G#XU5vU})>X;18x(P` zuxC%|p$+{(Hzhrlu*D3iUgLTz7jiqSfQSKc9viqShAEA&P68s7urVi5X_shaXQt@y zWlCeuGf}QQ&$Gk>MCp!UQe1y)(LS_Mk=qY-O;@hqh=X4z_zfGWv_su9ly^8#M7hcV zcwVNG>-)ZNGYZO4a;z=DaBqK0l$qPZ8Oe&3tN5trl3jQ=l_(`V0RbpbfGw5EjdduO z{1Hl?EqF{&KaW&)=kZ4qz|t|wX^cz1@k*ZAR3@m=6O`+DYO)F7_7BRHjLWcFvE-Z%hXv)p6}Bpv5wAGa?La|0W6rOT*0`+EUcZs%wDAAI?@8TDDak_ zl)(9DWj|j9em`NGLF;Su?TS7 zFf@WGj8y1ZWqVFi5vbERI2`xQC8ezyVTSr$g2u>chSC%Fyrx{pSv?qR&JB~|{;E-O zjZQ&v5%|}8%6nE+aoe9NPw=b{5O5IS)WhCyO^TcKUg^oBxV;uC4VqQh&3&s(b*m25 z+l((py_K7(c+Qc>fC?jT;$|mpRPeH%B!99~%{8Yn}#Z8@=PyPJ)ZFkP^Yj6V6AYoCaUk4Bn8b?uyFyAB(#kRz8{mMO*<8=?jgzT z?N#;`Ggp+g|w!VDgggz*9?NHdZAx`*H zXO#no)8Ve)sWc+dO}wC&>Sqhl3lzS;ML)D?fQn~lTf%GgAF8@&^Jq^kelt+D&>Wq5 znC*;K3{!D*FwmkuR9*49;VL*^Lx92hNL5cWn*23dwZ@w!i}O{k&K#W&0UZIl0~#z- zIiu9eDg`PSqvAR15uk>kZPQfj+}>_uRR$*cj)^LsWd=q-FMRU{6|5X1THG*|8w&%u zVGO1|Qt`CCUnzynR0UA+@Tj>eTb}wLfMJIvs?pYH!krvXWaJ{MtlXvhY70*-`BCh}l=a#7MTT)+({YCYs1x*gyqq=TQliiP~da>lR z)2hxqV+zyL2z?~I%xj|zy4q&;71d_uf{L3ep8hZ}D!_AVR6J9-G2Hx;*>mY#{>T4u zPj!N$eaE-%t4^@T?|Gz}#OF>0`0vN6RUD5O;#L9f|4cQ9aroo_;#88H!H4e`i0#S=jpNp1LD?AES0fC*0I_ zXquz?7N3_=%x%u$_`6!&SW z{)08yp)J+>Swmj8wR#gvo@%4^WWn`ACpFBkAT9lQU-cyFG&nCnJ(}m;J<)efZ?yxe zIX1u(ZLg;(#Ep8WuTlAM-9GBSc!oD7SUh=vx`>J9Im9H|)1fBOHV#+!csGcYM4Au>csuU>bNf{2ZF?QggNNghTNj zwVH8wyid)s9|{JTt~`TT^7z>Y)yvr9haFMR=V(3%%$(oVTpbK@bLw$5ET|@Ccym(C zvxt|#bUDoz(#Xwc&#Lno2k8ZV4ht@-NAtAnz(GNJ8Ti39wFRd`D=>63X0jee+dtI4 zoJ^u{%{_HbP7+ZFZiXFLQU|!Bo0`HT?EgRrl_dJEf28ig)2#sQM4@i))pof2h1!?3 zy}$jfe$C4f1DLT#A^vP^x3-#Vj2((YB8{;_@zP3T>`)xD(HJ`vY4(~0JRJ%_6g;_} zrpk({q@|bU3r`P%s047_@$ROYY}N$#Y^gDJj_S2G$#S`kW;kb?7lk$)Qd=SDL6l-Y zKMgeXq+546K*PFqHG!JHc#S}@NjD-RM8GBu)Z;ED8TNED$uOdarVURwf~e`#1+_K0 zVo>{|v_6^-d?79h5tQ*6>MESqPXmj9h(|viplQSL#!MJk{mW}3yd+XnZjLmoof}VE zaJwB!iPi8NC_-MHsp2#bI7AGesR=`;zSmjeJyOljaNfgZ*w$~HLNmmTCLd&L{<5zH zt~W}r)bQ;60mKSuk6~GrrY~&p55&-?F&ds`0)@deY=+?*vCUn?ktlMf(Kkjg#c) zP6>TsgMT6SW?;eymYWlj&=(F45OR-pGvzA764tX^?>;7kt^E>;;Cuz4Y>(llvS%X` z`Z3)0(u6oha)vx%JEN}DBnStf2)DJ+CO~h1B=74I<~q>i^xT9IgZZkx8dW~OZ;Luy zO@JB1`JS#w`5F$S%zJjf1%A6P;kld9Zl5kD{K#!L;Sm@f(SvEd?2iPau_Esz3}nKu zf0zKP$B1mlpC!CzdN}jSq`u@g2^(2~wjWLE+x0nNEz2!6*BZ^@WTl8 zCg-#=d{VAGZo~A9TFSNXIq*_~C%%!SozJ6j0TTfx>_MBVjd!O6%PO@djaO@%*wfrm zKWMiy9~(GLiXbv>RAmo4;ARjcG>r ztG1A*9}3jdh!^6ChqS*Lb%GO5YsYbD0t4KSthyb%W|DvI4eboZ^Sk@nBxd*>Pqg98 z@OA&vRxzO$e9($nvPPt%@;l?LW;&xX$6M%%S%G@?y0$DP40q7kF##OC!GH%hGOwzUY z)h%aAxgDZ|(~C$QsR-9CW4VF-b^Td#(lDLIjxPphicMsE%|^Z=$X1i~FN>y8i7@voX4S z4h;xBWLz^w*OX_>(j+%A5ludjXo(k$(*^PPlo7!jji03B=?nuv(u@_ljAb zW!Ewt&y+#|YTF9k=31$wYL)H`qoG}^Tgs^tyl|cF7*DT|slx-M@6}nO4av=1aqu>s zr#0&TTZubP+@*`Hg>)VmP}^G)gX7hQbVJN&()Oq>&73AjpVZZ1$=PRhXIQfAk}e*O zW&@wa4{LM}Sni#>LQEvN8z1UCZD{h^E8SjiPPL(hs}q}|^hN&g<=rh2R*n*>-!@Ck z<(1lm=zs%SB|f#K9R2+gAK24mhaQQ&oAc5A0llvfyQ1?;bxqL6^9}0?sg8J|HnF)a zC4MYjh1zUDp=YXl-OWS3GKT;!S5t zvS?N!*VbHurxIA$GcHjAbCCq^Sh6DVXU5#HE^$IVKE;xNeN^AtnR_2$pD)F2x!(JdwyV8OI2f zOq-L!lZiRzpsL4b6VKE_v`jqWd}1h1Ei>}T#8sCPpVa{>SyvN(;iQ5=%kOz!dm33p zpqlhSGF*B$v81s;rK!0awl_=q#M4VMVd4!|Nuw-8uW?Y_q>grQ)p;c4+Qaoq^Q6;O za9z_rsgoI8uXRdl2gbnG0ZDMa_G`R5IO&!RTo;8WWeWK&eUhevhVZg}NsWa6?;Dtu zFXV>~OZq6}2Sp}L5`G_yNtz)1j+7=f5Xu?kNsTSxIzAz3k}X^trYC)|7On+J9fWKD zilm7``HNLa*M;(1MYYiNF6d^>)g&)LrlWV0o(cIo9wxOHuJ@lNVL_IKFOyCS<+48#9d5myOjMX} zmP}MQ%`$n6P`r^{vV%~(okMc6@cT!XWTL_*?#Ukn)im}<{$9vm+9>&e0H<%6{DoY_ z$#7u%Yuv*x`IK;V3P|2AT#p1M|0-NZ2PdBvu5qEsTZF4am*j22^*~qp{}J7jp9%DH z`X@JP$*E!zTfU79&gi?$KQBz~C=$KI-o?oomguy3X+Kossc(rsRwmajOsncZ8-1gpUWs}%6uY1y z)yX3{WLC>l5|LqYsVh>6yIbI@5y@^mQ5#??&^D_)1(H-HyLH~jeVikHF(w(_8YvB> z&M5kargV!rzi9Dv`u6*D7l=chvPgi znQM<3xUT{|PXk>(e^98vQx_&z)I}d#!+}RF*Co%jAwuD^I2n4jg0ivSj%4WBlH~f` z$(Ag6aDQ@*1I@)}l3P*3;Aa<;;WZd3JL*a@jEhKe`t{^lb!oE4qh#0=isZI@4Yi*p zU;kxF?)y6#wz(k%s^2BUcKamR>q9ae4MLKyJ|%yoPupgmGL&an4Vo`P3!PHzv4um* zW}X4@SA=w@l;yTmduGDL-@GkGpD8e&?yL#)tDv*nxYsC@gvqnUwB|ZzZPeH3Jnc(WmU;6N8|6;d*H) zJgq+lK27a_0O^i-l&3W2h#3e#(op4fYfF4-M9MxF(PlhnM#@QW4V*eNWu0*KoSm{y zxL%)=GNvh96L+OR+rAlh*^@HC60V02ru1kGSL-_|zYFZIq|eFNl&eF$9i zIuTGw@7lONHn{2AS&Ht^lP1RDq87-qp`NGxCFE3=Pp#3lhWfi4(uEJy55ZxL^%rU}ETxX5bL!iEc(XTp*I6*@bb;HeCKWYr55n}<_`T> z0Y7Dr{uIyf2Lv2CL#%f}H^a;1xbEJ$@g^=(ppaDZ8AkO+nC8ElQkW~n#p0%a%XRARE*E~zlC zzJuqwr4m;dSTFUc@VmZ8s-qxkE3edsf~em$qvh+hNQLqD9el23sC2N4^TBZ9;0ficbcl@_Lz-*uO`95}jT6+=tx4KJPBq1#u)Yur=Cn;4?qaMp_u8bfTGO#x zT2~H*QMVI-(ZdC)b+Kc3nw6lx`oq$Qn>`$!M%-*kWEyd^2uT{zpLn?~I1j4qA1+10c(;%0wjr4ctc%{lt$dHVoDluyHES6KF=ITD-!fM==ZdE9(@Xt2z?o%_e2jh2KcajHf;{jpuT5+ zC9Rq8LtK-_^9k=ObXumNE*f_)%^pv_m3By|J+Zgbs)Yc2^={fzLG0fjQ*jnNP0JK& zrPCX#mg|3~oe*m0nonsh1u@Tx4E=eAx4`9pbp?O1Gwczq6*}MjkdsK<4n4IuaCdSy zI2f$ahYiIJNdB}#YxKUZLC?_@@LiP-Gp1b)-pJa~!1J!#2w;i2Z!B}eYA3^co)~O| z;Ta>sy^?M2hB-E%+qqtb!+dIxpv;bjKv*bd=)freL$GRQxLgOQ+-hOqnnerJP%493 z8Omx$Wn^2!4uMKo2LsQ`F+s5yw6d>uES~rpjtDGpfPtsKF0h~q@d`3z)Q(EOP{S30 zO0%wp^|f-7iQNob$76jJCL+x6i$JCBcZQXeRcF@_TYl~z&%Ph<2IXp+qED^FjS zAZ)mq?t!7D9BT_yNC$0?Ulm!LJk-d5?Igx^E!rW3)u9n-f6f}C?ohd$9-yvT*- zXSvb*mi5xN3i;RSr{5Itb~a8wFZ`bBoeq66P)L(>qKM#T={>kDs_dNZgB!I?7u97J zMR9G?UD1Y!bWf}dPUjlJ2pYx!yjqafE&dqK)N)(&vHq;9fCQTDLeV?Gb7E zK|!j?@##l|t5iYr9aZV;h2Oi?>0Jf9k4fnlh2Q5=($5OlpHk_y)R3;>)D`(0l~&Q-7;WQz7~(Em$6&8_VdV?2im~*d@@K?{<&!e46D}S zbTm2Ru<-03^%-ph2iTQGe~-?|Xe9hzT1>eXlv1uO%QJQg+tTqmiR9)aNqh)WJYHfBu*iNUSb zQDH8ur;4AoF{8Vn*h@I$onXK-J2PP1z80_8l@Tl`;pTx12O5nt= zdEQA9N#{!qjquvn8QqL3#9uyTWb!&R65tTPSz!-R<_JMMbFDIo_R?%JiQ6``%Oq}l z!#qOro9o zK{Wqha3;}CW@zSZ;rUTvnFsAf2k6-KUR+!|^uypx&arEKG-ycXS&jhb+&Rk+`7avo ziRTW@Ji_Do1mUnGlV_L-_x3{bWSR6+O z+GlZkP8y!kA&YArDF~5B6PERG4J z7(|)L(|?2ehTzuUWkFAbRGD@|vkG`(wSa?GN&m1fIll784@de(hAwEl0kJLQHeyHCa#o!>AIh?FrUfD{nPhu-CF>ezP4A7K zk9}-~-XeC+$+H9`f!H9vvld|_R4Y}&GdD>S36P%iD$6+8uZoXj1KFT<3%FO22BZ0zP z%F5%j%%1$1%;8Yj*)As&_Wu(i z_tXYCeQ5l{54>}dSgyKb&ei&~z~DYPRgC-1emTpToHK@)a$672ffHH@m{Uy7IVSyI zvYZljTa_XQHfSRSBDFb2O)X2wS;<-tr6H#~Pb&;g(E*(p_t+UJs&Xvpg1{EpISNav zotcF>F+6=a6D$VU>r6R=#^g+6LOh?C(}*P-Ps?e?1dc;F-}4xjJgw8}98bz$KQE`i zj`Dx=Q_fXRr|y6OF^rL{+>n#Uq_D&}KeOCZJ9A)`HnGb5T_(Fqe#;rjn(T*1b6&FK zle0O4*=++a=j3o!U|;N0lLIr(NsV1}C#Nxo>k2^(aQ@8sfz`d;&vRg_1|mk{o19im z&iNlre)e3HJA%_LzGzrlgb(UolhY78S?2~b>hbou?Rcp(#6NQ!aDB(z;f|Dfkyox! z2%qM;Mj>L`<{B%@s!q9!xP@5YpW6=gr~wZ%6hs80-4|e%aHpVL2PRHL=iL6>;!x~A zbLyhy;khuu?O?VO@^;>4i&fon|7PBk+}k9b<3N*ieTSQ*n-!gVh{LBabOXIbXjJ)b zy2sS@6Ycy^TV*asj~GLbxQ3^$RkhD^$A7DH<3ysfcz8nYQwz~jIu&|!N-ob-Xdu!A zh1G+p&@=S84S4JVlzO4D^K!jW#ojze9AU_v085#NwRgtPGILwB|IZt3WJKh7Ndfmp zpp{E<*=+lh^K*AoHfX`(+|hhwA}|0ddETrFY-a4swMK(K)Nw_XE8}eOhSj;_UC@=2 z?cMRPUAc2%c{`{IecF@D)72F4x9!V4%IQi1HwPU5TkcDa>VR%dDj0-LjULzxKRue8 z!)%^?GWQ0|Iuy*WKAoHCN|S%w$sJ@xlRX~iwu4p4LV=Q(xeZuy+1uO?EV=PZ?kzaDQ0mNnioKV77kFc|5}>z{@YStcyv8SQAGaP{ zTjXtH9Imv=<2fyZh|;J{UH}IN3^&86tHc$icgo`!pa`)p7he$Po#hO@xp+tb+)O$6 z1?Mf}HA87g9@qY}M1Wph@(wc&jl1)6Na~Syi!+qv;wRyGaP|_hMMkf@8N7N})jQ9g z+ZM8Zd9b{YaIhW7?~a28<^9CXVb;*RC5*%1h&-MZdc>qtBlGrg+v1(X6rM)J^4nrp zT;6Zo99qTa&0u;sp~&Nz6-M;npvqgsZHuUcJQ$S{f2h&%>!D#%-Z5@HOi0OF%{cT+ zk9N^(ao&pW}A2|wjY;oz9`_AdD3 zhP;a`7jH5p7i`H}#Bzsk%YzNq2*T~1d3~v7ahKhB-@&#k!h$Pq(0EeAqO<8AoGj zLUhN=Tjr-S4K!_=4|_us(jVL9k6_A}EY82flA{9i-8uV!k=UzC{x6L6ld${}UK|8C zb&=!KEKB^QPksx=EO21H(E}X@=Q9t)Z-?Y>hfRV6GwqGaH@e`&=zOCKDq{1EF4$h0 zZ*)Ps`20BLDtVfGqXP}s=EDw;1Z-(){yp~KIhpylIYp76Q?0)^qnd;8U8-Y2zPB@) zxV^nQ8ZkN_mV&^}r+Ctse4d_=U|fc+`oqE=Cr-!@XBOT*DZe-KMTe>R2U+gj>G@_% z-gk3MdOS1Fq{p2L@^FSNtYD^y7zF=dQLvXj8L8|Gc)s)lSSnqiy|8Y1UQXxaO;B4jB20u1+ZHIQSA`Ff-V`jj$M6@H0;bfJg<1jd4PR zNviDV0yicKiZAHJl8-e7mW;nya)BeyyJ-@xYkK9`p`<9w*{F-5fMYrW4bcR}Bib?* ztulZTF60(CptMnW9@x1DWR|ZOKTU5}PqbDJ}Z&0Gys|I-E3l#+q zMWUs6Z&iW87G8jb=UKX;bK?t~5&XviYbF#7;qXHY4{+nSPasx;7fma8z^c}q=>-#6 zC-X*fvtES$w^ zi-%9)I;QlCO$s4+l6X>nLWWyg0il^yJBD%&x{RQ5@z zsqBm{rn0f!3gI(8c|?a^rm~NFo61h_YbqPlzi=lj+kBX*?Cs&EvJ)arWrs)#FSBMQ zL|$me6Uo5FeNg&gD;MH47)}uJ<_Rc97!N!#sc;|j6qUYkHdDP_W?>VS?3PzJg@>up z%J%L`#Dk6ED;Rz9<`5#fqSh2f0;=_w|EIy$ZJ z8S|&3s|)>^B#s+R_BpZ1WS@d9Ci{eLD~w_GS@dgRW1biYk($0Q#}Nk$Lo868w(NVt znWKf9I4TZ#gI{yC&;ku>@Dx5x9V@)ZfwK2lp(k4VXJKpH_C(&^j+YD5cp600BT(IIg*@-}jR4_jVOu?Y!9OD=(-KYZo!tU?HPzR}KVC1K zLRq4qTZKHYB)@rv7tZ>l@C8rp5nwQ=lj~$HBZt0Zj|dFAYi+R-J*6v-etA*&#g^LP z_m71jJTcTjvmz^MvlR(eMeP5%&P8Sx^#5b(6+O4FjaLXJ^G3GKi+&JIqu-lqniuiB zTiV#7=l}q~ylLHY5*O3?5IMHMyL(wohnk*|U+AgBWKE*|HE1KL=Wy&oZQ50ZFbN7uc z(m2v&;H)B@1x>D=Uv#dn=p%K_Lu-oGaA*x&vl;5t5T?{VchWb&kJc7V;(6%?($+^S z3X_{6rLNc>KVM(eNhJD+eKr;~u|!jfo3g2t>v0jshhrp=oS`f>M`hcKZgB{yZuGPf z+8tfo7JXg^hXKI8jBfbZ&qZ9T7{9^trj?=M*CL(?l18X@sAl394^w=1!_m8nU_8%;Q_soQ${z%cpTG-^P@LqV???vOy2r3Rg zQB+MIfX|&O8pG4m`gh*n?mr~CSR{8sHoKa+<3oQIaUBWw|9SwK;uiO?sI5Jf-R-vELr`f$ebmSS+SIrt>aX@%!1yw-MtusgP>nrRlhjJiY7mJnR0*gDNeGa zxm{Zow`o9=`C-Ly1O~ZnV9#PW0)r%*^eUdr%I+IbEMpJuIJCGI&x>h6Y7CW0ZcVg@ z4#yO`qUXbkJ+VSr{DFcay|$R=8?jNNz3Fa5Q*^~sZKwM z4O9f3QUFH`Pc{e5&D>FpYa=cOaaVD6Zt4pfCkm6|SG$W>)&V~A_7yLx4Ie@MQha}Z zvD<%v)bfMHvjtM&M~Znq^naswDIW8CaSYd+4xxD$G=)2zE^gxje8`pthTFx%YbPVX z^`b9qWA7Ei&SQ76-{WErYq$=4T`U8^@rpN4@!=Zxu^1Nk-o?J3i!TYkZOu!r3D-Yu zN=W{0yOQ&k@O!#T$wWK2HuEZh1;cmo8}AZWd3hHvYf=&}=K-=j-BYNtN% zw2l}aVQvqMb-EIwxpG4Z(cG1c5(h!T2e~CmsAsr;QAwciyP~}0h44FTL`k|WTx%v$ z4Q!r7HK3VN0{flc#Q}3@zSTUMzioa=ns9%!rBs8Dmz8`FaPF@v2^BQobYsb7;rGX_ zB?EXGmVeV+&9ukP`24RWxqwaGP4QdF{o3mbQQ$)*ut7eU`DjV1Ak^DaRC&&qsqze0 zOX>>wB{fueSMQWe6ogB8P~s+B%b%325Uwp>maG!Wo&LLIAJ5@R-v~{D_FmBp+M_4O zPJCxk%F~z#d#-P@EOp}O@8NK((omit0r#os!4i9_V4HC=OdRP^3d6*${KG^5m7+b@ z5?c#xhAY-NmL4<%1+{lAJQVa69j@IarNu)2&(hM4R&c$qE`@dHGw}9=Qiy&taFVVR){D=;&67&I2skQ3>3M6o z2IZH&;OYK+W9tQ?L)2qeRG04Lu!`WUGb~{X_1z;%uX8HW`|BYAl~$#0^pF7Y_oZz_ zsPE1p4(QVzi7mR~P}&er7+vaZiKYhm^+#mK;s!r(*D!%J`g&l%7_r0!*_A+^PZG>< zsF+l${?E06ohO$D^He{$FP`pSylZWlGkQ9sl&7NxDAD*iD(z%}GRONlBk{b_9sjuy zNPs~C3^_4i<^0mMJb~MUg2F-#HrRbJz))IemzGYiHLaG*OE;PkJbZs;>0%0v=d39; z=ZOr2tkc3|Z!~#caz~uAv2-bqFB@U1vCo#$1V{8r|22`{ri+b217#4mf4MRIFIz`}qPU_&+1W?)$+ z6K&P7vR{}+@}y-;nMKCPi|_$ovnnsJhijA@{q0?^yt^y>Reo7 zn=0mMxfAM>C-ui8pOpvm>la{f+>7!s5P)iR-J5baY2yP{ek_Oa+6Qb~r-HcB6|)NB zN@Fc5h%5E6st6XODX&{GN^n_or;5>n%T92k<>Two@^&5-Ck1J*dei*XO=!Nf8O5pJ zqGG>r-_EyyCezYHQZO4*kB}(iW$WsEDfb^*4gw9kBWL z6&?OP6aBiQqBCAQrow{Z@Bg9VDZ}44t-_h*-kDVqZTl4u4_#UTGx-T)vlSKnSTcU4 z@Kln!cXh=Y#;tsPMKkMvxpy0`IAHcKzbEgg_}=DUez!YNG2C0UAD7*!h!DZ`)ZGdf z3&;JiDV)BK)&KmD{KwWqCe)i2u5!iZk1A%FL5cZKD;^0Y$33rr^Y)I@VNRb<6>tCZ zFpV=lR|GkTj^pL_l}`W*|Ja~XWC7P1UX@p^;F{gC(#a04BYZ2Jg!~_aDh~?zvhJ0? znZebkXQj0{T-)@i94K7#22^ep%C#F-`AGPG{iw=1LcV8g6zVfy3+g@GyR`_k9 zt88cq*CwfzFp&)M4V6KjqSaKUaic5u{pT{FtY22b5_VMSh?b10%onZ3o?|P$EJQa1 z&_-xsACVP~|Dm!g&nH;{dNe@e8dO#0?h~L35{D%E28cC*;sCKLBn2dH^;vv{$OK=1>tHysPRro+jIOucW`Rd3W z?#N+K^hZQdngnfdKw<*a6kTY5#@9Dg z8=?!*255rB!D3%OKQ-g{Po)Uro<)G@osbw9s15ej1pA6Z0s^%mA)(@cKwou2g1>)o zXlMeOGJWb;pMNMMMg*|k+Uj3zeF72_12w@qfKvwr`1*-8eu07NM75vJH!(3NF<46} z{$nYEczApD5?h}{acGbxAW<6>66_Zc6s*$(`uPIC0KY(8fLa^O4D*kr2;#uss!!Vb z1O*2M6C^*ae?YKCt4T}<3QP!5`)kCS;6T3w%JCmd5ybZ=s~gw&1dD@10uzFD!GW5D zfS>?zs0M`f^9%G3^$Yg%4N}v%hOcfMp%MLKVFV#Q3YrM$YR|}dB0h9S9`Uhwd0@eQFpkTFM zs79zFK|!d={Sj_BZ2ZVeBAcr5{Ab(%KV2wuSpXiH$DhL#k5Skbiq!ovR1_uUcL)7YEG1TH9jjvcM z4h;y#djqEL7I`NG1q6V>eZ>K4KM-4|4pu{L_f61*1||k1fGp3(d0?NxAMjfCI_V?8VX%pca>&QJKFW&|tMzt=51TAp!oOP&ptF z==?*}VzDop@^-BIwz+FogYEwBM^YL5|IbH?6VRK?N5WYU$cs!F@w;i*cvAx;hb!fNOjb1r$X_gMc%0jkqv_iVG@g zV#Ni7B*r8z!Ner4Fr-HmRM2QPqw)W}RW(D;gmnEM^Ld~5eLrs-+nidaZq;4SIrn$Y zPg6W2@0yxd5c8(C4>g6k&QkTP2<2OY4f$c(|&=@lVx7ia?A;)ZtJ@0~i17+1^bns3Rq z$8Ro8KRPo<9T>v!+88XpXNj3ChkpBADdYtxTnzLY^rl$5g5pvc8hd`DQMM zvS8|7E~{ID$t9jP(&dZKi$||&P%~cnq8&MFSYqKP*Nz>}Oi?o698dMo9rDz(nsw-X zERET`k+oIT^0I>2VQ8@WsJgSeR+m*iL}pvVu;8OU4>8=zwv*Orv?X*Ek(RX^{!tW>Uz{$rYs?&Mut(-c=NSf&$AH*;UPme0?tIc8C< zpm=JQwOEcLofTU3nJ;oeUDh}>UfpaT-Gcd7m3oyaC)OODKxg`LRL#sr&x}^LgyJ1> zPM7&7))?iBu4--^D>nFzeZ@bz%8n^|2g*tTw%W+CtAT;Ep3?D34GNq?(jw$CX(T|qGoIeqA!=JF&>b@MFW zPTumPNp{wq4G*Sj$`s2u6(6^(RWs!aHa+p^p3ENG`_A8^CW~dKx|;5zL^6u3T)}m- z4mya+Ok#`KF7^G>b+vTFS!maqtGg(k zSuM{bz~EJ6uc6OqX7KTqb!Z<6nz@|g`L3<27;oj<$m%$P5_+f8@$T|fW*Y6|EzP`M z?yE#d$0=Y?@D*0p zGJQ8s*F}@eYL1$BQ1_&U5{|PP&UmWh(BW;qM8Uu@b38fE`le~wVD^QLsG13-irGWw ztIT_43$-Hk(VIAbOxp2L?h2N|Y=(}7f}2zG**vy|4y{1Q`KYR?}xK{JghJ9S9hKTKvGHnxW1?z{9GtB}`ohHn?Jn1hcGmFj(h4I0@i zk^We|bu7E%m?_^YZKdPg*goZI&6fJ(r`s0}%OreN+k$2*tnVsnzFg5Y(=qb~T7Euf zu>@J!;FVA0@S@LJdEfL6)v!@iR0q3P&1qOTuBO?jWTQf4|6nUl-g=)`LeU(*kk6OlvsA^39+}ByBXT|t;fvom-c-uLe?BUs*qLlykO3- zRaRe=V@>K z8{OE_Y>Yp;eKwf)cH>%<$MOY=6nbGod7^3Pt(w?$()@IdQIIcd7?x$CziUi-7RI#A zJZ0s4H&U+#E^I`1G?)gnm}QRUWmVl_vS3#9QS5DxL-Dc2f;Vv7qE)GCPh)&qS)0YD zkT2Lq-ecM^Jsb|$($S3@KC8b!l__61IuHh@npE(kpUL+4-loA~`07Fq4Kk02S@=g2TsXn{yBhCE%}HpV&Z=Pfj@ijfqjt*G zTDEPN)s+9B#wW!7X&lX-MyJGamd)B;-p=Dba*P~@`T^E0{tq7|KaaU+tJ2@+ z7jVKdk?5x7y{-$Z~4UQo~Gh4CYg8PS4L~Jq$CIMa)$k4~G<1#7X1t9vWbo zoQ3DDyg#$l6Ozy8M?p;-uMPzqFde$XBt-)B+0>Di-z_ zjh4kl-T@Pp?zN>))T>H;v_DU{e+}>CxhI zoI(Llotm{&oB$Y6p(7+}N*#Ly+ltx5!VSR0$~PIfMNGw$`b#i+Tj+Ddv{N)4n+UzP zpyV(!3;0$Tbyij}@e;jvEelyvv7r|vp+Mo{DiJR?&fh();mgezSeO_TSqo#<*F8@` z)1Wo@PcVCi)GR#HVH%V-Sw3Dw)O%Yl2N;a343-}}+H*ddEM6U|UbSgXHEZV!PC@h0 z_I&Bd!Geo=Y-CoJFBPzCBhHWVh3Zo0J*!qXYO^I;B4)nSca6NRVGZUK7xxr%mTKaE zvNU{7;rAr??4_S(Xt3`5hJ|<;%eP9W1u3B~cCy+MD$HtIzS0R_CCApd#`6{#qOfxQ z^onP{;@Piw_S^TJI*risTOt+De#Nt2@$8rGz*Ic@;pSw;v;VJK3Kh?O#j{`W>{mSd zTE(;9z8_NY?3Z`6S3LU_&;BmAoI06l70*8V2^G(N#j{_2|D~g^zT(;6#hyaNvtRM- zw`2DIZ}sd?4zwR!cTCs46M+71{fsX*^$^O9w~Y*be8+WTcT3gpj7|#rEx#`FRfDsH zGUUddV(~?{l8$oab=?=-aQ}7uuIINPxZ(aAuGLc8g1&Fv(BgzU_cySwX%jqtcU`rRo84baaBXiwQmh!VMG@s6m5wOk1d>jDzt_?Pnov$1?Uqxx#A9L6f2QmRNlo$dNaJ$NWE?^Ev%}JnuXu4%n3=ys& zmH@c3X&a`_;>IWFdDk$qo@x+W0w(NLi3v+6Rql^z)n&^REk9|{ME?A`(ba%BOw-bH zz{r76vIS{ddD#q##eR99Dh;#2C9*YX5QLJm3Lvl9mCORp0bNdPL{2wzF~(V0bRT$a zw&q>O_wzI^h&%!kY{Lh%qv-@Jh}k<9#&FB><%&sr2tAWfY>aQd?Bcp{<1M=cY{|PS zy4)BA5|A|rjneXf6xhdPU(qK#FzQ?dRrgI#RaLAr83F`~2v`JR5j0HQFSJ91G*+-GJFtpO9 zTtk2tY>Oo*U$p0oW3Q<@C6iEgi13>z-oK`9KpF&qZLnR=E`N>z2FMru6wn9{7@uha zLJ4tgIT;}(H|B|W04(geCb%ox2OUDdPa&Kn+5q@Ad+;8iX*sZ#%nLr-)+zuTCLTWB z0*5O1&@&0e0>h9YI|;=);?a!@PfG(`U{Bn)2rBZx;^iDFElU)RS^z?o%SHBXn%RtL zjgTXgLC)?xF-RI{maIcOh?_Hl$y?SEuH!I266Yg>3$kE`!Dp%}VD22@S3r(RqX!a7 z4dHA_g$nhVg{t_d`$Ij%-|FkePSA{6yJRQbCT7k68lI;IWr2PYL1Y>#fOpzUvBl^s z89Xh=+zQ5x=tpoIwx%=Vfn=e#8Hxo4-35VYDW#Chgy!jF119v$PQwh~U%A?AA7(WP zAGTq0{r(x(W0-(#0Qbb4Ni3T!J1Mb$d_B=2`C#%{^DhDm3^X{O({rBYyIIh$fOLW8 z``J95f!8UCj;qO;OptlU1zJJ#f;4u)0INX78Kk-yqrsAj6))ahH#M=;opEs&+*8-P z#$$=pm>EIuIsj*ZRJy(k1VuF!11SCIk2l4!AT_MQ1mO_yNB9kh4F@olN&qCy%j_D4 zO|-3IiowV=>7EWiW>3izJ3wG8OH7WqGCdeQPdv+tUB2MeS2buErF@y;3ZRH{AFdlG zBlj3w1;@{2^I6(LF1B)=WfpL3Q;(q?#PXmTm>__Fk=u%wBPJIZe!=u|Ibh}yt}P8t zOqcOeEDB6KVH^Uj%Jc`?ThCd+l6Mw@wMi&3gsG$x3XE`V1K&X{yDVTGQ>>D8Od{Ao z9TFHtI0QIL8M4A6?de1k06vW8KQ%`bf$o4U@BADU@8o2dw&E%hKijs7 zC6ug-W1p`(C81tb}S79 z8?mPa;{SrG)lzw-D-%LRaFNEE&FV{ZJM$V3Q*5cp9lcX=iA^Msix^(8!8w-1c{Pn65L;HZWKBH3weF;9uUx5O;D!~N_~y2{erfR1 zz^#dbC3+=W04A$25xBa^YhVG!NZ_=LfdGo==ZVV)ddOtLvPxJ@m_)=ef-s~zqsg9F zpiWq+Svde^vjn(A*Rqa)70m}#=6vS-@+A@*Cso6Q660v@b3UmXQ-d*Du%zv4x#|#jHP0!WJ7RRZ*3RIvXb)+-2#6d5V^s?VyPn%SmuQ&P#dg( zG+Dt=h`UuhrrcP$Engr?`t15T6`ieIff0zg<@LJ3V&>;{d(~=MtyQ8LV(AgU%tS^o zFg+yqK*24G>q9dsGM+6J}r)ppoai0w8iGMiyeV?k=JO5?ZC>AW7l%#dgHa-Q+JjCM-CbBP`@tXF8z+4!G?Y}j_Cdsa|bT~L&EQ-KpFD=pY_PF zm&1;XpC^X{*%mFf=RKJlPcM*Ft$+_KO0SuCSD0S&)luI+`*TwB$gMTsiHFoEmPTGSQiiZG$&MYFcg&Ko|C;h$S5*CJ)zCPVW%<_eypDd&^1agT zWMCTQD{SYsos;loB%Y&dYyqRKd{jI+u(`(HlJEb&E`8~X;6&s#LDN9x6r<#=6T zk@}zDI0uSHj^93L!CA8w@w+)VYu4h2F3e~owf~kB*>I0j zQ@^-zF{!DOZjMq@S8ZOrGWpgpT;SW%%E zP7~YTTXMjzuIwwOWta91Zr!?MaH{RP#UF{)=F)@2x?AV<6UzHb=61exjL3elZuO_^F1SOhr&L5>!3SyJW$sEwK@@viWRuXI`ZX|I$b`VU+> zK};RIw09SjBI>ek7w6(y{H*`d!Kvu7E${AFiIc=j1C~zebom(3She)kT|6?b$7%hS z9SxuuO8o-AQ!zhs144iZH)roh7Up-{RQdy7avSgj2 z>HtK@ZVu|eaPpc8yZ{>}eq!QX;S=?Jm;R|&H=|Z(yzS7J8eK42!Y=utw$%RD^ZN#L z$m-P23;T;ZjHP|#Uv;j|iN?}Hc6DDs-`&0B32jA&ReHwGzi2-nP?>sJ|L;j1zyTY%&{9x*_26diHmVhA@^3{RcV?>j^npqBz2u9ZI zeU{c`%HN~M)DjIRE`9r`H1-XX1G&aY1(hYSF}6}p1D|99u*1L<1G~Ugk#Lh1aaEk$ zxb#Qg77GT|j|*zM-f~f2v2ooks(n~8=)Qa0Ls~;*3y10IjIBwpcilICt;hlq>3Q z=pt4$t{5&3|6ctFaq;)+hjv$LCC*Gd+GX)@G3V)rdx*ooTR&KQadmx9(Ph)U!-O*a z&TeA!_xQ8{S8>kkx_Zzp%lGISonQT3&TsrK=YP97zPFohu`Y;v42SK4F8DbjVpHlAAghm4(0QHa8>=U#E_vYMhfrh`aS+9E8>@v z>c@ze=G0sN+ln6=vG{y@Uj4HF`Mxmrrmn;4XQV>*uNedQzi%8%pZMR?8+aFSz?z5q z1&__I|7Q>Jy=o?aKipKG8Ayszrd6_AGP_Ff8&L!}oFpQfZ~y@0QA|{rB)x`AlBD(} zYag&z__4Tw^m_%Fl^URVp~RDwR&Ai92B8K(I6==5nFL1Dg=EVzb<*F*h`@-PrF{90 zxagkxsTrBYvP{{b3uvO~dvAT8jFQizTafx2XBI&LpufmIFQHtx(^!Yw!1PchsHCDU zIA8xu2+$d32Kv6;Qfzbr^YXOV)$YbbRIA+2`$8GE^ zNo5On<3hD2p=61ZZG5DDpEM|3*aC>!!c&z6|LR)cTJttE5BRM#a>Rx?sL`URW|C6d zXk{q)Bt`Twt+)q`I-8I4AfDbJlm3F1hfhPdNcqSrYLj6XOf6_s&Kp8~yl!O7GLulU z7vT~UO18x2pnm%PrTG$NieHeNtg_rsF83J#Q@-kpD6~_CmB2Be{4gblij;q z+jK&pCv;1#qvMN6gEG}+x^0nE>4dL}a*;YXKJiWF7%QN~bJEl$iU;hd3}mpZwuItD z^hxNjkKuvlO@IS#U^qZ%Pmi7;s*Y}m6Oq>78@5p30B{o5p^y+*r3<^n6QHW=5HP$7 zOh3val~A-NK779Zl(d&nH1Ru%xcL|L18N9SA->3z>=m>gzEm9A5Ev1mNKRivG%dx` z7^Nc3=W$swxX@2&Z2D}$!M5@tpdw68v!iXK8WUFlxL`t-80I))u}#TbkJju1lJ-kT zSu*8IcIfO9FPl(mjF;W;`^K>uV$fWIr^xY5c5)!RFhc-DH>8&u3NkOAEUK9!Na4#= zg0V`!C3`H1!bx__WT|9>^-DIbCwzl!!CBI06O4q}1WkmEVN32^1H?YFg`D%+rir9d zBY$zZGIN@YYuH;%Thr)F$f~tU30@ZTuj4>paR5PWKq}2fP38CkP^^)q1^Hz@siP0GTMh#5bIQK&ag34!Zqd@4iQYa zPuR49v_$f|7<5mlv)J3PVI`2XWYJhlC|VKrON}R|VVEdeb{JDNeeC?c;*FOY`&DPj z&7Q-uAPj<>(yRnz2siNU5N_f-V#(6FVQu5hwhXu~h|OeQgBu)JSs;-!NfHc9-HJmd z3JTFHGGvML)RGnjT0x#`GAj|=tmvgA3uR08?Kozle5nK^Gb)7~Z)rn^k3%LS##;kD z5TT@GdWXwU=GtaDj6#rVSeJ1cz#^d$wan~7;I$5YK+bYZw2n9vKVgCe84JK}4?%MU z)iznZCC;1#@;T_nLS~E*Hk(N(HHyGYC{^a;w?+Dk`eEXryEawTW^46QkUC6zM0%(w zJvhn;6q9>_tk|eP7N~zSN`qcg-klbZ92}5(Li2QDib&|2onna-Ds5*D;DqlHuWYX0 zFRi--HV|=MD3A-=gY-a!D~LfSS$E_PXqY;^hDa(bc;Gt+ zcWm4Kr*8O~0@q@m*EFQgT5wELB>;r5OY%vVWZ2foZf~(oN=wPy;*2CH#fbajli&sk zL%rKV7d2Ei$qYfQ5KTS6O8IK*PG-R+++mcqkP?8d`G7}+Iwp5uY+!E*QCeoPc zMy-`S|I&6&KZ4#!Z{XmDE)W6=c>o#KnYsuj!hvjL+X#;c@`FYbT?h{*6acpGVy)1b z2-%^-MTAFDrtR_#qjlmiO6ZxL#$-ahg~7p>-XezAl>ex9z9UDMV=G5kJro77!C`s9 z7$!rb@;Ve$QD_-nD>zjO7;V%P6eW_T4}KPS8$VFVJRBYjEIfTO;f5tQ@pViltQMAApzb?^7j>ec$pqn|gyL+Ks%AlBxrbYV z6-6mkxsr+wsl^B-EnjpP!FcW=qDu648ZyM;%gV(v97GhL zCQ2pv4f2WbjV!P>IV|)XS@|Wisj5a?E9<^KAI?G40^)>8%C9g6!KJXPL1;JXris1j zvP?;`r+7&#U$!DGO|80o$)N^0{kesM#LZ{kI#j%vZy4MIHC@lv8sdb*8b+jns*ueA zEQd5DF`S$nW%vc$RdGlovrD-x9ob-Q=2}97buz#bdTOTt$b`xZm$q=wmH((H zq>;=Xjvf-2%FRiZaYrM9j+H^O8=`_lrZ?t^3cH=|K?lOjZm?v4Dspf*kd;7>^};Bg zQ6_O=yMvkEAf6GDE(r_LAq+r4KwBkOL_@;|z)i{)D}G5IAmM)bQlo(UYwG%n8HVVS z#@Ht%6I)|0I}$cJ3A`+9M-Y@s%%*KfTn~eey+NHdmDXo%}cOUkHng|_w2zJf8QFoY%9lnXZ+ z+$9=_Dii|>hPRYyK1V!oNFj`ShGYm?vi9&LXqj*xv;E1Q3v&)OWi)+E{|vuQHSvRz zVXQznBUT;Z{cwBHM0sK(wX7KZK$|-xspM$#NGdqQ_e{HURd=x_-!P^p^F|hbv?it; z)-XIxgfojZ^vAGXKncX&fy2HVjEW3?6wBb_wQ#n=vQ%!TGr&1;C+cI__UTMCmeemh zxr|iC&SM7^IkCLd9jrRxPO+46)&-*S7gY z5{fpXr7fvw6qa~t)6r^C^l-W{fAS?bJAFlRp)udPsu3q5g>M%RBx@FHpqyw4Qa7=J z&{MF^a$@}@%#^dFtFDGnYJ3qWS(3t+^b4lMfyvA)lK#?-*;x__jqZH`at=c)A#DW6 zIC^XVUo`>5Ec8Tb(_(B@LXkq&jsn@aEEtxgl>}FDJF7JdO}UbxJC&49WY;NIs#rgC zzAYA?dFv2y_JW2%J<#2aTGeSAUmy?3&wy71O@XzVIfG0CjwAUB!83=9ku~MF^hMJ% zWSffoA>>9V*FK#dUr^Hf8xw5Oo}v2D&S1qrAy#c;&42|>0PEZ;oN zH%ZTxX7a>YPN*057fL3Y3eEs&-;lEj4&4CWNO~k2yk4Hn3vhgqWk{}oxC&ro$BT!S zh7mEFnEXsaiBV8~Qi*a{9Y}b;q`dc-d+?BYKA;p5i=e%u>_V<U8Xy5PhOoVB(Yb0xvF!9GX_uLo^st5|)RG z#A{YU!*nvnl=2<16Qx)}ZJBLx`7$5TzyBm!T{4Q{B_s(LjF2oeXnf3NI2r+4Sw7=R zYfB-<(j@tGNoED6i$xrZ&7kYDD&Y9AX!e*+>?U&W>7bSvp!m=6&6p@4=#g?y4iJux z|2ax?QNGk{IHocQrNU+VWP_b1MFJ}hHXj~EbUX48N%frt(vav1FE*r!^HC{YE>?Ir zY=y0&9C>cYO329b`~YVND)aqou{)inDS&-V*Laz=rCNsVx!{W@-$+uK|C5Pl|a@!bSVk*;5JZR6J8c4*plUPGQb5(P(moC8<>T0;6>)p}g4BBq{p(zSyuQsRc{i8Zdj} z_jF_y4l?JF917DFnqk@aP}3{%7bT#hq#q`FI>8ikycm`30;gKQC=#5(_d%LJk>vg7Nvnup3fXGlPR&r1j*aNun60MDl;Zg~|ko zk{o&EBIOS&)g!5lhFgThJLKEKNd+zkSD4PsD98ZP&g5LSZQgeDIVTeUdd)i`iM^6be~58iNi>?FZ*fs9~ic9u+L$%qP*uHZ(M z9v(&z`H{#zg;vFIgXlR+GCLpY1G&=>`U`8yml|1E357;o6AwUNvEib|-f7fue6I`w zW&#Ek%|jMX5LkQ-MqZmfj)v&tpdm3@2n)=!6~XY!qxg}{lWb;@_DAn^Ns%X+C(&D( zDP0@qJzIb5eo9r_JXbaJ+r?~qC-B{8AGcB*{|9~6x)nyz3vc!064;7~M3YzF)? z%YY!&QkEP)GS?;8Sr}&(8R^5!&LUv*FP>bP(~fSZw7CrF6uu7}7Ud9ch(%r}^c1oV z=0Fw0z8?GK6N-#hsdPe-k+(1$S2!0`$#6`nMaBg01obgJjme&rTFmy5<_ElzS)DbR zbW2S7=yK$>%aU#vCU^4KMVcS!q?qgQ8o*7C0g2&7<*Qb5lTRdJ_))Ww#ANx_-5D-mWDj~H=3bE#b`7=S-~W{ChLiT zN3%qS>r|S#ln6SqXps|>fyYK6P7s;BlC4q9pqOJhBv$ z-xQ03O(`};TobT_&2~5majn?b!nUj9VF?o62jp7n3up{PE8>|Y;zEQ(%+n4R52k7u zbaE$})W8ayC86wv4DN67OHnCfFq%7Bl2I6>9K6t5iR%TYx_hh zqFR6(J;$Djja`rVf_6_rUeMy;p+Fr;U6(1ule>A~D^Vq(zmr_lY)5$ovfhH%Fk;$c zG(vEI287LWixW+a55_(qe=aCMaEm+lh|&qAhK5(hFJEdLT&w&-^r^`a;0xx9Ev&5E z=ECH{8w}=w4S$ATq_Ahuuh`)5fmO*3Z)w@km?|Fy4|jot{DHb&CcAY(HiG!WM8@cn z8Zqh$vDA>m6MTXp9nnwY)-P9N_yslPOBB;Sxz>&pL%mih9cfG$KAR#cQO?pU!4lGP4ZEKmk%uQO=_Kj5q7 z)+yNnu<>0Z&S#tuJ|i2sZHGCb{W^`Rgnrv8=X?3eEFp7F_^S34pILGCoJO|-!LLB@ zD-irBGNcm%qyoY3fc~#Q@GB7fe-kB9f#6pl`2QaGUxDCPAovvseg%SGf#AoX3l#`{ z1%h9J;O`=4qLTquf#7#S{#PLQ6$t*nPc~M8;8!5{9dQ2@2z~{EpH6_pw}FAmLgFhB z{1VWA1%eM1Lj{6gf#6pl_!S6#Nzg(Cf?t8)S0MPAF~?3jBPNQhK=4aZ{}l*+1%fY= zMOPsB6$t)L^nV3{UxDDq!37lveg%SGf#A1=g>(W7S0MPM=>G}?zXHK8p}F|K7J?s) z$=!NPuhcV=<>_dlpI#g+p1a`I6Z;jGp*Aaohgi z6xV)v+nx>8%c{likGp1!I4-p;EiU@xKIpRSjQ{vCBO>ODncbE> zPVSUzhl^jI#0UPl$Fjjrlr|}-kyDu9i2Aza-U5{lW#K0cQ z4*ZILyTIwWjNk2n)ANoahLg6PpjzUs6g_W|*^Ssm;+4pfPVBSH{;$MrZ<9yg0oz;B z%~5x~e$P8rCf^#ey8{pHKYEm(8+ z@?g!~O~0QohlFaHcHYG^uTakOW?ra_&+K{Xc^%KGyEv!q;+(#VbJ<;-GfL0RnR$h} zi-N;*9d4X?g|>_P!gHPO(|2)Sc&^iZS$SWdk}npw|F)^NTln$f*S~F=(y4Cj()W&E z+uFssPWOec*y+CTT&MfOSL|>fbrYWKbYuA59d4X?MR=~$eTMwLPWOf9I^AdP;=b_Q zoK81dySOnt*Xcfc7x#tdI^E~&;=b@)eBYe5uBnE7v(u+UCp$e-4LeTfJHwNm@7z_p zs2v*S!gyq;|JpP(|E`)w-BsH}Cp#D4xphRQZ}X9H=c{U+J49UFxA~CxczxgIV`8y? zzvkm(@!WpRQ(|#-zvfe8@!PL8ofV5Oz1DPkEbjYy(^0WFa6t3PvG~I4O;^O?(QmZh zP&=^s;P~t;#NIn+1M$k+O~b^FH=4Q$^UbE}(kmZt=gNSp<}sxw*MHG=`%~N=Kl80O zo7x^<^H$RV@!50UYHIu1t@gLtJgD?lRPpG0JbU`vyvoYAn=7)g^Il#ZXYqqV&~ zkA0`9?WNQ`NZ7CX{y=zP(rL_rwgwfu%-Q>=WZ!&-mGli_@-ZMX&Td3 z@|LEy5i!*?yC3N|MH`q;)a^` zhP`@gd&9cv<|#YB!iX9+e4w?hv|$YqR$6%F@@=IJ3*(4v*zn3z+u9p;ai+O#C?EQM z)8RYIFrzwL{2?#B^8L~$!Q(CKFud|USK{g!@Ih%ElBGq~;lMG?1OWRT+*u03Cfvn?*6>~fuFX|bkjd=DjA+m^v>Z;&wtwf&L4NWDICM$P2c!) z(}bNb?!?oMEaQPcm%g|Yy*PifS6mPM{?h)=-~3Bc+p;umeES&q=U>{#z~=GIN5p@& z=&wyj_i3MPR3(~^C;g2M^7&ueTlv`u%~Lzv6;|kmzch6hKloeed#S>Gi}`$3ZF5`u z{PS<^i`|)jZ#t&rDR5QE!90Cp^FHy*eEj#)%2UOLx0^-?c&eflFc;k2l z3Ge#gv-UTBMCtIxlqI{sM-!X7i-rGa+P%YTFwlob#r*0Y?Zs^WNBesp_j!l+4p$fE zWUc+ZH-FwVspN^89M<6t-NZ3pw7=5KFWM*Br@v@wYk=i?hZl`knt|EoOou0i??{o| z#MA$5f5%P#Y=6fCzic|T zpc+=ScatS%^VFUFQWdjW`M@1t(*75unoDbwoFB3_!-7|(+MX#kq?+4Qp7Faim%eE> zdegfcKJE71n%kzN>2`D5Jk+O4^W?aLoYbZ5-NYSTnvW>?lx#HcTXv&?dv68ubkbrdH48H-|gD|)b(B4U#_}a^Re*_7j$bMIwu|2T-v^HY037z`5<0-RQL98 zoYcMjv(iXqspRDrXo7=jf; zaOM>iLoimYDu!TO5fwv_4Gy@_Du$pYDu!U#3o3?Sn}yoZ5Ii}!>)_^Zcj-+w&b+IT zC|D6q=ie|=Oq|@TmY$qE`;HOfn#s-YmY%Ho?e%+!zE{ngAbxgO^SDk|u#NXx&{vE& zy!nw{?N1jQ4sW)19tKrMG*3N1G~T^@T(IEk=1J)u$^p80fC3Zn^5*%wDR$8EKr_3j z3!9opS1a}$(H1D!b zlm0s3uV>U`R5Bb}kn`!}VTJwzraX_N*Df67keox8EULOJU6@X~X|%IsMDWcQnh#r< zfuy2PaB>i-8RVrl$V)Hjm|^fGPc|utUHQNp67LFTU$SD&Dd{|X6nTfVs~)-fc{y_R zyRc}Rh6}x$ro^NKu)#r>1C|8>Oc-X!%j?7Q0_}%N(QqZkJf=#4q^zVzRTVf)NaRZr z*aDmcYMwOtkefy%I}s^&Lb+M--jKUbOed5ZF%#VNrxm^7q_W_cgVMtBVGe`|ONWvh zwoV%|Hz;!Btfi!`F4)kXk$4;~W4qvxaTkUycxVbaS|gaeWi1Rdc}clN9$Mdk^^Tm+ z&>xd1)%VENPD)*IQuVE{weMH=faIkrTdE}~b`?lT%a$t0A&5g&vVG)WHHU>;Q+P?4 zAl)XJbQY>#+vNocpoi>RXTp;1!JR=CS;@~0y9v2}C9@rgYE1~Py#P|Ub*UQNG9mJ| z@>vbyKbnd}w7##?5urLQXky6^$oL{0fZ#jK(8HQ3ptrKP;N#-PVMm=?)G4(Fc%Q6@m0T-yNCWj1aSs>Ac4kS;wBqlODN8C+C~ZyALs|MR35 z8efMuqim^#XneWli!B*n1vmp>A&|K*J!SxMFMD(eSQy~GfI}y4K?oBJk_JOpXu(oi zAoVmUpbgk3@+K1j6el604&I%kRv52n)POO3}@ zLaCiII_GUm&rxHx32!xIZjk3mwlFBOoGepYJmqEKONH86fM#&J%6?_Q6Xb;%6CH)($?_|e@(43t5@SnRYpnr>L?aHqorHtGOE!7E)ozOcw zaVjR%oYBsySpLft$wRic*l^&YBgDAAcOO?-(JCuiWksv3XuDoWD=S)MMJuO!{GYX= zS;09c-F@e9v1Hw}IA~$N^Y0${pWvUnF1Y#PyZPP2?_Pc@`P~=XeDVE-2^kyG5mWOF zS4D+^^*+?~3h0)qkL{7D|$k^<|S`7IqW}#|X zR^G`+7IorXp^ffc{J?knWS~#*p$gAI!&ZPe2y;?bsb0vfeVFs?_=$;k$tNyYd-Vgs z+N&S@V%%;UMvKjb<%5F__ddA!&E4KUQdB*#@E9mxeW8|+`MgN;t^-4oj3*o3`sxS;uMFn`#d^iuGtwlr6 z6@o|qu~w40!9Hbp4$PgoES!U`iD!Whnx(1qECxY}q~p`K2>9C3<)KZqxE;=#@$rt`HhH4NxhC9@OHfI$^%DO?q17GqiQ1ti+B zd67vdR*ifS3B^ifS``@b`@wlDnRjb-t;EQ{^zjVaVT4#%ITqy1ct;>8a-b%5d?R3B z;-4r#P(;(xRl|aH=Qm)+d*$1x6FpNxzwAVrmQZ!Jv@b5bMU1E^`$=xdH<->zQa;bK ztQ;=EOaX&d8~vFN zeP%ANo0fw|M9;w*uc$bCayA9P3lz|gKfwGgU#ysYTqdEwC{;dV>j1GMST#CbU@G%)qu}i0E#VXN zan3QXd9Y(Mv;(-j>4lI)*-$q_O1v^-3)- zu~iQl@z8{?XsZqvZ_eM5S@7G@5Al1L-y{51^Lv!vW5I7nKmNzv#pK}1*imrXkDlt+ zC75!=zWyr*@E;g#9}&1mJ>GwKYUP4i=RD5uhx~pN%sS_ZhenDUUwL9& zaKsf)9DSy!z5?;FSDx5Shu|IdXI;;$&?jdhFm`?RnW3YGCezL3Y(4fTe5ZSWKOyPn z$e*yLXRtE)*3h4DPp@EA*Tj2++5LlMeN$Uy8yzi9-6Od7tL8X3Y*cW0YHRT1s9;cc zamqVq#O?6enBc2BY`*vU_F)TVj}Q3$IG8>D$Yh5LCJo0n?gJCLU9bxLkDa5ug&l6?70<&cnLF>cds4v(4?IPKCEV*p z4Yp*}Q!A4mE0pVR8xvgl&{IphCO$RT|FNegbxHl8q!#Gu)nBz1f-l!Tb=`U5gYnOd zTkv4b)4_u^&rI$wj3=KN7Yv^8%*$C}UxwH-_lz=Fcv}(AyX=`8YJ{>9v48zDV+Moeac{>?=^WXzhwhlu$# zPmc@kGuQ0dGu2Y^EuS5-rr%fomZ`_AIcmmmeJ8_fCaYtFYPwac5Epa#irvM}A6s+e zzrADh$xBCy10P@W&msCj5k+i=2YmeN=6%FvKU{O+t}m;#OUH>(KU(wLt}nZ%E*&g- zKC$M|U0x2(dScD(6NGo>+HpZm>za>7Wi&%^05=r!DtHd)r`^1k1*3tV!PD}#8iQOC z?+RUV+f!?=SH(|f@bG2&+VTCwUyC%)_DO3m8!4Wj#M!zt*E$2mr8?ra8EdaUH>2o2 zmOc}gZ(Pa!LY+U!_sZYpVdO(P6XJJ&VfI26a!cbMC9<7+nS@A z9{r%8L%xj8cgv;`!6d(KC1m9QASBdB$pSUX`MNDRMC;98wDId_;?FhMi`D^@F_WbU2^ir{VGzsHMHRd5(Zlb+(7x( z@jGr$CUneBl+Otj=d|Mn%72+In!4P0ws?R1lD?w)Pis%8jJC>XtBkg+`M+?qeJdC{ z^x1h`_b$H*=1EcZ`suxda^r0ygLg(gTRl+Zt{PM=()&HT`l~AE7wSWX2IKdCwnwd) z_QIg5;D|GxoxFEybBX5l!>gaI`l_1Of_^tV8}z$j-Q8O=2AfibhQgvUp(=VdXPHdq zx`8*>Fj=O8S7xs#|69^+k;?GYW$RZa-WtrieElt5_fC3Z{fzCi;yOL~yX!C9E%j8% z$CLMM=vV!C@n(-5gBF~yp_x%3A?=^m}^LvBeoBZAi&R+2Lo_>anKj4F`H9+gw*Z`E6 zE3ggWStff@re6s6ZPN*NiKf55Ju*1&!?)SCEhx65u&-emIVWr69lM}tfM`Jgf?s9R zD~47l-4$w`PyPMv+iFDJ{u{>y-yN~>dtJoLew)y4M{WFNAMw{cINN_8dG>|Z5g*-O zia#2{4W~}rcGh4*brJ85(UM=3)CW4ndT z>^%EGQR#_yg{5Ec@kV!qxZ-Ud{z4AK)QYdhBuxfTdOhbuoCr2O=NhiuHfDDi;5PWj zV9DT?<>6~DlpP|mGT8jpp?p%+gW1flbZmh zy9H)1&1VqkY)ygwmz(gI8&=*27aVK8V9^WttnRW~Pq!sNfzPxx9|W{jFjO}C}Z@j+VtOqdVs6-LXLfTCK9<}sA{SbeEdc|rb*HyGI~ed(0Eh3d>eIk zQYQ4wPUN2`>Hogo@{ZE3{3d*rcx7|_erc@1EJ;Zn0Qq1i3Z|1&05F>d7-tW3v~1N` zU8^03m=4P)IK(0qY2I-)N5|Z>nR@e#h6@QKhzv}&V@=<+>A)t|glF2=nrsgHx?)<2 zrj{C*2_<{sAWJh&%M@+Nr~^fWV=SjqlBQq*V#JWllI{l}yI}i-tgyWvZJnmIoMX$K zcnmDeW+r-@SPM!pwH)|wKZ2(NSpjg*9)H2s`4r0po}Tx;JnKs~uOkFi=KM9On({>o zcS9YRk@5vb$n@o3ta3&5Tbp`k95t_G^}LpylAw>gTmg`VO7xM(vIaf@{5N3*Kzzik z>iJ<52uS;cqJ_J0p_(pVa5&746bGESX1Z8fUS-l}(CEZap}aT%g+AW2JXOQQ>qxIn z*3PLYIn1mD$7H@#Km-wuwE35thQ=#bLcxwm&DeBujZwBxF?+_QL(|}{2>&t^1;h)E z6+XxX6sP3SYKfDG<8?AVQ7E`Ha1={#2)-Tk6$_t^L8t^1KzoRUXPP*2tODJXoX7F&M7-0y8VR8{e6)oR(26{`R&1jw5Ng1A&< z!S(1Co(mfz;6l2@&JI>nUPBb4x8dE1pjbp_m20I=`_Sb(rIYJ891Xo}#p!a@`rWBswcf;| zOt;kum694?v~DpIGR@~uAU#$%=4_N2bVP<5pgk`q9b0Y6p;Nx>NI9%2U$!{uA8XZU z*+NCiqt}}RN)j}s0yt&1$g|W~00mX7#ZP1h1;wf43%r!&F}TipfO62PJcp3GxEt@ss*o;UYBoX&CX^aQEq>Xs>5z07wWgxZ z8dCcMiRA)21z2X|yw*J@s_NB8)iL3z4&TNXpcrIbaHl4CF*TPj5Vxch#QIU_5}|%r ztty~E^Hd0-tp(b|MNh=CrkTNOwXa(bq!J6SI(?BUqwC6)t3}^3@SROV#esKi8eD7F zs-+qtS_NH5vxtdx(G@)$=fK368w;d&#~5oHZ)bH)Cm2QY*0uqc&|aO8=m~w)?Kt3Y zgO{nkb~SN$y8M?p68tz;0<Cf)nbV9`_s~BY!ql}G{os5PRqim-=STV{fMp?V1 z+;LH=7-hS#1}jEc#VG6O+^-mAAzCFt;jI{DyD|kUM%n*EMwzo)!`{LDYRfe}#3$cA zFUFgm>9p+qmA7&q?6YH3hzSjL9M!mHqE-IkRt8#~YQc zHI!OAD-QiZ%g~e~rrp(&?ReqkyITTr{KA$26DLflop3yOqYVF?e^ExMRjhx>K^8uq z9AtW}DW1Kj<;%E4TP&(;X&$T9YN}NW`mWZ1rbe$d$b7;(z)hr@wW_Vvnr5wOh?`fo zoYAM`Ua{n^mJ`IJ`&up*-@U12-~^>sm$;|)_xRUTX!13j%sv`-iq$JxEV1LJmSL4z zICN>t%GAx`0;AeEvJdw>s!YB$35dn zv2j_8_y4zhe0N3jNO9qfEl2h(=_62QtY|(>b`ncWzoX^&|7IsqZ*4idQZsFt1WShx zH8V9zUZ~&Ma{b7?x_#|y6DD*_Jor`Sl%M{`o#sEEPUieKI|(z%k^iq(fF100f6Jm9 zL?+vHpmNAF+U^Omi}5u)#Y#iPVUUoY+{c3fT@C6?@0oFoPs#l6I{ zjm1Ht$Nn7t@HDQjdAxO$xSqqtX&lX3F{hiDUbAm+amX3P?&6>Fw);-z!m%39ymCB; zjfZo1@E?k`qW1(2Upbb;Z%-)Z#XH9!-T6wfr}%tA@l^531P))kYS12HQ7x~MGC2&N zGGHQqw)AukJC(LTUik5WT-ZLhs;~IVMEDs&IqyI;OduWm0ayEER%CD+MK)d zJMRn;56eUCAP(1vcLs?)Ee`KjIaH1)4i(Gf;f`-`IQ0Z7c9_lKKv^YirF9oK$#Xxa zImHgU=!x5Oq`&R6WvHlgic`g#7Kc|on&~fkAHb`fydQ@jnp$5mM;^{UgF{)_jR*3O zW95rd*8{|zN7Ja^k>~my!MSs<-7;MKiNnUDIGXb5mJ#CH2XS%yVH|Eah#I~4B&3H& zPwpYUefk4K#Yf%V?Ji~>%q>&pyU!Z)?jGVpd3c;`>}iJ-T`}-Tq;=i44iWDi!i87l zi-m3F9?IdPhj93ZpPsmf*mNlG`QT&@pWJ=wFmdiA4j(y~!_U`E8zq!aC}`^>{-Wtn z&Ydv1c%FDjR_4o-i|2}=vg1xYtoU_th3r)?pEkHkynYxD__4y_OLvXyFQy&N;aRdr zK6yBu@sROI)ck2;?@36LX1uqL*l+}opCDi8weP$)NE~@2hx^GlxbH}M(3!_FR?d6> z;BMlsU%b~}SVwU+klo|9ql%}9C*|`79$h?JR88f+#Ya=dC8u&O{PI1H;pXk~)vi9K z_)W2JD$=w8TL+2VkLALUY}#9WNSFGC_`2+gbI;paBi=iK3%a~;{FLH3 zVqaP3;cIT1!iAHMm>25lev23 z*&M!ba?uy*6Q%Tnxkre9{&s73amOiKZDoizo?5&_jCHv&24FM^64CYC~NavXWN-# zz&AL|$l2!hozxK5mO}F;?+KfL->0v3oC#9#Q^n#RrA*I)) z^gAhiD5XD2=}{@|kkT)t^tqI7l~S)CAbldGVN&``N_$G_hf-3c^njEO{=po?C#86t zJoz&zoi3$jDdnZ~J1NbU(qE)>wUl0y(v4DjTS~V|X`7VpkWae@)IdNETymAhV*MG^^?+FQrcZgf0fcWDSafRtd!oA(qt*U zC8ZOkv_?v2N$GtleM?G9rF5B;9+T2FQu<(y6mOQ|%Tl^sN_R-1`=(kbeYRgOsYI^fxKhNNKH<_FvX(&evw#CPiDG zTrZ^~rPL&)lcn@?DV-;!)l#}pO1DetN-4c6rR$~i6Di#yrA<;=E~Ss9^pKQZk1in) zB&FX<=~yYDcvHaSyKAE>m03JzVDy2Y5 zYo+uLDZL=2pGxU9DZM16cck>7l>Q{8jZ*qjN{>jX?;S|>QW}XgXU3gU94k-0C?#D= z_ep7zl%A2&6e+Ee(wS0vR!ZNLl91A+Qu@1;=1J*ZDJ_!Haw#p7(n=}aC#9`Y`jM3G zkmY)FP#=Qu>3G{vxH#QtEOi(o<3zD5d+QRE>1mO0MHP zRsB9QmWg?n7cEgJ6dw^Ut!&*(INvO;PAvc^%JC7t@#-hpvtadCWkPQ!cA<;FjDsS*#j z_U#$;{%-O4`0DB%TlxgszgPTwe7yY0E%C#Y$GYq(F1n}KJD4=5_;h?(5p9>JJ=tZj z_#k~*PqDFkYwzHMdF_w9`I^=~fpTrJ`)<+uEx%)H+xxxHr6!nrUGX>Z)280DrO(Ql z3ySfL@(%@nSS^(Ex(^Z$U%Is_cyVFzSMl8$t>ig_gtF)gK4<&!J%SHzY`;f7QSij- z;G^#sH^+ZiW4+5a-dy}=NwM;#8u8JmRLQ1azt=lBY-xx0k6vTaoUMBXh5F*wl;~x? zGfP?>XNt^m@5F6zuqb{fC65P*Gv-n58;z4{f{$)3z7U^$To8F-THr`p>5?}iL@?xLeqK7Kq<-PyeT-+l*9`H2Jd+PC?1I45} zdS=Ag5BBUC&_EmGCuLOLVZR4^9uT$KLo3@~WbrC0mOtFL@rj;2#lb6R(+&3*pDlR< z!5efJ1OL)@MDVKzi?762e!ZTab-}|Qq{Xx=C-n$6K2-d6O8l}ry)m>(e*Z}E7@_oP z>yn49E?$w6$Ad)p<#n(3>n}2Y{{UO;y?*_IzdTyJG$p3owRL7^lWF_oJZJ3kt$PJ$ z{!o^HSS4Cc+1gk9W6sjyV#D}-dx~HGiI?v8MDfP>^2_T{(=r?S_ZN%yd%t(^PEh=D zd}X58(pP-=JZ8i31NsDSKPmf0_{4|b<-&kjTY8GcKY4#t@ZQtK7yspoa@}Aw$8#R+ z9dut?e4@0hbEgdKAr_{$R0X}(6@M6A33!XY#y73=w+s;06^Svo|l9#z#V zP+ly)5nmbj3%-Tg86gIa8Zc6!oGpFsVib-F*(?gtp z-g`5p)qJ^l(S0u-1b_HLad=7|4|?MD;><`Ai?gj=gX`WX9vK}6Z@pQZ6^rM-EhjE{ ze^A_5{5Tf3w8$GS8M)OI8*bfZOIv&|@!lWl7su?rbuV#hvG{Ybxj$W}%`_h(?rG)f ziB)u!a6+tlr?`7c9uE=+Zz=vZ^+{0mZt)-SnVPM|H#zg!RyhZR_grvL>x97ipm;(` z?A}_O*>2-^7lXI++z(rs@aJqVPDn|yDp<3lcy26?|G0R0EI$6Hq92R9rbi}$;>Rt0*O)|=voZ0Op`91s@BO>~h^e4uA5>rW`&(Yy6;kthxw$W+k# z$>qa?U-WIgF1}9D8)A{`v`P2^pABstEYd?-hX)r7YW;qEz1NV|mRRKaZ{u4h-ngY( zP#oUMj2jmCyOFJ|q2W`Mbn8elwVJ2gyhrOT@pZkr^@CXCIs+s8D`RwPQ!KtarZujI z;3s>vei)x!H@5Xhktq1)?!is_w7wP}b7@epV87N`yG76HIidB$_^-ZM+uGJ(+b6dE zSA6zLwO#D0w~1oz8^vxxeYW-5_^y4-cJUdj^?UKzW1ZIPW3lCcwl7^dZu$e4NJVb}Ko+!RJqHV@peQ4{*lsq03yg8}$oJbVM9mcmm5DYzBwuHPWMjYAt z3TL(*+4^}(?6_vj%*eOo9>de7UB{Hf2w0es;vg~iTdjKsbB}9fiVBZeR5N1wFGuVi z%sru%m1+7TTdGC>{kK$!#Z4o6iD}P_=p!DU(%M~|aXP)~?h{*o9{=I?L$-`6xo6hz zM+^*}nbvyZZqai$x~LU9&T6d|1K%6bE0}Uh>jUv0wj9ec_0gTJ%;9g07%FCN9no7* zc2#iNX|3oH;ae>~oTY8T>8)Mkr_CDmUZ3E^Gg{}DJU!s)bj$GmozGlXJ#v`%V$jH5 z(KD;h?eI*&Gpj{r;K)8f_4L-a;=h(p7d$<@(pya2W8{F~gxvo}*LMe0bu@iH7Yj&{ zVg(TpdqJ@q6-A8|3-&IcV!?(r8XGAZZ)_Nq@rez4i;5auv0{zEhQ<6LqM2<-NZ#MWJ!*|(UeGcG$>&(7|LBgI>IO^{m54e(lu$vI#e#2#+&!)^FU*`1sy z*@nLGyn@ZfprrC8DL2-ym`I+SFG%UP(6xoxWhkYpA2!A6;Rmypx7ao{`=riSI#*); z^z0e`;udrj4rIfb*;{qWLfnc|P_$oh3XOHJZ180vmIRg+B#j>pUSW0>5p%NP1ktb1 zX6$47(usN5ohUioUPaWHpFP$}jt$tG9vG$DJLmMox&C7d)$ zM~9RlFP{pf#G`MsZ|OYPS3{fOk1|j8c`%bzq_iBr3e=+$cvdsYKIdfkJpQo%6@qEk z3TRl{#j+IzDe?U)1dAR^vv2E>4=R}a36Vib&7QkZf|sX@Hc>BGo{hc9Dy z5Op_YW3uOzYc))@D655kNs4~1mJ!3Yz*umK2;Y_skF)0tWs=;z97ekn6m7PoXFIY} z47bJRozgVUc!Oyjd(VEfX*a6l`_VDCd+d>Y3*1M*g~Vu*L2`5+Je@-ot5WieO3s?g zl(A1rfXVl#WOsI=2Yt++8pFt$K-2D>SsFAa&HEBQR2p0&XnN? zh5c{>wgXJApUUnJCZhV8>^_nin2r=#=du-;~-1=$5B$oeWe%$SoQZ zNeS@*HR#mPnx2~8?YSX`)jxe8f8N+HeG3+S>0pQa7v6$sB<@4=+M$yZ(*mndy<`5) z6nX@X+l)KeoAu;nQ%$v!T!L_XJFp6LIshVC{kt?ioVojCnc2BgP0Ib#R8Bm&FYPL) zJQ3NoDfweyWtu;{QhBQP9&AG%$$6cV!^SY%Dk3^F`}rqDQSy+W&`)~)`k&cY0Lv_5 z|KscyPFn8VSVytZzXZ5_(mCVI4srr{cS>9x}FV@ zNy?>DO%P{hrP@hH1By{f3|eG*BZniWhFp@u&P2VXumyw-?}byqB9dB-tyxMNNDDqf zyS0?h+L&sKM1!f6UP2CcSZ1ZhpNO++QBxuE(BdX{ja+ndF@@+ky}sA#R!x&ymaEB8 zI*1}Ew|B6!2=Xx9(+l>R1oH5q!6BNUrh1wnsAD@JC_ZU2dz&DrJr3`?myf9mGVX!* zy{MGwk>OV{s=!G3Ruz-bY5e+X%>BjFY9^>Q*X?=@Q#mKCh{UZ( z&l*y>vL>B=wM{Uzg=$@mHqNNzA`(JOaJo4A(0ZmSdUgccC#jWmrGH)Dg!znfqloqt zKE5`r*wz4N%>o5AlA<3m7ORwkgSEv?Apd*guukCB&)-cTsT*^sO5;r3EXqC#Eruv4NF!ne_4l{vah7Bs_*}RRZfgS|U+FFpL zoRi$DekQy+m@oo4Ck%fuCHAipL|&Ki5Lb|I4QGK#8$*DT(ePRnKfX$J3W~!RWK+Gm ziwQpG|Kv{DTFsqOa!fwrYF8;+PEK^i=wIB-)I?-;H(^fa$kW?3mcEqcT)n7fm;-y7 zPW>xSXm6?UGLJy_e(pruXTp=lQD`)U&xd0s1xY;zm{JUPgwsG17BK57V&*K6`TIeT zd0c=}MT{M6nq!bb%z;OtO`!+;>xsyrrd@jE(^ymQ0>O*;C@BC*E_%h7S~_XLjU!C0 z^&sdSu`S0qVu{CkWNy_OR3MG_aVB^wTyp$EIG zHD!}UR-(zOM?THZh~|9a7c^NZRhsjiUhCjp;1$HKmIMBe7tl@|yAPt}?;O%^vBm^{ z4Y&{S@+_-MO`HSYD~l;#Is~PEH2qgg7T_D;#FPTHKub6i8daN8+SRN|%ZFq5vDI6c zEVY1>ktv*_7FW@yq14S%*JO%-si>&4!+6W*ywg-o=L~{y+TRt@U9d-5Gv)_lUW+om ztXY;$J6G3zrk#7G%(UXRBTr~ExNMkryv6nXa?o;d8xNSUI4i$9dlE(dY#K`Qe!^;! z4c(2O<-i2)L+q(%&8}68>dr;>Lq|;O^c1!-x!=|Dr)#?dJ~e*lkIJ@kZk}C0Q;p)k zf|Yr9%mi8EKCg=cz+x7gx`j z;J0uj*C_2oEjVa$b1~qe)Id%t@MyTm+%vV@$!i`uhnG4-E=k2_Lg~H8Y6WW(+J^N1 zgGKb^TA`X}`S6M~^D?7A1^xB9LKSLJ(Dqt2MCgtD_R0oO!p2&ff{N(h=?iD}*8Ws`C32$*)a`dM#3~pwd}AbL!I4rkH5<{39m;ro?d*r$BR*+HidT#!uH# zR;+E_nnqv(I0VlE*K;bcMB_%zgFX06%koJ$T07j9n?2jjmP(ul?KVY15&=3J$}P8Gcd8j47XkAnK?G zt5q{&eZJ-e3=OU&jiA6hhoPBY(+r;!xDUxQF@Y^JNS^V6&8YBUq19;46M5hkVm_fK zhyG=8+flNf*@>wIwkVcsK|-)LC2R}z5g!_w_vqxXr~Z_1Cp4JC&V`ns#%-`HDb>Ub zJH>?+B=0{Qild9}u*PkgnK2AxvVajRqjQ(XMO3@KIY<^!iqd`xbr*>(&0Y0+V8VcK znI}(HpbVs-a`giRiiG=CIAwK0eQa+9)-NGOw=>_-3+vI|?5h_B)9z1^_3PIZr#qT^ ze%ijomZ5%>{=+d>F}aHw(@{YyBFELQt+j7j*TU_K>|H;YCPmfvqKWM=4R7vlhDX2| z(Y|_=5ulb6CnL=mz8qQ5QWWNcqrCdX$=DKdd)~_o6Sd$j{1(1eHlVM$JN5b9R7Irs zHDh}PL2SUuQT;p@Q4M@Vy(wlG zXiky)p#uA%&p*NC{%8Othc$E){bopER^4jswkPX_k3` zLE^jzj%$KZ4J%RB_=YYtWJ#i{m^9lApNo^_iMZ%G*Nk%q#$_$V(D`P&h6^0#CK>44 z5!jW%<-#b69BHj0{`|%~2|KAHu{VQLKX)-Ux_ZJY4_ygMcjZ^BpsnBT$&X}#Ox!EghI7ic zVbW{nMayS??o9EK7FUtF-<+x^L&()BynGW6TGY$pBYr(lI3>unNl|g?P`)H(y~wi; zPOL>gi?_IY_}`MC$U3SEog0AU--NUWvKj)_c&iu5(p1Bmc#`|5L#{$OUbx865Va&# zh(h+aC(Xz7Jj>fyd?`Letw>=pNbyMfR~}r1i)`XdLq?z#70=44Mr(dMWXwH-ljn{7 zo48V)flXX!L;Y-5(eQjB9b(~9!Z6UR8x0m=7tQbvx#~DccE!1d)N2-I?zc@!(CN4) z#p(0zpq!d+h8w}jI8^qf$a*Ty-50fWrVUdd>y=j=8b>*;(21wUSv({SZVW7K>q1Xw z$qGrr{S6!JXa!He5y1oUBm`C5+4uNY` zjh^4ai{`C{Tq0+oh_QFgSU)h!!*YrWZMN%+1N@Sh&! zcRqJQ^y(&Fbp1pN4{8{X`Q+RqM~OR@XJSH^%mwt?(b@TmOLZ?mw)-!lxlab6u&0mB z`y6%IgFyuAP(j=_Icgv<~|E19jC?V!)Zbtt26B#*w{E;NV`m6KZ$icWD11zquUPWh3_q45vqB+@ zl*Vdhu{%!=Gmfm-R7MU73lwQ@q{Whv0z%DmaMIgUQnGWUCx3<&r|l0GdW-B2a*#6* z$M`KtiIc*2>1_?zp(Q9)eH_M_`gmQFObjkOB3C}K&Wu(nn&@wSKsQ)Gz) zwu*H6zNuH?d)wV9_W<^0hZncN)FbFk%eUg{RH&~dm^Mso6-fPDp|ky6EQj=DZe3bP z>oQ5r)RLmVs|6NI<`cNV<>REWIJMp6E}}|WoOGP^-0M{9Dq_EvMd*y=l`X2UIwzP? z^1?mgVuzQfgy?YGe%gzT{y%&yFuYtLoVmD*w9*!6GvnAi{xsvh9pN~|--eyeuH`Hk z5&4Y}Xhc;#4_x_A^JM%H4qpp5aJ0fQDp;^o<%~~uqVz%2H%h9$9pWhmvkw{sR( zYgwR8oQH2KC0qcvfP&c>-kxN_o}BMVxAFfk(n6CbqGB(1SP`FRB;L7vB6YX@V$E^L*R6)4U4pT(tSL zXa@`21ZIrvq2gUfN9h96DWdbh+NC_@mTd=nSGsLcQLC#3(=%sc5hmA1WUKC$dwOJk zdr78HXgk%NXI6ok72Y6cEadUISKAk-rNi2K(S{Z<(A{G!xc~M)wFZmwV(5tc3Q3I@(0GS1S!5Nav~?AjMIDXC z0?mzJK0HM7Sc~Bky%BOU)Nw3h+z4|VKEnC2Z7>C$?f_?{b#v^AC5`Y)jqM;T=oS^|9~~c23C`0d_mJRD7w~wj^Z)wkSc@*Ewcrb(#fd z>&%9C^&icUrm2v;>(cwqsx!}|0wYOR5P?-zuuh5HJ>1On#oUhSSE96=9kFU|{y*HS(zpoqQ~%86YYXOSP4x0gr_^wf`;7$?B1f{6msaWICh9GeW|bqc zI4MsV(VZ$#R5mmqe31n{HK!Dqi|D`F`cYa}6(o_6@BfzDzH=q9ZIz{sqr2p_ zNx01(!iy|$10=b~SYvsu=fqmhO?qT#^^cY;2fKDCD9fWuQJULB^$@=6E!ZaIg8UZX z)Z@V#OQ7)Cm~Ts19?>3Md_?I@`OT2)H1Te;#jNMV00J)2P^vQv0!n))xxR?mgVa%WktKa`JGX~ z@lkLWPkNM!_2H2H4$G=dF1bNn+*Sv5aTZYr@fKb+sZ z(8cC*Vx*9hyH%sZK1Bk(LL zx}A0?JwZCPD5W#H!K+0VH%e~V1$S)EIA$$@la11PFH6fKFoA_QQNO<)H=*Q1kMW&+ ztH+fn>=N9X(8stzxa*RfR}sW+=Tgk+Aork*$gWi>@`tXNw&Y&$H|f%jGYxwyNXFpW z)zy=72hG)QR?rnW%$VkW1x)!5j^$J$uUTDvlOo|2czufvsMFV^Z#8x%d@KGgYFh>> z@$_rBeY|h(eM8m+IPW}QpXg*x36XMBsvk$ntG;6IEejk-#+R&x(#<}Z<4aj%;VwP8 zBP$?N1n&02b7vwPHM)t+`xb0v^+>|L2Y({x`3MD{UZ-z)(CkN+6oXmR`9qc;oMD-y zeK}Vz%Yt+NTNb@~o3bo((Tlg>y`k&S!L6I1A&!sgiqphwFimOZXwCg>3w9=fW3AuS zS{i-TBZN*h?cqXMRv7mSW;tnaGPso$DOL;C+8NEQ)kKC}`gxp$Ei5DF~i6}JIQjxmVww6p9tkw{F|F&SU&iQ!a zi0*;{!(T?0rH$`J1##~m%UwNLPCnx5TZ^ZYM$RX1LrURWzi3k=R&?Wg`q9c@oQ|~n zAnggWgh)zDZnX|aTH%cq#APh*SzE+AS*ICjTPB)>4;BMyN>OVk3i!*>q(6#U(PH4x zBi!Mm@J^^&*3O>6wES{!7h1a)1Ac#T>w2ArCr8u|m)q*}3ZRsMy}ZOW7c1Ni$wFWw z633Gq#N-6`ml;bxKzMmtoj<_|cpVY#ZOzm<%a#h+Qk{tR1lNKe1zqXoCQg;H!mY?> zC$ra0y4}kew^Xfg2$4{Y(o%a>rTEUhic!-k*i|j-XT_a7t_&uA%;cP#x3E|%&`KY% zE5M2gfK#N66p2Anh8iw4F`<8NTnd}i+gltAw!-9c3V+y;&>xcGQ?MeGBfs)&>T3!Z7URpbK?}rjUXn@9a>;MvO}yLxDwSwWT^F-PR+Y?!x~ueMFQt$SA%nV zjZ}+L;LASMsK;MDowfbmhmEW-K^>f+I{TVfM^U*VmMWrIQ|nBF4D$YhySUoS3U`X} z4TG&^D6(zedgS#EqqbfP>p`6oYg~8np`{i3UQ8)*0`5nVJ^NxGv9)!AfhxYjO%i-S zTb3%dfsT5;#zpa^ZLBGVA4RLSR#=;QGqDfM-_~d*EcgrwScMl^K`AQD8Vi>m-glwN`gMiT#kpU9A-1*wjw8e4yVC`$2Z2;;+Qg;M& z=e36NryMB7hq4+Ba27uewEoEnV&h<|t5bdsD4G?g-$SjiKZo5QCwxF$n$#%BX{9?> z&;z37C`S<6z?-p`Ejfy}F;=62X5PVvF?>spKhSjS^z5mv6lG+w zD&r?{>Oh=Sj>CsgCBDTp(QlMBO;SznXYnUkyAqVVb6_Pgbc`(R@na|kK3a~aXtTqd z+=`Pazl8*%Pr@F!YN-C2943ly^Jc3U`FF z7Yv=mO@k_nt5d9S5IF_@q?_0`&HA^F^OAuXCHM^Xq@?lK+bI5pRNcM5poaL4dJuhf z#Zkk4v#j$C68}_JvO|4I&FBv-_TPmpX{=8)<%VJ>{^Zr@n3&nPnrxPq9- zn1{nIl@zVNvtrifNY)N!ym7%`JTxHS>?9bi@Gm%-zZ4s+os%7cz&yQvm^aPK9E{6hawEjN&58+>X`~Y%-~?E79JTSKHza8@U@bEh;mz9FWO7|_q-K5EdQ>F8`awwavWFJy}JU*){;c?1k1UO*^C7cN5t*LyqeA=bYl=PKav z*W?;5A}_~-QkF$~(;vN~U4(kox=l}(Z4~>iTR(n+6YxN~_U0cq3NlAKYu^7n(2o|D}TnIh8uuwt#p?D8Wi(Hav>b>?D-`~E47S7u-AwKAiG17PI; z7*mRtNBiPZ3PGk&V%gy(wQ3GES+S|be6<GcCH%=-g`6kd zcN~MxRjrF~?sp%@pwc)~t$oAmk$=>17tJLe@kF|4oXq~LOcn{b)<=3I3;)aKR_rt| z5wFD7zm!#A971vzr(R1zGtN^(^Fgt7XzyOQ-8`I2{UZ&2?hjBEyn9ia-n>B#Pprh$ zIO?r6!61X)Bu^%2?V8;B0tJd%W7+%~4RR!)NuMNOw zTeJIf;pbw*=-|l2Qa0SZzc;G72zRwX>$?-29lX?0og&-?(C3ox1|`Ki!mOO zU-h*p2`^&|!oi56q-&lwG#I!K{A(NTc5x8=QTrj@;F?wjHLHsoz9PJ=4Fd#0Y`p)3 z^=$11U=liRY>>8;^(rr0v+6f_n?k+?^2XQJJt`tbmH(g%EswJyCn4 zqg+K)xXfs*m%phftAe06B^YtY8Wd>5e8)JB^04kL{-kVDXdJHF)sJ)0*1eM}*|0~% zB>Yu&w??Q^a@Kg<4VKH|HI-#EI2oT+;7Vyt8}2oGaztiEJ&(j26Me*lGd zj4P+5-mG3Ivq0vp25R0Aw?g?jk>6{h;t{xQqph(&uVaI&0NjW8V~?y58}^YI*KRB{ zuwkaVJt0tph1#IuGDTpFc{zx%St(F|oX2q{xxAJl_7zK;*q(gCnZVhX5a~wC+f67f zGMd>i^JxXiMXbz|RQ9+l?d*x0K&Iw4Z0T_-?tkGMl$JK^VKB~X2~hjd#z7N;MObSa z{OWd>vGiu&uWlQ(&*KVCk$!Ar`vU&a4S0!_+u5+;B7?*ep;vnwcJ4G>e#;!#QP!17 z13TNWrW5VJ4?5>V7b3uKVpqp1zJ6EP+rYs|=DgO;mZ#&qkF@*wln-X3v9E8pgOH5 z>)l6|A<)m?#G0XUplrSm#mCDtqbM}fv21XSwoS!SJrm=0d5jHykPH$#Vrxr3!FM}H zr+d-fZ1)n{Ot)u*4W^%IxH(Ld&}uq9ir!sB-y1s_Ydfyfu&=;0UM*&nrkud(IPa04 z)?XfN!!{Z7VYS*nR;m@_Y&|(oXzKI;!l(5zW#Byx%rF>zrjy{6aFHrkXKg%}YS z1rol@_ZLNG$zjVGd1i7n+>^qirk5pbxw(p}v;UPFm;LiU*$Gzw^$0MCu=wqXvb2i@W8b@ zW#oEwRxRx?Fk!h3t}&;u9xVH>&4WVypA@6WOS3*TcS~2u((?{x>uWUFp`iwo_9a!; zO4|$rkY~AAeZAT8C2ohy4aS|Tp<{^lo?-SE31oXFk&RD*pp^e&I%x%a&3lHs*P^;h zT4z@gW!K5(Bgl49>{)NyY@qKS!ga(;NpaNwk);ZCNw%d>?LRD@qQoZKIP5(RHOFf& zC%xJXK50>oTgx$9WV3;5Q$a!uErs3VY&=?uS zz5#AqiLgD=I55s%w?7DeQc+CWYkR0idhD=ON*aPq)k#n0c?qlzv92_C#D{db`|Q2) zpKPj5I}e})FL`x~_eDz|w6(%ozdx?hjXWf+JqMc}wtb}s(~sD&h0n3yAGN{7;$XL9 zwheml{c+noJ-GBFI)e%5-6%8o3jD%w=`Qt37?&@`AO)0PQz=Rx8eHUu>MdO zJR`M;LIz-#9rTN>CeCRGVB2ohCEJ&JFfiRVN)IMowhh;VC9X=@N?LiZt*F>=&4!)P z!$Hu0JVaHMj%J{_J!&~@T$LNp(>>z$4Jq8UMu^?HjRxTZ}q?))v< z=y*k|I#pJ{K7O%dv@cg|^|80P7&GimRdx^uhd;3`(}PaAwsU&$?lTC538-aTdo%ng zkL2I_BBbMZma8~jdIkO^(@`hZn?|o~4Ga?Z5i|d`eWwS#|B=$**pqK;>-6BbcXEp7 z*rgwAaExW}@C7@*qv1%WBK8`3uw^m(QUiHMq3D7qz?M7PJ5e-VL(z(U>uhg~t&C}y zP+R-jTZ^ws*hg!)c;jkM)q@w@?NC-pB^H&mWAt*crI#H_#KE7v?a%>c6VT6IQ^c0C zXX$w8AGQ|ahcb3ZL1dyTkn(r*^iM|x^2*5y0QV8709bSIg`XYEO9V@c4gPx2M|2FZ zr|AT~LH50R@b^mgj(V_uWqXtsqc1QF8Q4kZTeLqFZNH4^Jv*fCNhj*UzE zVLi#^o^6z<-P#WQ1XI9qwxHr{SVvcl!xFsPwSQWrU;(x7dn_^q%(KdJ?J< zqbIS<&-alcl%xVxfe*;R9sTV%abN~qp(2B1g&NJnM1q&*zNC*!9QJj{5PNHb#C^ox zq4p_yuzr+%wjMkcEhWMPBZk|tzUH9cNGTi+ei>_@=%fYTjJ8MUvHi!|VfUE87H7x! zA}YtVfAl24KdXN#qT=T~;PNzCfq*Y;tbq>K1( z?c?>NCkyO}dNA=jDPYcUz$g`qgFcI;HgfRCC3Z~E9IUd;K3Na$SnjBoXu85t4{`ek zdpVuihgGttIopUN`y4GuDA--RC;M_eX~Tc*IF@0mhij!i$e`Bp-s|m{;yCH-hWy%e zNw#m&W8ZI*#%$YjxC;Er;4fS4-6`d*W0&c(ZT7l2OM8n=yjk1rKj^`VJME!PtFSd5 zv)c|AT_zJNR==O5Volo&Bjk9bus8+pgFOt}f|+F5K0B;1g5KiBe)|?ZxZr^Ov>xnx z$c~i}6Vy5^EfELb9+9?@gC~#LG1qW#)iEh^4*q;X+666m%ATnQx2D<+ZUDv&nfnz0qLl-XN+TdI-f4bDR7@7SL}VXkQjB<4yQ#% z3iX;jNe`~dupiWe18&*}IB5iDZ`t?jvESUW<5LOF_VRc8F+DczzWopfON;Lw+Pmrm zra$cWbb^d5`w>03<}dpTeB8SPQpSsqy{VfCm2JMlVeeB-vd@5HBhoBKD+f1Ng@v8~?PC+We{@1;Ds zhzTFXaO`(Q6*z?)Tv1%9QbY^>QbM_-$L@Di&g-!YJe6U3@Rg79K_@6y zM!Bj7v&$-jb%LIL3S=(%YHAqiuRskWev<-{4`KQTC^+YRs0)ae1t=*7n`j-VV0hjb zi^&4-V-BOQD=9d%j>Gc#NhJj{CW7A7%GVw)rd3v81SBpVSCN(FV0twLTBikTC=2vp zbS*{b!5VdxE;ziF*}kc(z|3$kC{+1c4<4$oKyEvvzjaD0M1ptrIM}(i?mYq>A`cY zm2dUnz%~k2Ud)ztx64%8Lp;XfGh_4kK0C!cgb<%#_mHB$m(nDFT2bc9!-s{2jy%iYkKM%pT=C?@G z`=Zl&9Ca+lTJ}?*)xdqkoc;=wmV^ESl}UPV{U9aWNsE0tM2XddqoR~u8iA%7Lt7nCrGeSkq1StiXF6K>A≥))!T}dla=v$lJ`_)hn~cJ zQ*64dbX+UPDiY7H8V$#^Rpf*(&^thIhF40QoT>aMkuy=|QexbfsI}pk_-D2pJjpq0&#s$9}0a z6&n^wrQ~!?DZiI;l(_hMF^ZGH(&DqF3VcqE{cD+ml@td{tWY)^_|e!11HTv>QJkNP zjqv2RVk6x7q1Xr~ekC@-o1ch{(B6lQaOTHhkx#x18&Q;>g^dW|H(@~{AB07ud<-_i zmtTU7D9O*jMik>WV3AKg01J}e<)f*{A>V!ljePhOK)(7K;lWS7Mik-qUV+KSUQspq z(kt@IS6&e*pLj(E`MxW#jS_hA%dQ}i&$=RmeA6|;haYr}D9x|AqFniuD>D2b9}PwE z@)cLqO_iW2Ki`TL%C}p=Mn2pMQu%6YL=S$l75U|Rtq_-dtQ92krB=vEKGTYP@{QIA z7k;2Mq8z`@3fA&vR#3`kS&=5+WJM$%WSuWF%I8?oQ27=s^2>);0=$#Jz;CI7seDKk&6cmIB27M_iZuCtD$?ZRsYsJAr$&_E zXHy{=`DQ9eg;aEqd>$1!BR&UqX#2&(EMDpL_!q8RYw?0P^uu6d_+eMe*|4Q`Attc?wKE zc#77`*G?l`XxnO~)n{uF9=a;7lkP!6fd8;mowlkWBkOjLd&QPQxJ7c{$$`M zHtsh0Ct<+-O5Ku_*8Wm8!R29?6S(}XAwAbgWPMReXwoXk$y}87o$TJo@FRUpQp$~$ zeTxi-(u;vc_M$A~X8YoJj932L!A~rAq>R5Z1X0)IPX>Nsx%XuJfp>^Hgr8XMGZ{6Z zm-Bz(Cdr@4_=%1Ch31n|&gooH^03X1pvR=dl$ISNY2O?N*?auN#+{%6Ym`tYTTyBi zAllNEHA)bhheQ^|auCbW&K;G=f^kG8vS1{}&*#eFpU7g8Q5q)YRe-%areU|4@O_5LUbp=28fAErc0dow#`UigaRJkwRFpLYQ+QY<`JCs9Pb-qY&m< z2=gw4wJC(PD}+gPk&=(-%*qQ9W_mln*T{XzxX%Vm;a8M`|qeEJxXitnnKu*g|Kynunh;Dwf@&K zCKpQFTnO7*2-{u=+gS+PT?qTB5Vo%nmI93XUn~A#p~RmHVMhvKM+;%nz)HQ51~-u{ zZ2`8dy$h$wxi2wpMImgJ#9AVwmPmyXe=LNpFNAGzU}F6Sc)UO$<73QrZ|SV(}*Bx}l^#D>mj?@fD5PqErKyZQG_)Y9MC`P&~mj5yOt7ED~>R|0izTN&I|!20!XWIUoP7Q9hzPncYqu zw*wrZr0q&)7is#z!t zE?wV=hCiUnyOiOEhqQ2)GCtrWr(w>1<^;$1Iewz@@U!JFxN40PwDqPC^uaM|D>!m1jv5}kS%=yXEQDnZdqJM z!p~y(HnDLl=(oK}wMx>WBmeKPw=wL7$_yjnh{iR6_Z=H|l>GK7wGA26VITaIJo;jv zGTU&9UhGpUm6YaKmJJIW6L*G!_k&^+_1>>kssqQAi+1i^4F6YvpIG)$CG$TAAeo_;r-LA0^zPEBlq5hO;z11wcav_-A-y)g_CnO!-UUuk+$os$n7C}(D>?6_dk3(3 zzd)rAqJZPnRGpd&}a^6fjq?E&XVEIFe|7X$*miZTc0pdk7*~8L^E5h=}uwN|G*8__S{|Y}v zzL!LAX#%p(m*xbF<^Kx+Xnq(w%D|+f3?Ln40O=?LNJkk!{*wTJGzS3EPX;)x0VsyV z{?UN+lYvP;89@5U0Me2JY^$%qEgFC_$yn(q1Kibsbd-S|)4(qJ>}RDLdxAz@CmMN~ zxQJJYMqVTud5vh~C8CiBy^+Vfkv&Euk9Z@m4vp*&8hLGKp&wf z1C6{2H1eN$7QZ{*1i%GxFNc$YajPD?cMI{EWQr zTg1ygBd_|5yy!FXn$IYgeBdJ&e2aL!XXNFckym?0_Ir%H)-&=_&&Vr1qg?3CM>aWH zj66(?JSdFp?-+TJXXG`Wk(YQzUf~(p$1(Eq&d94fBkQ@5Rolo*J0q{`jJ&Wj^19B* z>TBdxoss={Bdh9sBde;BHFXgy>LS+DMXaWaSW6eNk}hH$HL{8>Vhvry3%NzCpNn`I zw}`cK5i92+)=eWX;TG`0?Sq z0O#W{S5_K)TIJrtn^lk>~R7cFjm@rf+Js?PWuPv&^;(fTs6$YadDYY zm1(QKS{3)-ETCFFa%l4z>?h?=<{71(M~);eor9l_PyRzGRn#)HtfFUW`F{W|`5DHY zRXQQV&l-4t7DeVzn{x~noKw00%Q&aB(U|rB4`$*!2JEs*W*csn3MjEEpVOf8sC*9X zIuF6;(9`pfV-9t=fcE9kx(n!(9Qs28K^K)ehTYWdA{v%T<1eC=R1y~wk4KT(;5`dpqxX}_RT@Y;2W{OY7q_g|Gh z8dczIP>r2UF_$zdH}@%{r#kALN-uv^27zmjbfq=G@^mioK{{8e+GQmik)tm|8&c`# z%Stx@rz>b-Ds{S|^aS|v3bZJdafNj(EZwt7Yk0AU;;X zYsqEvt9qV3zlNrtr#075k@NK88gz~`#S$w1oT%po1y?UKl&X}G<5$$tcjsyCb)~-t zQyyFo%EKEBG}%`TmM=S3);04yMPy)){XFf?z;HTGt~W4b&eNAQ=Mgr8ng$?}M6mtuduPNacdi*tB7e&2aQ?1*| zm^!azV-@&naZ7$N=n9IP%nk*8B$LNTyq?E@C^<*LGi^=qqVb0JiZdPv4!onx1Xy!N z`2xV}t}+K;>0M?iXObfKu&IqliZ$@}J!LAearc$U0FUl7*7Jcf4cNs8 zsH>e!50udW-5w&%PG=q}Qve!00y8`9eFUe;PBs7FwDo@=pPhU%Q3*SJpUK$AOvuen z6SJ_FY^MiVjCJ`Fo8)#n_9sd>Liheu#&{f&4gB#n8rZFb6CHT0^reJ6+^9^vg9aWU z@fV6XLbV^G_D5*jWAHwLKVDF#10-gnGDoO{iLv=6@IFFMP1s{TLPO1rT{SE5z*<>Q z;A0wULC-#>6Bd}i$5h>lE`3ZZtf<=KBpc`-Q@l+X;r>`wX>S?0t&_^qf%i&%`C4pE zq&BxJqX0J9IlsH2i~}|kK+7`G4_V6kYgvL+&eBCi$%kpIstg9WphBjHDI^Dc4%4a} z$mTE^o}m7R>5C_vmiYwLIZWN3Dq{e|Q!tnNym4`jz}&4d1^$Ej;2~6eaV%dt-CtaF z0o{^ZxZsEBX)X>#4&#kl#tuD$(LYS(o}&tB)Z{r>rAb!LTY*)}zSPr0tuNmJZAhVB z;F3muFK`Z(Mk`)Gjnb&(OY~7m3c^mK zsMn0$e2tzAes`r~i(&OYjzhhemjcITl7_EG77(AIr4_aC%;AF2Ov zWWP5M@;*BAhBMTAtHe=wSv;__;VqiDk3POd6Zg^ZcNk^+=$Cg&td?B=z2b-EO4s+W zhSzEPdyK{FrWx~4=3Y6|T?fQr^ zuCI1g$KrRIItsrJ)L}?yZcvdxYYl1)z-T#7EC&IWi`Lj4M0 zm@7v658|bDc0Ni(DY=FD^1+WZvbvi%?55`V;s55~zEvZfh*i}-U2vFV=Vt7DJ zJ=HJWAIMrnoJ1|cAJA7m>KKaux-MP-koxt2KJ!u+0G#$x7Xw6it1AE=d8=yxX85QJ z0p9zlO92*_V&Gd^T>@--Y4tmRx@FYw0aDAT-_iARcuT!~S#>Uj%g`@n(XI#7t{mF+ zfG(6%zt$+amRJ2;9>+1aRj( zevi?RBNqC~Pi?O~vNzF>^Ud&s9z3MGe(3p!)U<*+1YlJKbs)f#3aVTU_w;A*vp-bj zA(gEN{dq{!D{=`}D{}U_0SuN0FqfwR%%y7}qB1{~&Fx0&WLMt)jL7s8JR5SE*xFwH?6Xs%VBvm#eBB-BrnBK|Ama z`<#+P)DTi%H}S}y@l}echT5sLyBZp+(yMCVu2PHYY9}r0)=tQ}yfekuK-RSQrY?>- zU!^P6)gGYrufYsrYoJ0Z?XAI8cveIG99WZ@Y6pP1H6ag`(ra?0XDu#jP%SPhS;LfC z%&bLiNJk~32JY784E}YPXLKDVNvXpH<<()z4k73(l~#u^_BaIHsZyi5T*CaiYCm9i z>Tfm&9JKDz|b50=TiAvEz&6VFe?ys80<;LiqJvpNmcw%|Ca zA&c&4LzcvchTPhAjkvYnHBvi+wZmk_shMgN8F*L>iE_VFFloVblEj3(NwK(SWhjQg4M6Bv0c-x0_P2oO zpC+{g=X45eiJGO;Ak+zWj*ldcg;4t2WhM z5Q=IAtCmh1ZpoFP+?4bM~RF(SPYAT63gpI7bc%NB5`WC3`4CI{g!ls-#nw zHt7Cz+SG<4bK9Vm>D0b0^IYAQF?(BP_IW$5(mDVSu2R*q*w$L)Ta*k9@FA^yhQxPF z%=l3bPn~Jj_=4sezoN7$1T<-QIVZon(`m)$%vkxHs~6Uu`LAvd38&K&4eQW>g|n#x z*W`5vh&`S9cjSBrIzlbe$-5J#wRD=^NsR?~&W=!XWbpacEX zFo381F#J|fqy8`qEAU`GtgV?&^+yH^J?f7-S*XbXHNZt4y~nLNS(M^cr7T^K!Gopp zv5Wl9KS~D%fchx84n%v7QuII+eH0IPK>$a|c@SiDlp+U#Zw5^ogr3cy+k>DA85BAg zy`DjdgP{r;^lUI%o$dk1T zgU=Gz@>x+jJzT9rxea@jrjNr_574|D2F=K$eo^3^M?XhFdGg3Rnj^;8Qdp7E(S%`(j~ZPEno)+Ky72;N*MOC{UiEHKU+{XXx=L2<;3t8m&fo z$jcFNUFxAaJ`MD$#NJrw-h#%)$WCTY|X74IvA)nxu;O2ambTG)5odZ zgXAtBp1Va)G|*@Y=D=I@#T1ObTXcAe8V>M!irNaG@l>XqJr!Mii!M*) zl02tj=-i?K(>O!YG<5ha%9@5*k6ZK8Ar#;GuvWbMMw_CiV;VstrZcns)47D)=}?AS z)MAF(u{!4qIfi`ECmd2=aT2K3Mf~T)rBC9Mbh%w}dWKpLhYn9?VBX@C@@GLg?i?kI zgEr%XXzj!5e3d>+E53ld&QjJFsP|c_ITJc{mgdYF6QGfAgdrxJ)hShmbQ@%#pd%E{EA`emC*C_cAb^JzcY`9Nzzd>X+t@{S8%%Raf3Hqp1JaW<*nLY&#udV$&}C|kDDwg^Wy!=*n?PJc3zfUYlQ47`LAiVS) zx@9kUEy4y%*qgvE@ncA4TM|@FE zACX%rcNt1T{^gu;^>P%rm7Xl;$go66eJiaqahMf1 z5@%SNQhkntEM464fGh5BXJ>8MlDPsC=}PkW0iNeOYW)M)+@xVYU|`>*eLtZ3Hz`j> znyB1L2+u^(E798~+P4yECdylhv?MCG3cZ~~ajVqNs>^#2ajx>f3k!0+_|6IW#p8Su z|200}S#txjR>2Jrc##uhNzjDV;P#f5tcFIvrAMpLw71kS32AR>L6X`OyZk4U)QZ@` ze;|RC{*mA^l_Rxc81H!Z!SVB$W@DOZt>z8yQT^q{J8yBH#a4JhYRgF1|HNsjyJ<35 zU~_i41m|h51e@uy1h>g1!E16}gHrPMB@6i6%)}<1#>XxjHxhV3YJ0iGr==dD7_h+B z*?b8O(|QTg=(q&?=$-`E>2H8A-t&0-t9~_PjxH!=?qMtiv{If@n;*d` zouVZ8i{?tOg4Rl4rc?N;EzhvXl!rZ7e9|J?w>^3g2QaIGv&% z68uOLBsfEhCD=r}B)CYw0EF=jorRgafDcd5S}E(eUoc@8r0$#rGpnWEqDt$)=`6LD zAd`kl@Qh|laD)CU!DPc{)x=D~t<0RNiMhPy^4uG)ZlFzYwpYr*;pcHwI9hZnx?1EATyw5LXD;YL`(-R7m zU?qh~@QwycaFb?9U?KttOOkvR;NZG|Pj?Izy|($IxFD4WvDOwr&m^a}Zy${jXP4 zXA3sPUeT#7*#CM(UAL;00g!7*QF*9FUj@6ACG%D_7=ymVHW(W#4cP_@Z>1yKFg04K z^meSptTb~wmIqe4wOt(z&~gXnFe`1@fw|90MR#)K_?_6Ow9?(39NBCaW=Sh;*u~h# zT}(21w_53wayRdWrN2x!cdIo4-tC5^zf9qKU?VS6;vP&Qm+AH%SjEd!`6u`?muc)z zU~`#n`~;?#sli_OrAQcVf$ddFVm8JYI%Td`_!J!x&fn@yB?*;Yd_k0 zj~ecW4ZKIj{qTDqQTNxXKmD>Fj#3V}q+lw}p;js2lS4~WFh%5$IR(_u#lN{Ql zfsY3`ZNNbW2M%HtlSAHzFv;f7m_wZ5!XZd6hid+;4svHp*|#{XR^Q?@`LT)(_Y}1* z4Y>Nae34agIh6Y|gRm7mEp}QRg?5dK#MgCh0e9aQ8@q3-E?|{-)NZYiaN}-q4EQ@PvHh zGbsEGo&HV53r}YtlQ;C_H>eEao4ZUMF=2f?^XTJCcQ3)=dPAju zg%kINGG&f+zheG>LzRA4Yf`y%xKM8>{&%dK*Q9g&X&GPYGKBwz`dr57NBuPrc@Mf< zixA4qWb*fgUQTXn!`=qjd)bAP> zwDX!e19<|kGwAXF4Y+nqZA7`(VeQ_~vIkJ9#u*q+Zz$^l;xA^v2Yf>z57CCkH&{B0 zZ>X~nb?hOOsOC-RGWT~)+I&+j`#+t2_oiBddpibyTdEhr=*VRUH#<=s+CBaD7+1b{BBLZfa&;kjR{(r)xO!sy&! zvfjq|0jptt4_CSab>|+g__@1WD!N*#E_zw22Rc{+^lcM>*XV8lbZZ4_bx-w17=0_7i*A+u zj((H?T^LMN?sIpvxvz%*Pd{$C&uv9NRwL_uOkdoYHK^_bt^s;f4nXvyR5x^CR{->0 zdjND?2qiyMeGx|Q4Z@v-GLK+oc2nm^Y73X$a=d;y#Xu`2mM=vcAEE1Z)1^nK)NU&A zhZ<6tzyp@B_~_|lN5?7pIMS%xO0tb6Tftn0USt zQE3hgbEP@-XO`NH-ezMfJ(XNdura9=Z^AfAr7I>(W2w~0jBVvqT5pDpNTm;E>~E&h zI12`PD&4biWOFM=?y#y8e3`lT3NV*HXlqev^;h9SXNV0{=jlfqb}i1+pElI%Jax09 zUgznY9Y=EKDO^#f0{pDt*zG*kQ88Z5({>F6<=~v|JZ;KRzbeUh8A@+KA@YanSIr5e ztS4$es&}wLNy*>|j@rQPsX8AZ?J2WsmJ0KY0yxOtZLe2D!@ixs07SEq2PpnDMLP z%yjSt)aNx7eTmuWHU3osUH6(!yu{JsYij-qm3mDVU#Wor=2ws|&*_5zcD+{D0d)9V z-Q&S)jDy$EIQ-D09{7i{gum61l$fWwgJyl6x*wq1KWYlVhkw)q04Zp}>G{+UC9-#oYoE-oc-8gcrd(IYM9v-OQ5&GGKu>mE)^9a2z znX?w)2T#UAy>d1HyY7X8j*#k=GpM+{AspAAGE3!@r6T@0wdlHcP6;&rS6btpGlVY? z$5q6uQ!x{QE0V8I&H#M)GsPz-3~Rd-pPZ)uL*QO2rz!{LR4;>B135jSBdJkekElZ$*!qaR zra^T-qCe82sE;TpojDicuXH9s^h$5ehlrnnBP`E=Qaz$d{w(hJvr1@2a|E6^-()mv zL6ps8j)&Nv$(#exAhQ_`aWAtu4`N6bb16jHtQ@u`E0W$xRkE4CLtM#*Y_j{u<5q=C3je zSEM_&%+gdjx0xCRKTN*4VfkT-%583dXclO$_c}Z;kGWNUj4`eTo^;36pd$^;!n7>E z8A6-Onn|D-oY&j}kvyNd5#nGzRQ6%&mLFa4FeNU)z8wY3HSo1B$SQt?%u#smo?6JP zlW3D}iotCYQI+4&8$0d@#7^QR%;J1hE6mzNJqw#t6DvKVTO0MT-G&YqHAj)v%)~a9 zMa321b2)afQlR)Uq6mOxEyqJkyacc7#h zjzdSF)ufb}2E0cpvp!x2>?&o}P@i0sGF=d(OPjMG5|=^Li?px|M!`iYRF>g^vS_M{ z)S?^)%0;?g4sCRi29-zZ7b#u^a|*B4X5!b{1h#=dyfS#w@>^tz=KSc83gYoI7gsXw|(Lk11%*{^S;@fTIBg(Tn5wOVFVi2SuN^54*f+U8b> zv31ZN-cZrH<}Qfmbr~+KXKsV9etmN%M7##<+tmO)?G1HlXs&}u+K7Go8ljWCp`MK~ zf4rgOO)!7Fp&d=kUii);TT`x*vdQw-@4W;2DULz!dJGfc?9BHTk|-?;dbmB-`?B@U&RjQ9*EB!*ta9t+z;P? zj%FSR7?Fbxbi@F=O_@5Gbs)NTGW$bZ?_>^xXxth7`!-$ZY>tGe(}l&!F6Kn|>UL!j z)76{+U$YQ&f!p+Vh&dXfX*Y8+#7!+abvGx$_pCdnjN4@N;8dRW;OM=2vUt;zQyFY< zDjy9q8#G~3X)3b3sCSZqg9hgq7}CGrz`>Em0qWGttbn&tOM02X>I08nW>1J7z0E!u z52&%V0ShMhN8Kd-Cst~T-^a|4H(5pcm}MY(_Ay&R9O;7;UQzzOW(dR_Ek5-%yTI4B zpV=GYbU(8@M3MexHwfy_Vc+_jo#E>+08NRHK(r__5JLjrlngYh;$7K{fu{PTW6wad z8AQ@SW)p}`gV?ug5N6VC^kWb@>|F96j5J@S~(k?dO4;O1D7;75Hvj152 z-5iU0$M-JdIOk2{%z^L)jOTbW$D0G-`!U`Og$SKs4uvo$pj*ABo)gV65YH#FX0u6V z-z5Bj%;RaW7(eu2g_((xPcqAs-|niZFe$yJ3X?hKsL32B)f6uJs41NDqbX(wUFPse zq!1oS)-aTL(Nr@LvWc3?weCBOOJ_{u(nU{0KYC3?rkh=}aNghkL`?OA4(Z#aXSYrR zgS+&_ zq;Y{h%tS|AOhL17_pz8p&caO$`}}Fb0$g>o{f-kUu5NmreBKN*$-LQSS|7EF-DtWq z9**j$n4U__HcP5+MrPxZ;Gs{m(GDIO6ppKnhu(+ds^OuLb1;v1=<^(0&O9{hcXI}W ze*`9a53P&9mB>S7A~6qp=u)H^o|w~rbQcCcx=Ujxp!l$%8Xu^I2J_I(xn|%mMg+_= z)kh;E=b1GUMeF&#Zu>-ZVFv1D%Y3txI$kSfTqBx_5^iInX#@V(g-AOeT`8KT&PN}L zp0~gpsJ{;34_5F)N0yrH=+*)=F_fM!F#AEYT8O?FO=lN!%%DHa;qbZtV3=YM%p9%_IF%AFu<=9VCg=iG zro_w5WQdVzxiXa^mvb`l{^Xnn{K;0l`jfM7zk*f%UV%A0ni{NR-^rC+?kcM|r(LTs z(MD70)f{i@YBUzACJK{qH0_MSbRA9Q*WgMYO()jirYxG8tYyt}YtfL=RC^ufcYKVp zj&rEJp2Lo<=K_}7z&UK*fB_71H*&?y-pJ+rv5~FryNRv7y~!K|l}4Lc<=AG-2GJC_ zg;nNl!I+FDudQZ(T_XoWP$T%Ew?mvJjoFI3e0-v^m2;}G&FrOBdv%8@ekkh{M>Y9& zjMr$&xSeyHy&WSxn!au4Ji6_`+#XFAb}%frlk0H9PBtUsE*8^wnU$attwka?CLVmo z;^xwSadTMN-JJBs-M9coQ~o{X(Cn%o8vHej`oXwM(x-3FL4$+)4dp6?Me*0kl>NB6 z&7tl4F`nm8?0&N$M7;xMZHRdXFw4xLX9rN&In?l=nF0T{^*o3x=~G&L5F_|0-9Bh` z_j{&{?t*_@!cx(=6Ae;R=R;aum9XEz1pG2pQA@5U2EQTg% z@#B;k2p^(nr`o5@7Wlkm*=gMBe5O~Y(F;FQ>obV;nQopzQlF`PG`jm|dKrx_{h7L+ zWpVc`a{El}&Y|;vrW@xNHa!o!KGV7LXq(Se^8)JiGi|jf~-VA7eN||4W$tKF_<%i44EYraZfhA%~BC{xWkyz|5?)^Do>h9Hc~7(4+^c z=@s(Ts15Dt3{b;wXhEQB}3nkp51$N z?uV=NLb`kv9s3AXxn}+bG3gpoIzrYp^!+2$@j7bc2tBxt;vS(6H&BQpbomAzgO1R! zo2cp|6nhgF367qQirm6o&2pM>3zv`ObmSHiUQR`BV^A)q#kUc8Ii@_t15=(2skl&qeh0k(q~<-NzVOM1S8$TP&i+56p28e?2f= zN%+6KN4;PPeyIOh)uEHN$w=W3%%T*&vW+hk&p$+)FQU4SP#25n+#}q_ak^dcX-V*7 zvj{}^W3vs!tH)-GpFX!qFqQ7UG|Q^bZIU1~@(HZHLeHL{e_Wx4PjQ*LLTjIzZFH2S z5wK!u1Z{nbi){FFGaGHr**-H=x;;a~U!i@^&}FYs%I6%f_j9}_xI!nM<9_1`<$l3F zmloGwn9TtTy~H@VLavt>c~|JKmu6#~QQdXOsO~x{`U19f9E8`aS7^*D-0WSU2d_Af zGOuy734>pA0#9D!4)h9DH96J!CTI0li#ir3zQi)yLnYQS+hq9Phc@bK8#HeG(7`?N zI_nDc^PrZFQnUwC%~A4xgDj7d@dh3FC|!MnS~*G;-?CW!7I#xe$>*KfD=UA0<8>M~ zs~>gGGNe=Qo_Gz&k8PY>4%+z+v)Dbl_zwNz9(lbt(?XleCy1z#oy~Q!}sQ$O~ z>OE@gE!F$LV&ezY=3Daqh%3%p>h%%DcuQxr2>b`;zNPX1U=Dgq&$Vdq3C~DxY2zmh zled)iGs^ImhHG*AGu~6YrH`M@#`vo@MJ%SeE?>;7a8LMxG%nGLFBnyqsO?w8x8(aH6d=sVyMlf4*%jQcP@GU#ck4D8vPwN zRC6i856qh%XxI<4I>f;rm{LB>Eo+70_oUSZU*ZIKSuG)kds%t4FOZ_WtPc1bCvRM< z3Pi8C)@Xclzs+z#6hkvJMC$P#uoK9f%f+&#?Nj#>-39Ug8 zDZH(I5aYb9J`f)53-&>t8)>dMAmSKVtz<$ zBdzwcLLd?+w#GxuPHYX$v{4mo+8z{4{h(mpgF^fC=`?V7B-T%7PhwTan}Qxmtb!2p zlAus0=w1@5IYh~%RzrwMNv*~Z*OFT0@VQRPWL6+Vxnx#th>6LdxsPrpvwnlflH95R z5t7_$0kJ>1rM~Y;lfvo@F)RgYkKZ(;r}HVS0JuFVkUqZ7NoiGraHT}7m2@?w)gGcm zDytL3yi`^PJ}Z!4*DYRiB)pBhD7NmbIY*qO%a3ZH*kR+*gE>I>h;v<%y%vwG@p zgi;s9mour0;z$9j0cB2a`9UdfdX6$Ty_Ew#n3099rMD{MPyZVktjtt0gOv^L78ziI zMY}Rs*>y-Qd=8M^AMF`IZT+o|5c~ZRE0+HCw}K$bXS6bDpFa)EXjQ}a0`81f35eGj ztu7FaG9lJw+L{TS^a&--jCy@SH8UfdClr<0>JE`C3pAh5pe*Pp^XPUKq(6@`XGJfV zN3*h8jl53Ly{uM!h=SRyoZ6S224}OH;q#v}*-+JPN*I9panpzZ#B$TC0My+#YLVTl z3b7zN`rJ42&0!6N7?%T@-{@lwWOI!A1X@Lt6zKGNwW0j$fxvaWyZ^&g$g2R97H_Ju-Bpb4=e9B<_(5LF zpV9|f>EJFB2qQVOAc*yWRxt>q96&z;(HA-Skq}6^0e#A26@eSc_x>g23wf=S2tmrZ zz1EOVK2+Oz>YdMO2XQ7J`sjHoS(7%{0anji$SO^X3Roq9 z5VbO;EQq$|h`;GL0kp87l@xA7%s@vAB2SK;ncfw&3c!sdLVeW61BUN@Z<-VHA|tsA zVb)oXRT5U9eN>t56h@ivl3x+4l@4ie2P=qh$F-n)MXe@&oJ`^q-f_ZmQb3+psc6go3n{5nF;u`^I#|q_1yR4a zHTakOd`qCd9$?c%^q~iHe|YlIni3ev8|ZrpYs&v8(VZpHi8;~ol&ci%eLx-Kc}mjM zQb=So)hTBcBcIY%9=MB^wwn8>ofnL`=j?Li8ek=(QFF#7r{D=5U%FWu25cs;GS*s% z^<}Ib5FN`}Gaz1<#T38^cJ?|%8_QV}wMqvHFK-n^wn1?{73h0;tEpEc&97utqB#|; z0KZ7&hg+t+o$xonn+6t+jp;i-0ga8Cl#uRKu<}7SQ4j`KB-O2qkscmowTAm;khKAV zDq0I5idM3^K_JbZ5Ku2kr7K&h;6|KQ5Kym9FDhe}x8)#z{Yo^x{Dqj`j zbqTGkiYadi9jIxQqM+Z<)s|4QS{A;w_|59!qqd+hZpPxny_qvAQLAcb-X&P{VCA8+ z)iAD>P>I^;j;*Vs4wjI+I_z3PjcZu*AfDH-dP5+W3N)vtl^<^8(HH{Bcl{;hy|plX zamuYAkZ4~Bq*sw1)J9k5L@Q9!I%w1-G_{Vk-Rm4xsB2B~J*Vq&N+(Lz54}Am$qXO5 zR|m&T#MVWlpQC*BtVIxu8(US$w>~af=P00wRgXSaw=&Va`k2hmQPu_)LHIU>rSBVH z%$=j4hA{pdt!rov_f}aL8#7VmZdPGx-3XUR&bt+TZ-gvXk>`e0mO>g^rNNQU1PEj? z5&{XAqiapj4LJ4I5J)%=&1h<+_g4FP7_TbPmWG(VPc=pVSVI|`VX|FAqncT5ba+FY zAW_dMPRW~FO%PzTLyatNj#+UHooiS+xXX^$x(ss*~l8cNa9 zn(M>a4(QWtcUejwjNn65 zs2AF^MzEFXml8|~#u#UND?-533J|bT6(0uXr1>4uJo_nsCo3zx=xAky+qV<0_>5*_ zv>fbawV^bfaoOEKWjmt-Z=e~S(LXoP*Ur{52+Tqq>01}8uFnS5q+jd$%=>Q#lJ*)=ahm-{+TGO1)=w|nOpsjdLDoQPSa)btb zU~4`D4ReU@_d$Q(WuOfY(PIPMo@=oQ#JFC#ydRbYhTO|M4S8KUY5waANm(jzkb$Kh|v?!H*)vK4FplA{uVYSr+|r84OMli z>Hat?6*U}y+XJHTiRkfB1CSNb%>h;eh#wQtywwL{b|So?$1o=PG7vYGM12QYQy?l& z#>KqoU{)SG7^9EoO~I8kZ>ZJ5n^dJF9YN!UVQgFoMWqm3nqn28N<%R7b7+ZCK9nNO zvf^}c2*x*2rlA&gaHcIotwB2aeHYCcXa!RC;a2YW#Ul-(k;8D;O7wjgE+|ArrlKXL z4M)F1+QTvZVwRo+16q#Y^!%n>@yM~l#!^9 z$`EJ-xXmz^bpc5}fd%Wi{59 zr5p>3Ecb5|oNQz6 zM0iY$*R9ilNMkjPS&SK;%`Zi77h9!%DMPm<=w@7onGi648U!pK@r%*JmZ9p|=q^-x zxfKdGEZ_Z$(X0PNM`WY>lWPS!2wT1q0!Gh=fW76Y_$qXe)zp5K73H;zW^P9HwOoxG z@ntk|HE!#c(cRV70Ek9WNNpMIiNfV@8NJ+M)ub6~Q02?$)f(#r#MZUec?j1!>l{SA z_0}~Xwa1rH`XMH-n=fnA;0>5|m(jTm);=Aw;)M_OpS7($z20d3uA*+T);^@Hl!Q%+=d58wgxAtZ^Hm$ zlkjE6cB|GecGcQ}iwxUUlGg9A+Wlf&@10z57}uYw@3N9Z6&7Zs0lV-N7)4{wSWT(0 z8>2Rgnz?b;$sM~G-Em{)jiP_gU}EUB8-_*EfM}~4dF{a@5Jlgjahtbw5BesOIBQj* zx_j{i9fgzHtY+l553eJlXxBL_m>%roZ0hYtwMJ2f1J-GXhX<@n5IYW9+kB!_B^QhJ z!A3(n3(=xOXp<<4J!D;kD0s>0MWv5eE4-rIw~koxyu703{blu_n#b@U5Jl&XS+5`# zU$MGV))UqNXx%x1dvvh3C#^jY>rYubAv&GLkdK;o2BUyWJO%T?~vihb#5$#s-$6?MF4b)fz?FsHAgh#P1@zL}l^Vcx?mw&kWZ z8Sa_)tpT*=79Mt1QL@{(RbNF19$@0Vej8KjDysMp_h*0J!Ts|pI`J2!ohY zTj;fdd>_O96*T%WvRFawUn1AQCstc;wX2?SFn}_7@Gy4p2`(oqD8*Ae&~iYTT)xz) z)86#7>ZvslA@^TlhzCEjhQWRP8M@F4vR>oXXY+HsnOZ?XCawsXUf>pmW1kH4r7GQU z3l;SOGY#8NgYv$_4K-WP*J}Ztdx>$qmI}YJYX6esd}IYZ9=K19zFD=Y{%5P2&wW+6Pc7{#J@pyadQNg6#KKXA{)%At5!a3r3m)ZDzDEO^gR%To^kFFgv) zJ?1ITFFxk_sI3`|McsYrNQT3W=(U%p5p?i|Arj(ld{0fv5YJNsZoKR02!Z4#{Ss$M zd`~5<{0FMNov)_~?MvXv2KVg*h_jc15_%^3>{a$ zsC*(%5gorgMJ4hC{F2DKM4k|zwaS$4^L?ptwfjM|$j_4>DV_H7^w2#hOs6{r0{y-i z^-JPu2=}2Ro(PDhNj=jb?j-fNAO@uHl%;veJVC!Cnm)OwfR2Ovwd9_%aBolU>7pa% zqbeypg>~%S_%rKn3Qrc^4bv!ropC2e8tGeM0hQV;w?`TH{2iYYoLPa7su1yfSU;Ns zSUSys-)@b1X zuAf$p&nP|>!LCT7jgX$RIYK)DP3JP`AYk7@1|0bQSRT76#n}#NW%H z2LqQf^vy9QhNw)4X3$%}_sb0W3b4yIK!F=74YhO@6*kxbT-YIwkN1*9@Gu4VTk@NC zy_CLdq$0f3OD(Sj8RGy>VXWgbENnlC;PC>~j*|cr1+=snOcoHU!BheFJghNYKnd4Z zCSgK$erGUCK${;7!Ud?!DUt8*0-ky?h!jvYK7)Az)Ot8XnJ*yRhrvP~e_Z-)zDyR0 zidqtfI7MV-Ja2e_OhEr&RXycJ+4@`~*DGAgO>I$+U{?iBBb|UaE=~M}Y|BF-AWJ0%xdk-PAg_QPI*kGXmQ?2` zg)7Qb3tntWicl)0zy*3&1)=)eIE{6xC6x2*4h=N~4+p*W~(4 zY6^*|$DodYFxv5F80AJmyIt##( zMrC}6fM^YR22BehrnC`c7x9sU=M*m1lU7hi48FR z;^-c~TvY5Kuu_0M1fm4kLtvc%dkAb4U=M*U0_-8MU4R|}E@PJvdkE|iU=M-)0_-7h zNPs;Ajta1czzG3%k3TKI?(kyZ$<$3GQd_xKkA>>mGGfZgLg0_-0DPJrFxKMJrr{AUJy|7G|1Z=z!N z`0oPj9`A)Ega5hq$9DkF_z4}KT1~2ks;_``8YC8QTLV`zA$FXU0_-?x1lV!XE3ijh zh{_D&Y%)54t;p>7jDABnIIDmXLm31JnB~$WhmZ>z_|@Jxfe0;*tlZWK1Z z0JU8=KtTa7G$<@UZPg8pqHWat&qW!oNpVrxqd`dlYQ-z!lopVFB7?F5?rKn8z??~} z5hNhnGzOIfxZ+J`Qbouv4So|46~-FX1x%mGpr(MJSqy3mC=|}1t^l=`7Pi+HV7FW& zmm<6z7CVP4m8K5hwruYBjG#ykZYd!DJO-@=oYtVN0JW_+Qfx0^)FKAK0=6yI_g|fa zoLIstT?7OyXAmMlt=L7X-37E+$)KlzU8@-M67a`r27LsKjAGEQjk^E&x%2~-%Acxh zk6Ftqp$_2c80z?p9~(G$xPWv!7>pFq&COu6fc3i>aE(hAE)-?FQc;V7jkNn%Ws(Cp z(<#dLR0YSyr`gb-t^hXi!+RC%eGV|w0jxjU@fikAwL$P40TXb-4M2o|S1xR!4l-AW zo#cE4etuBYXz!!9ydA)rqTgH;N+IFHVkm_&)nmdgy* z3dr*pgY^QAUSY6NfcI4fn+0sU#$c-ewR{VGq@n2y~Q9#fLbq&l3W%L`T+pfzbit%DH3U16=0YCh61}(bzJ+%8n+$5)p6JH z@rLwB;J$ziv8?}4z#kesc7V&M_b;nFb%^m&gXaSB{a}rk0{X>?tL%I&Ae$EhOTgK< z4BiMx;ltpafRP%wJ_vcD$v*<@!hTUeFX_g4d&oD|0bKg;j!!M=R>59aYpV4dY7k$6 zN2>akXy7dxnO&MB5@N?m@@t&r4&Y2vIzFS5A7`3cK-QED(h7K@L3#myreY0$1zc=b zaB3!*L`7}mkD_D|;7ZFNn}7uA7-SbPLxY?Gl4M|w+yc}_|41~CfZUnl^81H;itu** zEwZypK?iVQ3p+j|Lk{3hUJDF)RAB(A`qrhp*|VEok|RX}!WLpBW*xT-qP zbDZ%A(AWW7KTRE<6Wl_9!%Dv}&Mbg_YX`7?TgQhZ4O|@FUdYL641xuORcFvifLcM1 zB)bT>Sd&4B0CnI2G`b78TZchU0n_R+=+#zTf7#HBjhXZjmE}zs^b-)+l)(T28#NfD z057bMY|a`(9KeMg=J#kw*WFCa#Pi2_D+ zV~xoIqPjDfDxg&l2GbRAvE}g$CSjsdyB~vD0=8=qE+BJ%*7#k3UHZ8S@G%YZu>l}T zH{StV9Sa?w@y`Gi>@pS!i5|)kmIw$R#$cI%Ny8cZDL@?sfjm|Us5OegY5}368LSbI zb}WN+8mRH-H;%~$QQ0+~!6pGyCotF|AgM0fHUV~FcPg+{^?bGcAuQYN051Jr$7dXz z#KHSrLWYGgIVj+(28RW#pUE0W1=OC!;JAR-8k`i+Vm51>7I0XDXa~3qV-BmFbBJ;8 zcLo;(ghw!l5m0_EgUbTOEo5*-z$*=|3Q#9tpgOKAa6;A3ibDw%aNSbmlOpXGvC3Ts zaE;wpKHf9%5cUj2ghvYeJUKme0P8<@e8!+9oZL$R%~msbE#NAE8h@6MDN(HQMnJAL z4BiQNvX;RI0V&rr_(#Ao4L%F#yOA}%3fQrYL97BUE=rc|OumcCR1M;^a|#=02W!L? z;JuqcdtB8$b`=&Hx0O;*QT4cb9`p3K;u;|*)H6fj+b);7TP*RJGtiX2cAL62`7 zC)fd8>zy2*aq1lhcM;G5N0p)mLj)R8X$Qv}$Bovy$(Rlzv*MQO|ga53T1&zA7L$vAwDfb3})Lftp)^Q!tAM4o8EhBOu`Yw10^-(V z;1-afK7&01S~p;@Pe9d%3|t3BQh~0p8shToW*|JA)en zUiMVLW!w@H(u-B@2q@Qw!94+g^<(frz@GycJQ7fR5Q8TI8V_OcOhD_A3|?rUu0Qo% zOkRn~$MFnI0qWcyRI5k8jj0UY3Q&8zK;!-YzzhZ-1*r3Tpz%q-t62cJ{(KRVESy!o z35eC;Ujb?(7$ovTK+A;;yxKd%tj{6_@dSh|VUR$;{iO`N8Swl6kmXE#MMZ5GgKYc+ z*n>Bz0=%V*+IJfoDICC~IhEtX)-fEMMnI+Y4AKcu+s7aQR|X;3aj+0bMgi)iA%M&R z)D|)TSq0cuWLIFZnq=PXV2xZ3V6y@ppA(!<0lkro3wwei$$}2y2!$P=QGGWD7Zq?u zgW>|b_p(Mw0W&lxEx_wMYm^l*_9}z&3b@#efa^?xL?z}1gGvI@-(pZjK$bfUeiNYf ztU*bt3-Ec!pr!!qnxi!8C=jh`tKnmP{i*K|E`3ACXRLV25gH4)`;0+T0U2H}Xf7cB zcLps5#QnjbwE(rh4XkLZff|3=;_z$b_M$S$i$Sn}*6|p063{F@gDwKnBxDdGz^y@d z0T;Ykqo;tRz5p11y@Y&H1a}1jM)@)5Ctzq|1_K0SNWx%{fR{-bgbLW4jKNR=>yk4V z&Va|C+HnW@jue%zsThnFppJ}!hD(4t9|~ZcfCzsE69lBs#9)$u{n;2y5l|#MPGd$Q z(}XO|$tp7h_~&LYQ-CLs!E6Cj^D&qspk)CD5dxkUWH47iLY&-FJ`TA9I80keK%u$%#nE9c4J;cwMCJ#iV@DK)%1k@VJ;E8}l!x%ghux>nq7Xs9_N+{hc0hmk`uoQU6*CN*( zR(b0Xo?YKNKI3i#2Y(b$1Iww9!Y2XK7clrD0OyY>jaUWX#Mi|5S{LAl12_vW>|UdS zQT}7NDk40dP2w0)SO*P|K)?*Vtpe~C;JcZDuYf^#W`KsD0`pX+>eK~*qzXJ$!2Vw_ zg#*}%R2|f_)iV{Ywsb;-v?^Qy4o~m+jFR{R9KrqqZ2im%ASxe-rZloSfD_2>_>7V` za0|gX1>8EOfXm1&r0z*p$s?fs83y?TBskBYfPjg3?Sxbd3Ba*z3KUf!Mwz7!{s1W9 z05+?X<1<{BZgO}TAz^r{fC%LTEWX2_f`GmE7*rH+={|$X0%GvxJkqEtpe+7E0jMUx zHmjyfkkSqy<{sOioV=z#_&Xf!W3uxy`%Vda<%;^~n6JWQ? zNCgh6hKkC_8e<&54K>#B8Rs%{@OS}LvND(`U~M)AlNE4rl6SK+nJOxF9y1hJs4}&3 zv&Jk3aHipo&k2rD00RxTje)E`&jGAI-|-pa@^SD&9{(JnP<|$hL`9vAhXz<8AbT+e z%LJS+&EQV~UCJ?7DZr~5gVh3Tv(_rGT-oUwTZ>gTID`$|<4f$;Y<%oxH_{B;fEF2q9UkMe*lg-fb~x} zKD@By;8OzBIeySTqrf7SKvx_L1aQs)oWKS6@ZX9Ge;>l(F;2K~w>yK&0@QY7Na2cr zfBQ1HD&Xt@2G<4DAHv|K0NaW?3S3dy<{$22mHQ51yB<0|WBnu!ek?#87zit#3V1h- z!E*uCW-@pwU{N@O*8=>1XJ9eF{G;|aWAa8+md|DIPQZR*@Ik=hg$(`?pw1qIWuFB^ zFJtgkz_jHIVg=OtGXdXQe;4Atf>q)KI~A00C4;yEUaV#iU%>4(3=#@Z8>zt%9|3jN zGe{(0)J6u06>xDo9N)|&si^$1g+X!w1Gh3rDPX`h2B`(8(+`nvS^*7rGDt6=*DePB z0;aeV@cnNlAuING4jO+bDeY6Xx(fupMNa6F;{xgEe=D39Yak{#yYd;-*= ziO?^gfqJ$ad5lRRQR#G?K@kB(PBJJaKyCVlL`n#-tthPkF3)j{L(!~J&H-#z1;^(E zS8^$W%Oaj|&vJyS4&VsY9G@}dA_vzHQ0s37wFErYppJk6S6QQ;0Ph-C@v7Ki6LJsh9W#>2sefQ8=~^cHZyhu=2$70@hcLLPtpg{(`(Dgy-! zPsd=e0NaY83jF*IdxQhntWl27sE~;h7$aan0E4kMK>0`HVlrM-W(6{sr~qz<^l@yc zoGA|AJf=B5Bc=fB&k%5-41<{pyi*B0#EET4Alw0*!0*cE`Z;{ABDgh*WBi6g-4J2E z131D$$7l4d$-#>RsLlDHzeEAIN&v?nDzIFE?F#s}V~v##;1pK}yPWWaO*wpx3db!m z{#?@$);oYBY;=51@D>Gd=ZYhT+j9cj9l-iK9iMSGn1kH{UUXByW$Y1R^kkKN0@e>= za6rK8(F_g=P)B~Em`4=YsI17K|FS;r0Jh?!<1^ZZv;JuTt{d~1L<_08h`~7lg_kq9 zAV8fGicDh!%v;UivVbpZ7+evMV>^SZ0@QwkNaH%sKe#={EEvu$c1x-J{O|i+2XImD zJ3eF8VNT(pfcDW09t(&Q!{DiaTz@louE0K(=iVDGCa)aAd6PE4gERsb7GRK0fLB2V83cs53NgtjWK3ZOnFXlr8Ies^0n36I1PCZui9rqlcKzg5 z08fedP`MgwJGbeG1gQQQHXLP^JG9KhkPNT9R= zu}Xh*69(lR!1@&&pA%fEqYDu(s|a^>gsMtK0gh13@fnSqae6fb%xcG=mI6;y0&zMs zsOtbupuXcXCU)WAh5}w13b>5MLe30im8J^({1T;w131Z6j?b7fjP=_na7vj_UQfF1 z9l-j*j?W41tbj8~^Zi$dLpVZr$7fU;#~Jh#5O+F*UJCp?Y4mjfC(z&V89(N*{y+g+ z7cv+uz~x@aWQZboBZDW$bqt0(fRh~Q_zeH;96UxqoAnIF3Gmy%V4{Gzn;1+H5Wbng zbO4vm6x(5{{xeflQg3AtE+D1OH$s4I=R5(nWeWt@mMs!sTeeid+)cX0{uE-Hwn~6) z*%|@1W$P7Kqbe*%bsuH>CI#?*3g@%#W81enfNOBO<1@V69K4GG&wm5=Fxew2?_oy}U<#;tn!y_Z zsdT3A1=v>nqX1sb#WARZuS(+!&p%88Ix~q?DjSqa+q&GWKO_-5-?-RBQrkXAsIdkiuN$f)zk zB*4xzs{)6V6^q()S+a|UooKF3YW`)*KlWtH^C*=_6{pxI&L+PD*z$so&zSv?gNq1g z^^`$z0V`iHC?#OZD+Xl+LtK7w66f$vH=2Y%LWUuEgLGpwrqp|+p^INc>b|X8!IYoTBI>S zfNj}i1GtB{9gEJhTk=~DkX9?($l))SULCF}nB87BM!Gr`n%E(}$fQcCx zEEaG}Yb+D6QJb|wfNke$1y(7;yCvp+zSh>j{hw{x28m;vwpoB}*){>TWjh7fmhD!6 zFAA?Jv8nq66xUaYgAU*dJIv#cBQ(s)5so?GMwQ$QP6{Xx$l#2CGa8%|P^JiLToizv zSXDQ@ETCaY27e21xymxRE@Y?%w*(}uz#4Z2V8d3G>H`6GVIK>4q)Y!yz}%`F<)wg` z8kjC2YpSuz8v*up^}PVQ3jYycSJ4*%b``}6u&d~Y0K1CfcD5VJW!QC;z#)cRM?MPh z?AfC$TjnPkb`>QRjR)OWBZX+#Rg_wQT_foP*frwv7h+dQW&w7MWK&?j>bskDbLMaW z_n};l&k4?>08f0edg9CP0M;+)_>5OIefaucL`dE`T#n)b?2BM20oZR=wS8Fu_T*YY zz|uynQAvPL69!cUWY=a@SHQ)Fe$b?rsMwa*6=3JvKml%)T?VJxSisHR44OHB3){l+ zVVhbGZY@Ax6J16-A$>ZqO0WPQon&VLc25WqU^jdZ0k&Da1jNy4^c8Sfg8>?-_n)@q zgGI$QWT*h!kP!mxR7Wd-f289WHJ7mMV;#VyAMf~#xPv)(l7Rhv8BBEvara{~LqNg) z3}y-VI*7p>0q-=36mV`BYmk8Hp$rxZNI8VTVh6a4qeGc2bBJ+VC$d67iP5aFTEP6_ z4Au%rI)cFl0TVUYEC5^Xs(!moKmnboYp0Oq<5^|5fcq{6`vf!}%iy4Zml_-quu!LQ zT)>Da9OaaN0TUQR+W^-euSrbKi^@P9Cq}^YS*-Dw0H0|Lt_m1Coxu$OJ~J5H7O*>v z!94*TXDZ+_9tydyvw0#Q@f?oxT)^bn3|&d`ir^@pG*JB? zo71Yc`6?=B7clr&Kxv&w9PAzYpY9${fZf3p3a~r4uK>G$Cl|fZe}yGT{3!yMqUcirvBU39x%!K>>CLFCxJ1dBp|T z9lVqPyMLDzpn9)*{;MFw?yZ#s*nP9A0K0Ei7hw0zS_16$tt-Ipn+*imeY3FwE}p&Y z&e=>n;iw%eY1-IyKi!?w-yOhqM!FoYk!UN2lK^bRtRgHFkbD<|#R7)887vdf zYCnS&0<11e`g=8aoAyKh0pbfOxvF z`vj;RoRR230d{q`jtH?U;J5(00!|6AD<9>*cA{Xz^;J51lSdD)draV?FzUd zDs~0j7GPJvJppzFJQQG8z!L#>1w0pESHLR;mZ|=*{)MU$mti@CJH#8uXLPv1HTGUW z>GKT!5fJYZgD(QoUS|+1poLE3hk%o}StD*&#|qa$O%e#1^N3Y^1YpBy)pULWrfH3& z0kFMOLUbxDd$srg8w+X&T38T*$(~=>;4NV31KjY;Fcw1YjF^qvU8Pz?fNgm3{{d}kDFyI}cpM{1QI1kpfwcy&SH)L>;8+#e5)C_#Jp$}R_Y1HSJp|y=|31YZ zz}XyCD(dej?xe>ZpYwO!DFODsbDu8y^KY5$ubv^7V57 z7dDCGGwku2T!5WvDgiv@;Tu%}g#a2)<`ps0Bgr zsRcL?YJmrYTIm3>P>Um4EY|{`<-1g%`q~~seG?C%zKw=ZpBY2k(?Wf&3ZMEW6+(Rj z3ZXvJgis$-La0wDA=Gz|5I40@A1T78z7m8up@sSi4nFnKnF~^V3I?IRiGolcK0&DO znIP0hNf1x8P~Qi^cS;Ml7V486K=m07g!&c)LVY#?p}vNIP#*L1ni zn2FRMf$*yTdLYz4BM^tQQ18j$`=W(K9v7KMl9r^Ayy{xoFjjFgEn;Qve*C(i81JjOZdIM`F# z7hgNFcMUBY?8)c5>Su32%HoCk_w62uSZjagStHu-_fctW{F!E%PmCpFGxL;Be% z;V`(PDC00s35Z6+JOzF6wJ2xF-hc?}FsI@Eg&y%uiK^UhQ`G^`lo7X%7Em>Oz`;~x zxTlowN!z=C`VIFK@I4~lfh}oyv))T+b<4lkJmnJ*G^vr)KRT_!Q#<`1jfiB?9Pg;m!y`Q<5d|XW z|2iZ-4YmzaoEnYtq`=8K;iJ&gM~(9M`Tk{xGb^ZrGDN&N$7x^uIWR*+^0Q2@{D=Oo zRq@#^=fmk_NK>rz|N6p({{+$O(Vo=aYA}X}WsYcYA&Y7!d|}J6_s(;9GN&n8_J5Hd z{Tvce?=o9(? za@XN2i=9;%b5H%eQa=aPPY3lAt$uc@pBd^WP9OZtQZ7sVj8Z>0)Q_Ql zR;!;+>gS01>8^gptDnW{r>pu|(Occb?^ezj^^;H~xJ|iS>gT-r*`R)WRX``@nyP-D zsGqOu=U??RN&PHTKdscy5cRWJ{p?dek?JR&O5nM2%~3zY)z4M@6gEyNXLI$lO#QS~ zKmFCuZT0g({gC<@q<;FicaQV5_DZNONnyF^?f!B8^oGVJ#Zl6gCwTHDR2QeP%v2@F z${Y{ZC<>o|6N%2z;R&9i3DqSEVdL6bnSJynDl99FiyoJXl6SQdL;Vm{oao7sP+hLV z0;tLmD7$%ql zQ#?LCs)XPx==>BxJ1N_^~*KYZLqPT0)E)Fvw`Eff>W3@E7H_) zrEBH5vb1+x%W<%h@q9|)iZ|}S6>lG<3{iK~#sr*Vqz^#qgX4>|>u;P}q+MB8IxYhz z6=~+d5k=aS1!og!SEA#NYcUQZ(k%U7%H{62>utA;UN_uVFTEY@YOC(sjW2KT!>$S6 z99QkQIB$m8s`!p;HxA;_?4Xb1y6@|_n)*4e4LEDZFx{IPzYDGqr0(#IlGt@#?-c(W zo5^ce%TbQ&6gGO->@~J;*RDa>mEG9mt~2Xhvzm?7=Gv7SJC|$M8F9_U=HAY&EWTEkA)h#*IJSX59D9o25}t zAI9RNAndA)&BBd;+$~$aZn*Ua zV)JR^r90Dt_XCn<+oi%Peg|RKRBX-6u27@*Cok2%0V5kCbje`ndMy z$5XH$u-*na#@}&;WmYb?`{w&A1+uDVA0tm;5OxhM=C~#lS1$KD?+-`Pq&cj#%GUy6 zmtQmGa*xgY!MjFQ^`K-dY6HTqSs{+=a5v?0ukP~Udq6(*9A&f{3Bs;f*s@f+5|6Q6 zp+>~OxT-W;TV~2jmAhy1asQa~Aw{uF>eCTlrJC zd+q)(Jy%}!Xl6XZ4wibq%>3&dmp?X>)GPqINE&b4S?+$gR4Pb4!x@*(fUqmxS;uuA zTQ+Kz_M+n|e93l&8gCE6R=PARd1`8usYp6^%QPPkr*f%BL8CFYJJee#UJ+L#Y_T!E0#nn@-(FU7c>20!lVV5iI z3c_Yq+Ld&ZlQ)0qf)ZneEgQuu&R&Md_WX9$}Lx?V5 zyGCIjDD9ec&v9kP&QHuxBm3j2epIyjZ@JwyM*TCVY>0ZqHa=q`CwmVl?BJwbE^OVT zT^%~aw_Otq$MsZPwR<`2Yd^;|Yk=(vHNIohsKK;sZ-opL)2Lo5caL5Fv`?N!J<%H- zaY@m8qpZZEqw&yv^W;C})~8XA`9_Y-AnclnRxswc^A7xUDV^6d_qS=EnwJYwPyNQn zV+dha2p;OSYv>url@$-gnk~UIH@iZOHAmvZnzw^rr=e`;8>M#dI{s-y3#p(WTxz7?<9HuwceFbKPXu;qewJ;PoL+BF)RENEAz zYPKuXC{}=uJpCL%%R0C6c0auO`Ft|J{@QgFYy7p#jm7=iRTiuIwd)C% z^J~{itmD_NE`MVAv~~upa9r6|I<9z8j_V&R(${(+>%@g+`I^ncdVKA=yV-H=!~%TH z!m#pQyJld?y>^|%T6=aCHhN-}y@r#pyk5JOyB*g-tf$wkCKl2gSKMn>emRu0xO$^y z6vIMzy@Y=5F~>FXxZ|pWCGR>kBi6bbN8Jn0d>L5Wg}#iZ39K~N%eKp6iMe*AyymzL zW0kpPO>a4_16WpW$H01W?HY!4zh8ZO z6u+d**@2bbdX4xspMT6@J`_!s$*{Y>i@AZu5SWeAv_(F~5g%hfaMb;*4uRB86H4%%9wd=$n$CYr57rNy1FFj%{4V@0rb?Zi@G?b?F3V%n7oFTS)Z2ycqCYXx557#rOyH~kxL zc-9jt-Jy7SqSyKQUvgZ3V|}i1!hJIEduX?yeM;*p-UjHUx>c~yR=YA`g{^j-#nM{s z`VDJpwd?H{<#G?3g~NXvuT*K&N#boUa(#tmuX?#_iVTjcSQf{12@70xXf#%~YS*9n z9M>7FWi?j1-T8j($l_(Wd)NN4KhP_}op->G9r^s!yHR6JJ7`>XKmX&$!g6VzC=$OH z2)iC(X{GVRO;>+pOr3Nd!Uh>DhI^}~%uWyfu9w~Y@a2zMMf}_ErUr&-NvWx(X{M=$=H{se#^y>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c TM#hGgK(&UcNt?GaCM*L0cGME( diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 1c66920dca3ffbe2459b78257c2518fab09b8cfa..18756376e851973ac1d96e1fb2b5e83268271528 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4YMmNs`Vax#l<-rv? delta 63 zcmWN{u@Qhk2n4{PBIf`HDCbd(4D9I}uo$v$MmOGG)QjFpP|*~BbTcbXkHQtk9>6|u Q1~U-HFc!prQ8}CL4~^jy3jhEB diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 813d71348..035a453c2 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:00.463356Z", - "iopub.status.busy": "2024-08-12T10:31:00.462851Z", - "iopub.status.idle": "2024-08-12T10:31:02.047524Z", - "shell.execute_reply": "2024-08-12T10:31:02.046835Z" + "iopub.execute_input": "2024-08-12T18:53:41.701646Z", + "iopub.status.busy": "2024-08-12T18:53:41.701187Z", + "iopub.status.idle": "2024-08-12T18:53:43.282413Z", + "shell.execute_reply": "2024-08-12T18:53:43.281715Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.050367Z", - "iopub.status.busy": "2024-08-12T10:31:02.049990Z", - "iopub.status.idle": "2024-08-12T10:31:02.069900Z", - "shell.execute_reply": "2024-08-12T10:31:02.069290Z" + "iopub.execute_input": "2024-08-12T18:53:43.285416Z", + "iopub.status.busy": "2024-08-12T18:53:43.285068Z", + "iopub.status.idle": "2024-08-12T18:53:43.306423Z", + "shell.execute_reply": "2024-08-12T18:53:43.305786Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.072544Z", - "iopub.status.busy": "2024-08-12T10:31:02.072099Z", - "iopub.status.idle": "2024-08-12T10:31:02.302446Z", - "shell.execute_reply": "2024-08-12T10:31:02.301780Z" + "iopub.execute_input": "2024-08-12T18:53:43.309404Z", + "iopub.status.busy": "2024-08-12T18:53:43.308901Z", + "iopub.status.idle": "2024-08-12T18:53:43.590676Z", + "shell.execute_reply": "2024-08-12T18:53:43.590074Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.334639Z", - "iopub.status.busy": "2024-08-12T10:31:02.334107Z", - "iopub.status.idle": "2024-08-12T10:31:02.338211Z", - "shell.execute_reply": "2024-08-12T10:31:02.337651Z" + "iopub.execute_input": "2024-08-12T18:53:43.622837Z", + "iopub.status.busy": "2024-08-12T18:53:43.622392Z", + "iopub.status.idle": "2024-08-12T18:53:43.626532Z", + "shell.execute_reply": "2024-08-12T18:53:43.626050Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.340501Z", - "iopub.status.busy": "2024-08-12T10:31:02.340140Z", - "iopub.status.idle": "2024-08-12T10:31:02.348891Z", - "shell.execute_reply": "2024-08-12T10:31:02.348288Z" + "iopub.execute_input": "2024-08-12T18:53:43.628660Z", + "iopub.status.busy": "2024-08-12T18:53:43.628290Z", + "iopub.status.idle": "2024-08-12T18:53:43.636581Z", + "shell.execute_reply": "2024-08-12T18:53:43.636072Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.351479Z", - "iopub.status.busy": "2024-08-12T10:31:02.351121Z", - "iopub.status.idle": "2024-08-12T10:31:02.353720Z", - "shell.execute_reply": "2024-08-12T10:31:02.353249Z" + "iopub.execute_input": "2024-08-12T18:53:43.638906Z", + "iopub.status.busy": "2024-08-12T18:53:43.638534Z", + "iopub.status.idle": "2024-08-12T18:53:43.641123Z", + "shell.execute_reply": "2024-08-12T18:53:43.640620Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.355946Z", - "iopub.status.busy": "2024-08-12T10:31:02.355599Z", - "iopub.status.idle": "2024-08-12T10:31:02.883586Z", - "shell.execute_reply": "2024-08-12T10:31:02.883087Z" + "iopub.execute_input": "2024-08-12T18:53:43.643076Z", + "iopub.status.busy": "2024-08-12T18:53:43.642762Z", + "iopub.status.idle": "2024-08-12T18:53:44.178834Z", + "shell.execute_reply": "2024-08-12T18:53:44.178253Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.886048Z", - "iopub.status.busy": "2024-08-12T10:31:02.885693Z", - "iopub.status.idle": "2024-08-12T10:31:05.027547Z", - "shell.execute_reply": "2024-08-12T10:31:05.026915Z" + "iopub.execute_input": "2024-08-12T18:53:44.181632Z", + "iopub.status.busy": "2024-08-12T18:53:44.181238Z", + "iopub.status.idle": "2024-08-12T18:53:46.388740Z", + "shell.execute_reply": "2024-08-12T18:53:46.388108Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.030654Z", - "iopub.status.busy": "2024-08-12T10:31:05.029701Z", - "iopub.status.idle": "2024-08-12T10:31:05.040437Z", - "shell.execute_reply": "2024-08-12T10:31:05.039970Z" + "iopub.execute_input": "2024-08-12T18:53:46.391610Z", + "iopub.status.busy": "2024-08-12T18:53:46.390811Z", + "iopub.status.idle": "2024-08-12T18:53:46.401301Z", + "shell.execute_reply": "2024-08-12T18:53:46.400756Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.042737Z", - "iopub.status.busy": "2024-08-12T10:31:05.042378Z", - "iopub.status.idle": "2024-08-12T10:31:05.046796Z", - "shell.execute_reply": "2024-08-12T10:31:05.046322Z" + "iopub.execute_input": "2024-08-12T18:53:46.403503Z", + "iopub.status.busy": "2024-08-12T18:53:46.403168Z", + "iopub.status.idle": "2024-08-12T18:53:46.407486Z", + "shell.execute_reply": "2024-08-12T18:53:46.406942Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.048880Z", - "iopub.status.busy": "2024-08-12T10:31:05.048557Z", - "iopub.status.idle": "2024-08-12T10:31:05.056263Z", - "shell.execute_reply": "2024-08-12T10:31:05.055716Z" + "iopub.execute_input": "2024-08-12T18:53:46.409604Z", + "iopub.status.busy": "2024-08-12T18:53:46.409263Z", + "iopub.status.idle": "2024-08-12T18:53:46.416637Z", + "shell.execute_reply": "2024-08-12T18:53:46.416174Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.058466Z", - "iopub.status.busy": "2024-08-12T10:31:05.058117Z", - "iopub.status.idle": "2024-08-12T10:31:05.172389Z", - "shell.execute_reply": "2024-08-12T10:31:05.171830Z" + "iopub.execute_input": "2024-08-12T18:53:46.418720Z", + "iopub.status.busy": "2024-08-12T18:53:46.418378Z", + "iopub.status.idle": "2024-08-12T18:53:46.535003Z", + "shell.execute_reply": "2024-08-12T18:53:46.534438Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.174639Z", - "iopub.status.busy": "2024-08-12T10:31:05.174253Z", - "iopub.status.idle": "2024-08-12T10:31:05.177235Z", - "shell.execute_reply": "2024-08-12T10:31:05.176793Z" + "iopub.execute_input": "2024-08-12T18:53:46.537339Z", + "iopub.status.busy": "2024-08-12T18:53:46.536944Z", + "iopub.status.idle": "2024-08-12T18:53:46.539790Z", + "shell.execute_reply": "2024-08-12T18:53:46.539324Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.179303Z", - "iopub.status.busy": "2024-08-12T10:31:05.178961Z", - "iopub.status.idle": "2024-08-12T10:31:07.400050Z", - "shell.execute_reply": "2024-08-12T10:31:07.399213Z" + "iopub.execute_input": "2024-08-12T18:53:46.541970Z", + "iopub.status.busy": "2024-08-12T18:53:46.541632Z", + "iopub.status.idle": "2024-08-12T18:53:48.807764Z", + "shell.execute_reply": "2024-08-12T18:53:48.807088Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:07.403380Z", - "iopub.status.busy": "2024-08-12T10:31:07.402738Z", - "iopub.status.idle": "2024-08-12T10:31:07.414900Z", - "shell.execute_reply": "2024-08-12T10:31:07.414301Z" + "iopub.execute_input": "2024-08-12T18:53:48.811078Z", + "iopub.status.busy": "2024-08-12T18:53:48.810181Z", + "iopub.status.idle": "2024-08-12T18:53:48.822087Z", + "shell.execute_reply": "2024-08-12T18:53:48.821596Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:07.417422Z", - "iopub.status.busy": "2024-08-12T10:31:07.417172Z", - "iopub.status.idle": "2024-08-12T10:31:07.521745Z", - "shell.execute_reply": "2024-08-12T10:31:07.521237Z" + "iopub.execute_input": "2024-08-12T18:53:48.824275Z", + "iopub.status.busy": "2024-08-12T18:53:48.823917Z", + "iopub.status.idle": "2024-08-12T18:53:49.001638Z", + "shell.execute_reply": "2024-08-12T18:53:49.001079Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 14bfb32ea..001a213a7 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:11.599918Z", - "iopub.status.busy": "2024-08-12T10:31:11.599739Z", - "iopub.status.idle": "2024-08-12T10:31:14.792390Z", - "shell.execute_reply": "2024-08-12T10:31:14.791829Z" + "iopub.execute_input": "2024-08-12T18:53:52.248151Z", + "iopub.status.busy": "2024-08-12T18:53:52.247987Z", + "iopub.status.idle": "2024-08-12T18:53:55.894101Z", + "shell.execute_reply": "2024-08-12T18:53:55.893473Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:14.794853Z", - "iopub.status.busy": "2024-08-12T10:31:14.794551Z", - "iopub.status.idle": "2024-08-12T10:31:14.797789Z", - "shell.execute_reply": "2024-08-12T10:31:14.797355Z" + "iopub.execute_input": "2024-08-12T18:53:55.896748Z", + "iopub.status.busy": "2024-08-12T18:53:55.896431Z", + "iopub.status.idle": "2024-08-12T18:53:55.900025Z", + "shell.execute_reply": "2024-08-12T18:53:55.899460Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:14.799835Z", - "iopub.status.busy": "2024-08-12T10:31:14.799654Z", - "iopub.status.idle": "2024-08-12T10:31:14.803159Z", - "shell.execute_reply": "2024-08-12T10:31:14.802724Z" + "iopub.execute_input": "2024-08-12T18:53:55.901985Z", + "iopub.status.busy": "2024-08-12T18:53:55.901681Z", + "iopub.status.idle": "2024-08-12T18:53:55.904870Z", + "shell.execute_reply": "2024-08-12T18:53:55.904262Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:14.805171Z", - "iopub.status.busy": "2024-08-12T10:31:14.804782Z", - "iopub.status.idle": "2024-08-12T10:31:15.011942Z", - "shell.execute_reply": "2024-08-12T10:31:15.011370Z" + "iopub.execute_input": "2024-08-12T18:53:55.906806Z", + "iopub.status.busy": "2024-08-12T18:53:55.906507Z", + "iopub.status.idle": "2024-08-12T18:53:56.076228Z", + "shell.execute_reply": "2024-08-12T18:53:56.075627Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.014170Z", - "iopub.status.busy": "2024-08-12T10:31:15.013748Z", - "iopub.status.idle": "2024-08-12T10:31:15.017471Z", - "shell.execute_reply": "2024-08-12T10:31:15.016937Z" + "iopub.execute_input": "2024-08-12T18:53:56.078447Z", + "iopub.status.busy": "2024-08-12T18:53:56.078088Z", + "iopub.status.idle": "2024-08-12T18:53:56.081709Z", + "shell.execute_reply": "2024-08-12T18:53:56.081260Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.019665Z", - "iopub.status.busy": "2024-08-12T10:31:15.019223Z", - "iopub.status.idle": "2024-08-12T10:31:15.022434Z", - "shell.execute_reply": "2024-08-12T10:31:15.021954Z" + "iopub.execute_input": "2024-08-12T18:53:56.083777Z", + "iopub.status.busy": "2024-08-12T18:53:56.083428Z", + "iopub.status.idle": "2024-08-12T18:53:56.086941Z", + "shell.execute_reply": "2024-08-12T18:53:56.086476Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire'}\n" + "Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.024295Z", - "iopub.status.busy": "2024-08-12T10:31:15.024124Z", - "iopub.status.idle": "2024-08-12T10:31:15.027383Z", - "shell.execute_reply": "2024-08-12T10:31:15.026923Z" + "iopub.execute_input": "2024-08-12T18:53:56.088941Z", + "iopub.status.busy": "2024-08-12T18:53:56.088604Z", + "iopub.status.idle": "2024-08-12T18:53:56.091760Z", + "shell.execute_reply": "2024-08-12T18:53:56.091308Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.029211Z", - "iopub.status.busy": "2024-08-12T10:31:15.029037Z", - "iopub.status.idle": "2024-08-12T10:31:15.032408Z", - "shell.execute_reply": "2024-08-12T10:31:15.031823Z" + "iopub.execute_input": "2024-08-12T18:53:56.093930Z", + "iopub.status.busy": "2024-08-12T18:53:56.093483Z", + "iopub.status.idle": "2024-08-12T18:53:56.096951Z", + "shell.execute_reply": "2024-08-12T18:53:56.096394Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.034473Z", - "iopub.status.busy": "2024-08-12T10:31:15.034066Z", - "iopub.status.idle": "2024-08-12T10:31:20.022718Z", - "shell.execute_reply": "2024-08-12T10:31:20.022044Z" + "iopub.execute_input": "2024-08-12T18:53:56.098867Z", + "iopub.status.busy": "2024-08-12T18:53:56.098591Z", + "iopub.status.idle": "2024-08-12T18:54:01.596872Z", + "shell.execute_reply": "2024-08-12T18:54:01.596260Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b77e95d91f29458c87a8a832d9354217", + "model_id": "5fce0f83ffcb45b1b4e91907422e2fd5", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "08ba8674e30e46fc930e33c52fd19cae", + "model_id": "8220af5113534a53bc94d0f5c8251a66", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bcd74fc84ce94b119d8e8d4b6070122a", + "model_id": "399a7f37c7aa40b58c950e18df0b5960", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cf55d71b710845d8890451acc33799c0", + "model_id": "49e67bb21955496ba2eee2c0e6dad0ab", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ff5b7e108a64120b255afa2e1ff6f7d", + "model_id": "289a07c93d8049998a1f7e65320f71c8", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f096b4fd6872467eb521cc3425e4ad77", + "model_id": "a94fae83aa2341e5b8d1ae56f3b7cbda", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6757467eb2d347bdbfc65c8a3b0b752c", + "model_id": "b2f79098c4674c5ca353b28833562218", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:20.025603Z", - "iopub.status.busy": "2024-08-12T10:31:20.025214Z", - "iopub.status.idle": "2024-08-12T10:31:20.028239Z", - "shell.execute_reply": "2024-08-12T10:31:20.027686Z" + "iopub.execute_input": "2024-08-12T18:54:01.600043Z", + "iopub.status.busy": "2024-08-12T18:54:01.599613Z", + "iopub.status.idle": "2024-08-12T18:54:01.602661Z", + "shell.execute_reply": "2024-08-12T18:54:01.602180Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:20.030306Z", - "iopub.status.busy": "2024-08-12T10:31:20.029981Z", - "iopub.status.idle": "2024-08-12T10:31:20.033107Z", - "shell.execute_reply": "2024-08-12T10:31:20.032678Z" + "iopub.execute_input": "2024-08-12T18:54:01.604735Z", + "iopub.status.busy": "2024-08-12T18:54:01.604395Z", + "iopub.status.idle": "2024-08-12T18:54:01.606950Z", + "shell.execute_reply": "2024-08-12T18:54:01.606508Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:20.035082Z", - "iopub.status.busy": "2024-08-12T10:31:20.034747Z", - "iopub.status.idle": "2024-08-12T10:31:22.925207Z", - "shell.execute_reply": "2024-08-12T10:31:22.924551Z" + "iopub.execute_input": "2024-08-12T18:54:01.608945Z", + "iopub.status.busy": "2024-08-12T18:54:01.608609Z", + "iopub.status.idle": "2024-08-12T18:54:04.445747Z", + "shell.execute_reply": "2024-08-12T18:54:04.444939Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.928473Z", - "iopub.status.busy": "2024-08-12T10:31:22.927617Z", - "iopub.status.idle": "2024-08-12T10:31:22.935577Z", - "shell.execute_reply": "2024-08-12T10:31:22.935118Z" + "iopub.execute_input": "2024-08-12T18:54:04.449080Z", + "iopub.status.busy": "2024-08-12T18:54:04.448318Z", + "iopub.status.idle": "2024-08-12T18:54:04.456608Z", + "shell.execute_reply": "2024-08-12T18:54:04.455832Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.937626Z", - "iopub.status.busy": "2024-08-12T10:31:22.937285Z", - "iopub.status.idle": "2024-08-12T10:31:22.941357Z", - "shell.execute_reply": "2024-08-12T10:31:22.940756Z" + "iopub.execute_input": "2024-08-12T18:54:04.458815Z", + "iopub.status.busy": "2024-08-12T18:54:04.458476Z", + "iopub.status.idle": "2024-08-12T18:54:04.462554Z", + "shell.execute_reply": "2024-08-12T18:54:04.462062Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.943707Z", - "iopub.status.busy": "2024-08-12T10:31:22.943304Z", - "iopub.status.idle": "2024-08-12T10:31:22.946672Z", - "shell.execute_reply": "2024-08-12T10:31:22.946082Z" + "iopub.execute_input": "2024-08-12T18:54:04.464756Z", + "iopub.status.busy": "2024-08-12T18:54:04.464321Z", + "iopub.status.idle": "2024-08-12T18:54:04.467750Z", + "shell.execute_reply": "2024-08-12T18:54:04.467293Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.948966Z", - "iopub.status.busy": "2024-08-12T10:31:22.948462Z", - "iopub.status.idle": "2024-08-12T10:31:22.951516Z", - "shell.execute_reply": "2024-08-12T10:31:22.951066Z" + "iopub.execute_input": "2024-08-12T18:54:04.469960Z", + "iopub.status.busy": "2024-08-12T18:54:04.469551Z", + "iopub.status.idle": "2024-08-12T18:54:04.472540Z", + "shell.execute_reply": "2024-08-12T18:54:04.472051Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.953476Z", - "iopub.status.busy": "2024-08-12T10:31:22.953139Z", - "iopub.status.idle": "2024-08-12T10:31:22.959977Z", - "shell.execute_reply": "2024-08-12T10:31:22.959519Z" + "iopub.execute_input": "2024-08-12T18:54:04.474585Z", + "iopub.status.busy": "2024-08-12T18:54:04.474184Z", + "iopub.status.idle": "2024-08-12T18:54:04.481135Z", + "shell.execute_reply": "2024-08-12T18:54:04.480676Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.962107Z", - "iopub.status.busy": "2024-08-12T10:31:22.961788Z", - "iopub.status.idle": "2024-08-12T10:31:23.188303Z", - "shell.execute_reply": "2024-08-12T10:31:23.187779Z" + "iopub.execute_input": "2024-08-12T18:54:04.483285Z", + "iopub.status.busy": "2024-08-12T18:54:04.482950Z", + "iopub.status.idle": "2024-08-12T18:54:04.708333Z", + "shell.execute_reply": "2024-08-12T18:54:04.707743Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:23.190889Z", - "iopub.status.busy": "2024-08-12T10:31:23.190558Z", - "iopub.status.idle": "2024-08-12T10:31:23.404299Z", - "shell.execute_reply": "2024-08-12T10:31:23.403695Z" + "iopub.execute_input": "2024-08-12T18:54:04.711066Z", + "iopub.status.busy": "2024-08-12T18:54:04.710654Z", + "iopub.status.idle": "2024-08-12T18:54:04.924095Z", + "shell.execute_reply": "2024-08-12T18:54:04.923546Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:23.407187Z", - "iopub.status.busy": "2024-08-12T10:31:23.406748Z", - "iopub.status.idle": "2024-08-12T10:31:23.410913Z", - "shell.execute_reply": "2024-08-12T10:31:23.410344Z" + "iopub.execute_input": "2024-08-12T18:54:04.926831Z", + "iopub.status.busy": "2024-08-12T18:54:04.926424Z", + "iopub.status.idle": "2024-08-12T18:54:04.930340Z", + "shell.execute_reply": "2024-08-12T18:54:04.929826Z" }, "nbsphinx": "hidden" }, @@ -1120,33 +1120,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "009671349a8d4cafb82eb9896ece9bee": { + "006d5af724ae4e22971f736a55857a4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0a9d1777ee94c7c8c03baa6a51c46a8", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_69f0abc1e50f49f8a576b20c5da62cfa", + "layout": "IPY_MODEL_ea21d01843264621bf231835fe9aa860", + "placeholder": "​", + "style": "IPY_MODEL_7999018889a84b9f8c94ace4e0ab66c0", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 391/391 [00:00<00:00, 50.6kB/s]" } }, - "01ac85c54a074f46a529412c8198c339": { + "009d75c3861b4c879405b5a7d55acf04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1199,7 +1196,25 @@ "width": null } }, - "040c266f4fc448cd8d1cc95b158b56b8": { + "09f32f04be0940bebe8a6742dcb99e85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0a8c4fc01ece4f01b270709d2a552fa5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1252,7 +1267,7 @@ "width": null } }, - "0594ffe3ba1a4a8096af8f4341c83041": { + "0c05b80cbe854fdd9294576db3ff05bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1268,84 +1283,41 @@ "description_width": "" } }, - "08ba8674e30e46fc930e33c52fd19cae": { + "1db895665fe44642a62670093127e02f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f720275cd00d4a9cb1737d0f4d081c2f", - "IPY_MODEL_009671349a8d4cafb82eb9896ece9bee", - "IPY_MODEL_9fdd8aba923f4e04be6bb5d963cb437c" - ], - "layout": "IPY_MODEL_9c1c9cad0461490a96b44d548117c40c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "095e33092ba14246a9208dc768de2a5b": { - "model_module": "@jupyter-widgets/base", + "1ea2c29144d5400b8748c646f033894f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "104b801834d148df9f2e3d1ed081e587": { + "2456c9a661bd4b3dba4fdfcac7612a7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1360,15 +1332,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2602df39a3fd47c39e3cc01ecfebecf5", + "layout": "IPY_MODEL_9c9d5a88c8a64cdd9cb0823ce2acabe6", "placeholder": "​", - "style": "IPY_MODEL_c691589a3f7e439b968bd28de4afe7e3", + "style": "IPY_MODEL_4cc8077d9879462c9de005575bfbad8f", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 35.4MB/s]" + "value": " 665/665 [00:00<00:00, 113kB/s]" } }, - "11edcabb6a894b66939da8220a1f7699": { + "256087a5a19243bfa05bdf6c0ba10805": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1421,7 +1393,7 @@ "width": null } }, - "13d19aa2b2ca4bc8813208d9c646a5c7": { + "25bcb9c6186c45b886561f036d828a86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1439,59 +1411,54 @@ "text_color": null } }, - "13d4c34d25c74a2d8064eba1bac91c80": { + "289a07c93d8049998a1f7e65320f71c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c701715a58ab4f6b96498a6d2d5401d1", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a121ad004a142589d015aacd23c1026", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f94389f0251b49029639e433e5aa755a", + "IPY_MODEL_c18c40bc53e74acba0e92d6acf7c08f4", + "IPY_MODEL_d42046c8642448498fca534ce27f1983" + ], + "layout": "IPY_MODEL_4c86ef1c9f1841f6a3258d0e5669cb13", "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "tooltip": null } }, - "1503d7b6dde84b19aaba69486d60f143": { + "33ca193d276b47af9b1bd6a968bcd64b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_040c266f4fc448cd8d1cc95b158b56b8", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0594ffe3ba1a4a8096af8f4341c83041", + "layout": "IPY_MODEL_4efb05c35218455aad7fb4cc5db56afb", + "placeholder": "​", + "style": "IPY_MODEL_63f8b0c136af4afda525f2cd9ae8f291", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": ".gitattributes: 100%" } }, - "1598a44a792c4139ad6a6de76b8c1394": { + "343c3d1a93274355a1653ea076df4bac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1509,30 +1476,7 @@ "text_color": null } }, - "15997adaaba2484396878d4e38a00113": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d15b782752d3445386fe22758d87080d", - "placeholder": "​", - "style": "IPY_MODEL_373e88d9309d4ec9ae5ba4a731e6df0c", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 70.3kB/s]" - } - }, - "16bcafb20249419fafeebd286e716441": { + "3778bf93f04a411aa0d5e989e8c6d9c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1585,7 +1529,7 @@ "width": null } }, - "1804451ec9d0462696d56dfdb7a43744": { + "3898d2c8d96b4f43913ec0a16a040638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1638,7 +1582,47 @@ "width": null } }, - "1bd4a18941fe41209f76d034daa9feb2": { + "399a7f37c7aa40b58c950e18df0b5960": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ea1345727424481834f52e3f1cacd94", + "IPY_MODEL_bc04b19aec774203a92404adb3103b97", + "IPY_MODEL_2456c9a661bd4b3dba4fdfcac7612a7b" + ], + "layout": "IPY_MODEL_c43feac438144313ab89f24fd448a54e", + "tabbable": null, + "tooltip": null + } + }, + "3cfae654d8a94672bc68d05eced1d0ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43beca2bd35e4cac86fc0777b9ea9844": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1675,49 @@ "width": null } }, - "1d5e484ff2f34bc5a3067a29b87a866b": { + "4432435a03294629ba63a9de48043548": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "49e67bb21955496ba2eee2c0e6dad0ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_535c1e132a924ee09c0f3bd3213827ec", + "IPY_MODEL_4efecba95fed4e0c972987879f4d53ee", + "IPY_MODEL_5a35ee0bb8d946e3b40e44a3e2c5e0f7" + ], + "layout": "IPY_MODEL_009d75c3861b4c879405b5a7d55acf04", + "tabbable": null, + "tooltip": null + } + }, + "4b626302897e46419c4844e76d79662e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1707,17 +1733,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_095e33092ba14246a9208dc768de2a5b", - "max": 391.0, + "layout": "IPY_MODEL_67ed76d0459b45109ab7b2e474b134dd", + "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f5184540242a45978bb6e6024ab9cc50", + "style": "IPY_MODEL_be482aad3d2b4b9ebe88ee672e4c13ad", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": 48.0 } }, - "2602df39a3fd47c39e3cc01ecfebecf5": { + "4c86ef1c9f1841f6a3258d0e5669cb13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1770,7 +1796,41 @@ "width": null } }, - "291c1991a2874a05af6b04cd7d022478": { + "4cc8077d9879462c9de005575bfbad8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d5c6911336a46598cf358d62a000f88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4ea1345727424481834f52e3f1cacd94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1785,15 +1845,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_633b6b32b3a04c209544909dd6867676", + "layout": "IPY_MODEL_560ff6ebca984f28860bb80375bd645b", "placeholder": "​", - "style": "IPY_MODEL_9c99fad70047476ead6384d84291d907", + "style": "IPY_MODEL_f9a9d69a4f124928b49ed8b7988813d3", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": "config.json: 100%" } }, - "2958046e8ce44c0a917fda09c0896495": { + "4efb05c35218455aad7fb4cc5db56afb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1846,7 +1906,56 @@ "width": null } }, - "29dc9f8f21f14db983f9c7f0306f737b": { + "4efecba95fed4e0c972987879f4d53ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_feb09b19af2f40f69cb7cfc1db49ed90", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1db895665fe44642a62670093127e02f", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "535c1e132a924ee09c0f3bd3213827ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f6e51f8f6db4d66b7e2193ee7fd563c", + "placeholder": "​", + "style": "IPY_MODEL_db67b729e00247afbc555fe194fcc18a", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "560ff6ebca984f28860bb80375bd645b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1899,7 +2008,7 @@ "width": null } }, - "2a75436a6b3f421991d9c7289964dc4e": { + "5a35ee0bb8d946e3b40e44a3e2c5e0f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1914,15 +2023,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ee866f21451f41d0a2b58182ec7c2183", + "layout": "IPY_MODEL_a4cdc14299324bb9b3549553c857737b", "placeholder": "​", - "style": "IPY_MODEL_9a7a2e2568e84ad090ba5d7f87ec6ca2", + "style": "IPY_MODEL_edddd8f6e9c0463e9d31f27de693990c", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 199MB/s]" } }, - "2c6a5bc9f5f34b87b657eda126c73765": { + "5ae1be12a0fb4986b459d08405f465dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1937,33 +2046,115 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_44e61a23e45d4697bfaa4992b16388ff", + "layout": "IPY_MODEL_43beca2bd35e4cac86fc0777b9ea9844", "placeholder": "​", - "style": "IPY_MODEL_88907c49643c45e58b6140b32e87068b", + "style": "IPY_MODEL_343c3d1a93274355a1653ea076df4bac", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 131kB/s]" + "value": "vocab.txt: 100%" } }, - "373e88d9309d4ec9ae5ba4a731e6df0c": { + "5e9c3c12b0234dbc8b747d3b1e91ee1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3778bf93f04a411aa0d5e989e8c6d9c3", + "placeholder": "​", + "style": "IPY_MODEL_8fd65264c4994715bc8aa9df8f9fcb1d", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 385kB/s]" + } + }, + "5f6e51f8f6db4d66b7e2193ee7fd563c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5fce0f83ffcb45b1b4e91907422e2fd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_33ca193d276b47af9b1bd6a968bcd64b", + "IPY_MODEL_d1c1a09dfe40433e8daad1afb926a868", + "IPY_MODEL_006d5af724ae4e22971f736a55857a4b" + ], + "layout": "IPY_MODEL_0a8c4fc01ece4f01b270709d2a552fa5", + "tabbable": null, + "tooltip": null } }, - "3edae48c957b43afb31452e760c3b5ee": { + "63f8b0c136af4afda525f2cd9ae8f291": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1981,7 +2172,7 @@ "text_color": null } }, - "44881d82bfd54d3995c4d702d2ce1aee": { + "67ed76d0459b45109ab7b2e474b134dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2034,7 +2225,7 @@ "width": null } }, - "44e61a23e45d4697bfaa4992b16388ff": { + "6f78892c67d64d6baed0e8be90add294": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2087,63 +2278,48 @@ "width": null } }, - "4c27de6e51584e4194ad1b2a70a228e1": { + "7999018889a84b9f8c94ace4e0ab66c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4ff5b7e108a64120b255afa2e1ff6f7d": { + "7d0664133a97496aa32722b323b0654b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2a75436a6b3f421991d9c7289964dc4e", - "IPY_MODEL_92df4c3e498c4d89bc4eccdc9cf22b5b", - "IPY_MODEL_c5c2fe07487c4fdf85dc6866c5c8bc54" - ], - "layout": "IPY_MODEL_16bcafb20249419fafeebd286e716441", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3c7637e637245bb9da64cb04a475f4a", + "placeholder": "​", + "style": "IPY_MODEL_25bcb9c6186c45b886561f036d828a86", "tabbable": null, - "tooltip": null - } - }, - "5d1b88d2f0c14f6f82eb35c71e1d5bbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "README.md: 100%" } }, - "5f818255776c4628ab75e3864e7bea0c": { + "81807c8fa56b49aa9f11554e16b459ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2196,7 +2372,98 @@ "width": null } }, - "633b6b32b3a04c209544909dd6867676": { + "8220af5113534a53bc94d0f5c8251a66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d0664133a97496aa32722b323b0654b", + "IPY_MODEL_9a851b8ad98941f4ad8c614e0c16e343", + "IPY_MODEL_5e9c3c12b0234dbc8b747d3b1e91ee1e" + ], + "layout": "IPY_MODEL_d42199adf5474d8e9f6179d5eb3bb243", + "tabbable": null, + "tooltip": null + } + }, + "84679d8653bd4c14b683abbaf6d1f0a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cda47a3d9e50415098e506f90bcff7f9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4d5c6911336a46598cf358d62a000f88", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "84efa85f99e2425ba0e0215a7f670283": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afe48c32175c4349b6e5fe5b106847bf", + "placeholder": "​", + "style": "IPY_MODEL_1ea2c29144d5400b8748c646f033894f", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 1.78MB/s]" + } + }, + "8fd65264c4994715bc8aa9df8f9fcb1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "913fa127341a4e168bbbf77059264143": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2249,7 +2516,7 @@ "width": null } }, - "66d0debbcb38476f9b46625cbce14c68": { + "970cd2e565e4472fb75e9cbbb4303277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2302,112 +2569,15 @@ "width": null } }, - "6757467eb2d347bdbfc65c8a3b0b752c": { + "9a851b8ad98941f4ad8c614e0c16e343": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c1f10237bfc74f0b846f31c90674066b", - "IPY_MODEL_8b4fdf859aa445be8b803b0d911aae17", - "IPY_MODEL_104b801834d148df9f2e3d1ed081e587" - ], - "layout": "IPY_MODEL_a82b1d45d3234bb0a3319301666a72d5", - "tabbable": null, - "tooltip": null - } - }, - "695e9e36ea61416893fdfcb78d0482b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44881d82bfd54d3995c4d702d2ce1aee", - "placeholder": "​", - "style": "IPY_MODEL_e1eddcb1817246efa831d0367cbd3c91", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.65kB/s]" - } - }, - "69f0abc1e50f49f8a576b20c5da62cfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "88907c49643c45e58b6140b32e87068b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8a121ad004a142589d015aacd23c1026": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8b4fdf859aa445be8b803b0d911aae17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", @@ -2415,61 +2585,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1bd4a18941fe41209f76d034daa9feb2", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8f4445e9931496caec7a0bf0cc7dc2c", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "8c9f66d089754d8aa7058c6b10d0947c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8e4fd7081fc8461599b9a438c3912649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11edcabb6a894b66939da8220a1f7699", - "max": 665.0, + "layout": "IPY_MODEL_c6a490410aee4ce4b7ec065a336a3a2c", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d1b88d2f0c14f6f82eb35c71e1d5bbe", + "style": "IPY_MODEL_a4c11a9aa2d14652b78d311c152b105d", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "90d6fdc421254deaaac7fd3b5e8f30ec": { + "9c9d5a88c8a64cdd9cb0823ce2acabe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2522,86 +2648,23 @@ "width": null } }, - "92df4c3e498c4d89bc4eccdc9cf22b5b": { + "a4c11a9aa2d14652b78d311c152b105d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1804451ec9d0462696d56dfdb7a43744", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c27de6e51584e4194ad1b2a70a228e1", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "94cde3206e854b678e1a99ec1a075bdf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "976072a3aeb542dabace008e4f08126f": { + "a4cdc14299324bb9b3549553c857737b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2654,25 +2717,31 @@ "width": null } }, - "9a7a2e2568e84ad090ba5d7f87ec6ca2": { + "a94fae83aa2341e5b8d1ae56f3b7cbda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe7eb00615784f9b82e4e80051fec909", + "IPY_MODEL_4b626302897e46419c4844e76d79662e", + "IPY_MODEL_fc6e5cd23cc04d5cae53b65af39d36cc" + ], + "layout": "IPY_MODEL_3898d2c8d96b4f43913ec0a16a040638", + "tabbable": null, + "tooltip": null } }, - "9c1c9cad0461490a96b44d548117c40c": { + "afe48c32175c4349b6e5fe5b106847bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2725,25 +2794,31 @@ "width": null } }, - "9c99fad70047476ead6384d84291d907": { + "b2f79098c4674c5ca353b28833562218": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ae1be12a0fb4986b459d08405f465dc", + "IPY_MODEL_84679d8653bd4c14b683abbaf6d1f0a8", + "IPY_MODEL_84efa85f99e2425ba0e0215a7f670283" + ], + "layout": "IPY_MODEL_6f78892c67d64d6baed0e8be90add294", + "tabbable": null, + "tooltip": null } }, - "9e8a0f70f6f9418aab1d4dc540fe0e26": { + "ba5b94455bdf4114a45063ba921c476c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2796,53 +2871,49 @@ "width": null } }, - "9fdd8aba923f4e04be6bb5d963cb437c": { + "bc04b19aec774203a92404adb3103b97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_94cde3206e854b678e1a99ec1a075bdf", - "placeholder": "​", - "style": "IPY_MODEL_ce0868eececc4e4b82469a4729e2b9c9", + "layout": "IPY_MODEL_256087a5a19243bfa05bdf6c0ba10805", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d27ce44f75f94a13b65ca3940a516c91", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 445kB/s]" + "value": 665.0 } }, - "a3014aec64314384b3ea693f7e0d6bc8": { + "be482aad3d2b4b9ebe88ee672e4c13ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9e8a0f70f6f9418aab1d4dc540fe0e26", - "placeholder": "​", - "style": "IPY_MODEL_13d19aa2b2ca4bc8813208d9c646a5c7", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 265MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a82b1d45d3234bb0a3319301666a72d5": { + "bf787eb818144fc9b29e9ae8b0fb4835": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2895,70 +2966,33 @@ "width": null } }, - "b0e548065a8d43c2ac7f21ade489d7e7": { + "c18c40bc53e74acba0e92d6acf7c08f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29dc9f8f21f14db983f9c7f0306f737b", - "placeholder": "​", - "style": "IPY_MODEL_feb07f5788e6431f883566fdebae816c", + "layout": "IPY_MODEL_ba5b94455bdf4114a45063ba921c476c", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cfae654d8a94672bc68d05eced1d0ab", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" - } - }, - "b77e95d91f29458c87a8a832d9354217": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c644bdb104a2459ea7a9451cb95f4c6f", - "IPY_MODEL_1d5e484ff2f34bc5a3067a29b87a866b", - "IPY_MODEL_15997adaaba2484396878d4e38a00113" - ], - "layout": "IPY_MODEL_01ac85c54a074f46a529412c8198c339", - "tabbable": null, - "tooltip": null - } - }, - "b8f4445e9931496caec7a0bf0cc7dc2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 466062.0 } }, - "b95ea2b32e7d4b66a2a0e2873a01046d": { + "c293b4a7900345eeb2d87c80c9ebcace": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2976,141 +3010,60 @@ "text_color": null } }, - "bcd74fc84ce94b119d8e8d4b6070122a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0e548065a8d43c2ac7f21ade489d7e7", - "IPY_MODEL_8e4fd7081fc8461599b9a438c3912649", - "IPY_MODEL_2c6a5bc9f5f34b87b657eda126c73765" - ], - "layout": "IPY_MODEL_976072a3aeb542dabace008e4f08126f", - "tabbable": null, - "tooltip": null - } - }, - "bf4aeb8a17c24906a9308d4192063a5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66d0debbcb38476f9b46625cbce14c68", - "placeholder": "​", - "style": "IPY_MODEL_cd53a231e9e84f07a9ad8e3b9992aa32", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "c1f10237bfc74f0b846f31c90674066b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_faa5822f274f41fe9ff86f1471fdd7e2", - "placeholder": "​", - "style": "IPY_MODEL_3edae48c957b43afb31452e760c3b5ee", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "c5c2fe07487c4fdf85dc6866c5c8bc54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f818255776c4628ab75e3864e7bea0c", - "placeholder": "​", - "style": "IPY_MODEL_1598a44a792c4139ad6a6de76b8c1394", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 3.95MB/s]" - } - }, - "c644bdb104a2459ea7a9451cb95f4c6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ed62e55cc8b646ceaf9963127bbe3f10", - "placeholder": "​", - "style": "IPY_MODEL_8c9f66d089754d8aa7058c6b10d0947c", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "c691589a3f7e439b968bd28de4afe7e3": { - "model_module": "@jupyter-widgets/controls", + "c43feac438144313ab89f24fd448a54e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c701715a58ab4f6b96498a6d2d5401d1": { + "c6a490410aee4ce4b7ec065a336a3a2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3163,67 +3116,7 @@ "width": null } }, - "cd53a231e9e84f07a9ad8e3b9992aa32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ce0868eececc4e4b82469a4729e2b9c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf55d71b710845d8890451acc33799c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_291c1991a2874a05af6b04cd7d022478", - "IPY_MODEL_13d4c34d25c74a2d8064eba1bac91c80", - "IPY_MODEL_a3014aec64314384b3ea693f7e0d6bc8" - ], - "layout": "IPY_MODEL_90d6fdc421254deaaac7fd3b5e8f30ec", - "tabbable": null, - "tooltip": null - } - }, - "d15b782752d3445386fe22758d87080d": { + "cda47a3d9e50415098e506f90bcff7f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3276,25 +3169,49 @@ "width": null } }, - "e1eddcb1817246efa831d0367cbd3c91": { + "d1c1a09dfe40433e8daad1afb926a868": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dc8b10b0aec34342bde7aca6e9c1d831", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c05b80cbe854fdd9294576db3ff05bb", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "d27ce44f75f94a13b65ca3940a516c91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "ed62e55cc8b646ceaf9963127bbe3f10": { + "d3c7637e637245bb9da64cb04a475f4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3347,7 +3264,30 @@ "width": null } }, - "ee866f21451f41d0a2b58182ec7c2183": { + "d42046c8642448498fca534ce27f1983": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_970cd2e565e4472fb75e9cbbb4303277", + "placeholder": "​", + "style": "IPY_MODEL_fde02940308b4c9197554fa44cf549d5", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 6.13MB/s]" + } + }, + "d42199adf5474d8e9f6179d5eb3bb243": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3400,7 +3340,25 @@ "width": null } }, - "ef38a47462b242638331cd976aefeae2": { + "db67b729e00247afbc555fe194fcc18a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc8b10b0aec34342bde7aca6e9c1d831": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3453,31 +3411,7 @@ "width": null } }, - "f096b4fd6872467eb521cc3425e4ad77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf4aeb8a17c24906a9308d4192063a5d", - "IPY_MODEL_1503d7b6dde84b19aaba69486d60f143", - "IPY_MODEL_695e9e36ea61416893fdfcb78d0482b4" - ], - "layout": "IPY_MODEL_2958046e8ce44c0a917fda09c0896495", - "tabbable": null, - "tooltip": null - } - }, - "f0a9d1777ee94c7c8c03baa6a51c46a8": { + "ea21d01843264621bf231835fe9aa860": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3530,23 +3464,25 @@ "width": null } }, - "f5184540242a45978bb6e6024ab9cc50": { + "edddd8f6e9c0463e9d31f27de693990c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f720275cd00d4a9cb1737d0f4d081c2f": { + "f94389f0251b49029639e433e5aa755a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3561,15 +3497,97 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef38a47462b242638331cd976aefeae2", + "layout": "IPY_MODEL_913fa127341a4e168bbbf77059264143", "placeholder": "​", - "style": "IPY_MODEL_b95ea2b32e7d4b66a2a0e2873a01046d", + "style": "IPY_MODEL_c293b4a7900345eeb2d87c80c9ebcace", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": "tokenizer.json: 100%" + } + }, + "f9a9d69a4f124928b49ed8b7988813d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc6e5cd23cc04d5cae53b65af39d36cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_81807c8fa56b49aa9f11554e16b459ac", + "placeholder": "​", + "style": "IPY_MODEL_4432435a03294629ba63a9de48043548", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.89kB/s]" + } + }, + "fde02940308b4c9197554fa44cf549d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe7eb00615784f9b82e4e80051fec909": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf787eb818144fc9b29e9ae8b0fb4835", + "placeholder": "​", + "style": "IPY_MODEL_09f32f04be0940bebe8a6742dcb99e85", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "faa5822f274f41fe9ff86f1471fdd7e2": { + "feb09b19af2f40f69cb7cfc1db49ed90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3621,24 +3639,6 @@ "visibility": null, "width": null } - }, - "feb07f5788e6431f883566fdebae816c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index be2c44c4c..7872c7594 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:27.559918Z", - "iopub.status.busy": "2024-08-12T10:31:27.559732Z", - "iopub.status.idle": "2024-08-12T10:31:33.493498Z", - "shell.execute_reply": "2024-08-12T10:31:33.492957Z" + "iopub.execute_input": "2024-08-12T18:54:09.544273Z", + "iopub.status.busy": "2024-08-12T18:54:09.544101Z", + "iopub.status.idle": "2024-08-12T18:54:15.657460Z", + "shell.execute_reply": "2024-08-12T18:54:15.656888Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:33.496261Z", - "iopub.status.busy": "2024-08-12T10:31:33.495702Z", - "iopub.status.idle": "2024-08-12T10:31:33.498897Z", - "shell.execute_reply": "2024-08-12T10:31:33.498441Z" + "iopub.execute_input": "2024-08-12T18:54:15.660155Z", + "iopub.status.busy": "2024-08-12T18:54:15.659633Z", + "iopub.status.idle": "2024-08-12T18:54:15.662867Z", + "shell.execute_reply": "2024-08-12T18:54:15.662385Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:33.500915Z", - "iopub.status.busy": "2024-08-12T10:31:33.500569Z", - "iopub.status.idle": "2024-08-12T10:31:33.505593Z", - "shell.execute_reply": "2024-08-12T10:31:33.505157Z" + "iopub.execute_input": "2024-08-12T18:54:15.664832Z", + "iopub.status.busy": "2024-08-12T18:54:15.664650Z", + "iopub.status.idle": "2024-08-12T18:54:15.669779Z", + "shell.execute_reply": "2024-08-12T18:54:15.669342Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:33.507649Z", - "iopub.status.busy": "2024-08-12T10:31:33.507369Z", - "iopub.status.idle": "2024-08-12T10:31:35.407349Z", - "shell.execute_reply": "2024-08-12T10:31:35.406669Z" + "iopub.execute_input": "2024-08-12T18:54:15.671738Z", + "iopub.status.busy": "2024-08-12T18:54:15.671562Z", + "iopub.status.idle": "2024-08-12T18:54:17.893524Z", + "shell.execute_reply": "2024-08-12T18:54:17.892681Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.410188Z", - "iopub.status.busy": "2024-08-12T10:31:35.409775Z", - "iopub.status.idle": "2024-08-12T10:31:35.421192Z", - "shell.execute_reply": "2024-08-12T10:31:35.420725Z" + "iopub.execute_input": "2024-08-12T18:54:17.896656Z", + "iopub.status.busy": "2024-08-12T18:54:17.896108Z", + "iopub.status.idle": "2024-08-12T18:54:17.907522Z", + "shell.execute_reply": "2024-08-12T18:54:17.907061Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.423470Z", - "iopub.status.busy": "2024-08-12T10:31:35.423098Z", - "iopub.status.idle": "2024-08-12T10:31:35.428531Z", - "shell.execute_reply": "2024-08-12T10:31:35.428082Z" + "iopub.execute_input": "2024-08-12T18:54:17.909690Z", + "iopub.status.busy": "2024-08-12T18:54:17.909399Z", + "iopub.status.idle": "2024-08-12T18:54:17.915243Z", + "shell.execute_reply": "2024-08-12T18:54:17.914767Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.430695Z", - "iopub.status.busy": "2024-08-12T10:31:35.430312Z", - "iopub.status.idle": "2024-08-12T10:31:35.930501Z", - "shell.execute_reply": "2024-08-12T10:31:35.929981Z" + "iopub.execute_input": "2024-08-12T18:54:17.917203Z", + "iopub.status.busy": "2024-08-12T18:54:17.917022Z", + "iopub.status.idle": "2024-08-12T18:54:18.401760Z", + "shell.execute_reply": "2024-08-12T18:54:18.401217Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.932712Z", - "iopub.status.busy": "2024-08-12T10:31:35.932347Z", - "iopub.status.idle": "2024-08-12T10:31:39.361143Z", - "shell.execute_reply": "2024-08-12T10:31:39.360515Z" + "iopub.execute_input": "2024-08-12T18:54:18.403866Z", + "iopub.status.busy": "2024-08-12T18:54:18.403673Z", + "iopub.status.idle": "2024-08-12T18:54:19.860815Z", + "shell.execute_reply": "2024-08-12T18:54:19.860160Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:39.363821Z", - "iopub.status.busy": "2024-08-12T10:31:39.363462Z", - "iopub.status.idle": "2024-08-12T10:31:39.381626Z", - "shell.execute_reply": "2024-08-12T10:31:39.381166Z" + "iopub.execute_input": "2024-08-12T18:54:19.863289Z", + "iopub.status.busy": "2024-08-12T18:54:19.863103Z", + "iopub.status.idle": "2024-08-12T18:54:19.881662Z", + "shell.execute_reply": "2024-08-12T18:54:19.881178Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:39.383708Z", - "iopub.status.busy": "2024-08-12T10:31:39.383362Z", - "iopub.status.idle": "2024-08-12T10:31:39.386579Z", - "shell.execute_reply": "2024-08-12T10:31:39.386056Z" + "iopub.execute_input": "2024-08-12T18:54:19.883637Z", + "iopub.status.busy": "2024-08-12T18:54:19.883457Z", + "iopub.status.idle": "2024-08-12T18:54:19.886532Z", + "shell.execute_reply": "2024-08-12T18:54:19.886084Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:39.388474Z", - "iopub.status.busy": "2024-08-12T10:31:39.388295Z", - "iopub.status.idle": "2024-08-12T10:31:53.912289Z", - "shell.execute_reply": "2024-08-12T10:31:53.911735Z" + "iopub.execute_input": "2024-08-12T18:54:19.888530Z", + "iopub.status.busy": "2024-08-12T18:54:19.888180Z", + "iopub.status.idle": "2024-08-12T18:54:34.498733Z", + "shell.execute_reply": "2024-08-12T18:54:34.498075Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:53.914987Z", - "iopub.status.busy": "2024-08-12T10:31:53.914565Z", - "iopub.status.idle": "2024-08-12T10:31:53.918442Z", - "shell.execute_reply": "2024-08-12T10:31:53.917879Z" + "iopub.execute_input": "2024-08-12T18:54:34.501588Z", + "iopub.status.busy": "2024-08-12T18:54:34.501212Z", + "iopub.status.idle": "2024-08-12T18:54:34.505069Z", + "shell.execute_reply": "2024-08-12T18:54:34.504545Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:53.920671Z", - "iopub.status.busy": "2024-08-12T10:31:53.920322Z", - "iopub.status.idle": "2024-08-12T10:31:54.650629Z", - "shell.execute_reply": "2024-08-12T10:31:54.650002Z" + "iopub.execute_input": "2024-08-12T18:54:34.507196Z", + "iopub.status.busy": "2024-08-12T18:54:34.506852Z", + "iopub.status.idle": "2024-08-12T18:54:35.241502Z", + "shell.execute_reply": "2024-08-12T18:54:35.240901Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.653500Z", - "iopub.status.busy": "2024-08-12T10:31:54.653156Z", - "iopub.status.idle": "2024-08-12T10:31:54.657830Z", - "shell.execute_reply": "2024-08-12T10:31:54.657339Z" + "iopub.execute_input": "2024-08-12T18:54:35.245317Z", + "iopub.status.busy": "2024-08-12T18:54:35.244326Z", + "iopub.status.idle": "2024-08-12T18:54:35.251232Z", + "shell.execute_reply": "2024-08-12T18:54:35.250716Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.660238Z", - "iopub.status.busy": "2024-08-12T10:31:54.659917Z", - "iopub.status.idle": "2024-08-12T10:31:54.771646Z", - "shell.execute_reply": "2024-08-12T10:31:54.770906Z" + "iopub.execute_input": "2024-08-12T18:54:35.254892Z", + "iopub.status.busy": "2024-08-12T18:54:35.253950Z", + "iopub.status.idle": "2024-08-12T18:54:35.371220Z", + "shell.execute_reply": "2024-08-12T18:54:35.370579Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.774198Z", - "iopub.status.busy": "2024-08-12T10:31:54.773768Z", - "iopub.status.idle": "2024-08-12T10:31:54.786459Z", - "shell.execute_reply": "2024-08-12T10:31:54.785945Z" + "iopub.execute_input": "2024-08-12T18:54:35.373827Z", + "iopub.status.busy": "2024-08-12T18:54:35.373627Z", + "iopub.status.idle": "2024-08-12T18:54:35.386543Z", + "shell.execute_reply": "2024-08-12T18:54:35.386056Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.788774Z", - "iopub.status.busy": "2024-08-12T10:31:54.788346Z", - "iopub.status.idle": "2024-08-12T10:31:54.796268Z", - "shell.execute_reply": "2024-08-12T10:31:54.795704Z" + "iopub.execute_input": "2024-08-12T18:54:35.388685Z", + "iopub.status.busy": "2024-08-12T18:54:35.388421Z", + "iopub.status.idle": "2024-08-12T18:54:35.396287Z", + "shell.execute_reply": "2024-08-12T18:54:35.395747Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.798511Z", - "iopub.status.busy": "2024-08-12T10:31:54.798097Z", - "iopub.status.idle": "2024-08-12T10:31:54.802250Z", - "shell.execute_reply": "2024-08-12T10:31:54.801692Z" + "iopub.execute_input": "2024-08-12T18:54:35.398352Z", + "iopub.status.busy": "2024-08-12T18:54:35.398175Z", + "iopub.status.idle": "2024-08-12T18:54:35.402421Z", + "shell.execute_reply": "2024-08-12T18:54:35.401981Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.804434Z", - "iopub.status.busy": "2024-08-12T10:31:54.804110Z", - "iopub.status.idle": "2024-08-12T10:31:54.809820Z", - "shell.execute_reply": "2024-08-12T10:31:54.809216Z" + "iopub.execute_input": "2024-08-12T18:54:35.404458Z", + "iopub.status.busy": "2024-08-12T18:54:35.404104Z", + "iopub.status.idle": "2024-08-12T18:54:35.409696Z", + "shell.execute_reply": "2024-08-12T18:54:35.409125Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.812094Z", - "iopub.status.busy": "2024-08-12T10:31:54.811739Z", - "iopub.status.idle": "2024-08-12T10:31:54.923543Z", - "shell.execute_reply": "2024-08-12T10:31:54.922978Z" + "iopub.execute_input": "2024-08-12T18:54:35.411873Z", + "iopub.status.busy": "2024-08-12T18:54:35.411459Z", + "iopub.status.idle": "2024-08-12T18:54:35.523406Z", + "shell.execute_reply": "2024-08-12T18:54:35.522815Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.925854Z", - "iopub.status.busy": "2024-08-12T10:31:54.925415Z", - "iopub.status.idle": "2024-08-12T10:31:55.031344Z", - "shell.execute_reply": "2024-08-12T10:31:55.030759Z" + "iopub.execute_input": "2024-08-12T18:54:35.525613Z", + "iopub.status.busy": "2024-08-12T18:54:35.525277Z", + "iopub.status.idle": "2024-08-12T18:54:35.630701Z", + "shell.execute_reply": "2024-08-12T18:54:35.630133Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:55.033717Z", - "iopub.status.busy": "2024-08-12T10:31:55.033217Z", - "iopub.status.idle": "2024-08-12T10:31:55.137202Z", - "shell.execute_reply": "2024-08-12T10:31:55.136556Z" + "iopub.execute_input": "2024-08-12T18:54:35.632969Z", + "iopub.status.busy": "2024-08-12T18:54:35.632608Z", + "iopub.status.idle": "2024-08-12T18:54:35.735760Z", + "shell.execute_reply": "2024-08-12T18:54:35.735250Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:55.139888Z", - "iopub.status.busy": "2024-08-12T10:31:55.139384Z", - "iopub.status.idle": "2024-08-12T10:31:55.247170Z", - "shell.execute_reply": "2024-08-12T10:31:55.246562Z" + "iopub.execute_input": "2024-08-12T18:54:35.738090Z", + "iopub.status.busy": "2024-08-12T18:54:35.737656Z", + "iopub.status.idle": "2024-08-12T18:54:35.841118Z", + "shell.execute_reply": "2024-08-12T18:54:35.840529Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:55.249509Z", - "iopub.status.busy": "2024-08-12T10:31:55.249171Z", - "iopub.status.idle": "2024-08-12T10:31:55.252645Z", - "shell.execute_reply": "2024-08-12T10:31:55.252057Z" + "iopub.execute_input": "2024-08-12T18:54:35.843257Z", + "iopub.status.busy": "2024-08-12T18:54:35.843073Z", + "iopub.status.idle": "2024-08-12T18:54:35.846791Z", + "shell.execute_reply": "2024-08-12T18:54:35.846360Z" }, "nbsphinx": "hidden" }, @@ -1392,60 +1392,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0246673bda614057b87d1d4a071d07dc": { - "model_module": "@jupyter-widgets/base", + "03f7f54757af4c188654225ff568cc15": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06a7e8c848574d27a7e9b42a3825fab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "02a20d41840f41e593671467329b8a99": { + "0928624b605147408eb9eb71a02f2be6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1463,7 +1446,7 @@ "text_color": null } }, - "03639896d78b4997bfa5bd4ef9dd3b73": { + "11533647f3334084be47152e5df913b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1478,15 +1461,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c99dff9eb4d49c884091c0856298635", + "layout": "IPY_MODEL_bcc3d779d9ec4bdda4a144acdd9536b9", "placeholder": "​", - "style": "IPY_MODEL_54bfa2603b3d480cb21708ef6cbb23c2", + "style": "IPY_MODEL_03f7f54757af4c188654225ff568cc15", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 607kB/s]" + "value": "hyperparams.yaml: 100%" } }, - "0520862119224c0dadeb77bdab0013c1": { + "1438f73581cf412b872cda6b268a44cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1501,15 +1484,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c284236043894de7a2aeab311605060f", + "layout": "IPY_MODEL_fba2a74e14a442f2ac8a5666c47f101c", "placeholder": "​", - "style": "IPY_MODEL_02a20d41840f41e593671467329b8a99", + "style": "IPY_MODEL_af55ac5d4b8343f49f8eafa3a8393609", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": " 2.04k/2.04k [00:00<00:00, 489kB/s]" } }, - "08360c1171a6493298ae9e0be537aeb1": { + "16b8ca036731448b9d41d1e3f758031e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1527,7 +1510,7 @@ "text_color": null } }, - "085a6252fdf04f9c8504f50efe0cddcb": { + "1f7582c5b66e440696c93331f3f021bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1542,15 +1525,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b0f7fc885b94f2fba36f99bff582ece", + "layout": "IPY_MODEL_7c9dfa3179eb4fa68cadc1f9bbb924c1", "placeholder": "​", - "style": "IPY_MODEL_08360c1171a6493298ae9e0be537aeb1", + "style": "IPY_MODEL_7b0be97f0dc34a8793149a2ed20c1e6a", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 22.7MB/s]" + "value": " 3.20k/3.20k [00:00<00:00, 613kB/s]" } }, - "0cc1e2ec36dd4b3585cdf8034ca0aa07": { + "24e4db787b034c95b86daf73c904c1a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1603,7 +1586,31 @@ "width": null } }, - "12085fdd993b4978b67be8ceccf56834": { + "27771d0db6954d13b8330016db2e968d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11533647f3334084be47152e5df913b5", + "IPY_MODEL_cceed8cc8dbc4c2998b2aa56d37c56cd", + "IPY_MODEL_1438f73581cf412b872cda6b268a44cb" + ], + "layout": "IPY_MODEL_b625d5b3df6a43a58e4dd8f8487787b1", + "tabbable": null, + "tooltip": null + } + }, + "284f489d1c0940a4af6498cc4ee288ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1656,7 +1663,79 @@ "width": null } }, - "1be4f39f14ee43cbb74596a54a9d8272": { + "3ce08a518118470bafdffe4fda5d402b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6aa0c0cf24374c218f799b51cbe4c313", + "placeholder": "​", + "style": "IPY_MODEL_684c05db502f40d28dd939735db61d61", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "494870d44ab447f59b1edff68497591d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e72c130d931142fc86553b3079a5359c", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6dfc7b27f58e4f92b4a505eb402fb2d9", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "499bfda7f0f2413a846e584855e03e83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d83f5f37ce8d42a8a710791ab26be95b", + "placeholder": "​", + "style": "IPY_MODEL_06a7e8c848574d27a7e9b42a3825fab6", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 132MB/s]" + } + }, + "54b0a200e2264ed39796f6804956206d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1671,16 +1750,50 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0520862119224c0dadeb77bdab0013c1", - "IPY_MODEL_b6235d9a1eca4733ba0221542f0d3643", - "IPY_MODEL_03639896d78b4997bfa5bd4ef9dd3b73" + "IPY_MODEL_66a984112df94fb797f03c16ea0d8871", + "IPY_MODEL_e1e79e04340c42c4a07b65de15d378e8", + "IPY_MODEL_499bfda7f0f2413a846e584855e03e83" ], - "layout": "IPY_MODEL_eddc0c22a05d419fbb6a614c372acc94", + "layout": "IPY_MODEL_dbd814ae298e4662b635d3981cc98115", "tabbable": null, "tooltip": null } }, - "26dbafb5ca4e4097b6639ac5d840d91d": { + "644aa3d4a2474af6927b1d63fee9198c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6698e8a3edb642f5aa1cf99dae6c5d9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "66a984112df94fb797f03c16ea0d8871": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1695,15 +1808,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a6994f6b25404fa090773a364b257fee", + "layout": "IPY_MODEL_66b483bdb67f481d9a04248eaaa928f9", "placeholder": "​", - "style": "IPY_MODEL_a437de4edb0b4d1c94542633e608f95c", + "style": "IPY_MODEL_6698e8a3edb642f5aa1cf99dae6c5d9c", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "2b302faa18af4ea2b2b48d13597cc0ce": { + "66b483bdb67f481d9a04248eaaa928f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1756,49 +1869,25 @@ "width": null } }, - "2db66ec325294ef6b6c0bbcbf4ddf956": { + "684c05db502f40d28dd939735db61d61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b302faa18af4ea2b2b48d13597cc0ce", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36aaabf0d872419192d27b84e5bffb77", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "30b5cf292a2d4ef7917f1a528257c959": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3151034ce11c498ca70679e99c762223": { + "6aa0c0cf24374c218f799b51cbe4c313": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1851,7 +1940,47 @@ "width": null } }, - "352c03049ef34564be6b16e25fa62a97": { + "6b2f65e78619452f87f1e932c7779a0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b53fbd141a0c4a8ab26809588da553f8", + "IPY_MODEL_cd5779376f004c009a4cbc1ed71c233b", + "IPY_MODEL_b35d0be8f8f04f16852f200cc17d2a48" + ], + "layout": "IPY_MODEL_f7727a55541349bab503521054f0b8fc", + "tabbable": null, + "tooltip": null + } + }, + "6dfc7b27f58e4f92b4a505eb402fb2d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "702b794e5f074a9a800b1fb24f613bb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1904,71 +2033,7 @@ "width": null } }, - "36aaabf0d872419192d27b84e5bffb77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "45285f6718ab4536af48bcf06a0aac0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26dbafb5ca4e4097b6639ac5d840d91d", - "IPY_MODEL_c33c14b2a5e34ea0ae0823ec817c2bbd", - "IPY_MODEL_085a6252fdf04f9c8504f50efe0cddcb" - ], - "layout": "IPY_MODEL_352c03049ef34564be6b16e25fa62a97", - "tabbable": null, - "tooltip": null - } - }, - "48329f782307409c919507e64a194700": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f86c045b5af482e91516dd8164e57db", - "IPY_MODEL_2db66ec325294ef6b6c0bbcbf4ddf956", - "IPY_MODEL_991617589a474008aa2118e6b402fe3c" - ], - "layout": "IPY_MODEL_8d7752acd7244143a2465138cfdd0848", - "tabbable": null, - "tooltip": null - } - }, - "4da7e4e7f66c437b9df947311fbcabb3": { + "7adf59dc52204c3f86660622c4666c27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2021,7 +2086,7 @@ "width": null } }, - "54bfa2603b3d480cb21708ef6cbb23c2": { + "7b0be97f0dc34a8793149a2ed20c1e6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2039,48 +2104,7 @@ "text_color": null } }, - "57c1a597566543ed9f622ce49e94ab55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5d435c65a28f416dba8acf9e9037e772": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3151034ce11c498ca70679e99c762223", - "placeholder": "​", - "style": "IPY_MODEL_d9623ce9228240f792b723b5ae5f6aea", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 17.8MB/s]" - } - }, - "7065599fb27a4c94b3a0f83176455eb3": { + "7c9dfa3179eb4fa68cadc1f9bbb924c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2133,7 +2157,7 @@ "width": null } }, - "759039067d2c4508b2db8adf3602ecb7": { + "7fd7da3595bd40c8b1faffe0b53a48ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2210,7 @@ "width": null } }, - "771d8a9eed1f4ac980d85ec212352d9c": { + "93028f149ffd473e86c3c69dc9109cdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2201,15 +2225,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0246673bda614057b87d1d4a071d07dc", + "layout": "IPY_MODEL_7adf59dc52204c3f86660622c4666c27", "placeholder": "​", - "style": "IPY_MODEL_b9575927b7ff4dc3b4f219a8058b36b9", + "style": "IPY_MODEL_ab9f37394fa44215880e555b1930de5f", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 478kB/s]" + "value": "label_encoder.txt: 100%" } }, - "7b0a21f462aa4c588fc88161d4aacaf7": { + "9732897bd82b4795960f3fa636882b4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,7 +2286,31 @@ "width": null } }, - "7b0f7fc885b94f2fba36f99bff582ece": { + "99cd7f24e6c24e2d8aef090591fa9515": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_93028f149ffd473e86c3c69dc9109cdd", + "IPY_MODEL_9e1ff364598a478e8995918a356b3b5c", + "IPY_MODEL_e0a6f2898caf4d7e97c9b4699dd4cf31" + ], + "layout": "IPY_MODEL_d2b1d0dbee844ff2bc4beb0af94c0cde", + "tabbable": null, + "tooltip": null + } + }, + "9da1a583772d4e5aa4706118496f70a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2315,7 +2363,57 @@ "width": null } }, - "7d2d458d370049b88ce3f448a6173436": { + "9e1ff364598a478e8995918a356b3b5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24e4db787b034c95b86daf73c904c1a1", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc570043ee494a73a8003a18a11c32cf", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "9f932b3088d94f10b72edd6565da7964": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ce08a518118470bafdffe4fda5d402b", + "IPY_MODEL_494870d44ab447f59b1edff68497591d", + "IPY_MODEL_1f7582c5b66e440696c93331f3f021bd" + ], + "layout": "IPY_MODEL_7fd7da3595bd40c8b1faffe0b53a48ff", + "tabbable": null, + "tooltip": null + } + }, + "ab9f37394fa44215880e555b1930de5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2333,23 +2431,48 @@ "text_color": null } }, - "7eb78abc773d43d6b5f5ea1b3a7d118a": { + "af55ac5d4b8343f49f8eafa3a8393609": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b35d0be8f8f04f16852f200cc17d2a48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9da1a583772d4e5aa4706118496f70a8", + "placeholder": "​", + "style": "IPY_MODEL_fbbe413f447e46a69b5ce66589c01b7c", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 219MB/s]" } }, - "8815f4d0f8a1488fb6ac1517db64608e": { + "b53fbd141a0c4a8ab26809588da553f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2364,15 +2487,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0cc1e2ec36dd4b3585cdf8034ca0aa07", + "layout": "IPY_MODEL_702b794e5f074a9a800b1fb24f613bb4", "placeholder": "​", - "style": "IPY_MODEL_7d2d458d370049b88ce3f448a6173436", + "style": "IPY_MODEL_16b8ca036731448b9d41d1e3f758031e", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%" } }, - "8c99dff9eb4d49c884091c0856298635": { + "b625d5b3df6a43a58e4dd8f8487787b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,7 +2548,23 @@ "width": null } }, - "8d7752acd7244143a2465138cfdd0848": { + "bc570043ee494a73a8003a18a11c32cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcc3d779d9ec4bdda4a144acdd9536b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2478,71 +2617,59 @@ "width": null } }, - "8f86c045b5af482e91516dd8164e57db": { + "cceed8cc8dbc4c2998b2aa56d37c56cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_12085fdd993b4978b67be8ceccf56834", - "placeholder": "​", - "style": "IPY_MODEL_b22538f44134499ca67768efd562ef59", + "layout": "IPY_MODEL_d7972c555f854ec4830cc1462507f6dc", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e524bdde26e74dbb918e03703935b9aa", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "98d46bcc8409465291c0807491bba1a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 2041.0 } }, - "991617589a474008aa2118e6b402fe3c": { + "cd5779376f004c009a4cbc1ed71c233b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4da7e4e7f66c437b9df947311fbcabb3", - "placeholder": "​", - "style": "IPY_MODEL_57c1a597566543ed9f622ce49e94ab55", + "layout": "IPY_MODEL_9732897bd82b4795960f3fa636882b4c", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_644aa3d4a2474af6927b1d63fee9198c", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 25.8MB/s]" + "value": 15856877.0 } }, - "9bb209b5c60041e89c0b6a139baf0cf2": { + "d2b1d0dbee844ff2bc4beb0af94c0cde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2595,64 +2722,7 @@ "width": null } }, - "9d68db3bc2ea4e8a99fb98e4d66c9160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9ea2756856324606b3da554c15c654d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fbf1b34c34974d5aa871e28dbd8a00f5", - "placeholder": "​", - "style": "IPY_MODEL_98d46bcc8409465291c0807491bba1a6", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "a437de4edb0b4d1c94542633e608f95c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a6994f6b25404fa090773a364b257fee": { + "d7972c555f854ec4830cc1462507f6dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2705,7 +2775,7 @@ "width": null } }, - "acffbafe17c140c5a8dd99c8acfd75bd": { + "d83f5f37ce8d42a8a710791ab26be95b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2758,93 +2828,60 @@ "width": null } }, - "b22538f44134499ca67768efd562ef59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b578372e109c4035a055c5b83ba4abec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8815f4d0f8a1488fb6ac1517db64608e", - "IPY_MODEL_e3fad78d0a454ee18486769b1f290a04", - "IPY_MODEL_5d435c65a28f416dba8acf9e9037e772" - ], - "layout": "IPY_MODEL_de5219ece0bc4a8aa3814769270a8251", - "tabbable": null, - "tooltip": null - } - }, - "b6235d9a1eca4733ba0221542f0d3643": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acffbafe17c140c5a8dd99c8acfd75bd", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d68db3bc2ea4e8a99fb98e4d66c9160", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "b9575927b7ff4dc3b4f219a8058b36b9": { - "model_module": "@jupyter-widgets/controls", + "da200749ab8f461f8631919121dfe71f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c284236043894de7a2aeab311605060f": { + "dbd814ae298e4662b635d3981cc98115": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,33 +2934,30 @@ "width": null } }, - "c33c14b2a5e34ea0ae0823ec817c2bbd": { + "e0a6f2898caf4d7e97c9b4699dd4cf31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9bb209b5c60041e89c0b6a139baf0cf2", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cba2fe5da4504b8bb895fbd45626e1e4", + "layout": "IPY_MODEL_284f489d1c0940a4af6498cc4ee288ad", + "placeholder": "​", + "style": "IPY_MODEL_0928624b605147408eb9eb71a02f2be6", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": " 129k/129k [00:00<00:00, 1.01MB/s]" } }, - "c944ad099e17457fa206b43284821586": { + "e1e79e04340c42c4a07b65de15d378e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2939,17 +2973,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b0a21f462aa4c588fc88161d4aacaf7", - "max": 2041.0, + "layout": "IPY_MODEL_da200749ab8f461f8631919121dfe71f", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_30b5cf292a2d4ef7917f1a528257c959", + "style": "IPY_MODEL_ee6f990c3c4440e1b161a7386ee60cf5", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 16887676.0 } }, - "cba2fe5da4504b8bb895fbd45626e1e4": { + "e524bdde26e74dbb918e03703935b9aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2965,25 +2999,7 @@ "description_width": "" } }, - "d9623ce9228240f792b723b5ae5f6aea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de5219ece0bc4a8aa3814769270a8251": { + "e72c130d931142fc86553b3079a5359c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3036,33 +3052,23 @@ "width": null } }, - "e3fad78d0a454ee18486769b1f290a04": { + "ee6f990c3c4440e1b161a7386ee60cf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7065599fb27a4c94b3a0f83176455eb3", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7eb78abc773d43d6b5f5ea1b3a7d118a", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eddc0c22a05d419fbb6a614c372acc94": { + "f7727a55541349bab503521054f0b8fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3115,31 +3121,7 @@ "width": null } }, - "f13e6c1113f74ad78e8ebb5bae8047e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ea2756856324606b3da554c15c654d0", - "IPY_MODEL_c944ad099e17457fa206b43284821586", - "IPY_MODEL_771d8a9eed1f4ac980d85ec212352d9c" - ], - "layout": "IPY_MODEL_759039067d2c4508b2db8adf3602ecb7", - "tabbable": null, - "tooltip": null - } - }, - "fbf1b34c34974d5aa871e28dbd8a00f5": { + "fba2a74e14a442f2ac8a5666c47f101c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3173,24 @@ "visibility": null, "width": null } + }, + "fbbe413f447e46a69b5ce66589c01b7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 3b981fe19..175c480da 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:59.748865Z", - "iopub.status.busy": "2024-08-12T10:31:59.748689Z", - "iopub.status.idle": "2024-08-12T10:32:01.178381Z", - "shell.execute_reply": "2024-08-12T10:32:01.177678Z" + "iopub.execute_input": "2024-08-12T18:54:41.056251Z", + "iopub.status.busy": "2024-08-12T18:54:41.056072Z", + "iopub.status.idle": "2024-08-12T18:54:42.472255Z", + "shell.execute_reply": "2024-08-12T18:54:42.471637Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.181077Z", - "iopub.status.busy": "2024-08-12T10:32:01.180732Z", - "iopub.status.idle": "2024-08-12T10:32:01.184111Z", - "shell.execute_reply": "2024-08-12T10:32:01.183554Z" + "iopub.execute_input": "2024-08-12T18:54:42.474736Z", + "iopub.status.busy": "2024-08-12T18:54:42.474444Z", + "iopub.status.idle": "2024-08-12T18:54:42.477548Z", + "shell.execute_reply": "2024-08-12T18:54:42.477075Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.186467Z", - "iopub.status.busy": "2024-08-12T10:32:01.185987Z", - "iopub.status.idle": "2024-08-12T10:32:01.194805Z", - "shell.execute_reply": "2024-08-12T10:32:01.194325Z" + "iopub.execute_input": "2024-08-12T18:54:42.479701Z", + "iopub.status.busy": "2024-08-12T18:54:42.479369Z", + "iopub.status.idle": "2024-08-12T18:54:42.487756Z", + "shell.execute_reply": "2024-08-12T18:54:42.487291Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.196739Z", - "iopub.status.busy": "2024-08-12T10:32:01.196579Z", - "iopub.status.idle": "2024-08-12T10:32:01.201598Z", - "shell.execute_reply": "2024-08-12T10:32:01.201169Z" + "iopub.execute_input": "2024-08-12T18:54:42.489795Z", + "iopub.status.busy": "2024-08-12T18:54:42.489482Z", + "iopub.status.idle": "2024-08-12T18:54:42.494587Z", + "shell.execute_reply": "2024-08-12T18:54:42.494140Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.203716Z", - "iopub.status.busy": "2024-08-12T10:32:01.203381Z", - "iopub.status.idle": "2024-08-12T10:32:01.211227Z", - "shell.execute_reply": "2024-08-12T10:32:01.210770Z" + "iopub.execute_input": "2024-08-12T18:54:42.496778Z", + "iopub.status.busy": "2024-08-12T18:54:42.496435Z", + "iopub.status.idle": "2024-08-12T18:54:42.504078Z", + "shell.execute_reply": "2024-08-12T18:54:42.503573Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.213218Z", - "iopub.status.busy": "2024-08-12T10:32:01.212875Z", - "iopub.status.idle": "2024-08-12T10:32:01.590347Z", - "shell.execute_reply": "2024-08-12T10:32:01.589735Z" + "iopub.execute_input": "2024-08-12T18:54:42.506139Z", + "iopub.status.busy": "2024-08-12T18:54:42.505804Z", + "iopub.status.idle": "2024-08-12T18:54:42.830541Z", + "shell.execute_reply": "2024-08-12T18:54:42.829968Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.592629Z", - "iopub.status.busy": "2024-08-12T10:32:01.592298Z", - "iopub.status.idle": "2024-08-12T10:32:01.615629Z", - "shell.execute_reply": "2024-08-12T10:32:01.615067Z" + "iopub.execute_input": "2024-08-12T18:54:42.832992Z", + "iopub.status.busy": "2024-08-12T18:54:42.832627Z", + "iopub.status.idle": "2024-08-12T18:54:42.856185Z", + "shell.execute_reply": "2024-08-12T18:54:42.855743Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.617888Z", - "iopub.status.busy": "2024-08-12T10:32:01.617542Z", - "iopub.status.idle": "2024-08-12T10:32:01.706974Z", - "shell.execute_reply": "2024-08-12T10:32:01.706312Z" + "iopub.execute_input": "2024-08-12T18:54:42.858335Z", + "iopub.status.busy": "2024-08-12T18:54:42.857997Z", + "iopub.status.idle": "2024-08-12T18:54:42.947501Z", + "shell.execute_reply": "2024-08-12T18:54:42.946870Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.709728Z", - "iopub.status.busy": "2024-08-12T10:32:01.709322Z", - "iopub.status.idle": "2024-08-12T10:32:03.790772Z", - "shell.execute_reply": "2024-08-12T10:32:03.790079Z" + "iopub.execute_input": "2024-08-12T18:54:42.950217Z", + "iopub.status.busy": "2024-08-12T18:54:42.949881Z", + "iopub.status.idle": "2024-08-12T18:54:44.975217Z", + "shell.execute_reply": "2024-08-12T18:54:44.974523Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.793485Z", - "iopub.status.busy": "2024-08-12T10:32:03.793002Z", - "iopub.status.idle": "2024-08-12T10:32:03.815741Z", - "shell.execute_reply": "2024-08-12T10:32:03.815264Z" + "iopub.execute_input": "2024-08-12T18:54:44.978079Z", + "iopub.status.busy": "2024-08-12T18:54:44.977462Z", + "iopub.status.idle": "2024-08-12T18:54:44.999916Z", + "shell.execute_reply": "2024-08-12T18:54:44.999471Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.817911Z", - "iopub.status.busy": "2024-08-12T10:32:03.817557Z", - "iopub.status.idle": "2024-08-12T10:32:03.835714Z", - "shell.execute_reply": "2024-08-12T10:32:03.835233Z" + "iopub.execute_input": "2024-08-12T18:54:45.002071Z", + "iopub.status.busy": "2024-08-12T18:54:45.001773Z", + "iopub.status.idle": "2024-08-12T18:54:45.019241Z", + "shell.execute_reply": "2024-08-12T18:54:45.018687Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.837879Z", - "iopub.status.busy": "2024-08-12T10:32:03.837527Z", - "iopub.status.idle": "2024-08-12T10:32:03.851514Z", - "shell.execute_reply": "2024-08-12T10:32:03.851026Z" + "iopub.execute_input": "2024-08-12T18:54:45.021387Z", + "iopub.status.busy": "2024-08-12T18:54:45.020989Z", + "iopub.status.idle": "2024-08-12T18:54:45.034863Z", + "shell.execute_reply": "2024-08-12T18:54:45.034371Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.853602Z", - "iopub.status.busy": "2024-08-12T10:32:03.853416Z", - "iopub.status.idle": "2024-08-12T10:32:03.873168Z", - "shell.execute_reply": "2024-08-12T10:32:03.872577Z" + "iopub.execute_input": "2024-08-12T18:54:45.036969Z", + "iopub.status.busy": "2024-08-12T18:54:45.036650Z", + "iopub.status.idle": "2024-08-12T18:54:45.057198Z", + "shell.execute_reply": "2024-08-12T18:54:45.056594Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dffb23ed5c2644778ec4c7c3f2b9f329", + "model_id": "494ddfe9435b45b79bfc08b9e766f1b5", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.875189Z", - "iopub.status.busy": "2024-08-12T10:32:03.874883Z", - "iopub.status.idle": "2024-08-12T10:32:03.889632Z", - "shell.execute_reply": "2024-08-12T10:32:03.889056Z" + "iopub.execute_input": "2024-08-12T18:54:45.059360Z", + "iopub.status.busy": "2024-08-12T18:54:45.059019Z", + "iopub.status.idle": "2024-08-12T18:54:45.073874Z", + "shell.execute_reply": "2024-08-12T18:54:45.073413Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.891772Z", - "iopub.status.busy": "2024-08-12T10:32:03.891429Z", - "iopub.status.idle": "2024-08-12T10:32:03.897352Z", - "shell.execute_reply": "2024-08-12T10:32:03.896888Z" + "iopub.execute_input": "2024-08-12T18:54:45.076063Z", + "iopub.status.busy": "2024-08-12T18:54:45.075717Z", + "iopub.status.idle": "2024-08-12T18:54:45.081565Z", + "shell.execute_reply": "2024-08-12T18:54:45.081118Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.899329Z", - "iopub.status.busy": "2024-08-12T10:32:03.899153Z", - "iopub.status.idle": "2024-08-12T10:32:03.917989Z", - "shell.execute_reply": "2024-08-12T10:32:03.917520Z" + "iopub.execute_input": "2024-08-12T18:54:45.083640Z", + "iopub.status.busy": "2024-08-12T18:54:45.083296Z", + "iopub.status.idle": "2024-08-12T18:54:45.100645Z", + "shell.execute_reply": "2024-08-12T18:54:45.100155Z" } }, "outputs": [ @@ -1447,25 +1447,73 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07a72d376d6e478baad0ef09f148bbf6": { + "07fae94dc369441db55c36885f885497": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d3040f7badd480cb4758b3ee6ea3615", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_175635551dce4d5b9d9815408f4ba772", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "175635551dce4d5b9d9815408f4ba772": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3bc0dcea43a547e3a8b3ba8ba898ebc3": { + "494ddfe9435b45b79bfc08b9e766f1b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c597b0be955f4f83b9771e52a77f5227", + "IPY_MODEL_07fae94dc369441db55c36885f885497", + "IPY_MODEL_732c5e8ebc71468e8791a9689e134749" + ], + "layout": "IPY_MODEL_c4a1c8771e3d4954b668f01917df936c", + "tabbable": null, + "tooltip": null + } + }, + "53ad7637ce9042aeac54dad41f926eab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1483,7 +1531,7 @@ "text_color": null } }, - "50535b3950f44374a0fd1c9724af2593": { + "732c5e8ebc71468e8791a9689e134749": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1498,41 +1546,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff9d81d4322d4281a3537e0673a5b97d", + "layout": "IPY_MODEL_b2522c28b0f649deb2097d5ca5fb0d82", "placeholder": "​", - "style": "IPY_MODEL_07a72d376d6e478baad0ef09f148bbf6", + "style": "IPY_MODEL_879875d9a76b42c7b40a46c9b73790be", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 12983.33 examples/s]" + "value": " 132/132 [00:00<00:00, 12720.23 examples/s]" } }, - "54d7caf41f934968aee3eba3ea8e068b": { + "879875d9a76b42c7b40a46c9b73790be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ca473e51cfe4e43aa18d492518d8d5a", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ffddd94db73a4ecf8ec12daa355bfab3", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8840190de80b4ad7b948b5c41cd9b9a6": { + "8d3040f7badd480cb4758b3ee6ea3615": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1585,7 +1625,7 @@ "width": null } }, - "973f5f2c9d4947229d6f499d72a6e562": { + "9d9eac6aa2924c35b65ba9e37e8f5ba6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1638,7 +1678,7 @@ "width": null } }, - "9ca473e51cfe4e43aa18d492518d8d5a": { + "b2522c28b0f649deb2097d5ca5fb0d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,54 +1731,7 @@ "width": null } }, - "a3b187cf3ab34fe997d96e21abb214cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8840190de80b4ad7b948b5c41cd9b9a6", - "placeholder": "​", - "style": "IPY_MODEL_3bc0dcea43a547e3a8b3ba8ba898ebc3", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "dffb23ed5c2644778ec4c7c3f2b9f329": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3b187cf3ab34fe997d96e21abb214cc", - "IPY_MODEL_54d7caf41f934968aee3eba3ea8e068b", - "IPY_MODEL_50535b3950f44374a0fd1c9724af2593" - ], - "layout": "IPY_MODEL_973f5f2c9d4947229d6f499d72a6e562", - "tabbable": null, - "tooltip": null - } - }, - "ff9d81d4322d4281a3537e0673a5b97d": { + "c4a1c8771e3d4954b668f01917df936c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1791,20 +1784,27 @@ "width": null } }, - "ffddd94db73a4ecf8ec12daa355bfab3": { + "c597b0be955f4f83b9771e52a77f5227": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d9eac6aa2924c35b65ba9e37e8f5ba6", + "placeholder": "​", + "style": "IPY_MODEL_53ad7637ce9042aeac54dad41f926eab", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 5a8714bfc..7110e02da 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:06.983365Z", - "iopub.status.busy": "2024-08-12T10:32:06.983197Z", - "iopub.status.idle": "2024-08-12T10:32:08.436869Z", - "shell.execute_reply": "2024-08-12T10:32:08.436300Z" + "iopub.execute_input": "2024-08-12T18:54:48.151726Z", + "iopub.status.busy": "2024-08-12T18:54:48.151554Z", + "iopub.status.idle": "2024-08-12T18:54:49.596164Z", + "shell.execute_reply": "2024-08-12T18:54:49.595523Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.439618Z", - "iopub.status.busy": "2024-08-12T10:32:08.439096Z", - "iopub.status.idle": "2024-08-12T10:32:08.442335Z", - "shell.execute_reply": "2024-08-12T10:32:08.441759Z" + "iopub.execute_input": "2024-08-12T18:54:49.598722Z", + "iopub.status.busy": "2024-08-12T18:54:49.598413Z", + "iopub.status.idle": "2024-08-12T18:54:49.601590Z", + "shell.execute_reply": "2024-08-12T18:54:49.601121Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.444586Z", - "iopub.status.busy": "2024-08-12T10:32:08.444261Z", - "iopub.status.idle": "2024-08-12T10:32:08.453438Z", - "shell.execute_reply": "2024-08-12T10:32:08.452952Z" + "iopub.execute_input": "2024-08-12T18:54:49.603568Z", + "iopub.status.busy": "2024-08-12T18:54:49.603398Z", + "iopub.status.idle": "2024-08-12T18:54:49.612300Z", + "shell.execute_reply": "2024-08-12T18:54:49.611848Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.455435Z", - "iopub.status.busy": "2024-08-12T10:32:08.455255Z", - "iopub.status.idle": "2024-08-12T10:32:08.460524Z", - "shell.execute_reply": "2024-08-12T10:32:08.460066Z" + "iopub.execute_input": "2024-08-12T18:54:49.614119Z", + "iopub.status.busy": "2024-08-12T18:54:49.613947Z", + "iopub.status.idle": "2024-08-12T18:54:49.619273Z", + "shell.execute_reply": "2024-08-12T18:54:49.618710Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.462593Z", - "iopub.status.busy": "2024-08-12T10:32:08.462390Z", - "iopub.status.idle": "2024-08-12T10:32:08.470920Z", - "shell.execute_reply": "2024-08-12T10:32:08.470439Z" + "iopub.execute_input": "2024-08-12T18:54:49.621449Z", + "iopub.status.busy": "2024-08-12T18:54:49.621124Z", + "iopub.status.idle": "2024-08-12T18:54:49.629734Z", + "shell.execute_reply": "2024-08-12T18:54:49.629141Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.472758Z", - "iopub.status.busy": "2024-08-12T10:32:08.472584Z", - "iopub.status.idle": "2024-08-12T10:32:08.850138Z", - "shell.execute_reply": "2024-08-12T10:32:08.849581Z" + "iopub.execute_input": "2024-08-12T18:54:49.631790Z", + "iopub.status.busy": "2024-08-12T18:54:49.631454Z", + "iopub.status.idle": "2024-08-12T18:54:50.004500Z", + "shell.execute_reply": "2024-08-12T18:54:50.003908Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.852345Z", - "iopub.status.busy": "2024-08-12T10:32:08.852165Z", - "iopub.status.idle": "2024-08-12T10:32:08.854819Z", - "shell.execute_reply": "2024-08-12T10:32:08.854355Z" + "iopub.execute_input": "2024-08-12T18:54:50.006701Z", + "iopub.status.busy": "2024-08-12T18:54:50.006421Z", + "iopub.status.idle": "2024-08-12T18:54:50.009100Z", + "shell.execute_reply": "2024-08-12T18:54:50.008644Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.856729Z", - "iopub.status.busy": "2024-08-12T10:32:08.856554Z", - "iopub.status.idle": "2024-08-12T10:32:08.891296Z", - "shell.execute_reply": "2024-08-12T10:32:08.890793Z" + "iopub.execute_input": "2024-08-12T18:54:50.011257Z", + "iopub.status.busy": "2024-08-12T18:54:50.010933Z", + "iopub.status.idle": "2024-08-12T18:54:50.118659Z", + "shell.execute_reply": "2024-08-12T18:54:50.118179Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.893906Z", - "iopub.status.busy": "2024-08-12T10:32:08.893545Z", - "iopub.status.idle": "2024-08-12T10:32:11.095965Z", - "shell.execute_reply": "2024-08-12T10:32:11.095252Z" + "iopub.execute_input": "2024-08-12T18:54:50.120914Z", + "iopub.status.busy": "2024-08-12T18:54:50.120580Z", + "iopub.status.idle": "2024-08-12T18:54:52.159958Z", + "shell.execute_reply": "2024-08-12T18:54:52.159303Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.098718Z", - "iopub.status.busy": "2024-08-12T10:32:11.098130Z", - "iopub.status.idle": "2024-08-12T10:32:11.117905Z", - "shell.execute_reply": "2024-08-12T10:32:11.117324Z" + "iopub.execute_input": "2024-08-12T18:54:52.162791Z", + "iopub.status.busy": "2024-08-12T18:54:52.162077Z", + "iopub.status.idle": "2024-08-12T18:54:52.182639Z", + "shell.execute_reply": "2024-08-12T18:54:52.182126Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.120377Z", - "iopub.status.busy": "2024-08-12T10:32:11.119904Z", - "iopub.status.idle": "2024-08-12T10:32:11.127046Z", - "shell.execute_reply": "2024-08-12T10:32:11.126456Z" + "iopub.execute_input": "2024-08-12T18:54:52.184661Z", + "iopub.status.busy": "2024-08-12T18:54:52.184471Z", + "iopub.status.idle": "2024-08-12T18:54:52.191088Z", + "shell.execute_reply": "2024-08-12T18:54:52.190627Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.129084Z", - "iopub.status.busy": "2024-08-12T10:32:11.128900Z", - "iopub.status.idle": "2024-08-12T10:32:11.136478Z", - "shell.execute_reply": "2024-08-12T10:32:11.135930Z" + "iopub.execute_input": "2024-08-12T18:54:52.193149Z", + "iopub.status.busy": "2024-08-12T18:54:52.192969Z", + "iopub.status.idle": "2024-08-12T18:54:52.198891Z", + "shell.execute_reply": "2024-08-12T18:54:52.198307Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.138541Z", - "iopub.status.busy": "2024-08-12T10:32:11.138204Z", - "iopub.status.idle": "2024-08-12T10:32:11.148788Z", - "shell.execute_reply": "2024-08-12T10:32:11.148225Z" + "iopub.execute_input": "2024-08-12T18:54:52.200895Z", + "iopub.status.busy": "2024-08-12T18:54:52.200588Z", + "iopub.status.idle": "2024-08-12T18:54:52.211009Z", + "shell.execute_reply": "2024-08-12T18:54:52.210546Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.150984Z", - "iopub.status.busy": "2024-08-12T10:32:11.150654Z", - "iopub.status.idle": "2024-08-12T10:32:11.160607Z", - "shell.execute_reply": "2024-08-12T10:32:11.160022Z" + "iopub.execute_input": "2024-08-12T18:54:52.213158Z", + "iopub.status.busy": "2024-08-12T18:54:52.212840Z", + "iopub.status.idle": "2024-08-12T18:54:52.221951Z", + "shell.execute_reply": "2024-08-12T18:54:52.221377Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.163177Z", - "iopub.status.busy": "2024-08-12T10:32:11.162777Z", - "iopub.status.idle": "2024-08-12T10:32:11.170325Z", - "shell.execute_reply": "2024-08-12T10:32:11.169691Z" + "iopub.execute_input": "2024-08-12T18:54:52.224128Z", + "iopub.status.busy": "2024-08-12T18:54:52.223855Z", + "iopub.status.idle": "2024-08-12T18:54:52.230669Z", + "shell.execute_reply": "2024-08-12T18:54:52.230101Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.172574Z", - "iopub.status.busy": "2024-08-12T10:32:11.172225Z", - "iopub.status.idle": "2024-08-12T10:32:11.182760Z", - "shell.execute_reply": "2024-08-12T10:32:11.182213Z" + "iopub.execute_input": "2024-08-12T18:54:52.232850Z", + "iopub.status.busy": "2024-08-12T18:54:52.232463Z", + "iopub.status.idle": "2024-08-12T18:54:52.241829Z", + "shell.execute_reply": "2024-08-12T18:54:52.241257Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.184974Z", - "iopub.status.busy": "2024-08-12T10:32:11.184656Z", - "iopub.status.idle": "2024-08-12T10:32:11.201470Z", - "shell.execute_reply": "2024-08-12T10:32:11.200965Z" + "iopub.execute_input": "2024-08-12T18:54:52.243956Z", + "iopub.status.busy": "2024-08-12T18:54:52.243626Z", + "iopub.status.idle": "2024-08-12T18:54:52.259258Z", + "shell.execute_reply": "2024-08-12T18:54:52.258809Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 4e6eaa9a6..255960716 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:14.108295Z", - "iopub.status.busy": "2024-08-12T10:32:14.107801Z", - "iopub.status.idle": "2024-08-12T10:32:17.199789Z", - "shell.execute_reply": "2024-08-12T10:32:17.199158Z" + "iopub.execute_input": "2024-08-12T18:54:55.167990Z", + "iopub.status.busy": "2024-08-12T18:54:55.167498Z", + "iopub.status.idle": "2024-08-12T18:54:58.200814Z", + "shell.execute_reply": "2024-08-12T18:54:58.200214Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:17.202525Z", - "iopub.status.busy": "2024-08-12T10:32:17.201957Z", - "iopub.status.idle": "2024-08-12T10:32:17.205593Z", - "shell.execute_reply": "2024-08-12T10:32:17.205132Z" + "iopub.execute_input": "2024-08-12T18:54:58.203267Z", + "iopub.status.busy": "2024-08-12T18:54:58.202968Z", + "iopub.status.idle": "2024-08-12T18:54:58.206608Z", + "shell.execute_reply": "2024-08-12T18:54:58.206150Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:17.207722Z", - "iopub.status.busy": "2024-08-12T10:32:17.207391Z", - "iopub.status.idle": "2024-08-12T10:32:22.832822Z", - "shell.execute_reply": "2024-08-12T10:32:22.832329Z" + "iopub.execute_input": "2024-08-12T18:54:58.208613Z", + "iopub.status.busy": "2024-08-12T18:54:58.208300Z", + "iopub.status.idle": "2024-08-12T18:55:03.426332Z", + "shell.execute_reply": "2024-08-12T18:55:03.425846Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "24950e57ccc94aaaa079c9d5b86c6053", + "model_id": "5536055315cc48758ef861d7a11a8759", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ac8e9ae825dd46cda3caaf717ab3f457", + "model_id": "94289cd6e6de468db051fd838ba56323", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d71df3a63bda4854a0d7e51c67182ab4", + "model_id": "5530f4d814dc4873935b56a3bc07d13e", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df25fafe8e5749a69234408c18364b66", + "model_id": "d7183df8c95b49f89720bff1674cd315", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "659ce9293f064abe8640605a65b6aeb5", + "model_id": "e31ea71bbfe34e54bde0f8eba6e3e41b", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:22.835079Z", - "iopub.status.busy": "2024-08-12T10:32:22.834720Z", - "iopub.status.idle": "2024-08-12T10:32:22.838632Z", - "shell.execute_reply": "2024-08-12T10:32:22.838043Z" + "iopub.execute_input": "2024-08-12T18:55:03.428583Z", + "iopub.status.busy": "2024-08-12T18:55:03.428213Z", + "iopub.status.idle": "2024-08-12T18:55:03.432037Z", + "shell.execute_reply": "2024-08-12T18:55:03.431490Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:22.840738Z", - "iopub.status.busy": "2024-08-12T10:32:22.840420Z", - "iopub.status.idle": "2024-08-12T10:32:34.877427Z", - "shell.execute_reply": "2024-08-12T10:32:34.876879Z" + "iopub.execute_input": "2024-08-12T18:55:03.433996Z", + "iopub.status.busy": "2024-08-12T18:55:03.433690Z", + "iopub.status.idle": "2024-08-12T18:55:15.156554Z", + "shell.execute_reply": "2024-08-12T18:55:15.155860Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b7ff9d3e760d46ab9410530722e86f1c", + "model_id": "0e98a483d8634a7c9c26dc079f884fe5", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:34.880019Z", - "iopub.status.busy": "2024-08-12T10:32:34.879767Z", - "iopub.status.idle": "2024-08-12T10:32:53.521520Z", - "shell.execute_reply": "2024-08-12T10:32:53.520954Z" + "iopub.execute_input": "2024-08-12T18:55:15.159276Z", + "iopub.status.busy": "2024-08-12T18:55:15.158914Z", + "iopub.status.idle": "2024-08-12T18:55:34.063937Z", + "shell.execute_reply": "2024-08-12T18:55:34.063396Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.524328Z", - "iopub.status.busy": "2024-08-12T10:32:53.523932Z", - "iopub.status.idle": "2024-08-12T10:32:53.529696Z", - "shell.execute_reply": "2024-08-12T10:32:53.529222Z" + "iopub.execute_input": "2024-08-12T18:55:34.066694Z", + "iopub.status.busy": "2024-08-12T18:55:34.066291Z", + "iopub.status.idle": "2024-08-12T18:55:34.072237Z", + "shell.execute_reply": "2024-08-12T18:55:34.071765Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.531672Z", - "iopub.status.busy": "2024-08-12T10:32:53.531382Z", - "iopub.status.idle": "2024-08-12T10:32:53.535613Z", - "shell.execute_reply": "2024-08-12T10:32:53.535051Z" + "iopub.execute_input": "2024-08-12T18:55:34.074339Z", + "iopub.status.busy": "2024-08-12T18:55:34.073991Z", + "iopub.status.idle": "2024-08-12T18:55:34.078224Z", + "shell.execute_reply": "2024-08-12T18:55:34.077811Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.537903Z", - "iopub.status.busy": "2024-08-12T10:32:53.537489Z", - "iopub.status.idle": "2024-08-12T10:32:53.546584Z", - "shell.execute_reply": "2024-08-12T10:32:53.546030Z" + "iopub.execute_input": "2024-08-12T18:55:34.080424Z", + "iopub.status.busy": "2024-08-12T18:55:34.080076Z", + "iopub.status.idle": "2024-08-12T18:55:34.089197Z", + "shell.execute_reply": "2024-08-12T18:55:34.088740Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.548705Z", - "iopub.status.busy": "2024-08-12T10:32:53.548357Z", - "iopub.status.idle": "2024-08-12T10:32:53.576832Z", - "shell.execute_reply": "2024-08-12T10:32:53.576340Z" + "iopub.execute_input": "2024-08-12T18:55:34.091312Z", + "iopub.status.busy": "2024-08-12T18:55:34.090965Z", + "iopub.status.idle": "2024-08-12T18:55:34.119087Z", + "shell.execute_reply": "2024-08-12T18:55:34.118609Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.579268Z", - "iopub.status.busy": "2024-08-12T10:32:53.578915Z", - "iopub.status.idle": "2024-08-12T10:33:28.300304Z", - "shell.execute_reply": "2024-08-12T10:33:28.299664Z" + "iopub.execute_input": "2024-08-12T18:55:34.121415Z", + "iopub.status.busy": "2024-08-12T18:55:34.121048Z", + "iopub.status.idle": "2024-08-12T18:56:08.107752Z", + "shell.execute_reply": "2024-08-12T18:56:08.107079Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.112\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.009\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.743\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.734\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bf4baa646be4ef4b42842b34d57e605", + "model_id": "6ee42831ebd04c1abdb02a45dd8b1c41", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f27976bac3c458aa1b2cc0fb4b52d2c", + "model_id": "1f9027ac4265465c93cb18dc1bd30292", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.025\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.225\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.947\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.711\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "791dc4f1fa2e4226ae567d555fc24805", + "model_id": "092583d713a644899085990919e92801", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "31a3859cc0e34abe854259d21e40f2b5", + "model_id": "52340a16943f47a2bf680589345a1330", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.366\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.971\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.925\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.749\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8edaf5c5759040f08cbb3efa298b00c6", + "model_id": "4f89d806ff8c4eb8979271cf81ddabb4", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "35bfdb221038403b86fc1c1dfba20630", + "model_id": "1788966d26a6427ca2e657ccbccc5011", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:33:28.303145Z", - "iopub.status.busy": "2024-08-12T10:33:28.302899Z", - "iopub.status.idle": "2024-08-12T10:33:28.320368Z", - "shell.execute_reply": "2024-08-12T10:33:28.319852Z" + "iopub.execute_input": "2024-08-12T18:56:08.110568Z", + "iopub.status.busy": "2024-08-12T18:56:08.110135Z", + "iopub.status.idle": "2024-08-12T18:56:08.128279Z", + "shell.execute_reply": "2024-08-12T18:56:08.127694Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:33:28.322941Z", - "iopub.status.busy": "2024-08-12T10:33:28.322755Z", - "iopub.status.idle": "2024-08-12T10:33:28.802696Z", - "shell.execute_reply": "2024-08-12T10:33:28.802112Z" + "iopub.execute_input": "2024-08-12T18:56:08.130938Z", + "iopub.status.busy": "2024-08-12T18:56:08.130451Z", + "iopub.status.idle": "2024-08-12T18:56:08.620894Z", + "shell.execute_reply": "2024-08-12T18:56:08.620328Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:33:28.805268Z", - "iopub.status.busy": "2024-08-12T10:33:28.804800Z", - "iopub.status.idle": "2024-08-12T10:35:20.178945Z", - "shell.execute_reply": "2024-08-12T10:35:20.178277Z" + "iopub.execute_input": "2024-08-12T18:56:08.623509Z", + "iopub.status.busy": "2024-08-12T18:56:08.623124Z", + "iopub.status.idle": "2024-08-12T18:58:01.771753Z", + "shell.execute_reply": "2024-08-12T18:58:01.771037Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34f053a0e82b47f29b9b2f6a619f4c72", + "model_id": "a781e7b0a1eb4996a753d8f47a0d6cd0", "version_major": 2, "version_minor": 0 }, @@ -1108,10 +1108,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.181523Z", - "iopub.status.busy": "2024-08-12T10:35:20.181116Z", - "iopub.status.idle": "2024-08-12T10:35:20.637093Z", - "shell.execute_reply": "2024-08-12T10:35:20.636521Z" + "iopub.execute_input": "2024-08-12T18:58:01.774355Z", + "iopub.status.busy": "2024-08-12T18:58:01.773772Z", + "iopub.status.idle": "2024-08-12T18:58:02.253989Z", + "shell.execute_reply": "2024-08-12T18:58:02.253342Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.639735Z", - "iopub.status.busy": "2024-08-12T10:35:20.639339Z", - "iopub.status.idle": "2024-08-12T10:35:20.700448Z", - "shell.execute_reply": "2024-08-12T10:35:20.699879Z" + "iopub.execute_input": "2024-08-12T18:58:02.256482Z", + "iopub.status.busy": "2024-08-12T18:58:02.256118Z", + "iopub.status.idle": "2024-08-12T18:58:02.318086Z", + "shell.execute_reply": "2024-08-12T18:58:02.317530Z" } }, "outputs": [ @@ -1364,10 +1364,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.702827Z", - "iopub.status.busy": "2024-08-12T10:35:20.702336Z", - "iopub.status.idle": "2024-08-12T10:35:20.711028Z", - "shell.execute_reply": "2024-08-12T10:35:20.710503Z" + "iopub.execute_input": "2024-08-12T18:58:02.320656Z", + "iopub.status.busy": "2024-08-12T18:58:02.320122Z", + "iopub.status.idle": "2024-08-12T18:58:02.329554Z", + "shell.execute_reply": "2024-08-12T18:58:02.329055Z" } }, "outputs": [ @@ -1497,10 +1497,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.713060Z", - "iopub.status.busy": "2024-08-12T10:35:20.712755Z", - "iopub.status.idle": "2024-08-12T10:35:20.717256Z", - "shell.execute_reply": "2024-08-12T10:35:20.716822Z" + "iopub.execute_input": "2024-08-12T18:58:02.331983Z", + "iopub.status.busy": "2024-08-12T18:58:02.331537Z", + "iopub.status.idle": "2024-08-12T18:58:02.336399Z", + "shell.execute_reply": "2024-08-12T18:58:02.335919Z" }, "nbsphinx": "hidden" }, @@ -1546,10 +1546,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.719137Z", - "iopub.status.busy": "2024-08-12T10:35:20.718967Z", - "iopub.status.idle": "2024-08-12T10:35:21.245859Z", - "shell.execute_reply": "2024-08-12T10:35:21.245304Z" + "iopub.execute_input": "2024-08-12T18:58:02.338459Z", + "iopub.status.busy": "2024-08-12T18:58:02.338116Z", + "iopub.status.idle": "2024-08-12T18:58:02.833078Z", + "shell.execute_reply": "2024-08-12T18:58:02.832432Z" } }, "outputs": [ @@ -1584,10 +1584,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:21.248532Z", - "iopub.status.busy": "2024-08-12T10:35:21.248103Z", - "iopub.status.idle": "2024-08-12T10:35:21.257809Z", - "shell.execute_reply": "2024-08-12T10:35:21.257321Z" + "iopub.execute_input": "2024-08-12T18:58:02.835684Z", + "iopub.status.busy": "2024-08-12T18:58:02.835299Z", + "iopub.status.idle": "2024-08-12T18:58:02.844200Z", + "shell.execute_reply": "2024-08-12T18:58:02.843719Z" } }, "outputs": [ @@ -1754,10 +1754,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:21.259908Z", - "iopub.status.busy": "2024-08-12T10:35:21.259732Z", - "iopub.status.idle": "2024-08-12T10:35:21.266967Z", - "shell.execute_reply": "2024-08-12T10:35:21.266442Z" + "iopub.execute_input": "2024-08-12T18:58:02.846427Z", + "iopub.status.busy": "2024-08-12T18:58:02.846066Z", + "iopub.status.idle": "2024-08-12T18:58:02.853397Z", + "shell.execute_reply": "2024-08-12T18:58:02.852926Z" }, "nbsphinx": "hidden" }, @@ -1833,10 +1833,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:21.269269Z", - "iopub.status.busy": "2024-08-12T10:35:21.268808Z", - "iopub.status.idle": "2024-08-12T10:35:22.015755Z", - "shell.execute_reply": "2024-08-12T10:35:22.015219Z" + "iopub.execute_input": "2024-08-12T18:58:02.855444Z", + "iopub.status.busy": "2024-08-12T18:58:02.855103Z", + "iopub.status.idle": "2024-08-12T18:58:03.646581Z", + "shell.execute_reply": "2024-08-12T18:58:03.645923Z" } }, "outputs": [ @@ -1873,10 +1873,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.018300Z", - "iopub.status.busy": "2024-08-12T10:35:22.017951Z", - "iopub.status.idle": "2024-08-12T10:35:22.032830Z", - "shell.execute_reply": "2024-08-12T10:35:22.032325Z" + "iopub.execute_input": "2024-08-12T18:58:03.649104Z", + "iopub.status.busy": "2024-08-12T18:58:03.648717Z", + "iopub.status.idle": "2024-08-12T18:58:03.665682Z", + "shell.execute_reply": "2024-08-12T18:58:03.665186Z" } }, "outputs": [ @@ -2033,10 +2033,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.035102Z", - "iopub.status.busy": "2024-08-12T10:35:22.034759Z", - "iopub.status.idle": "2024-08-12T10:35:22.040225Z", - "shell.execute_reply": "2024-08-12T10:35:22.039787Z" + "iopub.execute_input": "2024-08-12T18:58:03.668086Z", + "iopub.status.busy": "2024-08-12T18:58:03.667726Z", + "iopub.status.idle": "2024-08-12T18:58:03.673416Z", + "shell.execute_reply": "2024-08-12T18:58:03.672968Z" }, "nbsphinx": "hidden" }, @@ -2081,10 +2081,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.042322Z", - "iopub.status.busy": "2024-08-12T10:35:22.041997Z", - "iopub.status.idle": "2024-08-12T10:35:22.502792Z", - "shell.execute_reply": "2024-08-12T10:35:22.501808Z" + "iopub.execute_input": "2024-08-12T18:58:03.675575Z", + "iopub.status.busy": "2024-08-12T18:58:03.675237Z", + "iopub.status.idle": "2024-08-12T18:58:04.071158Z", + "shell.execute_reply": "2024-08-12T18:58:04.070413Z" } }, "outputs": [ @@ -2166,10 +2166,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.505357Z", - "iopub.status.busy": "2024-08-12T10:35:22.505162Z", - "iopub.status.idle": "2024-08-12T10:35:22.515712Z", - "shell.execute_reply": "2024-08-12T10:35:22.515169Z" + "iopub.execute_input": "2024-08-12T18:58:04.074551Z", + "iopub.status.busy": "2024-08-12T18:58:04.073757Z", + "iopub.status.idle": "2024-08-12T18:58:04.083617Z", + "shell.execute_reply": "2024-08-12T18:58:04.083182Z" } }, "outputs": [ @@ -2297,10 +2297,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.518152Z", - "iopub.status.busy": "2024-08-12T10:35:22.517960Z", - "iopub.status.idle": "2024-08-12T10:35:22.523759Z", - "shell.execute_reply": "2024-08-12T10:35:22.523192Z" + "iopub.execute_input": "2024-08-12T18:58:04.085975Z", + "iopub.status.busy": "2024-08-12T18:58:04.085795Z", + "iopub.status.idle": "2024-08-12T18:58:04.090563Z", + "shell.execute_reply": "2024-08-12T18:58:04.089872Z" }, "nbsphinx": "hidden" }, @@ -2337,10 +2337,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.526113Z", - "iopub.status.busy": "2024-08-12T10:35:22.525925Z", - "iopub.status.idle": "2024-08-12T10:35:22.733246Z", - "shell.execute_reply": "2024-08-12T10:35:22.732666Z" + "iopub.execute_input": "2024-08-12T18:58:04.092832Z", + "iopub.status.busy": "2024-08-12T18:58:04.092657Z", + "iopub.status.idle": "2024-08-12T18:58:04.277820Z", + "shell.execute_reply": "2024-08-12T18:58:04.277192Z" } }, "outputs": [ @@ -2382,10 +2382,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.735513Z", - "iopub.status.busy": "2024-08-12T10:35:22.735345Z", - "iopub.status.idle": "2024-08-12T10:35:22.743038Z", - "shell.execute_reply": "2024-08-12T10:35:22.742595Z" + "iopub.execute_input": "2024-08-12T18:58:04.280489Z", + "iopub.status.busy": "2024-08-12T18:58:04.280004Z", + "iopub.status.idle": "2024-08-12T18:58:04.288229Z", + "shell.execute_reply": "2024-08-12T18:58:04.287768Z" } }, "outputs": [ @@ -2410,47 +2410,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2471,10 +2471,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.744991Z", - "iopub.status.busy": "2024-08-12T10:35:22.744832Z", - "iopub.status.idle": "2024-08-12T10:35:22.937179Z", - "shell.execute_reply": "2024-08-12T10:35:22.936681Z" + "iopub.execute_input": "2024-08-12T18:58:04.290241Z", + "iopub.status.busy": "2024-08-12T18:58:04.289960Z", + "iopub.status.idle": "2024-08-12T18:58:04.490578Z", + "shell.execute_reply": "2024-08-12T18:58:04.489977Z" } }, "outputs": [ @@ -2514,10 +2514,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.939341Z", - "iopub.status.busy": "2024-08-12T10:35:22.939183Z", - "iopub.status.idle": "2024-08-12T10:35:22.943609Z", - "shell.execute_reply": "2024-08-12T10:35:22.943151Z" + "iopub.execute_input": "2024-08-12T18:58:04.492976Z", + "iopub.status.busy": "2024-08-12T18:58:04.492644Z", + "iopub.status.idle": "2024-08-12T18:58:04.497183Z", + "shell.execute_reply": "2024-08-12T18:58:04.496596Z" }, "nbsphinx": "hidden" }, @@ -2554,7 +2554,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "050f0e1e40f94f6caba3e0f41a21d9a9": { + "03e1af4ff1e84901b1a6204851b2a18a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2607,56 +2607,7 @@ "width": null } }, - "061eee76a3a24a79baa0cd66b7176b98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_90df698f70f74395b78c4545a06264b4", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_655b10b948974f7f87f81c7bfa23ce0d", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "062ebfae188a4deda8cbf155c6b1e813": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8323bc18e50a44b085c885ca6b12a4a6", - "placeholder": "​", - "style": "IPY_MODEL_f5f27a9d088946cdb7ec1fbf69ccb020", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1257.10it/s]" - } - }, - "069e2f7a59ce43e49d604a293ef5ff5e": { + "05bc08c6e3e4413385afb573c9bcbf24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2672,46 +2623,49 @@ "description_width": "" } }, - "094b5a63409c4832a9280e3e77ebf8c6": { + "0850e4eeafff46e2b2f8a41bb99ae35c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_693092ccb52d4ce5a63d4a2174c8f259", - "placeholder": "​", - "style": "IPY_MODEL_fc0a1aa0c6cf46cfa476b5f7e2175769", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.94it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "09c1b0e3cfa84b0591fec49a549193c0": { + "092583d713a644899085990919e92801": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a54630e7f25e4f7c898e29c4a7652252", + "IPY_MODEL_e6ca8e901e904830a7d69136598543ad", + "IPY_MODEL_d2c8ee83c4df4ca3b0bd2caaeeed106f" + ], + "layout": "IPY_MODEL_d4e2e8bbb9764cba8af70f10d847218d", + "tabbable": null, + "tooltip": null } }, - "0c7c8de3aee0459eafac0111bd69a153": { + "0b0f923eb2ec4f5a98793e7a0cbaa33b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2727,35 +2681,65 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14b738fb959149c0a77186ad6d4e2aeb", - "max": 40.0, + "layout": "IPY_MODEL_0e9da4ae20e34b23a754e1c5b7dd6158", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_88890e4bba3a43c6839fa256217037ff", + "style": "IPY_MODEL_d242722a70fc416293e276b0f8401bff", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "0c8cb70aa3444e7a9f2e276faba04b24": { + "0b6c4ed7790c4cdf90d4f247f1c02888": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13382556965142d7a98cfc708848a163", + "IPY_MODEL_8cff9cca7e004cfb8c91929a84823c80", + "IPY_MODEL_a2d81fde3fec467b9ea8d8892f574b29" + ], + "layout": "IPY_MODEL_c1749dc1d02a4dcb92d90af0d098640c", + "tabbable": null, + "tooltip": null + } + }, + "0e98a483d8634a7c9c26dc079f884fe5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e72c046ab76b45fdb76f44fc35dda60c", + "IPY_MODEL_19baf9a900de4030ae859000713b5ff6", + "IPY_MODEL_e479f7639c9949bca96c2de235717132" + ], + "layout": "IPY_MODEL_82f10478222b43c1a6faa54b3900df75", + "tabbable": null, + "tooltip": null } }, - "0ddb4b1211904a10aa548c33caee6aed": { + "0e9da4ae20e34b23a754e1c5b7dd6158": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2808,7 +2792,7 @@ "width": null } }, - "14b738fb959149c0a77186ad6d4e2aeb": { + "0eb5595e457b4ef19f5c2a46b683aa7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2861,30 +2845,7 @@ "width": null } }, - "170a1618ce4f40039a860ae398484c7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9906144508c4f6f90da6edacecadc26", - "placeholder": "​", - "style": "IPY_MODEL_6f4e70feb4b34d5db54a97d67aff4b7f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.87it/s]" - } - }, - "17d88d606d374f79a7f9ed8be66d62bc": { + "0f249386ded0418c87d07bd42105db23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2937,51 +2898,71 @@ "width": null } }, - "1888f5ab59624b249135ca08f763d2f2": { + "1081f9bbd7184bd68161f881b9c1c2e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "13382556965142d7a98cfc708848a163": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_050f0e1e40f94f6caba3e0f41a21d9a9", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8046a22c390a4790a21018f476e9a1f3", + "layout": "IPY_MODEL_6d79271a2f4f4993b957f27f962d1cf8", + "placeholder": "​", + "style": "IPY_MODEL_e0401f9ed4cb45529a0175d5441fdc87", "tabbable": null, "tooltip": null, - "value": 9015.0 + "value": "Computing checksums: 100%" } }, - "194aeb115f294dd081a7dcf4d3442b34": { + "1561d0507e524fcfab27baffd1993d1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8dc4e546ecdb4bc4bde15a14419d53ce", + "placeholder": "​", + "style": "IPY_MODEL_614594c7c757441d8a1b3df076dd46ca", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 28.6MB/s]" } }, - "1bf4baa646be4ef4b42842b34d57e605": { + "1788966d26a6427ca2e657ccbccc5011": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2996,16 +2977,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_206cd1099952440a80fab705ba066b49", - "IPY_MODEL_0c7c8de3aee0459eafac0111bd69a153", - "IPY_MODEL_094b5a63409c4832a9280e3e77ebf8c6" + "IPY_MODEL_aac056f3f9bb467c85037cb9bd254db3", + "IPY_MODEL_dd9cf14362e74cbeb505d58baafe4cb5", + "IPY_MODEL_cee8c00669dd42ac97578336d38e5dbc" ], - "layout": "IPY_MODEL_32a281ca5f9a4e0e879c56bc4f1ae1e5", + "layout": "IPY_MODEL_e3858df4be1243fca435f20a3e321386", "tabbable": null, "tooltip": null } }, - "1c7e2745f8f7403695df2dab5d5b611a": { + "180ebdcc0ed942e39af0cd94c26cb378": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3058,51 +3039,7 @@ "width": null } }, - "1d1726a8bb644d8abcfe68a6e01dac4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1d3c4b825e3147989495a0e274377e0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c76f90aede094a2bb529e852ce14a1ef", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8b6f71a4d2174d45b5f0da5575a69f92", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "1d3c8852cb9b4d0994b952c07bb057d8": { + "195ca67d0cc54ba5975093e841165e8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3155,60 +3092,129 @@ "width": null } }, - "1f847bdb68fa4d6ca3ba027f2f973e6f": { - "model_module": "@jupyter-widgets/base", + "19baf9a900de4030ae859000713b5ff6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03e1af4ff1e84901b1a6204851b2a18a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b80d5f025b154036ad476b78a3460637", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "1b23bb3df60a4375be60c234c43b900a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b463e1dc5ed4f379eb905f713f718ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b6e8ffcd2bb4a5b8e2dca0ea6b86dcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f9027ac4265465c93cb18dc1bd30292": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_448dfde1395042b89712b1309cd3882d", + "IPY_MODEL_52c2a38c4cb743949e5a8b4a6cd9555e", + "IPY_MODEL_626a0dbcb7154d44b9a71cfc189fce06" + ], + "layout": "IPY_MODEL_dd7d1f5460674bb8be0751ade513c041", + "tabbable": null, + "tooltip": null + } + }, + "226bc1f5af2545f4b6adb4bb205bd6fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2024ae051e814e749e5840205c0354d5": { + "229a9b576bca4951ad662091eaa4d6d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3261,30 +3267,33 @@ "width": null } }, - "206cd1099952440a80fab705ba066b49": { + "23fb51adebf34db494ea75cef3b24adf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2c7a5fc0f0f4ed6823022c936c59d4e", - "placeholder": "​", - "style": "IPY_MODEL_f747d8cff30e48638ca4b6a8b62e1fc8", + "layout": "IPY_MODEL_7938edc743fe424583a3551229629138", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68056f0d9e7a4ab39f82b9b6689a9858", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 30931277.0 } }, - "211a1d0f7e994da3abdf9c87d144d826": { + "258f0101c44a49e9ba654fc1977d21be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3337,39 +3346,7 @@ "width": null } }, - "219f02688f1c45028f227c9b6864c6b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2261458f8c6d47aa8268533e772e4c15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "23b32b2ad0ea490eb3636fac11964542": { + "26642ec4e55f43469352c6e25a75ab63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3422,57 +3399,25 @@ "width": null } }, - "24950e57ccc94aaaa079c9d5b86c6053": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d1946623097a4ad78743cc2dfe72c9e1", - "IPY_MODEL_1888f5ab59624b249135ca08f763d2f2", - "IPY_MODEL_4c01338a37c743ef886e2b772e01356a" - ], - "layout": "IPY_MODEL_2024ae051e814e749e5840205c0354d5", - "tabbable": null, - "tooltip": null - } - }, - "28db2d2bcb534e91afddd30a3b5732dd": { + "27b8f80c76864c9b8698b6d171d3ee92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6029339687a24aaab92f58dbb90a9a2c", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09c1b0e3cfa84b0591fec49a549193c0", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2cbc780bf0f941f3b375c0a00bd30ee9": { + "2b1a54f4f88c479b8d18057635b324a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3490,30 +3435,23 @@ "text_color": null } }, - "2f9e64dc3c6449d4b0180bcb72af8029": { + "2b9f7515600a4c61819b0947e75c75e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_835e200b7dbb452491f96613a3d68582", - "placeholder": "​", - "style": "IPY_MODEL_2cbc780bf0f941f3b375c0a00bd30ee9", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2fb5148d5fd04234a5adddeecede3131": { + "2e1e47bdc3bc4e65b0f63284588760ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3528,39 +3466,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c86ac35d56b4cb1b9a6c8c81f2b9d73", + "layout": "IPY_MODEL_64c88ebcf9774ef695b3e8f8bacc4670", "placeholder": "​", - "style": "IPY_MODEL_ac59c63878b24875a6a698b3193950b4", + "style": "IPY_MODEL_7ae7ca33d5f6482097a76827159e68f5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.59it/s]" - } - }, - "31a3859cc0e34abe854259d21e40f2b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c3ff3642d4de49349f69b03661c00aed", - "IPY_MODEL_061eee76a3a24a79baa0cd66b7176b98", - "IPY_MODEL_9d735577298140d6bd60a896468f75ac" - ], - "layout": "IPY_MODEL_55ffa8d9bd174552baa854c8a1ab0aeb", - "tabbable": null, - "tooltip": null + "value": " 10000/10000 [00:00<00:00, 249954.05 examples/s]" } }, - "32a281ca5f9a4e0e879c56bc4f1ae1e5": { + "2e858bbdd1f34b60ba4792a9b6e37a32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3613,7 +3527,7 @@ "width": null } }, - "332d853f3c6d4038bce23ffbe32553e0": { + "31267b316272490e9b90f40383912e0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3666,71 +3580,78 @@ "width": null } }, - "34f053a0e82b47f29b9b2f6a619f4c72": { - "model_module": "@jupyter-widgets/controls", + "334ec88ca68249d6a17f1c98353f4760": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dfffc444cdb640d4a9d712253b6edfa0", - "IPY_MODEL_41ec7bae4da74af39b4e8e1a0ad11736", - "IPY_MODEL_062ebfae188a4deda8cbf155c6b1e813" - ], - "layout": "IPY_MODEL_9991e131478646aba449193d96a55a57", - "tabbable": null, - "tooltip": null - } - }, - "35bfdb221038403b86fc1c1dfba20630": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9aea7f50b8a64c5089b63f2e59596737", - "IPY_MODEL_c927a2fd98ee422da94eb0ac1d179320", - "IPY_MODEL_a88d54dcd75443e4adf63e584faa623b" - ], - "layout": "IPY_MODEL_c81eaad18b554cdbbd128330bc9705e1", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "35ccdf1d9e91436fb82de63e8a8e06dd": { + "34b1ee147a6a418db24a148515371d8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a97ba1affa44cee81db93c6e61a8d5e": { + "3c6b207f678349e08f3e154f0eb49502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3783,7 +3704,7 @@ "width": null } }, - "3befe646d3934a3aa08e0a70a188a153": { + "3ddb2dfef68a4994959067567c333650": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3836,7 +3757,7 @@ "width": null } }, - "3db3123a400c4f229af20389ad3520d2": { + "429769e0a6c049ce8281d26731a8e999": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3851,118 +3772,141 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c486ad2141e04d7e9fe35aa3fd2474cb", + "layout": "IPY_MODEL_a0afbd97e6574163a30df65c8507d62a", "placeholder": "​", - "style": "IPY_MODEL_ed2a70f9cbbb432781a33bb137c5fe76", + "style": "IPY_MODEL_4b7bd7d44dc24c47b493f5a1eb6e9c84", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "Generating test split: 100%" } }, - "3f27976bac3c458aa1b2cc0fb4b52d2c": { + "43ed240044d24550b447c68e5d5344e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4e05a30d55ad46afa6049432887d8b9a", - "IPY_MODEL_ff306473844b44168fdb05050fbaa3cd", - "IPY_MODEL_9f386e7f08b44099b26554458760f42b" - ], - "layout": "IPY_MODEL_f8117f94932241b49ad3017baa3b1708", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63d167d94d694beeb447346ccf85486c", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7108294ecfd7448aa6bac320dec74f2f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 10000.0 } }, - "40cc1a682eb84007a12d44ba00d8e59d": { - "model_module": "@jupyter-widgets/base", + "448dfde1395042b89712b1309cd3882d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73c0ebaad59a47219241654ae01d5399", + "placeholder": "​", + "style": "IPY_MODEL_2b1a54f4f88c479b8d18057635b324a6", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "41ec7bae4da74af39b4e8e1a0ad11736": { + "4a6750b71c2a44989a8f33a24ac2c66a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78ee05e703164da7a1242a32c2fe5888", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c3eb3db9442048f197e1a77c1097d301", + "layout": "IPY_MODEL_c7003b67bae54d6493d405d5825e6c2f", + "placeholder": "​", + "style": "IPY_MODEL_ab4c62e317e8407e8310c4ca779a8ccb", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 60000/60000 [00:52<00:00, 1210.85it/s]" } }, - "42b1e7be991546bfa6284a9f6a270c5e": { + "4b7bd7d44dc24c47b493f5a1eb6e9c84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4c96354ab4bf4a0e8e3b32e7110caa88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4e678dda95bc4173a6e214a04a4823db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f35b74971a946cc84bd8f03d3bfbcc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4015,92 +3959,165 @@ "width": null } }, - "43d5c56839bb4f48bef27dd0bd134ac1": { + "4f89d806ff8c4eb8979271cf81ddabb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b028fe5886ed407daffa2e8e1d1b33e4", + "IPY_MODEL_f76fd1f88dbf476396c45b3dee352fb6", + "IPY_MODEL_9bc5531d8f484e09b9742164abaaf083" + ], + "layout": "IPY_MODEL_334ec88ca68249d6a17f1c98353f4760", + "tabbable": null, + "tooltip": null } }, - "441f7c2b1d4140f186a4b360c9fab017": { + "52340a16943f47a2bf680589345a1330": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c78acbd1ac704666909b934f2f48e3da", + "IPY_MODEL_8b6ae31d5ed140e5a2dd85b34a8b3ed6", + "IPY_MODEL_80fa794bca154ef0b97df52f7c6dfa57" + ], + "layout": "IPY_MODEL_f5a3f6f1d4394ab2b30d593e3d4a3ca4", + "tabbable": null, + "tooltip": null + } + }, + "52c2a38c4cb743949e5a8b4a6cd9555e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53d0052e73f048148debd9352ce17f64", - "placeholder": "​", - "style": "IPY_MODEL_bc8279dc52324a12b433c3eb7960a2a2", + "layout": "IPY_MODEL_841829cb249d4a5eb047c2e75c6fe580", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c89134e7296d447eaf08610ff1a6a232", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:01<00:00, 4.37MB/s]" + "value": 40.0 } }, - "44c54692880345f59ae3ced9048f8e20": { + "5530f4d814dc4873935b56a3bc07d13e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd39e801b334434797f4c134d3921fd0", + "IPY_MODEL_84e4cccf169243eeb4127b5e748abd0f", + "IPY_MODEL_7f47461a7087419da7540f4f6890cc1e" + ], + "layout": "IPY_MODEL_180ebdcc0ed942e39af0cd94c26cb378", + "tabbable": null, + "tooltip": null + } + }, + "5536055315cc48758ef861d7a11a8759": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b238dcab69e48aeb560ceceed894516", - "placeholder": "​", - "style": "IPY_MODEL_bfc788895f3e4ac99ff89696a72123e1", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b47bea41f8f84e6a8070d5f0653a56e5", + "IPY_MODEL_7c3ce334f53e4d86b0bb0364340f2c02", + "IPY_MODEL_8a0e283ca7244e77909f679a4372400b" + ], + "layout": "IPY_MODEL_258f0101c44a49e9ba654fc1977d21be", + "tabbable": null, + "tooltip": null + } + }, + "55ba43c5200241d696b3e8b411715ea8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4600b1651fe94c96a63f5f402ffeb0ab": { + "585f22a74bcb41f38fa6559cedba7370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3befe646d3934a3aa08e0a70a188a153", - "placeholder": "​", - "style": "IPY_MODEL_bc1aed3122144934903681458e457bf8", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4686b29b240141f7956b546c1f2e9e83": { + "5b16cac5ec7e491ca8aa0e70572e0512": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4153,7 +4170,33 @@ "width": null } }, - "4bc42b29769b4a4aa8b4ce01236e62d2": { + "5db2d3571069404f85b68e19dd59d0a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6306875f3fb34ae6996e52b23bdd9fc0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ac1426c20e3841248403ef6ab4ec4818", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5f0b04d90b864e218b0b1111518df0cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4206,92 +4249,25 @@ "width": null } }, - "4c01338a37c743ef886e2b772e01356a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_17d88d606d374f79a7f9ed8be66d62bc", - "placeholder": "​", - "style": "IPY_MODEL_52d596f308bf4f45b80e83f66d3644d7", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" - } - }, - "4e05a30d55ad46afa6049432887d8b9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f67814f0e6b24425bdf25f7f05f08ccf", - "placeholder": "​", - "style": "IPY_MODEL_de513cdaed394180886bee1974c93ce2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "4eb3982370ac42b992966c7a96cc2a47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_541973876cde496bb6e94fa33dc55140", - "placeholder": "​", - "style": "IPY_MODEL_66b18e0944474821880d3bfb36e60114", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 274934.56 examples/s]" - } - }, - "4eb8b10ee55a4e899df1e41b2daa3ab0": { + "602fa811c1884012bb0e46f5225ddab1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "52d596f308bf4f45b80e83f66d3644d7": { + "614594c7c757441d8a1b3df076dd46ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4309,7 +4285,7 @@ "text_color": null } }, - "535e01c6bf504b4cb054ec6d754951fc": { + "626a0dbcb7154d44b9a71cfc189fce06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4324,15 +4300,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c7e2745f8f7403695df2dab5d5b611a", + "layout": "IPY_MODEL_bcbf9e2a1ee3447da04d8e96fb0f841a", "placeholder": "​", - "style": "IPY_MODEL_1d1726a8bb644d8abcfe68a6e01dac4e", + "style": "IPY_MODEL_585f22a74bcb41f38fa6559cedba7370", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 675.74it/s]" + "value": " 40/40 [00:00<00:00, 58.60it/s]" } }, - "53d0052e73f048148debd9352ce17f64": { + "6306875f3fb34ae6996e52b23bdd9fc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4385,7 +4361,7 @@ "width": null } }, - "541973876cde496bb6e94fa33dc55140": { + "63d167d94d694beeb447346ccf85486c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4438,7 +4414,7 @@ "width": null } }, - "55ffa8d9bd174552baa854c8a1ab0aeb": { + "64c88ebcf9774ef695b3e8f8bacc4670": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4491,53 +4467,7 @@ "width": null } }, - "5d08f87fef9649c8a14840522a0823ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b46003cc199f415ca6fb8a875a8ec625", - "placeholder": "​", - "style": "IPY_MODEL_b89bf820b408447aaca183add33b3385", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5fa684b3fcdd44e091e8fd2bd0c12461": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c46e51a76796424db3107165768eabeb", - "placeholder": "​", - "style": "IPY_MODEL_787c9141742943f0bf6aaf4801e00226", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 238740.02 examples/s]" - } - }, - "6029339687a24aaab92f58dbb90a9a2c": { + "65aecf93ea5146a6a0f4b1d515383344": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4590,25 +4520,60 @@ "width": null } }, - "6445f463bca341038b901a4d9ca616f1": { - "model_module": "@jupyter-widgets/controls", + "666a6e9fe010472c9ebe67d1aa30da02": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "655b10b948974f7f87f81c7bfa23ce0d": { + "66e078e86f8045e986016510e65afbed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4624,72 +4589,23 @@ "description_width": "" } }, - "659ce9293f064abe8640605a65b6aeb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fcfd3e8181d242b0badc716ec5884378", - "IPY_MODEL_28db2d2bcb534e91afddd30a3b5732dd", - "IPY_MODEL_5fa684b3fcdd44e091e8fd2bd0c12461" - ], - "layout": "IPY_MODEL_824f74f519a34fc19f92843567a9592c", - "tabbable": null, - "tooltip": null - } - }, - "6683a2f1a5804d0eac86b0226e09ce2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_40cc1a682eb84007a12d44ba00d8e59d", - "placeholder": "​", - "style": "IPY_MODEL_dd229a032b574962bf97ffe39211328c", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "66b18e0944474821880d3bfb36e60114": { + "68056f0d9e7a4ab39f82b9b6689a9858": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "693092ccb52d4ce5a63d4a2174c8f259": { + "699541396fda4fbcb0e28d14b6be4019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4742,43 +4658,7 @@ "width": null } }, - "6bb1bc8fb0c84a03b5e37a4b5de4e736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6f4e70feb4b34d5db54a97d67aff4b7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7550f2d102ee4b92a1572712f7261c9c": { + "6d79271a2f4f4993b957f27f962d1cf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4831,33 +4711,104 @@ "width": null } }, - "780e96fc62454e888f0e30931336ab5e": { + "6ee42831ebd04c1abdb02a45dd8b1c41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f30a6d09323d42b6919e65f28b0ed1c1", + "IPY_MODEL_5db2d3571069404f85b68e19dd59d0a2", + "IPY_MODEL_8c5e89b9ed794036ad43810fcc0f7fbd" + ], + "layout": "IPY_MODEL_eabb1d09e93a493ca119964fca81426e", + "tabbable": null, + "tooltip": null + } + }, + "71003c4f5c414facb488663db0febcb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7108294ecfd7448aa6bac320dec74f2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7156eac180cd40748551472472a5e725": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72363f554e3e4f1a9080a1a4a2688a29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_93ee81b92dd5469aa21e1da5e3d387b1", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_35ccdf1d9e91436fb82de63e8a8e06dd", + "layout": "IPY_MODEL_774c78a418fa44b69cd0e129fbbf47dc", + "placeholder": "​", + "style": "IPY_MODEL_1b6e8ffcd2bb4a5b8e2dca0ea6b86dcc", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Generating train split: 100%" } }, - "7859271f5ada491ca18d79aab57ac568": { + "73c0ebaad59a47219241654ae01d5399": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4910,25 +4861,7 @@ "width": null } }, - "787c9141742943f0bf6aaf4801e00226": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "78ee05e703164da7a1242a32c2fe5888": { + "774c78a418fa44b69cd0e129fbbf47dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4981,49 +4914,7 @@ "width": null } }, - "791dc4f1fa2e4226ae567d555fc24805": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_44c54692880345f59ae3ced9048f8e20", - "IPY_MODEL_1d3c4b825e3147989495a0e274377e0b", - "IPY_MODEL_170a1618ce4f40039a860ae398484c7f" - ], - "layout": "IPY_MODEL_1d3c8852cb9b4d0994b952c07bb057d8", - "tabbable": null, - "tooltip": null - } - }, - "7ab0569b036f42be8e24943aadcd1621": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c7fd464aadc4879ae14ae50a809b856": { + "77bdd0f98ea841d4984e184120b9742f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,7 +4967,7 @@ "width": null } }, - "7fbe69e833c54364870397fb035584b5": { + "7938edc743fe424583a3551229629138": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5129,41 +5020,51 @@ "width": null } }, - "8046a22c390a4790a21018f476e9a1f3": { + "7ae7ca33d5f6482097a76827159e68f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "816259c1ca754349befb5d97e1185a2f": { + "7c3ce334f53e4d86b0bb0364340f2c02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6dea26ce53b4010a864c89a949b7af0", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e7265ed3c944a49950cd1493a53cbb3", + "tabbable": null, + "tooltip": null, + "value": 9015.0 } }, - "824f74f519a34fc19f92843567a9592c": { + "7cd4460109d24347ba8a171664a55ce3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5216,7 +5117,69 @@ "width": null } }, - "82bb29b1154c4f96b68e22299ab1d951": { + "7e7265ed3c944a49950cd1493a53cbb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f47461a7087419da7540f4f6890cc1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd8021f04cc44f8eac42379b0b15ece1", + "placeholder": "​", + "style": "IPY_MODEL_4c96354ab4bf4a0e8e3b32e7110caa88", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 24.9MB/s]" + } + }, + "80fa794bca154ef0b97df52f7c6dfa57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a408fb1963845d0bf3a3f7513b65c0c", + "placeholder": "​", + "style": "IPY_MODEL_602fa811c1884012bb0e46f5225ddab1", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.36it/s]" + } + }, + "82f10478222b43c1a6faa54b3900df75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5269,7 +5232,7 @@ "width": null } }, - "8323bc18e50a44b085c885ca6b12a4a6": { + "841829cb249d4a5eb047c2e75c6fe580": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5322,7 +5285,7 @@ "width": null } }, - "835e200b7dbb452491f96613a3d68582": { + "8492737842204d3e82ec36044e509919": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5375,23 +5338,56 @@ "width": null } }, - "88890e4bba3a43c6839fa256217037ff": { + "84e4cccf169243eeb4127b5e748abd0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cbe714862274296ac0dcf011a3eaa2b", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b9f7515600a4c61819b0947e75c75e0", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "8a0e283ca7244e77909f679a4372400b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f35b74971a946cc84bd8f03d3bfbcc0", + "placeholder": "​", + "style": "IPY_MODEL_71003c4f5c414facb488663db0febcb6", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.13MB/s]" } }, - "8b238dcab69e48aeb560ceceed894516": { + "8a408fb1963845d0bf3a3f7513b65c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5444,23 +5440,33 @@ "width": null } }, - "8b6f71a4d2174d45b5f0da5575a69f92": { + "8b6ae31d5ed140e5a2dd85b34a8b3ed6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_77bdd0f98ea841d4984e184120b9742f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_66e078e86f8045e986016510e65afbed", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "8e1a4c8b07ef4bc6a844046e5c1ec2d2": { + "8c5e89b9ed794036ad43810fcc0f7fbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5475,39 +5481,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_94ea11ff873e43e6b1679e5b21455dcd", + "layout": "IPY_MODEL_3ddb2dfef68a4994959067567c333650", "placeholder": "​", - "style": "IPY_MODEL_0c8cb70aa3444e7a9f2e276faba04b24", + "style": "IPY_MODEL_55ba43c5200241d696b3e8b411715ea8", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 41.0MB/s]" - } - }, - "8edaf5c5759040f08cbb3efa298b00c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d08f87fef9649c8a14840522a0823ef", - "IPY_MODEL_caddcee0c11648918da1dc284d00a733", - "IPY_MODEL_2fb5148d5fd04234a5adddeecede3131" - ], - "layout": "IPY_MODEL_4bc42b29769b4a4aa8b4ce01236e62d2", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 59.86it/s]" } }, - "90df698f70f74395b78c4545a06264b4": { + "8cbe714862274296ac0dcf011a3eaa2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5560,25 +5542,33 @@ "width": null } }, - "915b2de72e934c53b5769ae4fc9767af": { + "8cff9cca7e004cfb8c91929a84823c80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f249386ded0418c87d07bd42105db23", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_05bc08c6e3e4413385afb573c9bcbf24", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "92149d8be9a848bbb307f645477bd77c": { + "8dc4e546ecdb4bc4bde15a14419d53ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5631,23 +5621,25 @@ "width": null } }, - "93e0e54cd7c943569aa5ed63aa27d75c": { + "8ee04981fe4a453c8a3446c3e17f53df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "93ee81b92dd5469aa21e1da5e3d387b1": { + "911d5b0e02934260a9bda52a7fa9fded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5700,7 +5692,7 @@ "width": null } }, - "94ea11ff873e43e6b1679e5b21455dcd": { + "934ce542ebfd4cb9b3b8e5084ed6b700": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5753,7 +5745,31 @@ "width": null } }, - "99434eeea164499493fbe1c3c189f61d": { + "94289cd6e6de468db051fd838ba56323": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ec75feea5ef34cf68bd79ee7ff893b84", + "IPY_MODEL_23fb51adebf34db494ea75cef3b24adf", + "IPY_MODEL_1561d0507e524fcfab27baffd1993d1c" + ], + "layout": "IPY_MODEL_fab5e3871a7541b89cf8e8f2b9523a48", + "tabbable": null, + "tooltip": null + } + }, + "96b3e1cc1f194054b3ca13068dec8e68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5771,7 +5787,7 @@ "text_color": null } }, - "9991e131478646aba449193d96a55a57": { + "970f63679c1b4c0182d836bbc0afbc78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5824,7 +5840,7 @@ "width": null } }, - "99d2ef87ee6d4b0399d85ae87ea77234": { + "9916d3954dc14b88a11a89a058031385": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5877,7 +5893,33 @@ "width": null } }, - "9aea7f50b8a64c5089b63f2e59596737": { + "9a731289e7d34d82bba07cc4ecc69a27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0eb5595e457b4ef19f5c2a46b683aa7b", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ebda6c1b5b5147489c608dffb1d7ce5b", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9bc5531d8f484e09b9742164abaaf083": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5892,15 +5934,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f847bdb68fa4d6ca3ba027f2f973e6f", + "layout": "IPY_MODEL_65aecf93ea5146a6a0f4b1d515383344", "placeholder": "​", - "style": "IPY_MODEL_ecd3872c3cab43199312a7cf192fad53", + "style": "IPY_MODEL_d27bb8a222ab4802b4c042c66e4783a2", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 61.32it/s]" + } + }, + "9d7fd4fc98a34015b59f0cd80d108780": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d82a9defa064ff29f9a30db26021dbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b02bac34046843f3afd6f73cd396473a", + "placeholder": "​", + "style": "IPY_MODEL_1b463e1dc5ed4f379eb905f713f718ab", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 282530.96 examples/s]" } }, - "9c86ac35d56b4cb1b9a6c8c81f2b9d73": { + "a0afbd97e6574163a30df65c8507d62a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5948,84 +6031,12 @@ "overflow": null, "padding": null, "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9d735577298140d6bd60a896468f75ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdb5399c46854933aec0635ff11ee82b", - "placeholder": "​", - "style": "IPY_MODEL_816259c1ca754349befb5d97e1185a2f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.57it/s]" - } - }, - "9e6d69b0c89145529eb34adb7f0cb591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_211a1d0f7e994da3abdf9c87d144d826", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_069e2f7a59ce43e49d604a293ef5ff5e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "9f386e7f08b44099b26554458760f42b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d832ccbd6cb1441bb90c6724f6a97c58", - "placeholder": "​", - "style": "IPY_MODEL_6445f463bca341038b901a4d9ca616f1", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.78it/s]" + "top": null, + "visibility": null, + "width": null } }, - "a88d54dcd75443e4adf63e584faa623b": { + "a2d81fde3fec467b9ea8d8892f574b29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6040,15 +6051,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_abebc2eb21844fa397ca6871fc6ec8cf", + "layout": "IPY_MODEL_a4b373482e154bc2ba7e856d744aaa90", "placeholder": "​", - "style": "IPY_MODEL_99434eeea164499493fbe1c3c189f61d", + "style": "IPY_MODEL_e2883ad09bcb4ea99d6e9d1c292571c6", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.09it/s]" + "value": " 2/2 [00:00<00:00, 527.32it/s]" } }, - "abebc2eb21844fa397ca6871fc6ec8cf": { + "a4b373482e154bc2ba7e856d744aaa90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6101,49 +6112,30 @@ "width": null } }, - "ac59c63878b24875a6a698b3193950b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac8e9ae825dd46cda3caaf717ab3f457": { + "a54630e7f25e4f7c898e29c4a7652252": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6683a2f1a5804d0eac86b0226e09ce2f", - "IPY_MODEL_e3e736649315401c81b5ead3b4d531d0", - "IPY_MODEL_8e1a4c8b07ef4bc6a844046e5c1ec2d2" - ], - "layout": "IPY_MODEL_c889901543af4b20b0f364b5a9c00552", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f74157c274094c55a3fe2d8510370182", + "placeholder": "​", + "style": "IPY_MODEL_b1d37178cd8c458d964d95d85b1fd159", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "b46003cc199f415ca6fb8a875a8ec625": { + "a54f9ca235274d8bba826add2ea968de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6196,31 +6188,23 @@ "width": null } }, - "b559757c81a64cd58ea390bf437dd0ba": { + "a70884dc615e4fab8e12e07eb3556179": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f9e64dc3c6449d4b0180bcb72af8029", - "IPY_MODEL_c64d89a061bf4c47a85f82310c367108", - "IPY_MODEL_535e01c6bf504b4cb054ec6d754951fc" - ], - "layout": "IPY_MODEL_e2e91b9bdaf24cad81bd697fe523454f", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b7ff9d3e760d46ab9410530722e86f1c": { + "a781e7b0a1eb4996a753d8f47a0d6cd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6235,104 +6219,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4600b1651fe94c96a63f5f402ffeb0ab", - "IPY_MODEL_9e6d69b0c89145529eb34adb7f0cb591", - "IPY_MODEL_d212bb43e85445ddadf2aa7399f5ad9f" + "IPY_MODEL_dcdadeb295c745e591ee8b73f40c7778", + "IPY_MODEL_0b0f923eb2ec4f5a98793e7a0cbaa33b", + "IPY_MODEL_4a6750b71c2a44989a8f33a24ac2c66a" ], - "layout": "IPY_MODEL_82bb29b1154c4f96b68e22299ab1d951", + "layout": "IPY_MODEL_195ca67d0cc54ba5975093e841165e8f", "tabbable": null, "tooltip": null } }, - "b89bf820b408447aaca183add33b3385": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bc1aed3122144934903681458e457bf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bc8279dc52324a12b433c3eb7960a2a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfc788895f3e4ac99ff89696a72123e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c0948aa3ed46428ab068ab823f6cd605": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c2c7a5fc0f0f4ed6823022c936c59d4e": { + "aa84004d90c24929adbb06c6fcd8f347": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6385,7 +6281,48 @@ "width": null } }, - "c3eb3db9442048f197e1a77c1097d301": { + "aac056f3f9bb467c85037cb9bd254db3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_970f63679c1b4c0182d836bbc0afbc78", + "placeholder": "​", + "style": "IPY_MODEL_27b8f80c76864c9b8698b6d171d3ee92", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "ab4c62e317e8407e8310c4ca779a8ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ac1426c20e3841248403ef6ab4ec4818": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6401,7 +6338,7 @@ "description_width": "" } }, - "c3ff3642d4de49349f69b03661c00aed": { + "b028fe5886ed407daffa2e8e1d1b33e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6416,15 +6353,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42b1e7be991546bfa6284a9f6a270c5e", + "layout": "IPY_MODEL_8492737842204d3e82ec36044e509919", "placeholder": "​", - "style": "IPY_MODEL_e42616ef8baf4635bafbb430bd804f38", + "style": "IPY_MODEL_c3058f8b4c5a42a0a98a47c7f540cdcc", "tabbable": null, "tooltip": null, "value": "100%" } }, - "c46e51a76796424db3107165768eabeb": { + "b02bac34046843f3afd6f73cd396473a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6477,112 +6414,64 @@ "width": null } }, - "c486ad2141e04d7e9fe35aa3fd2474cb": { - "model_module": "@jupyter-widgets/base", + "b1d37178cd8c458d964d95d85b1fd159": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c59b31b3f35548939da5226d15fe98c0": { + "b47bea41f8f84e6a8070d5f0653a56e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_332d853f3c6d4038bce23ffbe32553e0", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4eb8b10ee55a4e899df1e41b2daa3ab0", + "layout": "IPY_MODEL_666a6e9fe010472c9ebe67d1aa30da02", + "placeholder": "​", + "style": "IPY_MODEL_1081f9bbd7184bd68161f881b9c1c2e8", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "Downloading readme: 100%" } }, - "c64d89a061bf4c47a85f82310c367108": { + "b80d5f025b154036ad476b78a3460637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a97ba1affa44cee81db93c6e61a8d5e", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43d5c56839bb4f48bef27dd0bd134ac1", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c76f90aede094a2bb529e852ce14a1ef": { + "bcbf9e2a1ee3447da04d8e96fb0f841a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6635,7 +6524,7 @@ "width": null } }, - "c81eaad18b554cdbbd128330bc9705e1": { + "c1749dc1d02a4dcb92d90af0d098640c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6688,7 +6577,25 @@ "width": null } }, - "c889901543af4b20b0f364b5a9c00552": { + "c3058f8b4c5a42a0a98a47c7f540cdcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c7003b67bae54d6493d405d5825e6c2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6741,59 +6648,142 @@ "width": null } }, - "c927a2fd98ee422da94eb0ac1d179320": { + "c78acbd1ac704666909b934f2f48e3da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7fbe69e833c54364870397fb035584b5", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_219f02688f1c45028f227c9b6864c6b1", + "layout": "IPY_MODEL_229a9b576bca4951ad662091eaa4d6d5", + "placeholder": "​", + "style": "IPY_MODEL_96b3e1cc1f194054b3ca13068dec8e68", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "caddcee0c11648918da1dc284d00a733": { + "c82f6087dbba4a5ea3ff8f6892bb1965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c89134e7296d447eaf08610ff1a6a232": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cee8c00669dd42ac97578336d38e5dbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7550f2d102ee4b92a1572712f7261c9c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2261458f8c6d47aa8268533e772e4c15", + "layout": "IPY_MODEL_26642ec4e55f43469352c6e25a75ab63", + "placeholder": "​", + "style": "IPY_MODEL_0850e4eeafff46e2b2f8a41bb99ae35c", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 59.21it/s]" + } + }, + "d242722a70fc416293e276b0f8401bff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d27bb8a222ab4802b4c042c66e4783a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d2c8ee83c4df4ca3b0bd2caaeeed106f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a54f9ca235274d8bba826add2ea968de", + "placeholder": "​", + "style": "IPY_MODEL_f2ffcd7fafda4b93ab30e7f1b11019ae", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.79it/s]" } }, - "cdb5399c46854933aec0635ff11ee82b": { + "d4e2e8bbb9764cba8af70f10d847218d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6846,30 +6836,31 @@ "width": null } }, - "d1946623097a4ad78743cc2dfe72c9e1": { + "d7183df8c95b49f89720bff1674cd315": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0ddb4b1211904a10aa548c33caee6aed", - "placeholder": "​", - "style": "IPY_MODEL_6bb1bc8fb0c84a03b5e37a4b5de4e736", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72363f554e3e4f1a9080a1a4a2688a29", + "IPY_MODEL_9a731289e7d34d82bba07cc4ecc69a27", + "IPY_MODEL_9d82a9defa064ff29f9a30db26021dbb" + ], + "layout": "IPY_MODEL_3c6b207f678349e08f3e154f0eb49502", "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "tooltip": null } }, - "d212bb43e85445ddadf2aa7399f5ad9f": { + "dcdadeb295c745e591ee8b73f40c7778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6884,39 +6875,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec76a6f47e4e48bca8b9cbd502142648", + "layout": "IPY_MODEL_5b16cac5ec7e491ca8aa0e70572e0512", "placeholder": "​", - "style": "IPY_MODEL_915b2de72e934c53b5769ae4fc9767af", + "style": "IPY_MODEL_4e678dda95bc4173a6e214a04a4823db", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6615.19 examples/s]" + "value": "100%" } }, - "d71df3a63bda4854a0d7e51c67182ab4": { + "dd39e801b334434797f4c134d3921fd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f0fad03b316846978c8014648b821038", - "IPY_MODEL_c59b31b3f35548939da5226d15fe98c0", - "IPY_MODEL_441f7c2b1d4140f186a4b360c9fab017" - ], - "layout": "IPY_MODEL_7859271f5ada491ca18d79aab57ac568", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7cd4460109d24347ba8a171664a55ce3", + "placeholder": "​", + "style": "IPY_MODEL_8ee04981fe4a453c8a3446c3e17f53df", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "d832ccbd6cb1441bb90c6724f6a97c58": { + "dd7d1f5460674bb8be0751ade513c041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6966,111 +6956,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "d87514297c6e446c988365c61fd9457a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dd229a032b574962bf97ffe39211328c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de513cdaed394180886bee1974c93ce2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "df25fafe8e5749a69234408c18364b66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3db3123a400c4f229af20389ad3520d2", - "IPY_MODEL_780e96fc62454e888f0e30931336ab5e", - "IPY_MODEL_4eb3982370ac42b992966c7a96cc2a47" - ], - "layout": "IPY_MODEL_ec11913b1d364c338cea95b8771db6b1", - "tabbable": null, - "tooltip": null - } - }, - "dfffc444cdb640d4a9d712253b6edfa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23b32b2ad0ea490eb3636fac11964542", - "placeholder": "​", - "style": "IPY_MODEL_7ab0569b036f42be8e24943aadcd1621", - "tabbable": null, - "tooltip": null, - "value": "100%" + "width": null } }, - "e2e91b9bdaf24cad81bd697fe523454f": { + "dd8021f04cc44f8eac42379b0b15ece1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7123,7 +7012,7 @@ "width": null } }, - "e3e736649315401c81b5ead3b4d531d0": { + "dd9cf14362e74cbeb505d58baafe4cb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7139,17 +7028,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92149d8be9a848bbb307f645477bd77c", - "max": 30931277.0, + "layout": "IPY_MODEL_699541396fda4fbcb0e28d14b6be4019", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c0948aa3ed46428ab068ab823f6cd605", + "style": "IPY_MODEL_a70884dc615e4fab8e12e07eb3556179", "tabbable": null, "tooltip": null, - "value": 30931277.0 + "value": 40.0 + } + }, + "e0401f9ed4cb45529a0175d5441fdc87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e42616ef8baf4635bafbb430bd804f38": { + "e2883ad09bcb4ea99d6e9d1c292571c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7167,7 +7074,31 @@ "text_color": null } }, - "e9906144508c4f6f90da6edacecadc26": { + "e31ea71bbfe34e54bde0f8eba6e3e41b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_429769e0a6c049ce8281d26731a8e999", + "IPY_MODEL_43ed240044d24550b447c68e5d5344e7", + "IPY_MODEL_2e1e47bdc3bc4e65b0f63284588760ae" + ], + "layout": "IPY_MODEL_9916d3954dc14b88a11a89a058031385", + "tabbable": null, + "tooltip": null + } + }, + "e3858df4be1243fca435f20a3e321386": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7220,7 +7151,56 @@ "width": null } }, - "ec11913b1d364c338cea95b8771db6b1": { + "e479f7639c9949bca96c2de235717132": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_934ce542ebfd4cb9b3b8e5084ed6b700", + "placeholder": "​", + "style": "IPY_MODEL_9d7fd4fc98a34015b59f0cd80d108780", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7029.47 examples/s]" + } + }, + "e6ca8e901e904830a7d69136598543ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa84004d90c24929adbb06c6fcd8f347", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c82f6087dbba4a5ea3ff8f6892bb1965", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e6dea26ce53b4010a864c89a949b7af0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7273,7 +7253,30 @@ "width": null } }, - "ec76a6f47e4e48bca8b9cbd502142648": { + "e72c046ab76b45fdb76f44fc35dda60c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31267b316272490e9b90f40383912e0f", + "placeholder": "​", + "style": "IPY_MODEL_226bc1f5af2545f4b6adb4bb205bd6fe", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "eabb1d09e93a493ca119964fca81426e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7326,43 +7329,23 @@ "width": null } }, - "ecd3872c3cab43199312a7cf192fad53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ed2a70f9cbbb432781a33bb137c5fe76": { + "ebda6c1b5b5147489c608dffb1d7ce5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f0fad03b316846978c8014648b821038": { + "ec75feea5ef34cf68bd79ee7ff893b84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7377,15 +7360,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4686b29b240141f7956b546c1f2e9e83", + "layout": "IPY_MODEL_5f0b04d90b864e218b0b1111518df0cd", "placeholder": "​", - "style": "IPY_MODEL_d87514297c6e446c988365c61fd9457a", + "style": "IPY_MODEL_1b23bb3df60a4375be60c234c43b900a", "tabbable": null, "tooltip": null, "value": "Downloading data: 100%" } }, - "f5f27a9d088946cdb7ec1fbf69ccb020": { + "f2ffcd7fafda4b93ab30e7f1b11019ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7403,7 +7386,30 @@ "text_color": null } }, - "f67814f0e6b24425bdf25f7f05f08ccf": { + "f30a6d09323d42b6919e65f28b0ed1c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2e858bbdd1f34b60ba4792a9b6e37a32", + "placeholder": "​", + "style": "IPY_MODEL_34b1ee147a6a418db24a148515371d8a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f5a3f6f1d4394ab2b30d593e3d4a3ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7456,25 +7462,7 @@ "width": null } }, - "f747d8cff30e48638ca4b6a8b62e1fc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f8117f94932241b49ad3017baa3b1708": { + "f74157c274094c55a3fe2d8510370182": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7527,48 +7515,7 @@ "width": null } }, - "fc0a1aa0c6cf46cfa476b5f7e2175769": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fcfd3e8181d242b0badc716ec5884378": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c7fd464aadc4879ae14ae50a809b856", - "placeholder": "​", - "style": "IPY_MODEL_194aeb115f294dd081a7dcf4d3442b34", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "ff306473844b44168fdb05050fbaa3cd": { + "f76fd1f88dbf476396c45b3dee352fb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7584,15 +7531,68 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_99d2ef87ee6d4b0399d85ae87ea77234", + "layout": "IPY_MODEL_911d5b0e02934260a9bda52a7fa9fded", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_93e0e54cd7c943569aa5ed63aa27d75c", + "style": "IPY_MODEL_7156eac180cd40748551472472a5e725", "tabbable": null, "tooltip": null, "value": 40.0 } + }, + "fab5e3871a7541b89cf8e8f2b9523a48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 4c7f899e9..7615eeea3 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:27.600046Z", - "iopub.status.busy": "2024-08-12T10:35:27.599606Z", - "iopub.status.idle": "2024-08-12T10:35:29.050810Z", - "shell.execute_reply": "2024-08-12T10:35:29.050210Z" + "iopub.execute_input": "2024-08-12T18:58:08.421396Z", + "iopub.status.busy": "2024-08-12T18:58:08.421222Z", + "iopub.status.idle": "2024-08-12T18:58:09.859247Z", + "shell.execute_reply": "2024-08-12T18:58:09.858687Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.053428Z", - "iopub.status.busy": "2024-08-12T10:35:29.052999Z", - "iopub.status.idle": "2024-08-12T10:35:29.072814Z", - "shell.execute_reply": "2024-08-12T10:35:29.072235Z" + "iopub.execute_input": "2024-08-12T18:58:09.861826Z", + "iopub.status.busy": "2024-08-12T18:58:09.861509Z", + "iopub.status.idle": "2024-08-12T18:58:09.881647Z", + "shell.execute_reply": "2024-08-12T18:58:09.881161Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.075332Z", - "iopub.status.busy": "2024-08-12T10:35:29.074762Z", - "iopub.status.idle": "2024-08-12T10:35:29.100612Z", - "shell.execute_reply": "2024-08-12T10:35:29.100059Z" + "iopub.execute_input": "2024-08-12T18:58:09.884197Z", + "iopub.status.busy": "2024-08-12T18:58:09.883893Z", + "iopub.status.idle": "2024-08-12T18:58:09.930793Z", + "shell.execute_reply": "2024-08-12T18:58:09.930292Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.102602Z", - "iopub.status.busy": "2024-08-12T10:35:29.102402Z", - "iopub.status.idle": "2024-08-12T10:35:29.106001Z", - "shell.execute_reply": "2024-08-12T10:35:29.105439Z" + "iopub.execute_input": "2024-08-12T18:58:09.933083Z", + "iopub.status.busy": "2024-08-12T18:58:09.932674Z", + "iopub.status.idle": "2024-08-12T18:58:09.936196Z", + "shell.execute_reply": "2024-08-12T18:58:09.935752Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.108189Z", - "iopub.status.busy": "2024-08-12T10:35:29.107741Z", - "iopub.status.idle": "2024-08-12T10:35:29.115356Z", - "shell.execute_reply": "2024-08-12T10:35:29.114901Z" + "iopub.execute_input": "2024-08-12T18:58:09.938163Z", + "iopub.status.busy": "2024-08-12T18:58:09.937983Z", + "iopub.status.idle": "2024-08-12T18:58:09.945592Z", + "shell.execute_reply": "2024-08-12T18:58:09.945114Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.117288Z", - "iopub.status.busy": "2024-08-12T10:35:29.117111Z", - "iopub.status.idle": "2024-08-12T10:35:29.119850Z", - "shell.execute_reply": "2024-08-12T10:35:29.119384Z" + "iopub.execute_input": "2024-08-12T18:58:09.947753Z", + "iopub.status.busy": "2024-08-12T18:58:09.947411Z", + "iopub.status.idle": "2024-08-12T18:58:09.950143Z", + "shell.execute_reply": "2024-08-12T18:58:09.949695Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.121854Z", - "iopub.status.busy": "2024-08-12T10:35:29.121528Z", - "iopub.status.idle": "2024-08-12T10:35:32.238019Z", - "shell.execute_reply": "2024-08-12T10:35:32.237473Z" + "iopub.execute_input": "2024-08-12T18:58:09.951984Z", + "iopub.status.busy": "2024-08-12T18:58:09.951813Z", + "iopub.status.idle": "2024-08-12T18:58:13.120769Z", + "shell.execute_reply": "2024-08-12T18:58:13.120089Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:32.240723Z", - "iopub.status.busy": "2024-08-12T10:35:32.240325Z", - "iopub.status.idle": "2024-08-12T10:35:32.250121Z", - "shell.execute_reply": "2024-08-12T10:35:32.249690Z" + "iopub.execute_input": "2024-08-12T18:58:13.123683Z", + "iopub.status.busy": "2024-08-12T18:58:13.123230Z", + "iopub.status.idle": "2024-08-12T18:58:13.133515Z", + "shell.execute_reply": "2024-08-12T18:58:13.133012Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:32.252177Z", - "iopub.status.busy": "2024-08-12T10:35:32.251867Z", - "iopub.status.idle": "2024-08-12T10:35:34.432426Z", - "shell.execute_reply": "2024-08-12T10:35:34.431815Z" + "iopub.execute_input": "2024-08-12T18:58:13.135799Z", + "iopub.status.busy": "2024-08-12T18:58:13.135466Z", + "iopub.status.idle": "2024-08-12T18:58:15.356714Z", + "shell.execute_reply": "2024-08-12T18:58:15.355987Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.434892Z", - "iopub.status.busy": "2024-08-12T10:35:34.434393Z", - "iopub.status.idle": "2024-08-12T10:35:34.453921Z", - "shell.execute_reply": "2024-08-12T10:35:34.453411Z" + "iopub.execute_input": "2024-08-12T18:58:15.359491Z", + "iopub.status.busy": "2024-08-12T18:58:15.358912Z", + "iopub.status.idle": "2024-08-12T18:58:15.378894Z", + "shell.execute_reply": "2024-08-12T18:58:15.378329Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.456112Z", - "iopub.status.busy": "2024-08-12T10:35:34.455791Z", - "iopub.status.idle": "2024-08-12T10:35:34.463837Z", - "shell.execute_reply": "2024-08-12T10:35:34.463381Z" + "iopub.execute_input": "2024-08-12T18:58:15.381408Z", + "iopub.status.busy": "2024-08-12T18:58:15.381025Z", + "iopub.status.idle": "2024-08-12T18:58:15.389610Z", + "shell.execute_reply": "2024-08-12T18:58:15.389010Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.465873Z", - "iopub.status.busy": "2024-08-12T10:35:34.465530Z", - "iopub.status.idle": "2024-08-12T10:35:34.474676Z", - "shell.execute_reply": "2024-08-12T10:35:34.474217Z" + "iopub.execute_input": "2024-08-12T18:58:15.391998Z", + "iopub.status.busy": "2024-08-12T18:58:15.391635Z", + "iopub.status.idle": "2024-08-12T18:58:15.401546Z", + "shell.execute_reply": "2024-08-12T18:58:15.400962Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.476791Z", - "iopub.status.busy": "2024-08-12T10:35:34.476448Z", - "iopub.status.idle": "2024-08-12T10:35:34.484224Z", - "shell.execute_reply": "2024-08-12T10:35:34.483790Z" + "iopub.execute_input": "2024-08-12T18:58:15.403711Z", + "iopub.status.busy": "2024-08-12T18:58:15.403525Z", + "iopub.status.idle": "2024-08-12T18:58:15.412500Z", + "shell.execute_reply": "2024-08-12T18:58:15.411891Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.486280Z", - "iopub.status.busy": "2024-08-12T10:35:34.485956Z", - "iopub.status.idle": "2024-08-12T10:35:34.495143Z", - "shell.execute_reply": "2024-08-12T10:35:34.494602Z" + "iopub.execute_input": "2024-08-12T18:58:15.415177Z", + "iopub.status.busy": "2024-08-12T18:58:15.414739Z", + "iopub.status.idle": "2024-08-12T18:58:15.424092Z", + "shell.execute_reply": "2024-08-12T18:58:15.423595Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.497284Z", - "iopub.status.busy": "2024-08-12T10:35:34.496965Z", - "iopub.status.idle": "2024-08-12T10:35:34.504500Z", - "shell.execute_reply": "2024-08-12T10:35:34.503930Z" + "iopub.execute_input": "2024-08-12T18:58:15.426173Z", + "iopub.status.busy": "2024-08-12T18:58:15.425991Z", + "iopub.status.idle": "2024-08-12T18:58:15.433609Z", + "shell.execute_reply": "2024-08-12T18:58:15.433049Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.506743Z", - "iopub.status.busy": "2024-08-12T10:35:34.506276Z", - "iopub.status.idle": "2024-08-12T10:35:34.513611Z", - "shell.execute_reply": "2024-08-12T10:35:34.513168Z" + "iopub.execute_input": "2024-08-12T18:58:15.435695Z", + "iopub.status.busy": "2024-08-12T18:58:15.435412Z", + "iopub.status.idle": "2024-08-12T18:58:15.442825Z", + "shell.execute_reply": "2024-08-12T18:58:15.442358Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.515577Z", - "iopub.status.busy": "2024-08-12T10:35:34.515407Z", - "iopub.status.idle": "2024-08-12T10:35:34.524253Z", - "shell.execute_reply": "2024-08-12T10:35:34.523636Z" + "iopub.execute_input": "2024-08-12T18:58:15.444907Z", + "iopub.status.busy": "2024-08-12T18:58:15.444586Z", + "iopub.status.idle": "2024-08-12T18:58:15.453151Z", + "shell.execute_reply": "2024-08-12T18:58:15.452574Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index cb47d3b31..277e568e0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:37.558577Z", - "iopub.status.busy": "2024-08-12T10:35:37.558339Z", - "iopub.status.idle": "2024-08-12T10:35:40.739470Z", - "shell.execute_reply": "2024-08-12T10:35:40.738831Z" + "iopub.execute_input": "2024-08-12T18:58:18.401024Z", + "iopub.status.busy": "2024-08-12T18:58:18.400844Z", + "iopub.status.idle": "2024-08-12T18:58:21.652442Z", + "shell.execute_reply": "2024-08-12T18:58:21.651832Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.742086Z", - "iopub.status.busy": "2024-08-12T10:35:40.741793Z", - "iopub.status.idle": "2024-08-12T10:35:40.745137Z", - "shell.execute_reply": "2024-08-12T10:35:40.744684Z" + "iopub.execute_input": "2024-08-12T18:58:21.654920Z", + "iopub.status.busy": "2024-08-12T18:58:21.654607Z", + "iopub.status.idle": "2024-08-12T18:58:21.658637Z", + "shell.execute_reply": "2024-08-12T18:58:21.658062Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.747148Z", - "iopub.status.busy": "2024-08-12T10:35:40.746882Z", - "iopub.status.idle": "2024-08-12T10:35:40.749760Z", - "shell.execute_reply": "2024-08-12T10:35:40.749330Z" + "iopub.execute_input": "2024-08-12T18:58:21.660786Z", + "iopub.status.busy": "2024-08-12T18:58:21.660446Z", + "iopub.status.idle": "2024-08-12T18:58:21.663725Z", + "shell.execute_reply": "2024-08-12T18:58:21.663156Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.751845Z", - "iopub.status.busy": "2024-08-12T10:35:40.751461Z", - "iopub.status.idle": "2024-08-12T10:35:40.775689Z", - "shell.execute_reply": "2024-08-12T10:35:40.775149Z" + "iopub.execute_input": "2024-08-12T18:58:21.665708Z", + "iopub.status.busy": "2024-08-12T18:58:21.665531Z", + "iopub.status.idle": "2024-08-12T18:58:21.717461Z", + "shell.execute_reply": "2024-08-12T18:58:21.716912Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.777762Z", - "iopub.status.busy": "2024-08-12T10:35:40.777401Z", - "iopub.status.idle": "2024-08-12T10:35:40.780895Z", - "shell.execute_reply": "2024-08-12T10:35:40.780349Z" + "iopub.execute_input": "2024-08-12T18:58:21.719763Z", + "iopub.status.busy": "2024-08-12T18:58:21.719394Z", + "iopub.status.idle": "2024-08-12T18:58:21.723483Z", + "shell.execute_reply": "2024-08-12T18:58:21.723002Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" + "Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.782945Z", - "iopub.status.busy": "2024-08-12T10:35:40.782612Z", - "iopub.status.idle": "2024-08-12T10:35:40.785832Z", - "shell.execute_reply": "2024-08-12T10:35:40.785363Z" + "iopub.execute_input": "2024-08-12T18:58:21.725660Z", + "iopub.status.busy": "2024-08-12T18:58:21.725307Z", + "iopub.status.idle": "2024-08-12T18:58:21.728467Z", + "shell.execute_reply": "2024-08-12T18:58:21.727871Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.787889Z", - "iopub.status.busy": "2024-08-12T10:35:40.787554Z", - "iopub.status.idle": "2024-08-12T10:35:44.773402Z", - "shell.execute_reply": "2024-08-12T10:35:44.772834Z" + "iopub.execute_input": "2024-08-12T18:58:21.730586Z", + "iopub.status.busy": "2024-08-12T18:58:21.730242Z", + "iopub.status.idle": "2024-08-12T18:58:25.865055Z", + "shell.execute_reply": "2024-08-12T18:58:25.864467Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:44.776274Z", - "iopub.status.busy": "2024-08-12T10:35:44.775914Z", - "iopub.status.idle": "2024-08-12T10:35:45.665358Z", - "shell.execute_reply": "2024-08-12T10:35:45.664759Z" + "iopub.execute_input": "2024-08-12T18:58:25.867863Z", + "iopub.status.busy": "2024-08-12T18:58:25.867442Z", + "iopub.status.idle": "2024-08-12T18:58:26.763555Z", + "shell.execute_reply": "2024-08-12T18:58:26.762971Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:45.668546Z", - "iopub.status.busy": "2024-08-12T10:35:45.668154Z", - "iopub.status.idle": "2024-08-12T10:35:45.671068Z", - "shell.execute_reply": "2024-08-12T10:35:45.670578Z" + "iopub.execute_input": "2024-08-12T18:58:26.767516Z", + "iopub.status.busy": "2024-08-12T18:58:26.766565Z", + "iopub.status.idle": "2024-08-12T18:58:26.770630Z", + "shell.execute_reply": "2024-08-12T18:58:26.770132Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:45.673470Z", - "iopub.status.busy": "2024-08-12T10:35:45.673092Z", - "iopub.status.idle": "2024-08-12T10:35:47.702436Z", - "shell.execute_reply": "2024-08-12T10:35:47.701696Z" + "iopub.execute_input": "2024-08-12T18:58:26.773537Z", + "iopub.status.busy": "2024-08-12T18:58:26.773116Z", + "iopub.status.idle": "2024-08-12T18:58:28.849723Z", + "shell.execute_reply": "2024-08-12T18:58:28.849027Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.705440Z", - "iopub.status.busy": "2024-08-12T10:35:47.704975Z", - "iopub.status.idle": "2024-08-12T10:35:47.729437Z", - "shell.execute_reply": "2024-08-12T10:35:47.728904Z" + "iopub.execute_input": "2024-08-12T18:58:28.854134Z", + "iopub.status.busy": "2024-08-12T18:58:28.852936Z", + "iopub.status.idle": "2024-08-12T18:58:28.879769Z", + "shell.execute_reply": "2024-08-12T18:58:28.879212Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.732155Z", - "iopub.status.busy": "2024-08-12T10:35:47.731793Z", - "iopub.status.idle": "2024-08-12T10:35:47.741250Z", - "shell.execute_reply": "2024-08-12T10:35:47.740687Z" + "iopub.execute_input": "2024-08-12T18:58:28.883584Z", + "iopub.status.busy": "2024-08-12T18:58:28.882631Z", + "iopub.status.idle": "2024-08-12T18:58:28.891499Z", + "shell.execute_reply": "2024-08-12T18:58:28.890948Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.743419Z", - "iopub.status.busy": "2024-08-12T10:35:47.743136Z", - "iopub.status.idle": "2024-08-12T10:35:47.747544Z", - "shell.execute_reply": "2024-08-12T10:35:47.747077Z" + "iopub.execute_input": "2024-08-12T18:58:28.893482Z", + "iopub.status.busy": "2024-08-12T18:58:28.893306Z", + "iopub.status.idle": "2024-08-12T18:58:28.897763Z", + "shell.execute_reply": "2024-08-12T18:58:28.897181Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.749487Z", - "iopub.status.busy": "2024-08-12T10:35:47.749326Z", - "iopub.status.idle": "2024-08-12T10:35:47.755601Z", - "shell.execute_reply": "2024-08-12T10:35:47.755155Z" + "iopub.execute_input": "2024-08-12T18:58:28.899997Z", + "iopub.status.busy": "2024-08-12T18:58:28.899647Z", + "iopub.status.idle": "2024-08-12T18:58:28.906101Z", + "shell.execute_reply": "2024-08-12T18:58:28.905560Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.757475Z", - "iopub.status.busy": "2024-08-12T10:35:47.757320Z", - "iopub.status.idle": "2024-08-12T10:35:47.763213Z", - "shell.execute_reply": "2024-08-12T10:35:47.762764Z" + "iopub.execute_input": "2024-08-12T18:58:28.908389Z", + "iopub.status.busy": "2024-08-12T18:58:28.907947Z", + "iopub.status.idle": "2024-08-12T18:58:28.914961Z", + "shell.execute_reply": "2024-08-12T18:58:28.914528Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.765090Z", - "iopub.status.busy": "2024-08-12T10:35:47.764937Z", - "iopub.status.idle": "2024-08-12T10:35:47.770514Z", - "shell.execute_reply": "2024-08-12T10:35:47.770034Z" + "iopub.execute_input": "2024-08-12T18:58:28.917187Z", + "iopub.status.busy": "2024-08-12T18:58:28.916621Z", + "iopub.status.idle": "2024-08-12T18:58:28.922611Z", + "shell.execute_reply": "2024-08-12T18:58:28.922057Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.772510Z", - "iopub.status.busy": "2024-08-12T10:35:47.772173Z", - "iopub.status.idle": "2024-08-12T10:35:47.780532Z", - "shell.execute_reply": "2024-08-12T10:35:47.780093Z" + "iopub.execute_input": "2024-08-12T18:58:28.924669Z", + "iopub.status.busy": "2024-08-12T18:58:28.924332Z", + "iopub.status.idle": "2024-08-12T18:58:28.932890Z", + "shell.execute_reply": "2024-08-12T18:58:28.932312Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.782646Z", - "iopub.status.busy": "2024-08-12T10:35:47.782223Z", - "iopub.status.idle": "2024-08-12T10:35:47.787705Z", - "shell.execute_reply": "2024-08-12T10:35:47.787156Z" + "iopub.execute_input": "2024-08-12T18:58:28.935108Z", + "iopub.status.busy": "2024-08-12T18:58:28.934598Z", + "iopub.status.idle": "2024-08-12T18:58:28.939954Z", + "shell.execute_reply": "2024-08-12T18:58:28.939509Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.789807Z", - "iopub.status.busy": "2024-08-12T10:35:47.789489Z", - "iopub.status.idle": "2024-08-12T10:35:47.794831Z", - "shell.execute_reply": "2024-08-12T10:35:47.794259Z" + "iopub.execute_input": "2024-08-12T18:58:28.941972Z", + "iopub.status.busy": "2024-08-12T18:58:28.941648Z", + "iopub.status.idle": "2024-08-12T18:58:28.946967Z", + "shell.execute_reply": "2024-08-12T18:58:28.946427Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.797007Z", - "iopub.status.busy": "2024-08-12T10:35:47.796666Z", - "iopub.status.idle": "2024-08-12T10:35:47.800304Z", - "shell.execute_reply": "2024-08-12T10:35:47.799739Z" + "iopub.execute_input": "2024-08-12T18:58:28.948895Z", + "iopub.status.busy": "2024-08-12T18:58:28.948718Z", + "iopub.status.idle": "2024-08-12T18:58:28.952461Z", + "shell.execute_reply": "2024-08-12T18:58:28.951982Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.802486Z", - "iopub.status.busy": "2024-08-12T10:35:47.802149Z", - "iopub.status.idle": "2024-08-12T10:35:47.807293Z", - "shell.execute_reply": "2024-08-12T10:35:47.806733Z" + "iopub.execute_input": "2024-08-12T18:58:28.954958Z", + "iopub.status.busy": "2024-08-12T18:58:28.954419Z", + "iopub.status.idle": "2024-08-12T18:58:28.960190Z", + "shell.execute_reply": "2024-08-12T18:58:28.959744Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 045fd829a..c19ab5d3e 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:51.551812Z", - "iopub.status.busy": "2024-08-12T10:35:51.551632Z", - "iopub.status.idle": "2024-08-12T10:35:51.990223Z", - "shell.execute_reply": "2024-08-12T10:35:51.989584Z" + "iopub.execute_input": "2024-08-12T18:58:32.453144Z", + "iopub.status.busy": "2024-08-12T18:58:32.452963Z", + "iopub.status.idle": "2024-08-12T18:58:32.893566Z", + "shell.execute_reply": "2024-08-12T18:58:32.892923Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:51.993008Z", - "iopub.status.busy": "2024-08-12T10:35:51.992513Z", - "iopub.status.idle": "2024-08-12T10:35:52.124109Z", - "shell.execute_reply": "2024-08-12T10:35:52.123511Z" + "iopub.execute_input": "2024-08-12T18:58:32.896058Z", + "iopub.status.busy": "2024-08-12T18:58:32.895665Z", + "iopub.status.idle": "2024-08-12T18:58:33.028619Z", + "shell.execute_reply": "2024-08-12T18:58:33.028000Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:52.126567Z", - "iopub.status.busy": "2024-08-12T10:35:52.126040Z", - "iopub.status.idle": "2024-08-12T10:35:52.149083Z", - "shell.execute_reply": "2024-08-12T10:35:52.148439Z" + "iopub.execute_input": "2024-08-12T18:58:33.030997Z", + "iopub.status.busy": "2024-08-12T18:58:33.030616Z", + "iopub.status.idle": "2024-08-12T18:58:33.053876Z", + "shell.execute_reply": "2024-08-12T18:58:33.053329Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:52.151708Z", - "iopub.status.busy": "2024-08-12T10:35:52.151230Z", - "iopub.status.idle": "2024-08-12T10:35:55.347722Z", - "shell.execute_reply": "2024-08-12T10:35:55.347134Z" + "iopub.execute_input": "2024-08-12T18:58:33.056613Z", + "iopub.status.busy": "2024-08-12T18:58:33.056072Z", + "iopub.status.idle": "2024-08-12T18:58:36.368353Z", + "shell.execute_reply": "2024-08-12T18:58:36.367660Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:55.350496Z", - "iopub.status.busy": "2024-08-12T10:35:55.349868Z", - "iopub.status.idle": "2024-08-12T10:36:05.091104Z", - "shell.execute_reply": "2024-08-12T10:36:05.090467Z" + "iopub.execute_input": "2024-08-12T18:58:36.371024Z", + "iopub.status.busy": "2024-08-12T18:58:36.370494Z", + "iopub.status.idle": "2024-08-12T18:58:46.129472Z", + "shell.execute_reply": "2024-08-12T18:58:46.128923Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:05.093209Z", - "iopub.status.busy": "2024-08-12T10:36:05.093024Z", - "iopub.status.idle": "2024-08-12T10:36:05.252383Z", - "shell.execute_reply": "2024-08-12T10:36:05.251714Z" + "iopub.execute_input": "2024-08-12T18:58:46.131756Z", + "iopub.status.busy": "2024-08-12T18:58:46.131373Z", + "iopub.status.idle": "2024-08-12T18:58:46.324220Z", + "shell.execute_reply": "2024-08-12T18:58:46.323687Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:05.254938Z", - "iopub.status.busy": "2024-08-12T10:36:05.254748Z", - "iopub.status.idle": "2024-08-12T10:36:06.582564Z", - "shell.execute_reply": "2024-08-12T10:36:06.581974Z" + "iopub.execute_input": "2024-08-12T18:58:46.326841Z", + "iopub.status.busy": "2024-08-12T18:58:46.326478Z", + "iopub.status.idle": "2024-08-12T18:58:47.671516Z", + "shell.execute_reply": "2024-08-12T18:58:47.670901Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.584851Z", - "iopub.status.busy": "2024-08-12T10:36:06.584491Z", - "iopub.status.idle": "2024-08-12T10:36:06.786894Z", - "shell.execute_reply": "2024-08-12T10:36:06.786302Z" + "iopub.execute_input": "2024-08-12T18:58:47.673692Z", + "iopub.status.busy": "2024-08-12T18:58:47.673500Z", + "iopub.status.idle": "2024-08-12T18:58:48.008455Z", + "shell.execute_reply": "2024-08-12T18:58:48.007859Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.789478Z", - "iopub.status.busy": "2024-08-12T10:36:06.788956Z", - "iopub.status.idle": "2024-08-12T10:36:06.802195Z", - "shell.execute_reply": "2024-08-12T10:36:06.801709Z" + "iopub.execute_input": "2024-08-12T18:58:48.010951Z", + "iopub.status.busy": "2024-08-12T18:58:48.010444Z", + "iopub.status.idle": "2024-08-12T18:58:48.023807Z", + "shell.execute_reply": "2024-08-12T18:58:48.023327Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.804254Z", - "iopub.status.busy": "2024-08-12T10:36:06.803919Z", - "iopub.status.idle": "2024-08-12T10:36:06.822049Z", - "shell.execute_reply": "2024-08-12T10:36:06.821624Z" + "iopub.execute_input": "2024-08-12T18:58:48.025787Z", + "iopub.status.busy": "2024-08-12T18:58:48.025610Z", + "iopub.status.idle": "2024-08-12T18:58:48.044448Z", + "shell.execute_reply": "2024-08-12T18:58:48.043957Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.824031Z", - "iopub.status.busy": "2024-08-12T10:36:06.823698Z", - "iopub.status.idle": "2024-08-12T10:36:07.035508Z", - "shell.execute_reply": "2024-08-12T10:36:07.034970Z" + "iopub.execute_input": "2024-08-12T18:58:48.046497Z", + "iopub.status.busy": "2024-08-12T18:58:48.046158Z", + "iopub.status.idle": "2024-08-12T18:58:48.285984Z", + "shell.execute_reply": "2024-08-12T18:58:48.285450Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.037963Z", - "iopub.status.busy": "2024-08-12T10:36:07.037705Z", - "iopub.status.idle": "2024-08-12T10:36:07.057870Z", - "shell.execute_reply": "2024-08-12T10:36:07.057360Z" + "iopub.execute_input": "2024-08-12T18:58:48.288600Z", + "iopub.status.busy": "2024-08-12T18:58:48.288414Z", + "iopub.status.idle": "2024-08-12T18:58:48.307909Z", + "shell.execute_reply": "2024-08-12T18:58:48.307390Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.060124Z", - "iopub.status.busy": "2024-08-12T10:36:07.059749Z", - "iopub.status.idle": "2024-08-12T10:36:07.211976Z", - "shell.execute_reply": "2024-08-12T10:36:07.211435Z" + "iopub.execute_input": "2024-08-12T18:58:48.310085Z", + "iopub.status.busy": "2024-08-12T18:58:48.309902Z", + "iopub.status.idle": "2024-08-12T18:58:48.479863Z", + "shell.execute_reply": "2024-08-12T18:58:48.479263Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.214229Z", - "iopub.status.busy": "2024-08-12T10:36:07.213870Z", - "iopub.status.idle": "2024-08-12T10:36:07.224062Z", - "shell.execute_reply": "2024-08-12T10:36:07.223486Z" + "iopub.execute_input": "2024-08-12T18:58:48.482094Z", + "iopub.status.busy": "2024-08-12T18:58:48.481913Z", + "iopub.status.idle": "2024-08-12T18:58:48.492262Z", + "shell.execute_reply": "2024-08-12T18:58:48.491815Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.226288Z", - "iopub.status.busy": "2024-08-12T10:36:07.225962Z", - "iopub.status.idle": "2024-08-12T10:36:07.235291Z", - "shell.execute_reply": "2024-08-12T10:36:07.234743Z" + "iopub.execute_input": "2024-08-12T18:58:48.494349Z", + "iopub.status.busy": "2024-08-12T18:58:48.494005Z", + "iopub.status.idle": "2024-08-12T18:58:48.503362Z", + "shell.execute_reply": "2024-08-12T18:58:48.502898Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.237432Z", - "iopub.status.busy": "2024-08-12T10:36:07.237103Z", - "iopub.status.idle": "2024-08-12T10:36:07.262730Z", - "shell.execute_reply": "2024-08-12T10:36:07.262231Z" + "iopub.execute_input": "2024-08-12T18:58:48.505548Z", + "iopub.status.busy": "2024-08-12T18:58:48.505209Z", + "iopub.status.idle": "2024-08-12T18:58:48.530999Z", + "shell.execute_reply": "2024-08-12T18:58:48.530573Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.264692Z", - "iopub.status.busy": "2024-08-12T10:36:07.264376Z", - "iopub.status.idle": "2024-08-12T10:36:07.267245Z", - "shell.execute_reply": "2024-08-12T10:36:07.266678Z" + "iopub.execute_input": "2024-08-12T18:58:48.533100Z", + "iopub.status.busy": "2024-08-12T18:58:48.532754Z", + "iopub.status.idle": "2024-08-12T18:58:48.535405Z", + "shell.execute_reply": "2024-08-12T18:58:48.534950Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.269215Z", - "iopub.status.busy": "2024-08-12T10:36:07.268903Z", - "iopub.status.idle": "2024-08-12T10:36:07.288822Z", - "shell.execute_reply": "2024-08-12T10:36:07.288343Z" + "iopub.execute_input": "2024-08-12T18:58:48.537559Z", + "iopub.status.busy": "2024-08-12T18:58:48.537229Z", + "iopub.status.idle": "2024-08-12T18:58:48.557131Z", + "shell.execute_reply": "2024-08-12T18:58:48.556530Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.290777Z", - "iopub.status.busy": "2024-08-12T10:36:07.290602Z", - "iopub.status.idle": "2024-08-12T10:36:07.294723Z", - "shell.execute_reply": "2024-08-12T10:36:07.294281Z" + "iopub.execute_input": "2024-08-12T18:58:48.559284Z", + "iopub.status.busy": "2024-08-12T18:58:48.559093Z", + "iopub.status.idle": "2024-08-12T18:58:48.563631Z", + "shell.execute_reply": "2024-08-12T18:58:48.563160Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.296561Z", - "iopub.status.busy": "2024-08-12T10:36:07.296393Z", - "iopub.status.idle": "2024-08-12T10:36:07.324069Z", - "shell.execute_reply": "2024-08-12T10:36:07.323629Z" + "iopub.execute_input": "2024-08-12T18:58:48.565611Z", + "iopub.status.busy": "2024-08-12T18:58:48.565430Z", + "iopub.status.idle": "2024-08-12T18:58:48.594740Z", + "shell.execute_reply": "2024-08-12T18:58:48.594193Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.325925Z", - "iopub.status.busy": "2024-08-12T10:36:07.325755Z", - "iopub.status.idle": "2024-08-12T10:36:07.697505Z", - "shell.execute_reply": "2024-08-12T10:36:07.696910Z" + "iopub.execute_input": "2024-08-12T18:58:48.596930Z", + "iopub.status.busy": "2024-08-12T18:58:48.596743Z", + "iopub.status.idle": "2024-08-12T18:58:48.915286Z", + "shell.execute_reply": "2024-08-12T18:58:48.914655Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.699604Z", - "iopub.status.busy": "2024-08-12T10:36:07.699417Z", - "iopub.status.idle": "2024-08-12T10:36:07.702433Z", - "shell.execute_reply": "2024-08-12T10:36:07.701866Z" + "iopub.execute_input": "2024-08-12T18:58:48.917554Z", + "iopub.status.busy": "2024-08-12T18:58:48.917331Z", + "iopub.status.idle": "2024-08-12T18:58:48.920951Z", + "shell.execute_reply": "2024-08-12T18:58:48.920337Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.704427Z", - "iopub.status.busy": "2024-08-12T10:36:07.704252Z", - "iopub.status.idle": "2024-08-12T10:36:07.717642Z", - "shell.execute_reply": "2024-08-12T10:36:07.717105Z" + "iopub.execute_input": "2024-08-12T18:58:48.923307Z", + "iopub.status.busy": "2024-08-12T18:58:48.922856Z", + "iopub.status.idle": "2024-08-12T18:58:48.936475Z", + "shell.execute_reply": "2024-08-12T18:58:48.935867Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.720309Z", - "iopub.status.busy": "2024-08-12T10:36:07.719991Z", - "iopub.status.idle": "2024-08-12T10:36:07.733571Z", - "shell.execute_reply": "2024-08-12T10:36:07.733014Z" + "iopub.execute_input": "2024-08-12T18:58:48.939768Z", + "iopub.status.busy": "2024-08-12T18:58:48.939280Z", + "iopub.status.idle": "2024-08-12T18:58:48.953750Z", + "shell.execute_reply": "2024-08-12T18:58:48.953140Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.735571Z", - "iopub.status.busy": "2024-08-12T10:36:07.735255Z", - "iopub.status.idle": "2024-08-12T10:36:07.745655Z", - "shell.execute_reply": "2024-08-12T10:36:07.745087Z" + "iopub.execute_input": "2024-08-12T18:58:48.955892Z", + "iopub.status.busy": "2024-08-12T18:58:48.955606Z", + "iopub.status.idle": "2024-08-12T18:58:48.966964Z", + "shell.execute_reply": "2024-08-12T18:58:48.966339Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.747816Z", - "iopub.status.busy": "2024-08-12T10:36:07.747483Z", - "iopub.status.idle": "2024-08-12T10:36:07.756627Z", - "shell.execute_reply": "2024-08-12T10:36:07.756169Z" + "iopub.execute_input": "2024-08-12T18:58:48.969417Z", + "iopub.status.busy": "2024-08-12T18:58:48.969078Z", + "iopub.status.idle": "2024-08-12T18:58:48.978995Z", + "shell.execute_reply": "2024-08-12T18:58:48.978417Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.758631Z", - "iopub.status.busy": "2024-08-12T10:36:07.758279Z", - "iopub.status.idle": "2024-08-12T10:36:07.762000Z", - "shell.execute_reply": "2024-08-12T10:36:07.761551Z" + "iopub.execute_input": "2024-08-12T18:58:48.981220Z", + "iopub.status.busy": "2024-08-12T18:58:48.980883Z", + "iopub.status.idle": "2024-08-12T18:58:48.984861Z", + "shell.execute_reply": "2024-08-12T18:58:48.984275Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.764123Z", - "iopub.status.busy": "2024-08-12T10:36:07.763787Z", - "iopub.status.idle": "2024-08-12T10:36:07.814348Z", - "shell.execute_reply": "2024-08-12T10:36:07.813826Z" + "iopub.execute_input": "2024-08-12T18:58:48.986942Z", + "iopub.status.busy": "2024-08-12T18:58:48.986600Z", + "iopub.status.idle": "2024-08-12T18:58:49.039015Z", + "shell.execute_reply": "2024-08-12T18:58:49.038408Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.816619Z", - "iopub.status.busy": "2024-08-12T10:36:07.816166Z", - "iopub.status.idle": "2024-08-12T10:36:07.822673Z", - "shell.execute_reply": "2024-08-12T10:36:07.822197Z" + "iopub.execute_input": "2024-08-12T18:58:49.041588Z", + "iopub.status.busy": "2024-08-12T18:58:49.041136Z", + "iopub.status.idle": "2024-08-12T18:58:49.048316Z", + "shell.execute_reply": "2024-08-12T18:58:49.047854Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.824684Z", - "iopub.status.busy": "2024-08-12T10:36:07.824371Z", - "iopub.status.idle": "2024-08-12T10:36:07.835809Z", - "shell.execute_reply": "2024-08-12T10:36:07.835239Z" + "iopub.execute_input": "2024-08-12T18:58:49.050457Z", + "iopub.status.busy": "2024-08-12T18:58:49.050118Z", + "iopub.status.idle": "2024-08-12T18:58:49.061463Z", + "shell.execute_reply": "2024-08-12T18:58:49.060888Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.837999Z", - "iopub.status.busy": "2024-08-12T10:36:07.837680Z", - "iopub.status.idle": "2024-08-12T10:36:08.054639Z", - "shell.execute_reply": "2024-08-12T10:36:08.053990Z" + "iopub.execute_input": "2024-08-12T18:58:49.063774Z", + "iopub.status.busy": "2024-08-12T18:58:49.063445Z", + "iopub.status.idle": "2024-08-12T18:58:49.282520Z", + "shell.execute_reply": "2024-08-12T18:58:49.281931Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:08.056912Z", - "iopub.status.busy": "2024-08-12T10:36:08.056543Z", - "iopub.status.idle": "2024-08-12T10:36:08.064093Z", - "shell.execute_reply": "2024-08-12T10:36:08.063620Z" + "iopub.execute_input": "2024-08-12T18:58:49.284947Z", + "iopub.status.busy": "2024-08-12T18:58:49.284525Z", + "iopub.status.idle": "2024-08-12T18:58:49.292566Z", + "shell.execute_reply": "2024-08-12T18:58:49.292062Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:08.066343Z", - "iopub.status.busy": "2024-08-12T10:36:08.066010Z", - "iopub.status.idle": "2024-08-12T10:36:08.546606Z", - "shell.execute_reply": "2024-08-12T10:36:08.545889Z" + "iopub.execute_input": "2024-08-12T18:58:49.294849Z", + "iopub.status.busy": "2024-08-12T18:58:49.294514Z", + "iopub.status.idle": "2024-08-12T18:58:49.928407Z", + "shell.execute_reply": "2024-08-12T18:58:49.927648Z" } }, "outputs": [ @@ -3767,8 +3767,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 10:36:08-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.108.153, ...\r\n", + "--2024-08-12 18:58:49-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.111.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] @@ -3783,9 +3783,9 @@ "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.008s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.04s \r\n", "\r\n", - "2024-08-12 10:36:08 (114 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-12 18:58:49 (22.6 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:08.549381Z", - "iopub.status.busy": "2024-08-12T10:36:08.548982Z", - "iopub.status.idle": "2024-08-12T10:36:10.480188Z", - "shell.execute_reply": "2024-08-12T10:36:10.479637Z" + "iopub.execute_input": "2024-08-12T18:58:49.931184Z", + "iopub.status.busy": "2024-08-12T18:58:49.930775Z", + "iopub.status.idle": "2024-08-12T18:58:51.929317Z", + "shell.execute_reply": "2024-08-12T18:58:51.928757Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:10.482794Z", - "iopub.status.busy": "2024-08-12T10:36:10.482318Z", - "iopub.status.idle": "2024-08-12T10:36:10.957321Z", - "shell.execute_reply": "2024-08-12T10:36:10.956627Z" + "iopub.execute_input": "2024-08-12T18:58:51.932133Z", + "iopub.status.busy": "2024-08-12T18:58:51.931579Z", + "iopub.status.idle": "2024-08-12T18:58:52.415840Z", + "shell.execute_reply": "2024-08-12T18:58:52.415213Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "198e7e813a74495796c698a5c11fff7c", + "model_id": "c0b69f70cccc4c2cb212d2804eaaa895", "version_major": 2, "version_minor": 0 }, @@ -3950,10 +3950,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:10.961341Z", - "iopub.status.busy": "2024-08-12T10:36:10.960396Z", - "iopub.status.idle": "2024-08-12T10:36:10.978338Z", - "shell.execute_reply": "2024-08-12T10:36:10.977816Z" + "iopub.execute_input": "2024-08-12T18:58:52.419360Z", + "iopub.status.busy": "2024-08-12T18:58:52.418978Z", + "iopub.status.idle": "2024-08-12T18:58:52.433093Z", + "shell.execute_reply": "2024-08-12T18:58:52.432477Z" } }, "outputs": [ @@ -4211,10 +4211,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:10.981885Z", - "iopub.status.busy": "2024-08-12T10:36:10.980974Z", - "iopub.status.idle": "2024-08-12T10:36:11.510195Z", - "shell.execute_reply": "2024-08-12T10:36:11.509548Z" + "iopub.execute_input": "2024-08-12T18:58:52.437120Z", + "iopub.status.busy": "2024-08-12T18:58:52.436115Z", + "iopub.status.idle": "2024-08-12T18:58:52.963139Z", + "shell.execute_reply": "2024-08-12T18:58:52.962468Z" } }, "outputs": [ @@ -4229,7 +4229,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f89ff9b9eb5c42518512b4ef234ab8aa", + "model_id": "4a0ec50ba0624a1dbbe73cc4ad48d5c2", "version_major": 2, "version_minor": 0 }, @@ -4497,181 +4497,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0f53bc8810064eaab2afd661d577c62c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbfcd9249caf4579bafa6d165af7a204", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e9a5ebacb994e0bbde90cf0d112b32d", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "198e7e813a74495796c698a5c11fff7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dba3a943e5d149939a0071eccc1c7b19", - "IPY_MODEL_0f53bc8810064eaab2afd661d577c62c", - "IPY_MODEL_376deb7d42824cf09ccee37e80d3f2ce" - ], - "layout": "IPY_MODEL_a76dd6c6962e41f09c6c75ece448a897", - "tabbable": null, - "tooltip": null - } - }, - "3584f7c966b04ebdbd8acf49d20e75f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82d08af0e9fc440a835fb28e2737645f", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a01967b640ae4c4d8f977e456aa04abd", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "376deb7d42824cf09ccee37e80d3f2ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b59bf04208dd487585084bf58a071fe6", - "placeholder": "​", - "style": "IPY_MODEL_ec85262ee17f48a09708e083268d7c48", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 777.91it/s]" - } - }, - "47c7bda2d6bb45f2a45ed618ffea312d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "543f8ddaa6ac478f95e74bbd9cfb1ff5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "60785226114e48d592cb4cbcf93c8a85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d873bd2086f247e2aeee87ed55940bb4", - "placeholder": "​", - "style": "IPY_MODEL_47c7bda2d6bb45f2a45ed618ffea312d", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 689.25it/s]" - } - }, - "7e9a5ebacb994e0bbde90cf0d112b32d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "82d08af0e9fc440a835fb28e2737645f": { + "0a1d4a795cea4368bfe801319f6bfa56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4724,41 +4550,48 @@ "width": null } }, - "84d564647e7344fda7ea4531ad6fd6b1": { + "15abb84193a243528666ebc7929e204b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_629b3803f80f47f78a312e9773869e99", + "placeholder": "​", + "style": "IPY_MODEL_d50b005bb100446d8effbbe10def949d", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "a01967b640ae4c4d8f977e456aa04abd": { + "24c54c690ba349a98a6611f44fc4e1cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a76dd6c6962e41f09c6c75ece448a897": { + "31387dc410ba4ac08097c6cdf1214b46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4811,30 +4644,23 @@ "width": null } }, - "aaf556c48f454605a7e83e2ff17b37a0": { + "340abbf345c247009cab505ac17bf88e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb46f828ab8c4e03b6cc855501408887", - "placeholder": "​", - "style": "IPY_MODEL_84d564647e7344fda7ea4531ad6fd6b1", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b59bf04208dd487585084bf58a071fe6": { + "419e162125f94925b4776a8268ab2f13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4887,7 +4713,67 @@ "width": null } }, - "bfe86b5013904e0eb93edff800acee02": { + "47ca085961074718b132ce70262f23f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "48c731e8cf064b9784b5dd2b4d6be5de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a0ec50ba0624a1dbbe73cc4ad48d5c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8bdbf2497dd4a7aaec510ff6b6969d7", + "IPY_MODEL_a44d53c425b44681bf2a4266b2562f52", + "IPY_MODEL_71f08b6d9e454988a5ff0d3a3109bfba" + ], + "layout": "IPY_MODEL_830f77b51c5d45ac8f6ceacb5c21f500", + "tabbable": null, + "tooltip": null + } + }, + "629b3803f80f47f78a312e9773869e99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,7 +4826,30 @@ "width": null } }, - "c27b0c39a9ed449ea379599286810547": { + "71f08b6d9e454988a5ff0d3a3109bfba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e451cadbebfe41029d5d3cb34c96f9d0", + "placeholder": "​", + "style": "IPY_MODEL_47ca085961074718b132ce70262f23f9", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 721.87it/s]" + } + }, + "830f77b51c5d45ac8f6ceacb5c21f500": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4993,7 +4902,7 @@ "width": null } }, - "d873bd2086f247e2aeee87ed55940bb4": { + "865e16ee50ec4a31ac0e00b475bd9ede": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5046,30 +4955,49 @@ "width": null } }, - "dba3a943e5d149939a0071eccc1c7b19": { + "a44d53c425b44681bf2a4266b2562f52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c27b0c39a9ed449ea379599286810547", - "placeholder": "​", - "style": "IPY_MODEL_543f8ddaa6ac478f95e74bbd9cfb1ff5", + "layout": "IPY_MODEL_b639f4a5d7434b0fb852ee16636dc5ce", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_340abbf345c247009cab505ac17bf88e", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 + } + }, + "b11b3fa000794406af4de521bf6381e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dbfcd9249caf4579bafa6d165af7a204": { + "b639f4a5d7434b0fb852ee16636dc5ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5122,7 +5050,31 @@ "width": null } }, - "ec85262ee17f48a09708e083268d7c48": { + "c0b69f70cccc4c2cb212d2804eaaa895": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_15abb84193a243528666ebc7929e204b", + "IPY_MODEL_fc333b4698444611a9ef2c362a197831", + "IPY_MODEL_e7cff525d0ed4da79ea4db12e670ea42" + ], + "layout": "IPY_MODEL_865e16ee50ec4a31ac0e00b475bd9ede", + "tabbable": null, + "tooltip": null + } + }, + "d50b005bb100446d8effbbe10def949d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5140,31 +5092,30 @@ "text_color": null } }, - "f89ff9b9eb5c42518512b4ef234ab8aa": { + "d8bdbf2497dd4a7aaec510ff6b6969d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_aaf556c48f454605a7e83e2ff17b37a0", - "IPY_MODEL_3584f7c966b04ebdbd8acf49d20e75f1", - "IPY_MODEL_60785226114e48d592cb4cbcf93c8a85" - ], - "layout": "IPY_MODEL_bfe86b5013904e0eb93edff800acee02", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a1d4a795cea4368bfe801319f6bfa56", + "placeholder": "​", + "style": "IPY_MODEL_48c731e8cf064b9784b5dd2b4d6be5de", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "fb46f828ab8c4e03b6cc855501408887": { + "e451cadbebfe41029d5d3cb34c96f9d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5216,6 +5167,55 @@ "visibility": null, "width": null } + }, + "e7cff525d0ed4da79ea4db12e670ea42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31387dc410ba4ac08097c6cdf1214b46", + "placeholder": "​", + "style": "IPY_MODEL_24c54c690ba349a98a6611f44fc4e1cd", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 753.06it/s]" + } + }, + "fc333b4698444611a9ef2c362a197831": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_419e162125f94925b4776a8268ab2f13", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b11b3fa000794406af4de521bf6381e4", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 7b0b34cad..a972cd809 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:15.864856Z", - "iopub.status.busy": "2024-08-12T10:36:15.864680Z", - "iopub.status.idle": "2024-08-12T10:36:17.280483Z", - "shell.execute_reply": "2024-08-12T10:36:17.279892Z" + "iopub.execute_input": "2024-08-12T18:58:57.416743Z", + "iopub.status.busy": "2024-08-12T18:58:57.416562Z", + "iopub.status.idle": "2024-08-12T18:58:58.889432Z", + "shell.execute_reply": "2024-08-12T18:58:58.888841Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:17.283412Z", - "iopub.status.busy": "2024-08-12T10:36:17.282882Z", - "iopub.status.idle": "2024-08-12T10:36:17.286705Z", - "shell.execute_reply": "2024-08-12T10:36:17.286193Z" + "iopub.execute_input": "2024-08-12T18:58:58.892133Z", + "iopub.status.busy": "2024-08-12T18:58:58.891633Z", + "iopub.status.idle": "2024-08-12T18:58:58.894507Z", + "shell.execute_reply": "2024-08-12T18:58:58.894046Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:17.288880Z", - "iopub.status.busy": "2024-08-12T10:36:17.288690Z", - "iopub.status.idle": "2024-08-12T10:36:17.303362Z", - "shell.execute_reply": "2024-08-12T10:36:17.302893Z" + "iopub.execute_input": "2024-08-12T18:58:58.896557Z", + "iopub.status.busy": "2024-08-12T18:58:58.896376Z", + "iopub.status.idle": "2024-08-12T18:58:58.908772Z", + "shell.execute_reply": "2024-08-12T18:58:58.908263Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:17.305574Z", - "iopub.status.busy": "2024-08-12T10:36:17.305171Z", - "iopub.status.idle": "2024-08-12T10:36:25.907394Z", - "shell.execute_reply": "2024-08-12T10:36:25.906876Z" + "iopub.execute_input": "2024-08-12T18:58:58.910826Z", + "iopub.status.busy": "2024-08-12T18:58:58.910636Z", + "iopub.status.idle": "2024-08-12T18:59:06.267643Z", + "shell.execute_reply": "2024-08-12T18:59:06.267042Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 42fd50581..82cd5d47d 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:28.352405Z", - "iopub.status.busy": "2024-08-12T10:36:28.352234Z", - "iopub.status.idle": "2024-08-12T10:36:29.772908Z", - "shell.execute_reply": "2024-08-12T10:36:29.772267Z" + "iopub.execute_input": "2024-08-12T18:59:09.036162Z", + "iopub.status.busy": "2024-08-12T18:59:09.035980Z", + "iopub.status.idle": "2024-08-12T18:59:10.530018Z", + "shell.execute_reply": "2024-08-12T18:59:10.529347Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:29.775613Z", - "iopub.status.busy": "2024-08-12T10:36:29.775315Z", - "iopub.status.idle": "2024-08-12T10:36:29.778674Z", - "shell.execute_reply": "2024-08-12T10:36:29.778113Z" + "iopub.execute_input": "2024-08-12T18:59:10.532800Z", + "iopub.status.busy": "2024-08-12T18:59:10.532485Z", + "iopub.status.idle": "2024-08-12T18:59:10.536043Z", + "shell.execute_reply": "2024-08-12T18:59:10.535464Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:29.780891Z", - "iopub.status.busy": "2024-08-12T10:36:29.780563Z", - "iopub.status.idle": "2024-08-12T10:36:33.346280Z", - "shell.execute_reply": "2024-08-12T10:36:33.345609Z" + "iopub.execute_input": "2024-08-12T18:59:10.538323Z", + "iopub.status.busy": "2024-08-12T18:59:10.537990Z", + "iopub.status.idle": "2024-08-12T18:59:14.370319Z", + "shell.execute_reply": "2024-08-12T18:59:14.369463Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.349771Z", - "iopub.status.busy": "2024-08-12T10:36:33.348851Z", - "iopub.status.idle": "2024-08-12T10:36:33.396667Z", - "shell.execute_reply": "2024-08-12T10:36:33.396037Z" + "iopub.execute_input": "2024-08-12T18:59:14.374238Z", + "iopub.status.busy": "2024-08-12T18:59:14.373122Z", + "iopub.status.idle": "2024-08-12T18:59:14.430561Z", + "shell.execute_reply": "2024-08-12T18:59:14.429766Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.399404Z", - "iopub.status.busy": "2024-08-12T10:36:33.399007Z", - "iopub.status.idle": "2024-08-12T10:36:33.444013Z", - "shell.execute_reply": "2024-08-12T10:36:33.443221Z" + "iopub.execute_input": "2024-08-12T18:59:14.433816Z", + "iopub.status.busy": "2024-08-12T18:59:14.433400Z", + "iopub.status.idle": "2024-08-12T18:59:14.483159Z", + "shell.execute_reply": "2024-08-12T18:59:14.482495Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.446938Z", - "iopub.status.busy": "2024-08-12T10:36:33.446592Z", - "iopub.status.idle": "2024-08-12T10:36:33.449911Z", - "shell.execute_reply": "2024-08-12T10:36:33.449428Z" + "iopub.execute_input": "2024-08-12T18:59:14.485853Z", + "iopub.status.busy": "2024-08-12T18:59:14.485594Z", + "iopub.status.idle": "2024-08-12T18:59:14.488767Z", + "shell.execute_reply": "2024-08-12T18:59:14.488266Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.451993Z", - "iopub.status.busy": "2024-08-12T10:36:33.451652Z", - "iopub.status.idle": "2024-08-12T10:36:33.454282Z", - "shell.execute_reply": "2024-08-12T10:36:33.453832Z" + "iopub.execute_input": "2024-08-12T18:59:14.490990Z", + "iopub.status.busy": "2024-08-12T18:59:14.490655Z", + "iopub.status.idle": "2024-08-12T18:59:14.493275Z", + "shell.execute_reply": "2024-08-12T18:59:14.492800Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.456395Z", - "iopub.status.busy": "2024-08-12T10:36:33.456118Z", - "iopub.status.idle": "2024-08-12T10:36:33.481466Z", - "shell.execute_reply": "2024-08-12T10:36:33.480901Z" + "iopub.execute_input": "2024-08-12T18:59:14.495455Z", + "iopub.status.busy": "2024-08-12T18:59:14.495115Z", + "iopub.status.idle": "2024-08-12T18:59:14.521134Z", + "shell.execute_reply": "2024-08-12T18:59:14.520510Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf893ccecfea429e8cfde5bd91777d9d", + "model_id": "af1e5c81ccc74ab0acfdc1b6416375f5", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c8e651ba1af4313a9317a199ae1548d", + "model_id": "db2f5b228c3e48cd86e8e39d81d5b986", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.488831Z", - "iopub.status.busy": "2024-08-12T10:36:33.488477Z", - "iopub.status.idle": "2024-08-12T10:36:33.495007Z", - "shell.execute_reply": "2024-08-12T10:36:33.494549Z" + "iopub.execute_input": "2024-08-12T18:59:14.527676Z", + "iopub.status.busy": "2024-08-12T18:59:14.527289Z", + "iopub.status.idle": "2024-08-12T18:59:14.534069Z", + "shell.execute_reply": "2024-08-12T18:59:14.533601Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.496972Z", - "iopub.status.busy": "2024-08-12T10:36:33.496691Z", - "iopub.status.idle": "2024-08-12T10:36:33.500096Z", - "shell.execute_reply": "2024-08-12T10:36:33.499604Z" + "iopub.execute_input": "2024-08-12T18:59:14.536214Z", + "iopub.status.busy": "2024-08-12T18:59:14.535837Z", + "iopub.status.idle": "2024-08-12T18:59:14.539527Z", + "shell.execute_reply": "2024-08-12T18:59:14.538942Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.502247Z", - "iopub.status.busy": "2024-08-12T10:36:33.501920Z", - "iopub.status.idle": "2024-08-12T10:36:33.508693Z", - "shell.execute_reply": "2024-08-12T10:36:33.508215Z" + "iopub.execute_input": "2024-08-12T18:59:14.541766Z", + "iopub.status.busy": "2024-08-12T18:59:14.541486Z", + "iopub.status.idle": "2024-08-12T18:59:14.548179Z", + "shell.execute_reply": "2024-08-12T18:59:14.547598Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.510843Z", - "iopub.status.busy": "2024-08-12T10:36:33.510491Z", - "iopub.status.idle": "2024-08-12T10:36:33.561499Z", - "shell.execute_reply": "2024-08-12T10:36:33.560758Z" + "iopub.execute_input": "2024-08-12T18:59:14.550302Z", + "iopub.status.busy": "2024-08-12T18:59:14.549985Z", + "iopub.status.idle": "2024-08-12T18:59:14.600720Z", + "shell.execute_reply": "2024-08-12T18:59:14.599885Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.564026Z", - "iopub.status.busy": "2024-08-12T10:36:33.563765Z", - "iopub.status.idle": "2024-08-12T10:36:33.612273Z", - "shell.execute_reply": "2024-08-12T10:36:33.611653Z" + "iopub.execute_input": "2024-08-12T18:59:14.603468Z", + "iopub.status.busy": "2024-08-12T18:59:14.603189Z", + "iopub.status.idle": "2024-08-12T18:59:14.655777Z", + "shell.execute_reply": "2024-08-12T18:59:14.654974Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.615254Z", - "iopub.status.busy": "2024-08-12T10:36:33.614772Z", - "iopub.status.idle": "2024-08-12T10:36:33.752925Z", - "shell.execute_reply": "2024-08-12T10:36:33.752366Z" + "iopub.execute_input": "2024-08-12T18:59:14.658937Z", + "iopub.status.busy": "2024-08-12T18:59:14.658494Z", + "iopub.status.idle": "2024-08-12T18:59:14.805784Z", + "shell.execute_reply": "2024-08-12T18:59:14.805105Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.755750Z", - "iopub.status.busy": "2024-08-12T10:36:33.754993Z", - "iopub.status.idle": "2024-08-12T10:36:36.831227Z", - "shell.execute_reply": "2024-08-12T10:36:36.830642Z" + "iopub.execute_input": "2024-08-12T18:59:14.808869Z", + "iopub.status.busy": "2024-08-12T18:59:14.808057Z", + "iopub.status.idle": "2024-08-12T18:59:17.892504Z", + "shell.execute_reply": "2024-08-12T18:59:17.891775Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.833500Z", - "iopub.status.busy": "2024-08-12T10:36:36.833308Z", - "iopub.status.idle": "2024-08-12T10:36:36.892690Z", - "shell.execute_reply": "2024-08-12T10:36:36.892211Z" + "iopub.execute_input": "2024-08-12T18:59:17.894854Z", + "iopub.status.busy": "2024-08-12T18:59:17.894644Z", + "iopub.status.idle": "2024-08-12T18:59:17.957007Z", + "shell.execute_reply": "2024-08-12T18:59:17.956422Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.894763Z", - "iopub.status.busy": "2024-08-12T10:36:36.894578Z", - "iopub.status.idle": "2024-08-12T10:36:36.937430Z", - "shell.execute_reply": "2024-08-12T10:36:36.936946Z" + "iopub.execute_input": "2024-08-12T18:59:17.959404Z", + "iopub.status.busy": "2024-08-12T18:59:17.959048Z", + "iopub.status.idle": "2024-08-12T18:59:18.001668Z", + "shell.execute_reply": "2024-08-12T18:59:18.001055Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "e2b15791", + "id": "7596b65c", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "13d6c9cb", + "id": "8cd71820", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "4a406eed", + "id": "74548889", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "879b26f8", + "id": "06b1a332", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.939556Z", - "iopub.status.busy": "2024-08-12T10:36:36.939373Z", - "iopub.status.idle": "2024-08-12T10:36:36.947114Z", - "shell.execute_reply": "2024-08-12T10:36:36.946635Z" + "iopub.execute_input": "2024-08-12T18:59:18.004021Z", + "iopub.status.busy": "2024-08-12T18:59:18.003656Z", + "iopub.status.idle": "2024-08-12T18:59:18.011463Z", + "shell.execute_reply": "2024-08-12T18:59:18.010982Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "4369b5e2", + "id": "df33427d", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "150b15ac", + "id": "442bf65a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.948929Z", - "iopub.status.busy": "2024-08-12T10:36:36.948750Z", - "iopub.status.idle": "2024-08-12T10:36:36.967965Z", - "shell.execute_reply": "2024-08-12T10:36:36.967525Z" + "iopub.execute_input": "2024-08-12T18:59:18.013746Z", + "iopub.status.busy": "2024-08-12T18:59:18.013327Z", + "iopub.status.idle": "2024-08-12T18:59:18.033961Z", + "shell.execute_reply": "2024-08-12T18:59:18.033341Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "c14c0b83", + "id": "8c4cf9b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.969804Z", - "iopub.status.busy": "2024-08-12T10:36:36.969629Z", - "iopub.status.idle": "2024-08-12T10:36:36.972857Z", - "shell.execute_reply": "2024-08-12T10:36:36.972314Z" + "iopub.execute_input": "2024-08-12T18:59:18.036179Z", + "iopub.status.busy": "2024-08-12T18:59:18.035977Z", + "iopub.status.idle": "2024-08-12T18:59:18.039688Z", + "shell.execute_reply": "2024-08-12T18:59:18.039180Z" } }, "outputs": [ @@ -1622,7 +1622,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "049b52761beb48df99fe23cd8baeebfb": { + "08c5c77d9ca9420b853ae917da3e18e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "181815186c96459ca3638cab03324592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,31 +1691,7 @@ "width": null } }, - "0c8e651ba1af4313a9317a199ae1548d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77b09a1dcb164489bb12a039cfe3b4c1", - "IPY_MODEL_e46bbd36792e43bbb201508b8bce8a47", - "IPY_MODEL_827cdb9a53984947ae7014f9483b5bbf" - ], - "layout": "IPY_MODEL_0e9314d6bb654e358a5b655abefbce94", - "tabbable": null, - "tooltip": null - } - }, - "0e9314d6bb654e358a5b655abefbce94": { + "27ac5ec495b64f1ea58b7acd0885d40f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1752,7 +1744,7 @@ "width": null } }, - "383e13499cb54e3788bb93b9baee6cda": { + "32fc56c95a28457bb4e908274994cc68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1770,60 +1762,7 @@ "text_color": null } }, - "495280da9a8c4ce295214df8980d9dd1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4ee68ec8f5664db5a49b4d5c67236357": { + "44b8216644ca4116ac75b89bf104debf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,23 +1815,25 @@ "width": null } }, - "5fea7cef55724962825cc3fc0d2f606b": { + "6e6b25a5ab8248cabe2a958063d58241": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "731256f7397c4df989b63b1f641980e8": { + "6e717fbc461a45f9b6c3fc0b31b2318a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1907,38 +1848,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_495280da9a8c4ce295214df8980d9dd1", + "layout": "IPY_MODEL_d987f42307724a30bd2f60b2878d6da7", "placeholder": "​", - "style": "IPY_MODEL_c485687bf15f4420adbaf32ba3cefa12", + "style": "IPY_MODEL_71f49736aa664c71abf733c244d17002", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1014587.32it/s]" + "value": " 10000/? [00:00<00:00, 974354.54it/s]" } }, - "77b09a1dcb164489bb12a039cfe3b4c1": { + "71f49736aa664c71abf733c244d17002": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f04c9e1d2c1c4ccb8f63c5daf273cb1e", - "placeholder": "​", - "style": "IPY_MODEL_383e13499cb54e3788bb93b9baee6cda", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8019ab3b21b84b569a5f1cee114d146f": { + "7c21cda8c98e4c9ca010c13c650e8203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1954,58 +1890,123 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ee68ec8f5664db5a49b4d5c67236357", + "layout": "IPY_MODEL_a636304a2f7f46d09012b254244a0ae0", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d5c5f29848304634a66b93d99d0e58fc", + "style": "IPY_MODEL_e85d95d4044f43a99f60efa7544c1111", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "827cdb9a53984947ae7014f9483b5bbf": { - "model_module": "@jupyter-widgets/controls", + "99f87daccefd4060b6e950c8ae96836f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5c5c8359a9349638e1ec483ccda88ec", - "placeholder": "​", - "style": "IPY_MODEL_d718ad321254435985038e766b1ab7ae", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1544351.41it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b24365c9c78b470ca67c61e541773477": { - "model_module": "@jupyter-widgets/controls", + "a288125de45149a393ab10bde84ce6cf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ba8eccc77bce49db8cd963dfef9f9200": { + "a636304a2f7f46d09012b254244a0ae0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2058,7 +2059,33 @@ "width": null } }, - "bf893ccecfea429e8cfde5bd91777d9d": { + "ac14e637c7f04acc97796172112d3529": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99f87daccefd4060b6e950c8ae96836f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08c5c77d9ca9420b853ae917da3e18e7", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "af1e5c81ccc74ab0acfdc1b6416375f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2073,16 +2100,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c0bb7bf7365d4a35a8155eaf55a88e67", - "IPY_MODEL_8019ab3b21b84b569a5f1cee114d146f", - "IPY_MODEL_731256f7397c4df989b63b1f641980e8" + "IPY_MODEL_bc575d7b0b79495c9606ca1325cec69d", + "IPY_MODEL_7c21cda8c98e4c9ca010c13c650e8203", + "IPY_MODEL_6e717fbc461a45f9b6c3fc0b31b2318a" ], - "layout": "IPY_MODEL_ea3c5899e87b4c7281939fe595139e5a", + "layout": "IPY_MODEL_c83458446be04ba48fb6bdfc9201ce68", "tabbable": null, "tooltip": null } }, - "c0bb7bf7365d4a35a8155eaf55a88e67": { + "b104473fbfd5417bb0b76e11bfc6b8df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2097,49 +2124,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_049b52761beb48df99fe23cd8baeebfb", + "layout": "IPY_MODEL_27ac5ec495b64f1ea58b7acd0885d40f", "placeholder": "​", - "style": "IPY_MODEL_b24365c9c78b470ca67c61e541773477", + "style": "IPY_MODEL_6e6b25a5ab8248cabe2a958063d58241", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "c485687bf15f4420adbaf32ba3cefa12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d5c5f29848304634a66b93d99d0e58fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 10000/? [00:00<00:00, 1472408.90it/s]" } }, - "d718ad321254435985038e766b1ab7ae": { + "b85dd87608eb48debd3fc09f4d4794ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2157,33 +2150,30 @@ "text_color": null } }, - "e46bbd36792e43bbb201508b8bce8a47": { + "bc575d7b0b79495c9606ca1325cec69d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ba8eccc77bce49db8cd963dfef9f9200", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5fea7cef55724962825cc3fc0d2f606b", + "layout": "IPY_MODEL_a288125de45149a393ab10bde84ce6cf", + "placeholder": "​", + "style": "IPY_MODEL_32fc56c95a28457bb4e908274994cc68", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "ea3c5899e87b4c7281939fe595139e5a": { + "c83458446be04ba48fb6bdfc9201ce68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2236,7 +2226,7 @@ "width": null } }, - "f04c9e1d2c1c4ccb8f63c5daf273cb1e": { + "d987f42307724a30bd2f60b2878d6da7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2289,57 +2279,67 @@ "width": null } }, - "f5c5c8359a9349638e1ec483ccda88ec": { - "model_module": "@jupyter-widgets/base", + "db2f5b228c3e48cd86e8e39d81d5b986": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f58762774d224c0b8327cb6a1d62ea0c", + "IPY_MODEL_ac14e637c7f04acc97796172112d3529", + "IPY_MODEL_b104473fbfd5417bb0b76e11bfc6b8df" + ], + "layout": "IPY_MODEL_181815186c96459ca3638cab03324592", + "tabbable": null, + "tooltip": null + } + }, + "e85d95d4044f43a99f60efa7544c1111": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f58762774d224c0b8327cb6a1d62ea0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44b8216644ca4116ac75b89bf104debf", + "placeholder": "​", + "style": "IPY_MODEL_b85dd87608eb48debd3fc09f4d4794ce", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 740b12830..5a4b84c49 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:40.626370Z", - "iopub.status.busy": "2024-08-12T10:36:40.626194Z", - "iopub.status.idle": "2024-08-12T10:36:42.106598Z", - "shell.execute_reply": "2024-08-12T10:36:42.105905Z" + "iopub.execute_input": "2024-08-12T18:59:21.826268Z", + "iopub.status.busy": "2024-08-12T18:59:21.826079Z", + "iopub.status.idle": "2024-08-12T18:59:23.362509Z", + "shell.execute_reply": "2024-08-12T18:59:23.361803Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.109356Z", - "iopub.status.busy": "2024-08-12T10:36:42.108963Z", - "iopub.status.idle": "2024-08-12T10:36:42.112835Z", - "shell.execute_reply": "2024-08-12T10:36:42.112359Z" + "iopub.execute_input": "2024-08-12T18:59:23.365369Z", + "iopub.status.busy": "2024-08-12T18:59:23.365034Z", + "iopub.status.idle": "2024-08-12T18:59:23.369094Z", + "shell.execute_reply": "2024-08-12T18:59:23.368592Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.115049Z", - "iopub.status.busy": "2024-08-12T10:36:42.114626Z", - "iopub.status.idle": "2024-08-12T10:36:42.736214Z", - "shell.execute_reply": "2024-08-12T10:36:42.735738Z" + "iopub.execute_input": "2024-08-12T18:59:23.371289Z", + "iopub.status.busy": "2024-08-12T18:59:23.370919Z", + "iopub.status.idle": "2024-08-12T18:59:23.992532Z", + "shell.execute_reply": "2024-08-12T18:59:23.992005Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.738371Z", - "iopub.status.busy": "2024-08-12T10:36:42.738098Z", - "iopub.status.idle": "2024-08-12T10:36:42.744090Z", - "shell.execute_reply": "2024-08-12T10:36:42.743513Z" + "iopub.execute_input": "2024-08-12T18:59:23.994795Z", + "iopub.status.busy": "2024-08-12T18:59:23.994427Z", + "iopub.status.idle": "2024-08-12T18:59:24.000752Z", + "shell.execute_reply": "2024-08-12T18:59:24.000271Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.746252Z", - "iopub.status.busy": "2024-08-12T10:36:42.745914Z", - "iopub.status.idle": "2024-08-12T10:36:42.752617Z", - "shell.execute_reply": "2024-08-12T10:36:42.752168Z" + "iopub.execute_input": "2024-08-12T18:59:24.002858Z", + "iopub.status.busy": "2024-08-12T18:59:24.002508Z", + "iopub.status.idle": "2024-08-12T18:59:24.009343Z", + "shell.execute_reply": "2024-08-12T18:59:24.008818Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.754505Z", - "iopub.status.busy": "2024-08-12T10:36:42.754292Z", - "iopub.status.idle": "2024-08-12T10:36:42.759107Z", - "shell.execute_reply": "2024-08-12T10:36:42.758539Z" + "iopub.execute_input": "2024-08-12T18:59:24.011516Z", + "iopub.status.busy": "2024-08-12T18:59:24.011159Z", + "iopub.status.idle": "2024-08-12T18:59:24.015977Z", + "shell.execute_reply": "2024-08-12T18:59:24.015484Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.761053Z", - "iopub.status.busy": "2024-08-12T10:36:42.760745Z", - "iopub.status.idle": "2024-08-12T10:36:42.766649Z", - "shell.execute_reply": "2024-08-12T10:36:42.766061Z" + "iopub.execute_input": "2024-08-12T18:59:24.018166Z", + "iopub.status.busy": "2024-08-12T18:59:24.017823Z", + "iopub.status.idle": "2024-08-12T18:59:24.023580Z", + "shell.execute_reply": "2024-08-12T18:59:24.023107Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.768883Z", - "iopub.status.busy": "2024-08-12T10:36:42.768475Z", - "iopub.status.idle": "2024-08-12T10:36:42.772746Z", - "shell.execute_reply": "2024-08-12T10:36:42.772309Z" + "iopub.execute_input": "2024-08-12T18:59:24.025655Z", + "iopub.status.busy": "2024-08-12T18:59:24.025309Z", + "iopub.status.idle": "2024-08-12T18:59:24.029614Z", + "shell.execute_reply": "2024-08-12T18:59:24.028928Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.774665Z", - "iopub.status.busy": "2024-08-12T10:36:42.774342Z", - "iopub.status.idle": "2024-08-12T10:36:42.840283Z", - "shell.execute_reply": "2024-08-12T10:36:42.839717Z" + "iopub.execute_input": "2024-08-12T18:59:24.031973Z", + "iopub.status.busy": "2024-08-12T18:59:24.031689Z", + "iopub.status.idle": "2024-08-12T18:59:24.101331Z", + "shell.execute_reply": "2024-08-12T18:59:24.100635Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.843017Z", - "iopub.status.busy": "2024-08-12T10:36:42.842439Z", - "iopub.status.idle": "2024-08-12T10:36:42.853415Z", - "shell.execute_reply": "2024-08-12T10:36:42.852911Z" + "iopub.execute_input": "2024-08-12T18:59:24.104215Z", + "iopub.status.busy": "2024-08-12T18:59:24.103661Z", + "iopub.status.idle": "2024-08-12T18:59:24.114955Z", + "shell.execute_reply": "2024-08-12T18:59:24.114435Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.855835Z", - "iopub.status.busy": "2024-08-12T10:36:42.855510Z", - "iopub.status.idle": "2024-08-12T10:36:42.874998Z", - "shell.execute_reply": "2024-08-12T10:36:42.874495Z" + "iopub.execute_input": "2024-08-12T18:59:24.117518Z", + "iopub.status.busy": "2024-08-12T18:59:24.117223Z", + "iopub.status.idle": "2024-08-12T18:59:24.138341Z", + "shell.execute_reply": "2024-08-12T18:59:24.137783Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.877350Z", - "iopub.status.busy": "2024-08-12T10:36:42.877026Z", - "iopub.status.idle": "2024-08-12T10:36:42.880884Z", - "shell.execute_reply": "2024-08-12T10:36:42.880387Z" + "iopub.execute_input": "2024-08-12T18:59:24.141061Z", + "iopub.status.busy": "2024-08-12T18:59:24.140659Z", + "iopub.status.idle": "2024-08-12T18:59:24.144913Z", + "shell.execute_reply": "2024-08-12T18:59:24.144417Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.883257Z", - "iopub.status.busy": "2024-08-12T10:36:42.882896Z", - "iopub.status.idle": "2024-08-12T10:36:42.887060Z", - "shell.execute_reply": "2024-08-12T10:36:42.886565Z" + "iopub.execute_input": "2024-08-12T18:59:24.147445Z", + "iopub.status.busy": "2024-08-12T18:59:24.147051Z", + "iopub.status.idle": "2024-08-12T18:59:24.151429Z", + "shell.execute_reply": "2024-08-12T18:59:24.150931Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.889441Z", - "iopub.status.busy": "2024-08-12T10:36:42.889082Z", - "iopub.status.idle": "2024-08-12T10:36:42.900374Z", - "shell.execute_reply": "2024-08-12T10:36:42.899885Z" + "iopub.execute_input": "2024-08-12T18:59:24.154790Z", + "iopub.status.busy": "2024-08-12T18:59:24.153828Z", + "iopub.status.idle": "2024-08-12T18:59:24.165935Z", + "shell.execute_reply": "2024-08-12T18:59:24.165486Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.902302Z", - "iopub.status.busy": "2024-08-12T10:36:42.902009Z", - "iopub.status.idle": "2024-08-12T10:36:42.906390Z", - "shell.execute_reply": "2024-08-12T10:36:42.905809Z" + "iopub.execute_input": "2024-08-12T18:59:24.168518Z", + "iopub.status.busy": "2024-08-12T18:59:24.168008Z", + "iopub.status.idle": "2024-08-12T18:59:24.173279Z", + "shell.execute_reply": "2024-08-12T18:59:24.172745Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.908354Z", - "iopub.status.busy": "2024-08-12T10:36:42.908181Z", - "iopub.status.idle": "2024-08-12T10:36:43.022711Z", - "shell.execute_reply": "2024-08-12T10:36:43.022121Z" + "iopub.execute_input": "2024-08-12T18:59:24.175732Z", + "iopub.status.busy": "2024-08-12T18:59:24.175539Z", + "iopub.status.idle": "2024-08-12T18:59:24.290251Z", + "shell.execute_reply": "2024-08-12T18:59:24.289739Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:43.024780Z", - "iopub.status.busy": "2024-08-12T10:36:43.024600Z", - "iopub.status.idle": "2024-08-12T10:36:43.032352Z", - "shell.execute_reply": "2024-08-12T10:36:43.031812Z" + "iopub.execute_input": "2024-08-12T18:59:24.292625Z", + "iopub.status.busy": "2024-08-12T18:59:24.292246Z", + "iopub.status.idle": "2024-08-12T18:59:24.298593Z", + "shell.execute_reply": "2024-08-12T18:59:24.298095Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:43.034725Z", - "iopub.status.busy": "2024-08-12T10:36:43.034251Z", - "iopub.status.idle": "2024-08-12T10:36:45.303150Z", - "shell.execute_reply": "2024-08-12T10:36:45.302523Z" + "iopub.execute_input": "2024-08-12T18:59:24.301176Z", + "iopub.status.busy": "2024-08-12T18:59:24.300603Z", + "iopub.status.idle": "2024-08-12T18:59:26.626151Z", + "shell.execute_reply": "2024-08-12T18:59:26.625494Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.306901Z", - "iopub.status.busy": "2024-08-12T10:36:45.305628Z", - "iopub.status.idle": "2024-08-12T10:36:45.320641Z", - "shell.execute_reply": "2024-08-12T10:36:45.320130Z" + "iopub.execute_input": "2024-08-12T18:59:26.629258Z", + "iopub.status.busy": "2024-08-12T18:59:26.628623Z", + "iopub.status.idle": "2024-08-12T18:59:26.642060Z", + "shell.execute_reply": "2024-08-12T18:59:26.641543Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.324257Z", - "iopub.status.busy": "2024-08-12T10:36:45.323292Z", - "iopub.status.idle": "2024-08-12T10:36:45.327320Z", - "shell.execute_reply": "2024-08-12T10:36:45.326813Z" + "iopub.execute_input": "2024-08-12T18:59:26.644567Z", + "iopub.status.busy": "2024-08-12T18:59:26.644161Z", + "iopub.status.idle": "2024-08-12T18:59:26.647095Z", + "shell.execute_reply": "2024-08-12T18:59:26.646603Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.330800Z", - "iopub.status.busy": "2024-08-12T10:36:45.329853Z", - "iopub.status.idle": "2024-08-12T10:36:45.335401Z", - "shell.execute_reply": "2024-08-12T10:36:45.334898Z" + "iopub.execute_input": "2024-08-12T18:59:26.650162Z", + "iopub.status.busy": "2024-08-12T18:59:26.649219Z", + "iopub.status.idle": "2024-08-12T18:59:26.654885Z", + "shell.execute_reply": "2024-08-12T18:59:26.654380Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.338898Z", - "iopub.status.busy": "2024-08-12T10:36:45.337952Z", - "iopub.status.idle": "2024-08-12T10:36:45.369119Z", - "shell.execute_reply": "2024-08-12T10:36:45.368622Z" + "iopub.execute_input": "2024-08-12T18:59:26.658482Z", + "iopub.status.busy": "2024-08-12T18:59:26.657542Z", + "iopub.status.idle": "2024-08-12T18:59:26.694816Z", + "shell.execute_reply": "2024-08-12T18:59:26.694252Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.372525Z", - "iopub.status.busy": "2024-08-12T10:36:45.371632Z", - "iopub.status.idle": "2024-08-12T10:36:45.905387Z", - "shell.execute_reply": "2024-08-12T10:36:45.904814Z" + "iopub.execute_input": "2024-08-12T18:59:26.697458Z", + "iopub.status.busy": "2024-08-12T18:59:26.697065Z", + "iopub.status.idle": "2024-08-12T18:59:27.254855Z", + "shell.execute_reply": "2024-08-12T18:59:27.254284Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.909279Z", - "iopub.status.busy": "2024-08-12T10:36:45.908383Z", - "iopub.status.idle": "2024-08-12T10:36:46.041822Z", - "shell.execute_reply": "2024-08-12T10:36:46.041200Z" + "iopub.execute_input": "2024-08-12T18:59:27.257761Z", + "iopub.status.busy": "2024-08-12T18:59:27.257381Z", + "iopub.status.idle": "2024-08-12T18:59:27.403783Z", + "shell.execute_reply": "2024-08-12T18:59:27.403129Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.045278Z", - "iopub.status.busy": "2024-08-12T10:36:46.044751Z", - "iopub.status.idle": "2024-08-12T10:36:46.053676Z", - "shell.execute_reply": "2024-08-12T10:36:46.053168Z" + "iopub.execute_input": "2024-08-12T18:59:27.407718Z", + "iopub.status.busy": "2024-08-12T18:59:27.406705Z", + "iopub.status.idle": "2024-08-12T18:59:27.416124Z", + "shell.execute_reply": "2024-08-12T18:59:27.415579Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.057145Z", - "iopub.status.busy": "2024-08-12T10:36:46.056094Z", - "iopub.status.idle": "2024-08-12T10:36:46.064218Z", - "shell.execute_reply": "2024-08-12T10:36:46.063721Z" + "iopub.execute_input": "2024-08-12T18:59:27.419912Z", + "iopub.status.busy": "2024-08-12T18:59:27.418954Z", + "iopub.status.idle": "2024-08-12T18:59:27.427553Z", + "shell.execute_reply": "2024-08-12T18:59:27.427031Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.066943Z", - "iopub.status.busy": "2024-08-12T10:36:46.066574Z", - "iopub.status.idle": "2024-08-12T10:36:46.073843Z", - "shell.execute_reply": "2024-08-12T10:36:46.073350Z" + "iopub.execute_input": "2024-08-12T18:59:27.431276Z", + "iopub.status.busy": "2024-08-12T18:59:27.430306Z", + "iopub.status.idle": "2024-08-12T18:59:27.438426Z", + "shell.execute_reply": "2024-08-12T18:59:27.437887Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.077228Z", - "iopub.status.busy": "2024-08-12T10:36:46.076190Z", - "iopub.status.idle": "2024-08-12T10:36:46.082285Z", - "shell.execute_reply": "2024-08-12T10:36:46.081799Z" + "iopub.execute_input": "2024-08-12T18:59:27.442229Z", + "iopub.status.busy": "2024-08-12T18:59:27.441274Z", + "iopub.status.idle": "2024-08-12T18:59:27.446605Z", + "shell.execute_reply": "2024-08-12T18:59:27.445954Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.084361Z", - "iopub.status.busy": "2024-08-12T10:36:46.084023Z", - "iopub.status.idle": "2024-08-12T10:36:46.088860Z", - "shell.execute_reply": "2024-08-12T10:36:46.088303Z" + "iopub.execute_input": "2024-08-12T18:59:27.448859Z", + "iopub.status.busy": "2024-08-12T18:59:27.448667Z", + "iopub.status.idle": "2024-08-12T18:59:27.454140Z", + "shell.execute_reply": "2024-08-12T18:59:27.453686Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.091098Z", - "iopub.status.busy": "2024-08-12T10:36:46.090782Z", - "iopub.status.idle": "2024-08-12T10:36:46.172998Z", - "shell.execute_reply": "2024-08-12T10:36:46.172344Z" + "iopub.execute_input": "2024-08-12T18:59:27.456194Z", + "iopub.status.busy": "2024-08-12T18:59:27.456000Z", + "iopub.status.idle": "2024-08-12T18:59:27.537799Z", + "shell.execute_reply": "2024-08-12T18:59:27.537248Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.175651Z", - "iopub.status.busy": "2024-08-12T10:36:46.175429Z", - "iopub.status.idle": "2024-08-12T10:36:46.187531Z", - "shell.execute_reply": "2024-08-12T10:36:46.186972Z" + "iopub.execute_input": "2024-08-12T18:59:27.540099Z", + "iopub.status.busy": "2024-08-12T18:59:27.539886Z", + "iopub.status.idle": "2024-08-12T18:59:27.554683Z", + "shell.execute_reply": "2024-08-12T18:59:27.553987Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.190271Z", - "iopub.status.busy": "2024-08-12T10:36:46.190072Z", - "iopub.status.idle": "2024-08-12T10:36:46.193436Z", - "shell.execute_reply": "2024-08-12T10:36:46.193003Z" + "iopub.execute_input": "2024-08-12T18:59:27.557753Z", + "iopub.status.busy": "2024-08-12T18:59:27.557171Z", + "iopub.status.idle": "2024-08-12T18:59:27.560724Z", + "shell.execute_reply": "2024-08-12T18:59:27.560114Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.195626Z", - "iopub.status.busy": "2024-08-12T10:36:46.195293Z", - "iopub.status.idle": "2024-08-12T10:36:46.205150Z", - "shell.execute_reply": "2024-08-12T10:36:46.204713Z" + "iopub.execute_input": "2024-08-12T18:59:27.562976Z", + "iopub.status.busy": "2024-08-12T18:59:27.562789Z", + "iopub.status.idle": "2024-08-12T18:59:27.573678Z", + "shell.execute_reply": "2024-08-12T18:59:27.573001Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.207247Z", - "iopub.status.busy": "2024-08-12T10:36:46.206910Z", - "iopub.status.idle": "2024-08-12T10:36:46.213503Z", - "shell.execute_reply": "2024-08-12T10:36:46.213035Z" + "iopub.execute_input": "2024-08-12T18:59:27.576419Z", + "iopub.status.busy": "2024-08-12T18:59:27.576012Z", + "iopub.status.idle": "2024-08-12T18:59:27.582946Z", + "shell.execute_reply": "2024-08-12T18:59:27.582421Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.215507Z", - "iopub.status.busy": "2024-08-12T10:36:46.215170Z", - "iopub.status.idle": "2024-08-12T10:36:46.218497Z", - "shell.execute_reply": "2024-08-12T10:36:46.218007Z" + "iopub.execute_input": "2024-08-12T18:59:27.585144Z", + "iopub.status.busy": "2024-08-12T18:59:27.584831Z", + "iopub.status.idle": "2024-08-12T18:59:27.588435Z", + "shell.execute_reply": "2024-08-12T18:59:27.587844Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.220478Z", - "iopub.status.busy": "2024-08-12T10:36:46.220119Z", - "iopub.status.idle": "2024-08-12T10:36:50.293411Z", - "shell.execute_reply": "2024-08-12T10:36:50.292905Z" + "iopub.execute_input": "2024-08-12T18:59:27.590688Z", + "iopub.status.busy": "2024-08-12T18:59:27.590349Z", + "iopub.status.idle": "2024-08-12T18:59:31.669748Z", + "shell.execute_reply": "2024-08-12T18:59:31.669230Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:50.296575Z", - "iopub.status.busy": "2024-08-12T10:36:50.295692Z", - "iopub.status.idle": "2024-08-12T10:36:50.299685Z", - "shell.execute_reply": "2024-08-12T10:36:50.299227Z" + "iopub.execute_input": "2024-08-12T18:59:31.672207Z", + "iopub.status.busy": "2024-08-12T18:59:31.671838Z", + "iopub.status.idle": "2024-08-12T18:59:31.675032Z", + "shell.execute_reply": "2024-08-12T18:59:31.674603Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:50.301503Z", - "iopub.status.busy": "2024-08-12T10:36:50.301346Z", - "iopub.status.idle": "2024-08-12T10:36:50.304200Z", - "shell.execute_reply": "2024-08-12T10:36:50.303734Z" + "iopub.execute_input": "2024-08-12T18:59:31.677196Z", + "iopub.status.busy": "2024-08-12T18:59:31.676887Z", + "iopub.status.idle": "2024-08-12T18:59:31.679964Z", + "shell.execute_reply": "2024-08-12T18:59:31.679566Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index f91499b91..9eab66f97 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:53.576141Z", - "iopub.status.busy": "2024-08-12T10:36:53.575962Z", - "iopub.status.idle": "2024-08-12T10:36:55.014555Z", - "shell.execute_reply": "2024-08-12T10:36:55.014010Z" + "iopub.execute_input": "2024-08-12T18:59:35.304974Z", + "iopub.status.busy": "2024-08-12T18:59:35.304798Z", + "iopub.status.idle": "2024-08-12T18:59:36.757045Z", + "shell.execute_reply": "2024-08-12T18:59:36.756394Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.017150Z", - "iopub.status.busy": "2024-08-12T10:36:55.016843Z", - "iopub.status.idle": "2024-08-12T10:36:55.020291Z", - "shell.execute_reply": "2024-08-12T10:36:55.019828Z" + "iopub.execute_input": "2024-08-12T18:59:36.759809Z", + "iopub.status.busy": "2024-08-12T18:59:36.759444Z", + "iopub.status.idle": "2024-08-12T18:59:36.763080Z", + "shell.execute_reply": "2024-08-12T18:59:36.762530Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.022265Z", - "iopub.status.busy": "2024-08-12T10:36:55.022084Z", - "iopub.status.idle": "2024-08-12T10:36:55.033553Z", - "shell.execute_reply": "2024-08-12T10:36:55.033077Z" + "iopub.execute_input": "2024-08-12T18:59:36.765342Z", + "iopub.status.busy": "2024-08-12T18:59:36.764890Z", + "iopub.status.idle": "2024-08-12T18:59:36.776716Z", + "shell.execute_reply": "2024-08-12T18:59:36.776099Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.035570Z", - "iopub.status.busy": "2024-08-12T10:36:55.035381Z", - "iopub.status.idle": "2024-08-12T10:36:55.275119Z", - "shell.execute_reply": "2024-08-12T10:36:55.274521Z" + "iopub.execute_input": "2024-08-12T18:59:36.779257Z", + "iopub.status.busy": "2024-08-12T18:59:36.778841Z", + "iopub.status.idle": "2024-08-12T18:59:36.993253Z", + "shell.execute_reply": "2024-08-12T18:59:36.992612Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.277529Z", - "iopub.status.busy": "2024-08-12T10:36:55.277197Z", - "iopub.status.idle": "2024-08-12T10:36:55.304345Z", - "shell.execute_reply": "2024-08-12T10:36:55.303759Z" + "iopub.execute_input": "2024-08-12T18:59:36.995645Z", + "iopub.status.busy": "2024-08-12T18:59:36.995301Z", + "iopub.status.idle": "2024-08-12T18:59:37.022394Z", + "shell.execute_reply": "2024-08-12T18:59:37.021879Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.306815Z", - "iopub.status.busy": "2024-08-12T10:36:55.306461Z", - "iopub.status.idle": "2024-08-12T10:36:57.481211Z", - "shell.execute_reply": "2024-08-12T10:36:57.480509Z" + "iopub.execute_input": "2024-08-12T18:59:37.025051Z", + "iopub.status.busy": "2024-08-12T18:59:37.024560Z", + "iopub.status.idle": "2024-08-12T18:59:39.262272Z", + "shell.execute_reply": "2024-08-12T18:59:39.261549Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:57.483792Z", - "iopub.status.busy": "2024-08-12T10:36:57.483415Z", - "iopub.status.idle": "2024-08-12T10:36:57.501958Z", - "shell.execute_reply": "2024-08-12T10:36:57.501474Z" + "iopub.execute_input": "2024-08-12T18:59:39.265033Z", + "iopub.status.busy": "2024-08-12T18:59:39.264285Z", + "iopub.status.idle": "2024-08-12T18:59:39.282778Z", + "shell.execute_reply": "2024-08-12T18:59:39.282196Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:57.504352Z", - "iopub.status.busy": "2024-08-12T10:36:57.503863Z", - "iopub.status.idle": "2024-08-12T10:36:59.103702Z", - "shell.execute_reply": "2024-08-12T10:36:59.103079Z" + "iopub.execute_input": "2024-08-12T18:59:39.285167Z", + "iopub.status.busy": "2024-08-12T18:59:39.284691Z", + "iopub.status.idle": "2024-08-12T18:59:40.937315Z", + "shell.execute_reply": "2024-08-12T18:59:40.936613Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.106686Z", - "iopub.status.busy": "2024-08-12T10:36:59.105759Z", - "iopub.status.idle": "2024-08-12T10:36:59.119934Z", - "shell.execute_reply": "2024-08-12T10:36:59.119452Z" + "iopub.execute_input": "2024-08-12T18:59:40.940438Z", + "iopub.status.busy": "2024-08-12T18:59:40.939654Z", + "iopub.status.idle": "2024-08-12T18:59:40.954542Z", + "shell.execute_reply": "2024-08-12T18:59:40.953980Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.122050Z", - "iopub.status.busy": "2024-08-12T10:36:59.121694Z", - "iopub.status.idle": "2024-08-12T10:36:59.205641Z", - "shell.execute_reply": "2024-08-12T10:36:59.205023Z" + "iopub.execute_input": "2024-08-12T18:59:40.956770Z", + "iopub.status.busy": "2024-08-12T18:59:40.956575Z", + "iopub.status.idle": "2024-08-12T18:59:41.043940Z", + "shell.execute_reply": "2024-08-12T18:59:41.043268Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.208167Z", - "iopub.status.busy": "2024-08-12T10:36:59.207756Z", - "iopub.status.idle": "2024-08-12T10:36:59.420275Z", - "shell.execute_reply": "2024-08-12T10:36:59.419661Z" + "iopub.execute_input": "2024-08-12T18:59:41.046625Z", + "iopub.status.busy": "2024-08-12T18:59:41.046255Z", + "iopub.status.idle": "2024-08-12T18:59:41.261565Z", + "shell.execute_reply": "2024-08-12T18:59:41.260957Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.422483Z", - "iopub.status.busy": "2024-08-12T10:36:59.422110Z", - "iopub.status.idle": "2024-08-12T10:36:59.439047Z", - "shell.execute_reply": "2024-08-12T10:36:59.438607Z" + "iopub.execute_input": "2024-08-12T18:59:41.264074Z", + "iopub.status.busy": "2024-08-12T18:59:41.263645Z", + "iopub.status.idle": "2024-08-12T18:59:41.282286Z", + "shell.execute_reply": "2024-08-12T18:59:41.281805Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.441204Z", - "iopub.status.busy": "2024-08-12T10:36:59.440871Z", - "iopub.status.idle": "2024-08-12T10:36:59.450881Z", - "shell.execute_reply": "2024-08-12T10:36:59.450435Z" + "iopub.execute_input": "2024-08-12T18:59:41.284554Z", + "iopub.status.busy": "2024-08-12T18:59:41.284169Z", + "iopub.status.idle": "2024-08-12T18:59:41.293947Z", + "shell.execute_reply": "2024-08-12T18:59:41.293461Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.452925Z", - "iopub.status.busy": "2024-08-12T10:36:59.452588Z", - "iopub.status.idle": "2024-08-12T10:36:59.545723Z", - "shell.execute_reply": "2024-08-12T10:36:59.545075Z" + "iopub.execute_input": "2024-08-12T18:59:41.296255Z", + "iopub.status.busy": "2024-08-12T18:59:41.295902Z", + "iopub.status.idle": "2024-08-12T18:59:41.393592Z", + "shell.execute_reply": "2024-08-12T18:59:41.392998Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.548352Z", - "iopub.status.busy": "2024-08-12T10:36:59.547991Z", - "iopub.status.idle": "2024-08-12T10:36:59.687429Z", - "shell.execute_reply": "2024-08-12T10:36:59.686780Z" + "iopub.execute_input": "2024-08-12T18:59:41.396125Z", + "iopub.status.busy": "2024-08-12T18:59:41.395728Z", + "iopub.status.idle": "2024-08-12T18:59:41.553831Z", + "shell.execute_reply": "2024-08-12T18:59:41.553173Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.690123Z", - "iopub.status.busy": "2024-08-12T10:36:59.689562Z", - "iopub.status.idle": "2024-08-12T10:36:59.693688Z", - "shell.execute_reply": "2024-08-12T10:36:59.693154Z" + "iopub.execute_input": "2024-08-12T18:59:41.556448Z", + "iopub.status.busy": "2024-08-12T18:59:41.556095Z", + "iopub.status.idle": "2024-08-12T18:59:41.560097Z", + "shell.execute_reply": "2024-08-12T18:59:41.559551Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.696034Z", - "iopub.status.busy": "2024-08-12T10:36:59.695722Z", - "iopub.status.idle": "2024-08-12T10:36:59.699496Z", - "shell.execute_reply": "2024-08-12T10:36:59.698951Z" + "iopub.execute_input": "2024-08-12T18:59:41.562409Z", + "iopub.status.busy": "2024-08-12T18:59:41.562052Z", + "iopub.status.idle": "2024-08-12T18:59:41.565967Z", + "shell.execute_reply": "2024-08-12T18:59:41.565404Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.701481Z", - "iopub.status.busy": "2024-08-12T10:36:59.701177Z", - "iopub.status.idle": "2024-08-12T10:36:59.738773Z", - "shell.execute_reply": "2024-08-12T10:36:59.738181Z" + "iopub.execute_input": "2024-08-12T18:59:41.568132Z", + "iopub.status.busy": "2024-08-12T18:59:41.567785Z", + "iopub.status.idle": "2024-08-12T18:59:41.606435Z", + "shell.execute_reply": "2024-08-12T18:59:41.605862Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.740888Z", - "iopub.status.busy": "2024-08-12T10:36:59.740542Z", - "iopub.status.idle": "2024-08-12T10:36:59.781556Z", - "shell.execute_reply": "2024-08-12T10:36:59.781066Z" + "iopub.execute_input": "2024-08-12T18:59:41.608980Z", + "iopub.status.busy": "2024-08-12T18:59:41.608519Z", + "iopub.status.idle": "2024-08-12T18:59:41.650825Z", + "shell.execute_reply": "2024-08-12T18:59:41.650241Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.783621Z", - "iopub.status.busy": "2024-08-12T10:36:59.783276Z", - "iopub.status.idle": "2024-08-12T10:36:59.886618Z", - "shell.execute_reply": "2024-08-12T10:36:59.885902Z" + "iopub.execute_input": "2024-08-12T18:59:41.653201Z", + "iopub.status.busy": "2024-08-12T18:59:41.652768Z", + "iopub.status.idle": "2024-08-12T18:59:41.758338Z", + "shell.execute_reply": "2024-08-12T18:59:41.757712Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.889214Z", - "iopub.status.busy": "2024-08-12T10:36:59.888964Z", - "iopub.status.idle": "2024-08-12T10:36:59.998717Z", - "shell.execute_reply": "2024-08-12T10:36:59.998068Z" + "iopub.execute_input": "2024-08-12T18:59:41.761298Z", + "iopub.status.busy": "2024-08-12T18:59:41.760816Z", + "iopub.status.idle": "2024-08-12T18:59:41.886836Z", + "shell.execute_reply": "2024-08-12T18:59:41.886199Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.001204Z", - "iopub.status.busy": "2024-08-12T10:37:00.000820Z", - "iopub.status.idle": "2024-08-12T10:37:00.213727Z", - "shell.execute_reply": "2024-08-12T10:37:00.213136Z" + "iopub.execute_input": "2024-08-12T18:59:41.889204Z", + "iopub.status.busy": "2024-08-12T18:59:41.888953Z", + "iopub.status.idle": "2024-08-12T18:59:42.106786Z", + "shell.execute_reply": "2024-08-12T18:59:42.106237Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.216034Z", - "iopub.status.busy": "2024-08-12T10:37:00.215683Z", - "iopub.status.idle": "2024-08-12T10:37:00.436763Z", - "shell.execute_reply": "2024-08-12T10:37:00.436178Z" + "iopub.execute_input": "2024-08-12T18:59:42.109159Z", + "iopub.status.busy": "2024-08-12T18:59:42.108706Z", + "iopub.status.idle": "2024-08-12T18:59:42.343381Z", + "shell.execute_reply": "2024-08-12T18:59:42.342735Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.439376Z", - "iopub.status.busy": "2024-08-12T10:37:00.438962Z", - "iopub.status.idle": "2024-08-12T10:37:00.445033Z", - "shell.execute_reply": "2024-08-12T10:37:00.444579Z" + "iopub.execute_input": "2024-08-12T18:59:42.345991Z", + "iopub.status.busy": "2024-08-12T18:59:42.345741Z", + "iopub.status.idle": "2024-08-12T18:59:42.352404Z", + "shell.execute_reply": "2024-08-12T18:59:42.351909Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.447166Z", - "iopub.status.busy": "2024-08-12T10:37:00.446833Z", - "iopub.status.idle": "2024-08-12T10:37:00.664000Z", - "shell.execute_reply": "2024-08-12T10:37:00.663425Z" + "iopub.execute_input": "2024-08-12T18:59:42.354511Z", + "iopub.status.busy": "2024-08-12T18:59:42.354162Z", + "iopub.status.idle": "2024-08-12T18:59:42.575035Z", + "shell.execute_reply": "2024-08-12T18:59:42.574431Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.666198Z", - "iopub.status.busy": "2024-08-12T10:37:00.665906Z", - "iopub.status.idle": "2024-08-12T10:37:01.745237Z", - "shell.execute_reply": "2024-08-12T10:37:01.744556Z" + "iopub.execute_input": "2024-08-12T18:59:42.577426Z", + "iopub.status.busy": "2024-08-12T18:59:42.577078Z", + "iopub.status.idle": "2024-08-12T18:59:43.656887Z", + "shell.execute_reply": "2024-08-12T18:59:43.656289Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index df5a01e40..1b995e101 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:05.388871Z", - "iopub.status.busy": "2024-08-12T10:37:05.388693Z", - "iopub.status.idle": "2024-08-12T10:37:06.803277Z", - "shell.execute_reply": "2024-08-12T10:37:06.802643Z" + "iopub.execute_input": "2024-08-12T18:59:47.417596Z", + "iopub.status.busy": "2024-08-12T18:59:47.417079Z", + "iopub.status.idle": "2024-08-12T18:59:48.878644Z", + "shell.execute_reply": "2024-08-12T18:59:48.878070Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.805938Z", - "iopub.status.busy": "2024-08-12T10:37:06.805652Z", - "iopub.status.idle": "2024-08-12T10:37:06.808825Z", - "shell.execute_reply": "2024-08-12T10:37:06.808280Z" + "iopub.execute_input": "2024-08-12T18:59:48.881128Z", + "iopub.status.busy": "2024-08-12T18:59:48.880825Z", + "iopub.status.idle": "2024-08-12T18:59:48.883983Z", + "shell.execute_reply": "2024-08-12T18:59:48.883519Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.810942Z", - "iopub.status.busy": "2024-08-12T10:37:06.810637Z", - "iopub.status.idle": "2024-08-12T10:37:06.818311Z", - "shell.execute_reply": "2024-08-12T10:37:06.817756Z" + "iopub.execute_input": "2024-08-12T18:59:48.886113Z", + "iopub.status.busy": "2024-08-12T18:59:48.885774Z", + "iopub.status.idle": "2024-08-12T18:59:48.893491Z", + "shell.execute_reply": "2024-08-12T18:59:48.893014Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.820375Z", - "iopub.status.busy": "2024-08-12T10:37:06.820045Z", - "iopub.status.idle": "2024-08-12T10:37:06.867480Z", - "shell.execute_reply": "2024-08-12T10:37:06.866999Z" + "iopub.execute_input": "2024-08-12T18:59:48.895624Z", + "iopub.status.busy": "2024-08-12T18:59:48.895212Z", + "iopub.status.idle": "2024-08-12T18:59:48.944247Z", + "shell.execute_reply": "2024-08-12T18:59:48.943678Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.869923Z", - "iopub.status.busy": "2024-08-12T10:37:06.869561Z", - "iopub.status.idle": "2024-08-12T10:37:06.886443Z", - "shell.execute_reply": "2024-08-12T10:37:06.885835Z" + "iopub.execute_input": "2024-08-12T18:59:48.946974Z", + "iopub.status.busy": "2024-08-12T18:59:48.946526Z", + "iopub.status.idle": "2024-08-12T18:59:48.963914Z", + "shell.execute_reply": "2024-08-12T18:59:48.963313Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.888629Z", - "iopub.status.busy": "2024-08-12T10:37:06.888293Z", - "iopub.status.idle": "2024-08-12T10:37:06.892059Z", - "shell.execute_reply": "2024-08-12T10:37:06.891606Z" + "iopub.execute_input": "2024-08-12T18:59:48.966276Z", + "iopub.status.busy": "2024-08-12T18:59:48.965835Z", + "iopub.status.idle": "2024-08-12T18:59:48.969991Z", + "shell.execute_reply": "2024-08-12T18:59:48.969454Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.894154Z", - "iopub.status.busy": "2024-08-12T10:37:06.893890Z", - "iopub.status.idle": "2024-08-12T10:37:06.909322Z", - "shell.execute_reply": "2024-08-12T10:37:06.908906Z" + "iopub.execute_input": "2024-08-12T18:59:48.972099Z", + "iopub.status.busy": "2024-08-12T18:59:48.971921Z", + "iopub.status.idle": "2024-08-12T18:59:48.989790Z", + "shell.execute_reply": "2024-08-12T18:59:48.989320Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.911202Z", - "iopub.status.busy": "2024-08-12T10:37:06.911016Z", - "iopub.status.idle": "2024-08-12T10:37:06.937454Z", - "shell.execute_reply": "2024-08-12T10:37:06.936962Z" + "iopub.execute_input": "2024-08-12T18:59:48.992099Z", + "iopub.status.busy": "2024-08-12T18:59:48.991748Z", + "iopub.status.idle": "2024-08-12T18:59:49.018554Z", + "shell.execute_reply": "2024-08-12T18:59:49.018031Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.939565Z", - "iopub.status.busy": "2024-08-12T10:37:06.939384Z", - "iopub.status.idle": "2024-08-12T10:37:09.089293Z", - "shell.execute_reply": "2024-08-12T10:37:09.088628Z" + "iopub.execute_input": "2024-08-12T18:59:49.021208Z", + "iopub.status.busy": "2024-08-12T18:59:49.020835Z", + "iopub.status.idle": "2024-08-12T18:59:51.271455Z", + "shell.execute_reply": "2024-08-12T18:59:51.270767Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.092048Z", - "iopub.status.busy": "2024-08-12T10:37:09.091539Z", - "iopub.status.idle": "2024-08-12T10:37:09.098539Z", - "shell.execute_reply": "2024-08-12T10:37:09.098049Z" + "iopub.execute_input": "2024-08-12T18:59:51.274510Z", + "iopub.status.busy": "2024-08-12T18:59:51.273875Z", + "iopub.status.idle": "2024-08-12T18:59:51.281259Z", + "shell.execute_reply": "2024-08-12T18:59:51.280795Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.100427Z", - "iopub.status.busy": "2024-08-12T10:37:09.100246Z", - "iopub.status.idle": "2024-08-12T10:37:09.113060Z", - "shell.execute_reply": "2024-08-12T10:37:09.112607Z" + "iopub.execute_input": "2024-08-12T18:59:51.283421Z", + "iopub.status.busy": "2024-08-12T18:59:51.283094Z", + "iopub.status.idle": "2024-08-12T18:59:51.295523Z", + "shell.execute_reply": "2024-08-12T18:59:51.294970Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.114954Z", - "iopub.status.busy": "2024-08-12T10:37:09.114778Z", - "iopub.status.idle": "2024-08-12T10:37:09.121345Z", - "shell.execute_reply": "2024-08-12T10:37:09.120881Z" + "iopub.execute_input": "2024-08-12T18:59:51.297742Z", + "iopub.status.busy": "2024-08-12T18:59:51.297424Z", + "iopub.status.idle": "2024-08-12T18:59:51.304426Z", + "shell.execute_reply": "2024-08-12T18:59:51.303921Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.123474Z", - "iopub.status.busy": "2024-08-12T10:37:09.123132Z", - "iopub.status.idle": "2024-08-12T10:37:09.125850Z", - "shell.execute_reply": "2024-08-12T10:37:09.125398Z" + "iopub.execute_input": "2024-08-12T18:59:51.306560Z", + "iopub.status.busy": "2024-08-12T18:59:51.306375Z", + "iopub.status.idle": "2024-08-12T18:59:51.308977Z", + "shell.execute_reply": "2024-08-12T18:59:51.308522Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.127879Z", - "iopub.status.busy": "2024-08-12T10:37:09.127535Z", - "iopub.status.idle": "2024-08-12T10:37:09.131216Z", - "shell.execute_reply": "2024-08-12T10:37:09.130751Z" + "iopub.execute_input": "2024-08-12T18:59:51.310933Z", + "iopub.status.busy": "2024-08-12T18:59:51.310756Z", + "iopub.status.idle": "2024-08-12T18:59:51.314521Z", + "shell.execute_reply": "2024-08-12T18:59:51.314048Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.133188Z", - "iopub.status.busy": "2024-08-12T10:37:09.132921Z", - "iopub.status.idle": "2024-08-12T10:37:09.135464Z", - "shell.execute_reply": "2024-08-12T10:37:09.135011Z" + "iopub.execute_input": "2024-08-12T18:59:51.316522Z", + "iopub.status.busy": "2024-08-12T18:59:51.316329Z", + "iopub.status.idle": "2024-08-12T18:59:51.319058Z", + "shell.execute_reply": "2024-08-12T18:59:51.318594Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.137485Z", - "iopub.status.busy": "2024-08-12T10:37:09.137147Z", - "iopub.status.idle": "2024-08-12T10:37:09.141490Z", - "shell.execute_reply": "2024-08-12T10:37:09.140918Z" + "iopub.execute_input": "2024-08-12T18:59:51.321120Z", + "iopub.status.busy": "2024-08-12T18:59:51.320800Z", + "iopub.status.idle": "2024-08-12T18:59:51.325200Z", + "shell.execute_reply": "2024-08-12T18:59:51.324719Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.143733Z", - "iopub.status.busy": "2024-08-12T10:37:09.143297Z", - "iopub.status.idle": "2024-08-12T10:37:09.171860Z", - "shell.execute_reply": "2024-08-12T10:37:09.171290Z" + "iopub.execute_input": "2024-08-12T18:59:51.327285Z", + "iopub.status.busy": "2024-08-12T18:59:51.326972Z", + "iopub.status.idle": "2024-08-12T18:59:51.355218Z", + "shell.execute_reply": "2024-08-12T18:59:51.354758Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.174329Z", - "iopub.status.busy": "2024-08-12T10:37:09.173962Z", - "iopub.status.idle": "2024-08-12T10:37:09.179620Z", - "shell.execute_reply": "2024-08-12T10:37:09.178987Z" + "iopub.execute_input": "2024-08-12T18:59:51.357340Z", + "iopub.status.busy": "2024-08-12T18:59:51.357164Z", + "iopub.status.idle": "2024-08-12T18:59:51.362121Z", + "shell.execute_reply": "2024-08-12T18:59:51.361539Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index b1134ea67..a251e1b8c 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:12.374296Z", - "iopub.status.busy": "2024-08-12T10:37:12.373799Z", - "iopub.status.idle": "2024-08-12T10:37:13.806289Z", - "shell.execute_reply": "2024-08-12T10:37:13.805637Z" + "iopub.execute_input": "2024-08-12T18:59:54.476742Z", + "iopub.status.busy": "2024-08-12T18:59:54.476563Z", + "iopub.status.idle": "2024-08-12T18:59:55.941034Z", + "shell.execute_reply": "2024-08-12T18:59:55.940368Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:13.809008Z", - "iopub.status.busy": "2024-08-12T10:37:13.808701Z", - "iopub.status.idle": "2024-08-12T10:37:13.828959Z", - "shell.execute_reply": "2024-08-12T10:37:13.828395Z" + "iopub.execute_input": "2024-08-12T18:59:55.943675Z", + "iopub.status.busy": "2024-08-12T18:59:55.943355Z", + "iopub.status.idle": "2024-08-12T18:59:55.964343Z", + "shell.execute_reply": "2024-08-12T18:59:55.963737Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:13.831637Z", - "iopub.status.busy": "2024-08-12T10:37:13.831199Z", - "iopub.status.idle": "2024-08-12T10:37:13.844329Z", - "shell.execute_reply": "2024-08-12T10:37:13.843766Z" + "iopub.execute_input": "2024-08-12T18:59:55.967190Z", + "iopub.status.busy": "2024-08-12T18:59:55.966718Z", + "iopub.status.idle": "2024-08-12T18:59:55.980296Z", + "shell.execute_reply": "2024-08-12T18:59:55.979692Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:13.846676Z", - "iopub.status.busy": "2024-08-12T10:37:13.846320Z", - "iopub.status.idle": "2024-08-12T10:37:16.510716Z", - "shell.execute_reply": "2024-08-12T10:37:16.510096Z" + "iopub.execute_input": "2024-08-12T18:59:55.982590Z", + "iopub.status.busy": "2024-08-12T18:59:55.982109Z", + "iopub.status.idle": "2024-08-12T18:59:58.712481Z", + "shell.execute_reply": "2024-08-12T18:59:58.711874Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:16.513014Z", - "iopub.status.busy": "2024-08-12T10:37:16.512642Z", - "iopub.status.idle": "2024-08-12T10:37:17.880117Z", - "shell.execute_reply": "2024-08-12T10:37:17.879556Z" + "iopub.execute_input": "2024-08-12T18:59:58.714680Z", + "iopub.status.busy": "2024-08-12T18:59:58.714484Z", + "iopub.status.idle": "2024-08-12T19:00:00.087689Z", + "shell.execute_reply": "2024-08-12T19:00:00.087120Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:17.882596Z", - "iopub.status.busy": "2024-08-12T10:37:17.882225Z", - "iopub.status.idle": "2024-08-12T10:37:17.886361Z", - "shell.execute_reply": "2024-08-12T10:37:17.885898Z" + "iopub.execute_input": "2024-08-12T19:00:00.090114Z", + "iopub.status.busy": "2024-08-12T19:00:00.089917Z", + "iopub.status.idle": "2024-08-12T19:00:00.094093Z", + "shell.execute_reply": "2024-08-12T19:00:00.093606Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:17.888349Z", - "iopub.status.busy": "2024-08-12T10:37:17.888007Z", - "iopub.status.idle": "2024-08-12T10:37:20.071756Z", - "shell.execute_reply": "2024-08-12T10:37:20.071124Z" + "iopub.execute_input": "2024-08-12T19:00:00.096133Z", + "iopub.status.busy": "2024-08-12T19:00:00.095947Z", + "iopub.status.idle": "2024-08-12T19:00:02.393180Z", + "shell.execute_reply": "2024-08-12T19:00:02.392409Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:20.074339Z", - "iopub.status.busy": "2024-08-12T10:37:20.073809Z", - "iopub.status.idle": "2024-08-12T10:37:20.082089Z", - "shell.execute_reply": "2024-08-12T10:37:20.081508Z" + "iopub.execute_input": "2024-08-12T19:00:02.395957Z", + "iopub.status.busy": "2024-08-12T19:00:02.395557Z", + "iopub.status.idle": "2024-08-12T19:00:02.404909Z", + "shell.execute_reply": "2024-08-12T19:00:02.404317Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:20.084278Z", - "iopub.status.busy": "2024-08-12T10:37:20.083850Z", - "iopub.status.idle": "2024-08-12T10:37:22.681899Z", - "shell.execute_reply": "2024-08-12T10:37:22.681336Z" + "iopub.execute_input": "2024-08-12T19:00:02.407237Z", + "iopub.status.busy": "2024-08-12T19:00:02.406886Z", + "iopub.status.idle": "2024-08-12T19:00:05.052633Z", + "shell.execute_reply": "2024-08-12T19:00:05.051949Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:22.684061Z", - "iopub.status.busy": "2024-08-12T10:37:22.683869Z", - "iopub.status.idle": "2024-08-12T10:37:22.687750Z", - "shell.execute_reply": "2024-08-12T10:37:22.687180Z" + "iopub.execute_input": "2024-08-12T19:00:05.055108Z", + "iopub.status.busy": "2024-08-12T19:00:05.054701Z", + "iopub.status.idle": "2024-08-12T19:00:05.058341Z", + "shell.execute_reply": "2024-08-12T19:00:05.057777Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:22.689932Z", - "iopub.status.busy": "2024-08-12T10:37:22.689525Z", - "iopub.status.idle": "2024-08-12T10:37:22.693276Z", - "shell.execute_reply": "2024-08-12T10:37:22.692719Z" + "iopub.execute_input": "2024-08-12T19:00:05.060592Z", + "iopub.status.busy": "2024-08-12T19:00:05.060231Z", + "iopub.status.idle": "2024-08-12T19:00:05.064081Z", + "shell.execute_reply": "2024-08-12T19:00:05.063515Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:22.695409Z", - "iopub.status.busy": "2024-08-12T10:37:22.694998Z", - "iopub.status.idle": "2024-08-12T10:37:22.698292Z", - "shell.execute_reply": "2024-08-12T10:37:22.697713Z" + "iopub.execute_input": "2024-08-12T19:00:05.066213Z", + "iopub.status.busy": "2024-08-12T19:00:05.066030Z", + "iopub.status.idle": "2024-08-12T19:00:05.069385Z", + "shell.execute_reply": "2024-08-12T19:00:05.068796Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index f65b26375..825856313 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:25.163455Z", - "iopub.status.busy": "2024-08-12T10:37:25.163026Z", - "iopub.status.idle": "2024-08-12T10:37:26.589902Z", - "shell.execute_reply": "2024-08-12T10:37:26.589214Z" + "iopub.execute_input": "2024-08-12T19:00:07.744973Z", + "iopub.status.busy": "2024-08-12T19:00:07.744802Z", + "iopub.status.idle": "2024-08-12T19:00:09.232129Z", + "shell.execute_reply": "2024-08-12T19:00:09.231463Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:26.592929Z", - "iopub.status.busy": "2024-08-12T10:37:26.592372Z", - "iopub.status.idle": "2024-08-12T10:37:29.427927Z", - "shell.execute_reply": "2024-08-12T10:37:29.427190Z" + "iopub.execute_input": "2024-08-12T19:00:09.234897Z", + "iopub.status.busy": "2024-08-12T19:00:09.234541Z", + "iopub.status.idle": "2024-08-12T19:00:11.915101Z", + "shell.execute_reply": "2024-08-12T19:00:11.914359Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.430776Z", - "iopub.status.busy": "2024-08-12T10:37:29.430357Z", - "iopub.status.idle": "2024-08-12T10:37:29.433637Z", - "shell.execute_reply": "2024-08-12T10:37:29.433182Z" + "iopub.execute_input": "2024-08-12T19:00:11.917833Z", + "iopub.status.busy": "2024-08-12T19:00:11.917612Z", + "iopub.status.idle": "2024-08-12T19:00:11.921571Z", + "shell.execute_reply": "2024-08-12T19:00:11.921101Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.435768Z", - "iopub.status.busy": "2024-08-12T10:37:29.435355Z", - "iopub.status.idle": "2024-08-12T10:37:29.442998Z", - "shell.execute_reply": "2024-08-12T10:37:29.442441Z" + "iopub.execute_input": "2024-08-12T19:00:11.923756Z", + "iopub.status.busy": "2024-08-12T19:00:11.923398Z", + "iopub.status.idle": "2024-08-12T19:00:11.931022Z", + "shell.execute_reply": "2024-08-12T19:00:11.930496Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.445161Z", - "iopub.status.busy": "2024-08-12T10:37:29.444815Z", - "iopub.status.idle": "2024-08-12T10:37:29.761652Z", - "shell.execute_reply": "2024-08-12T10:37:29.761027Z" + "iopub.execute_input": "2024-08-12T19:00:11.933415Z", + "iopub.status.busy": "2024-08-12T19:00:11.933040Z", + "iopub.status.idle": "2024-08-12T19:00:12.256254Z", + "shell.execute_reply": "2024-08-12T19:00:12.255623Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.764688Z", - "iopub.status.busy": "2024-08-12T10:37:29.764324Z", - "iopub.status.idle": "2024-08-12T10:37:29.769578Z", - "shell.execute_reply": "2024-08-12T10:37:29.769125Z" + "iopub.execute_input": "2024-08-12T19:00:12.259525Z", + "iopub.status.busy": "2024-08-12T19:00:12.259155Z", + "iopub.status.idle": "2024-08-12T19:00:12.265184Z", + "shell.execute_reply": "2024-08-12T19:00:12.264699Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.771585Z", - "iopub.status.busy": "2024-08-12T10:37:29.771282Z", - "iopub.status.idle": "2024-08-12T10:37:29.775247Z", - "shell.execute_reply": "2024-08-12T10:37:29.774794Z" + "iopub.execute_input": "2024-08-12T19:00:12.267306Z", + "iopub.status.busy": "2024-08-12T19:00:12.266962Z", + "iopub.status.idle": "2024-08-12T19:00:12.270759Z", + "shell.execute_reply": "2024-08-12T19:00:12.270274Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.777435Z", - "iopub.status.busy": "2024-08-12T10:37:29.777036Z", - "iopub.status.idle": "2024-08-12T10:37:30.784967Z", - "shell.execute_reply": "2024-08-12T10:37:30.784372Z" + "iopub.execute_input": "2024-08-12T19:00:12.272845Z", + "iopub.status.busy": "2024-08-12T19:00:12.272501Z", + "iopub.status.idle": "2024-08-12T19:00:13.251328Z", + "shell.execute_reply": "2024-08-12T19:00:13.250639Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:30.787260Z", - "iopub.status.busy": "2024-08-12T10:37:30.787051Z", - "iopub.status.idle": "2024-08-12T10:37:30.987997Z", - "shell.execute_reply": "2024-08-12T10:37:30.987390Z" + "iopub.execute_input": "2024-08-12T19:00:13.253843Z", + "iopub.status.busy": "2024-08-12T19:00:13.253432Z", + "iopub.status.idle": "2024-08-12T19:00:13.457386Z", + "shell.execute_reply": "2024-08-12T19:00:13.456904Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:30.990363Z", - "iopub.status.busy": "2024-08-12T10:37:30.989918Z", - "iopub.status.idle": "2024-08-12T10:37:30.994564Z", - "shell.execute_reply": "2024-08-12T10:37:30.993981Z" + "iopub.execute_input": "2024-08-12T19:00:13.459660Z", + "iopub.status.busy": "2024-08-12T19:00:13.459285Z", + "iopub.status.idle": "2024-08-12T19:00:13.463485Z", + "shell.execute_reply": "2024-08-12T19:00:13.462963Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:30.996807Z", - "iopub.status.busy": "2024-08-12T10:37:30.996466Z", - "iopub.status.idle": "2024-08-12T10:37:31.364226Z", - "shell.execute_reply": "2024-08-12T10:37:31.363566Z" + "iopub.execute_input": "2024-08-12T19:00:13.465606Z", + "iopub.status.busy": "2024-08-12T19:00:13.465247Z", + "iopub.status.idle": "2024-08-12T19:00:13.843786Z", + "shell.execute_reply": "2024-08-12T19:00:13.843149Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:31.367681Z", - "iopub.status.busy": "2024-08-12T10:37:31.367170Z", - "iopub.status.idle": "2024-08-12T10:37:31.706920Z", - "shell.execute_reply": "2024-08-12T10:37:31.706339Z" + "iopub.execute_input": "2024-08-12T19:00:13.846938Z", + "iopub.status.busy": "2024-08-12T19:00:13.846715Z", + "iopub.status.idle": "2024-08-12T19:00:14.186146Z", + "shell.execute_reply": "2024-08-12T19:00:14.185542Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:31.709609Z", - "iopub.status.busy": "2024-08-12T10:37:31.709409Z", - "iopub.status.idle": "2024-08-12T10:37:32.078993Z", - "shell.execute_reply": "2024-08-12T10:37:32.078441Z" + "iopub.execute_input": "2024-08-12T19:00:14.189289Z", + "iopub.status.busy": "2024-08-12T19:00:14.188801Z", + "iopub.status.idle": "2024-08-12T19:00:14.531251Z", + "shell.execute_reply": "2024-08-12T19:00:14.530600Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:32.081360Z", - "iopub.status.busy": "2024-08-12T10:37:32.081154Z", - "iopub.status.idle": "2024-08-12T10:37:32.527879Z", - "shell.execute_reply": "2024-08-12T10:37:32.527315Z" + "iopub.execute_input": "2024-08-12T19:00:14.534669Z", + "iopub.status.busy": "2024-08-12T19:00:14.534462Z", + "iopub.status.idle": "2024-08-12T19:00:14.981300Z", + "shell.execute_reply": "2024-08-12T19:00:14.980718Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:32.532540Z", - "iopub.status.busy": "2024-08-12T10:37:32.532142Z", - "iopub.status.idle": "2024-08-12T10:37:32.985799Z", - "shell.execute_reply": "2024-08-12T10:37:32.985162Z" + "iopub.execute_input": "2024-08-12T19:00:14.986021Z", + "iopub.status.busy": "2024-08-12T19:00:14.985784Z", + "iopub.status.idle": "2024-08-12T19:00:15.419680Z", + "shell.execute_reply": "2024-08-12T19:00:15.419087Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:32.989074Z", - "iopub.status.busy": "2024-08-12T10:37:32.988698Z", - "iopub.status.idle": "2024-08-12T10:37:33.208103Z", - "shell.execute_reply": "2024-08-12T10:37:33.207522Z" + "iopub.execute_input": "2024-08-12T19:00:15.423219Z", + "iopub.status.busy": "2024-08-12T19:00:15.422852Z", + "iopub.status.idle": "2024-08-12T19:00:15.641955Z", + "shell.execute_reply": "2024-08-12T19:00:15.641306Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:33.210458Z", - "iopub.status.busy": "2024-08-12T10:37:33.210088Z", - "iopub.status.idle": "2024-08-12T10:37:33.410728Z", - "shell.execute_reply": "2024-08-12T10:37:33.410096Z" + "iopub.execute_input": "2024-08-12T19:00:15.644256Z", + "iopub.status.busy": "2024-08-12T19:00:15.643880Z", + "iopub.status.idle": "2024-08-12T19:00:15.829580Z", + "shell.execute_reply": "2024-08-12T19:00:15.828972Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:33.413025Z", - "iopub.status.busy": "2024-08-12T10:37:33.412734Z", - "iopub.status.idle": "2024-08-12T10:37:33.415627Z", - "shell.execute_reply": "2024-08-12T10:37:33.415176Z" + "iopub.execute_input": "2024-08-12T19:00:15.831912Z", + "iopub.status.busy": "2024-08-12T19:00:15.831726Z", + "iopub.status.idle": "2024-08-12T19:00:15.834898Z", + "shell.execute_reply": "2024-08-12T19:00:15.834335Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:33.417482Z", - "iopub.status.busy": "2024-08-12T10:37:33.417296Z", - "iopub.status.idle": "2024-08-12T10:37:34.448180Z", - "shell.execute_reply": "2024-08-12T10:37:34.447519Z" + "iopub.execute_input": "2024-08-12T19:00:15.837304Z", + "iopub.status.busy": "2024-08-12T19:00:15.837106Z", + "iopub.status.idle": "2024-08-12T19:00:16.840169Z", + "shell.execute_reply": "2024-08-12T19:00:16.839611Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:34.451508Z", - "iopub.status.busy": "2024-08-12T10:37:34.450862Z", - "iopub.status.idle": "2024-08-12T10:37:34.573013Z", - "shell.execute_reply": "2024-08-12T10:37:34.572407Z" + "iopub.execute_input": "2024-08-12T19:00:16.842986Z", + "iopub.status.busy": "2024-08-12T19:00:16.842795Z", + "iopub.status.idle": "2024-08-12T19:00:17.013055Z", + "shell.execute_reply": "2024-08-12T19:00:17.012447Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:34.575711Z", - "iopub.status.busy": "2024-08-12T10:37:34.575257Z", - "iopub.status.idle": "2024-08-12T10:37:34.734036Z", - "shell.execute_reply": "2024-08-12T10:37:34.733425Z" + "iopub.execute_input": "2024-08-12T19:00:17.015418Z", + "iopub.status.busy": "2024-08-12T19:00:17.014952Z", + "iopub.status.idle": "2024-08-12T19:00:17.154380Z", + "shell.execute_reply": "2024-08-12T19:00:17.153704Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:34.736711Z", - "iopub.status.busy": "2024-08-12T10:37:34.736306Z", - "iopub.status.idle": "2024-08-12T10:37:35.504840Z", - "shell.execute_reply": "2024-08-12T10:37:35.504202Z" + "iopub.execute_input": "2024-08-12T19:00:17.157210Z", + "iopub.status.busy": "2024-08-12T19:00:17.156832Z", + "iopub.status.idle": "2024-08-12T19:00:17.940088Z", + "shell.execute_reply": "2024-08-12T19:00:17.939515Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:35.507164Z", - "iopub.status.busy": "2024-08-12T10:37:35.506804Z", - "iopub.status.idle": "2024-08-12T10:37:35.510605Z", - "shell.execute_reply": "2024-08-12T10:37:35.510109Z" + "iopub.execute_input": "2024-08-12T19:00:17.942465Z", + "iopub.status.busy": "2024-08-12T19:00:17.942094Z", + "iopub.status.idle": "2024-08-12T19:00:17.945988Z", + "shell.execute_reply": "2024-08-12T19:00:17.945408Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index a766c6800..29b2c9f91 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:38.065729Z", - "iopub.status.busy": "2024-08-12T10:37:38.065301Z", - "iopub.status.idle": "2024-08-12T10:37:41.286106Z", - "shell.execute_reply": "2024-08-12T10:37:41.285531Z" + "iopub.execute_input": "2024-08-12T19:00:20.285190Z", + "iopub.status.busy": "2024-08-12T19:00:20.285019Z", + "iopub.status.idle": "2024-08-12T19:00:23.633953Z", + "shell.execute_reply": "2024-08-12T19:00:23.633344Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:41.288948Z", - "iopub.status.busy": "2024-08-12T10:37:41.288365Z", - "iopub.status.idle": "2024-08-12T10:37:41.308889Z", - "shell.execute_reply": "2024-08-12T10:37:41.308264Z" + "iopub.execute_input": "2024-08-12T19:00:23.636656Z", + "iopub.status.busy": "2024-08-12T19:00:23.636296Z", + "iopub.status.idle": "2024-08-12T19:00:23.656607Z", + "shell.execute_reply": "2024-08-12T19:00:23.656031Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:41.311645Z", - "iopub.status.busy": "2024-08-12T10:37:41.311095Z", - "iopub.status.idle": "2024-08-12T10:37:41.315091Z", - "shell.execute_reply": "2024-08-12T10:37:41.314659Z" + "iopub.execute_input": "2024-08-12T19:00:23.659450Z", + "iopub.status.busy": "2024-08-12T19:00:23.658866Z", + "iopub.status.idle": "2024-08-12T19:00:23.663050Z", + "shell.execute_reply": "2024-08-12T19:00:23.662569Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:41.317247Z", - "iopub.status.busy": "2024-08-12T10:37:41.316846Z", - "iopub.status.idle": "2024-08-12T10:37:48.393813Z", - "shell.execute_reply": "2024-08-12T10:37:48.393216Z" + "iopub.execute_input": "2024-08-12T19:00:23.665359Z", + "iopub.status.busy": "2024-08-12T19:00:23.665006Z", + "iopub.status.idle": "2024-08-12T19:00:31.351770Z", + "shell.execute_reply": "2024-08-12T19:00:31.351225Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<10:21, 274108.21it/s]" + " 0%| | 32768/170498071 [00:00<11:24, 249157.84it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 196608/170498071 [00:00<03:07, 908944.76it/s]" + " 0%| | 196608/170498071 [00:00<03:25, 827471.69it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 753664/170498071 [00:00<01:05, 2576934.58it/s]" + " 0%| | 819200/170498071 [00:00<01:05, 2583423.64it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3014656/170498071 [00:00<00:17, 9427987.53it/s]" + " 2%|▏ | 3244032/170498071 [00:00<00:17, 9350135.25it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 8323072/170498071 [00:00<00:06, 23803182.24it/s]" + " 4%|▍ | 7012352/170498071 [00:00<00:08, 18172606.14it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12124160/170498071 [00:00<00:05, 28239859.63it/s]" + " 7%|▋ | 12484608/170498071 [00:00<00:05, 29413436.51it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 17989632/170498071 [00:00<00:04, 37732622.19it/s]" + " 9%|▉ | 15728640/170498071 [00:00<00:05, 30170949.62it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21987328/170498071 [00:00<00:03, 37894761.72it/s]" + " 13%|█▎ | 21823488/170498071 [00:00<00:03, 39459011.05it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 27721728/170498071 [00:00<00:03, 43568105.00it/s]" + " 15%|█▌ | 25952256/170498071 [00:01<00:03, 37968019.50it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32440320/170498071 [00:01<00:03, 44642004.11it/s]" + " 18%|█▊ | 31195136/170498071 [00:01<00:03, 38943792.14it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37289984/170498071 [00:01<00:02, 45780248.62it/s]" + " 22%|██▏ | 36962304/170498071 [00:01<00:03, 44109490.91it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42565632/170498071 [00:01<00:02, 47872643.79it/s]" + " 24%|██▍ | 41484288/170498071 [00:01<00:03, 41905861.00it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47415296/170498071 [00:01<00:02, 45988822.57it/s]" + " 27%|██▋ | 46694400/170498071 [00:01<00:02, 43598155.05it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 53313536/170498071 [00:01<00:02, 49526120.54it/s]" + " 30%|███ | 51150848/170498071 [00:01<00:02, 43328013.65it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 58327040/170498071 [00:01<00:02, 49116657.11it/s]" + " 33%|███▎ | 56098816/170498071 [00:01<00:02, 44719966.49it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 63275008/170498071 [00:01<00:02, 46949788.50it/s]" + " 36%|███▌ | 60620800/170498071 [00:01<00:02, 43523232.99it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 69009408/170498071 [00:01<00:02, 49782525.23it/s]" + " 38%|███▊ | 65503232/170498071 [00:01<00:02, 44488462.61it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 74055680/170498071 [00:01<00:01, 49319325.77it/s]" + " 41%|████ | 69992448/170498071 [00:02<00:02, 43753129.73it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 79036416/170498071 [00:02<00:01, 47966329.96it/s]" + " 44%|████▍ | 75137024/170498071 [00:02<00:02, 45892131.60it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 84770816/170498071 [00:02<00:01, 49856821.30it/s]" + " 47%|████▋ | 79757312/170498071 [00:02<00:02, 44212549.56it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 89784320/170498071 [00:02<00:01, 49255046.52it/s]" + " 50%|████▉ | 84672512/170498071 [00:02<00:01, 45080581.65it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 94732288/170498071 [00:02<00:01, 49133238.59it/s]" + " 52%|█████▏ | 89227264/170498071 [00:02<00:01, 44302853.83it/s]" ] }, { @@ -428,7 +428,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 99876864/170498071 [00:02<00:01, 49552459.46it/s]" + " 55%|█████▌ | 94339072/170498071 [00:02<00:01, 46248373.73it/s]" ] }, { @@ -436,7 +436,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 104857600/170498071 [00:02<00:01, 47815966.10it/s]" + " 58%|█████▊ | 98992128/170498071 [00:02<00:01, 44516846.40it/s]" ] }, { @@ -444,7 +444,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110460928/170498071 [00:02<00:01, 50063421.22it/s]" + " 61%|██████ | 103841792/170498071 [00:02<00:01, 45315879.59it/s]" ] }, { @@ -452,7 +452,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 115507200/170498071 [00:02<00:01, 49809431.51it/s]" + " 64%|██████▎ | 108396544/170498071 [00:02<00:01, 44103142.22it/s]" ] }, { @@ -460,7 +460,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 120520704/170498071 [00:02<00:01, 47904030.30it/s]" + " 66%|██████▋ | 113377280/170498071 [00:02<00:01, 45293527.69it/s]" ] }, { @@ -468,7 +468,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 126255104/170498071 [00:02<00:00, 50586524.68it/s]" + " 69%|██████▉ | 117932032/170498071 [00:03<00:01, 44445448.20it/s]" ] }, { @@ -476,7 +476,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 131366912/170498071 [00:03<00:00, 49554490.83it/s]" + " 72%|███████▏ | 122781696/170498071 [00:03<00:01, 45121971.44it/s]" ] }, { @@ -484,7 +484,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 136347648/170498071 [00:03<00:00, 47123730.03it/s]" + " 75%|███████▍ | 127303680/170498071 [00:03<00:00, 44118259.88it/s]" ] }, { @@ -492,7 +492,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 142049280/170498071 [00:03<00:00, 49371013.50it/s]" + " 78%|███████▊ | 132349952/170498071 [00:03<00:00, 45803527.73it/s]" ] }, { @@ -500,7 +500,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 147030016/170498071 [00:03<00:00, 49389515.73it/s]" + " 80%|████████ | 136970240/170498071 [00:03<00:00, 44328264.50it/s]" ] }, { @@ -508,7 +508,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 152010752/170498071 [00:03<00:00, 48630973.86it/s]" + " 83%|████████▎ | 141688832/170498071 [00:03<00:00, 44772479.87it/s]" ] }, { @@ -516,7 +516,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 157483008/170498071 [00:03<00:00, 50364282.82it/s]" + " 86%|████████▌ | 146178048/170498071 [00:03<00:00, 44025135.69it/s]" ] }, { @@ -524,7 +524,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162562048/170498071 [00:03<00:00, 48565960.51it/s]" + " 89%|████████▊ | 151158784/170498071 [00:03<00:00, 45306429.18it/s]" ] }, { @@ -532,7 +532,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 167870464/170498071 [00:03<00:00, 48926388.73it/s]" + " 91%|█████████▏| 155713536/170498071 [00:03<00:00, 44169697.14it/s]" ] }, { @@ -540,7 +540,31 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 43962237.05it/s]" + " 94%|█████████▍| 160759808/170498071 [00:04<00:00, 45207366.04it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 165314560/170498071 [00:04<00:00, 44337622.71it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 170295296/170498071 [00:04<00:00, 45868708.35it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 40165594.79it/s]" ] }, { @@ -658,10 +682,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:48.396125Z", - "iopub.status.busy": "2024-08-12T10:37:48.395766Z", - "iopub.status.idle": "2024-08-12T10:37:48.400477Z", - "shell.execute_reply": "2024-08-12T10:37:48.400028Z" + "iopub.execute_input": "2024-08-12T19:00:31.354406Z", + "iopub.status.busy": "2024-08-12T19:00:31.353939Z", + "iopub.status.idle": "2024-08-12T19:00:31.358764Z", + "shell.execute_reply": "2024-08-12T19:00:31.358312Z" }, "nbsphinx": "hidden" }, @@ -712,10 +736,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:48.402698Z", - "iopub.status.busy": "2024-08-12T10:37:48.402218Z", - "iopub.status.idle": "2024-08-12T10:37:48.949380Z", - "shell.execute_reply": "2024-08-12T10:37:48.948822Z" + "iopub.execute_input": "2024-08-12T19:00:31.360792Z", + "iopub.status.busy": "2024-08-12T19:00:31.360605Z", + "iopub.status.idle": "2024-08-12T19:00:31.923812Z", + "shell.execute_reply": "2024-08-12T19:00:31.923180Z" } }, "outputs": [ @@ -748,10 +772,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:48.951673Z", - "iopub.status.busy": "2024-08-12T10:37:48.951322Z", - "iopub.status.idle": "2024-08-12T10:37:49.445300Z", - "shell.execute_reply": "2024-08-12T10:37:49.444702Z" + "iopub.execute_input": "2024-08-12T19:00:31.926228Z", + "iopub.status.busy": "2024-08-12T19:00:31.925847Z", + "iopub.status.idle": "2024-08-12T19:00:32.452460Z", + "shell.execute_reply": "2024-08-12T19:00:32.451834Z" } }, "outputs": [ @@ -789,10 +813,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:49.447437Z", - "iopub.status.busy": "2024-08-12T10:37:49.447249Z", - "iopub.status.idle": "2024-08-12T10:37:49.450529Z", - "shell.execute_reply": "2024-08-12T10:37:49.450053Z" + "iopub.execute_input": "2024-08-12T19:00:32.454955Z", + "iopub.status.busy": "2024-08-12T19:00:32.454540Z", + "iopub.status.idle": "2024-08-12T19:00:32.457996Z", + "shell.execute_reply": "2024-08-12T19:00:32.457535Z" } }, "outputs": [], @@ -815,17 +839,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:49.452441Z", - "iopub.status.busy": "2024-08-12T10:37:49.452265Z", - "iopub.status.idle": "2024-08-12T10:38:01.958435Z", - "shell.execute_reply": "2024-08-12T10:38:01.957792Z" + "iopub.execute_input": "2024-08-12T19:00:32.459913Z", + "iopub.status.busy": "2024-08-12T19:00:32.459734Z", + "iopub.status.idle": "2024-08-12T19:00:45.325277Z", + "shell.execute_reply": "2024-08-12T19:00:45.324697Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2509f48fd1ed4a62ad24fb1513c2d81a", + "model_id": "7e4fc5c79f684873aca29643ab5213d6", "version_major": 2, "version_minor": 0 }, @@ -884,10 +908,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:01.960907Z", - "iopub.status.busy": "2024-08-12T10:38:01.960497Z", - "iopub.status.idle": "2024-08-12T10:38:04.092827Z", - "shell.execute_reply": "2024-08-12T10:38:04.092254Z" + "iopub.execute_input": "2024-08-12T19:00:45.327911Z", + "iopub.status.busy": "2024-08-12T19:00:45.327546Z", + "iopub.status.idle": "2024-08-12T19:00:47.473285Z", + "shell.execute_reply": "2024-08-12T19:00:47.472582Z" } }, "outputs": [ @@ -931,10 +955,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:04.095661Z", - "iopub.status.busy": "2024-08-12T10:38:04.095199Z", - "iopub.status.idle": "2024-08-12T10:38:04.357246Z", - "shell.execute_reply": "2024-08-12T10:38:04.356649Z" + "iopub.execute_input": "2024-08-12T19:00:47.476197Z", + "iopub.status.busy": "2024-08-12T19:00:47.475653Z", + "iopub.status.idle": "2024-08-12T19:00:47.741842Z", + "shell.execute_reply": "2024-08-12T19:00:47.741157Z" } }, "outputs": [ @@ -970,10 +994,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:04.360205Z", - "iopub.status.busy": "2024-08-12T10:38:04.359731Z", - "iopub.status.idle": "2024-08-12T10:38:05.053430Z", - "shell.execute_reply": "2024-08-12T10:38:05.052864Z" + "iopub.execute_input": "2024-08-12T19:00:47.744874Z", + "iopub.status.busy": "2024-08-12T19:00:47.744331Z", + "iopub.status.idle": "2024-08-12T19:00:48.420941Z", + "shell.execute_reply": "2024-08-12T19:00:48.420354Z" } }, "outputs": [ @@ -1023,10 +1047,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.056495Z", - "iopub.status.busy": "2024-08-12T10:38:05.056048Z", - "iopub.status.idle": "2024-08-12T10:38:05.397275Z", - "shell.execute_reply": "2024-08-12T10:38:05.396713Z" + "iopub.execute_input": "2024-08-12T19:00:48.423834Z", + "iopub.status.busy": "2024-08-12T19:00:48.423300Z", + "iopub.status.idle": "2024-08-12T19:00:48.777069Z", + "shell.execute_reply": "2024-08-12T19:00:48.776492Z" } }, "outputs": [ @@ -1074,10 +1098,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.399451Z", - "iopub.status.busy": "2024-08-12T10:38:05.399262Z", - "iopub.status.idle": "2024-08-12T10:38:05.651456Z", - "shell.execute_reply": "2024-08-12T10:38:05.650825Z" + "iopub.execute_input": "2024-08-12T19:00:48.779436Z", + "iopub.status.busy": "2024-08-12T19:00:48.779092Z", + "iopub.status.idle": "2024-08-12T19:00:49.030804Z", + "shell.execute_reply": "2024-08-12T19:00:49.030162Z" } }, "outputs": [ @@ -1133,10 +1157,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.654454Z", - "iopub.status.busy": "2024-08-12T10:38:05.653989Z", - "iopub.status.idle": "2024-08-12T10:38:05.743235Z", - "shell.execute_reply": "2024-08-12T10:38:05.742733Z" + "iopub.execute_input": "2024-08-12T19:00:49.033695Z", + "iopub.status.busy": "2024-08-12T19:00:49.033452Z", + "iopub.status.idle": "2024-08-12T19:00:49.129989Z", + "shell.execute_reply": "2024-08-12T19:00:49.129464Z" } }, "outputs": [], @@ -1157,10 +1181,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.745752Z", - "iopub.status.busy": "2024-08-12T10:38:05.745420Z", - "iopub.status.idle": "2024-08-12T10:38:16.159454Z", - "shell.execute_reply": "2024-08-12T10:38:16.158759Z" + "iopub.execute_input": "2024-08-12T19:00:49.132284Z", + "iopub.status.busy": "2024-08-12T19:00:49.132107Z", + "iopub.status.idle": "2024-08-12T19:00:59.836874Z", + "shell.execute_reply": "2024-08-12T19:00:59.836169Z" } }, "outputs": [ @@ -1197,10 +1221,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:16.162032Z", - "iopub.status.busy": "2024-08-12T10:38:16.161608Z", - "iopub.status.idle": "2024-08-12T10:38:18.469804Z", - "shell.execute_reply": "2024-08-12T10:38:18.469284Z" + "iopub.execute_input": "2024-08-12T19:00:59.839766Z", + "iopub.status.busy": "2024-08-12T19:00:59.839249Z", + "iopub.status.idle": "2024-08-12T19:01:02.226449Z", + "shell.execute_reply": "2024-08-12T19:01:02.225800Z" } }, "outputs": [ @@ -1231,10 +1255,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:18.472461Z", - "iopub.status.busy": "2024-08-12T10:38:18.471934Z", - "iopub.status.idle": "2024-08-12T10:38:18.693678Z", - "shell.execute_reply": "2024-08-12T10:38:18.693177Z" + "iopub.execute_input": "2024-08-12T19:01:02.229141Z", + "iopub.status.busy": "2024-08-12T19:01:02.228744Z", + "iopub.status.idle": "2024-08-12T19:01:02.433344Z", + "shell.execute_reply": "2024-08-12T19:01:02.432819Z" } }, "outputs": [], @@ -1248,10 +1272,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:18.696055Z", - "iopub.status.busy": "2024-08-12T10:38:18.695868Z", - "iopub.status.idle": "2024-08-12T10:38:18.699138Z", - "shell.execute_reply": "2024-08-12T10:38:18.698703Z" + "iopub.execute_input": "2024-08-12T19:01:02.435897Z", + "iopub.status.busy": "2024-08-12T19:01:02.435430Z", + "iopub.status.idle": "2024-08-12T19:01:02.438731Z", + "shell.execute_reply": "2024-08-12T19:01:02.438202Z" } }, "outputs": [], @@ -1289,10 +1313,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:18.701265Z", - "iopub.status.busy": "2024-08-12T10:38:18.700945Z", - "iopub.status.idle": "2024-08-12T10:38:18.709241Z", - "shell.execute_reply": "2024-08-12T10:38:18.708774Z" + "iopub.execute_input": "2024-08-12T19:01:02.440833Z", + "iopub.status.busy": "2024-08-12T19:01:02.440515Z", + "iopub.status.idle": "2024-08-12T19:01:02.448965Z", + "shell.execute_reply": "2024-08-12T19:01:02.448383Z" }, "nbsphinx": "hidden" }, @@ -1337,72 +1361,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "139e4e91a1484e8ba04022044c812479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2686af12e78443eaa75828809f5a37c", - "placeholder": "​", - "style": "IPY_MODEL_2e9fa535960e4d16aa34f1aa46aaa432", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 255MB/s]" - } - }, - "2509f48fd1ed4a62ad24fb1513c2d81a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ab049ed404064be38422d534105ce1fe", - "IPY_MODEL_cbca1c46e73540d29af597198e334466", - "IPY_MODEL_139e4e91a1484e8ba04022044c812479" - ], - "layout": "IPY_MODEL_5fc5d569f4d24463a83b8ec47acfe23e", - "tabbable": null, - "tooltip": null - } - }, - "2e9fa535960e4d16aa34f1aa46aaa432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5fc5d569f4d24463a83b8ec47acfe23e": { + "281d904d63634ba2bc515e56e280b18a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,23 +1414,7 @@ "width": null } }, - "8644689e0baa47239b9d96c02db45587": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a42a0f001b844ad9bd9f6a36419e975": { + "370d465ea34c4da9906a0a85d82d056b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1524,7 +1467,7 @@ "width": null } }, - "a2686af12e78443eaa75828809f5a37c": { + "691cb5820f224f97a76ae4bde2e746e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,74 +1520,54 @@ "width": null } }, - "ab049ed404064be38422d534105ce1fe": { + "7e4fc5c79f684873aca29643ab5213d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ea6e3fff8a484b4d9d66bc5738b031f3", - "placeholder": "​", - "style": "IPY_MODEL_b79b90517fd54c8c82916c9f4f30a4b6", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fc42d1facc844e459afc09ef7c687042", + "IPY_MODEL_f86698037fa647aca0a9fa209c430b2b", + "IPY_MODEL_90831226eb3e4b068e5309c838071a8c" + ], + "layout": "IPY_MODEL_691cb5820f224f97a76ae4bde2e746e6", "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "b79b90517fd54c8c82916c9f4f30a4b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "cbca1c46e73540d29af597198e334466": { + "90831226eb3e4b068e5309c838071a8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a42a0f001b844ad9bd9f6a36419e975", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8644689e0baa47239b9d96c02db45587", + "layout": "IPY_MODEL_281d904d63634ba2bc515e56e280b18a", + "placeholder": "​", + "style": "IPY_MODEL_9f62f6674a964c1aa565f872301096e5", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": " 102M/102M [00:00<00:00, 205MB/s]" } }, - "ea6e3fff8a484b4d9d66bc5738b031f3": { + "924131cdce89473fb5ed8528e97a50f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1696,6 +1619,107 @@ "visibility": null, "width": null } + }, + "9f62f6674a964c1aa565f872301096e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a4817168f39c4d4591bf97329c9379f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b47804059351482a8c58b8dda5743345": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f86698037fa647aca0a9fa209c430b2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_924131cdce89473fb5ed8528e97a50f1", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a4817168f39c4d4591bf97329c9379f2", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "fc42d1facc844e459afc09ef7c687042": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_370d465ea34c4da9906a0a85d82d056b", + "placeholder": "​", + "style": "IPY_MODEL_b47804059351482a8c58b8dda5743345", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 6c6180b19..76fbdefa7 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:23.106311Z", - "iopub.status.busy": "2024-08-12T10:38:23.106127Z", - "iopub.status.idle": "2024-08-12T10:38:24.561027Z", - "shell.execute_reply": "2024-08-12T10:38:24.560457Z" + "iopub.execute_input": "2024-08-12T19:01:06.712529Z", + "iopub.status.busy": "2024-08-12T19:01:06.712319Z", + "iopub.status.idle": "2024-08-12T19:01:08.153165Z", + "shell.execute_reply": "2024-08-12T19:01:08.152492Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.563924Z", - "iopub.status.busy": "2024-08-12T10:38:24.563331Z", - "iopub.status.idle": "2024-08-12T10:38:24.582833Z", - "shell.execute_reply": "2024-08-12T10:38:24.582349Z" + "iopub.execute_input": "2024-08-12T19:01:08.155797Z", + "iopub.status.busy": "2024-08-12T19:01:08.155495Z", + "iopub.status.idle": "2024-08-12T19:01:08.174435Z", + "shell.execute_reply": "2024-08-12T19:01:08.173861Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.585400Z", - "iopub.status.busy": "2024-08-12T10:38:24.584732Z", - "iopub.status.idle": "2024-08-12T10:38:24.588095Z", - "shell.execute_reply": "2024-08-12T10:38:24.587528Z" + "iopub.execute_input": "2024-08-12T19:01:08.177045Z", + "iopub.status.busy": "2024-08-12T19:01:08.176495Z", + "iopub.status.idle": "2024-08-12T19:01:08.179648Z", + "shell.execute_reply": "2024-08-12T19:01:08.179143Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.590164Z", - "iopub.status.busy": "2024-08-12T10:38:24.589785Z", - "iopub.status.idle": "2024-08-12T10:38:24.804068Z", - "shell.execute_reply": "2024-08-12T10:38:24.803465Z" + "iopub.execute_input": "2024-08-12T19:01:08.181771Z", + "iopub.status.busy": "2024-08-12T19:01:08.181384Z", + "iopub.status.idle": "2024-08-12T19:01:08.453781Z", + "shell.execute_reply": "2024-08-12T19:01:08.453196Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.806521Z", - "iopub.status.busy": "2024-08-12T10:38:24.806108Z", - "iopub.status.idle": "2024-08-12T10:38:24.810570Z", - "shell.execute_reply": "2024-08-12T10:38:24.809985Z" + "iopub.execute_input": "2024-08-12T19:01:08.456263Z", + "iopub.status.busy": "2024-08-12T19:01:08.455844Z", + "iopub.status.idle": "2024-08-12T19:01:08.460424Z", + "shell.execute_reply": "2024-08-12T19:01:08.459864Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.812753Z", - "iopub.status.busy": "2024-08-12T10:38:24.812418Z", - "iopub.status.idle": "2024-08-12T10:38:25.059755Z", - "shell.execute_reply": "2024-08-12T10:38:25.059259Z" + "iopub.execute_input": "2024-08-12T19:01:08.462528Z", + "iopub.status.busy": "2024-08-12T19:01:08.462216Z", + "iopub.status.idle": "2024-08-12T19:01:08.707993Z", + "shell.execute_reply": "2024-08-12T19:01:08.707383Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.061903Z", - "iopub.status.busy": "2024-08-12T10:38:25.061709Z", - "iopub.status.idle": "2024-08-12T10:38:25.066278Z", - "shell.execute_reply": "2024-08-12T10:38:25.065794Z" + "iopub.execute_input": "2024-08-12T19:01:08.710301Z", + "iopub.status.busy": "2024-08-12T19:01:08.709890Z", + "iopub.status.idle": "2024-08-12T19:01:08.714510Z", + "shell.execute_reply": "2024-08-12T19:01:08.713939Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.068321Z", - "iopub.status.busy": "2024-08-12T10:38:25.067922Z", - "iopub.status.idle": "2024-08-12T10:38:25.074136Z", - "shell.execute_reply": "2024-08-12T10:38:25.073586Z" + "iopub.execute_input": "2024-08-12T19:01:08.716693Z", + "iopub.status.busy": "2024-08-12T19:01:08.716512Z", + "iopub.status.idle": "2024-08-12T19:01:08.722640Z", + "shell.execute_reply": "2024-08-12T19:01:08.722141Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.076256Z", - "iopub.status.busy": "2024-08-12T10:38:25.075869Z", - "iopub.status.idle": "2024-08-12T10:38:25.078496Z", - "shell.execute_reply": "2024-08-12T10:38:25.078020Z" + "iopub.execute_input": "2024-08-12T19:01:08.724891Z", + "iopub.status.busy": "2024-08-12T19:01:08.724714Z", + "iopub.status.idle": "2024-08-12T19:01:08.727505Z", + "shell.execute_reply": "2024-08-12T19:01:08.726971Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.080454Z", - "iopub.status.busy": "2024-08-12T10:38:25.080143Z", - "iopub.status.idle": "2024-08-12T10:38:34.275824Z", - "shell.execute_reply": "2024-08-12T10:38:34.275257Z" + "iopub.execute_input": "2024-08-12T19:01:08.729639Z", + "iopub.status.busy": "2024-08-12T19:01:08.729330Z", + "iopub.status.idle": "2024-08-12T19:01:17.979569Z", + "shell.execute_reply": "2024-08-12T19:01:17.978818Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.278905Z", - "iopub.status.busy": "2024-08-12T10:38:34.278220Z", - "iopub.status.idle": "2024-08-12T10:38:34.285441Z", - "shell.execute_reply": "2024-08-12T10:38:34.284934Z" + "iopub.execute_input": "2024-08-12T19:01:17.983017Z", + "iopub.status.busy": "2024-08-12T19:01:17.982303Z", + "iopub.status.idle": "2024-08-12T19:01:17.990196Z", + "shell.execute_reply": "2024-08-12T19:01:17.989677Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.287596Z", - "iopub.status.busy": "2024-08-12T10:38:34.287249Z", - "iopub.status.idle": "2024-08-12T10:38:34.290844Z", - "shell.execute_reply": "2024-08-12T10:38:34.290392Z" + "iopub.execute_input": "2024-08-12T19:01:17.992517Z", + "iopub.status.busy": "2024-08-12T19:01:17.992064Z", + "iopub.status.idle": "2024-08-12T19:01:17.996208Z", + "shell.execute_reply": "2024-08-12T19:01:17.995603Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.292807Z", - "iopub.status.busy": "2024-08-12T10:38:34.292472Z", - "iopub.status.idle": "2024-08-12T10:38:34.295505Z", - "shell.execute_reply": "2024-08-12T10:38:34.294963Z" + "iopub.execute_input": "2024-08-12T19:01:17.998537Z", + "iopub.status.busy": "2024-08-12T19:01:17.998176Z", + "iopub.status.idle": "2024-08-12T19:01:18.001616Z", + "shell.execute_reply": "2024-08-12T19:01:18.001073Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.297619Z", - "iopub.status.busy": "2024-08-12T10:38:34.297287Z", - "iopub.status.idle": "2024-08-12T10:38:34.300228Z", - "shell.execute_reply": "2024-08-12T10:38:34.299788Z" + "iopub.execute_input": "2024-08-12T19:01:18.003807Z", + "iopub.status.busy": "2024-08-12T19:01:18.003450Z", + "iopub.status.idle": "2024-08-12T19:01:18.006493Z", + "shell.execute_reply": "2024-08-12T19:01:18.006035Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.302181Z", - "iopub.status.busy": "2024-08-12T10:38:34.301846Z", - "iopub.status.idle": "2024-08-12T10:38:34.309866Z", - "shell.execute_reply": "2024-08-12T10:38:34.309401Z" + "iopub.execute_input": "2024-08-12T19:01:18.008664Z", + "iopub.status.busy": "2024-08-12T19:01:18.008301Z", + "iopub.status.idle": "2024-08-12T19:01:18.017065Z", + "shell.execute_reply": "2024-08-12T19:01:18.016561Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.311916Z", - "iopub.status.busy": "2024-08-12T10:38:34.311580Z", - "iopub.status.idle": "2024-08-12T10:38:34.314224Z", - "shell.execute_reply": "2024-08-12T10:38:34.313758Z" + "iopub.execute_input": "2024-08-12T19:01:18.019389Z", + "iopub.status.busy": "2024-08-12T19:01:18.019019Z", + "iopub.status.idle": "2024-08-12T19:01:18.021739Z", + "shell.execute_reply": "2024-08-12T19:01:18.021283Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.316300Z", - "iopub.status.busy": "2024-08-12T10:38:34.315973Z", - "iopub.status.idle": "2024-08-12T10:38:34.447434Z", - "shell.execute_reply": "2024-08-12T10:38:34.446909Z" + "iopub.execute_input": "2024-08-12T19:01:18.023854Z", + "iopub.status.busy": "2024-08-12T19:01:18.023506Z", + "iopub.status.idle": "2024-08-12T19:01:18.152059Z", + "shell.execute_reply": "2024-08-12T19:01:18.151421Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.450013Z", - "iopub.status.busy": "2024-08-12T10:38:34.449571Z", - "iopub.status.idle": "2024-08-12T10:38:34.560887Z", - "shell.execute_reply": "2024-08-12T10:38:34.560277Z" + "iopub.execute_input": "2024-08-12T19:01:18.154862Z", + "iopub.status.busy": "2024-08-12T19:01:18.154342Z", + "iopub.status.idle": "2024-08-12T19:01:18.265817Z", + "shell.execute_reply": "2024-08-12T19:01:18.265229Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.563495Z", - "iopub.status.busy": "2024-08-12T10:38:34.563083Z", - "iopub.status.idle": "2024-08-12T10:38:35.086810Z", - "shell.execute_reply": "2024-08-12T10:38:35.086226Z" + "iopub.execute_input": "2024-08-12T19:01:18.268452Z", + "iopub.status.busy": "2024-08-12T19:01:18.268024Z", + "iopub.status.idle": "2024-08-12T19:01:18.780926Z", + "shell.execute_reply": "2024-08-12T19:01:18.780306Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.089656Z", - "iopub.status.busy": "2024-08-12T10:38:35.089208Z", - "iopub.status.idle": "2024-08-12T10:38:35.189179Z", - "shell.execute_reply": "2024-08-12T10:38:35.188526Z" + "iopub.execute_input": "2024-08-12T19:01:18.783826Z", + "iopub.status.busy": "2024-08-12T19:01:18.783373Z", + "iopub.status.idle": "2024-08-12T19:01:18.883252Z", + "shell.execute_reply": "2024-08-12T19:01:18.882631Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.191757Z", - "iopub.status.busy": "2024-08-12T10:38:35.191311Z", - "iopub.status.idle": "2024-08-12T10:38:35.200051Z", - "shell.execute_reply": "2024-08-12T10:38:35.199511Z" + "iopub.execute_input": "2024-08-12T19:01:18.885599Z", + "iopub.status.busy": "2024-08-12T19:01:18.885409Z", + "iopub.status.idle": "2024-08-12T19:01:18.894332Z", + "shell.execute_reply": "2024-08-12T19:01:18.893863Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.202162Z", - "iopub.status.busy": "2024-08-12T10:38:35.201840Z", - "iopub.status.idle": "2024-08-12T10:38:35.204702Z", - "shell.execute_reply": "2024-08-12T10:38:35.204149Z" + "iopub.execute_input": "2024-08-12T19:01:18.896338Z", + "iopub.status.busy": "2024-08-12T19:01:18.896157Z", + "iopub.status.idle": "2024-08-12T19:01:18.898954Z", + "shell.execute_reply": "2024-08-12T19:01:18.898495Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.206675Z", - "iopub.status.busy": "2024-08-12T10:38:35.206390Z", - "iopub.status.idle": "2024-08-12T10:38:40.863741Z", - "shell.execute_reply": "2024-08-12T10:38:40.863149Z" + "iopub.execute_input": "2024-08-12T19:01:18.901071Z", + "iopub.status.busy": "2024-08-12T19:01:18.900755Z", + "iopub.status.idle": "2024-08-12T19:01:24.618254Z", + "shell.execute_reply": "2024-08-12T19:01:24.617650Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:40.866094Z", - "iopub.status.busy": "2024-08-12T10:38:40.865698Z", - "iopub.status.idle": "2024-08-12T10:38:40.874237Z", - "shell.execute_reply": "2024-08-12T10:38:40.873673Z" + "iopub.execute_input": "2024-08-12T19:01:24.620810Z", + "iopub.status.busy": "2024-08-12T19:01:24.620418Z", + "iopub.status.idle": "2024-08-12T19:01:24.629086Z", + "shell.execute_reply": "2024-08-12T19:01:24.628626Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:40.876578Z", - "iopub.status.busy": "2024-08-12T10:38:40.876136Z", - "iopub.status.idle": "2024-08-12T10:38:40.940208Z", - "shell.execute_reply": "2024-08-12T10:38:40.939737Z" + "iopub.execute_input": "2024-08-12T19:01:24.631181Z", + "iopub.status.busy": "2024-08-12T19:01:24.630841Z", + "iopub.status.idle": "2024-08-12T19:01:24.698102Z", + "shell.execute_reply": "2024-08-12T19:01:24.697571Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index b98e8669b..3569da24c 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:45.300927Z", - "iopub.status.busy": "2024-08-12T10:38:45.300755Z", - "iopub.status.idle": "2024-08-12T10:38:47.705900Z", - "shell.execute_reply": "2024-08-12T10:38:47.705194Z" + "iopub.execute_input": "2024-08-12T19:01:29.035588Z", + "iopub.status.busy": "2024-08-12T19:01:29.035417Z", + "iopub.status.idle": "2024-08-12T19:01:31.382670Z", + "shell.execute_reply": "2024-08-12T19:01:31.381948Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:47.708436Z", - "iopub.status.busy": "2024-08-12T10:38:47.708244Z", - "iopub.status.idle": "2024-08-12T10:40:01.410752Z", - "shell.execute_reply": "2024-08-12T10:40:01.410038Z" + "iopub.execute_input": "2024-08-12T19:01:31.385281Z", + "iopub.status.busy": "2024-08-12T19:01:31.385088Z", + "iopub.status.idle": "2024-08-12T19:02:51.389352Z", + "shell.execute_reply": "2024-08-12T19:02:51.388576Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:01.413413Z", - "iopub.status.busy": "2024-08-12T10:40:01.413181Z", - "iopub.status.idle": "2024-08-12T10:40:02.882844Z", - "shell.execute_reply": "2024-08-12T10:40:02.882249Z" + "iopub.execute_input": "2024-08-12T19:02:51.392413Z", + "iopub.status.busy": "2024-08-12T19:02:51.391923Z", + "iopub.status.idle": "2024-08-12T19:02:52.823997Z", + "shell.execute_reply": "2024-08-12T19:02:52.823349Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.885477Z", - "iopub.status.busy": "2024-08-12T10:40:02.885002Z", - "iopub.status.idle": "2024-08-12T10:40:02.888203Z", - "shell.execute_reply": "2024-08-12T10:40:02.887746Z" + "iopub.execute_input": "2024-08-12T19:02:52.826500Z", + "iopub.status.busy": "2024-08-12T19:02:52.826198Z", + "iopub.status.idle": "2024-08-12T19:02:52.829390Z", + "shell.execute_reply": "2024-08-12T19:02:52.828941Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.890475Z", - "iopub.status.busy": "2024-08-12T10:40:02.890011Z", - "iopub.status.idle": "2024-08-12T10:40:02.894575Z", - "shell.execute_reply": "2024-08-12T10:40:02.894008Z" + "iopub.execute_input": "2024-08-12T19:02:52.831431Z", + "iopub.status.busy": "2024-08-12T19:02:52.831252Z", + "iopub.status.idle": "2024-08-12T19:02:52.835175Z", + "shell.execute_reply": "2024-08-12T19:02:52.834636Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.896712Z", - "iopub.status.busy": "2024-08-12T10:40:02.896410Z", - "iopub.status.idle": "2024-08-12T10:40:02.900059Z", - "shell.execute_reply": "2024-08-12T10:40:02.899526Z" + "iopub.execute_input": "2024-08-12T19:02:52.837164Z", + "iopub.status.busy": "2024-08-12T19:02:52.836866Z", + "iopub.status.idle": "2024-08-12T19:02:52.840479Z", + "shell.execute_reply": "2024-08-12T19:02:52.839931Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.901997Z", - "iopub.status.busy": "2024-08-12T10:40:02.901691Z", - "iopub.status.idle": "2024-08-12T10:40:02.904562Z", - "shell.execute_reply": "2024-08-12T10:40:02.904109Z" + "iopub.execute_input": "2024-08-12T19:02:52.842525Z", + "iopub.status.busy": "2024-08-12T19:02:52.842229Z", + "iopub.status.idle": "2024-08-12T19:02:52.845060Z", + "shell.execute_reply": "2024-08-12T19:02:52.844585Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.906531Z", - "iopub.status.busy": "2024-08-12T10:40:02.906183Z", - "iopub.status.idle": "2024-08-12T10:40:40.641176Z", - "shell.execute_reply": "2024-08-12T10:40:40.640533Z" + "iopub.execute_input": "2024-08-12T19:02:52.847164Z", + "iopub.status.busy": "2024-08-12T19:02:52.846766Z", + "iopub.status.idle": "2024-08-12T19:03:30.979394Z", + "shell.execute_reply": "2024-08-12T19:03:30.978678Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "61e605b04d874c93b6bfbb1c76fe56ef", + "model_id": "39affc08e5f34107aecde4923e369b00", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f08907b075b945d98f02eb7bb46dde87", + "model_id": "17e6f9789f2940c89eb85d25b9f2b5ff", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:40.643965Z", - "iopub.status.busy": "2024-08-12T10:40:40.643744Z", - "iopub.status.idle": "2024-08-12T10:40:41.093555Z", - "shell.execute_reply": "2024-08-12T10:40:41.093058Z" + "iopub.execute_input": "2024-08-12T19:03:30.982173Z", + "iopub.status.busy": "2024-08-12T19:03:30.981956Z", + "iopub.status.idle": "2024-08-12T19:03:31.426214Z", + "shell.execute_reply": "2024-08-12T19:03:31.425623Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:41.095831Z", - "iopub.status.busy": "2024-08-12T10:40:41.095457Z", - "iopub.status.idle": "2024-08-12T10:40:44.123477Z", - "shell.execute_reply": "2024-08-12T10:40:44.122854Z" + "iopub.execute_input": "2024-08-12T19:03:31.428570Z", + "iopub.status.busy": "2024-08-12T19:03:31.428224Z", + "iopub.status.idle": "2024-08-12T19:03:34.405754Z", + "shell.execute_reply": "2024-08-12T19:03:34.405232Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:44.125614Z", - "iopub.status.busy": "2024-08-12T10:40:44.125421Z", - "iopub.status.idle": "2024-08-12T10:41:17.218406Z", - "shell.execute_reply": "2024-08-12T10:41:17.217894Z" + "iopub.execute_input": "2024-08-12T19:03:34.408101Z", + "iopub.status.busy": "2024-08-12T19:03:34.407750Z", + "iopub.status.idle": "2024-08-12T19:04:07.024847Z", + "shell.execute_reply": "2024-08-12T19:04:07.024240Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "561557a580184250a3d202d08116c4ee", + "model_id": "5cea57f4c054406789022773eb73c17b", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:17.220681Z", - "iopub.status.busy": "2024-08-12T10:41:17.220324Z", - "iopub.status.idle": "2024-08-12T10:41:33.032204Z", - "shell.execute_reply": "2024-08-12T10:41:33.031621Z" + "iopub.execute_input": "2024-08-12T19:04:07.027236Z", + "iopub.status.busy": "2024-08-12T19:04:07.026840Z", + "iopub.status.idle": "2024-08-12T19:04:22.516785Z", + "shell.execute_reply": "2024-08-12T19:04:22.516124Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:33.034823Z", - "iopub.status.busy": "2024-08-12T10:41:33.034402Z", - "iopub.status.idle": "2024-08-12T10:41:36.912406Z", - "shell.execute_reply": "2024-08-12T10:41:36.911872Z" + "iopub.execute_input": "2024-08-12T19:04:22.519248Z", + "iopub.status.busy": "2024-08-12T19:04:22.519000Z", + "iopub.status.idle": "2024-08-12T19:04:26.398885Z", + "shell.execute_reply": "2024-08-12T19:04:26.398352Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:36.914664Z", - "iopub.status.busy": "2024-08-12T10:41:36.914293Z", - "iopub.status.idle": "2024-08-12T10:41:38.508661Z", - "shell.execute_reply": "2024-08-12T10:41:38.508099Z" + "iopub.execute_input": "2024-08-12T19:04:26.401114Z", + "iopub.status.busy": "2024-08-12T19:04:26.400928Z", + "iopub.status.idle": "2024-08-12T19:04:27.971203Z", + "shell.execute_reply": "2024-08-12T19:04:27.970622Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0e8171b866d49d29b94f359a1afd3b9", + "model_id": "ea1f518daf634c3588642d3f767b31eb", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:38.510876Z", - "iopub.status.busy": "2024-08-12T10:41:38.510569Z", - "iopub.status.idle": "2024-08-12T10:41:38.541247Z", - "shell.execute_reply": "2024-08-12T10:41:38.540581Z" + "iopub.execute_input": "2024-08-12T19:04:27.973318Z", + "iopub.status.busy": "2024-08-12T19:04:27.973133Z", + "iopub.status.idle": "2024-08-12T19:04:28.006396Z", + "shell.execute_reply": "2024-08-12T19:04:28.005739Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:38.543961Z", - "iopub.status.busy": "2024-08-12T10:41:38.543566Z", - "iopub.status.idle": "2024-08-12T10:41:44.851830Z", - "shell.execute_reply": "2024-08-12T10:41:44.851223Z" + "iopub.execute_input": "2024-08-12T19:04:28.008962Z", + "iopub.status.busy": "2024-08-12T19:04:28.008758Z", + "iopub.status.idle": "2024-08-12T19:04:34.283402Z", + "shell.execute_reply": "2024-08-12T19:04:34.282787Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:44.854065Z", - "iopub.status.busy": "2024-08-12T10:41:44.853866Z", - "iopub.status.idle": "2024-08-12T10:41:44.911138Z", - "shell.execute_reply": "2024-08-12T10:41:44.910619Z" + "iopub.execute_input": "2024-08-12T19:04:34.285573Z", + "iopub.status.busy": "2024-08-12T19:04:34.285381Z", + "iopub.status.idle": "2024-08-12T19:04:34.341558Z", + "shell.execute_reply": "2024-08-12T19:04:34.340978Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "010e44b48d974beeb7690f8542184e1b": { + "0740c4207b7347a3a772f9c9c182619b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,66 +1091,7 @@ "width": null } }, - "019c971db6eb4ae58639c1bdf5010f25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0416c162024a4fc381a45c2144135cc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1563dcc38303423d9edbed3b08c05b03", - "placeholder": "​", - "style": "IPY_MODEL_0f4a5ca89bd44246a9513173bf74a65d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "0f4a5ca89bd44246a9513173bf74a65d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1563dcc38303423d9edbed3b08c05b03": { + "08061431cab04a78be2ba6bab4e6de4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1203,7 +1144,7 @@ "width": null } }, - "1c4405e9f09347f69b059265ffec86fc": { + "0fc3bef3f9844f6fb287502b87a6863b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1256,82 +1197,7 @@ "width": null } }, - "2b982f6012464407b8042bc862b7ede1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3630df7de7c24e1dbde38fd5b3ec5335": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "399bc87e579745ad9a2930ba8605db78": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "410bebdd912b4f52baf94752cefcdb90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_640ae108c5fd43c48a63563c80f03c92", - "placeholder": "​", - "style": "IPY_MODEL_019c971db6eb4ae58639c1bdf5010f25", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 18.13it/s]" - } - }, - "4cb6725acf0d4146a26d14bcab9727f0": { + "132557767ab84f1f9d47f3c8e6dcc619": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1349,30 +1215,7 @@ "text_color": null } }, - "4d2a6db5bcf94f70b3a4ad24b832cd90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bafbe32ede834e3e9065c92397de6f8c", - "placeholder": "​", - "style": "IPY_MODEL_8a0fd43aebf8429ebed382e82d7f51e7", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 802.43it/s]" - } - }, - "51800615e4584a51830cc28b3452f7e9": { + "17870847fdb04d1aa4e039e0ceb41614": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1425,30 +1268,7 @@ "width": null } }, - "538a035bd9374f96a81b2ec775e07cd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6c3c5326bbc4655b166d18c64e5cbd1", - "placeholder": "​", - "style": "IPY_MODEL_4cb6725acf0d4146a26d14bcab9727f0", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 151534.24it/s]" - } - }, - "561557a580184250a3d202d08116c4ee": { + "17e6f9789f2940c89eb85d25b9f2b5ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1463,125 +1283,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6c662917f77845909c734188e0849f3f", - "IPY_MODEL_fbe9c46e48b14c9f84f96b3a07c47b9b", - "IPY_MODEL_538a035bd9374f96a81b2ec775e07cd3" + "IPY_MODEL_5354d093ec9644d8970a2004c3ce6c79", + "IPY_MODEL_539944518ea34bc880950aa71098cb31", + "IPY_MODEL_8b4473063bb2450988c38350dc734e4b" ], - "layout": "IPY_MODEL_f5b61e50c8ea418facc9fca22ce157b9", + "layout": "IPY_MODEL_f3617f1439aa40c5863d02dd79e69b9d", "tabbable": null, "tooltip": null } }, - "57f6c0fe38904916a9c68353b56e9d0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5a5c3be4f2994ba5a9fe278b993dff8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "61e605b04d874c93b6bfbb1c76fe56ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0416c162024a4fc381a45c2144135cc1", - "IPY_MODEL_cd7f1bbed2b3453992c2294fb7b8f062", - "IPY_MODEL_4d2a6db5bcf94f70b3a4ad24b832cd90" - ], - "layout": "IPY_MODEL_844ec110d7c84f3fb856b6b598512108", - "tabbable": null, - "tooltip": null - } - }, - "640ae108c5fd43c48a63563c80f03c92": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6583a0a60fe54eda962c904c18cf76f1": { + "1d9b0615d1744575b62340adfff3203e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1634,48 +1345,39 @@ "width": null } }, - "6c662917f77845909c734188e0849f3f": { + "2353559e79724ee8a0926d64c719898b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e23f7a500c77422180ae8c0b19fed597", - "placeholder": "​", - "style": "IPY_MODEL_e6b0aaa7478443f8a5807573545ef4dd", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6de6c5c76e4c4c2e977861cd171624e7": { + "2f424c67480447b880ec906f4c5cbec6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "844ec110d7c84f3fb856b6b598512108": { + "3728e4ededeb4e1ca18c79b9a5e42de1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,25 +1430,7 @@ "width": null } }, - "8a0fd43aebf8429ebed382e82d7f51e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "91d043d8d3d34fb18e60e06a40ab070d": { + "3904af1e4bcd4a0d8afd75787da68a5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1799,7 +1483,7 @@ "width": null } }, - "988ac07c05a442529f798cef6e50fb3b": { + "3957584db666432db36b60f87f0ad803": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1852,7 +1536,163 @@ "width": null } }, - "9ab476bf29c7452b97de539b14f89cba": { + "39affc08e5f34107aecde4923e369b00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4b495caf9f445d8864cd1f7838be76d", + "IPY_MODEL_6aad1688a3b94f17bd18eb231ee1e939", + "IPY_MODEL_a56889a6273745c5a6f3820dd94e34fe" + ], + "layout": "IPY_MODEL_d6e60ce442ec4e32a669a893f502825f", + "tabbable": null, + "tooltip": null + } + }, + "4993227e9ac34382a676edb57effd656": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4ec66ba58fe54932af6cbb1ab91dcb6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5354d093ec9644d8970a2004c3ce6c79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_17870847fdb04d1aa4e039e0ceb41614", + "placeholder": "​", + "style": "IPY_MODEL_a4d4c32f40e742a7bd248fa6c41e7d02", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "539944518ea34bc880950aa71098cb31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0740c4207b7347a3a772f9c9c182619b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a08ec44416b248198693b50d8eb4d2c6", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "5cd5e5d59df7465b935d61b09af11030": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0d024ffb40d4323925031a610b5c544", + "placeholder": "​", + "style": "IPY_MODEL_b4a6b2c531f14092a8e8353af9d1999b", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "5cea57f4c054406789022773eb73c17b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5cd5e5d59df7465b935d61b09af11030", + "IPY_MODEL_63e2d47f92464a259f0c641b4527bfb0", + "IPY_MODEL_dc38a91ac3804731920245901af1acf2" + ], + "layout": "IPY_MODEL_1d9b0615d1744575b62340adfff3203e", + "tabbable": null, + "tooltip": null + } + }, + "63e2d47f92464a259f0c641b4527bfb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1868,17 +1708,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_988ac07c05a442529f798cef6e50fb3b", - "max": 30.0, + "layout": "IPY_MODEL_9e72e0c3fd934d74b9ecb9406799ccec", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_da9d3e1909784dd798b07568fde6b3f2", + "style": "IPY_MODEL_e975cb09b5fb4dad8b6215988f884e0f", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "9ebd02d6b2a6471d91183ddc979dd134": { + "64b02d2363df447ba1be3901c9030594": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1931,7 +1771,7 @@ "width": null } }, - "a936ea8d446f4dc6846eb16e30670216": { + "6aad1688a3b94f17bd18eb231ee1e939": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1947,17 +1787,53 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c4405e9f09347f69b059265ffec86fc", + "layout": "IPY_MODEL_0fc3bef3f9844f6fb287502b87a6863b", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_399bc87e579745ad9a2930ba8605db78", + "style": "IPY_MODEL_2f424c67480447b880ec906f4c5cbec6", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "b1eb120d532440b884214ef8eacb43b4": { + "79d5a2fe01344bd39bab7add605e078e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7dc882ee12ca44a58baf920edc940b24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f56285a494e483c8b8f3ac96242d9f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2010,7 +1886,30 @@ "width": null } }, - "bafbe32ede834e3e9065c92397de6f8c": { + "8b4473063bb2450988c38350dc734e4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3904af1e4bcd4a0d8afd75787da68a5b", + "placeholder": "​", + "style": "IPY_MODEL_bb75fa4c780f4017826a2de1efeb2336", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.17it/s]" + } + }, + "9e72e0c3fd934d74b9ecb9406799ccec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2063,7 +1962,41 @@ "width": null } }, - "bf43cbf39f1744c5b97ce89faa09ab90": { + "a08ec44416b248198693b50d8eb4d2c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4d4c32f40e742a7bd248fa6c41e7d02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a56889a6273745c5a6f3820dd94e34fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2078,15 +2011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_91d043d8d3d34fb18e60e06a40ab070d", + "layout": "IPY_MODEL_dd3b9502f5e642efbc90fb3650ca6206", "placeholder": "​", - "style": "IPY_MODEL_6de6c5c76e4c4c2e977861cd171624e7", + "style": "IPY_MODEL_4993227e9ac34382a676edb57effd656", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.17it/s]" + "value": " 30/30 [00:00<00:00, 766.94it/s]" } }, - "c5796a1d25a2402f8ac7189ad2c91f00": { + "b0af2604040640acb87032e779ec2f65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2101,65 +2034,74 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9ebd02d6b2a6471d91183ddc979dd134", + "layout": "IPY_MODEL_3957584db666432db36b60f87f0ad803", "placeholder": "​", - "style": "IPY_MODEL_3630df7de7c24e1dbde38fd5b3ec5335", + "style": "IPY_MODEL_79d5a2fe01344bd39bab7add605e078e", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:01<00:00, 19.59it/s]" } }, - "cd7f1bbed2b3453992c2294fb7b8f062": { + "b4a6b2c531f14092a8e8353af9d1999b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_010e44b48d974beeb7690f8542184e1b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a5c3be4f2994ba5a9fe278b993dff8b", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0e8171b866d49d29b94f359a1afd3b9": { + "bb75fa4c780f4017826a2de1efeb2336": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bcf28ccdedf4419ea3b468271ce48c56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5796a1d25a2402f8ac7189ad2c91f00", - "IPY_MODEL_9ab476bf29c7452b97de539b14f89cba", - "IPY_MODEL_410bebdd912b4f52baf94752cefcdb90" - ], - "layout": "IPY_MODEL_d5384d275afa4ecc9afe700c7fabaee9", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3728e4ededeb4e1ca18c79b9a5e42de1", + "placeholder": "​", + "style": "IPY_MODEL_7dc882ee12ca44a58baf920edc940b24", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "d5384d275afa4ecc9afe700c7fabaee9": { + "c7a1d863ef2c4625925ecf896cc0a86d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2212,7 +2154,7 @@ "width": null } }, - "d5abd9dbf83d4476a7edecdc934d3ecd": { + "d4b495caf9f445d8864cd1f7838be76d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2227,31 +2169,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b1eb120d532440b884214ef8eacb43b4", + "layout": "IPY_MODEL_08061431cab04a78be2ba6bab4e6de4d", "placeholder": "​", - "style": "IPY_MODEL_2b982f6012464407b8042bc862b7ede1", + "style": "IPY_MODEL_132557767ab84f1f9d47f3c8e6dcc619", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "da9d3e1909784dd798b07568fde6b3f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e23f7a500c77422180ae8c0b19fed597": { + "d6e60ce442ec4e32a669a893f502825f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2304,25 +2230,30 @@ "width": null } }, - "e6b0aaa7478443f8a5807573545ef4dd": { + "dc38a91ac3804731920245901af1acf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f56285a494e483c8b8f3ac96242d9f8", + "placeholder": "​", + "style": "IPY_MODEL_4ec66ba58fe54932af6cbb1ab91dcb6b", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152729.22it/s]" } }, - "e6c3c5326bbc4655b166d18c64e5cbd1": { + "dd3b9502f5e642efbc90fb3650ca6206": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2375,7 +2306,23 @@ "width": null } }, - "f08907b075b945d98f02eb7bb46dde87": { + "e975cb09b5fb4dad8b6215988f884e0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ea1f518daf634c3588642d3f767b31eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2390,16 +2337,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d5abd9dbf83d4476a7edecdc934d3ecd", - "IPY_MODEL_a936ea8d446f4dc6846eb16e30670216", - "IPY_MODEL_bf43cbf39f1744c5b97ce89faa09ab90" + "IPY_MODEL_bcf28ccdedf4419ea3b468271ce48c56", + "IPY_MODEL_fbf99f5d7afe4e95b559f8c15e690d0c", + "IPY_MODEL_b0af2604040640acb87032e779ec2f65" ], - "layout": "IPY_MODEL_6583a0a60fe54eda962c904c18cf76f1", + "layout": "IPY_MODEL_64b02d2363df447ba1be3901c9030594", "tabbable": null, "tooltip": null } }, - "f5b61e50c8ea418facc9fca22ce157b9": { + "f0d024ffb40d4323925031a610b5c544": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3617f1439aa40c5863d02dd79e69b9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2452,7 +2452,7 @@ "width": null } }, - "fbe9c46e48b14c9f84f96b3a07c47b9b": { + "fbf99f5d7afe4e95b559f8c15e690d0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2468,14 +2468,14 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_51800615e4584a51830cc28b3452f7e9", - "max": 4997683.0, + "layout": "IPY_MODEL_c7a1d863ef2c4625925ecf896cc0a86d", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_57f6c0fe38904916a9c68353b56e9d0f", + "style": "IPY_MODEL_2353559e79724ee8a0926d64c719898b", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 3f733500b..b937d8f5c 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:47.559339Z", - "iopub.status.busy": "2024-08-12T10:41:47.559162Z", - "iopub.status.idle": "2024-08-12T10:41:49.515675Z", - "shell.execute_reply": "2024-08-12T10:41:49.515029Z" + "iopub.execute_input": "2024-08-12T19:04:36.973694Z", + "iopub.status.busy": "2024-08-12T19:04:36.973533Z", + "iopub.status.idle": "2024-08-12T19:04:38.928223Z", + "shell.execute_reply": "2024-08-12T19:04:38.927569Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 10:41:47-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-12 19:04:36-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.50.84, 2400:52e0:1a01::1109:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.50.84|:443... connected.\r\n", - "HTTP request sent, awaiting response... " + "169.150.249.167, 2400:52e0:1a01::1108:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.249.167|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "200 OK\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,10 +115,16 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.07s \r\n", - "\r\n", - "2024-08-12 10:41:47 (13.6 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s \r\n", "\r\n", + "2024-08-12 19:04:37 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "mkdir: cannot create directory ‘data’: File exists\r\n" ] }, @@ -130,7 +135,14 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", + " inflating: data/train.txt " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", " inflating: data/valid.txt \r\n" ] }, @@ -138,9 +150,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 10:41:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.207.57, 3.5.25.245, 16.182.66.65, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.207.57|:443... " + "--2024-08-12 19:04:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.136.129, 16.182.36.201, 3.5.10.169, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.136.129|:443... " ] }, { @@ -174,15 +186,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 151.53K 708KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 8%[> ] 1.39M 3.25MB/s " + "pred_probs.npz 1%[ ] 295.53K 1.20MB/s " ] }, { @@ -190,7 +194,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 52%[=========> ] 8.55M 13.3MB/s " + "pred_probs.npz 30%[=====> ] 4.92M 10.2MB/s " ] }, { @@ -198,9 +202,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 20.3MB/s in 0.8s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 24.1MB/s in 0.7s \r\n", "\r\n", - "2024-08-12 10:41:49 (20.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-12 19:04:38 (24.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -217,10 +221,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:49.518505Z", - "iopub.status.busy": "2024-08-12T10:41:49.518059Z", - "iopub.status.idle": "2024-08-12T10:41:51.104068Z", - "shell.execute_reply": "2024-08-12T10:41:51.103430Z" + "iopub.execute_input": "2024-08-12T19:04:38.931095Z", + "iopub.status.busy": "2024-08-12T19:04:38.930692Z", + "iopub.status.idle": "2024-08-12T19:04:40.560281Z", + "shell.execute_reply": "2024-08-12T19:04:40.559629Z" }, "nbsphinx": "hidden" }, @@ -231,7 +235,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -257,10 +261,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:51.106639Z", - "iopub.status.busy": "2024-08-12T10:41:51.106310Z", - "iopub.status.idle": "2024-08-12T10:41:51.109732Z", - "shell.execute_reply": "2024-08-12T10:41:51.109273Z" + "iopub.execute_input": "2024-08-12T19:04:40.563056Z", + "iopub.status.busy": "2024-08-12T19:04:40.562726Z", + "iopub.status.idle": "2024-08-12T19:04:40.566447Z", + "shell.execute_reply": "2024-08-12T19:04:40.565965Z" } }, "outputs": [], @@ -310,10 +314,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:51.111950Z", - "iopub.status.busy": "2024-08-12T10:41:51.111595Z", - "iopub.status.idle": "2024-08-12T10:41:51.114751Z", - "shell.execute_reply": "2024-08-12T10:41:51.114249Z" + "iopub.execute_input": "2024-08-12T19:04:40.568406Z", + "iopub.status.busy": "2024-08-12T19:04:40.568215Z", + "iopub.status.idle": "2024-08-12T19:04:40.571337Z", + "shell.execute_reply": "2024-08-12T19:04:40.570894Z" }, "nbsphinx": "hidden" }, @@ -331,10 +335,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:51.116586Z", - "iopub.status.busy": "2024-08-12T10:41:51.116411Z", - "iopub.status.idle": "2024-08-12T10:42:00.381031Z", - "shell.execute_reply": "2024-08-12T10:42:00.380471Z" + "iopub.execute_input": "2024-08-12T19:04:40.573600Z", + "iopub.status.busy": "2024-08-12T19:04:40.573107Z", + "iopub.status.idle": "2024-08-12T19:04:49.797790Z", + "shell.execute_reply": "2024-08-12T19:04:49.797189Z" } }, "outputs": [], @@ -408,10 +412,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.383579Z", - "iopub.status.busy": "2024-08-12T10:42:00.383224Z", - "iopub.status.idle": "2024-08-12T10:42:00.388847Z", - "shell.execute_reply": "2024-08-12T10:42:00.388389Z" + "iopub.execute_input": "2024-08-12T19:04:49.800253Z", + "iopub.status.busy": "2024-08-12T19:04:49.800047Z", + "iopub.status.idle": "2024-08-12T19:04:49.805958Z", + "shell.execute_reply": "2024-08-12T19:04:49.805478Z" }, "nbsphinx": "hidden" }, @@ -451,10 +455,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.390872Z", - "iopub.status.busy": "2024-08-12T10:42:00.390560Z", - "iopub.status.idle": "2024-08-12T10:42:00.760332Z", - "shell.execute_reply": "2024-08-12T10:42:00.759676Z" + "iopub.execute_input": "2024-08-12T19:04:49.808179Z", + "iopub.status.busy": "2024-08-12T19:04:49.807741Z", + "iopub.status.idle": "2024-08-12T19:04:50.206957Z", + "shell.execute_reply": "2024-08-12T19:04:50.206380Z" } }, "outputs": [], @@ -491,10 +495,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.762761Z", - "iopub.status.busy": "2024-08-12T10:42:00.762568Z", - "iopub.status.idle": "2024-08-12T10:42:00.767072Z", - "shell.execute_reply": "2024-08-12T10:42:00.766515Z" + "iopub.execute_input": "2024-08-12T19:04:50.209465Z", + "iopub.status.busy": "2024-08-12T19:04:50.209239Z", + "iopub.status.idle": "2024-08-12T19:04:50.214098Z", + "shell.execute_reply": "2024-08-12T19:04:50.213547Z" } }, "outputs": [ @@ -566,10 +570,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.769251Z", - "iopub.status.busy": "2024-08-12T10:42:00.768906Z", - "iopub.status.idle": "2024-08-12T10:42:03.524332Z", - "shell.execute_reply": "2024-08-12T10:42:03.523593Z" + "iopub.execute_input": "2024-08-12T19:04:50.216424Z", + "iopub.status.busy": "2024-08-12T19:04:50.216093Z", + "iopub.status.idle": "2024-08-12T19:04:53.028488Z", + "shell.execute_reply": "2024-08-12T19:04:53.027771Z" } }, "outputs": [], @@ -591,10 +595,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.527301Z", - "iopub.status.busy": "2024-08-12T10:42:03.526667Z", - "iopub.status.idle": "2024-08-12T10:42:03.531067Z", - "shell.execute_reply": "2024-08-12T10:42:03.530504Z" + "iopub.execute_input": "2024-08-12T19:04:53.031980Z", + "iopub.status.busy": "2024-08-12T19:04:53.030986Z", + "iopub.status.idle": "2024-08-12T19:04:53.035538Z", + "shell.execute_reply": "2024-08-12T19:04:53.035049Z" } }, "outputs": [ @@ -630,10 +634,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.533302Z", - "iopub.status.busy": "2024-08-12T10:42:03.532960Z", - "iopub.status.idle": "2024-08-12T10:42:03.538385Z", - "shell.execute_reply": "2024-08-12T10:42:03.537896Z" + "iopub.execute_input": "2024-08-12T19:04:53.037496Z", + "iopub.status.busy": "2024-08-12T19:04:53.037328Z", + "iopub.status.idle": "2024-08-12T19:04:53.042801Z", + "shell.execute_reply": "2024-08-12T19:04:53.042346Z" } }, "outputs": [ @@ -811,10 +815,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.540370Z", - "iopub.status.busy": "2024-08-12T10:42:03.540061Z", - "iopub.status.idle": "2024-08-12T10:42:03.566319Z", - "shell.execute_reply": "2024-08-12T10:42:03.565770Z" + "iopub.execute_input": "2024-08-12T19:04:53.044863Z", + "iopub.status.busy": "2024-08-12T19:04:53.044545Z", + "iopub.status.idle": "2024-08-12T19:04:53.071401Z", + "shell.execute_reply": "2024-08-12T19:04:53.070922Z" } }, "outputs": [ @@ -916,10 +920,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.568292Z", - "iopub.status.busy": "2024-08-12T10:42:03.568116Z", - "iopub.status.idle": "2024-08-12T10:42:03.572650Z", - "shell.execute_reply": "2024-08-12T10:42:03.572178Z" + "iopub.execute_input": "2024-08-12T19:04:53.073476Z", + "iopub.status.busy": "2024-08-12T19:04:53.073299Z", + "iopub.status.idle": "2024-08-12T19:04:53.077762Z", + "shell.execute_reply": "2024-08-12T19:04:53.077215Z" } }, "outputs": [ @@ -993,10 +997,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.574856Z", - "iopub.status.busy": "2024-08-12T10:42:03.574378Z", - "iopub.status.idle": "2024-08-12T10:42:05.062747Z", - "shell.execute_reply": "2024-08-12T10:42:05.062151Z" + "iopub.execute_input": "2024-08-12T19:04:53.079859Z", + "iopub.status.busy": "2024-08-12T19:04:53.079550Z", + "iopub.status.idle": "2024-08-12T19:04:54.603315Z", + "shell.execute_reply": "2024-08-12T19:04:54.602668Z" } }, "outputs": [ @@ -1168,10 +1172,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:05.064817Z", - "iopub.status.busy": "2024-08-12T10:42:05.064623Z", - "iopub.status.idle": "2024-08-12T10:42:05.068882Z", - "shell.execute_reply": "2024-08-12T10:42:05.068420Z" + "iopub.execute_input": "2024-08-12T19:04:54.605501Z", + "iopub.status.busy": "2024-08-12T19:04:54.605297Z", + "iopub.status.idle": "2024-08-12T19:04:54.609527Z", + "shell.execute_reply": "2024-08-12T19:04:54.609049Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index b6bdf56a3649c2471faba65ca850fb4b129c086e..b8b645c6ca51e624f5dc243e308b9df6968403a2 100644 GIT binary patch delta 62 zcmX>tep-A(E~8;~Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ=6Q^|TmXni6Ab_W delta 62 zcmX>tep-A(E~BA|u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLmd5pST04_KX-T(jq diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index b1b89f1ae4299ff937b72d99426f42aa725432af..3f7b9e6d9b0bef4e207c84da60973c51f0fcb8be 100644 GIT binary patch delta 221 zcmaFyo%zLg<_%{!4YMmNsL0nx0Di|qumAu6 diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index c3237c0acf1a8701e8efb1a6f9dcbd36f3e8ce7b..05313b1e6b0c862bf9687485c74d2d042caba289 100644 GIT binary patch delta 13426 zcmeHNYm8l08O=F&3=a#~&?yDSxyKeHAhi4aAQ8o=sYEEmgoqUCe)7^%TO?2i1}HHR zwXwO7lZsXmn-`t-(4*Kc*3x8=0;^s}nd!&Pqcm1*OqEmv=Deyoqb0udH& zo9g{%zT5ly{Hpp%SDf6tb$+V%gWGiPq50FwjW_ppy*ShR(ygC-YahD&Z{6Oq+jsCA zuHNQ0UAJ}9XWX{y)7Id&#=$-Zdw+wiH#_gq9W(X9mBp&wb30DyJ-p+cy)Ac;4$|qJ zi-Vloq2BU`?)&B)`_8On4vA#La}HiePrXQ%TA~GGiRCDJ2cEdSeGz$Pdfyof2al=@ zW5i`iDVJP0$$hXQk}QK^k~*aZk854jJnrC+o;#}I);gWJ4%#_Eyfnc|lBkIpKUhTu zk854jJnsJec$~0FY3~`eQVOfQV<{yTNK(;7;{4!ot&5t+UH+@(M_0^PM|7|}8X~N< z#?h>klAMvOX)uGwwJq95o>_Ku*IAKWGTb@F1x?bMNL`XDbFYJsy_cWZ(Yj{W{+0Vq z{NtLVE6=jF#F`+K7C{Dw%kaz?&ZT0EHv8JqZClf1dE8$Xeq3dvn24HclB`fpnkwC}ZysZk#2}=Y8@{&OQUZ+5mbR0Lp9Si;2 z?k+b^%{mb%b+~C3p$a7P+C)wPFMLZ$y=zlBy$E=-xOqvvanTwpD5^S|peQOJP?dQ9 zg!P@5iq_Ee&ZmkE-SLrS{W5B~KI`e??cKnh96YFoR<5AKcz~tmx`UloFJ4XEoTvInFd=o-^)oM29M~C9E4( zW?RVSO3tsi*2ZVcbF*n2xFb;}oMFQ8MH~3=HY$@N?f}VwgoLKZ#yE#IXR-yW(>UCJ zg^vavDDwmy6S2r^p(FPcjGq!s{fqY%j~1;#hY7UBY@ns;GhQf8U(1bL1g|JSzt+Vp zg%;5yn-$d-d3g?I7Kd|c5fUSOwcN=O_!?h_f-l8a+j$+rSGOgl`n<28bq?Ugq#{N; ziLQ-QeRiO!m{lO&QDTT3Ug*2f(1AUXQK#sYlzY{XxD~`ns_Ol@T)7Bcl@COC3VH|{ zvW=iT8TieC1}Wj*>i+WeoqrUl^6|0jR}T~ycE^SewjR*HR}U7`T|6#lm3(m4hzxn5 zhzA>Ujg*v-ix@3iRHL#^WXgnP#zSI7RG$SYP#*gSws#&cz>vrk{LPSr5C&u-vSf*8 z8XVZKzxS$!%vz$3$gCw|b0f6g`ARWU*?`(}#sD$^5Htijgkd}+2EE~v8bJ(9jqygK zfoX^!h7Tn|q(rXSqnqVXi$J4M!9wSPhlS_SBj=d0f2}BUxQPKFx5XSHtS#gaVY@r! zsqdwH5x|1rIXQeaR0vMF^TuX|ec(`?tl#~Zl)$WV=gqO&!!8tD@J%2=rsB#RJAFsGQ( zgjh})M%sG+Z;K@y1{IZpcNWWI!(3J~6a&g3izv~xo-F=ZbjJrL^))A!AFsv-W_hR@ zm#rvIz~H5lq-f+2wIV77I!5>8DQS#mijU~H8$HGv><2Z;8Xf3^l-MW5P!R$(4b@FA z(pZ(`GSEahYg$E0#0G*vBXUN$LGoe91l^YC^?uu-RZDEwWJBu5j_<6V0e8nh1+$hj z0Ydg1Q<#)IK-u;8A1t;`RVm^h(gjr!p?I>86`ARnl*O1w!XYZdNP~T&-$cMMaW4oi z(QyoO6635MQQ5eF8m7enXtU#E*5@virhfXQ&go}^w=P(u6QKz;6ukl1MQHj0nz?j3 zLfwZ6Fv`g`XE+Eauy8W+{Ni*JMgdS3|{(J+#Ao1`v$RZ238z zA)n29C%qMzXTV|*C{QVqC=Qe`8icMd{#P;TH38EtG*UDebd_d4C=-cHc@~WZM+Dn2Vn`!G0Dp6|Ujp|7 z4TvzSxJ}LMi3w0kIY4Ir*6Gf7i*8HUdW$P*Th#iZ_m>+gt4W9q?tug-G|OH$QU+-V zPM}$J!)eF>6o!GBZ~{UOFnzEem=Hn)NHdV)2x<^FKw>cHkRT9Y4d@Ks4hT|bYB7rs zRbyMsA*bb*m_tt6xxPH@Y_*p1MQ8)URDu++Fd8vJU>ac(C4?lK7GE!aaKLJpP0fz? zTk3^1umh^U7Izl&IfchX$xs_1(vo)7|lT(M8%(=@emZ5Fss`I!dhb z+Oq@|?V+1u>@VNn+-eer!CinU;4y6{cq1mE{a_(11sD5!Pbl}m6YyX=PH_bYj^@P1n$8| zZ4sL}!_ebFO=ts65)M`tix|@|{ESKyT#sjA3Z_y+fm&~nWHQiY6jW`|fuAZ@^|$=2 z_;%5430xoia!ISUu=NwJyrjbBVfq<30We)K0;3`+kb_QvYq9PSCqsKd;!6j_HHy)C zr=ZLujtbtB6ph)ms{j0|@_u+?0W1&1@&M9{kopOJ9ft1AL4PV7qT`mpLpp8=YlaAW zd}HUdwPvlci*zIUl!+{WQISX%9DNY8zoW_#fu=ri$A%77i&@!++<5{awXVMD^W|}~7&23E@J~Vg0=#4toGq<2Is?YG{;spjEmIXN*1%zeLY8UNCZ<#D zHNo0eV0Dj*9{3-Xbcy-tHG^`G#6b3BoI)IxX*E8i5cPrYgUDJ!4prlIca*18 z4*J{#Xj6zSc)`{KEEx_tCCUiAcpCK#3QI6Bi@p-2AjBJuPr;gmkAor*qY14t&`fZn zGWrM;aABY<2&0f~8RDNErn9!7Lpp1VIRx8{82{JOwc0GAGlfQIEDK6wR*rZRk-%lf zCrez6FnJsCI0RdZncq~;Ve!~t<%KgfAjYW6OVu5@xT5J%*5lLc>HhvT4Cbx|DSvO_@kaL SbnZE-^>6xpPAP|!qaZGpzb zS7UR89VBU5O~eN=g+`9g0x@c044CkN7!6=zqDBM#(Zr~6?6c1;_crmY5BV}DO?q?h zU1!fV*P3I@F~`0~zqaP+*Vdf)*|}73;kmh0Y}Yz5Z)~F3YGy2@($Q!cqtphc8K)L& zY4Ruke(oP{YmZ-7ZCH8PW^UiIwHf{9&dsB}`xZuj+qZeNcHbqVf8DupR3F-~YWn-h zm-eNd)wU8%`pMDWyDmBZ6F1-PcJ01p@2=e+bGP4-_6E0i^vr=v zM(;VeY0cJVOZc$cb5q*2`_`NHjP5*e(dg8Hh0#|JTs&HPP}jTmkBg41~To(-?NDcy0$&3kUzefzC$Z`zHm#nJvln^&LN*JNAA@4gVn zbn)b5R^XFc?z^GdFiM9m8tuPFzLL*7dF;?5Z)!Yl*ve>WW>!cOjCRHu&Z6Z~Fser{ zJ$`q25qWz3$;(fiUfB@iol#mOPLfbLSbXI?NS0$)F=_I+;-cP&#?Z zC^jXSOu|LoUqW$Fm*)Au-F!}?wA7Qwu*ik>(dVFKFphiTwPazkv*M!eajXAu;`@yz z+Q^`jmOcn2i1o;iG082{j4C(&-O=huU0!zhcqOXhviA31t$sQrR-$f*W!_PNGjWy? z6N6SJCgx=O@W#QqM<1;|xMG+k#a#-*1am@KZM;`W;alfz2(qRBsMobGex<%({ONC0 zAFqZq;!q9lg=LUjkd70j9kafxe5EE&9zXv;{p+eJY{It-4^{7L3L7BpOV3o>+aEqu zoi|KTu_R>(#w(#ha@ktNDbwC3p6O(-eO4yetW+e%YAK>|P7{Drc}gO&Lbu01TwgeT z{=)jfY8aFdxMNC$V>p21v;&f9@K$CKRJ-;xmfrfK3QK2)C+)FkD$*1}hb|w|e&@T@ za2P2NU>Ir&g(f67Dkp|-O*EPq(jI@ZUN`>GaIkB|g67E>kP5L;q+nf=-U+ACJ5zx~Ed`}c2cHW82lYF-LQz&|KI33j9`7-|j3Vtm)$`j!>L0(Z6#Z^l+n{G|G9 zb)axbc@u)ZYv=X5ufFE(?|AR-LXG;fR?j>z$~WD(wOw~byzDcfD_8`@)64PFI8 zayC+p-T>YWI+#GXcMj)3K>^N;@4C0%v!YQJ3w@wTk}PaCPHN>D2{JmxLU!Zhuc?n# zLjro!lnd){kHKYcSn}3bl|bu0jbFQC@RzC>vpxJ|bxkp3kG8E(Rj+PRM#%^;A@d*y z#SP~)M5~ocIl098B!<9Aa?Eproy7y(Emh~!ceM%nD9ZLSW!`okGsLq>cH&lISXHf zf=tWtRXDEzd^PR8=hf?*LRJ&%>=8DkG{xZ1tDJ$dQOa@~oneePnzgb$!!$Bd587mz z1S-&VJK%8iVwyk^Xc|+1nFR3w#-*K9QXPSM+&u?XS;~~?FTd|;g}Ao;_eGkc-N2;~sV?U_w$5sQV)8m|E zCpwJwO6n9HE+^oOlpJ4svN}~Q6yi@HR|xHU$lX7v->{X_rHIoI&CGEJbtzZ`{sCUn zRSxQgO=QB9N(!QTd~5=^!X4@57%Eh#UB0?>TwO=|@_F?ILy-B*q^|m6ed(m54Fd)S zjpSwFr?69=`$ocjAhlQ~1i=E`8X zL|{;;0`zGkMhB(wZ`#vrur_0IKq6Xbm0UyxLq`f`F}{;dnM~y)P(%Z@7Ikls3&9AZ zJRTj<+!zzubfx*@su;KjTOqFQc!RX3)(kc^HbKv2O~7i9R#3Q}MiC*oNKWX#i<#i4 zsdebjEI7z@V<_4ogd_wNAQhHo0wqs{OZW|kDPiDXBnMv2I+3XG(P<{7z06(uBo^co#W3o(_BC|(_tN|H(gy+SPpUFsR; z9LE@B&J<~uMGP@uWaw_xuf+rkfrE|{FoF7h4xCPFrNHf>M)Y6E~n4R@9rhzQk^ro~x^$)_+Y#B6t7Szj}hx!bLjS}TZl2IA8gstu@0`{a6! zHGck|^{y2|2`&^E$1DqiatpcuH71C86Y#B=<`86H0H+oPy)VaXWDMXPg`XQt(qimZ z4IZl&W=0KDcoib{@H)JszH}SkW|!iN0?HU6pvDDw11y(Q@{t*pG{q#`6Zx>S?R>i0IZM|?aFdGn-M_*Lt(-f6T*aOBD^9iJ%HpTZma_shEr*A z1_@Ie#hh(0fjNjY_`2v%oQNsDFl-YZAxC0F_4cHg0;TGYxCl<)p(Z^2|wKEgj03l^}1- znjr}hFqBbrE=O#D4F$O*r{bbuL@u>G3KtWXV{3LX3ch@G>C6_fg$ZS5TJ7354|Kn(BhEMm01|p!vKB(ag5=Q=9Pt>^f{yS4x)#6Gax|T{ z3$_Hh@G+l^H?UI(On2&BqTPY5TWn&59kkDW3Qf$<-oT_CZ*M<&XT7??2qQ68X4d&w zNXzC7myQZe;R4|0&a@qKOe2`Cz#|$S0QeP|NjM^kgigAoz5@&chCISJCL;*nOgyH| z3{wS=(}MKo>H6`(^@DH1&M5@$i?tND7mT+Ys$btQn7T2eIRP6&W3){?1OlOfo56o_ zeA^obx2#xD7DU)B(h1%nbiV1j14c(Q3Y}Us?L{91?hY=38r&}xCT5#ig4#@-ql1xd zJe@KNVLQSo1%2Wgj3Lc|f!@yLHnBu3V&d;)uZ)~wF7(8~q5^kO1sh6ZG?^l<;MI2p zx7f`JH*{8iDpclKLtNp&^djOGW~bG@_RWLK+FyOSJ~FrY=QjV`=KpW6qRztV?Dryb zn}2Te&u#wY3UO}p|F_o*bDMu|^UrPmxy?Vf`DedgnA`kI-(AdY{<+ORxB0vGPG^l~ zbDRI=7YlQne{S=i_5NjU^UrPm*{>JoHb4HHcKCm4^Xu^wpBX%`viO((<9&w*n+E>@ Dn($5D diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 1d1bbbc206ed36311f09756f89f249754d0a2d06..10565214c88432a03e2dd6436cd0c829b5c06bb5 100644 GIT binary patch delta 8911 zcmeHMO^BUW8TNX=A&jjgrIRY6xi@3cg84b`Iq&&%SFu7NH4R0u*bvVz(W0#uixx^3 z3Plu(82J_wYeC3DD6Oa;SgdB@qG;7D1iMh;N;He63vpSWZ|==xGKG7<^_^h`?#ws$ zJ?Fg7-+AZCi(9Y1xb@PnHtErCeEq2}KBb;GNo=wbfkM)PYAi)pUC7!Zl#P{~6ISNH z>YLX#pS`v@!PmQoYn#(cM<>(a`yZPgd3N&8{-tx>{YSF(Rwk`=b(%|Jr$kD4cd3P~ zX1MpO-Q(S?Xvs0>B2BTJWAx<4LPB|^qYwQV>bCl~|Ipnv{5f||PL8BfvP;S3m^exA zU6dhctk@=PQvbrKZfm&ydiU4Ke0BMp`p3_Ar{|6Oq5sD#(~o~Jrlhj9K6~r~%MBce zIi#Gu?*H`K^nJg4Yx=ovE>yKuv(+|KPB%vTjvCi?!4>r*jn)a*ZheM)`zyXnzcjX?&>g*Y(FDnoKO zIb#x5LV|kwVYjujk6EZ%qy3qqQ>-fc>Po0V1&6j6Fc=wIB=(w5M*+c#Tz$b=jT|g^Ty6-gy`M76&o)+pTn>u=MCnsvvWob12z_vyizF%g0h(Ii{h zQT9QwWWX>4FJ0{c!6jIY@mNey1&zavximvASe` zrFLI zu-8TkvzKCx#?Y;#DGf~C`gG&O)GozZ+qy}yS%J!t64@&vz%4=JwTcR@4O(fxM@3Dp z$wmoBz*$upFaf;TsT`} z3F!x4>Q2vE)vvxX75#0K?zWi;K_t*#va;}0f~W&&ni6~|DH<-n(LL79u#6;hjvA|H zk)?z8p|5CvG?dZO1KsTugEpPdqYlCeMG#F-2eDMcX;7*HVRM?gvv>Aa27p4+mtE>aCRQxUZa?CK3+_th&2Fgll^awMX~X0p+c?Enh$DA`*}Z)v<$0OP_3P7(djmXcIzN2r&~Ypfyl|K9E%nw!=2)57My`{C~3 z+zJUVVq|RCcJRRof!0RJ)gYKeUg{~C2oMWpED*{r`plH6AZ}_W6!qWx%XI4(S2uo& z(5O|7nV7(7Kzei=C%gtA0(7dvC3do9tL_4=jk0CIxo;io=5zQhA#^E=%K^3%0*G%$ z{zLe!2yVHN8X+o#NXZud5e#%D6=SsXNl>&4vz|w&3YdxXRs~>eoJL#~JX?4n3#|>eHgAkf;9C^t24LqEv*LSK6bVaY?p71J?%hqktJu6k)Y$4orU5A;c+Gh z>cIotdxVilwc`ay4q;>Cv2Grs zM_^Ns&hdssV2vo~e|`^g&}H7hP% z?bF@%Ogcsq_L-9KEN}y@hCQy8T#9rK{lL|Cc@0HEHn>(Bp$Q5oT#0Z(3rPTtB7AM< z8agW?mmh4XiOc0EB^Pf*qqly{8x_R)4dL3zjIW?^~j z3CencvOC&ZPf*qql=TEgv$6#OG=)|gP2+P;T7V b*AtZW1Z6!zxiNYAKPD)4xOn@<&)@Su#;Oh6 delta 8799 zcmeHLO^9As8TRwLp-feh(m^HQ+?%offHgTk@A-M%Rjg2Gts$F;hV=XzP}*8If|Oaf z2$+IatCucBcSQ@K1>u6lHv86vi=r-+=%&QDn4K$ApZk3`=}gqQD|cUDHp88~=RNQ9 zci!J!-TwX6?N@%YB}r4%{%JbnTv5?;k(HhDETsuDvrQQLP(*y;h|@mC!0=- zXi`(GpKiAb*Wz>{3v7>B4@J<%xbId*nQO&xMmVG80Q}QI3 ztWhkJ@WK(x7=sK0PWQ&5;}VoJ)*Gu8S)5>OROzi)pj<_h*t z>@Vd{pJ`6D0+p=OF$XJ27#F?E;~0dKS-3nrf3kV1=^`6vSh?tGrJQu6sw4+5jE~wz z9?r_<^~J{={>TR|C1bWBu@~8!l9W{1sQ#fJHYfXEytUjKu07iPY|+h>PODC4OZQ=a zY5No3Z9e^3=fCm!GvB_j`|Pt1cDp#Q&@8OWDv=RBsvLdDRa>D-ink$Fr7ku}DRp%K zkn_ct7)=bt3vz{rZ@q)F?#+#67Zo4*@>ecC_V^bbe)M8G8jSYv*GJx3=Cpg^!T$b} z%}3gqj(Q;Sfqws=%VVvITBsU=^q~?^6;&jkr8ewR5@`tM$Ej)?LWmVZa*DuRRv9Dq zR7|WjIycela&u+T;`Xd9Nh^RCRJ7415o3ygL#}KN@@uAe>2Lgbd2YTqx;fKd`OETn zCzbG~=FAM>vGdWoSbQoeRj@_Vq!v*rqkScknuwuD);a4-&Bm%y%>>fcSC6xki3WG$ zRbgqQ%^C88#)0@(-dw)En5{X1bEf17PSNkZ(0rn!99*H|s!f9nr`^Vnnn9t4`6;cL%2+|)QCPr$XFf8GzKlKNk;@$n_SDTK!R$QG| z8nP!i0c}ROVkt;mgAfzXW`+|FGiL^rckyiI&elA8d->sRrY-*-(Ylbplu%(h3G$gt z@FPr<$M3T+DzEB1jFiCNMXwelOvN?D zZf!N6>U?6bs&a{x2}2m&b~IY>pS{(S8Fz*v;(-+!{z_h?sH79n37cY6I;l0qI-#v* z&la8l)nSJ}!a$*YoU@Kjk8b?i#ca`uUNbc(7rO=*6YhYEm7Jm1N(EtX>p)GkqfsaA zKs(sXgfAHjRn1jWDWuT{G7#HfC~)@5sfk@PW08m1H3!7QU(a3F%Ed-@&9!uZT~1hI zMy@D_n8-+>K~%4$vt&#eHFJQEwZN7SF*%2M>TIK_rUb;YfG7h8yhE<%7Ok$M$7d19 z;Hm&)Z=K~R5i&&(G;wRLZhvF9IoG-N`QgZ5wfcyqiHDIpcYJ>fHG!g!N%^#Zvu zh=8cI?qeq-C6*OA}q@&8NqGG@Ir>5&P>WqgjQYK=L$d7mhW8&msQtGyaWrl*K0_uAOnQ*Kk z-UhJSVycCxO#A|%^%!h}f@i~lV;EHv|DDjTIAC_oueqXYe$CY!`Q`c_{H^)qY3UAm zSS|)pwxl9rA{-%TFA11XP6WI&dPvpw(Eh#oTC-!E2k(l6eUZ=xoHWTq4~2#`m$m1< zyLIgQi@lj4mBZA*n2$u|;jicJ?GDjqI+F*8#!x=Ncx+ifPZrMzcQ#1P@HT-L*d#M4 z2BZs@Bu{SrF!>mb1 z<1rupdhW9BaBQxjHOK13#-I4*@V?c*OZQxO;nIEQH=B^nCS5o$IT{WvkBR3LN=R_|FwPDY(oBH$FtdlY&IdAO~|yF`@e5O N-0f;+5(8^5ld(c=JLSOZ*22^g-x_uAK1I9o5b~>fGKOn(wPj*4@2F>{0Dy zDI28mJZrEqdC4tB3=XsB(frYVdryX}A&l0M_8l5=vCvxtHYf?7vKq$D{BxH-7EDCpvkKj7lx z-|&`lCl^PD`g9Tcrj~+(f=EY)8s1x~gSU%Ymt^_E_k6xNU$V0{x3e}k8Xr*z7{EQm zWowfTj*`k`wIijBS4>(fMbTRgii%dH@Vpv!)v&trrRJQ2hQuc72GLrVB1Rh_>p&Sa zwU0NeXT7TK>{hk%wJs)TAsH2O!i3!NZ3OKP- zjG#56cB+I9wj^1e!i3_!mqyyMI1IMoCZR19o@L6CvMLFLJSG2w#z+Gu02!GP!J?O$ zRV@36K5IiTqv@aF=Z27VzxzbU_U*Pdlp_*KVx#E$v_Gp41lZFSVm@VtyZN i6LFy(eitwLTX0avgE}76arTG&?>gGF`buJFgHmxH8n9Yu}m>aHc2rxN=h^|Ff}z#Of)kx uvPeue-2O$AsfkI6kg^(u>6}_jOQ+lFGW8NR^OY{sZ+61USk0K;G6MieMMG-< delta 234 zcmezLnd8%Ejty5h4NZ(ql8h}1O!UpoQ;m`=EK?2BEX|E9EDa4!6Ae==jf@NpEt3^%6Gol`hk7cEZY7&6wUY0|4zsMPvW~ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 285cc8aa079638a94b5226610278f5b54f350e69..eaeb82538aa9f60e3aa4537534041da83840da1a 100644 GIT binary patch delta 27340 zcmeHPYs{o&d3L^cmIVc6fn5a3_r7cuMb?k!e1OWS61Bx*)fx*+@Hs{iEe0B`5m(U0 zwCRcN*0)JTv}tIo)?(03>kkf18q?IIQf+CXp_1~WMt)#RQw;}uJ@d|d-^{W*Pk(5C z&4vYL=Kbb=4)@`@ulv5gM;|@s(MQj@_bVsScmLW4K6v8?`7IYwp&}=ax*!S7J|&rD zqFN`ywa?TTqFHo;-}k+fKKtrUO0Ee0MP&%WXlYV5ibm}yb$DqHAG+?2`a|a(+W9kLUGj6yiJO`l9ERDw_t7?1p6L$myYGy*{QQYs z;xsu;z0Zk@B!!QOWRtv8i6=q*bZNDR?mO?`EoZkRS>ptjW)v4r2OF4**ddl^L{8In z)t)KqdiVQZbzMV z(e&l3mktg;vwU!G`~Ky}d+fVAUpGIow=TbR;e8K3g~KA2NvMUU+$kZ9wZusL%Tk*x zGo&2W9rcIG_Fnsgvrg_L;{uLBS;4c=j`^$%k;ZZ%9p#)%zpnZazHTCRjjrCkOKe$9 z`*-ab$wmvicxL^9JtOn{&sqP4Q$~;NynkW;z>7yOn*Q+O;eGfxPh8dSId$~MJ0DKP z&QI{{W67LAA-}rO3D|lxL}l2%NFIi7nWiBd8l&@GOgCPAsBHYQy`!Rb+8C=;WD57f zbZ{&wsYCD~6sJ4fOYNb_p8ccSbmz38NqgK&f>W}}X$ePA?uSGb;&3U|hp@Jfr)x)( zbnV9b@9IDH^v3>A=#3Nl8=l^1`*ZciR{zbXH}>}55gTXp-+g-HwEjA=aaRAzXXfv{ z=9&3>A9@ClOrJaDhx7OTar?Q)x1am;59dE?p4~WY@~t0kd~EdpFSm!>^CpL$-T3H6 z|KzTXalh*a8)qD8&in(~?Cl@?!sx92HM^RV`giP_zkGCrm!pmO%lGca%R6_^UtT)K zOE;ds{C4^DwWFr{NqzS{8_nnX7w>A$>91*;vwnPwKK$_8_Vr&FH?RANeEH~!w!iL# z#`mKiY`pZxdf2BQdFSrykGylw+utyH!3(Eu%7)^HQslu3;b69s zgh++uP9g$%-amF#b9#U1^Uc2g(A%0x`M(D?0}qLFktOf}LcJ&66Rre&a%O={+)p=8 zjJnDqNdKOfH`mnVkDhBT>R)tz^P*NMIH_cF!j6Py!6u&+z>{;FL`Qmvo$rbggIMW( z!9c(>%1}iCL8!NZ2A0g^p)WP}k2bx~J~@GpvJpu+07?>NCQ4%asvo^-ytjYy1I>7H z`8CZwqpq?5)_?KYhO`ygpLnjJ{g1YqSGFPp10vjLii=Spl$DxHc;r6A|1R88t0^Ho z;J|?^M0UXoW0c}R969;mCl7w9d0^BTM-mW8aGD8`v_^c*N?Ragyg`WXvFkI-UjB5{ zu9i)vTj?rdaYD~Eq(9X(9aa>Bum{rVDZifAL1+u72qD|Tf z=Q%(!^VTa>EY(PJ4AZ;6WjuRHT}(c65fNtvu)7Q?bI*i}y*nMIee+*5|2nEJqkrOc z&0E^aDxj{U|DD%2FX>$!Dhm!SBfJY&yjc|Q4CG8Xy(u$z5T#e77akOlXXcZ%j)=kd4as0rj zmB=)SBsxh3P0!9V?Oo21TFWC1+m;6}QWHFErzUsX^iJsi=-TEL7csM?7EBN;kck_( z7A=v&A(KT$XEO8)s2CaA?6PY4>txSYo4ZDbDwideEvllTdHHEtIl5whU+%~Iy4sfd zhh1|)XM#_f3Zod)0tV*-i2>e-I-VR7g<<0@4kBv_+0aN46gAX(Vg;h1#7(EE?_G|1 z_qPZU0g;c z5DL!KMyvth%RwPERZ2JsFTiKpGbs^a5d#xEFtph?jvosg>H~6By)&%!ge0)sXirB#b zKk|v@g4PMBAIFIy>LL6wkK;5FQh?c|M8Rn%?GPOtO<;WWSv7l#Xo#qszc+wH!0a(>L0;)))5R`RHPmn5pZ`8rztz1HX*Hg`# z>MNMq+|T@Xb8@FaYHQHS)MO`wS77ByqReJ6)j$nA{OiuP8KnfI z1>EJRGTa=ZtP+~LK_#&Vp%A2FKt_)A5QrFG zV9yldY4kgZ-aVtXBDvplcf;C>*kL1=?;fAi|HI?W>6gM9IN7r5;IA?Q%=-cNo||t< zw`|)V56Uy5k$W1B{EwK7Js|^xW(e>L+ll(Y@wqE&6#avr+)e>kUmNUXDFv*l>QPTu zj&nN&tZnS;u6b35v>bI9#P|q$8bvEFaKR9@hd3wjA1O)svY<>tECF0gGn;EGGW(5xYJRa~^Q$CI;n_t8z%&pt zLz@m>(?_cdCoB+DL58qlC^drHq9oP1_bC47IJ0 zK}NtqDiqK-+y<(8@MKCa#y#y42yxEA2q^?gVztxCAo@$2l*#==pG2xX1<@U%Xu`f@ zKs^sck_0b<8lgezZ#44YCFEII!JK+oEnE&JdGF)R)}@8C6I(?SAYqDK&;PR7*RI}`oP|R; z9tWtFX)?kh$)Qd$B8&uE;NVbaZr7VB?Z+e%4*@3AMWK~P%z@n!#q}}6Au>h>zY9(S z1!96aHSiN&5IAcub5`?kSXsgl4y!Aehr?4gDa^%lsu)N;i()DwM239BEoEtzg$~!r znDT+b5;K!RW`s^xxDNPc2~ISpSu_Cy3}aNzW6yXj;=dXBSl}pSI*>ODHrW9HtdgFG zw5cMvP-V2I&o$?_sMrB-AT#p0U}fvU{Uk|{xE`_Uu zU(-|A|I*2KUN;8030p*Zuec4iP~O2=6}&Fw11Mo2@~o6Q)Fir^$o{b_#}~IemXpgkV4&?{Iq+u+>=Oue z&Xrs+MzphFgFHy!KL%D5DQpR&V8mcw5}Du3wHN?d0}q8P3s*69tlUtNL5O4xXtCs4 zR!g55VMXu`BlDHt8^7$;MlGa;2?cWGgeXXW0Y!fW0wGin9>t+6hp8Fk+gAEIdYt>- z$ph26#OfQO%T`oT%cIK@m6MwW!o&A8`!-kaYNsp#{*nU!1*n^iNRSfPe2rol7*E6k zlpA)cf-Q=Lpa9`htOBgl3CS~hsR-gIbQa{zp0^ipDj9N1jz)xlG8TuvBTA;3MwQ_v9%6)6H*E1V9&5J2J#2s6!ahpgMh`>&bTFpXpgJ|4ggC8 zt!N^sD~YfG$On^~70rOXBWMc>ghXIw=%}FhK~9ima%0$%iq-@VX<Jkj6UHRsexj26n`W&9SvKFnQ)cp@4jWZ$S>MkY0xr!Po$q;L_$%PoaqeNgyr* zC=>0vVu4_|l=0xw%?+e`?7IYmyP}bpOJu$1gje$bywcWCFk(1vp{R z-uOg7w4-1pDXvWv^O;p?+e$mrkS7imz}hVxWoi}0Tz*W6 zym}GS&_>&p;-&4c_}ciA7H+_zw~2!)gq7jM4QwSw1~wC|o%32>W`#b|8RQIzN<;}i zT`sZ)6tk_H;pH~6fJz7I>>{F6f)-BV@s@KbAuba&tphEh%i@GqNgptCMR@V!y1((C z$NMj0TiPxf9E!0Bz1}0Uh9^crC~E?Q8BOtxW>%MND;;>-VeL0Yhbk9!RHUk@=(4d@ z4lfsD`=uA7+!rg`ni^ZHk#t9rp-Heh8d38S2`wKK?XVX0zo91gj=yQHA8*1Bp#-Y3 zAwr@}6-6}A?gWqu97l@BOz{jdCgj8sY#bE?(T$;OgyRRaUSa z;97JF068L5A$0)?gZETOTP@mj!DlOkq{2K5Io=d_QB=3U^$Jq52;iCmu)!l4&=fNu zRtVJK(JO=UfOF)g}9AXbqshbUJQJVZGFNzi}Ap#i|lh$dx_NTu@1 zJ$R%!6~77IG6RKC#40#X1YlrXp>lBx$U*zt{}zyIU|I~x4pE_tRq+esKr9*BXLJ%26h&Kjc~VqYG_Z4 z+KR}*&MFdjqTERxI3WfQWds8$6p_HN6fi^pVpS5*W-}n!1rD+d6d@v^6AZLuX>vzL z2v81oHLolbrri`EZ4}6R5Txk;Kszlm&sd7*tQO8VQ1cyPRlZUt`~Xb0rasJvr8K)eBd31kF!Lr@>A44g@sq$u6H zaHz#sz?o7s831)76&z(N4DdqK;~3sp;mjmDNseZe?w4OMut2b}|qo z=;47)6j*}JKo}iEE(4aqgLoXY^jF61v~C>H%Tmyl1C3VbK%G2V&(J?&j}_q1{DHuT1bwM4e1e&3gUR%Xre5LoofN4JNDz<}MXMs`_M}H#fkkCZr zrkJi#9{m6a$Z&-7EKYma9toh{0dJ7SDGR?B!85>MlU>wWhh`si)bY~!2`;~sDY!1A zVg&yg(aX9J8*0)APzJ4CDf~NEjxXsLx^Lh(;55Lof-%Nu53DLNiT)Gk)vVQ_!^8uE z8d~0R&S*OW;g#V=Fm_`BExDZ4C%XV>83;j$MuQo1!J_dDh71b7RDJv+8{1YS4_!Gm zxkDvk+Ql;EOc-4Nm*Cxi>EThJO{iM}j&S6o1kF^Op?IKXmsFV$SOS-oOIkLkih>^1 z`B^)=VtmtHvf8$0)dRFSAU8{eeiYy*OFvPf0ZqFxLcwPmx{1mhxOhZ9@LC`u5Dyar zbSr5*Dh`u(oId_cDZ^&Vc=AP25MZrAlPLN=2>?4vOn#Qff$v=@aVQq77MO=ZUSDeG zEwV6Vkl>PnPQp?olMW?u4H^W_LDIo`h8`>QQX7CR6vVI#l%%1e6wOv>AVXVCoR^+s zh^6_IS@g*PM@xWGBp(`X7$&Mg!%uDO>kpJ3N9Dnx zSP&K1J4D#xsgO#79v)!+6cB?BLq8unttk3g5QUMap-BvB8rnRZ2|c}cfRdjdo$J7D z5|AaOK>~>bKF*vwFhc?6JNcq44J&}ls{{}Aj&8L~_)&O0(wF-A&q{XwO}Ab`$i;*l z80rHQEm2!WE*Krf;bL(SO=|%3PQnF%2F7+MQkI15yEGb3ciUFRX%?|%?dFyZ552xC z6?XY)aDFS!Qn_My`z|ZZW2?6Y)&0@<%j@}t$_&9Qt6R@69B+1FUPNC#HnG!5ww_<` zJB5Pk;J^^{*YgYO`GsQ*P7KNGdVXOx`mv2U*YgW#(W}f6%-g~%lLP|-8mbDFp7_an ze&P6o6Fb%N_58y2NX9JpThA}7=NH!V3(p^~S+hxKR~gbUs%sCtmhZj^9%C{ zllA<#Dhl_58wme&LwEvvp{$SkEu4=NFDSM6sS<7=Bw|t9~h{Jj4+_1&N)o+6}YUm_F8+dg+|ao)E0|XYb-Cpwbx!Nil`82 zG!1losike&Dh|4vRD5ZT7~2vJ>S_D{+QewmGy%1x2@OhW(;7*tmPS)S``c%qd*_^C z=BzKJ{ctP8ADsNz^QTHXBciE82u^$ch}s3$n#NY45~e(S=*suzA3FQ0 zeRo}FCnrsPu+jNwm1$dDh1QqB`&7%?H)YbMp1&^pQ2)B-rCTRW+gi4%^i|okUR$HR zXzOTXsA_4IZ}j|i*@ybqz35kplO{=-lcb$FJJN8eTIwjYZv91K$<{PIadoOCG zcx#ej{;KRl{mkC-&KF);NU09rbbqy_%fs*a;S0LAK5Mk+L*IJc>X+5wuYT)a7GFB| z)T^$!(Z40W?ZToiZ(xs$E?*K9oTl>%DAL2qHDQF{)L==4Bu1U+4b)*Y=FW;p-l$3#aR)z1x5I z-T!&vk?-8~o*(WT%|D*MymS4}tnS?Fe{}Kj9{c{0*X?ZC>sG&X?p^mi!fw@0wm~PE zyoy>WOv_YtYm7-jX)6XZ%RbaE?~B zZ+50hZ9`lYrPZP&V5T4g@v8AkRHc~vZ0@1i-h-o?>q)5-{_X{Vv(a@@u5pb@m9L~r zI$(+a_P%N68Pz+)E%A!cEMBqo&fB|NezrB~4t-mK{r z*3-HNzP5FK_xwk<_MIfQg>^)+?!K>W)!j{xZk^G6>e1ne?e5N&Qn%LrNpTBdozq@r0AHT9^=c6C<@q^=?kDvSd zty8<#jEbi{aqmB=yK}4fi|%PB6lZmp7sa#xmsfDgeJuRWaq;pea)e2D<%vb}#O%@O zx4mi4)wjKA?;Bn@deW1o!=EQ+q*HEt|84KN?dIFwbmp~}KJV~D_rGNJv6G88oIVwX z_z>q2(dkqL-}o|$q@`CtDeq=Kx}td7cxnZ?TB%Sv;dRYl!~$uPt}8H*Ol9}brN!yp zp}#85><+!YnDzg&O6dmpB})^$u&J)fR;8K$<>KK{b_U&BpHp0(pTOwn z#Rc7ypIbb6D%zHOD0>trw3otrqiraGXEBme+F?nPs%c~sY-&WXpslhov8+9bv?Wv5 zWq0e3i!)|Fd{^<8qiHLht}0au#{<5tEx;iJ)uvdh0Q~H}`i0`G*~OO^pJq9k(Ywz- zR*3B2{^N!0ez9FVe=6(N+O`r^Th=<&&ezGs);6)K+DbKHaX_ShwmFr;0w#c;jU~dC ziH87ux~*qS@$S)72O-PS`mzqJAtq}pAaq@;$k$EfmsgS-dA^cqZs3lC5#4FF5a;Sw zz3hT_Tz&B7o6nmbR6=PVg^|%pwp+VsNG(d3AWEa#?vv-S`}e-0xN@9@kBFK!mtB*wO||-TZrcuCeO}kxRGc}@EX#EF`Qimrr=)iM89HyZ zZAi|dPL(#guA8>57iT&N!f7yG83D@RM&F2vzpUa|0~Rsc`-br+MiZbkutd938ZBh7 z5<~WF*#I$1*@_vS`GZk*$nN2n7q6XWMl}6lUeNu?D~hL1wFp7_%Bt9KaH957wHmA| zL<{L~J6_hdN;$j>xWyr3uu!#>V#yZBQrX#8zEIpVnpBl7y-Ly>0!=F-w5e(Y2rvqW zhw5&4XnaP8FOC;ZmK%I9&CJ+gFipH{Z@2%(V&By1=%q}_)@8&wszz2dcG+-R#iqmsC`Bl?a`p4|B5{o-@8@bRbHv19+?MVSlJNX-yD~Cdf$W=m>r* zOUeyCEGakkuD6}o{n-`8^R~6z7E4|iEC5JgD5YmoN;D$%e9(9ogfM14sfE|&nCrsp zGAEZ-{U~OPb@gexehXFab-!`y_{?c$S!(dQvQ(`#Whz6}f?{ohWtAy4u~f#8^cIm+ zW6+HhF&g7_WWU-(dW2}ToH#ystW-A*#x&~oA!c`YlDU)Z1mf z|jSj6pKfCH@IpbY@I=7p6 z<+S@!H{LhNE$d!iyl_%_S2tezl)Tm<0ted0;i9pU-nL|%_wE7#UAB-~QiW?8Fb??> zIizhx(@OY#kjL`ONvL#d$v{;v#ROe@YZ56`icli0iD7TA|LfwPM$^nxV)w`&6_-u3 zvzX_|5BxDAoGne{xSP6V!lnnn$yJpsec4vl*yV7mLKA8$8axk0Ea7@JP>5{Wv?Z~~ zE%2KH{IMY9A5fiZHRj6?k&cv4RzPi+kZ5Lf)!VY1WX2s#`Q0A@wa9?nT5Gm1)x^)r znKls=0nDg?Qu>8s%2w7$H^7=6cmh~Lir^MfxomyV{ekYAU4MV^+0n$XKR}kMNrud+ zLnDliMCaNd)ymWX4xYZq__@L7jycJU{gI!8s)3>>c7OWuVj`;AAOXJl#$8YviIoyP z0`)}c;9Ia%OY}>TAOkv^!;nRKY>aU=TCxQL>ChS*J=_QrE9VyJ7wIu~UaPK^vDKs8 zHnV%7Pml4R$7fB}uPQAtY1#W;<5b&{HwZq+WE>czs4Z>X$VCEy!37dx>)0t>R*8hr z#;T0g+XzQ#kLiOLc7&V+XdnmNvqBU(0b(sn6ySxA4?gHJ)97x0qX&Hf*b##DFLncqH(zOn=)9xs)A0KFyukk!|GV+M3In}a+A3~Ez;Pnz0 zBteiBRq4UJNR>UfO$spKfZRrj$K$%p_|0IrF*AWVAAIz03OO}ex|$P#0z?2cUKSzl zOqWzhYTrRI73h@{aX{2sleDcBaDqhILw1%@FX9PMqjZEr;A}vb?$xoX3Sim_ehbsz zjVE`E4y+%z+Y4o#=7t@@$;Erd&+Pv0d&TJ&!3j#eZK@$H#&`L*UVmMD#}S7Nka$^= zxq+!rcpIX3aNC+kA%{4$uG%pi-`(FY{%~|Cb9_hfzKr3EL4I*w?J$2Bl5Fs&kf0buP?Agx)O?7cl0HOl}9(ILS<*+xlkl>(lH6dS^UW3jQp>D&j-xIj#4|{T8GX zC1QXP-U`=PGn^OX|ElqXN?mLy>>(6uQaz4Yw;|~k?$wu31~Yzk3W<`Em4FAu*G0pN zYgxr$tR-xN!Is%$X839Vd1yXshaOBBpWNGh=7C}|4L!MIdT>VAy6(e-U=F6P$PG83SKO0pnc?HB)RF_zkHDR2VhRj95b0YFZJb($$LWlpB2r zGr7SDGj;c+?-kF#hzO%OE_EEovzGVRL*iRiP4AgRbUoLLl30l`$`PT_9I1#3oYl#} zGpCt3RP#Iu#92E&ct~_)$)`+!(%?$OLc%c%LZpp?j0h32UYZ4aoHQstu_gVHPW!;^ zK!Gqczz^K9NgcHC>9g;?e0)dG4S}v$Kf%c9;HdAEEE$Cl@uv~K*-b1+re$XI!5=e& z+uk2vKZ&7cEQD!9To^(ChmzG>Bbc(P^b(btIEl2=BH>1s5=wN0qxBh z|{)sg$fmS5p266Dd%;2_r=w;&zrOmr7r$;@# zeg~`G-%fZfh;;qB;!fRy<_T&>HFdOJdLaBEsL}#eM?4RT+#m1T$5bR}vw{=@bb3et zmo!*5Sp~HQRpVF`aoSsTrSWEJ2q;VyKnE<_S0`zoDbd~+WsJ-W2LB_!uAjl29?tzQ zRggVe5>Wf`6lF-|a0!yF>Dwl7Dk={H<)5^`J7&^nKqML~sGT)2!p6vNWr!<^Bb6;* z3R+iu-{b_26PmqH7LY(fS}wCqax-}8PsVbZ8C%WW??8)_;CyWr8WObZnF9S|K(z{y zEp%sJGFT@yHKZA`G0kQH{MNU1@F?|)mcF@4(uOs=?@nqMlT=b4WHT&hLNsYqg}hC^ zr+F)ZvzL?j`mqta`nqR!+$HDxrOU?WoLAc=c_vwj0_;E@O0haP4wOZr9zt6PoVuG>P)bc%cQ`X1n-M&&*?p2q(_E!E{dam$7MSuA<%}% zVfJyir4)=QBjnHxL?2*sb30uHop&FAUQwn=EDBy*F%(msH`l64i} zvId`(Q4V=yijLe%Sa_R2wo3+3hkv$o1K0#I63b?r8GXS8a|6%aZvq`aX2w5=9QYjP z)gpT$dPcOwu;2yrn)U>Q8WEf#jS77)U`wqA7j1!^iNsM4$2nk6EZfUUB7LBF3xck< zR5+-hQaYw#YX0bQ7R=0Iv7*cb7T|Ly3m)8-+qPbE#ok_QZ+@ty6l~!^fG`zA-4L~F zRIuHO#U#_Ox0?zPXENuu>R;raO~pPmGI-Eqp%rph6N!vb}Q zBt?k~Z4;lVU>VJ#NJZbQp_E9Et0ha2RV@FZWH-Q1EE2WwSZy=dP>l4)f>zOeYDat% z)cdQ3-r}mkfBU^%sHK@{49=LH#gTMKP?xc$F#&Q!&nk%vT2F-aituj9{?dIofYFJS708r+Mo-y+*+E7rX}CH{ z3Ah=04`zcay0)gi3)FF72GLezTCg>84{(L(x?Hcw4L(nY2iA|>-SAE76;HLrp6=Rz z7@u>#S@uAhViEjWiWNk8bONk|Wd`UvHO*b_Gs(2K?s^{zOvs$mszYV0^eDY1vvWJO ziZdsfWp%gyWc-}&`iqJad6FhxNREn7JEtINH8oV!7HlK99R-Rad@oQy7l5oad!(?2 zvgZ&g>LB|bnvajB#OIcbgRUkiay!be2s{DPry2~+FMIU)F!ieSLk`}S84(}qduZn1 zv+21uon(?srX{^`eLclfFQ=G7v7|qo9q`FD2RIKM8+7p_>3iQ7iA$zUodR9Fe{>z-2@AZ=~18~cXZwCIyXcfKbR0Ls}fKZ@r zMYoKl3!&*vV0QLT#}EXlZGgYlBwyrTUL8K`PIaF?rmHDQDE(qGdT4(WTMQxd;D1sTC=CTI#&%0=F z!}YT;3pdP7;D{T_WHpU<%nc<1@&ujmLeZN}uNrM&0~nhpy-Dbcp|rsQSGif_C}C1K z3`tU&@$}m*Xp@HzQ_{wlSuALfWpgQmt~gpW>+(oZ?bD-4ZtOYxiv3Y>6Q#?Vp;UZd<2X?N?}2zo}vo=TP_E!kPN3lH>kp3;m7lZW;7 zkQ>lb_Kli}D=n&A=6{pi=<|i-#$9qiw3mYyl-pw20SP3Lnvt|r-_aKua-YH&X@GEu zTj2kpSvh|bVcswbEm(U@tFDx@&DE!KJJ&njhdy1L1^QUKqM_hW;}5J4Z{xgL-}hQ- z<>C5@)&xr*$u8QS_AOAH9a@N`Dj8XO)N85Y9NF-M}~&nqR}=rwctbzkXuSL zyo!b6!6J}2Q4}e^fSOxR$7zy=Mm^xUm1Vcm=CgM61>egJJa}GTn7_n`qubS_GWE6; zOQ{fLnf8!gD}n(qNm`pWUi|Wh}N@eLAb7x|6XX5DF8Uqg9+?n92$*$9F?o4d%OlO>-*j_lVsmF=b7x|6XJT__;^_N5N7W%VcP5U1bK{6Glex37xihi3GqH5#Wpig@ zb7x|6XJT__;y719Hg_gAcP2J>CYFEq%;wI-$}NpW$LQKi8k;*4n>!OrmjyR>Ciwko zn>!Q7y|uBqGqLk~)^e8%mRd)0zc+SsXJX~o8*c7Q9OuTy=FY^4UEjU7xihhQ9b|K7 zVsmF=b7$h3&7FzIUDMdynaEvT*xZ>Ierx^a&cv~Lw>Nht9)DkBb7x|yQ+sn~VsmF= Zb7x|6XX3JJ{-5ql%)a{2iMK!He*k8ITCxBD diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 0f6bfd91bb5bdbfd72b1c5f6164c2e45a5e0e70a..8ca846e31df95e54458d11cf8a084a9018db4d2f 100644 GIT binary patch delta 62 zcmZ23wOndLBBNn;Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ=1GiGxdC>36C3~l delta 62 zcmZ23wOndLBBP;+u}PA#MS+RFxp}Hll7(feVVb46k%gt9p=qLFilvc}p`m4RqPdZ= Qp(RkQVQSLmNsLpu0UT`*?EnA( diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 47585b2ead928180859157e272f86b5b55b26e8a..7e8dffc0634290aede459b9470f6321266df9c09 100644 GIT binary patch delta 223 zcmbQWjeXWO_6_?u4YMmNsfsfl57N|I5UWm;mAsfnqXk)@GQ j@^2@f9-w=GR0- delta 223 zcmbQWjeXWO_6_?u4NZ(ql8h}1O!UpoQ;m`=EK?2BEX|E9EDa4!6Ae==jf@NpEt3U^Nbt>Rc$x8&iINM0I!=sy#N3J diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 961e80819f6cbb104f38a7edee8ceb78f7c46726..7ae6132118f41b6d4952c1c4d7e2dde5c624e7ad 100644 GIT binary patch delta 666 zcmex8i}Uv^&J8;_4YMmNsx#9%<($KYSt1qOPN$KHYu?qvGU0=?X$XPI5+KUV3Uwd_iU& zST3-XQF8LhbeYLdG9)JlrwdQslrBBlI9-M*rgr*8H71$KRvA%LF-dHCK_w&Sqk++k36O-{&`QBO}TDap)Bk1sArEJ}?}PAp0RxwtH|I59rI zC_Xo_xFod*C_1?yO9B{B5|cM3OH9_zHlv~O&3-xC{c;$+FDe)ro1~eWnVBW0CR>;o z7#dobrKVUWCnct)8d#J-_@nJG$>gHq%t|49~|zHk+z+~hOKJd?Xq6egRb z$W2bn76I}#CZ9-gBTa)x+PTS0nX;2IWG0_W7Z)kZEKZDx&o7FJ&rK{YNi9lFEJ~SN zm@YioFkN->({$;{3)3YgKYSrR`9g*QQ%vpji)u_VldUqMC^SQCdO;;4=j7d)&65{q zNlzBemK4%aP)||%N$sj+9~%sFR{V;dW6zz~DYEnGtEb1ebNnyVo( z7{~>ZKnMY46e$5m>O&()FjAzgRMC(=my|peHLV~@(}6DK=+Ah z`dBlafN+jY>e)vo4mZ~y^vywo{UW>EK>}5mnf!( zLRp!fp7pOxFO-$(85Q(G*+`k9SwS(BmFe*cdZDaL&#Iso%9P$nzBEZ#n`N%#gk>g4 zSUBaHp|D)DQeH?&Vz#KxAYV_7On;@+kV?793CrQjvm*u`MqRn$JK5(<7QcBIwW(T+ z^`k{ys7DPy??)@uuzLWlSHsr^(1U82{wZ3ZhP^ggu7;Bu(2yD)YXF6< z4r*1>vBL17IUqe<7+#md+QMofI#!^&#YiKHi>ofGD}FLIlzWma77~_MU+bY63Ut^* ztJJW)30Tea0snFnYA;wJ;zT!^A{sH8rDlEV=L0E5F`B2O`vNfVR)Ct7^s4~PRl{=x za9{oz;P%mC52=W)$x_y&hus^|jPc;R*tSfv2p=5Xh?2_Y*hbVCov29080G!f>c*Ob0&+=8Yn z+qVofx5%vvPfNF?PCj7AO<=L@=fI+l1B(HU<`!IL;+8L6?zJSyx~=F(3gjk7^NK*o z>MV$bsCrzN2E2#T;M8auV)3suuo!Dbtp!sru923m-7nF8IS5(!-5}VwYg=(b^jt!u zem)_uZiA-U&;lf0ZUF<=TY$us?Px*4Q$t+XBt0E%MYEL`ms?@hq_*Oq7`dPfwxRo! z>X|l3((q1T@Xk(PaOW4V7y5K%g7<0JS4~fLiN(G`}#F=UQlVKHv}R1>Yui zLfzin3n4kv2_d=F2_eB<#WCgL0?CGdzVz+B$B?dQztaUY&OZhbvKOFsrO+}AFgF$e z_~n9h|3U!2vJk+(x2PE0%7I_nC&9<>2k_Sy!MgqYe$+Jq77K#2L6{;256B7s-j7m> z%*+wgS)wJIM`;}$fq11BqfRy9_6S<0h8Gv37B&28G3qEWBSVu1I{@rPmjJsPOA4MJ zgm~))XEsiTlw^H;PU)Z;PU6C zz~$l-kftrm0A|UP(EG7okY0Zhz)$xA__bctp@Q=3r(icc*oV56^!I&$cK$GUKCm37 zwH!eUi(;weR*Z=&pv&Jq0>H;t0PvL+VBy@;0Q{Y20Qk~M03Lk?fcsX#v^md~0J9wM z?NtEWuo{35tOnq>SA&IDjsoyMj{@+82LbrRF^F&b8kly^b0xrPjl8)A-K%1D&sqQ; zTnoS#)`Ep&$I)`py$=1j>;PSK)P@U3^>UHBc$FUyD;$k0onk8;VoT1j>InPw6KwTz zkw4v6FBht@tCtI1R4*6js+S8mU{o&`*;g>4dby}xE~=M{uobG8i`@J1Z|icAk(Y~0 zHRD}_dVx=DU95fqbrt>m#S7^21bB+ug#AWMop|XaT3I5U^tYO%m~sk@6iq#I3em#P z%pXsoql@m~%{p&pmN@t^dZLDqOzJwC6{}-AYHKN`Y!2pg2u%^Cm6}ayqag;~M;&74 zHI)2+XMa*Wag~_EFymX804dd1}hVj$s8RcI6*)sq0WeJ<2ijZQJIS+^J5+4@GKaUX$-I zo=Y(s`|=Z-V`GCdn|O}no0_z1dyIR!OLNAev@$iP;@1|W7_od}NIH68F^lRBGfl(h z)Zn&51EOVO@5Q&Gq(g|K1vbXmv>3yN9Wc+=DRBZr>xG zamJWIh;8`+bv1+9#4@=?gf#g5%)tBctFcIMae8)QX(|F+zN&3bG>QA~P1L3gYB?Im zTEKC@%)sQfMyPMe6_6X2Z&}J4Peu=8-Ej!UlBCD|Adpcc*z>bd5M*Iua^})U@w2fM z(QU`!GD@0FnWj^27>4h-rbR8EV&-JtZAx5>MFNXgn-e${f$L>G!J?5SYLgn#xaql! z$UHOK#T;9vYq(xOC}9rEOu7+Iqa&%yVRP3=_+tI59ObSxBFexP%kqGpGL%ehLX0*iNGgIv=+!!`YmL}= zWM|Wk4fXr>HKgjfAwT{a@*}V;W+u}lee^Mw<)=HI<$HcERgpa*Wc(+K^Iycjn`y60 z?2C;=C9GazclWOC?^)K_^+11AwU%l}#E{l+Xb|-u#P3c;IhRfJ55>s5L_FmfniVix z_e`cS2L}$W$!%tKLW|(32^j>BO}?$CpmY#-x^~dz$NL%(aZb@~~Q6 znCaS>>y|;V$xOl>qEXj3F_pomS|F}8C8ienmNH3zxnszxXF9VuxAh>vo+f(&TTbBE zYKe(L&n+<#;8wQs)?rE-xmnzd8V*d;k?!dplSRb?L*~zQWU-Mz$Kct2-+6Lt$Qxh8 z?^L}Qku|flyCTY#mTE^utTAw-4P?U;_8lA-4Tnn c`|6HZ-4XMYV4UgbIzG@z+k|DAqJaUxP;i}GN%M6YpwZ;05+Xdu zrUns&8AQ4*e#YD0vOTkNnHl|aG|XNXH>z3whA1};YO82 ztah(M&B-u$b#@)ls5)g8&UtJo@Vp~MPYXsf`563cKpH=(ft80szqW(GoA16+0PQNk&{l!tRdAuL0w=2ALR*9zEG$hDuFZ;2^2Q36BwRR^$k14c ztX3CNR+!CEXOMeKqsw2dG^AQ>^2SQ~%Ic`TCs9X!@tx>#$Eu${iQ1yInCL|dqv4WX zv^W}`?nPbE@OCd+5e+;0(7I^&Rv&si8fLzW=10SB2Q7<+W17%FG(6e_fGsYX8Ci#m z!zZSL^>lG~T@UMvyM=0BjviEl%_ym^dZ?lF%kV({OJk{#umXIIk0wQ=dwsMr8qRJ3 zRg)#~Uv5FOi(ZI2-igMkW{jprvp$uDM5-Z-=0w(g0XTR!K&_GWivZ1vhUW`riH&h`MQj zs3r!Y`WcAo+lUqvq;7<1w>H8uA)8>@H4{?s?j}e{} zqt6W);CmtiK@DXf7k|%yis4o?v*_vvtF@ zt^7 zk@oHY1@G+u1z+0k?i+6K*sr}Aw$l5G&=&!*b6i_=L7lW zqILfQAiuHz$iKd@lw9P=FYVLhBliRO+Y4deesw?U7zLXJ!MP-iQ~d|@gn#Zw=}64v zK{T%nrJE;09T|jtr5B-j(S*B$XlXROxCqUNhF>f~?PYFsY6@frK;6({PtA?;w#I+!?_oM_$w~~@ud|&JoFL}_pF3z(_bzlW_jYf zD}lIa6%Zd-1;oEt1s>iw0>pni0>l>{2jb&LA-}U%!?cH9DI<>d$Xlz?!%@y2S_8!W zYk>H|8t`!R7+R(}*P?G%T%b#?+VJ40JudPOugdFTm8)^JTWqyUY}p+)y29RjgRMO- z3b*^(<05M8+T((%+T-F}?QsDYjN0QO_a_)tdtB5W7q!Pl*b24BMgH&O|F6eIRzEH- z)r}Ok^d0O{p;o1(QD}PDENxol=G9i26gHLT2W>l^XIxoHSQ!DESY-dB%;M% zv%fuwjx4+nw;EO}=IY?b=(#$~v+3(-YN7%2?e+B(Q#Kv*>4c_91WQjNgsHv{P`lc3 z4K@C+vp*@FxKd605V0J0_lF4o2i&ddH-AD8sNqc`?o$W;h}yoqvqPmW3TdcIsLyVo zN%6Vhs_$bo@yof$?)?O98lNVDOIvbcI5uO#w1wqaf;*;1NDu_Jr}|DLpNU0f-_n1> zcqJWh5d^{&(ltFsO~Oq=T_yu+FvsPNlXn(}%GRAsUYnox-N4iTgk$<&Z~@c8TqkfW zpID|7*bc=koA_OF3rgEkIHq(R&lQ46?7F@b*bA^vG`B&0rD5O5-c6)lPNZ>Q8m`AV z!PsKbaa`&IzGV^Lv~AC#ULM=`LGo%MmR_BnmRiyn!>(?(rm%YS;Z%Lvqqd7ZLpVbE zI@8iIY+(vPxuxZp%#Ok_nGtZ`cO1*{n9T!WN}K7RgcrEFBBpx3B{fbR_)Bthwq;c6 zhlxhlF&x1RY5If-q5WfQ6X|&#@oblftj1qV#Imb5wa|1d`JG%i%`{ct=$gU}Fr!$D zW!yHoi8*rvlRKI|kl8UelNpqj9yh5)r6hL1^e16sE-^Q##eLgjygZsyiAKY=eCgUg zqnt8bMd5i;8hU|Z-w1Sp$b!^Zb?KudQkQUQWcKu5lW*u0{Ch2Gs5M36rRdn!V%u&O zWI7x!3RR2kB3*^C>ij>FU(L>LNbOGy z##C*Jrta)s)7!OlUdLm-am%(G9g{*iWqngxO}&wPARQN+(kc0-8l00#raAR7cLFR$ z;4y|BZkT~fxumwHV`dPoUI!Cl*{-D#l6lP6>sSA8otc*7V7&#DHKSp2rZ*U2SuSSM z^N*)hFB&XeVMsp+IL40NC@_uIVcZdu3$56X`x1jOg~Jss7PEBA(Q#?h4XLKw zNIsa33ohS}zxPwNy4;vr8+$}W$%r|l%9=86t0`^DxC6R&Le@^m+6h@ZA&b{leZh;_ aXlo~A?treHkmVPP|L%m$>J#$ngnt1sA;&`i diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 13c97dd148d816aaba4fbeecb38644312ba1fb40..70ed4083e26899f90df86c61f02048daea12bef8 100644 GIT binary patch delta 236 zcmdnlFS4^=WWyd#!|ck6s;nyGVtqpsvlL^4M8m{nQv<`aq|{W?G}BZ=bMsUKWAmgm zLkkN7bEA|*6XWK$ob7Kp8G)Dyh?%#)i>Gp3wSSB(NR<`^%iwPrPWxxNh>}Mye>=p~_eI@|su1k6V delta 236 zcmajWu?@m75I|AI7$Nr=fDPa-4!#@5=QuSxP*6rpk(Mrsgv1^+)D)&fNTI+RxcJ@s z^H9%2eZ3j5jg^LucIR9~A&$_qLt=o|L&t~!9K6E@I9rHvO6HtQl~cLZl#G78x8yt= oFytqQ-6NA13O#oSv5kT-eZKml%4}S;t;%fq>HDV49(w&$e>t#8`v3p{ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 66f39289fe7510de894fa49729f96f4f71ef5ce2..f209f75abe34c372b6bfef41fee93be430ce5b70 100644 GIT binary patch delta 3921 zcmeHJ&x=-7819}iQW^SzIt9^ucP3Y5&iV14UjznG3n8=GMX8+go^zmDWH?qzB4rCp ziNuDR3s=ds2%`|Yv`GCECR@}ZNC?7>L`dK!>HWTMoMtxP-N$$D>R#S+-}9X3eV*rj zzcAS@On$StLA-J3-NUaRRtM$;n51|R0W}vT=B$g(!rIK0jYT-etxN&b>09^BT)4I2 z?K5>KB5QO45iNws1D1p$8W2WVT7CMHFFxojy1>uXB~_(ibIga76QsW7cxo>5+Lx9 zdGq2?wyCW@WUs8Nv(w4z1RS7%3f>pPa|u=hprC75d;4>CqN*)QfhjojE(3ZDTyPW$ zjpo@&u7EvDi!A5l2#SYb69lpd=9xrL!)X z6q-}l?m(-pDB!I!As7Q_MTo^Jg+yu+mUGz>tCyAE@W?-dkidJ!vToGLj3B ztCQOY?IOKO+|h@CuW}jEm?1w6I?yqYgNK-9@Y->slBPGJ9Z0c9CIw(si6v*< zX^}YVb;MJ@^o|I-NLwqbu5n#k-En$lMTDK$XlA!I*S}*s#sN7F$Zqia+8H90dYjt+c|h8B{XcB)#MH^V56+h-+-D0$&|BriPh{_4bDE z+Nv;^prvuzMCS-~M$EFngCzZGW&O^|?*G%289$U2O+LMjEoWH7EyV%wc< zvD7{MuJ~cl^wicGB69 zl+n&6Og@nDGDYW;gJKOYOdCHLLc6*n?(M$+P@EeKlO*y~JwKF9)HVjNw!~`riuW}g z+SNbBmxKN?u6!Y2xPN}%a$9e-U;QYa7#g%H$Q&_-WKvQ5l}E~e zZ2EGJJCW`7FXBlH5{wOgMXT4>kGy?i`P8Yy&2r)5Y(VCWCzF_OfSMO)(SpWe7WZ}gP6#gqJ0R&QbRcAu1h&ip*!RmNn|zV$DJ_@TmluPMiySp@EMcg!S0if#MYqc z%|3x|U*0i%&oq^VFa>Rq)tINQLxIA;XUWfF{?CMPCYl~X%vv$WjNwOul^pL`Iw6ve zW!gy-luwyhB{l0S8vemEJu334WQppGguR)^T@3U7IorFp1k5-%DGF8$?BSp+Y%(S@ zTHJW}Hbl!;Hd3h!6*PMn)n`334)!bxZe>*uQvb`?p3#jtxN(y?*xT2HgF82cZy)W% z9dn1A`1#x+=MFh{$hkw7=?mW6A(;%lPO__wYbryyE{F5mHs7FuCs6(#f0t_7XNQ{@){Zf~vMBvN6iB000YSP4EB! diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 366eca231f885d9eef29323efa93d079ea3adcf4..22fde0304feff3335df79c2f582027c1ba0837d0 100644 GIT binary patch delta 72 zcmbPwoMY;7jtvJm4YMmNse&UMe8hd_PtjeylbuFE^6QH?B`! znq*@g1cYbU5aT!|(T2by4@Am#z>MXTFfXbL&*rjCEA5N(iv^ENdji37sX%+Hm7**;q=5)VsH%PLLUVPMT-#Jp ze(OR@Wu+V4&)!*n>PGKdC=f=RcR^{8ELtAC;#37K4abqx)+W%E`oe%Bk_eSB9eCiH z*r+9=+G&>b(=xT~ubsb!=1~!q5L%_7Mk7EbQ?Sv|P@GOOY^mMoEq{)o=346*dWUid zWzz&Y+mazDZ+V2vR|9BY!6fz|crXkStI-;ZgrK-r)MGB}x}>Z1Eg%&J%r)Z#6gA3m zWtI1aOJEH6CgsH`RA2VrL`}7)x6z}d%>nf!8s`*1NIsb8unti=p(KVaAJVCpD9ceE zn?WRtF*|@d$`>=}a6uLE8iN;1FtCPN#|aNy1gfwl%B<^3qe|OIqYx5I+C@i<;etmc zDZ>P75q1!!u}XVJMX)S@#X<$n(!>-?sU*pq4LfR^!g3(%!f>8rL)n`+d?< zJDl6!zq@nBRfby2?-x*Wk<(QsKaP}pN73C}AhsOHBw{y{yP5p`IP7NfkH_r)Gbw95 Q575Uw*?(#cN_4X67gqC#7ytkO delta 2289 zcmeHIOGs5g7-r;RxUofIo4~^@TEtc7@z1LSDGU@eBZ4vzn|ZL@uBgd4=pxTbFkT>{M?6D z%W6Nmo4vDq-;dsO7@!76jEPkM#%t?!6ov^PI%vron=@##QYZl+Qg+xH11T$Qwb#O7 z>Md}tWSL+G8W*pjB~&=;3~?ZWWIWNQ+C;7;(JC;OZV}(H<<}|H-l$EX*Cp z^9&Zwq23}G5m<~-8Bk!sYcGU#Try=bBav;(xl-wni9hBG{vr7R=E2J8=p zmuFF>9KMcP8;@_I2dFR>gHB0fzyfSw3MloQ0m0m*r4BnDq*KpPmPdJP9+51KB&oZ6 zHjfS$h6*K2Bs9nr6AQ*juBcLJ0l8t)ZR?t>bkLxq;f!m619&2gVGv1*EIk=u<;gRs zt^89LVLCw2#E|4!P}U@YlwwHE5DHTNsw>B1TNlpKxG{rp`SKR(?BsmtRQJ?qb#AU! zRC#pVbCGgLMFPQ$VpatQ(zqBX3p*mSjoRV+Vj0~*3%Sgy>9qrAN5+PR`%Vvz4U~wDTL1t6 diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 193e616bd954a57edb50a998e913ee3a0d57ae6f..c5c1afdce9daa660cb100419ccc01b68fb1410a2 100644 GIT binary patch delta 64 zcmZ3qfN{|R#tl}ChS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y>)sYXc_mZ^qmmgYtlmWGC=iH0ebMn;B)mdT0c TM#hGgK(&UcNt?47xBCGAR9F%S diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 99aff31712b0451de26b507f7519c14f69da1baf..8a71cfb94c3d9ad61c376af6bcc7119bb680ff96 100644 GIT binary patch delta 224 zcmX@|fbGZwwhdc24YMmNsJPIkh|?yO^b{*;;m|-9IaqyO3@G{;lYRyZJ(4p+HA4p%jEjW!Roq^%qqkwpmn^P9}UFn erFfB$i|^MrI4|n#bq9tzYaZ}j*4gg~$L0^xl|8Zm diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index f6c18be4abba017a2df9f86134f26f409abe3d24..32e42258c0d94e99c18db4de8370433322d20c25 100644 GIT binary patch delta 7578 zcmeHL&97Zm70=Ztv;v~=`X1VM&OJO@F`@SDkF`IRCe|1oG=YL0)EGkA{Tb0j9zn&D zR1^kAW+lcm#fc_rB9nTEiKLBlg$e1T183HOkwmBJ@80{U?^(F#AGo<$lbe0_+Uw)D ze!q2Z-ne-4#>Lm)I4r+)@%t})^9B9fjwGA42r?uiWR0bmYKnBO2<>8(-V3L4ApP>q z!#}=xcmn$n?8C4%*hgS@!0v<{g3Zo+6m}QvZrDArkHPMReH``)*nP13Ve7CXunpKI z>;c#(VV{B>9c~`p`ofnw&7syLJYJ2s)7Q_{wJODgN?tczNf`GqfypPJqHyA#ddA8cyUu~c2z z6IENI^3Dhqy$jac;V)O3-L*EUb8XW`%wGc zNoPaI(t00sWU2@=OJAbG`-&{AxxcpC+&^^BH`gbvSo(mzIo&?qjrh0y+vghJ2`{W9 zEmMesg7dMc7;FrYibYH00bako)=905amZJQ9*?V>$yJ>^4y9xz_m_XtY!0t~t^MVs z%M^)C3Y9C7$+KjqEUWVxw>z5$oc+UO)N_CJ8;uxuj3{>cSMF&)-=Db9JTlE0=|e4m zHq^M(h@97`tr00$CFWTlx--p_Yg1y@=&QmZY0_Q=>ukxE0WReNC;s+vUrlP5qy^uzn+eJtte&>bR=}$e~d`3EJPcl9Iot@{N+P-w@M7N!7 zu_6^hXbG#M zyr6GSw`aPM2h8itt@BQJfGGoiS%yGh2rj5`#LMMyZLNJ~tqYVfw}5C-9I1fWfRJji ziDYqEsQvIW+E5m(F>NeS_UuGZLg4qQ*yMPxSLJfYwCL4Q$M3=K!c;Q`NR-0X*O?|}N)WYhB0vc4oC+#&Vm{9gY zJ<7a3{KK}tnt-X6`i_fWMtuJdcpLp+H`<50s;zVt(~(gYk&L$*xz5>f0Za0&**Hdh zn0M>9@OEkP;#h?aLTIcn51t-LS_I(we5KiJm&ev$JKr4d-@MY?(H5uBj=E;nlpRGb z2?PaNW=^RLS9bxnwy*=M2?o^zT_O8ul{6?>^`6S`pT2o*GPSy>8E>#6OFzVuuq>H*(Q9)qn3|MLG1+jgjw}R@HrYzVj^>v_4~XK;NjKtl0k2WF zZ=GwzBimAlp5f|;X9dPZTapEZ8()hda2#Y$icyBh zGN)+w1=D3fDlk;4hDvc-vO=;93yEMts%mdojQO48Yf2-2XVJ`f?auy-+=c#a16tN* z=qv}GV?WQpEp7Syq^Zo+WEX0o!Y1OU)h7vw#6U+62)~EBG5`Jabo*Gl+E z?UaYNj1ROV^riG5pUA-!^lAaK&4lIDWiYLR#8oK}p=Tp7r$osKGbXAY{I@mF)XYu#-- UOrI>=0=>>p;Whs7^6t*!-;eLUacZc- z2jN&a!+}f=z6w>?F_X=?cz5{0rq|;7<=vlOKwM*7G+szg%80155-JNXrA<`I^sSeg zPWaSAi&Nw7qdyt4C|)|r-r7tdtAICFZ9X3b&wxTe?i#Xp?u{`qJxMImDHIXL2i zJZ%uw8&Y_1k&Cx)cF%9kO*Bb!p{hb4jwXg$l=B>d&b9gxUZ=YDh zs$?!%u_mKKP)R8~6jekutr~A!?H*hV-|GH0o1gpu9_JVPCz=nCzwE@zPj%aaG*;)7 zwAVtD(m9ljXJ{5aO+%s=i2T*9K~zFY(Fe{%ifjx|<__T~izW!6=xo5ji z3>+&LtqO)uQ_&>|Yf?};xLj=YX_b?YqGr;uaK)^JGUe@6@e0i_vbZBT4U|>1nGL6k zwm88$Qp}3jYn5^k3*`T&Su^r7pJw30d@elKeN1|x&Xa!b>-%4OX7AdybHkn|DoIL_ zUGf;@%HCKY*aUB+lESZYYrwZoxt$(g|7&;e;?^Vmwb{2DO_O_weesK5zVgHuKKJ>@ zue9d%xOb~~d(WI3|MjD8XJ{oiqA(vhdsqjVh=eJjilE6=8(5g2tf{pmZ|l0pfD$L~ zigAFei8(|SwBYEm0y8_mnEkZ-*=&eG+Y&uy+g8fSda{M3Em~M7l(e_;cM~()h;ypyX<5atjBj4- zcNVYwx%=&G$R=_Q8S|`>inGxH11V$4Q`Y#goYGd*@y%a!ayT()E^eCZ&XOJkQ-qBqB3MD>^-KbN$$)1HB}%FU=e(6EV?A3%NAULR*}RfYTy?0@5hW0d zOT~v8qX?1LaGN&*k1t$7BDNKFjkcZf?>qftb8EbgB3c1Dq>^K>Dg{AF`c%P@%k?!p z**(40^9082_ANKg))N$BtXf9j0XWoutZAAPb8(PD`C}H z0{|w}OG5}ykYEQuNE^-26CsPbc;U6~m04Fp0|7UA(C?h1?EL8U^bQ@=d;(T;EDY13R#8gEl3C>pVBu)U3Q?80>I#--M7!6X=2HQissV~t> zRs}^f1^vl-oz%(E<&>11x8kk=clY?2(0@`%qv^b&BP3T1gTRbPScE8TjS2ITqEe|y zgIQURT}v$9Nph{$9S0Od#7P6o$Guw>T*2>5e{yc)jVs;R@yQ=|cXi&!gyIVmA-RkS z)dinQwJ1#G#alPKt6Kxs6E?fV6k-^2hR3ACt*=;mtgBk_8L)Wc~OOiv|JA4T;RY9NRy!+C>Gj_De{9~VFE{7i=Db@SmYegg+njgrJY6^E-R8X8oOl22FNpu+dAGoM I_u4)G0Roq_L;wH) diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 934ff146770afa8d6cc22703f6c3dbd475541b29..94082e37e2548a123872e71c75bda4c933c8c2af 100644 GIT binary patch delta 1686 zcmZ4fgzNMZE|vz?sf-(0j&K@gS5{PIRT&rS8=9D<7#k!SCMKI27^WqqrkbXirW%@? zry3ZWC#4x$SQwZar6igdZ~n>o+f?3;m4U&gpeWUjOIO#(z{o_`z(Uv1NWsw3%D}|R z*lhBFfKXvQJv{|OGfO=~Qv*FC6CiD7K6!$-D5J$>$3PQ4G>P*L$Mj6~EDU^|^otdM zATv(^sH>QZ3)6IS1r3nO$#p^h*&+6sPv-Mjq-&yQWNfHsXl$luXk@7av|7*5!blIu zH8L>NQ7{G?Z)gB?1W*d-vdIViLU>VhOg``6J-N-Z322TXiYv^qy23(1!w9Hy@<$i< z(ai!sZ8u6&fDuGwSWZy)rx@alYfQtP!{{tDh7%szxL-PF&TVxF;|?D w!5%v$Loi}AT&$1^1@q0v5|rk1PF=*z$N&P9U;I~|yyKr@t107FQ>ITF0Yk8%4gdfE delta 1630 zcmX^8glqW|E|vz?sSF!gj&K^97@H&+TNIe+o13Q^C0SUe8m3vA8(CNy8k!~=rdS#o z85&w9Cz=}>8(IR@8m1;~{>k~C>s`Ec4fKqCkzHVc)d7|Y8b&~slO4Sr zI5OB{r(_65j7;yZX6k31e!!JcZ}Q#%KBUNxM~z?{@jgB99EEZ2I{993GO_WV84`yQ z@6!Uqfbrf$Vw~Ry^`9L3g?%J?e4V5UD+7bBE|wfgYKA{dVZ>7*vs+J|7s^Xw=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 689c75a70..2befef7e7 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 24fe22f28..6b3135522 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index d66f30c25..98cda12d7 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106, 108], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": [56, 91], "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 104, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103, 108], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103, 108], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "beneficiary_not_allow": [87, 94], "visa_or_mastercard": [87, 94], "getting_spare_card": [87, 94], "supported_cards_and_curr": [87, 94], "change_pin": [87, 94], "card_payment_fee_charg": [87, 94], "lost_or_stolen_phon": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103, 108], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "112": [91, 96, 98], "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "743": 91, "493": 91, "060": 91, "330": [91, 98, 103], "505": 91, "947": 91, "476": [91, 98], "340": [91, 98], "366": [91, 98], "328": [91, 103], "310": 91, "925": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99, 108], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103, 108], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98, 108], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "008": 95, "114": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103, 108], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106, 108], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "363": 98, "365": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103, 108], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": [103, 108], "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "43962237": 104, "05it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "1109": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "245": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "3mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106, 108], "681458": 10, "37": [10, 89, 95, 96, 98, 108], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103, 104, 108], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "visa_or_mastercard": [87, 94], "change_pin": [87, 94], "lost_or_stolen_phon": [87, 94], "card_payment_fee_charg": [87, 94], "getting_spare_card": [87, 94], "beneficiary_not_allow": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "supported_cards_and_curr": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90, 108], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "009": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "734": 91, "493": 91, "060": 91, "225": [91, 102], "330": [91, 98, 103], "505": 91, "711": 91, "476": [91, 98], "340": [91, 98], "971": [91, 94], "328": [91, 103], "310": 91, "749": [91, 98], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103, 108], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "153": [95, 98, 103], "110": [95, 103], "111": [95, 101, 106], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103, 108], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103, 108], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": [103, 108], "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "40165594": 104, "79it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "1108": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "80mb": 108, "inflat": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "1mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 813d71348..035a453c2 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:00.463356Z", - "iopub.status.busy": "2024-08-12T10:31:00.462851Z", - "iopub.status.idle": "2024-08-12T10:31:02.047524Z", - "shell.execute_reply": "2024-08-12T10:31:02.046835Z" + "iopub.execute_input": "2024-08-12T18:53:41.701646Z", + "iopub.status.busy": "2024-08-12T18:53:41.701187Z", + "iopub.status.idle": "2024-08-12T18:53:43.282413Z", + "shell.execute_reply": "2024-08-12T18:53:43.281715Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.050367Z", - "iopub.status.busy": "2024-08-12T10:31:02.049990Z", - "iopub.status.idle": "2024-08-12T10:31:02.069900Z", - "shell.execute_reply": "2024-08-12T10:31:02.069290Z" + "iopub.execute_input": "2024-08-12T18:53:43.285416Z", + "iopub.status.busy": "2024-08-12T18:53:43.285068Z", + "iopub.status.idle": "2024-08-12T18:53:43.306423Z", + "shell.execute_reply": "2024-08-12T18:53:43.305786Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.072544Z", - "iopub.status.busy": "2024-08-12T10:31:02.072099Z", - "iopub.status.idle": "2024-08-12T10:31:02.302446Z", - "shell.execute_reply": "2024-08-12T10:31:02.301780Z" + "iopub.execute_input": "2024-08-12T18:53:43.309404Z", + "iopub.status.busy": "2024-08-12T18:53:43.308901Z", + "iopub.status.idle": "2024-08-12T18:53:43.590676Z", + "shell.execute_reply": "2024-08-12T18:53:43.590074Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.334639Z", - "iopub.status.busy": "2024-08-12T10:31:02.334107Z", - "iopub.status.idle": "2024-08-12T10:31:02.338211Z", - "shell.execute_reply": "2024-08-12T10:31:02.337651Z" + "iopub.execute_input": "2024-08-12T18:53:43.622837Z", + "iopub.status.busy": "2024-08-12T18:53:43.622392Z", + "iopub.status.idle": "2024-08-12T18:53:43.626532Z", + "shell.execute_reply": "2024-08-12T18:53:43.626050Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.340501Z", - "iopub.status.busy": "2024-08-12T10:31:02.340140Z", - "iopub.status.idle": "2024-08-12T10:31:02.348891Z", - "shell.execute_reply": "2024-08-12T10:31:02.348288Z" + "iopub.execute_input": "2024-08-12T18:53:43.628660Z", + "iopub.status.busy": "2024-08-12T18:53:43.628290Z", + "iopub.status.idle": "2024-08-12T18:53:43.636581Z", + "shell.execute_reply": "2024-08-12T18:53:43.636072Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.351479Z", - "iopub.status.busy": "2024-08-12T10:31:02.351121Z", - "iopub.status.idle": "2024-08-12T10:31:02.353720Z", - "shell.execute_reply": "2024-08-12T10:31:02.353249Z" + "iopub.execute_input": "2024-08-12T18:53:43.638906Z", + "iopub.status.busy": "2024-08-12T18:53:43.638534Z", + "iopub.status.idle": "2024-08-12T18:53:43.641123Z", + "shell.execute_reply": "2024-08-12T18:53:43.640620Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.355946Z", - "iopub.status.busy": "2024-08-12T10:31:02.355599Z", - "iopub.status.idle": "2024-08-12T10:31:02.883586Z", - "shell.execute_reply": "2024-08-12T10:31:02.883087Z" + "iopub.execute_input": "2024-08-12T18:53:43.643076Z", + "iopub.status.busy": "2024-08-12T18:53:43.642762Z", + "iopub.status.idle": "2024-08-12T18:53:44.178834Z", + "shell.execute_reply": "2024-08-12T18:53:44.178253Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:02.886048Z", - "iopub.status.busy": "2024-08-12T10:31:02.885693Z", - "iopub.status.idle": "2024-08-12T10:31:05.027547Z", - "shell.execute_reply": "2024-08-12T10:31:05.026915Z" + "iopub.execute_input": "2024-08-12T18:53:44.181632Z", + "iopub.status.busy": "2024-08-12T18:53:44.181238Z", + "iopub.status.idle": "2024-08-12T18:53:46.388740Z", + "shell.execute_reply": "2024-08-12T18:53:46.388108Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.030654Z", - "iopub.status.busy": "2024-08-12T10:31:05.029701Z", - "iopub.status.idle": "2024-08-12T10:31:05.040437Z", - "shell.execute_reply": "2024-08-12T10:31:05.039970Z" + "iopub.execute_input": "2024-08-12T18:53:46.391610Z", + "iopub.status.busy": "2024-08-12T18:53:46.390811Z", + "iopub.status.idle": "2024-08-12T18:53:46.401301Z", + "shell.execute_reply": "2024-08-12T18:53:46.400756Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.042737Z", - "iopub.status.busy": "2024-08-12T10:31:05.042378Z", - "iopub.status.idle": "2024-08-12T10:31:05.046796Z", - "shell.execute_reply": "2024-08-12T10:31:05.046322Z" + "iopub.execute_input": "2024-08-12T18:53:46.403503Z", + "iopub.status.busy": "2024-08-12T18:53:46.403168Z", + "iopub.status.idle": "2024-08-12T18:53:46.407486Z", + "shell.execute_reply": "2024-08-12T18:53:46.406942Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.048880Z", - "iopub.status.busy": "2024-08-12T10:31:05.048557Z", - "iopub.status.idle": "2024-08-12T10:31:05.056263Z", - "shell.execute_reply": "2024-08-12T10:31:05.055716Z" + "iopub.execute_input": "2024-08-12T18:53:46.409604Z", + "iopub.status.busy": "2024-08-12T18:53:46.409263Z", + "iopub.status.idle": "2024-08-12T18:53:46.416637Z", + "shell.execute_reply": "2024-08-12T18:53:46.416174Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.058466Z", - "iopub.status.busy": "2024-08-12T10:31:05.058117Z", - "iopub.status.idle": "2024-08-12T10:31:05.172389Z", - "shell.execute_reply": "2024-08-12T10:31:05.171830Z" + "iopub.execute_input": "2024-08-12T18:53:46.418720Z", + "iopub.status.busy": "2024-08-12T18:53:46.418378Z", + "iopub.status.idle": "2024-08-12T18:53:46.535003Z", + "shell.execute_reply": "2024-08-12T18:53:46.534438Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.174639Z", - "iopub.status.busy": "2024-08-12T10:31:05.174253Z", - "iopub.status.idle": "2024-08-12T10:31:05.177235Z", - "shell.execute_reply": "2024-08-12T10:31:05.176793Z" + "iopub.execute_input": "2024-08-12T18:53:46.537339Z", + "iopub.status.busy": "2024-08-12T18:53:46.536944Z", + "iopub.status.idle": "2024-08-12T18:53:46.539790Z", + "shell.execute_reply": "2024-08-12T18:53:46.539324Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:05.179303Z", - "iopub.status.busy": "2024-08-12T10:31:05.178961Z", - "iopub.status.idle": "2024-08-12T10:31:07.400050Z", - "shell.execute_reply": "2024-08-12T10:31:07.399213Z" + "iopub.execute_input": "2024-08-12T18:53:46.541970Z", + "iopub.status.busy": "2024-08-12T18:53:46.541632Z", + "iopub.status.idle": "2024-08-12T18:53:48.807764Z", + "shell.execute_reply": "2024-08-12T18:53:48.807088Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:07.403380Z", - "iopub.status.busy": "2024-08-12T10:31:07.402738Z", - "iopub.status.idle": "2024-08-12T10:31:07.414900Z", - "shell.execute_reply": "2024-08-12T10:31:07.414301Z" + "iopub.execute_input": "2024-08-12T18:53:48.811078Z", + "iopub.status.busy": "2024-08-12T18:53:48.810181Z", + "iopub.status.idle": "2024-08-12T18:53:48.822087Z", + "shell.execute_reply": "2024-08-12T18:53:48.821596Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:07.417422Z", - "iopub.status.busy": "2024-08-12T10:31:07.417172Z", - "iopub.status.idle": "2024-08-12T10:31:07.521745Z", - "shell.execute_reply": "2024-08-12T10:31:07.521237Z" + "iopub.execute_input": "2024-08-12T18:53:48.824275Z", + "iopub.status.busy": "2024-08-12T18:53:48.823917Z", + "iopub.status.idle": "2024-08-12T18:53:49.001638Z", + "shell.execute_reply": "2024-08-12T18:53:49.001079Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 61cf69bbc..5df852fb0 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire'}
+Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1219,7 +1219,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 14bfb32ea..001a213a7 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:11.599918Z", - "iopub.status.busy": "2024-08-12T10:31:11.599739Z", - "iopub.status.idle": "2024-08-12T10:31:14.792390Z", - "shell.execute_reply": "2024-08-12T10:31:14.791829Z" + "iopub.execute_input": "2024-08-12T18:53:52.248151Z", + "iopub.status.busy": "2024-08-12T18:53:52.247987Z", + "iopub.status.idle": "2024-08-12T18:53:55.894101Z", + "shell.execute_reply": "2024-08-12T18:53:55.893473Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:14.794853Z", - "iopub.status.busy": "2024-08-12T10:31:14.794551Z", - "iopub.status.idle": "2024-08-12T10:31:14.797789Z", - "shell.execute_reply": "2024-08-12T10:31:14.797355Z" + "iopub.execute_input": "2024-08-12T18:53:55.896748Z", + "iopub.status.busy": "2024-08-12T18:53:55.896431Z", + "iopub.status.idle": "2024-08-12T18:53:55.900025Z", + "shell.execute_reply": "2024-08-12T18:53:55.899460Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:14.799835Z", - "iopub.status.busy": "2024-08-12T10:31:14.799654Z", - "iopub.status.idle": "2024-08-12T10:31:14.803159Z", - "shell.execute_reply": "2024-08-12T10:31:14.802724Z" + "iopub.execute_input": "2024-08-12T18:53:55.901985Z", + "iopub.status.busy": "2024-08-12T18:53:55.901681Z", + "iopub.status.idle": "2024-08-12T18:53:55.904870Z", + "shell.execute_reply": "2024-08-12T18:53:55.904262Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:14.805171Z", - "iopub.status.busy": "2024-08-12T10:31:14.804782Z", - "iopub.status.idle": "2024-08-12T10:31:15.011942Z", - "shell.execute_reply": "2024-08-12T10:31:15.011370Z" + "iopub.execute_input": "2024-08-12T18:53:55.906806Z", + "iopub.status.busy": "2024-08-12T18:53:55.906507Z", + "iopub.status.idle": "2024-08-12T18:53:56.076228Z", + "shell.execute_reply": "2024-08-12T18:53:56.075627Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.014170Z", - "iopub.status.busy": "2024-08-12T10:31:15.013748Z", - "iopub.status.idle": "2024-08-12T10:31:15.017471Z", - "shell.execute_reply": "2024-08-12T10:31:15.016937Z" + "iopub.execute_input": "2024-08-12T18:53:56.078447Z", + "iopub.status.busy": "2024-08-12T18:53:56.078088Z", + "iopub.status.idle": "2024-08-12T18:53:56.081709Z", + "shell.execute_reply": "2024-08-12T18:53:56.081260Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.019665Z", - "iopub.status.busy": "2024-08-12T10:31:15.019223Z", - "iopub.status.idle": "2024-08-12T10:31:15.022434Z", - "shell.execute_reply": "2024-08-12T10:31:15.021954Z" + "iopub.execute_input": "2024-08-12T18:53:56.083777Z", + "iopub.status.busy": "2024-08-12T18:53:56.083428Z", + "iopub.status.idle": "2024-08-12T18:53:56.086941Z", + "shell.execute_reply": "2024-08-12T18:53:56.086476Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire'}\n" + "Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.024295Z", - "iopub.status.busy": "2024-08-12T10:31:15.024124Z", - "iopub.status.idle": "2024-08-12T10:31:15.027383Z", - "shell.execute_reply": "2024-08-12T10:31:15.026923Z" + "iopub.execute_input": "2024-08-12T18:53:56.088941Z", + "iopub.status.busy": "2024-08-12T18:53:56.088604Z", + "iopub.status.idle": "2024-08-12T18:53:56.091760Z", + "shell.execute_reply": "2024-08-12T18:53:56.091308Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.029211Z", - "iopub.status.busy": "2024-08-12T10:31:15.029037Z", - "iopub.status.idle": "2024-08-12T10:31:15.032408Z", - "shell.execute_reply": "2024-08-12T10:31:15.031823Z" + "iopub.execute_input": "2024-08-12T18:53:56.093930Z", + "iopub.status.busy": "2024-08-12T18:53:56.093483Z", + "iopub.status.idle": "2024-08-12T18:53:56.096951Z", + "shell.execute_reply": "2024-08-12T18:53:56.096394Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:15.034473Z", - "iopub.status.busy": "2024-08-12T10:31:15.034066Z", - "iopub.status.idle": "2024-08-12T10:31:20.022718Z", - "shell.execute_reply": "2024-08-12T10:31:20.022044Z" + "iopub.execute_input": "2024-08-12T18:53:56.098867Z", + "iopub.status.busy": "2024-08-12T18:53:56.098591Z", + "iopub.status.idle": "2024-08-12T18:54:01.596872Z", + "shell.execute_reply": "2024-08-12T18:54:01.596260Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b77e95d91f29458c87a8a832d9354217", + "model_id": "5fce0f83ffcb45b1b4e91907422e2fd5", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "08ba8674e30e46fc930e33c52fd19cae", + "model_id": "8220af5113534a53bc94d0f5c8251a66", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bcd74fc84ce94b119d8e8d4b6070122a", + "model_id": "399a7f37c7aa40b58c950e18df0b5960", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cf55d71b710845d8890451acc33799c0", + "model_id": "49e67bb21955496ba2eee2c0e6dad0ab", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4ff5b7e108a64120b255afa2e1ff6f7d", + "model_id": "289a07c93d8049998a1f7e65320f71c8", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f096b4fd6872467eb521cc3425e4ad77", + "model_id": "a94fae83aa2341e5b8d1ae56f3b7cbda", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6757467eb2d347bdbfc65c8a3b0b752c", + "model_id": "b2f79098c4674c5ca353b28833562218", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:20.025603Z", - "iopub.status.busy": "2024-08-12T10:31:20.025214Z", - "iopub.status.idle": "2024-08-12T10:31:20.028239Z", - "shell.execute_reply": "2024-08-12T10:31:20.027686Z" + "iopub.execute_input": "2024-08-12T18:54:01.600043Z", + "iopub.status.busy": "2024-08-12T18:54:01.599613Z", + "iopub.status.idle": "2024-08-12T18:54:01.602661Z", + "shell.execute_reply": "2024-08-12T18:54:01.602180Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:20.030306Z", - "iopub.status.busy": "2024-08-12T10:31:20.029981Z", - "iopub.status.idle": "2024-08-12T10:31:20.033107Z", - "shell.execute_reply": "2024-08-12T10:31:20.032678Z" + "iopub.execute_input": "2024-08-12T18:54:01.604735Z", + "iopub.status.busy": "2024-08-12T18:54:01.604395Z", + "iopub.status.idle": "2024-08-12T18:54:01.606950Z", + "shell.execute_reply": "2024-08-12T18:54:01.606508Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:20.035082Z", - "iopub.status.busy": "2024-08-12T10:31:20.034747Z", - "iopub.status.idle": "2024-08-12T10:31:22.925207Z", - "shell.execute_reply": "2024-08-12T10:31:22.924551Z" + "iopub.execute_input": "2024-08-12T18:54:01.608945Z", + "iopub.status.busy": "2024-08-12T18:54:01.608609Z", + "iopub.status.idle": "2024-08-12T18:54:04.445747Z", + "shell.execute_reply": "2024-08-12T18:54:04.444939Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.928473Z", - "iopub.status.busy": "2024-08-12T10:31:22.927617Z", - "iopub.status.idle": "2024-08-12T10:31:22.935577Z", - "shell.execute_reply": "2024-08-12T10:31:22.935118Z" + "iopub.execute_input": "2024-08-12T18:54:04.449080Z", + "iopub.status.busy": "2024-08-12T18:54:04.448318Z", + "iopub.status.idle": "2024-08-12T18:54:04.456608Z", + "shell.execute_reply": "2024-08-12T18:54:04.455832Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.937626Z", - "iopub.status.busy": "2024-08-12T10:31:22.937285Z", - "iopub.status.idle": "2024-08-12T10:31:22.941357Z", - "shell.execute_reply": "2024-08-12T10:31:22.940756Z" + "iopub.execute_input": "2024-08-12T18:54:04.458815Z", + "iopub.status.busy": "2024-08-12T18:54:04.458476Z", + "iopub.status.idle": "2024-08-12T18:54:04.462554Z", + "shell.execute_reply": "2024-08-12T18:54:04.462062Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.943707Z", - "iopub.status.busy": "2024-08-12T10:31:22.943304Z", - "iopub.status.idle": "2024-08-12T10:31:22.946672Z", - "shell.execute_reply": "2024-08-12T10:31:22.946082Z" + "iopub.execute_input": "2024-08-12T18:54:04.464756Z", + "iopub.status.busy": "2024-08-12T18:54:04.464321Z", + "iopub.status.idle": "2024-08-12T18:54:04.467750Z", + "shell.execute_reply": "2024-08-12T18:54:04.467293Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.948966Z", - "iopub.status.busy": "2024-08-12T10:31:22.948462Z", - "iopub.status.idle": "2024-08-12T10:31:22.951516Z", - "shell.execute_reply": "2024-08-12T10:31:22.951066Z" + "iopub.execute_input": "2024-08-12T18:54:04.469960Z", + "iopub.status.busy": "2024-08-12T18:54:04.469551Z", + "iopub.status.idle": "2024-08-12T18:54:04.472540Z", + "shell.execute_reply": "2024-08-12T18:54:04.472051Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.953476Z", - "iopub.status.busy": "2024-08-12T10:31:22.953139Z", - "iopub.status.idle": "2024-08-12T10:31:22.959977Z", - "shell.execute_reply": "2024-08-12T10:31:22.959519Z" + "iopub.execute_input": "2024-08-12T18:54:04.474585Z", + "iopub.status.busy": "2024-08-12T18:54:04.474184Z", + "iopub.status.idle": "2024-08-12T18:54:04.481135Z", + "shell.execute_reply": "2024-08-12T18:54:04.480676Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:22.962107Z", - "iopub.status.busy": "2024-08-12T10:31:22.961788Z", - "iopub.status.idle": "2024-08-12T10:31:23.188303Z", - "shell.execute_reply": "2024-08-12T10:31:23.187779Z" + "iopub.execute_input": "2024-08-12T18:54:04.483285Z", + "iopub.status.busy": "2024-08-12T18:54:04.482950Z", + "iopub.status.idle": "2024-08-12T18:54:04.708333Z", + "shell.execute_reply": "2024-08-12T18:54:04.707743Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:23.190889Z", - "iopub.status.busy": "2024-08-12T10:31:23.190558Z", - "iopub.status.idle": "2024-08-12T10:31:23.404299Z", - "shell.execute_reply": "2024-08-12T10:31:23.403695Z" + "iopub.execute_input": "2024-08-12T18:54:04.711066Z", + "iopub.status.busy": "2024-08-12T18:54:04.710654Z", + "iopub.status.idle": "2024-08-12T18:54:04.924095Z", + "shell.execute_reply": "2024-08-12T18:54:04.923546Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:23.407187Z", - "iopub.status.busy": "2024-08-12T10:31:23.406748Z", - "iopub.status.idle": "2024-08-12T10:31:23.410913Z", - "shell.execute_reply": "2024-08-12T10:31:23.410344Z" + "iopub.execute_input": "2024-08-12T18:54:04.926831Z", + "iopub.status.busy": "2024-08-12T18:54:04.926424Z", + "iopub.status.idle": "2024-08-12T18:54:04.930340Z", + "shell.execute_reply": "2024-08-12T18:54:04.929826Z" }, "nbsphinx": "hidden" }, @@ -1120,33 +1120,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "009671349a8d4cafb82eb9896ece9bee": { + "006d5af724ae4e22971f736a55857a4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f0a9d1777ee94c7c8c03baa6a51c46a8", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_69f0abc1e50f49f8a576b20c5da62cfa", + "layout": "IPY_MODEL_ea21d01843264621bf231835fe9aa860", + "placeholder": "​", + "style": "IPY_MODEL_7999018889a84b9f8c94ace4e0ab66c0", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 391/391 [00:00<00:00, 50.6kB/s]" } }, - "01ac85c54a074f46a529412c8198c339": { + "009d75c3861b4c879405b5a7d55acf04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1199,7 +1196,25 @@ "width": null } }, - "040c266f4fc448cd8d1cc95b158b56b8": { + "09f32f04be0940bebe8a6742dcb99e85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0a8c4fc01ece4f01b270709d2a552fa5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1252,7 +1267,7 @@ "width": null } }, - "0594ffe3ba1a4a8096af8f4341c83041": { + "0c05b80cbe854fdd9294576db3ff05bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1268,84 +1283,41 @@ "description_width": "" } }, - "08ba8674e30e46fc930e33c52fd19cae": { + "1db895665fe44642a62670093127e02f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f720275cd00d4a9cb1737d0f4d081c2f", - "IPY_MODEL_009671349a8d4cafb82eb9896ece9bee", - "IPY_MODEL_9fdd8aba923f4e04be6bb5d963cb437c" - ], - "layout": "IPY_MODEL_9c1c9cad0461490a96b44d548117c40c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "095e33092ba14246a9208dc768de2a5b": { - "model_module": "@jupyter-widgets/base", + "1ea2c29144d5400b8748c646f033894f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "104b801834d148df9f2e3d1ed081e587": { + "2456c9a661bd4b3dba4fdfcac7612a7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1360,15 +1332,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2602df39a3fd47c39e3cc01ecfebecf5", + "layout": "IPY_MODEL_9c9d5a88c8a64cdd9cb0823ce2acabe6", "placeholder": "​", - "style": "IPY_MODEL_c691589a3f7e439b968bd28de4afe7e3", + "style": "IPY_MODEL_4cc8077d9879462c9de005575bfbad8f", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 35.4MB/s]" + "value": " 665/665 [00:00<00:00, 113kB/s]" } }, - "11edcabb6a894b66939da8220a1f7699": { + "256087a5a19243bfa05bdf6c0ba10805": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1421,7 +1393,7 @@ "width": null } }, - "13d19aa2b2ca4bc8813208d9c646a5c7": { + "25bcb9c6186c45b886561f036d828a86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1439,59 +1411,54 @@ "text_color": null } }, - "13d4c34d25c74a2d8064eba1bac91c80": { + "289a07c93d8049998a1f7e65320f71c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c701715a58ab4f6b96498a6d2d5401d1", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8a121ad004a142589d015aacd23c1026", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f94389f0251b49029639e433e5aa755a", + "IPY_MODEL_c18c40bc53e74acba0e92d6acf7c08f4", + "IPY_MODEL_d42046c8642448498fca534ce27f1983" + ], + "layout": "IPY_MODEL_4c86ef1c9f1841f6a3258d0e5669cb13", "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "tooltip": null } }, - "1503d7b6dde84b19aaba69486d60f143": { + "33ca193d276b47af9b1bd6a968bcd64b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_040c266f4fc448cd8d1cc95b158b56b8", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0594ffe3ba1a4a8096af8f4341c83041", + "layout": "IPY_MODEL_4efb05c35218455aad7fb4cc5db56afb", + "placeholder": "​", + "style": "IPY_MODEL_63f8b0c136af4afda525f2cd9ae8f291", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": ".gitattributes: 100%" } }, - "1598a44a792c4139ad6a6de76b8c1394": { + "343c3d1a93274355a1653ea076df4bac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1509,30 +1476,7 @@ "text_color": null } }, - "15997adaaba2484396878d4e38a00113": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d15b782752d3445386fe22758d87080d", - "placeholder": "​", - "style": "IPY_MODEL_373e88d9309d4ec9ae5ba4a731e6df0c", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 70.3kB/s]" - } - }, - "16bcafb20249419fafeebd286e716441": { + "3778bf93f04a411aa0d5e989e8c6d9c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1585,7 +1529,7 @@ "width": null } }, - "1804451ec9d0462696d56dfdb7a43744": { + "3898d2c8d96b4f43913ec0a16a040638": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1638,7 +1582,47 @@ "width": null } }, - "1bd4a18941fe41209f76d034daa9feb2": { + "399a7f37c7aa40b58c950e18df0b5960": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ea1345727424481834f52e3f1cacd94", + "IPY_MODEL_bc04b19aec774203a92404adb3103b97", + "IPY_MODEL_2456c9a661bd4b3dba4fdfcac7612a7b" + ], + "layout": "IPY_MODEL_c43feac438144313ab89f24fd448a54e", + "tabbable": null, + "tooltip": null + } + }, + "3cfae654d8a94672bc68d05eced1d0ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43beca2bd35e4cac86fc0777b9ea9844": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1675,49 @@ "width": null } }, - "1d5e484ff2f34bc5a3067a29b87a866b": { + "4432435a03294629ba63a9de48043548": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "49e67bb21955496ba2eee2c0e6dad0ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_535c1e132a924ee09c0f3bd3213827ec", + "IPY_MODEL_4efecba95fed4e0c972987879f4d53ee", + "IPY_MODEL_5a35ee0bb8d946e3b40e44a3e2c5e0f7" + ], + "layout": "IPY_MODEL_009d75c3861b4c879405b5a7d55acf04", + "tabbable": null, + "tooltip": null + } + }, + "4b626302897e46419c4844e76d79662e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1707,17 +1733,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_095e33092ba14246a9208dc768de2a5b", - "max": 391.0, + "layout": "IPY_MODEL_67ed76d0459b45109ab7b2e474b134dd", + "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f5184540242a45978bb6e6024ab9cc50", + "style": "IPY_MODEL_be482aad3d2b4b9ebe88ee672e4c13ad", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": 48.0 } }, - "2602df39a3fd47c39e3cc01ecfebecf5": { + "4c86ef1c9f1841f6a3258d0e5669cb13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1770,7 +1796,41 @@ "width": null } }, - "291c1991a2874a05af6b04cd7d022478": { + "4cc8077d9879462c9de005575bfbad8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d5c6911336a46598cf358d62a000f88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4ea1345727424481834f52e3f1cacd94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1785,15 +1845,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_633b6b32b3a04c209544909dd6867676", + "layout": "IPY_MODEL_560ff6ebca984f28860bb80375bd645b", "placeholder": "​", - "style": "IPY_MODEL_9c99fad70047476ead6384d84291d907", + "style": "IPY_MODEL_f9a9d69a4f124928b49ed8b7988813d3", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": "config.json: 100%" } }, - "2958046e8ce44c0a917fda09c0896495": { + "4efb05c35218455aad7fb4cc5db56afb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1846,7 +1906,56 @@ "width": null } }, - "29dc9f8f21f14db983f9c7f0306f737b": { + "4efecba95fed4e0c972987879f4d53ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_feb09b19af2f40f69cb7cfc1db49ed90", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1db895665fe44642a62670093127e02f", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "535c1e132a924ee09c0f3bd3213827ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5f6e51f8f6db4d66b7e2193ee7fd563c", + "placeholder": "​", + "style": "IPY_MODEL_db67b729e00247afbc555fe194fcc18a", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "560ff6ebca984f28860bb80375bd645b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1899,7 +2008,7 @@ "width": null } }, - "2a75436a6b3f421991d9c7289964dc4e": { + "5a35ee0bb8d946e3b40e44a3e2c5e0f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1914,15 +2023,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ee866f21451f41d0a2b58182ec7c2183", + "layout": "IPY_MODEL_a4cdc14299324bb9b3549553c857737b", "placeholder": "​", - "style": "IPY_MODEL_9a7a2e2568e84ad090ba5d7f87ec6ca2", + "style": "IPY_MODEL_edddd8f6e9c0463e9d31f27de693990c", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 199MB/s]" } }, - "2c6a5bc9f5f34b87b657eda126c73765": { + "5ae1be12a0fb4986b459d08405f465dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1937,33 +2046,115 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_44e61a23e45d4697bfaa4992b16388ff", + "layout": "IPY_MODEL_43beca2bd35e4cac86fc0777b9ea9844", "placeholder": "​", - "style": "IPY_MODEL_88907c49643c45e58b6140b32e87068b", + "style": "IPY_MODEL_343c3d1a93274355a1653ea076df4bac", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 131kB/s]" + "value": "vocab.txt: 100%" } }, - "373e88d9309d4ec9ae5ba4a731e6df0c": { + "5e9c3c12b0234dbc8b747d3b1e91ee1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3778bf93f04a411aa0d5e989e8c6d9c3", + "placeholder": "​", + "style": "IPY_MODEL_8fd65264c4994715bc8aa9df8f9fcb1d", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 385kB/s]" + } + }, + "5f6e51f8f6db4d66b7e2193ee7fd563c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5fce0f83ffcb45b1b4e91907422e2fd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_33ca193d276b47af9b1bd6a968bcd64b", + "IPY_MODEL_d1c1a09dfe40433e8daad1afb926a868", + "IPY_MODEL_006d5af724ae4e22971f736a55857a4b" + ], + "layout": "IPY_MODEL_0a8c4fc01ece4f01b270709d2a552fa5", + "tabbable": null, + "tooltip": null } }, - "3edae48c957b43afb31452e760c3b5ee": { + "63f8b0c136af4afda525f2cd9ae8f291": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1981,7 +2172,7 @@ "text_color": null } }, - "44881d82bfd54d3995c4d702d2ce1aee": { + "67ed76d0459b45109ab7b2e474b134dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2034,7 +2225,7 @@ "width": null } }, - "44e61a23e45d4697bfaa4992b16388ff": { + "6f78892c67d64d6baed0e8be90add294": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2087,63 +2278,48 @@ "width": null } }, - "4c27de6e51584e4194ad1b2a70a228e1": { + "7999018889a84b9f8c94ace4e0ab66c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4ff5b7e108a64120b255afa2e1ff6f7d": { + "7d0664133a97496aa32722b323b0654b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2a75436a6b3f421991d9c7289964dc4e", - "IPY_MODEL_92df4c3e498c4d89bc4eccdc9cf22b5b", - "IPY_MODEL_c5c2fe07487c4fdf85dc6866c5c8bc54" - ], - "layout": "IPY_MODEL_16bcafb20249419fafeebd286e716441", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3c7637e637245bb9da64cb04a475f4a", + "placeholder": "​", + "style": "IPY_MODEL_25bcb9c6186c45b886561f036d828a86", "tabbable": null, - "tooltip": null - } - }, - "5d1b88d2f0c14f6f82eb35c71e1d5bbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "README.md: 100%" } }, - "5f818255776c4628ab75e3864e7bea0c": { + "81807c8fa56b49aa9f11554e16b459ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2196,7 +2372,98 @@ "width": null } }, - "633b6b32b3a04c209544909dd6867676": { + "8220af5113534a53bc94d0f5c8251a66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d0664133a97496aa32722b323b0654b", + "IPY_MODEL_9a851b8ad98941f4ad8c614e0c16e343", + "IPY_MODEL_5e9c3c12b0234dbc8b747d3b1e91ee1e" + ], + "layout": "IPY_MODEL_d42199adf5474d8e9f6179d5eb3bb243", + "tabbable": null, + "tooltip": null + } + }, + "84679d8653bd4c14b683abbaf6d1f0a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cda47a3d9e50415098e506f90bcff7f9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4d5c6911336a46598cf358d62a000f88", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "84efa85f99e2425ba0e0215a7f670283": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_afe48c32175c4349b6e5fe5b106847bf", + "placeholder": "​", + "style": "IPY_MODEL_1ea2c29144d5400b8748c646f033894f", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 1.78MB/s]" + } + }, + "8fd65264c4994715bc8aa9df8f9fcb1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "913fa127341a4e168bbbf77059264143": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2249,7 +2516,7 @@ "width": null } }, - "66d0debbcb38476f9b46625cbce14c68": { + "970cd2e565e4472fb75e9cbbb4303277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2302,112 +2569,15 @@ "width": null } }, - "6757467eb2d347bdbfc65c8a3b0b752c": { + "9a851b8ad98941f4ad8c614e0c16e343": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c1f10237bfc74f0b846f31c90674066b", - "IPY_MODEL_8b4fdf859aa445be8b803b0d911aae17", - "IPY_MODEL_104b801834d148df9f2e3d1ed081e587" - ], - "layout": "IPY_MODEL_a82b1d45d3234bb0a3319301666a72d5", - "tabbable": null, - "tooltip": null - } - }, - "695e9e36ea61416893fdfcb78d0482b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44881d82bfd54d3995c4d702d2ce1aee", - "placeholder": "​", - "style": "IPY_MODEL_e1eddcb1817246efa831d0367cbd3c91", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.65kB/s]" - } - }, - "69f0abc1e50f49f8a576b20c5da62cfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "88907c49643c45e58b6140b32e87068b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8a121ad004a142589d015aacd23c1026": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8b4fdf859aa445be8b803b0d911aae17": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", @@ -2415,61 +2585,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1bd4a18941fe41209f76d034daa9feb2", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8f4445e9931496caec7a0bf0cc7dc2c", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "8c9f66d089754d8aa7058c6b10d0947c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8e4fd7081fc8461599b9a438c3912649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11edcabb6a894b66939da8220a1f7699", - "max": 665.0, + "layout": "IPY_MODEL_c6a490410aee4ce4b7ec065a336a3a2c", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d1b88d2f0c14f6f82eb35c71e1d5bbe", + "style": "IPY_MODEL_a4c11a9aa2d14652b78d311c152b105d", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "90d6fdc421254deaaac7fd3b5e8f30ec": { + "9c9d5a88c8a64cdd9cb0823ce2acabe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2522,86 +2648,23 @@ "width": null } }, - "92df4c3e498c4d89bc4eccdc9cf22b5b": { + "a4c11a9aa2d14652b78d311c152b105d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1804451ec9d0462696d56dfdb7a43744", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c27de6e51584e4194ad1b2a70a228e1", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "94cde3206e854b678e1a99ec1a075bdf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "976072a3aeb542dabace008e4f08126f": { + "a4cdc14299324bb9b3549553c857737b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2654,25 +2717,31 @@ "width": null } }, - "9a7a2e2568e84ad090ba5d7f87ec6ca2": { + "a94fae83aa2341e5b8d1ae56f3b7cbda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fe7eb00615784f9b82e4e80051fec909", + "IPY_MODEL_4b626302897e46419c4844e76d79662e", + "IPY_MODEL_fc6e5cd23cc04d5cae53b65af39d36cc" + ], + "layout": "IPY_MODEL_3898d2c8d96b4f43913ec0a16a040638", + "tabbable": null, + "tooltip": null } }, - "9c1c9cad0461490a96b44d548117c40c": { + "afe48c32175c4349b6e5fe5b106847bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2725,25 +2794,31 @@ "width": null } }, - "9c99fad70047476ead6384d84291d907": { + "b2f79098c4674c5ca353b28833562218": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ae1be12a0fb4986b459d08405f465dc", + "IPY_MODEL_84679d8653bd4c14b683abbaf6d1f0a8", + "IPY_MODEL_84efa85f99e2425ba0e0215a7f670283" + ], + "layout": "IPY_MODEL_6f78892c67d64d6baed0e8be90add294", + "tabbable": null, + "tooltip": null } }, - "9e8a0f70f6f9418aab1d4dc540fe0e26": { + "ba5b94455bdf4114a45063ba921c476c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2796,53 +2871,49 @@ "width": null } }, - "9fdd8aba923f4e04be6bb5d963cb437c": { + "bc04b19aec774203a92404adb3103b97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_94cde3206e854b678e1a99ec1a075bdf", - "placeholder": "​", - "style": "IPY_MODEL_ce0868eececc4e4b82469a4729e2b9c9", + "layout": "IPY_MODEL_256087a5a19243bfa05bdf6c0ba10805", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d27ce44f75f94a13b65ca3940a516c91", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 445kB/s]" + "value": 665.0 } }, - "a3014aec64314384b3ea693f7e0d6bc8": { + "be482aad3d2b4b9ebe88ee672e4c13ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9e8a0f70f6f9418aab1d4dc540fe0e26", - "placeholder": "​", - "style": "IPY_MODEL_13d19aa2b2ca4bc8813208d9c646a5c7", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 265MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a82b1d45d3234bb0a3319301666a72d5": { + "bf787eb818144fc9b29e9ae8b0fb4835": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2895,70 +2966,33 @@ "width": null } }, - "b0e548065a8d43c2ac7f21ade489d7e7": { + "c18c40bc53e74acba0e92d6acf7c08f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29dc9f8f21f14db983f9c7f0306f737b", - "placeholder": "​", - "style": "IPY_MODEL_feb07f5788e6431f883566fdebae816c", + "layout": "IPY_MODEL_ba5b94455bdf4114a45063ba921c476c", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cfae654d8a94672bc68d05eced1d0ab", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" - } - }, - "b77e95d91f29458c87a8a832d9354217": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c644bdb104a2459ea7a9451cb95f4c6f", - "IPY_MODEL_1d5e484ff2f34bc5a3067a29b87a866b", - "IPY_MODEL_15997adaaba2484396878d4e38a00113" - ], - "layout": "IPY_MODEL_01ac85c54a074f46a529412c8198c339", - "tabbable": null, - "tooltip": null - } - }, - "b8f4445e9931496caec7a0bf0cc7dc2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 466062.0 } }, - "b95ea2b32e7d4b66a2a0e2873a01046d": { + "c293b4a7900345eeb2d87c80c9ebcace": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2976,141 +3010,60 @@ "text_color": null } }, - "bcd74fc84ce94b119d8e8d4b6070122a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0e548065a8d43c2ac7f21ade489d7e7", - "IPY_MODEL_8e4fd7081fc8461599b9a438c3912649", - "IPY_MODEL_2c6a5bc9f5f34b87b657eda126c73765" - ], - "layout": "IPY_MODEL_976072a3aeb542dabace008e4f08126f", - "tabbable": null, - "tooltip": null - } - }, - "bf4aeb8a17c24906a9308d4192063a5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66d0debbcb38476f9b46625cbce14c68", - "placeholder": "​", - "style": "IPY_MODEL_cd53a231e9e84f07a9ad8e3b9992aa32", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "c1f10237bfc74f0b846f31c90674066b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_faa5822f274f41fe9ff86f1471fdd7e2", - "placeholder": "​", - "style": "IPY_MODEL_3edae48c957b43afb31452e760c3b5ee", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "c5c2fe07487c4fdf85dc6866c5c8bc54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f818255776c4628ab75e3864e7bea0c", - "placeholder": "​", - "style": "IPY_MODEL_1598a44a792c4139ad6a6de76b8c1394", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 3.95MB/s]" - } - }, - "c644bdb104a2459ea7a9451cb95f4c6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ed62e55cc8b646ceaf9963127bbe3f10", - "placeholder": "​", - "style": "IPY_MODEL_8c9f66d089754d8aa7058c6b10d0947c", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "c691589a3f7e439b968bd28de4afe7e3": { - "model_module": "@jupyter-widgets/controls", + "c43feac438144313ab89f24fd448a54e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c701715a58ab4f6b96498a6d2d5401d1": { + "c6a490410aee4ce4b7ec065a336a3a2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3163,67 +3116,7 @@ "width": null } }, - "cd53a231e9e84f07a9ad8e3b9992aa32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ce0868eececc4e4b82469a4729e2b9c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf55d71b710845d8890451acc33799c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_291c1991a2874a05af6b04cd7d022478", - "IPY_MODEL_13d4c34d25c74a2d8064eba1bac91c80", - "IPY_MODEL_a3014aec64314384b3ea693f7e0d6bc8" - ], - "layout": "IPY_MODEL_90d6fdc421254deaaac7fd3b5e8f30ec", - "tabbable": null, - "tooltip": null - } - }, - "d15b782752d3445386fe22758d87080d": { + "cda47a3d9e50415098e506f90bcff7f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3276,25 +3169,49 @@ "width": null } }, - "e1eddcb1817246efa831d0367cbd3c91": { + "d1c1a09dfe40433e8daad1afb926a868": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dc8b10b0aec34342bde7aca6e9c1d831", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c05b80cbe854fdd9294576db3ff05bb", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "d27ce44f75f94a13b65ca3940a516c91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "ed62e55cc8b646ceaf9963127bbe3f10": { + "d3c7637e637245bb9da64cb04a475f4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3347,7 +3264,30 @@ "width": null } }, - "ee866f21451f41d0a2b58182ec7c2183": { + "d42046c8642448498fca534ce27f1983": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_970cd2e565e4472fb75e9cbbb4303277", + "placeholder": "​", + "style": "IPY_MODEL_fde02940308b4c9197554fa44cf549d5", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 6.13MB/s]" + } + }, + "d42199adf5474d8e9f6179d5eb3bb243": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3400,7 +3340,25 @@ "width": null } }, - "ef38a47462b242638331cd976aefeae2": { + "db67b729e00247afbc555fe194fcc18a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc8b10b0aec34342bde7aca6e9c1d831": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3453,31 +3411,7 @@ "width": null } }, - "f096b4fd6872467eb521cc3425e4ad77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf4aeb8a17c24906a9308d4192063a5d", - "IPY_MODEL_1503d7b6dde84b19aaba69486d60f143", - "IPY_MODEL_695e9e36ea61416893fdfcb78d0482b4" - ], - "layout": "IPY_MODEL_2958046e8ce44c0a917fda09c0896495", - "tabbable": null, - "tooltip": null - } - }, - "f0a9d1777ee94c7c8c03baa6a51c46a8": { + "ea21d01843264621bf231835fe9aa860": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3530,23 +3464,25 @@ "width": null } }, - "f5184540242a45978bb6e6024ab9cc50": { + "edddd8f6e9c0463e9d31f27de693990c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f720275cd00d4a9cb1737d0f4d081c2f": { + "f94389f0251b49029639e433e5aa755a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3561,15 +3497,97 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef38a47462b242638331cd976aefeae2", + "layout": "IPY_MODEL_913fa127341a4e168bbbf77059264143", "placeholder": "​", - "style": "IPY_MODEL_b95ea2b32e7d4b66a2a0e2873a01046d", + "style": "IPY_MODEL_c293b4a7900345eeb2d87c80c9ebcace", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": "tokenizer.json: 100%" + } + }, + "f9a9d69a4f124928b49ed8b7988813d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fc6e5cd23cc04d5cae53b65af39d36cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_81807c8fa56b49aa9f11554e16b459ac", + "placeholder": "​", + "style": "IPY_MODEL_4432435a03294629ba63a9de48043548", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.89kB/s]" + } + }, + "fde02940308b4c9197554fa44cf549d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe7eb00615784f9b82e4e80051fec909": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf787eb818144fc9b29e9ae8b0fb4835", + "placeholder": "​", + "style": "IPY_MODEL_09f32f04be0940bebe8a6742dcb99e85", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "faa5822f274f41fe9ff86f1471fdd7e2": { + "feb09b19af2f40f69cb7cfc1db49ed90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3621,24 +3639,6 @@ "visibility": null, "width": null } - }, - "feb07f5788e6431f883566fdebae816c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 3aeb84c24..ab2369b3a 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"7b0a21f462aa4c588fc88161d4aacaf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30b5cf292a2d4ef7917f1a528257c959": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c944ad099e17457fa206b43284821586": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b0a21f462aa4c588fc88161d4aacaf7", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_30b5cf292a2d4ef7917f1a528257c959", "tabbable": null, "tooltip": null, "value": 2041.0}}, "fbf1b34c34974d5aa871e28dbd8a00f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98d46bcc8409465291c0807491bba1a6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9ea2756856324606b3da554c15c654d0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbf1b34c34974d5aa871e28dbd8a00f5", "placeholder": "\u200b", "style": "IPY_MODEL_98d46bcc8409465291c0807491bba1a6", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "0246673bda614057b87d1d4a071d07dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9575927b7ff4dc3b4f219a8058b36b9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "771d8a9eed1f4ac980d85ec212352d9c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0246673bda614057b87d1d4a071d07dc", "placeholder": "\u200b", "style": "IPY_MODEL_b9575927b7ff4dc3b4f219a8058b36b9", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007478kB/s]"}}, "759039067d2c4508b2db8adf3602ecb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f13e6c1113f74ad78e8ebb5bae8047e9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9ea2756856324606b3da554c15c654d0", "IPY_MODEL_c944ad099e17457fa206b43284821586", "IPY_MODEL_771d8a9eed1f4ac980d85ec212352d9c"], "layout": "IPY_MODEL_759039067d2c4508b2db8adf3602ecb7", "tabbable": null, "tooltip": null}}, "2b302faa18af4ea2b2b48d13597cc0ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36aaabf0d872419192d27b84e5bffb77": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2db66ec325294ef6b6c0bbcbf4ddf956": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b302faa18af4ea2b2b48d13597cc0ce", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_36aaabf0d872419192d27b84e5bffb77", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "12085fdd993b4978b67be8ceccf56834": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b22538f44134499ca67768efd562ef59": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8f86c045b5af482e91516dd8164e57db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12085fdd993b4978b67be8ceccf56834", "placeholder": "\u200b", "style": "IPY_MODEL_b22538f44134499ca67768efd562ef59", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "4da7e4e7f66c437b9df947311fbcabb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57c1a597566543ed9f622ce49e94ab55": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "991617589a474008aa2118e6b402fe3c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4da7e4e7f66c437b9df947311fbcabb3", "placeholder": "\u200b", "style": "IPY_MODEL_57c1a597566543ed9f622ce49e94ab55", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200725.8MB/s]"}}, "8d7752acd7244143a2465138cfdd0848": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48329f782307409c919507e64a194700": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8f86c045b5af482e91516dd8164e57db", "IPY_MODEL_2db66ec325294ef6b6c0bbcbf4ddf956", "IPY_MODEL_991617589a474008aa2118e6b402fe3c"], "layout": "IPY_MODEL_8d7752acd7244143a2465138cfdd0848", "tabbable": null, "tooltip": null}}, "acffbafe17c140c5a8dd99c8acfd75bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d68db3bc2ea4e8a99fb98e4d66c9160": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b6235d9a1eca4733ba0221542f0d3643": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_acffbafe17c140c5a8dd99c8acfd75bd", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d68db3bc2ea4e8a99fb98e4d66c9160", "tabbable": null, "tooltip": null, "value": 3201.0}}, "c284236043894de7a2aeab311605060f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "02a20d41840f41e593671467329b8a99": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0520862119224c0dadeb77bdab0013c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c284236043894de7a2aeab311605060f", "placeholder": "\u200b", "style": "IPY_MODEL_02a20d41840f41e593671467329b8a99", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "8c99dff9eb4d49c884091c0856298635": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54bfa2603b3d480cb21708ef6cbb23c2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03639896d78b4997bfa5bd4ef9dd3b73": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c99dff9eb4d49c884091c0856298635", "placeholder": "\u200b", "style": "IPY_MODEL_54bfa2603b3d480cb21708ef6cbb23c2", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007607kB/s]"}}, "eddc0c22a05d419fbb6a614c372acc94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1be4f39f14ee43cbb74596a54a9d8272": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0520862119224c0dadeb77bdab0013c1", "IPY_MODEL_b6235d9a1eca4733ba0221542f0d3643", "IPY_MODEL_03639896d78b4997bfa5bd4ef9dd3b73"], "layout": "IPY_MODEL_eddc0c22a05d419fbb6a614c372acc94", "tabbable": null, "tooltip": null}}, "7065599fb27a4c94b3a0f83176455eb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7eb78abc773d43d6b5f5ea1b3a7d118a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e3fad78d0a454ee18486769b1f290a04": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7065599fb27a4c94b3a0f83176455eb3", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7eb78abc773d43d6b5f5ea1b3a7d118a", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "0cc1e2ec36dd4b3585cdf8034ca0aa07": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7d2d458d370049b88ce3f448a6173436": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8815f4d0f8a1488fb6ac1517db64608e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cc1e2ec36dd4b3585cdf8034ca0aa07", "placeholder": "\u200b", "style": "IPY_MODEL_7d2d458d370049b88ce3f448a6173436", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "3151034ce11c498ca70679e99c762223": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d9623ce9228240f792b723b5ae5f6aea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5d435c65a28f416dba8acf9e9037e772": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3151034ce11c498ca70679e99c762223", "placeholder": "\u200b", "style": "IPY_MODEL_d9623ce9228240f792b723b5ae5f6aea", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200717.8MB/s]"}}, "de5219ece0bc4a8aa3814769270a8251": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b578372e109c4035a055c5b83ba4abec": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8815f4d0f8a1488fb6ac1517db64608e", "IPY_MODEL_e3fad78d0a454ee18486769b1f290a04", "IPY_MODEL_5d435c65a28f416dba8acf9e9037e772"], "layout": "IPY_MODEL_de5219ece0bc4a8aa3814769270a8251", "tabbable": null, "tooltip": null}}, "9bb209b5c60041e89c0b6a139baf0cf2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cba2fe5da4504b8bb895fbd45626e1e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c33c14b2a5e34ea0ae0823ec817c2bbd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9bb209b5c60041e89c0b6a139baf0cf2", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cba2fe5da4504b8bb895fbd45626e1e4", "tabbable": null, "tooltip": null, "value": 128619.0}}, "a6994f6b25404fa090773a364b257fee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a437de4edb0b4d1c94542633e608f95c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "26dbafb5ca4e4097b6639ac5d840d91d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6994f6b25404fa090773a364b257fee", "placeholder": "\u200b", "style": "IPY_MODEL_a437de4edb0b4d1c94542633e608f95c", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "7b0f7fc885b94f2fba36f99bff582ece": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "08360c1171a6493298ae9e0be537aeb1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "085a6252fdf04f9c8504f50efe0cddcb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b0f7fc885b94f2fba36f99bff582ece", "placeholder": "\u200b", "style": "IPY_MODEL_08360c1171a6493298ae9e0be537aeb1", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200722.7MB/s]"}}, "352c03049ef34564be6b16e25fa62a97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "45285f6718ab4536af48bcf06a0aac0b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_26dbafb5ca4e4097b6639ac5d840d91d", "IPY_MODEL_c33c14b2a5e34ea0ae0823ec817c2bbd", "IPY_MODEL_085a6252fdf04f9c8504f50efe0cddcb"], "layout": "IPY_MODEL_352c03049ef34564be6b16e25fa62a97", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"d7972c555f854ec4830cc1462507f6dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e524bdde26e74dbb918e03703935b9aa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cceed8cc8dbc4c2998b2aa56d37c56cd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7972c555f854ec4830cc1462507f6dc", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e524bdde26e74dbb918e03703935b9aa", "tabbable": null, "tooltip": null, "value": 2041.0}}, "bcc3d779d9ec4bdda4a144acdd9536b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03f7f54757af4c188654225ff568cc15": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "11533647f3334084be47152e5df913b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bcc3d779d9ec4bdda4a144acdd9536b9", "placeholder": "\u200b", "style": "IPY_MODEL_03f7f54757af4c188654225ff568cc15", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "fba2a74e14a442f2ac8a5666c47f101c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af55ac5d4b8343f49f8eafa3a8393609": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1438f73581cf412b872cda6b268a44cb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fba2a74e14a442f2ac8a5666c47f101c", "placeholder": "\u200b", "style": "IPY_MODEL_af55ac5d4b8343f49f8eafa3a8393609", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007489kB/s]"}}, "b625d5b3df6a43a58e4dd8f8487787b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27771d0db6954d13b8330016db2e968d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_11533647f3334084be47152e5df913b5", "IPY_MODEL_cceed8cc8dbc4c2998b2aa56d37c56cd", "IPY_MODEL_1438f73581cf412b872cda6b268a44cb"], "layout": "IPY_MODEL_b625d5b3df6a43a58e4dd8f8487787b1", "tabbable": null, "tooltip": null}}, "da200749ab8f461f8631919121dfe71f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee6f990c3c4440e1b161a7386ee60cf5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e1e79e04340c42c4a07b65de15d378e8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da200749ab8f461f8631919121dfe71f", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ee6f990c3c4440e1b161a7386ee60cf5", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "66b483bdb67f481d9a04248eaaa928f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6698e8a3edb642f5aa1cf99dae6c5d9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66a984112df94fb797f03c16ea0d8871": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_66b483bdb67f481d9a04248eaaa928f9", "placeholder": "\u200b", "style": "IPY_MODEL_6698e8a3edb642f5aa1cf99dae6c5d9c", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "d83f5f37ce8d42a8a710791ab26be95b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06a7e8c848574d27a7e9b42a3825fab6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "499bfda7f0f2413a846e584855e03e83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d83f5f37ce8d42a8a710791ab26be95b", "placeholder": "\u200b", "style": "IPY_MODEL_06a7e8c848574d27a7e9b42a3825fab6", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007132MB/s]"}}, "dbd814ae298e4662b635d3981cc98115": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54b0a200e2264ed39796f6804956206d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_66a984112df94fb797f03c16ea0d8871", "IPY_MODEL_e1e79e04340c42c4a07b65de15d378e8", "IPY_MODEL_499bfda7f0f2413a846e584855e03e83"], "layout": "IPY_MODEL_dbd814ae298e4662b635d3981cc98115", "tabbable": null, "tooltip": null}}, "e72c130d931142fc86553b3079a5359c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6dfc7b27f58e4f92b4a505eb402fb2d9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "494870d44ab447f59b1edff68497591d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e72c130d931142fc86553b3079a5359c", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6dfc7b27f58e4f92b4a505eb402fb2d9", "tabbable": null, "tooltip": null, "value": 3201.0}}, "6aa0c0cf24374c218f799b51cbe4c313": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "684c05db502f40d28dd939735db61d61": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3ce08a518118470bafdffe4fda5d402b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6aa0c0cf24374c218f799b51cbe4c313", "placeholder": "\u200b", "style": "IPY_MODEL_684c05db502f40d28dd939735db61d61", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "7c9dfa3179eb4fa68cadc1f9bbb924c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b0be97f0dc34a8793149a2ed20c1e6a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1f7582c5b66e440696c93331f3f021bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c9dfa3179eb4fa68cadc1f9bbb924c1", "placeholder": "\u200b", "style": "IPY_MODEL_7b0be97f0dc34a8793149a2ed20c1e6a", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007613kB/s]"}}, "7fd7da3595bd40c8b1faffe0b53a48ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f932b3088d94f10b72edd6565da7964": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3ce08a518118470bafdffe4fda5d402b", "IPY_MODEL_494870d44ab447f59b1edff68497591d", "IPY_MODEL_1f7582c5b66e440696c93331f3f021bd"], "layout": "IPY_MODEL_7fd7da3595bd40c8b1faffe0b53a48ff", "tabbable": null, "tooltip": null}}, "9732897bd82b4795960f3fa636882b4c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "644aa3d4a2474af6927b1d63fee9198c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cd5779376f004c009a4cbc1ed71c233b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9732897bd82b4795960f3fa636882b4c", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_644aa3d4a2474af6927b1d63fee9198c", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "702b794e5f074a9a800b1fb24f613bb4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16b8ca036731448b9d41d1e3f758031e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b53fbd141a0c4a8ab26809588da553f8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_702b794e5f074a9a800b1fb24f613bb4", "placeholder": "\u200b", "style": "IPY_MODEL_16b8ca036731448b9d41d1e3f758031e", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "9da1a583772d4e5aa4706118496f70a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbbe413f447e46a69b5ce66589c01b7c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b35d0be8f8f04f16852f200cc17d2a48": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9da1a583772d4e5aa4706118496f70a8", "placeholder": "\u200b", "style": "IPY_MODEL_fbbe413f447e46a69b5ce66589c01b7c", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007219MB/s]"}}, "f7727a55541349bab503521054f0b8fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b2f65e78619452f87f1e932c7779a0b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b53fbd141a0c4a8ab26809588da553f8", "IPY_MODEL_cd5779376f004c009a4cbc1ed71c233b", "IPY_MODEL_b35d0be8f8f04f16852f200cc17d2a48"], "layout": "IPY_MODEL_f7727a55541349bab503521054f0b8fc", "tabbable": null, "tooltip": null}}, "24e4db787b034c95b86daf73c904c1a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc570043ee494a73a8003a18a11c32cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9e1ff364598a478e8995918a356b3b5c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24e4db787b034c95b86daf73c904c1a1", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc570043ee494a73a8003a18a11c32cf", "tabbable": null, "tooltip": null, "value": 128619.0}}, "7adf59dc52204c3f86660622c4666c27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab9f37394fa44215880e555b1930de5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93028f149ffd473e86c3c69dc9109cdd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7adf59dc52204c3f86660622c4666c27", "placeholder": "\u200b", "style": "IPY_MODEL_ab9f37394fa44215880e555b1930de5f", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "284f489d1c0940a4af6498cc4ee288ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0928624b605147408eb9eb71a02f2be6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e0a6f2898caf4d7e97c9b4699dd4cf31": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_284f489d1c0940a4af6498cc4ee288ad", "placeholder": "\u200b", "style": "IPY_MODEL_0928624b605147408eb9eb71a02f2be6", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20071.01MB/s]"}}, "d2b1d0dbee844ff2bc4beb0af94c0cde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99cd7f24e6c24e2d8aef090591fa9515": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_93028f149ffd473e86c3c69dc9109cdd", "IPY_MODEL_9e1ff364598a478e8995918a356b3b5c", "IPY_MODEL_e0a6f2898caf4d7e97c9b4699dd4cf31"], "layout": "IPY_MODEL_d2b1d0dbee844ff2bc4beb0af94c0cde", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index be2c44c4c..7872c7594 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:27.559918Z", - "iopub.status.busy": "2024-08-12T10:31:27.559732Z", - "iopub.status.idle": "2024-08-12T10:31:33.493498Z", - "shell.execute_reply": "2024-08-12T10:31:33.492957Z" + "iopub.execute_input": "2024-08-12T18:54:09.544273Z", + "iopub.status.busy": "2024-08-12T18:54:09.544101Z", + "iopub.status.idle": "2024-08-12T18:54:15.657460Z", + "shell.execute_reply": "2024-08-12T18:54:15.656888Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:33.496261Z", - "iopub.status.busy": "2024-08-12T10:31:33.495702Z", - "iopub.status.idle": "2024-08-12T10:31:33.498897Z", - "shell.execute_reply": "2024-08-12T10:31:33.498441Z" + "iopub.execute_input": "2024-08-12T18:54:15.660155Z", + "iopub.status.busy": "2024-08-12T18:54:15.659633Z", + "iopub.status.idle": "2024-08-12T18:54:15.662867Z", + "shell.execute_reply": "2024-08-12T18:54:15.662385Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:33.500915Z", - "iopub.status.busy": "2024-08-12T10:31:33.500569Z", - "iopub.status.idle": "2024-08-12T10:31:33.505593Z", - "shell.execute_reply": "2024-08-12T10:31:33.505157Z" + "iopub.execute_input": "2024-08-12T18:54:15.664832Z", + "iopub.status.busy": "2024-08-12T18:54:15.664650Z", + "iopub.status.idle": "2024-08-12T18:54:15.669779Z", + "shell.execute_reply": "2024-08-12T18:54:15.669342Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:33.507649Z", - "iopub.status.busy": "2024-08-12T10:31:33.507369Z", - "iopub.status.idle": "2024-08-12T10:31:35.407349Z", - "shell.execute_reply": "2024-08-12T10:31:35.406669Z" + "iopub.execute_input": "2024-08-12T18:54:15.671738Z", + "iopub.status.busy": "2024-08-12T18:54:15.671562Z", + "iopub.status.idle": "2024-08-12T18:54:17.893524Z", + "shell.execute_reply": "2024-08-12T18:54:17.892681Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.410188Z", - "iopub.status.busy": "2024-08-12T10:31:35.409775Z", - "iopub.status.idle": "2024-08-12T10:31:35.421192Z", - "shell.execute_reply": "2024-08-12T10:31:35.420725Z" + "iopub.execute_input": "2024-08-12T18:54:17.896656Z", + "iopub.status.busy": "2024-08-12T18:54:17.896108Z", + "iopub.status.idle": "2024-08-12T18:54:17.907522Z", + "shell.execute_reply": "2024-08-12T18:54:17.907061Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.423470Z", - "iopub.status.busy": "2024-08-12T10:31:35.423098Z", - "iopub.status.idle": "2024-08-12T10:31:35.428531Z", - "shell.execute_reply": "2024-08-12T10:31:35.428082Z" + "iopub.execute_input": "2024-08-12T18:54:17.909690Z", + "iopub.status.busy": "2024-08-12T18:54:17.909399Z", + "iopub.status.idle": "2024-08-12T18:54:17.915243Z", + "shell.execute_reply": "2024-08-12T18:54:17.914767Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.430695Z", - "iopub.status.busy": "2024-08-12T10:31:35.430312Z", - "iopub.status.idle": "2024-08-12T10:31:35.930501Z", - "shell.execute_reply": "2024-08-12T10:31:35.929981Z" + "iopub.execute_input": "2024-08-12T18:54:17.917203Z", + "iopub.status.busy": "2024-08-12T18:54:17.917022Z", + "iopub.status.idle": "2024-08-12T18:54:18.401760Z", + "shell.execute_reply": "2024-08-12T18:54:18.401217Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:35.932712Z", - "iopub.status.busy": "2024-08-12T10:31:35.932347Z", - "iopub.status.idle": "2024-08-12T10:31:39.361143Z", - "shell.execute_reply": "2024-08-12T10:31:39.360515Z" + "iopub.execute_input": "2024-08-12T18:54:18.403866Z", + "iopub.status.busy": "2024-08-12T18:54:18.403673Z", + "iopub.status.idle": "2024-08-12T18:54:19.860815Z", + "shell.execute_reply": "2024-08-12T18:54:19.860160Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:39.363821Z", - "iopub.status.busy": "2024-08-12T10:31:39.363462Z", - "iopub.status.idle": "2024-08-12T10:31:39.381626Z", - "shell.execute_reply": "2024-08-12T10:31:39.381166Z" + "iopub.execute_input": "2024-08-12T18:54:19.863289Z", + "iopub.status.busy": "2024-08-12T18:54:19.863103Z", + "iopub.status.idle": "2024-08-12T18:54:19.881662Z", + "shell.execute_reply": "2024-08-12T18:54:19.881178Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:39.383708Z", - "iopub.status.busy": "2024-08-12T10:31:39.383362Z", - "iopub.status.idle": "2024-08-12T10:31:39.386579Z", - "shell.execute_reply": "2024-08-12T10:31:39.386056Z" + "iopub.execute_input": "2024-08-12T18:54:19.883637Z", + "iopub.status.busy": "2024-08-12T18:54:19.883457Z", + "iopub.status.idle": "2024-08-12T18:54:19.886532Z", + "shell.execute_reply": "2024-08-12T18:54:19.886084Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:39.388474Z", - "iopub.status.busy": "2024-08-12T10:31:39.388295Z", - "iopub.status.idle": "2024-08-12T10:31:53.912289Z", - "shell.execute_reply": "2024-08-12T10:31:53.911735Z" + "iopub.execute_input": "2024-08-12T18:54:19.888530Z", + "iopub.status.busy": "2024-08-12T18:54:19.888180Z", + "iopub.status.idle": "2024-08-12T18:54:34.498733Z", + "shell.execute_reply": "2024-08-12T18:54:34.498075Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:53.914987Z", - "iopub.status.busy": "2024-08-12T10:31:53.914565Z", - "iopub.status.idle": "2024-08-12T10:31:53.918442Z", - "shell.execute_reply": "2024-08-12T10:31:53.917879Z" + "iopub.execute_input": "2024-08-12T18:54:34.501588Z", + "iopub.status.busy": "2024-08-12T18:54:34.501212Z", + "iopub.status.idle": "2024-08-12T18:54:34.505069Z", + "shell.execute_reply": "2024-08-12T18:54:34.504545Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:53.920671Z", - "iopub.status.busy": "2024-08-12T10:31:53.920322Z", - "iopub.status.idle": "2024-08-12T10:31:54.650629Z", - "shell.execute_reply": "2024-08-12T10:31:54.650002Z" + "iopub.execute_input": "2024-08-12T18:54:34.507196Z", + "iopub.status.busy": "2024-08-12T18:54:34.506852Z", + "iopub.status.idle": "2024-08-12T18:54:35.241502Z", + "shell.execute_reply": "2024-08-12T18:54:35.240901Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.653500Z", - "iopub.status.busy": "2024-08-12T10:31:54.653156Z", - "iopub.status.idle": "2024-08-12T10:31:54.657830Z", - "shell.execute_reply": "2024-08-12T10:31:54.657339Z" + "iopub.execute_input": "2024-08-12T18:54:35.245317Z", + "iopub.status.busy": "2024-08-12T18:54:35.244326Z", + "iopub.status.idle": "2024-08-12T18:54:35.251232Z", + "shell.execute_reply": "2024-08-12T18:54:35.250716Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.660238Z", - "iopub.status.busy": "2024-08-12T10:31:54.659917Z", - "iopub.status.idle": "2024-08-12T10:31:54.771646Z", - "shell.execute_reply": "2024-08-12T10:31:54.770906Z" + "iopub.execute_input": "2024-08-12T18:54:35.254892Z", + "iopub.status.busy": "2024-08-12T18:54:35.253950Z", + "iopub.status.idle": "2024-08-12T18:54:35.371220Z", + "shell.execute_reply": "2024-08-12T18:54:35.370579Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.774198Z", - "iopub.status.busy": "2024-08-12T10:31:54.773768Z", - "iopub.status.idle": "2024-08-12T10:31:54.786459Z", - "shell.execute_reply": "2024-08-12T10:31:54.785945Z" + "iopub.execute_input": "2024-08-12T18:54:35.373827Z", + "iopub.status.busy": "2024-08-12T18:54:35.373627Z", + "iopub.status.idle": "2024-08-12T18:54:35.386543Z", + "shell.execute_reply": "2024-08-12T18:54:35.386056Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.788774Z", - "iopub.status.busy": "2024-08-12T10:31:54.788346Z", - "iopub.status.idle": "2024-08-12T10:31:54.796268Z", - "shell.execute_reply": "2024-08-12T10:31:54.795704Z" + "iopub.execute_input": "2024-08-12T18:54:35.388685Z", + "iopub.status.busy": "2024-08-12T18:54:35.388421Z", + "iopub.status.idle": "2024-08-12T18:54:35.396287Z", + "shell.execute_reply": "2024-08-12T18:54:35.395747Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.798511Z", - "iopub.status.busy": "2024-08-12T10:31:54.798097Z", - "iopub.status.idle": "2024-08-12T10:31:54.802250Z", - "shell.execute_reply": "2024-08-12T10:31:54.801692Z" + "iopub.execute_input": "2024-08-12T18:54:35.398352Z", + "iopub.status.busy": "2024-08-12T18:54:35.398175Z", + "iopub.status.idle": "2024-08-12T18:54:35.402421Z", + "shell.execute_reply": "2024-08-12T18:54:35.401981Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.804434Z", - "iopub.status.busy": "2024-08-12T10:31:54.804110Z", - "iopub.status.idle": "2024-08-12T10:31:54.809820Z", - "shell.execute_reply": "2024-08-12T10:31:54.809216Z" + "iopub.execute_input": "2024-08-12T18:54:35.404458Z", + "iopub.status.busy": "2024-08-12T18:54:35.404104Z", + "iopub.status.idle": "2024-08-12T18:54:35.409696Z", + "shell.execute_reply": "2024-08-12T18:54:35.409125Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.812094Z", - "iopub.status.busy": "2024-08-12T10:31:54.811739Z", - "iopub.status.idle": "2024-08-12T10:31:54.923543Z", - "shell.execute_reply": "2024-08-12T10:31:54.922978Z" + "iopub.execute_input": "2024-08-12T18:54:35.411873Z", + "iopub.status.busy": "2024-08-12T18:54:35.411459Z", + "iopub.status.idle": "2024-08-12T18:54:35.523406Z", + "shell.execute_reply": "2024-08-12T18:54:35.522815Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:54.925854Z", - "iopub.status.busy": "2024-08-12T10:31:54.925415Z", - "iopub.status.idle": "2024-08-12T10:31:55.031344Z", - "shell.execute_reply": "2024-08-12T10:31:55.030759Z" + "iopub.execute_input": "2024-08-12T18:54:35.525613Z", + "iopub.status.busy": "2024-08-12T18:54:35.525277Z", + "iopub.status.idle": "2024-08-12T18:54:35.630701Z", + "shell.execute_reply": "2024-08-12T18:54:35.630133Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T10:31:55.033717Z", - "iopub.status.busy": "2024-08-12T10:31:55.033217Z", - "iopub.status.idle": "2024-08-12T10:31:55.137202Z", - "shell.execute_reply": "2024-08-12T10:31:55.136556Z" + "iopub.execute_input": "2024-08-12T18:54:35.632969Z", + "iopub.status.busy": "2024-08-12T18:54:35.632608Z", + "iopub.status.idle": "2024-08-12T18:54:35.735760Z", + "shell.execute_reply": "2024-08-12T18:54:35.735250Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:55.139888Z", - "iopub.status.busy": "2024-08-12T10:31:55.139384Z", - "iopub.status.idle": "2024-08-12T10:31:55.247170Z", - "shell.execute_reply": "2024-08-12T10:31:55.246562Z" + "iopub.execute_input": "2024-08-12T18:54:35.738090Z", + "iopub.status.busy": "2024-08-12T18:54:35.737656Z", + "iopub.status.idle": "2024-08-12T18:54:35.841118Z", + "shell.execute_reply": "2024-08-12T18:54:35.840529Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:55.249509Z", - "iopub.status.busy": "2024-08-12T10:31:55.249171Z", - "iopub.status.idle": "2024-08-12T10:31:55.252645Z", - "shell.execute_reply": "2024-08-12T10:31:55.252057Z" + "iopub.execute_input": "2024-08-12T18:54:35.843257Z", + "iopub.status.busy": "2024-08-12T18:54:35.843073Z", + "iopub.status.idle": "2024-08-12T18:54:35.846791Z", + "shell.execute_reply": "2024-08-12T18:54:35.846360Z" }, "nbsphinx": "hidden" }, @@ -1392,60 +1392,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0246673bda614057b87d1d4a071d07dc": { - "model_module": "@jupyter-widgets/base", + "03f7f54757af4c188654225ff568cc15": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06a7e8c848574d27a7e9b42a3825fab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "02a20d41840f41e593671467329b8a99": { + "0928624b605147408eb9eb71a02f2be6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1463,7 +1446,7 @@ "text_color": null } }, - "03639896d78b4997bfa5bd4ef9dd3b73": { + "11533647f3334084be47152e5df913b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1478,15 +1461,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c99dff9eb4d49c884091c0856298635", + "layout": "IPY_MODEL_bcc3d779d9ec4bdda4a144acdd9536b9", "placeholder": "​", - "style": "IPY_MODEL_54bfa2603b3d480cb21708ef6cbb23c2", + "style": "IPY_MODEL_03f7f54757af4c188654225ff568cc15", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 607kB/s]" + "value": "hyperparams.yaml: 100%" } }, - "0520862119224c0dadeb77bdab0013c1": { + "1438f73581cf412b872cda6b268a44cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1501,15 +1484,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c284236043894de7a2aeab311605060f", + "layout": "IPY_MODEL_fba2a74e14a442f2ac8a5666c47f101c", "placeholder": "​", - "style": "IPY_MODEL_02a20d41840f41e593671467329b8a99", + "style": "IPY_MODEL_af55ac5d4b8343f49f8eafa3a8393609", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": " 2.04k/2.04k [00:00<00:00, 489kB/s]" } }, - "08360c1171a6493298ae9e0be537aeb1": { + "16b8ca036731448b9d41d1e3f758031e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1527,7 +1510,7 @@ "text_color": null } }, - "085a6252fdf04f9c8504f50efe0cddcb": { + "1f7582c5b66e440696c93331f3f021bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1542,15 +1525,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b0f7fc885b94f2fba36f99bff582ece", + "layout": "IPY_MODEL_7c9dfa3179eb4fa68cadc1f9bbb924c1", "placeholder": "​", - "style": "IPY_MODEL_08360c1171a6493298ae9e0be537aeb1", + "style": "IPY_MODEL_7b0be97f0dc34a8793149a2ed20c1e6a", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 22.7MB/s]" + "value": " 3.20k/3.20k [00:00<00:00, 613kB/s]" } }, - "0cc1e2ec36dd4b3585cdf8034ca0aa07": { + "24e4db787b034c95b86daf73c904c1a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1603,7 +1586,31 @@ "width": null } }, - "12085fdd993b4978b67be8ceccf56834": { + "27771d0db6954d13b8330016db2e968d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11533647f3334084be47152e5df913b5", + "IPY_MODEL_cceed8cc8dbc4c2998b2aa56d37c56cd", + "IPY_MODEL_1438f73581cf412b872cda6b268a44cb" + ], + "layout": "IPY_MODEL_b625d5b3df6a43a58e4dd8f8487787b1", + "tabbable": null, + "tooltip": null + } + }, + "284f489d1c0940a4af6498cc4ee288ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1656,7 +1663,79 @@ "width": null } }, - "1be4f39f14ee43cbb74596a54a9d8272": { + "3ce08a518118470bafdffe4fda5d402b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6aa0c0cf24374c218f799b51cbe4c313", + "placeholder": "​", + "style": "IPY_MODEL_684c05db502f40d28dd939735db61d61", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "494870d44ab447f59b1edff68497591d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e72c130d931142fc86553b3079a5359c", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6dfc7b27f58e4f92b4a505eb402fb2d9", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "499bfda7f0f2413a846e584855e03e83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d83f5f37ce8d42a8a710791ab26be95b", + "placeholder": "​", + "style": "IPY_MODEL_06a7e8c848574d27a7e9b42a3825fab6", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 132MB/s]" + } + }, + "54b0a200e2264ed39796f6804956206d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1671,16 +1750,50 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0520862119224c0dadeb77bdab0013c1", - "IPY_MODEL_b6235d9a1eca4733ba0221542f0d3643", - "IPY_MODEL_03639896d78b4997bfa5bd4ef9dd3b73" + "IPY_MODEL_66a984112df94fb797f03c16ea0d8871", + "IPY_MODEL_e1e79e04340c42c4a07b65de15d378e8", + "IPY_MODEL_499bfda7f0f2413a846e584855e03e83" ], - "layout": "IPY_MODEL_eddc0c22a05d419fbb6a614c372acc94", + "layout": "IPY_MODEL_dbd814ae298e4662b635d3981cc98115", "tabbable": null, "tooltip": null } }, - "26dbafb5ca4e4097b6639ac5d840d91d": { + "644aa3d4a2474af6927b1d63fee9198c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6698e8a3edb642f5aa1cf99dae6c5d9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "66a984112df94fb797f03c16ea0d8871": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1695,15 +1808,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a6994f6b25404fa090773a364b257fee", + "layout": "IPY_MODEL_66b483bdb67f481d9a04248eaaa928f9", "placeholder": "​", - "style": "IPY_MODEL_a437de4edb0b4d1c94542633e608f95c", + "style": "IPY_MODEL_6698e8a3edb642f5aa1cf99dae6c5d9c", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "2b302faa18af4ea2b2b48d13597cc0ce": { + "66b483bdb67f481d9a04248eaaa928f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1756,49 +1869,25 @@ "width": null } }, - "2db66ec325294ef6b6c0bbcbf4ddf956": { + "684c05db502f40d28dd939735db61d61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b302faa18af4ea2b2b48d13597cc0ce", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36aaabf0d872419192d27b84e5bffb77", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "30b5cf292a2d4ef7917f1a528257c959": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3151034ce11c498ca70679e99c762223": { + "6aa0c0cf24374c218f799b51cbe4c313": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1851,7 +1940,47 @@ "width": null } }, - "352c03049ef34564be6b16e25fa62a97": { + "6b2f65e78619452f87f1e932c7779a0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b53fbd141a0c4a8ab26809588da553f8", + "IPY_MODEL_cd5779376f004c009a4cbc1ed71c233b", + "IPY_MODEL_b35d0be8f8f04f16852f200cc17d2a48" + ], + "layout": "IPY_MODEL_f7727a55541349bab503521054f0b8fc", + "tabbable": null, + "tooltip": null + } + }, + "6dfc7b27f58e4f92b4a505eb402fb2d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "702b794e5f074a9a800b1fb24f613bb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1904,71 +2033,7 @@ "width": null } }, - "36aaabf0d872419192d27b84e5bffb77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "45285f6718ab4536af48bcf06a0aac0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26dbafb5ca4e4097b6639ac5d840d91d", - "IPY_MODEL_c33c14b2a5e34ea0ae0823ec817c2bbd", - "IPY_MODEL_085a6252fdf04f9c8504f50efe0cddcb" - ], - "layout": "IPY_MODEL_352c03049ef34564be6b16e25fa62a97", - "tabbable": null, - "tooltip": null - } - }, - "48329f782307409c919507e64a194700": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f86c045b5af482e91516dd8164e57db", - "IPY_MODEL_2db66ec325294ef6b6c0bbcbf4ddf956", - "IPY_MODEL_991617589a474008aa2118e6b402fe3c" - ], - "layout": "IPY_MODEL_8d7752acd7244143a2465138cfdd0848", - "tabbable": null, - "tooltip": null - } - }, - "4da7e4e7f66c437b9df947311fbcabb3": { + "7adf59dc52204c3f86660622c4666c27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2021,7 +2086,7 @@ "width": null } }, - "54bfa2603b3d480cb21708ef6cbb23c2": { + "7b0be97f0dc34a8793149a2ed20c1e6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2039,48 +2104,7 @@ "text_color": null } }, - "57c1a597566543ed9f622ce49e94ab55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5d435c65a28f416dba8acf9e9037e772": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3151034ce11c498ca70679e99c762223", - "placeholder": "​", - "style": "IPY_MODEL_d9623ce9228240f792b723b5ae5f6aea", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 17.8MB/s]" - } - }, - "7065599fb27a4c94b3a0f83176455eb3": { + "7c9dfa3179eb4fa68cadc1f9bbb924c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2133,7 +2157,7 @@ "width": null } }, - "759039067d2c4508b2db8adf3602ecb7": { + "7fd7da3595bd40c8b1faffe0b53a48ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2186,7 +2210,7 @@ "width": null } }, - "771d8a9eed1f4ac980d85ec212352d9c": { + "93028f149ffd473e86c3c69dc9109cdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2201,15 +2225,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0246673bda614057b87d1d4a071d07dc", + "layout": "IPY_MODEL_7adf59dc52204c3f86660622c4666c27", "placeholder": "​", - "style": "IPY_MODEL_b9575927b7ff4dc3b4f219a8058b36b9", + "style": "IPY_MODEL_ab9f37394fa44215880e555b1930de5f", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 478kB/s]" + "value": "label_encoder.txt: 100%" } }, - "7b0a21f462aa4c588fc88161d4aacaf7": { + "9732897bd82b4795960f3fa636882b4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,7 +2286,31 @@ "width": null } }, - "7b0f7fc885b94f2fba36f99bff582ece": { + "99cd7f24e6c24e2d8aef090591fa9515": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_93028f149ffd473e86c3c69dc9109cdd", + "IPY_MODEL_9e1ff364598a478e8995918a356b3b5c", + "IPY_MODEL_e0a6f2898caf4d7e97c9b4699dd4cf31" + ], + "layout": "IPY_MODEL_d2b1d0dbee844ff2bc4beb0af94c0cde", + "tabbable": null, + "tooltip": null + } + }, + "9da1a583772d4e5aa4706118496f70a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2315,7 +2363,57 @@ "width": null } }, - "7d2d458d370049b88ce3f448a6173436": { + "9e1ff364598a478e8995918a356b3b5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24e4db787b034c95b86daf73c904c1a1", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc570043ee494a73a8003a18a11c32cf", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "9f932b3088d94f10b72edd6565da7964": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ce08a518118470bafdffe4fda5d402b", + "IPY_MODEL_494870d44ab447f59b1edff68497591d", + "IPY_MODEL_1f7582c5b66e440696c93331f3f021bd" + ], + "layout": "IPY_MODEL_7fd7da3595bd40c8b1faffe0b53a48ff", + "tabbable": null, + "tooltip": null + } + }, + "ab9f37394fa44215880e555b1930de5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2333,23 +2431,48 @@ "text_color": null } }, - "7eb78abc773d43d6b5f5ea1b3a7d118a": { + "af55ac5d4b8343f49f8eafa3a8393609": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b35d0be8f8f04f16852f200cc17d2a48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9da1a583772d4e5aa4706118496f70a8", + "placeholder": "​", + "style": "IPY_MODEL_fbbe413f447e46a69b5ce66589c01b7c", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 219MB/s]" } }, - "8815f4d0f8a1488fb6ac1517db64608e": { + "b53fbd141a0c4a8ab26809588da553f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2364,15 +2487,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0cc1e2ec36dd4b3585cdf8034ca0aa07", + "layout": "IPY_MODEL_702b794e5f074a9a800b1fb24f613bb4", "placeholder": "​", - "style": "IPY_MODEL_7d2d458d370049b88ce3f448a6173436", + "style": "IPY_MODEL_16b8ca036731448b9d41d1e3f758031e", "tabbable": null, "tooltip": null, "value": "classifier.ckpt: 100%" } }, - "8c99dff9eb4d49c884091c0856298635": { + "b625d5b3df6a43a58e4dd8f8487787b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,7 +2548,23 @@ "width": null } }, - "8d7752acd7244143a2465138cfdd0848": { + "bc570043ee494a73a8003a18a11c32cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bcc3d779d9ec4bdda4a144acdd9536b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2478,71 +2617,59 @@ "width": null } }, - "8f86c045b5af482e91516dd8164e57db": { + "cceed8cc8dbc4c2998b2aa56d37c56cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_12085fdd993b4978b67be8ceccf56834", - "placeholder": "​", - "style": "IPY_MODEL_b22538f44134499ca67768efd562ef59", + "layout": "IPY_MODEL_d7972c555f854ec4830cc1462507f6dc", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e524bdde26e74dbb918e03703935b9aa", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "98d46bcc8409465291c0807491bba1a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 2041.0 } }, - "991617589a474008aa2118e6b402fe3c": { + "cd5779376f004c009a4cbc1ed71c233b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4da7e4e7f66c437b9df947311fbcabb3", - "placeholder": "​", - "style": "IPY_MODEL_57c1a597566543ed9f622ce49e94ab55", + "layout": "IPY_MODEL_9732897bd82b4795960f3fa636882b4c", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_644aa3d4a2474af6927b1d63fee9198c", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 25.8MB/s]" + "value": 15856877.0 } }, - "9bb209b5c60041e89c0b6a139baf0cf2": { + "d2b1d0dbee844ff2bc4beb0af94c0cde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2595,64 +2722,7 @@ "width": null } }, - "9d68db3bc2ea4e8a99fb98e4d66c9160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9ea2756856324606b3da554c15c654d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fbf1b34c34974d5aa871e28dbd8a00f5", - "placeholder": "​", - "style": "IPY_MODEL_98d46bcc8409465291c0807491bba1a6", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "a437de4edb0b4d1c94542633e608f95c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a6994f6b25404fa090773a364b257fee": { + "d7972c555f854ec4830cc1462507f6dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2705,7 +2775,7 @@ "width": null } }, - "acffbafe17c140c5a8dd99c8acfd75bd": { + "d83f5f37ce8d42a8a710791ab26be95b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2758,93 +2828,60 @@ "width": null } }, - "b22538f44134499ca67768efd562ef59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b578372e109c4035a055c5b83ba4abec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8815f4d0f8a1488fb6ac1517db64608e", - "IPY_MODEL_e3fad78d0a454ee18486769b1f290a04", - "IPY_MODEL_5d435c65a28f416dba8acf9e9037e772" - ], - "layout": "IPY_MODEL_de5219ece0bc4a8aa3814769270a8251", - "tabbable": null, - "tooltip": null - } - }, - "b6235d9a1eca4733ba0221542f0d3643": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acffbafe17c140c5a8dd99c8acfd75bd", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9d68db3bc2ea4e8a99fb98e4d66c9160", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "b9575927b7ff4dc3b4f219a8058b36b9": { - "model_module": "@jupyter-widgets/controls", + "da200749ab8f461f8631919121dfe71f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c284236043894de7a2aeab311605060f": { + "dbd814ae298e4662b635d3981cc98115": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,33 +2934,30 @@ "width": null } }, - "c33c14b2a5e34ea0ae0823ec817c2bbd": { + "e0a6f2898caf4d7e97c9b4699dd4cf31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9bb209b5c60041e89c0b6a139baf0cf2", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cba2fe5da4504b8bb895fbd45626e1e4", + "layout": "IPY_MODEL_284f489d1c0940a4af6498cc4ee288ad", + "placeholder": "​", + "style": "IPY_MODEL_0928624b605147408eb9eb71a02f2be6", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": " 129k/129k [00:00<00:00, 1.01MB/s]" } }, - "c944ad099e17457fa206b43284821586": { + "e1e79e04340c42c4a07b65de15d378e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2939,17 +2973,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b0a21f462aa4c588fc88161d4aacaf7", - "max": 2041.0, + "layout": "IPY_MODEL_da200749ab8f461f8631919121dfe71f", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_30b5cf292a2d4ef7917f1a528257c959", + "style": "IPY_MODEL_ee6f990c3c4440e1b161a7386ee60cf5", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 16887676.0 } }, - "cba2fe5da4504b8bb895fbd45626e1e4": { + "e524bdde26e74dbb918e03703935b9aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2965,25 +2999,7 @@ "description_width": "" } }, - "d9623ce9228240f792b723b5ae5f6aea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de5219ece0bc4a8aa3814769270a8251": { + "e72c130d931142fc86553b3079a5359c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3036,33 +3052,23 @@ "width": null } }, - "e3fad78d0a454ee18486769b1f290a04": { + "ee6f990c3c4440e1b161a7386ee60cf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7065599fb27a4c94b3a0f83176455eb3", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7eb78abc773d43d6b5f5ea1b3a7d118a", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eddc0c22a05d419fbb6a614c372acc94": { + "f7727a55541349bab503521054f0b8fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3115,31 +3121,7 @@ "width": null } }, - "f13e6c1113f74ad78e8ebb5bae8047e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9ea2756856324606b3da554c15c654d0", - "IPY_MODEL_c944ad099e17457fa206b43284821586", - "IPY_MODEL_771d8a9eed1f4ac980d85ec212352d9c" - ], - "layout": "IPY_MODEL_759039067d2c4508b2db8adf3602ecb7", - "tabbable": null, - "tooltip": null - } - }, - "fbf1b34c34974d5aa871e28dbd8a00f5": { + "fba2a74e14a442f2ac8a5666c47f101c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3191,6 +3173,24 @@ "visibility": null, "width": null } + }, + "fbbe413f447e46a69b5ce66589c01b7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 749518eec..7e94808be 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"9ca473e51cfe4e43aa18d492518d8d5a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ffddd94db73a4ecf8ec12daa355bfab3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "54d7caf41f934968aee3eba3ea8e068b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ca473e51cfe4e43aa18d492518d8d5a", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ffddd94db73a4ecf8ec12daa355bfab3", "tabbable": null, "tooltip": null, "value": 132.0}}, "8840190de80b4ad7b948b5c41cd9b9a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3bc0dcea43a547e3a8b3ba8ba898ebc3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a3b187cf3ab34fe997d96e21abb214cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8840190de80b4ad7b948b5c41cd9b9a6", "placeholder": "\u200b", "style": "IPY_MODEL_3bc0dcea43a547e3a8b3ba8ba898ebc3", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "ff9d81d4322d4281a3537e0673a5b97d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07a72d376d6e478baad0ef09f148bbf6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "50535b3950f44374a0fd1c9724af2593": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff9d81d4322d4281a3537e0673a5b97d", "placeholder": "\u200b", "style": "IPY_MODEL_07a72d376d6e478baad0ef09f148bbf6", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712983.33\u2007examples/s]"}}, "973f5f2c9d4947229d6f499d72a6e562": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dffb23ed5c2644778ec4c7c3f2b9f329": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a3b187cf3ab34fe997d96e21abb214cc", "IPY_MODEL_54d7caf41f934968aee3eba3ea8e068b", "IPY_MODEL_50535b3950f44374a0fd1c9724af2593"], "layout": "IPY_MODEL_973f5f2c9d4947229d6f499d72a6e562", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"8d3040f7badd480cb4758b3ee6ea3615": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "175635551dce4d5b9d9815408f4ba772": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "07fae94dc369441db55c36885f885497": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d3040f7badd480cb4758b3ee6ea3615", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_175635551dce4d5b9d9815408f4ba772", "tabbable": null, "tooltip": null, "value": 132.0}}, "9d9eac6aa2924c35b65ba9e37e8f5ba6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53ad7637ce9042aeac54dad41f926eab": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c597b0be955f4f83b9771e52a77f5227": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d9eac6aa2924c35b65ba9e37e8f5ba6", "placeholder": "\u200b", "style": "IPY_MODEL_53ad7637ce9042aeac54dad41f926eab", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "b2522c28b0f649deb2097d5ca5fb0d82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "879875d9a76b42c7b40a46c9b73790be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "732c5e8ebc71468e8791a9689e134749": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2522c28b0f649deb2097d5ca5fb0d82", "placeholder": "\u200b", "style": "IPY_MODEL_879875d9a76b42c7b40a46c9b73790be", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712720.23\u2007examples/s]"}}, "c4a1c8771e3d4954b668f01917df936c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "494ddfe9435b45b79bfc08b9e766f1b5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c597b0be955f4f83b9771e52a77f5227", "IPY_MODEL_07fae94dc369441db55c36885f885497", "IPY_MODEL_732c5e8ebc71468e8791a9689e134749"], "layout": "IPY_MODEL_c4a1c8771e3d4954b668f01917df936c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 3b981fe19..175c480da 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:31:59.748865Z", - "iopub.status.busy": "2024-08-12T10:31:59.748689Z", - "iopub.status.idle": "2024-08-12T10:32:01.178381Z", - "shell.execute_reply": "2024-08-12T10:32:01.177678Z" + "iopub.execute_input": "2024-08-12T18:54:41.056251Z", + "iopub.status.busy": "2024-08-12T18:54:41.056072Z", + "iopub.status.idle": "2024-08-12T18:54:42.472255Z", + "shell.execute_reply": "2024-08-12T18:54:42.471637Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.181077Z", - "iopub.status.busy": "2024-08-12T10:32:01.180732Z", - "iopub.status.idle": "2024-08-12T10:32:01.184111Z", - "shell.execute_reply": "2024-08-12T10:32:01.183554Z" + "iopub.execute_input": "2024-08-12T18:54:42.474736Z", + "iopub.status.busy": "2024-08-12T18:54:42.474444Z", + "iopub.status.idle": "2024-08-12T18:54:42.477548Z", + "shell.execute_reply": "2024-08-12T18:54:42.477075Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.186467Z", - "iopub.status.busy": "2024-08-12T10:32:01.185987Z", - "iopub.status.idle": "2024-08-12T10:32:01.194805Z", - "shell.execute_reply": "2024-08-12T10:32:01.194325Z" + "iopub.execute_input": "2024-08-12T18:54:42.479701Z", + "iopub.status.busy": "2024-08-12T18:54:42.479369Z", + "iopub.status.idle": "2024-08-12T18:54:42.487756Z", + "shell.execute_reply": "2024-08-12T18:54:42.487291Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.196739Z", - "iopub.status.busy": "2024-08-12T10:32:01.196579Z", - "iopub.status.idle": "2024-08-12T10:32:01.201598Z", - "shell.execute_reply": "2024-08-12T10:32:01.201169Z" + "iopub.execute_input": "2024-08-12T18:54:42.489795Z", + "iopub.status.busy": "2024-08-12T18:54:42.489482Z", + "iopub.status.idle": "2024-08-12T18:54:42.494587Z", + "shell.execute_reply": "2024-08-12T18:54:42.494140Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.203716Z", - "iopub.status.busy": "2024-08-12T10:32:01.203381Z", - "iopub.status.idle": "2024-08-12T10:32:01.211227Z", - "shell.execute_reply": "2024-08-12T10:32:01.210770Z" + "iopub.execute_input": "2024-08-12T18:54:42.496778Z", + "iopub.status.busy": "2024-08-12T18:54:42.496435Z", + "iopub.status.idle": "2024-08-12T18:54:42.504078Z", + "shell.execute_reply": "2024-08-12T18:54:42.503573Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.213218Z", - "iopub.status.busy": "2024-08-12T10:32:01.212875Z", - "iopub.status.idle": "2024-08-12T10:32:01.590347Z", - "shell.execute_reply": "2024-08-12T10:32:01.589735Z" + "iopub.execute_input": "2024-08-12T18:54:42.506139Z", + "iopub.status.busy": "2024-08-12T18:54:42.505804Z", + "iopub.status.idle": "2024-08-12T18:54:42.830541Z", + "shell.execute_reply": "2024-08-12T18:54:42.829968Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.592629Z", - "iopub.status.busy": "2024-08-12T10:32:01.592298Z", - "iopub.status.idle": "2024-08-12T10:32:01.615629Z", - "shell.execute_reply": "2024-08-12T10:32:01.615067Z" + "iopub.execute_input": "2024-08-12T18:54:42.832992Z", + "iopub.status.busy": "2024-08-12T18:54:42.832627Z", + "iopub.status.idle": "2024-08-12T18:54:42.856185Z", + "shell.execute_reply": "2024-08-12T18:54:42.855743Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.617888Z", - "iopub.status.busy": "2024-08-12T10:32:01.617542Z", - "iopub.status.idle": "2024-08-12T10:32:01.706974Z", - "shell.execute_reply": "2024-08-12T10:32:01.706312Z" + "iopub.execute_input": "2024-08-12T18:54:42.858335Z", + "iopub.status.busy": "2024-08-12T18:54:42.857997Z", + "iopub.status.idle": "2024-08-12T18:54:42.947501Z", + "shell.execute_reply": "2024-08-12T18:54:42.946870Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:01.709728Z", - "iopub.status.busy": "2024-08-12T10:32:01.709322Z", - "iopub.status.idle": "2024-08-12T10:32:03.790772Z", - "shell.execute_reply": "2024-08-12T10:32:03.790079Z" + "iopub.execute_input": "2024-08-12T18:54:42.950217Z", + "iopub.status.busy": "2024-08-12T18:54:42.949881Z", + "iopub.status.idle": "2024-08-12T18:54:44.975217Z", + "shell.execute_reply": "2024-08-12T18:54:44.974523Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.793485Z", - "iopub.status.busy": "2024-08-12T10:32:03.793002Z", - "iopub.status.idle": "2024-08-12T10:32:03.815741Z", - "shell.execute_reply": "2024-08-12T10:32:03.815264Z" + "iopub.execute_input": "2024-08-12T18:54:44.978079Z", + "iopub.status.busy": "2024-08-12T18:54:44.977462Z", + "iopub.status.idle": "2024-08-12T18:54:44.999916Z", + "shell.execute_reply": "2024-08-12T18:54:44.999471Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.817911Z", - "iopub.status.busy": "2024-08-12T10:32:03.817557Z", - "iopub.status.idle": "2024-08-12T10:32:03.835714Z", - "shell.execute_reply": "2024-08-12T10:32:03.835233Z" + "iopub.execute_input": "2024-08-12T18:54:45.002071Z", + "iopub.status.busy": "2024-08-12T18:54:45.001773Z", + "iopub.status.idle": "2024-08-12T18:54:45.019241Z", + "shell.execute_reply": "2024-08-12T18:54:45.018687Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.837879Z", - "iopub.status.busy": "2024-08-12T10:32:03.837527Z", - "iopub.status.idle": "2024-08-12T10:32:03.851514Z", - "shell.execute_reply": "2024-08-12T10:32:03.851026Z" + "iopub.execute_input": "2024-08-12T18:54:45.021387Z", + "iopub.status.busy": "2024-08-12T18:54:45.020989Z", + "iopub.status.idle": "2024-08-12T18:54:45.034863Z", + "shell.execute_reply": "2024-08-12T18:54:45.034371Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.853602Z", - "iopub.status.busy": "2024-08-12T10:32:03.853416Z", - "iopub.status.idle": "2024-08-12T10:32:03.873168Z", - "shell.execute_reply": "2024-08-12T10:32:03.872577Z" + "iopub.execute_input": "2024-08-12T18:54:45.036969Z", + "iopub.status.busy": "2024-08-12T18:54:45.036650Z", + "iopub.status.idle": "2024-08-12T18:54:45.057198Z", + "shell.execute_reply": "2024-08-12T18:54:45.056594Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dffb23ed5c2644778ec4c7c3f2b9f329", + "model_id": "494ddfe9435b45b79bfc08b9e766f1b5", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.875189Z", - "iopub.status.busy": "2024-08-12T10:32:03.874883Z", - "iopub.status.idle": "2024-08-12T10:32:03.889632Z", - "shell.execute_reply": "2024-08-12T10:32:03.889056Z" + "iopub.execute_input": "2024-08-12T18:54:45.059360Z", + "iopub.status.busy": "2024-08-12T18:54:45.059019Z", + "iopub.status.idle": "2024-08-12T18:54:45.073874Z", + "shell.execute_reply": "2024-08-12T18:54:45.073413Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.891772Z", - "iopub.status.busy": "2024-08-12T10:32:03.891429Z", - "iopub.status.idle": "2024-08-12T10:32:03.897352Z", - "shell.execute_reply": "2024-08-12T10:32:03.896888Z" + "iopub.execute_input": "2024-08-12T18:54:45.076063Z", + "iopub.status.busy": "2024-08-12T18:54:45.075717Z", + "iopub.status.idle": "2024-08-12T18:54:45.081565Z", + "shell.execute_reply": "2024-08-12T18:54:45.081118Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:03.899329Z", - "iopub.status.busy": "2024-08-12T10:32:03.899153Z", - "iopub.status.idle": "2024-08-12T10:32:03.917989Z", - "shell.execute_reply": "2024-08-12T10:32:03.917520Z" + "iopub.execute_input": "2024-08-12T18:54:45.083640Z", + "iopub.status.busy": "2024-08-12T18:54:45.083296Z", + "iopub.status.idle": "2024-08-12T18:54:45.100645Z", + "shell.execute_reply": "2024-08-12T18:54:45.100155Z" } }, "outputs": [ @@ -1447,25 +1447,73 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07a72d376d6e478baad0ef09f148bbf6": { + "07fae94dc369441db55c36885f885497": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d3040f7badd480cb4758b3ee6ea3615", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_175635551dce4d5b9d9815408f4ba772", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "175635551dce4d5b9d9815408f4ba772": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3bc0dcea43a547e3a8b3ba8ba898ebc3": { + "494ddfe9435b45b79bfc08b9e766f1b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c597b0be955f4f83b9771e52a77f5227", + "IPY_MODEL_07fae94dc369441db55c36885f885497", + "IPY_MODEL_732c5e8ebc71468e8791a9689e134749" + ], + "layout": "IPY_MODEL_c4a1c8771e3d4954b668f01917df936c", + "tabbable": null, + "tooltip": null + } + }, + "53ad7637ce9042aeac54dad41f926eab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1483,7 +1531,7 @@ "text_color": null } }, - "50535b3950f44374a0fd1c9724af2593": { + "732c5e8ebc71468e8791a9689e134749": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1498,41 +1546,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ff9d81d4322d4281a3537e0673a5b97d", + "layout": "IPY_MODEL_b2522c28b0f649deb2097d5ca5fb0d82", "placeholder": "​", - "style": "IPY_MODEL_07a72d376d6e478baad0ef09f148bbf6", + "style": "IPY_MODEL_879875d9a76b42c7b40a46c9b73790be", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 12983.33 examples/s]" + "value": " 132/132 [00:00<00:00, 12720.23 examples/s]" } }, - "54d7caf41f934968aee3eba3ea8e068b": { + "879875d9a76b42c7b40a46c9b73790be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ca473e51cfe4e43aa18d492518d8d5a", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ffddd94db73a4ecf8ec12daa355bfab3", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8840190de80b4ad7b948b5c41cd9b9a6": { + "8d3040f7badd480cb4758b3ee6ea3615": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1585,7 +1625,7 @@ "width": null } }, - "973f5f2c9d4947229d6f499d72a6e562": { + "9d9eac6aa2924c35b65ba9e37e8f5ba6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1638,7 +1678,7 @@ "width": null } }, - "9ca473e51cfe4e43aa18d492518d8d5a": { + "b2522c28b0f649deb2097d5ca5fb0d82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,54 +1731,7 @@ "width": null } }, - "a3b187cf3ab34fe997d96e21abb214cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8840190de80b4ad7b948b5c41cd9b9a6", - "placeholder": "​", - "style": "IPY_MODEL_3bc0dcea43a547e3a8b3ba8ba898ebc3", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "dffb23ed5c2644778ec4c7c3f2b9f329": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3b187cf3ab34fe997d96e21abb214cc", - "IPY_MODEL_54d7caf41f934968aee3eba3ea8e068b", - "IPY_MODEL_50535b3950f44374a0fd1c9724af2593" - ], - "layout": "IPY_MODEL_973f5f2c9d4947229d6f499d72a6e562", - "tabbable": null, - "tooltip": null - } - }, - "ff9d81d4322d4281a3537e0673a5b97d": { + "c4a1c8771e3d4954b668f01917df936c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1791,20 +1784,27 @@ "width": null } }, - "ffddd94db73a4ecf8ec12daa355bfab3": { + "c597b0be955f4f83b9771e52a77f5227": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d9eac6aa2924c35b65ba9e37e8f5ba6", + "placeholder": "​", + "style": "IPY_MODEL_53ad7637ce9042aeac54dad41f926eab", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 5a8714bfc..7110e02da 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:06.983365Z", - "iopub.status.busy": "2024-08-12T10:32:06.983197Z", - "iopub.status.idle": "2024-08-12T10:32:08.436869Z", - "shell.execute_reply": "2024-08-12T10:32:08.436300Z" + "iopub.execute_input": "2024-08-12T18:54:48.151726Z", + "iopub.status.busy": "2024-08-12T18:54:48.151554Z", + "iopub.status.idle": "2024-08-12T18:54:49.596164Z", + "shell.execute_reply": "2024-08-12T18:54:49.595523Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.439618Z", - "iopub.status.busy": "2024-08-12T10:32:08.439096Z", - "iopub.status.idle": "2024-08-12T10:32:08.442335Z", - "shell.execute_reply": "2024-08-12T10:32:08.441759Z" + "iopub.execute_input": "2024-08-12T18:54:49.598722Z", + "iopub.status.busy": "2024-08-12T18:54:49.598413Z", + "iopub.status.idle": "2024-08-12T18:54:49.601590Z", + "shell.execute_reply": "2024-08-12T18:54:49.601121Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.444586Z", - "iopub.status.busy": "2024-08-12T10:32:08.444261Z", - "iopub.status.idle": "2024-08-12T10:32:08.453438Z", - "shell.execute_reply": "2024-08-12T10:32:08.452952Z" + "iopub.execute_input": "2024-08-12T18:54:49.603568Z", + "iopub.status.busy": "2024-08-12T18:54:49.603398Z", + "iopub.status.idle": "2024-08-12T18:54:49.612300Z", + "shell.execute_reply": "2024-08-12T18:54:49.611848Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.455435Z", - "iopub.status.busy": "2024-08-12T10:32:08.455255Z", - "iopub.status.idle": "2024-08-12T10:32:08.460524Z", - "shell.execute_reply": "2024-08-12T10:32:08.460066Z" + "iopub.execute_input": "2024-08-12T18:54:49.614119Z", + "iopub.status.busy": "2024-08-12T18:54:49.613947Z", + "iopub.status.idle": "2024-08-12T18:54:49.619273Z", + "shell.execute_reply": "2024-08-12T18:54:49.618710Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.462593Z", - "iopub.status.busy": "2024-08-12T10:32:08.462390Z", - "iopub.status.idle": "2024-08-12T10:32:08.470920Z", - "shell.execute_reply": "2024-08-12T10:32:08.470439Z" + "iopub.execute_input": "2024-08-12T18:54:49.621449Z", + "iopub.status.busy": "2024-08-12T18:54:49.621124Z", + "iopub.status.idle": "2024-08-12T18:54:49.629734Z", + "shell.execute_reply": "2024-08-12T18:54:49.629141Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.472758Z", - "iopub.status.busy": "2024-08-12T10:32:08.472584Z", - "iopub.status.idle": "2024-08-12T10:32:08.850138Z", - "shell.execute_reply": "2024-08-12T10:32:08.849581Z" + "iopub.execute_input": "2024-08-12T18:54:49.631790Z", + "iopub.status.busy": "2024-08-12T18:54:49.631454Z", + "iopub.status.idle": "2024-08-12T18:54:50.004500Z", + "shell.execute_reply": "2024-08-12T18:54:50.003908Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.852345Z", - "iopub.status.busy": "2024-08-12T10:32:08.852165Z", - "iopub.status.idle": "2024-08-12T10:32:08.854819Z", - "shell.execute_reply": "2024-08-12T10:32:08.854355Z" + "iopub.execute_input": "2024-08-12T18:54:50.006701Z", + "iopub.status.busy": "2024-08-12T18:54:50.006421Z", + "iopub.status.idle": "2024-08-12T18:54:50.009100Z", + "shell.execute_reply": "2024-08-12T18:54:50.008644Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.856729Z", - "iopub.status.busy": "2024-08-12T10:32:08.856554Z", - "iopub.status.idle": "2024-08-12T10:32:08.891296Z", - "shell.execute_reply": "2024-08-12T10:32:08.890793Z" + "iopub.execute_input": "2024-08-12T18:54:50.011257Z", + "iopub.status.busy": "2024-08-12T18:54:50.010933Z", + "iopub.status.idle": "2024-08-12T18:54:50.118659Z", + "shell.execute_reply": "2024-08-12T18:54:50.118179Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:08.893906Z", - "iopub.status.busy": "2024-08-12T10:32:08.893545Z", - "iopub.status.idle": "2024-08-12T10:32:11.095965Z", - "shell.execute_reply": "2024-08-12T10:32:11.095252Z" + "iopub.execute_input": "2024-08-12T18:54:50.120914Z", + "iopub.status.busy": "2024-08-12T18:54:50.120580Z", + "iopub.status.idle": "2024-08-12T18:54:52.159958Z", + "shell.execute_reply": "2024-08-12T18:54:52.159303Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.098718Z", - "iopub.status.busy": "2024-08-12T10:32:11.098130Z", - "iopub.status.idle": "2024-08-12T10:32:11.117905Z", - "shell.execute_reply": "2024-08-12T10:32:11.117324Z" + "iopub.execute_input": "2024-08-12T18:54:52.162791Z", + "iopub.status.busy": "2024-08-12T18:54:52.162077Z", + "iopub.status.idle": "2024-08-12T18:54:52.182639Z", + "shell.execute_reply": "2024-08-12T18:54:52.182126Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.120377Z", - "iopub.status.busy": "2024-08-12T10:32:11.119904Z", - "iopub.status.idle": "2024-08-12T10:32:11.127046Z", - "shell.execute_reply": "2024-08-12T10:32:11.126456Z" + "iopub.execute_input": "2024-08-12T18:54:52.184661Z", + "iopub.status.busy": "2024-08-12T18:54:52.184471Z", + "iopub.status.idle": "2024-08-12T18:54:52.191088Z", + "shell.execute_reply": "2024-08-12T18:54:52.190627Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.129084Z", - "iopub.status.busy": "2024-08-12T10:32:11.128900Z", - "iopub.status.idle": "2024-08-12T10:32:11.136478Z", - "shell.execute_reply": "2024-08-12T10:32:11.135930Z" + "iopub.execute_input": "2024-08-12T18:54:52.193149Z", + "iopub.status.busy": "2024-08-12T18:54:52.192969Z", + "iopub.status.idle": "2024-08-12T18:54:52.198891Z", + "shell.execute_reply": "2024-08-12T18:54:52.198307Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.138541Z", - "iopub.status.busy": "2024-08-12T10:32:11.138204Z", - "iopub.status.idle": "2024-08-12T10:32:11.148788Z", - "shell.execute_reply": "2024-08-12T10:32:11.148225Z" + "iopub.execute_input": "2024-08-12T18:54:52.200895Z", + "iopub.status.busy": "2024-08-12T18:54:52.200588Z", + "iopub.status.idle": "2024-08-12T18:54:52.211009Z", + "shell.execute_reply": "2024-08-12T18:54:52.210546Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.150984Z", - "iopub.status.busy": "2024-08-12T10:32:11.150654Z", - "iopub.status.idle": "2024-08-12T10:32:11.160607Z", - "shell.execute_reply": "2024-08-12T10:32:11.160022Z" + "iopub.execute_input": "2024-08-12T18:54:52.213158Z", + "iopub.status.busy": "2024-08-12T18:54:52.212840Z", + "iopub.status.idle": "2024-08-12T18:54:52.221951Z", + "shell.execute_reply": "2024-08-12T18:54:52.221377Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.163177Z", - "iopub.status.busy": "2024-08-12T10:32:11.162777Z", - "iopub.status.idle": "2024-08-12T10:32:11.170325Z", - "shell.execute_reply": "2024-08-12T10:32:11.169691Z" + "iopub.execute_input": "2024-08-12T18:54:52.224128Z", + "iopub.status.busy": "2024-08-12T18:54:52.223855Z", + "iopub.status.idle": "2024-08-12T18:54:52.230669Z", + "shell.execute_reply": "2024-08-12T18:54:52.230101Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.172574Z", - "iopub.status.busy": "2024-08-12T10:32:11.172225Z", - "iopub.status.idle": "2024-08-12T10:32:11.182760Z", - "shell.execute_reply": "2024-08-12T10:32:11.182213Z" + "iopub.execute_input": "2024-08-12T18:54:52.232850Z", + "iopub.status.busy": "2024-08-12T18:54:52.232463Z", + "iopub.status.idle": "2024-08-12T18:54:52.241829Z", + "shell.execute_reply": "2024-08-12T18:54:52.241257Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:11.184974Z", - "iopub.status.busy": "2024-08-12T10:32:11.184656Z", - "iopub.status.idle": "2024-08-12T10:32:11.201470Z", - "shell.execute_reply": "2024-08-12T10:32:11.200965Z" + "iopub.execute_input": "2024-08-12T18:54:52.243956Z", + "iopub.status.busy": "2024-08-12T18:54:52.243626Z", + "iopub.status.idle": "2024-08-12T18:54:52.259258Z", + "shell.execute_reply": "2024-08-12T18:54:52.258809Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index ab8e80b79..e0ac45805 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,31 +727,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1064,7 +1064,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1096,7 +1096,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1128,7 +1128,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2041,35 +2041,35 @@

Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2097,7 +2097,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 4e6eaa9a6..255960716 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:14.108295Z", - "iopub.status.busy": "2024-08-12T10:32:14.107801Z", - "iopub.status.idle": "2024-08-12T10:32:17.199789Z", - "shell.execute_reply": "2024-08-12T10:32:17.199158Z" + "iopub.execute_input": "2024-08-12T18:54:55.167990Z", + "iopub.status.busy": "2024-08-12T18:54:55.167498Z", + "iopub.status.idle": "2024-08-12T18:54:58.200814Z", + "shell.execute_reply": "2024-08-12T18:54:58.200214Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:17.202525Z", - "iopub.status.busy": "2024-08-12T10:32:17.201957Z", - "iopub.status.idle": "2024-08-12T10:32:17.205593Z", - "shell.execute_reply": "2024-08-12T10:32:17.205132Z" + "iopub.execute_input": "2024-08-12T18:54:58.203267Z", + "iopub.status.busy": "2024-08-12T18:54:58.202968Z", + "iopub.status.idle": "2024-08-12T18:54:58.206608Z", + "shell.execute_reply": "2024-08-12T18:54:58.206150Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:17.207722Z", - "iopub.status.busy": "2024-08-12T10:32:17.207391Z", - "iopub.status.idle": "2024-08-12T10:32:22.832822Z", - "shell.execute_reply": "2024-08-12T10:32:22.832329Z" + "iopub.execute_input": "2024-08-12T18:54:58.208613Z", + "iopub.status.busy": "2024-08-12T18:54:58.208300Z", + "iopub.status.idle": "2024-08-12T18:55:03.426332Z", + "shell.execute_reply": "2024-08-12T18:55:03.425846Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "24950e57ccc94aaaa079c9d5b86c6053", + "model_id": "5536055315cc48758ef861d7a11a8759", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ac8e9ae825dd46cda3caaf717ab3f457", + "model_id": "94289cd6e6de468db051fd838ba56323", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d71df3a63bda4854a0d7e51c67182ab4", + "model_id": "5530f4d814dc4873935b56a3bc07d13e", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df25fafe8e5749a69234408c18364b66", + "model_id": "d7183df8c95b49f89720bff1674cd315", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "659ce9293f064abe8640605a65b6aeb5", + "model_id": "e31ea71bbfe34e54bde0f8eba6e3e41b", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:22.835079Z", - "iopub.status.busy": "2024-08-12T10:32:22.834720Z", - "iopub.status.idle": "2024-08-12T10:32:22.838632Z", - "shell.execute_reply": "2024-08-12T10:32:22.838043Z" + "iopub.execute_input": "2024-08-12T18:55:03.428583Z", + "iopub.status.busy": "2024-08-12T18:55:03.428213Z", + "iopub.status.idle": "2024-08-12T18:55:03.432037Z", + "shell.execute_reply": "2024-08-12T18:55:03.431490Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:22.840738Z", - "iopub.status.busy": "2024-08-12T10:32:22.840420Z", - "iopub.status.idle": "2024-08-12T10:32:34.877427Z", - "shell.execute_reply": "2024-08-12T10:32:34.876879Z" + "iopub.execute_input": "2024-08-12T18:55:03.433996Z", + "iopub.status.busy": "2024-08-12T18:55:03.433690Z", + "iopub.status.idle": "2024-08-12T18:55:15.156554Z", + "shell.execute_reply": "2024-08-12T18:55:15.155860Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b7ff9d3e760d46ab9410530722e86f1c", + "model_id": "0e98a483d8634a7c9c26dc079f884fe5", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:34.880019Z", - "iopub.status.busy": "2024-08-12T10:32:34.879767Z", - "iopub.status.idle": "2024-08-12T10:32:53.521520Z", - "shell.execute_reply": "2024-08-12T10:32:53.520954Z" + "iopub.execute_input": "2024-08-12T18:55:15.159276Z", + "iopub.status.busy": "2024-08-12T18:55:15.158914Z", + "iopub.status.idle": "2024-08-12T18:55:34.063937Z", + "shell.execute_reply": "2024-08-12T18:55:34.063396Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.524328Z", - "iopub.status.busy": "2024-08-12T10:32:53.523932Z", - "iopub.status.idle": "2024-08-12T10:32:53.529696Z", - "shell.execute_reply": "2024-08-12T10:32:53.529222Z" + "iopub.execute_input": "2024-08-12T18:55:34.066694Z", + "iopub.status.busy": "2024-08-12T18:55:34.066291Z", + "iopub.status.idle": "2024-08-12T18:55:34.072237Z", + "shell.execute_reply": "2024-08-12T18:55:34.071765Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.531672Z", - "iopub.status.busy": "2024-08-12T10:32:53.531382Z", - "iopub.status.idle": "2024-08-12T10:32:53.535613Z", - "shell.execute_reply": "2024-08-12T10:32:53.535051Z" + "iopub.execute_input": "2024-08-12T18:55:34.074339Z", + "iopub.status.busy": "2024-08-12T18:55:34.073991Z", + "iopub.status.idle": "2024-08-12T18:55:34.078224Z", + "shell.execute_reply": "2024-08-12T18:55:34.077811Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.537903Z", - "iopub.status.busy": "2024-08-12T10:32:53.537489Z", - "iopub.status.idle": "2024-08-12T10:32:53.546584Z", - "shell.execute_reply": "2024-08-12T10:32:53.546030Z" + "iopub.execute_input": "2024-08-12T18:55:34.080424Z", + "iopub.status.busy": "2024-08-12T18:55:34.080076Z", + "iopub.status.idle": "2024-08-12T18:55:34.089197Z", + "shell.execute_reply": "2024-08-12T18:55:34.088740Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.548705Z", - "iopub.status.busy": "2024-08-12T10:32:53.548357Z", - "iopub.status.idle": "2024-08-12T10:32:53.576832Z", - "shell.execute_reply": "2024-08-12T10:32:53.576340Z" + "iopub.execute_input": "2024-08-12T18:55:34.091312Z", + "iopub.status.busy": "2024-08-12T18:55:34.090965Z", + "iopub.status.idle": "2024-08-12T18:55:34.119087Z", + "shell.execute_reply": "2024-08-12T18:55:34.118609Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:32:53.579268Z", - "iopub.status.busy": "2024-08-12T10:32:53.578915Z", - "iopub.status.idle": "2024-08-12T10:33:28.300304Z", - "shell.execute_reply": "2024-08-12T10:33:28.299664Z" + "iopub.execute_input": "2024-08-12T18:55:34.121415Z", + "iopub.status.busy": "2024-08-12T18:55:34.121048Z", + "iopub.status.idle": "2024-08-12T18:56:08.107752Z", + "shell.execute_reply": "2024-08-12T18:56:08.107079Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.112\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.009\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.743\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.734\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bf4baa646be4ef4b42842b34d57e605", + "model_id": "6ee42831ebd04c1abdb02a45dd8b1c41", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f27976bac3c458aa1b2cc0fb4b52d2c", + "model_id": "1f9027ac4265465c93cb18dc1bd30292", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.025\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.225\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.947\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.711\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "791dc4f1fa2e4226ae567d555fc24805", + "model_id": "092583d713a644899085990919e92801", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "31a3859cc0e34abe854259d21e40f2b5", + "model_id": "52340a16943f47a2bf680589345a1330", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.366\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.971\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.925\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.749\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8edaf5c5759040f08cbb3efa298b00c6", + "model_id": "4f89d806ff8c4eb8979271cf81ddabb4", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "35bfdb221038403b86fc1c1dfba20630", + "model_id": "1788966d26a6427ca2e657ccbccc5011", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:33:28.303145Z", - "iopub.status.busy": "2024-08-12T10:33:28.302899Z", - "iopub.status.idle": "2024-08-12T10:33:28.320368Z", - "shell.execute_reply": "2024-08-12T10:33:28.319852Z" + "iopub.execute_input": "2024-08-12T18:56:08.110568Z", + "iopub.status.busy": "2024-08-12T18:56:08.110135Z", + "iopub.status.idle": "2024-08-12T18:56:08.128279Z", + "shell.execute_reply": "2024-08-12T18:56:08.127694Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:33:28.322941Z", - "iopub.status.busy": "2024-08-12T10:33:28.322755Z", - "iopub.status.idle": "2024-08-12T10:33:28.802696Z", - "shell.execute_reply": "2024-08-12T10:33:28.802112Z" + "iopub.execute_input": "2024-08-12T18:56:08.130938Z", + "iopub.status.busy": "2024-08-12T18:56:08.130451Z", + "iopub.status.idle": "2024-08-12T18:56:08.620894Z", + "shell.execute_reply": "2024-08-12T18:56:08.620328Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:33:28.805268Z", - "iopub.status.busy": "2024-08-12T10:33:28.804800Z", - "iopub.status.idle": "2024-08-12T10:35:20.178945Z", - "shell.execute_reply": "2024-08-12T10:35:20.178277Z" + "iopub.execute_input": "2024-08-12T18:56:08.623509Z", + "iopub.status.busy": "2024-08-12T18:56:08.623124Z", + "iopub.status.idle": "2024-08-12T18:58:01.771753Z", + "shell.execute_reply": "2024-08-12T18:58:01.771037Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34f053a0e82b47f29b9b2f6a619f4c72", + "model_id": "a781e7b0a1eb4996a753d8f47a0d6cd0", "version_major": 2, "version_minor": 0 }, @@ -1108,10 +1108,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.181523Z", - "iopub.status.busy": "2024-08-12T10:35:20.181116Z", - "iopub.status.idle": "2024-08-12T10:35:20.637093Z", - "shell.execute_reply": "2024-08-12T10:35:20.636521Z" + "iopub.execute_input": "2024-08-12T18:58:01.774355Z", + "iopub.status.busy": "2024-08-12T18:58:01.773772Z", + "iopub.status.idle": "2024-08-12T18:58:02.253989Z", + "shell.execute_reply": "2024-08-12T18:58:02.253342Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.639735Z", - "iopub.status.busy": "2024-08-12T10:35:20.639339Z", - "iopub.status.idle": "2024-08-12T10:35:20.700448Z", - "shell.execute_reply": "2024-08-12T10:35:20.699879Z" + "iopub.execute_input": "2024-08-12T18:58:02.256482Z", + "iopub.status.busy": "2024-08-12T18:58:02.256118Z", + "iopub.status.idle": "2024-08-12T18:58:02.318086Z", + "shell.execute_reply": "2024-08-12T18:58:02.317530Z" } }, "outputs": [ @@ -1364,10 +1364,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.702827Z", - "iopub.status.busy": "2024-08-12T10:35:20.702336Z", - "iopub.status.idle": "2024-08-12T10:35:20.711028Z", - "shell.execute_reply": "2024-08-12T10:35:20.710503Z" + "iopub.execute_input": "2024-08-12T18:58:02.320656Z", + "iopub.status.busy": "2024-08-12T18:58:02.320122Z", + "iopub.status.idle": "2024-08-12T18:58:02.329554Z", + "shell.execute_reply": "2024-08-12T18:58:02.329055Z" } }, "outputs": [ @@ -1497,10 +1497,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.713060Z", - "iopub.status.busy": "2024-08-12T10:35:20.712755Z", - "iopub.status.idle": "2024-08-12T10:35:20.717256Z", - "shell.execute_reply": "2024-08-12T10:35:20.716822Z" + "iopub.execute_input": "2024-08-12T18:58:02.331983Z", + "iopub.status.busy": "2024-08-12T18:58:02.331537Z", + "iopub.status.idle": "2024-08-12T18:58:02.336399Z", + "shell.execute_reply": "2024-08-12T18:58:02.335919Z" }, "nbsphinx": "hidden" }, @@ -1546,10 +1546,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:20.719137Z", - "iopub.status.busy": "2024-08-12T10:35:20.718967Z", - "iopub.status.idle": "2024-08-12T10:35:21.245859Z", - "shell.execute_reply": "2024-08-12T10:35:21.245304Z" + "iopub.execute_input": "2024-08-12T18:58:02.338459Z", + "iopub.status.busy": "2024-08-12T18:58:02.338116Z", + "iopub.status.idle": "2024-08-12T18:58:02.833078Z", + "shell.execute_reply": "2024-08-12T18:58:02.832432Z" } }, "outputs": [ @@ -1584,10 +1584,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:21.248532Z", - "iopub.status.busy": "2024-08-12T10:35:21.248103Z", - "iopub.status.idle": "2024-08-12T10:35:21.257809Z", - "shell.execute_reply": "2024-08-12T10:35:21.257321Z" + "iopub.execute_input": "2024-08-12T18:58:02.835684Z", + "iopub.status.busy": "2024-08-12T18:58:02.835299Z", + "iopub.status.idle": "2024-08-12T18:58:02.844200Z", + "shell.execute_reply": "2024-08-12T18:58:02.843719Z" } }, "outputs": [ @@ -1754,10 +1754,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:21.259908Z", - "iopub.status.busy": "2024-08-12T10:35:21.259732Z", - "iopub.status.idle": "2024-08-12T10:35:21.266967Z", - "shell.execute_reply": "2024-08-12T10:35:21.266442Z" + "iopub.execute_input": "2024-08-12T18:58:02.846427Z", + "iopub.status.busy": "2024-08-12T18:58:02.846066Z", + "iopub.status.idle": "2024-08-12T18:58:02.853397Z", + "shell.execute_reply": "2024-08-12T18:58:02.852926Z" }, "nbsphinx": "hidden" }, @@ -1833,10 +1833,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:21.269269Z", - "iopub.status.busy": "2024-08-12T10:35:21.268808Z", - "iopub.status.idle": "2024-08-12T10:35:22.015755Z", - "shell.execute_reply": "2024-08-12T10:35:22.015219Z" + "iopub.execute_input": "2024-08-12T18:58:02.855444Z", + "iopub.status.busy": "2024-08-12T18:58:02.855103Z", + "iopub.status.idle": "2024-08-12T18:58:03.646581Z", + "shell.execute_reply": "2024-08-12T18:58:03.645923Z" } }, "outputs": [ @@ -1873,10 +1873,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.018300Z", - "iopub.status.busy": "2024-08-12T10:35:22.017951Z", - "iopub.status.idle": "2024-08-12T10:35:22.032830Z", - "shell.execute_reply": "2024-08-12T10:35:22.032325Z" + "iopub.execute_input": "2024-08-12T18:58:03.649104Z", + "iopub.status.busy": "2024-08-12T18:58:03.648717Z", + "iopub.status.idle": "2024-08-12T18:58:03.665682Z", + "shell.execute_reply": "2024-08-12T18:58:03.665186Z" } }, "outputs": [ @@ -2033,10 +2033,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.035102Z", - "iopub.status.busy": "2024-08-12T10:35:22.034759Z", - "iopub.status.idle": "2024-08-12T10:35:22.040225Z", - "shell.execute_reply": "2024-08-12T10:35:22.039787Z" + "iopub.execute_input": "2024-08-12T18:58:03.668086Z", + "iopub.status.busy": "2024-08-12T18:58:03.667726Z", + "iopub.status.idle": "2024-08-12T18:58:03.673416Z", + "shell.execute_reply": "2024-08-12T18:58:03.672968Z" }, "nbsphinx": "hidden" }, @@ -2081,10 +2081,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.042322Z", - "iopub.status.busy": "2024-08-12T10:35:22.041997Z", - "iopub.status.idle": "2024-08-12T10:35:22.502792Z", - "shell.execute_reply": "2024-08-12T10:35:22.501808Z" + "iopub.execute_input": "2024-08-12T18:58:03.675575Z", + "iopub.status.busy": "2024-08-12T18:58:03.675237Z", + "iopub.status.idle": "2024-08-12T18:58:04.071158Z", + "shell.execute_reply": "2024-08-12T18:58:04.070413Z" } }, "outputs": [ @@ -2166,10 +2166,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.505357Z", - "iopub.status.busy": "2024-08-12T10:35:22.505162Z", - "iopub.status.idle": "2024-08-12T10:35:22.515712Z", - "shell.execute_reply": "2024-08-12T10:35:22.515169Z" + "iopub.execute_input": "2024-08-12T18:58:04.074551Z", + "iopub.status.busy": "2024-08-12T18:58:04.073757Z", + "iopub.status.idle": "2024-08-12T18:58:04.083617Z", + "shell.execute_reply": "2024-08-12T18:58:04.083182Z" } }, "outputs": [ @@ -2297,10 +2297,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.518152Z", - "iopub.status.busy": "2024-08-12T10:35:22.517960Z", - "iopub.status.idle": "2024-08-12T10:35:22.523759Z", - "shell.execute_reply": "2024-08-12T10:35:22.523192Z" + "iopub.execute_input": "2024-08-12T18:58:04.085975Z", + "iopub.status.busy": "2024-08-12T18:58:04.085795Z", + "iopub.status.idle": "2024-08-12T18:58:04.090563Z", + "shell.execute_reply": "2024-08-12T18:58:04.089872Z" }, "nbsphinx": "hidden" }, @@ -2337,10 +2337,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.526113Z", - "iopub.status.busy": "2024-08-12T10:35:22.525925Z", - "iopub.status.idle": "2024-08-12T10:35:22.733246Z", - "shell.execute_reply": "2024-08-12T10:35:22.732666Z" + "iopub.execute_input": "2024-08-12T18:58:04.092832Z", + "iopub.status.busy": "2024-08-12T18:58:04.092657Z", + "iopub.status.idle": "2024-08-12T18:58:04.277820Z", + "shell.execute_reply": "2024-08-12T18:58:04.277192Z" } }, "outputs": [ @@ -2382,10 +2382,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.735513Z", - "iopub.status.busy": "2024-08-12T10:35:22.735345Z", - "iopub.status.idle": "2024-08-12T10:35:22.743038Z", - "shell.execute_reply": "2024-08-12T10:35:22.742595Z" + "iopub.execute_input": "2024-08-12T18:58:04.280489Z", + "iopub.status.busy": "2024-08-12T18:58:04.280004Z", + "iopub.status.idle": "2024-08-12T18:58:04.288229Z", + "shell.execute_reply": "2024-08-12T18:58:04.287768Z" } }, "outputs": [ @@ -2410,47 +2410,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2471,10 +2471,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.744991Z", - "iopub.status.busy": "2024-08-12T10:35:22.744832Z", - "iopub.status.idle": "2024-08-12T10:35:22.937179Z", - "shell.execute_reply": "2024-08-12T10:35:22.936681Z" + "iopub.execute_input": "2024-08-12T18:58:04.290241Z", + "iopub.status.busy": "2024-08-12T18:58:04.289960Z", + "iopub.status.idle": "2024-08-12T18:58:04.490578Z", + "shell.execute_reply": "2024-08-12T18:58:04.489977Z" } }, "outputs": [ @@ -2514,10 +2514,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:22.939341Z", - "iopub.status.busy": "2024-08-12T10:35:22.939183Z", - "iopub.status.idle": "2024-08-12T10:35:22.943609Z", - "shell.execute_reply": "2024-08-12T10:35:22.943151Z" + "iopub.execute_input": "2024-08-12T18:58:04.492976Z", + "iopub.status.busy": "2024-08-12T18:58:04.492644Z", + "iopub.status.idle": "2024-08-12T18:58:04.497183Z", + "shell.execute_reply": "2024-08-12T18:58:04.496596Z" }, "nbsphinx": "hidden" }, @@ -2554,7 +2554,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "050f0e1e40f94f6caba3e0f41a21d9a9": { + "03e1af4ff1e84901b1a6204851b2a18a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2607,56 +2607,7 @@ "width": null } }, - "061eee76a3a24a79baa0cd66b7176b98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_90df698f70f74395b78c4545a06264b4", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_655b10b948974f7f87f81c7bfa23ce0d", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "062ebfae188a4deda8cbf155c6b1e813": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8323bc18e50a44b085c885ca6b12a4a6", - "placeholder": "​", - "style": "IPY_MODEL_f5f27a9d088946cdb7ec1fbf69ccb020", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1257.10it/s]" - } - }, - "069e2f7a59ce43e49d604a293ef5ff5e": { + "05bc08c6e3e4413385afb573c9bcbf24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2672,46 +2623,49 @@ "description_width": "" } }, - "094b5a63409c4832a9280e3e77ebf8c6": { + "0850e4eeafff46e2b2f8a41bb99ae35c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_693092ccb52d4ce5a63d4a2174c8f259", - "placeholder": "​", - "style": "IPY_MODEL_fc0a1aa0c6cf46cfa476b5f7e2175769", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.94it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "09c1b0e3cfa84b0591fec49a549193c0": { + "092583d713a644899085990919e92801": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a54630e7f25e4f7c898e29c4a7652252", + "IPY_MODEL_e6ca8e901e904830a7d69136598543ad", + "IPY_MODEL_d2c8ee83c4df4ca3b0bd2caaeeed106f" + ], + "layout": "IPY_MODEL_d4e2e8bbb9764cba8af70f10d847218d", + "tabbable": null, + "tooltip": null } }, - "0c7c8de3aee0459eafac0111bd69a153": { + "0b0f923eb2ec4f5a98793e7a0cbaa33b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2727,35 +2681,65 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14b738fb959149c0a77186ad6d4e2aeb", - "max": 40.0, + "layout": "IPY_MODEL_0e9da4ae20e34b23a754e1c5b7dd6158", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_88890e4bba3a43c6839fa256217037ff", + "style": "IPY_MODEL_d242722a70fc416293e276b0f8401bff", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "0c8cb70aa3444e7a9f2e276faba04b24": { + "0b6c4ed7790c4cdf90d4f247f1c02888": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13382556965142d7a98cfc708848a163", + "IPY_MODEL_8cff9cca7e004cfb8c91929a84823c80", + "IPY_MODEL_a2d81fde3fec467b9ea8d8892f574b29" + ], + "layout": "IPY_MODEL_c1749dc1d02a4dcb92d90af0d098640c", + "tabbable": null, + "tooltip": null + } + }, + "0e98a483d8634a7c9c26dc079f884fe5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e72c046ab76b45fdb76f44fc35dda60c", + "IPY_MODEL_19baf9a900de4030ae859000713b5ff6", + "IPY_MODEL_e479f7639c9949bca96c2de235717132" + ], + "layout": "IPY_MODEL_82f10478222b43c1a6faa54b3900df75", + "tabbable": null, + "tooltip": null } }, - "0ddb4b1211904a10aa548c33caee6aed": { + "0e9da4ae20e34b23a754e1c5b7dd6158": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2808,7 +2792,7 @@ "width": null } }, - "14b738fb959149c0a77186ad6d4e2aeb": { + "0eb5595e457b4ef19f5c2a46b683aa7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2861,30 +2845,7 @@ "width": null } }, - "170a1618ce4f40039a860ae398484c7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9906144508c4f6f90da6edacecadc26", - "placeholder": "​", - "style": "IPY_MODEL_6f4e70feb4b34d5db54a97d67aff4b7f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.87it/s]" - } - }, - "17d88d606d374f79a7f9ed8be66d62bc": { + "0f249386ded0418c87d07bd42105db23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2937,51 +2898,71 @@ "width": null } }, - "1888f5ab59624b249135ca08f763d2f2": { + "1081f9bbd7184bd68161f881b9c1c2e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "13382556965142d7a98cfc708848a163": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_050f0e1e40f94f6caba3e0f41a21d9a9", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8046a22c390a4790a21018f476e9a1f3", + "layout": "IPY_MODEL_6d79271a2f4f4993b957f27f962d1cf8", + "placeholder": "​", + "style": "IPY_MODEL_e0401f9ed4cb45529a0175d5441fdc87", "tabbable": null, "tooltip": null, - "value": 9015.0 + "value": "Computing checksums: 100%" } }, - "194aeb115f294dd081a7dcf4d3442b34": { + "1561d0507e524fcfab27baffd1993d1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8dc4e546ecdb4bc4bde15a14419d53ce", + "placeholder": "​", + "style": "IPY_MODEL_614594c7c757441d8a1b3df076dd46ca", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 28.6MB/s]" } }, - "1bf4baa646be4ef4b42842b34d57e605": { + "1788966d26a6427ca2e657ccbccc5011": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2996,16 +2977,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_206cd1099952440a80fab705ba066b49", - "IPY_MODEL_0c7c8de3aee0459eafac0111bd69a153", - "IPY_MODEL_094b5a63409c4832a9280e3e77ebf8c6" + "IPY_MODEL_aac056f3f9bb467c85037cb9bd254db3", + "IPY_MODEL_dd9cf14362e74cbeb505d58baafe4cb5", + "IPY_MODEL_cee8c00669dd42ac97578336d38e5dbc" ], - "layout": "IPY_MODEL_32a281ca5f9a4e0e879c56bc4f1ae1e5", + "layout": "IPY_MODEL_e3858df4be1243fca435f20a3e321386", "tabbable": null, "tooltip": null } }, - "1c7e2745f8f7403695df2dab5d5b611a": { + "180ebdcc0ed942e39af0cd94c26cb378": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3058,51 +3039,7 @@ "width": null } }, - "1d1726a8bb644d8abcfe68a6e01dac4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1d3c4b825e3147989495a0e274377e0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c76f90aede094a2bb529e852ce14a1ef", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8b6f71a4d2174d45b5f0da5575a69f92", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "1d3c8852cb9b4d0994b952c07bb057d8": { + "195ca67d0cc54ba5975093e841165e8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3155,60 +3092,129 @@ "width": null } }, - "1f847bdb68fa4d6ca3ba027f2f973e6f": { - "model_module": "@jupyter-widgets/base", + "19baf9a900de4030ae859000713b5ff6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03e1af4ff1e84901b1a6204851b2a18a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b80d5f025b154036ad476b78a3460637", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "1b23bb3df60a4375be60c234c43b900a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b463e1dc5ed4f379eb905f713f718ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1b6e8ffcd2bb4a5b8e2dca0ea6b86dcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f9027ac4265465c93cb18dc1bd30292": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_448dfde1395042b89712b1309cd3882d", + "IPY_MODEL_52c2a38c4cb743949e5a8b4a6cd9555e", + "IPY_MODEL_626a0dbcb7154d44b9a71cfc189fce06" + ], + "layout": "IPY_MODEL_dd7d1f5460674bb8be0751ade513c041", + "tabbable": null, + "tooltip": null + } + }, + "226bc1f5af2545f4b6adb4bb205bd6fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2024ae051e814e749e5840205c0354d5": { + "229a9b576bca4951ad662091eaa4d6d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3261,30 +3267,33 @@ "width": null } }, - "206cd1099952440a80fab705ba066b49": { + "23fb51adebf34db494ea75cef3b24adf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2c7a5fc0f0f4ed6823022c936c59d4e", - "placeholder": "​", - "style": "IPY_MODEL_f747d8cff30e48638ca4b6a8b62e1fc8", + "layout": "IPY_MODEL_7938edc743fe424583a3551229629138", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68056f0d9e7a4ab39f82b9b6689a9858", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 30931277.0 } }, - "211a1d0f7e994da3abdf9c87d144d826": { + "258f0101c44a49e9ba654fc1977d21be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3337,39 +3346,7 @@ "width": null } }, - "219f02688f1c45028f227c9b6864c6b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2261458f8c6d47aa8268533e772e4c15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "23b32b2ad0ea490eb3636fac11964542": { + "26642ec4e55f43469352c6e25a75ab63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3422,57 +3399,25 @@ "width": null } }, - "24950e57ccc94aaaa079c9d5b86c6053": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d1946623097a4ad78743cc2dfe72c9e1", - "IPY_MODEL_1888f5ab59624b249135ca08f763d2f2", - "IPY_MODEL_4c01338a37c743ef886e2b772e01356a" - ], - "layout": "IPY_MODEL_2024ae051e814e749e5840205c0354d5", - "tabbable": null, - "tooltip": null - } - }, - "28db2d2bcb534e91afddd30a3b5732dd": { + "27b8f80c76864c9b8698b6d171d3ee92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6029339687a24aaab92f58dbb90a9a2c", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_09c1b0e3cfa84b0591fec49a549193c0", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2cbc780bf0f941f3b375c0a00bd30ee9": { + "2b1a54f4f88c479b8d18057635b324a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3490,30 +3435,23 @@ "text_color": null } }, - "2f9e64dc3c6449d4b0180bcb72af8029": { + "2b9f7515600a4c61819b0947e75c75e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_835e200b7dbb452491f96613a3d68582", - "placeholder": "​", - "style": "IPY_MODEL_2cbc780bf0f941f3b375c0a00bd30ee9", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2fb5148d5fd04234a5adddeecede3131": { + "2e1e47bdc3bc4e65b0f63284588760ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3528,39 +3466,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c86ac35d56b4cb1b9a6c8c81f2b9d73", + "layout": "IPY_MODEL_64c88ebcf9774ef695b3e8f8bacc4670", "placeholder": "​", - "style": "IPY_MODEL_ac59c63878b24875a6a698b3193950b4", + "style": "IPY_MODEL_7ae7ca33d5f6482097a76827159e68f5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.59it/s]" - } - }, - "31a3859cc0e34abe854259d21e40f2b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c3ff3642d4de49349f69b03661c00aed", - "IPY_MODEL_061eee76a3a24a79baa0cd66b7176b98", - "IPY_MODEL_9d735577298140d6bd60a896468f75ac" - ], - "layout": "IPY_MODEL_55ffa8d9bd174552baa854c8a1ab0aeb", - "tabbable": null, - "tooltip": null + "value": " 10000/10000 [00:00<00:00, 249954.05 examples/s]" } }, - "32a281ca5f9a4e0e879c56bc4f1ae1e5": { + "2e858bbdd1f34b60ba4792a9b6e37a32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3613,7 +3527,7 @@ "width": null } }, - "332d853f3c6d4038bce23ffbe32553e0": { + "31267b316272490e9b90f40383912e0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3666,71 +3580,78 @@ "width": null } }, - "34f053a0e82b47f29b9b2f6a619f4c72": { - "model_module": "@jupyter-widgets/controls", + "334ec88ca68249d6a17f1c98353f4760": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dfffc444cdb640d4a9d712253b6edfa0", - "IPY_MODEL_41ec7bae4da74af39b4e8e1a0ad11736", - "IPY_MODEL_062ebfae188a4deda8cbf155c6b1e813" - ], - "layout": "IPY_MODEL_9991e131478646aba449193d96a55a57", - "tabbable": null, - "tooltip": null - } - }, - "35bfdb221038403b86fc1c1dfba20630": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9aea7f50b8a64c5089b63f2e59596737", - "IPY_MODEL_c927a2fd98ee422da94eb0ac1d179320", - "IPY_MODEL_a88d54dcd75443e4adf63e584faa623b" - ], - "layout": "IPY_MODEL_c81eaad18b554cdbbd128330bc9705e1", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "35ccdf1d9e91436fb82de63e8a8e06dd": { + "34b1ee147a6a418db24a148515371d8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a97ba1affa44cee81db93c6e61a8d5e": { + "3c6b207f678349e08f3e154f0eb49502": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3783,7 +3704,7 @@ "width": null } }, - "3befe646d3934a3aa08e0a70a188a153": { + "3ddb2dfef68a4994959067567c333650": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3836,7 +3757,7 @@ "width": null } }, - "3db3123a400c4f229af20389ad3520d2": { + "429769e0a6c049ce8281d26731a8e999": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3851,118 +3772,141 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c486ad2141e04d7e9fe35aa3fd2474cb", + "layout": "IPY_MODEL_a0afbd97e6574163a30df65c8507d62a", "placeholder": "​", - "style": "IPY_MODEL_ed2a70f9cbbb432781a33bb137c5fe76", + "style": "IPY_MODEL_4b7bd7d44dc24c47b493f5a1eb6e9c84", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "Generating test split: 100%" } }, - "3f27976bac3c458aa1b2cc0fb4b52d2c": { + "43ed240044d24550b447c68e5d5344e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4e05a30d55ad46afa6049432887d8b9a", - "IPY_MODEL_ff306473844b44168fdb05050fbaa3cd", - "IPY_MODEL_9f386e7f08b44099b26554458760f42b" - ], - "layout": "IPY_MODEL_f8117f94932241b49ad3017baa3b1708", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63d167d94d694beeb447346ccf85486c", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7108294ecfd7448aa6bac320dec74f2f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 10000.0 } }, - "40cc1a682eb84007a12d44ba00d8e59d": { - "model_module": "@jupyter-widgets/base", + "448dfde1395042b89712b1309cd3882d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73c0ebaad59a47219241654ae01d5399", + "placeholder": "​", + "style": "IPY_MODEL_2b1a54f4f88c479b8d18057635b324a6", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "41ec7bae4da74af39b4e8e1a0ad11736": { + "4a6750b71c2a44989a8f33a24ac2c66a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_78ee05e703164da7a1242a32c2fe5888", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c3eb3db9442048f197e1a77c1097d301", + "layout": "IPY_MODEL_c7003b67bae54d6493d405d5825e6c2f", + "placeholder": "​", + "style": "IPY_MODEL_ab4c62e317e8407e8310c4ca779a8ccb", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 60000/60000 [00:52<00:00, 1210.85it/s]" } }, - "42b1e7be991546bfa6284a9f6a270c5e": { + "4b7bd7d44dc24c47b493f5a1eb6e9c84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4c96354ab4bf4a0e8e3b32e7110caa88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4e678dda95bc4173a6e214a04a4823db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f35b74971a946cc84bd8f03d3bfbcc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4015,92 +3959,165 @@ "width": null } }, - "43d5c56839bb4f48bef27dd0bd134ac1": { + "4f89d806ff8c4eb8979271cf81ddabb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b028fe5886ed407daffa2e8e1d1b33e4", + "IPY_MODEL_f76fd1f88dbf476396c45b3dee352fb6", + "IPY_MODEL_9bc5531d8f484e09b9742164abaaf083" + ], + "layout": "IPY_MODEL_334ec88ca68249d6a17f1c98353f4760", + "tabbable": null, + "tooltip": null } }, - "441f7c2b1d4140f186a4b360c9fab017": { + "52340a16943f47a2bf680589345a1330": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c78acbd1ac704666909b934f2f48e3da", + "IPY_MODEL_8b6ae31d5ed140e5a2dd85b34a8b3ed6", + "IPY_MODEL_80fa794bca154ef0b97df52f7c6dfa57" + ], + "layout": "IPY_MODEL_f5a3f6f1d4394ab2b30d593e3d4a3ca4", + "tabbable": null, + "tooltip": null + } + }, + "52c2a38c4cb743949e5a8b4a6cd9555e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53d0052e73f048148debd9352ce17f64", - "placeholder": "​", - "style": "IPY_MODEL_bc8279dc52324a12b433c3eb7960a2a2", + "layout": "IPY_MODEL_841829cb249d4a5eb047c2e75c6fe580", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c89134e7296d447eaf08610ff1a6a232", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:01<00:00, 4.37MB/s]" + "value": 40.0 } }, - "44c54692880345f59ae3ced9048f8e20": { + "5530f4d814dc4873935b56a3bc07d13e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd39e801b334434797f4c134d3921fd0", + "IPY_MODEL_84e4cccf169243eeb4127b5e748abd0f", + "IPY_MODEL_7f47461a7087419da7540f4f6890cc1e" + ], + "layout": "IPY_MODEL_180ebdcc0ed942e39af0cd94c26cb378", + "tabbable": null, + "tooltip": null + } + }, + "5536055315cc48758ef861d7a11a8759": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b238dcab69e48aeb560ceceed894516", - "placeholder": "​", - "style": "IPY_MODEL_bfc788895f3e4ac99ff89696a72123e1", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b47bea41f8f84e6a8070d5f0653a56e5", + "IPY_MODEL_7c3ce334f53e4d86b0bb0364340f2c02", + "IPY_MODEL_8a0e283ca7244e77909f679a4372400b" + ], + "layout": "IPY_MODEL_258f0101c44a49e9ba654fc1977d21be", + "tabbable": null, + "tooltip": null + } + }, + "55ba43c5200241d696b3e8b411715ea8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4600b1651fe94c96a63f5f402ffeb0ab": { + "585f22a74bcb41f38fa6559cedba7370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3befe646d3934a3aa08e0a70a188a153", - "placeholder": "​", - "style": "IPY_MODEL_bc1aed3122144934903681458e457bf8", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4686b29b240141f7956b546c1f2e9e83": { + "5b16cac5ec7e491ca8aa0e70572e0512": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4153,7 +4170,33 @@ "width": null } }, - "4bc42b29769b4a4aa8b4ce01236e62d2": { + "5db2d3571069404f85b68e19dd59d0a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6306875f3fb34ae6996e52b23bdd9fc0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ac1426c20e3841248403ef6ab4ec4818", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5f0b04d90b864e218b0b1111518df0cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4206,92 +4249,25 @@ "width": null } }, - "4c01338a37c743ef886e2b772e01356a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_17d88d606d374f79a7f9ed8be66d62bc", - "placeholder": "​", - "style": "IPY_MODEL_52d596f308bf4f45b80e83f66d3644d7", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" - } - }, - "4e05a30d55ad46afa6049432887d8b9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f67814f0e6b24425bdf25f7f05f08ccf", - "placeholder": "​", - "style": "IPY_MODEL_de513cdaed394180886bee1974c93ce2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "4eb3982370ac42b992966c7a96cc2a47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_541973876cde496bb6e94fa33dc55140", - "placeholder": "​", - "style": "IPY_MODEL_66b18e0944474821880d3bfb36e60114", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 274934.56 examples/s]" - } - }, - "4eb8b10ee55a4e899df1e41b2daa3ab0": { + "602fa811c1884012bb0e46f5225ddab1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "52d596f308bf4f45b80e83f66d3644d7": { + "614594c7c757441d8a1b3df076dd46ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4309,7 +4285,7 @@ "text_color": null } }, - "535e01c6bf504b4cb054ec6d754951fc": { + "626a0dbcb7154d44b9a71cfc189fce06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4324,15 +4300,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c7e2745f8f7403695df2dab5d5b611a", + "layout": "IPY_MODEL_bcbf9e2a1ee3447da04d8e96fb0f841a", "placeholder": "​", - "style": "IPY_MODEL_1d1726a8bb644d8abcfe68a6e01dac4e", + "style": "IPY_MODEL_585f22a74bcb41f38fa6559cedba7370", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 675.74it/s]" + "value": " 40/40 [00:00<00:00, 58.60it/s]" } }, - "53d0052e73f048148debd9352ce17f64": { + "6306875f3fb34ae6996e52b23bdd9fc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4385,7 +4361,7 @@ "width": null } }, - "541973876cde496bb6e94fa33dc55140": { + "63d167d94d694beeb447346ccf85486c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4438,7 +4414,7 @@ "width": null } }, - "55ffa8d9bd174552baa854c8a1ab0aeb": { + "64c88ebcf9774ef695b3e8f8bacc4670": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4491,53 +4467,7 @@ "width": null } }, - "5d08f87fef9649c8a14840522a0823ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b46003cc199f415ca6fb8a875a8ec625", - "placeholder": "​", - "style": "IPY_MODEL_b89bf820b408447aaca183add33b3385", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5fa684b3fcdd44e091e8fd2bd0c12461": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c46e51a76796424db3107165768eabeb", - "placeholder": "​", - "style": "IPY_MODEL_787c9141742943f0bf6aaf4801e00226", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 238740.02 examples/s]" - } - }, - "6029339687a24aaab92f58dbb90a9a2c": { + "65aecf93ea5146a6a0f4b1d515383344": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4590,25 +4520,60 @@ "width": null } }, - "6445f463bca341038b901a4d9ca616f1": { - "model_module": "@jupyter-widgets/controls", + "666a6e9fe010472c9ebe67d1aa30da02": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "655b10b948974f7f87f81c7bfa23ce0d": { + "66e078e86f8045e986016510e65afbed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4624,72 +4589,23 @@ "description_width": "" } }, - "659ce9293f064abe8640605a65b6aeb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fcfd3e8181d242b0badc716ec5884378", - "IPY_MODEL_28db2d2bcb534e91afddd30a3b5732dd", - "IPY_MODEL_5fa684b3fcdd44e091e8fd2bd0c12461" - ], - "layout": "IPY_MODEL_824f74f519a34fc19f92843567a9592c", - "tabbable": null, - "tooltip": null - } - }, - "6683a2f1a5804d0eac86b0226e09ce2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_40cc1a682eb84007a12d44ba00d8e59d", - "placeholder": "​", - "style": "IPY_MODEL_dd229a032b574962bf97ffe39211328c", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "66b18e0944474821880d3bfb36e60114": { + "68056f0d9e7a4ab39f82b9b6689a9858": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "693092ccb52d4ce5a63d4a2174c8f259": { + "699541396fda4fbcb0e28d14b6be4019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4742,43 +4658,7 @@ "width": null } }, - "6bb1bc8fb0c84a03b5e37a4b5de4e736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6f4e70feb4b34d5db54a97d67aff4b7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7550f2d102ee4b92a1572712f7261c9c": { + "6d79271a2f4f4993b957f27f962d1cf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4831,33 +4711,104 @@ "width": null } }, - "780e96fc62454e888f0e30931336ab5e": { + "6ee42831ebd04c1abdb02a45dd8b1c41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f30a6d09323d42b6919e65f28b0ed1c1", + "IPY_MODEL_5db2d3571069404f85b68e19dd59d0a2", + "IPY_MODEL_8c5e89b9ed794036ad43810fcc0f7fbd" + ], + "layout": "IPY_MODEL_eabb1d09e93a493ca119964fca81426e", + "tabbable": null, + "tooltip": null + } + }, + "71003c4f5c414facb488663db0febcb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7108294ecfd7448aa6bac320dec74f2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7156eac180cd40748551472472a5e725": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "72363f554e3e4f1a9080a1a4a2688a29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_93ee81b92dd5469aa21e1da5e3d387b1", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_35ccdf1d9e91436fb82de63e8a8e06dd", + "layout": "IPY_MODEL_774c78a418fa44b69cd0e129fbbf47dc", + "placeholder": "​", + "style": "IPY_MODEL_1b6e8ffcd2bb4a5b8e2dca0ea6b86dcc", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Generating train split: 100%" } }, - "7859271f5ada491ca18d79aab57ac568": { + "73c0ebaad59a47219241654ae01d5399": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4910,25 +4861,7 @@ "width": null } }, - "787c9141742943f0bf6aaf4801e00226": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "78ee05e703164da7a1242a32c2fe5888": { + "774c78a418fa44b69cd0e129fbbf47dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4981,49 +4914,7 @@ "width": null } }, - "791dc4f1fa2e4226ae567d555fc24805": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_44c54692880345f59ae3ced9048f8e20", - "IPY_MODEL_1d3c4b825e3147989495a0e274377e0b", - "IPY_MODEL_170a1618ce4f40039a860ae398484c7f" - ], - "layout": "IPY_MODEL_1d3c8852cb9b4d0994b952c07bb057d8", - "tabbable": null, - "tooltip": null - } - }, - "7ab0569b036f42be8e24943aadcd1621": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c7fd464aadc4879ae14ae50a809b856": { + "77bdd0f98ea841d4984e184120b9742f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,7 +4967,7 @@ "width": null } }, - "7fbe69e833c54364870397fb035584b5": { + "7938edc743fe424583a3551229629138": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5129,41 +5020,51 @@ "width": null } }, - "8046a22c390a4790a21018f476e9a1f3": { + "7ae7ca33d5f6482097a76827159e68f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "816259c1ca754349befb5d97e1185a2f": { + "7c3ce334f53e4d86b0bb0364340f2c02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6dea26ce53b4010a864c89a949b7af0", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e7265ed3c944a49950cd1493a53cbb3", + "tabbable": null, + "tooltip": null, + "value": 9015.0 } }, - "824f74f519a34fc19f92843567a9592c": { + "7cd4460109d24347ba8a171664a55ce3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5216,7 +5117,69 @@ "width": null } }, - "82bb29b1154c4f96b68e22299ab1d951": { + "7e7265ed3c944a49950cd1493a53cbb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f47461a7087419da7540f4f6890cc1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd8021f04cc44f8eac42379b0b15ece1", + "placeholder": "​", + "style": "IPY_MODEL_4c96354ab4bf4a0e8e3b32e7110caa88", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 24.9MB/s]" + } + }, + "80fa794bca154ef0b97df52f7c6dfa57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a408fb1963845d0bf3a3f7513b65c0c", + "placeholder": "​", + "style": "IPY_MODEL_602fa811c1884012bb0e46f5225ddab1", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.36it/s]" + } + }, + "82f10478222b43c1a6faa54b3900df75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5269,7 +5232,7 @@ "width": null } }, - "8323bc18e50a44b085c885ca6b12a4a6": { + "841829cb249d4a5eb047c2e75c6fe580": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5322,7 +5285,7 @@ "width": null } }, - "835e200b7dbb452491f96613a3d68582": { + "8492737842204d3e82ec36044e509919": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5375,23 +5338,56 @@ "width": null } }, - "88890e4bba3a43c6839fa256217037ff": { + "84e4cccf169243eeb4127b5e748abd0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cbe714862274296ac0dcf011a3eaa2b", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b9f7515600a4c61819b0947e75c75e0", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "8a0e283ca7244e77909f679a4372400b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f35b74971a946cc84bd8f03d3bfbcc0", + "placeholder": "​", + "style": "IPY_MODEL_71003c4f5c414facb488663db0febcb6", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.13MB/s]" } }, - "8b238dcab69e48aeb560ceceed894516": { + "8a408fb1963845d0bf3a3f7513b65c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5444,23 +5440,33 @@ "width": null } }, - "8b6f71a4d2174d45b5f0da5575a69f92": { + "8b6ae31d5ed140e5a2dd85b34a8b3ed6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_77bdd0f98ea841d4984e184120b9742f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_66e078e86f8045e986016510e65afbed", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "8e1a4c8b07ef4bc6a844046e5c1ec2d2": { + "8c5e89b9ed794036ad43810fcc0f7fbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5475,39 +5481,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_94ea11ff873e43e6b1679e5b21455dcd", + "layout": "IPY_MODEL_3ddb2dfef68a4994959067567c333650", "placeholder": "​", - "style": "IPY_MODEL_0c8cb70aa3444e7a9f2e276faba04b24", + "style": "IPY_MODEL_55ba43c5200241d696b3e8b411715ea8", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 41.0MB/s]" - } - }, - "8edaf5c5759040f08cbb3efa298b00c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d08f87fef9649c8a14840522a0823ef", - "IPY_MODEL_caddcee0c11648918da1dc284d00a733", - "IPY_MODEL_2fb5148d5fd04234a5adddeecede3131" - ], - "layout": "IPY_MODEL_4bc42b29769b4a4aa8b4ce01236e62d2", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 59.86it/s]" } }, - "90df698f70f74395b78c4545a06264b4": { + "8cbe714862274296ac0dcf011a3eaa2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5560,25 +5542,33 @@ "width": null } }, - "915b2de72e934c53b5769ae4fc9767af": { + "8cff9cca7e004cfb8c91929a84823c80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f249386ded0418c87d07bd42105db23", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_05bc08c6e3e4413385afb573c9bcbf24", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "92149d8be9a848bbb307f645477bd77c": { + "8dc4e546ecdb4bc4bde15a14419d53ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5631,23 +5621,25 @@ "width": null } }, - "93e0e54cd7c943569aa5ed63aa27d75c": { + "8ee04981fe4a453c8a3446c3e17f53df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "93ee81b92dd5469aa21e1da5e3d387b1": { + "911d5b0e02934260a9bda52a7fa9fded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5700,7 +5692,7 @@ "width": null } }, - "94ea11ff873e43e6b1679e5b21455dcd": { + "934ce542ebfd4cb9b3b8e5084ed6b700": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5753,7 +5745,31 @@ "width": null } }, - "99434eeea164499493fbe1c3c189f61d": { + "94289cd6e6de468db051fd838ba56323": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ec75feea5ef34cf68bd79ee7ff893b84", + "IPY_MODEL_23fb51adebf34db494ea75cef3b24adf", + "IPY_MODEL_1561d0507e524fcfab27baffd1993d1c" + ], + "layout": "IPY_MODEL_fab5e3871a7541b89cf8e8f2b9523a48", + "tabbable": null, + "tooltip": null + } + }, + "96b3e1cc1f194054b3ca13068dec8e68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5771,7 +5787,7 @@ "text_color": null } }, - "9991e131478646aba449193d96a55a57": { + "970f63679c1b4c0182d836bbc0afbc78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5824,7 +5840,7 @@ "width": null } }, - "99d2ef87ee6d4b0399d85ae87ea77234": { + "9916d3954dc14b88a11a89a058031385": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5877,7 +5893,33 @@ "width": null } }, - "9aea7f50b8a64c5089b63f2e59596737": { + "9a731289e7d34d82bba07cc4ecc69a27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0eb5595e457b4ef19f5c2a46b683aa7b", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ebda6c1b5b5147489c608dffb1d7ce5b", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "9bc5531d8f484e09b9742164abaaf083": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5892,15 +5934,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f847bdb68fa4d6ca3ba027f2f973e6f", + "layout": "IPY_MODEL_65aecf93ea5146a6a0f4b1d515383344", "placeholder": "​", - "style": "IPY_MODEL_ecd3872c3cab43199312a7cf192fad53", + "style": "IPY_MODEL_d27bb8a222ab4802b4c042c66e4783a2", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 61.32it/s]" + } + }, + "9d7fd4fc98a34015b59f0cd80d108780": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d82a9defa064ff29f9a30db26021dbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b02bac34046843f3afd6f73cd396473a", + "placeholder": "​", + "style": "IPY_MODEL_1b463e1dc5ed4f379eb905f713f718ab", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 282530.96 examples/s]" } }, - "9c86ac35d56b4cb1b9a6c8c81f2b9d73": { + "a0afbd97e6574163a30df65c8507d62a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5948,84 +6031,12 @@ "overflow": null, "padding": null, "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9d735577298140d6bd60a896468f75ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdb5399c46854933aec0635ff11ee82b", - "placeholder": "​", - "style": "IPY_MODEL_816259c1ca754349befb5d97e1185a2f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.57it/s]" - } - }, - "9e6d69b0c89145529eb34adb7f0cb591": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_211a1d0f7e994da3abdf9c87d144d826", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_069e2f7a59ce43e49d604a293ef5ff5e", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "9f386e7f08b44099b26554458760f42b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d832ccbd6cb1441bb90c6724f6a97c58", - "placeholder": "​", - "style": "IPY_MODEL_6445f463bca341038b901a4d9ca616f1", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.78it/s]" + "top": null, + "visibility": null, + "width": null } }, - "a88d54dcd75443e4adf63e584faa623b": { + "a2d81fde3fec467b9ea8d8892f574b29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6040,15 +6051,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_abebc2eb21844fa397ca6871fc6ec8cf", + "layout": "IPY_MODEL_a4b373482e154bc2ba7e856d744aaa90", "placeholder": "​", - "style": "IPY_MODEL_99434eeea164499493fbe1c3c189f61d", + "style": "IPY_MODEL_e2883ad09bcb4ea99d6e9d1c292571c6", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.09it/s]" + "value": " 2/2 [00:00<00:00, 527.32it/s]" } }, - "abebc2eb21844fa397ca6871fc6ec8cf": { + "a4b373482e154bc2ba7e856d744aaa90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6101,49 +6112,30 @@ "width": null } }, - "ac59c63878b24875a6a698b3193950b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac8e9ae825dd46cda3caaf717ab3f457": { + "a54630e7f25e4f7c898e29c4a7652252": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6683a2f1a5804d0eac86b0226e09ce2f", - "IPY_MODEL_e3e736649315401c81b5ead3b4d531d0", - "IPY_MODEL_8e1a4c8b07ef4bc6a844046e5c1ec2d2" - ], - "layout": "IPY_MODEL_c889901543af4b20b0f364b5a9c00552", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f74157c274094c55a3fe2d8510370182", + "placeholder": "​", + "style": "IPY_MODEL_b1d37178cd8c458d964d95d85b1fd159", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "b46003cc199f415ca6fb8a875a8ec625": { + "a54f9ca235274d8bba826add2ea968de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6196,31 +6188,23 @@ "width": null } }, - "b559757c81a64cd58ea390bf437dd0ba": { + "a70884dc615e4fab8e12e07eb3556179": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f9e64dc3c6449d4b0180bcb72af8029", - "IPY_MODEL_c64d89a061bf4c47a85f82310c367108", - "IPY_MODEL_535e01c6bf504b4cb054ec6d754951fc" - ], - "layout": "IPY_MODEL_e2e91b9bdaf24cad81bd697fe523454f", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b7ff9d3e760d46ab9410530722e86f1c": { + "a781e7b0a1eb4996a753d8f47a0d6cd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6235,104 +6219,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4600b1651fe94c96a63f5f402ffeb0ab", - "IPY_MODEL_9e6d69b0c89145529eb34adb7f0cb591", - "IPY_MODEL_d212bb43e85445ddadf2aa7399f5ad9f" + "IPY_MODEL_dcdadeb295c745e591ee8b73f40c7778", + "IPY_MODEL_0b0f923eb2ec4f5a98793e7a0cbaa33b", + "IPY_MODEL_4a6750b71c2a44989a8f33a24ac2c66a" ], - "layout": "IPY_MODEL_82bb29b1154c4f96b68e22299ab1d951", + "layout": "IPY_MODEL_195ca67d0cc54ba5975093e841165e8f", "tabbable": null, "tooltip": null } }, - "b89bf820b408447aaca183add33b3385": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bc1aed3122144934903681458e457bf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bc8279dc52324a12b433c3eb7960a2a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfc788895f3e4ac99ff89696a72123e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c0948aa3ed46428ab068ab823f6cd605": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c2c7a5fc0f0f4ed6823022c936c59d4e": { + "aa84004d90c24929adbb06c6fcd8f347": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6385,7 +6281,48 @@ "width": null } }, - "c3eb3db9442048f197e1a77c1097d301": { + "aac056f3f9bb467c85037cb9bd254db3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_970f63679c1b4c0182d836bbc0afbc78", + "placeholder": "​", + "style": "IPY_MODEL_27b8f80c76864c9b8698b6d171d3ee92", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "ab4c62e317e8407e8310c4ca779a8ccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ac1426c20e3841248403ef6ab4ec4818": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6401,7 +6338,7 @@ "description_width": "" } }, - "c3ff3642d4de49349f69b03661c00aed": { + "b028fe5886ed407daffa2e8e1d1b33e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6416,15 +6353,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42b1e7be991546bfa6284a9f6a270c5e", + "layout": "IPY_MODEL_8492737842204d3e82ec36044e509919", "placeholder": "​", - "style": "IPY_MODEL_e42616ef8baf4635bafbb430bd804f38", + "style": "IPY_MODEL_c3058f8b4c5a42a0a98a47c7f540cdcc", "tabbable": null, "tooltip": null, "value": "100%" } }, - "c46e51a76796424db3107165768eabeb": { + "b02bac34046843f3afd6f73cd396473a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6477,112 +6414,64 @@ "width": null } }, - "c486ad2141e04d7e9fe35aa3fd2474cb": { - "model_module": "@jupyter-widgets/base", + "b1d37178cd8c458d964d95d85b1fd159": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c59b31b3f35548939da5226d15fe98c0": { + "b47bea41f8f84e6a8070d5f0653a56e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_332d853f3c6d4038bce23ffbe32553e0", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4eb8b10ee55a4e899df1e41b2daa3ab0", + "layout": "IPY_MODEL_666a6e9fe010472c9ebe67d1aa30da02", + "placeholder": "​", + "style": "IPY_MODEL_1081f9bbd7184bd68161f881b9c1c2e8", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "Downloading readme: 100%" } }, - "c64d89a061bf4c47a85f82310c367108": { + "b80d5f025b154036ad476b78a3460637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a97ba1affa44cee81db93c6e61a8d5e", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_43d5c56839bb4f48bef27dd0bd134ac1", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c76f90aede094a2bb529e852ce14a1ef": { + "bcbf9e2a1ee3447da04d8e96fb0f841a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6635,7 +6524,7 @@ "width": null } }, - "c81eaad18b554cdbbd128330bc9705e1": { + "c1749dc1d02a4dcb92d90af0d098640c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6688,7 +6577,25 @@ "width": null } }, - "c889901543af4b20b0f364b5a9c00552": { + "c3058f8b4c5a42a0a98a47c7f540cdcc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c7003b67bae54d6493d405d5825e6c2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6741,59 +6648,142 @@ "width": null } }, - "c927a2fd98ee422da94eb0ac1d179320": { + "c78acbd1ac704666909b934f2f48e3da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7fbe69e833c54364870397fb035584b5", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_219f02688f1c45028f227c9b6864c6b1", + "layout": "IPY_MODEL_229a9b576bca4951ad662091eaa4d6d5", + "placeholder": "​", + "style": "IPY_MODEL_96b3e1cc1f194054b3ca13068dec8e68", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "caddcee0c11648918da1dc284d00a733": { + "c82f6087dbba4a5ea3ff8f6892bb1965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c89134e7296d447eaf08610ff1a6a232": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cee8c00669dd42ac97578336d38e5dbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7550f2d102ee4b92a1572712f7261c9c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2261458f8c6d47aa8268533e772e4c15", + "layout": "IPY_MODEL_26642ec4e55f43469352c6e25a75ab63", + "placeholder": "​", + "style": "IPY_MODEL_0850e4eeafff46e2b2f8a41bb99ae35c", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 59.21it/s]" + } + }, + "d242722a70fc416293e276b0f8401bff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d27bb8a222ab4802b4c042c66e4783a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d2c8ee83c4df4ca3b0bd2caaeeed106f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a54f9ca235274d8bba826add2ea968de", + "placeholder": "​", + "style": "IPY_MODEL_f2ffcd7fafda4b93ab30e7f1b11019ae", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.79it/s]" } }, - "cdb5399c46854933aec0635ff11ee82b": { + "d4e2e8bbb9764cba8af70f10d847218d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6846,30 +6836,31 @@ "width": null } }, - "d1946623097a4ad78743cc2dfe72c9e1": { + "d7183df8c95b49f89720bff1674cd315": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0ddb4b1211904a10aa548c33caee6aed", - "placeholder": "​", - "style": "IPY_MODEL_6bb1bc8fb0c84a03b5e37a4b5de4e736", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_72363f554e3e4f1a9080a1a4a2688a29", + "IPY_MODEL_9a731289e7d34d82bba07cc4ecc69a27", + "IPY_MODEL_9d82a9defa064ff29f9a30db26021dbb" + ], + "layout": "IPY_MODEL_3c6b207f678349e08f3e154f0eb49502", "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "tooltip": null } }, - "d212bb43e85445ddadf2aa7399f5ad9f": { + "dcdadeb295c745e591ee8b73f40c7778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6884,39 +6875,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec76a6f47e4e48bca8b9cbd502142648", + "layout": "IPY_MODEL_5b16cac5ec7e491ca8aa0e70572e0512", "placeholder": "​", - "style": "IPY_MODEL_915b2de72e934c53b5769ae4fc9767af", + "style": "IPY_MODEL_4e678dda95bc4173a6e214a04a4823db", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6615.19 examples/s]" + "value": "100%" } }, - "d71df3a63bda4854a0d7e51c67182ab4": { + "dd39e801b334434797f4c134d3921fd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f0fad03b316846978c8014648b821038", - "IPY_MODEL_c59b31b3f35548939da5226d15fe98c0", - "IPY_MODEL_441f7c2b1d4140f186a4b360c9fab017" - ], - "layout": "IPY_MODEL_7859271f5ada491ca18d79aab57ac568", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7cd4460109d24347ba8a171664a55ce3", + "placeholder": "​", + "style": "IPY_MODEL_8ee04981fe4a453c8a3446c3e17f53df", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "d832ccbd6cb1441bb90c6724f6a97c58": { + "dd7d1f5460674bb8be0751ade513c041": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6966,111 +6956,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "d87514297c6e446c988365c61fd9457a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dd229a032b574962bf97ffe39211328c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de513cdaed394180886bee1974c93ce2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "df25fafe8e5749a69234408c18364b66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3db3123a400c4f229af20389ad3520d2", - "IPY_MODEL_780e96fc62454e888f0e30931336ab5e", - "IPY_MODEL_4eb3982370ac42b992966c7a96cc2a47" - ], - "layout": "IPY_MODEL_ec11913b1d364c338cea95b8771db6b1", - "tabbable": null, - "tooltip": null - } - }, - "dfffc444cdb640d4a9d712253b6edfa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23b32b2ad0ea490eb3636fac11964542", - "placeholder": "​", - "style": "IPY_MODEL_7ab0569b036f42be8e24943aadcd1621", - "tabbable": null, - "tooltip": null, - "value": "100%" + "width": null } }, - "e2e91b9bdaf24cad81bd697fe523454f": { + "dd8021f04cc44f8eac42379b0b15ece1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7123,7 +7012,7 @@ "width": null } }, - "e3e736649315401c81b5ead3b4d531d0": { + "dd9cf14362e74cbeb505d58baafe4cb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7139,17 +7028,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92149d8be9a848bbb307f645477bd77c", - "max": 30931277.0, + "layout": "IPY_MODEL_699541396fda4fbcb0e28d14b6be4019", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c0948aa3ed46428ab068ab823f6cd605", + "style": "IPY_MODEL_a70884dc615e4fab8e12e07eb3556179", "tabbable": null, "tooltip": null, - "value": 30931277.0 + "value": 40.0 + } + }, + "e0401f9ed4cb45529a0175d5441fdc87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e42616ef8baf4635bafbb430bd804f38": { + "e2883ad09bcb4ea99d6e9d1c292571c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7167,7 +7074,31 @@ "text_color": null } }, - "e9906144508c4f6f90da6edacecadc26": { + "e31ea71bbfe34e54bde0f8eba6e3e41b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_429769e0a6c049ce8281d26731a8e999", + "IPY_MODEL_43ed240044d24550b447c68e5d5344e7", + "IPY_MODEL_2e1e47bdc3bc4e65b0f63284588760ae" + ], + "layout": "IPY_MODEL_9916d3954dc14b88a11a89a058031385", + "tabbable": null, + "tooltip": null + } + }, + "e3858df4be1243fca435f20a3e321386": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7220,7 +7151,56 @@ "width": null } }, - "ec11913b1d364c338cea95b8771db6b1": { + "e479f7639c9949bca96c2de235717132": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_934ce542ebfd4cb9b3b8e5084ed6b700", + "placeholder": "​", + "style": "IPY_MODEL_9d7fd4fc98a34015b59f0cd80d108780", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7029.47 examples/s]" + } + }, + "e6ca8e901e904830a7d69136598543ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aa84004d90c24929adbb06c6fcd8f347", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c82f6087dbba4a5ea3ff8f6892bb1965", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "e6dea26ce53b4010a864c89a949b7af0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7273,7 +7253,30 @@ "width": null } }, - "ec76a6f47e4e48bca8b9cbd502142648": { + "e72c046ab76b45fdb76f44fc35dda60c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31267b316272490e9b90f40383912e0f", + "placeholder": "​", + "style": "IPY_MODEL_226bc1f5af2545f4b6adb4bb205bd6fe", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "eabb1d09e93a493ca119964fca81426e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7326,43 +7329,23 @@ "width": null } }, - "ecd3872c3cab43199312a7cf192fad53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ed2a70f9cbbb432781a33bb137c5fe76": { + "ebda6c1b5b5147489c608dffb1d7ce5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f0fad03b316846978c8014648b821038": { + "ec75feea5ef34cf68bd79ee7ff893b84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7377,15 +7360,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4686b29b240141f7956b546c1f2e9e83", + "layout": "IPY_MODEL_5f0b04d90b864e218b0b1111518df0cd", "placeholder": "​", - "style": "IPY_MODEL_d87514297c6e446c988365c61fd9457a", + "style": "IPY_MODEL_1b23bb3df60a4375be60c234c43b900a", "tabbable": null, "tooltip": null, "value": "Downloading data: 100%" } }, - "f5f27a9d088946cdb7ec1fbf69ccb020": { + "f2ffcd7fafda4b93ab30e7f1b11019ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7403,7 +7386,30 @@ "text_color": null } }, - "f67814f0e6b24425bdf25f7f05f08ccf": { + "f30a6d09323d42b6919e65f28b0ed1c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2e858bbdd1f34b60ba4792a9b6e37a32", + "placeholder": "​", + "style": "IPY_MODEL_34b1ee147a6a418db24a148515371d8a", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f5a3f6f1d4394ab2b30d593e3d4a3ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7456,25 +7462,7 @@ "width": null } }, - "f747d8cff30e48638ca4b6a8b62e1fc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f8117f94932241b49ad3017baa3b1708": { + "f74157c274094c55a3fe2d8510370182": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7527,48 +7515,7 @@ "width": null } }, - "fc0a1aa0c6cf46cfa476b5f7e2175769": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fcfd3e8181d242b0badc716ec5884378": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c7fd464aadc4879ae14ae50a809b856", - "placeholder": "​", - "style": "IPY_MODEL_194aeb115f294dd081a7dcf4d3442b34", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "ff306473844b44168fdb05050fbaa3cd": { + "f76fd1f88dbf476396c45b3dee352fb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7584,15 +7531,68 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_99d2ef87ee6d4b0399d85ae87ea77234", + "layout": "IPY_MODEL_911d5b0e02934260a9bda52a7fa9fded", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_93e0e54cd7c943569aa5ed63aa27d75c", + "style": "IPY_MODEL_7156eac180cd40748551472472a5e725", "tabbable": null, "tooltip": null, "value": 40.0 } + }, + "fab5e3871a7541b89cf8e8f2b9523a48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 4c7f899e9..7615eeea3 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:27.600046Z", - "iopub.status.busy": "2024-08-12T10:35:27.599606Z", - "iopub.status.idle": "2024-08-12T10:35:29.050810Z", - "shell.execute_reply": "2024-08-12T10:35:29.050210Z" + "iopub.execute_input": "2024-08-12T18:58:08.421396Z", + "iopub.status.busy": "2024-08-12T18:58:08.421222Z", + "iopub.status.idle": "2024-08-12T18:58:09.859247Z", + "shell.execute_reply": "2024-08-12T18:58:09.858687Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.053428Z", - "iopub.status.busy": "2024-08-12T10:35:29.052999Z", - "iopub.status.idle": "2024-08-12T10:35:29.072814Z", - "shell.execute_reply": "2024-08-12T10:35:29.072235Z" + "iopub.execute_input": "2024-08-12T18:58:09.861826Z", + "iopub.status.busy": "2024-08-12T18:58:09.861509Z", + "iopub.status.idle": "2024-08-12T18:58:09.881647Z", + "shell.execute_reply": "2024-08-12T18:58:09.881161Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.075332Z", - "iopub.status.busy": "2024-08-12T10:35:29.074762Z", - "iopub.status.idle": "2024-08-12T10:35:29.100612Z", - "shell.execute_reply": "2024-08-12T10:35:29.100059Z" + "iopub.execute_input": "2024-08-12T18:58:09.884197Z", + "iopub.status.busy": "2024-08-12T18:58:09.883893Z", + "iopub.status.idle": "2024-08-12T18:58:09.930793Z", + "shell.execute_reply": "2024-08-12T18:58:09.930292Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.102602Z", - "iopub.status.busy": "2024-08-12T10:35:29.102402Z", - "iopub.status.idle": "2024-08-12T10:35:29.106001Z", - "shell.execute_reply": "2024-08-12T10:35:29.105439Z" + "iopub.execute_input": "2024-08-12T18:58:09.933083Z", + "iopub.status.busy": "2024-08-12T18:58:09.932674Z", + "iopub.status.idle": "2024-08-12T18:58:09.936196Z", + "shell.execute_reply": "2024-08-12T18:58:09.935752Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.108189Z", - "iopub.status.busy": "2024-08-12T10:35:29.107741Z", - "iopub.status.idle": "2024-08-12T10:35:29.115356Z", - "shell.execute_reply": "2024-08-12T10:35:29.114901Z" + "iopub.execute_input": "2024-08-12T18:58:09.938163Z", + "iopub.status.busy": "2024-08-12T18:58:09.937983Z", + "iopub.status.idle": "2024-08-12T18:58:09.945592Z", + "shell.execute_reply": "2024-08-12T18:58:09.945114Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.117288Z", - "iopub.status.busy": "2024-08-12T10:35:29.117111Z", - "iopub.status.idle": "2024-08-12T10:35:29.119850Z", - "shell.execute_reply": "2024-08-12T10:35:29.119384Z" + "iopub.execute_input": "2024-08-12T18:58:09.947753Z", + "iopub.status.busy": "2024-08-12T18:58:09.947411Z", + "iopub.status.idle": "2024-08-12T18:58:09.950143Z", + "shell.execute_reply": "2024-08-12T18:58:09.949695Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:29.121854Z", - "iopub.status.busy": "2024-08-12T10:35:29.121528Z", - "iopub.status.idle": "2024-08-12T10:35:32.238019Z", - "shell.execute_reply": "2024-08-12T10:35:32.237473Z" + "iopub.execute_input": "2024-08-12T18:58:09.951984Z", + "iopub.status.busy": "2024-08-12T18:58:09.951813Z", + "iopub.status.idle": "2024-08-12T18:58:13.120769Z", + "shell.execute_reply": "2024-08-12T18:58:13.120089Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:32.240723Z", - "iopub.status.busy": "2024-08-12T10:35:32.240325Z", - "iopub.status.idle": "2024-08-12T10:35:32.250121Z", - "shell.execute_reply": "2024-08-12T10:35:32.249690Z" + "iopub.execute_input": "2024-08-12T18:58:13.123683Z", + "iopub.status.busy": "2024-08-12T18:58:13.123230Z", + "iopub.status.idle": "2024-08-12T18:58:13.133515Z", + "shell.execute_reply": "2024-08-12T18:58:13.133012Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:32.252177Z", - "iopub.status.busy": "2024-08-12T10:35:32.251867Z", - "iopub.status.idle": "2024-08-12T10:35:34.432426Z", - "shell.execute_reply": "2024-08-12T10:35:34.431815Z" + "iopub.execute_input": "2024-08-12T18:58:13.135799Z", + "iopub.status.busy": "2024-08-12T18:58:13.135466Z", + "iopub.status.idle": "2024-08-12T18:58:15.356714Z", + "shell.execute_reply": "2024-08-12T18:58:15.355987Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.434892Z", - "iopub.status.busy": "2024-08-12T10:35:34.434393Z", - "iopub.status.idle": "2024-08-12T10:35:34.453921Z", - "shell.execute_reply": "2024-08-12T10:35:34.453411Z" + "iopub.execute_input": "2024-08-12T18:58:15.359491Z", + "iopub.status.busy": "2024-08-12T18:58:15.358912Z", + "iopub.status.idle": "2024-08-12T18:58:15.378894Z", + "shell.execute_reply": "2024-08-12T18:58:15.378329Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.456112Z", - "iopub.status.busy": "2024-08-12T10:35:34.455791Z", - "iopub.status.idle": "2024-08-12T10:35:34.463837Z", - "shell.execute_reply": "2024-08-12T10:35:34.463381Z" + "iopub.execute_input": "2024-08-12T18:58:15.381408Z", + "iopub.status.busy": "2024-08-12T18:58:15.381025Z", + "iopub.status.idle": "2024-08-12T18:58:15.389610Z", + "shell.execute_reply": "2024-08-12T18:58:15.389010Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.465873Z", - "iopub.status.busy": "2024-08-12T10:35:34.465530Z", - "iopub.status.idle": "2024-08-12T10:35:34.474676Z", - "shell.execute_reply": "2024-08-12T10:35:34.474217Z" + "iopub.execute_input": "2024-08-12T18:58:15.391998Z", + "iopub.status.busy": "2024-08-12T18:58:15.391635Z", + "iopub.status.idle": "2024-08-12T18:58:15.401546Z", + "shell.execute_reply": "2024-08-12T18:58:15.400962Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.476791Z", - "iopub.status.busy": "2024-08-12T10:35:34.476448Z", - "iopub.status.idle": "2024-08-12T10:35:34.484224Z", - "shell.execute_reply": "2024-08-12T10:35:34.483790Z" + "iopub.execute_input": "2024-08-12T18:58:15.403711Z", + "iopub.status.busy": "2024-08-12T18:58:15.403525Z", + "iopub.status.idle": "2024-08-12T18:58:15.412500Z", + "shell.execute_reply": "2024-08-12T18:58:15.411891Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.486280Z", - "iopub.status.busy": "2024-08-12T10:35:34.485956Z", - "iopub.status.idle": "2024-08-12T10:35:34.495143Z", - "shell.execute_reply": "2024-08-12T10:35:34.494602Z" + "iopub.execute_input": "2024-08-12T18:58:15.415177Z", + "iopub.status.busy": "2024-08-12T18:58:15.414739Z", + "iopub.status.idle": "2024-08-12T18:58:15.424092Z", + "shell.execute_reply": "2024-08-12T18:58:15.423595Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.497284Z", - "iopub.status.busy": "2024-08-12T10:35:34.496965Z", - "iopub.status.idle": "2024-08-12T10:35:34.504500Z", - "shell.execute_reply": "2024-08-12T10:35:34.503930Z" + "iopub.execute_input": "2024-08-12T18:58:15.426173Z", + "iopub.status.busy": "2024-08-12T18:58:15.425991Z", + "iopub.status.idle": "2024-08-12T18:58:15.433609Z", + "shell.execute_reply": "2024-08-12T18:58:15.433049Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.506743Z", - "iopub.status.busy": "2024-08-12T10:35:34.506276Z", - "iopub.status.idle": "2024-08-12T10:35:34.513611Z", - "shell.execute_reply": "2024-08-12T10:35:34.513168Z" + "iopub.execute_input": "2024-08-12T18:58:15.435695Z", + "iopub.status.busy": "2024-08-12T18:58:15.435412Z", + "iopub.status.idle": "2024-08-12T18:58:15.442825Z", + "shell.execute_reply": "2024-08-12T18:58:15.442358Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:34.515577Z", - "iopub.status.busy": "2024-08-12T10:35:34.515407Z", - "iopub.status.idle": "2024-08-12T10:35:34.524253Z", - "shell.execute_reply": "2024-08-12T10:35:34.523636Z" + "iopub.execute_input": "2024-08-12T18:58:15.444907Z", + "iopub.status.busy": "2024-08-12T18:58:15.444586Z", + "iopub.status.idle": "2024-08-12T18:58:15.453151Z", + "shell.execute_reply": "2024-08-12T18:58:15.452574Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index e4c11f4d4..025272312 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay'}
+Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index cb47d3b31..277e568e0 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:37.558577Z", - "iopub.status.busy": "2024-08-12T10:35:37.558339Z", - "iopub.status.idle": "2024-08-12T10:35:40.739470Z", - "shell.execute_reply": "2024-08-12T10:35:40.738831Z" + "iopub.execute_input": "2024-08-12T18:58:18.401024Z", + "iopub.status.busy": "2024-08-12T18:58:18.400844Z", + "iopub.status.idle": "2024-08-12T18:58:21.652442Z", + "shell.execute_reply": "2024-08-12T18:58:21.651832Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.742086Z", - "iopub.status.busy": "2024-08-12T10:35:40.741793Z", - "iopub.status.idle": "2024-08-12T10:35:40.745137Z", - "shell.execute_reply": "2024-08-12T10:35:40.744684Z" + "iopub.execute_input": "2024-08-12T18:58:21.654920Z", + "iopub.status.busy": "2024-08-12T18:58:21.654607Z", + "iopub.status.idle": "2024-08-12T18:58:21.658637Z", + "shell.execute_reply": "2024-08-12T18:58:21.658062Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.747148Z", - "iopub.status.busy": "2024-08-12T10:35:40.746882Z", - "iopub.status.idle": "2024-08-12T10:35:40.749760Z", - "shell.execute_reply": "2024-08-12T10:35:40.749330Z" + "iopub.execute_input": "2024-08-12T18:58:21.660786Z", + "iopub.status.busy": "2024-08-12T18:58:21.660446Z", + "iopub.status.idle": "2024-08-12T18:58:21.663725Z", + "shell.execute_reply": "2024-08-12T18:58:21.663156Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.751845Z", - "iopub.status.busy": "2024-08-12T10:35:40.751461Z", - "iopub.status.idle": "2024-08-12T10:35:40.775689Z", - "shell.execute_reply": "2024-08-12T10:35:40.775149Z" + "iopub.execute_input": "2024-08-12T18:58:21.665708Z", + "iopub.status.busy": "2024-08-12T18:58:21.665531Z", + "iopub.status.idle": "2024-08-12T18:58:21.717461Z", + "shell.execute_reply": "2024-08-12T18:58:21.716912Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.777762Z", - "iopub.status.busy": "2024-08-12T10:35:40.777401Z", - "iopub.status.idle": "2024-08-12T10:35:40.780895Z", - "shell.execute_reply": "2024-08-12T10:35:40.780349Z" + "iopub.execute_input": "2024-08-12T18:58:21.719763Z", + "iopub.status.busy": "2024-08-12T18:58:21.719394Z", + "iopub.status.idle": "2024-08-12T18:58:21.723483Z", + "shell.execute_reply": "2024-08-12T18:58:21.723002Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" + "Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.782945Z", - "iopub.status.busy": "2024-08-12T10:35:40.782612Z", - "iopub.status.idle": "2024-08-12T10:35:40.785832Z", - "shell.execute_reply": "2024-08-12T10:35:40.785363Z" + "iopub.execute_input": "2024-08-12T18:58:21.725660Z", + "iopub.status.busy": "2024-08-12T18:58:21.725307Z", + "iopub.status.idle": "2024-08-12T18:58:21.728467Z", + "shell.execute_reply": "2024-08-12T18:58:21.727871Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:40.787889Z", - "iopub.status.busy": "2024-08-12T10:35:40.787554Z", - "iopub.status.idle": "2024-08-12T10:35:44.773402Z", - "shell.execute_reply": "2024-08-12T10:35:44.772834Z" + "iopub.execute_input": "2024-08-12T18:58:21.730586Z", + "iopub.status.busy": "2024-08-12T18:58:21.730242Z", + "iopub.status.idle": "2024-08-12T18:58:25.865055Z", + "shell.execute_reply": "2024-08-12T18:58:25.864467Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:44.776274Z", - "iopub.status.busy": "2024-08-12T10:35:44.775914Z", - "iopub.status.idle": "2024-08-12T10:35:45.665358Z", - "shell.execute_reply": "2024-08-12T10:35:45.664759Z" + "iopub.execute_input": "2024-08-12T18:58:25.867863Z", + "iopub.status.busy": "2024-08-12T18:58:25.867442Z", + "iopub.status.idle": "2024-08-12T18:58:26.763555Z", + "shell.execute_reply": "2024-08-12T18:58:26.762971Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:45.668546Z", - "iopub.status.busy": "2024-08-12T10:35:45.668154Z", - "iopub.status.idle": "2024-08-12T10:35:45.671068Z", - "shell.execute_reply": "2024-08-12T10:35:45.670578Z" + "iopub.execute_input": "2024-08-12T18:58:26.767516Z", + "iopub.status.busy": "2024-08-12T18:58:26.766565Z", + "iopub.status.idle": "2024-08-12T18:58:26.770630Z", + "shell.execute_reply": "2024-08-12T18:58:26.770132Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:45.673470Z", - "iopub.status.busy": "2024-08-12T10:35:45.673092Z", - "iopub.status.idle": "2024-08-12T10:35:47.702436Z", - "shell.execute_reply": "2024-08-12T10:35:47.701696Z" + "iopub.execute_input": "2024-08-12T18:58:26.773537Z", + "iopub.status.busy": "2024-08-12T18:58:26.773116Z", + "iopub.status.idle": "2024-08-12T18:58:28.849723Z", + "shell.execute_reply": "2024-08-12T18:58:28.849027Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.705440Z", - "iopub.status.busy": "2024-08-12T10:35:47.704975Z", - "iopub.status.idle": "2024-08-12T10:35:47.729437Z", - "shell.execute_reply": "2024-08-12T10:35:47.728904Z" + "iopub.execute_input": "2024-08-12T18:58:28.854134Z", + "iopub.status.busy": "2024-08-12T18:58:28.852936Z", + "iopub.status.idle": "2024-08-12T18:58:28.879769Z", + "shell.execute_reply": "2024-08-12T18:58:28.879212Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.732155Z", - "iopub.status.busy": "2024-08-12T10:35:47.731793Z", - "iopub.status.idle": "2024-08-12T10:35:47.741250Z", - "shell.execute_reply": "2024-08-12T10:35:47.740687Z" + "iopub.execute_input": "2024-08-12T18:58:28.883584Z", + "iopub.status.busy": "2024-08-12T18:58:28.882631Z", + "iopub.status.idle": "2024-08-12T18:58:28.891499Z", + "shell.execute_reply": "2024-08-12T18:58:28.890948Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.743419Z", - "iopub.status.busy": "2024-08-12T10:35:47.743136Z", - "iopub.status.idle": "2024-08-12T10:35:47.747544Z", - "shell.execute_reply": "2024-08-12T10:35:47.747077Z" + "iopub.execute_input": "2024-08-12T18:58:28.893482Z", + "iopub.status.busy": "2024-08-12T18:58:28.893306Z", + "iopub.status.idle": "2024-08-12T18:58:28.897763Z", + "shell.execute_reply": "2024-08-12T18:58:28.897181Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.749487Z", - "iopub.status.busy": "2024-08-12T10:35:47.749326Z", - "iopub.status.idle": "2024-08-12T10:35:47.755601Z", - "shell.execute_reply": "2024-08-12T10:35:47.755155Z" + "iopub.execute_input": "2024-08-12T18:58:28.899997Z", + "iopub.status.busy": "2024-08-12T18:58:28.899647Z", + "iopub.status.idle": "2024-08-12T18:58:28.906101Z", + "shell.execute_reply": "2024-08-12T18:58:28.905560Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.757475Z", - "iopub.status.busy": "2024-08-12T10:35:47.757320Z", - "iopub.status.idle": "2024-08-12T10:35:47.763213Z", - "shell.execute_reply": "2024-08-12T10:35:47.762764Z" + "iopub.execute_input": "2024-08-12T18:58:28.908389Z", + "iopub.status.busy": "2024-08-12T18:58:28.907947Z", + "iopub.status.idle": "2024-08-12T18:58:28.914961Z", + "shell.execute_reply": "2024-08-12T18:58:28.914528Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.765090Z", - "iopub.status.busy": "2024-08-12T10:35:47.764937Z", - "iopub.status.idle": "2024-08-12T10:35:47.770514Z", - "shell.execute_reply": "2024-08-12T10:35:47.770034Z" + "iopub.execute_input": "2024-08-12T18:58:28.917187Z", + "iopub.status.busy": "2024-08-12T18:58:28.916621Z", + "iopub.status.idle": "2024-08-12T18:58:28.922611Z", + "shell.execute_reply": "2024-08-12T18:58:28.922057Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.772510Z", - "iopub.status.busy": "2024-08-12T10:35:47.772173Z", - "iopub.status.idle": "2024-08-12T10:35:47.780532Z", - "shell.execute_reply": "2024-08-12T10:35:47.780093Z" + "iopub.execute_input": "2024-08-12T18:58:28.924669Z", + "iopub.status.busy": "2024-08-12T18:58:28.924332Z", + "iopub.status.idle": "2024-08-12T18:58:28.932890Z", + "shell.execute_reply": "2024-08-12T18:58:28.932312Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.782646Z", - "iopub.status.busy": "2024-08-12T10:35:47.782223Z", - "iopub.status.idle": "2024-08-12T10:35:47.787705Z", - "shell.execute_reply": "2024-08-12T10:35:47.787156Z" + "iopub.execute_input": "2024-08-12T18:58:28.935108Z", + "iopub.status.busy": "2024-08-12T18:58:28.934598Z", + "iopub.status.idle": "2024-08-12T18:58:28.939954Z", + "shell.execute_reply": "2024-08-12T18:58:28.939509Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.789807Z", - "iopub.status.busy": "2024-08-12T10:35:47.789489Z", - "iopub.status.idle": "2024-08-12T10:35:47.794831Z", - "shell.execute_reply": "2024-08-12T10:35:47.794259Z" + "iopub.execute_input": "2024-08-12T18:58:28.941972Z", + "iopub.status.busy": "2024-08-12T18:58:28.941648Z", + "iopub.status.idle": "2024-08-12T18:58:28.946967Z", + "shell.execute_reply": "2024-08-12T18:58:28.946427Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.797007Z", - "iopub.status.busy": "2024-08-12T10:35:47.796666Z", - "iopub.status.idle": "2024-08-12T10:35:47.800304Z", - "shell.execute_reply": "2024-08-12T10:35:47.799739Z" + "iopub.execute_input": "2024-08-12T18:58:28.948895Z", + "iopub.status.busy": "2024-08-12T18:58:28.948718Z", + "iopub.status.idle": "2024-08-12T18:58:28.952461Z", + "shell.execute_reply": "2024-08-12T18:58:28.951982Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:47.802486Z", - "iopub.status.busy": "2024-08-12T10:35:47.802149Z", - "iopub.status.idle": "2024-08-12T10:35:47.807293Z", - "shell.execute_reply": "2024-08-12T10:35:47.806733Z" + "iopub.execute_input": "2024-08-12T18:58:28.954958Z", + "iopub.status.busy": "2024-08-12T18:58:28.954419Z", + "iopub.status.idle": "2024-08-12T18:58:28.960190Z", + "shell.execute_reply": "2024-08-12T18:58:28.959744Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 2a6bcd14f..2b9558ba5 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3140,224 +3140,224 @@

6. (Optional) Visualize the Results - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3503,16 +3503,16 @@

1. Load the Dataset
---2024-08-12 10:36:08--  https://s.cleanlab.ai/CIFAR-10-subset.zip
-Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.108.153, ...
+--2024-08-12 18:58:49--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.111.153, ...
 Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
-CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.008s
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.04s
 
-2024-08-12 10:36:08 (114 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-08-12 18:58:49 (22.6 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3582,7 +3582,7 @@

2. Run Datalab Analysis
-
+
@@ -4058,7 +4058,7 @@

4. (Optional) Compare with a Dataset Without Spurious CorrelationsDatalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 045fd829a..c19ab5d3e 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:51.551812Z", - "iopub.status.busy": "2024-08-12T10:35:51.551632Z", - "iopub.status.idle": "2024-08-12T10:35:51.990223Z", - "shell.execute_reply": "2024-08-12T10:35:51.989584Z" + "iopub.execute_input": "2024-08-12T18:58:32.453144Z", + "iopub.status.busy": "2024-08-12T18:58:32.452963Z", + "iopub.status.idle": "2024-08-12T18:58:32.893566Z", + "shell.execute_reply": "2024-08-12T18:58:32.892923Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:51.993008Z", - "iopub.status.busy": "2024-08-12T10:35:51.992513Z", - "iopub.status.idle": "2024-08-12T10:35:52.124109Z", - "shell.execute_reply": "2024-08-12T10:35:52.123511Z" + "iopub.execute_input": "2024-08-12T18:58:32.896058Z", + "iopub.status.busy": "2024-08-12T18:58:32.895665Z", + "iopub.status.idle": "2024-08-12T18:58:33.028619Z", + "shell.execute_reply": "2024-08-12T18:58:33.028000Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:52.126567Z", - "iopub.status.busy": "2024-08-12T10:35:52.126040Z", - "iopub.status.idle": "2024-08-12T10:35:52.149083Z", - "shell.execute_reply": "2024-08-12T10:35:52.148439Z" + "iopub.execute_input": "2024-08-12T18:58:33.030997Z", + "iopub.status.busy": "2024-08-12T18:58:33.030616Z", + "iopub.status.idle": "2024-08-12T18:58:33.053876Z", + "shell.execute_reply": "2024-08-12T18:58:33.053329Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:52.151708Z", - "iopub.status.busy": "2024-08-12T10:35:52.151230Z", - "iopub.status.idle": "2024-08-12T10:35:55.347722Z", - "shell.execute_reply": "2024-08-12T10:35:55.347134Z" + "iopub.execute_input": "2024-08-12T18:58:33.056613Z", + "iopub.status.busy": "2024-08-12T18:58:33.056072Z", + "iopub.status.idle": "2024-08-12T18:58:36.368353Z", + "shell.execute_reply": "2024-08-12T18:58:36.367660Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:35:55.350496Z", - "iopub.status.busy": "2024-08-12T10:35:55.349868Z", - "iopub.status.idle": "2024-08-12T10:36:05.091104Z", - "shell.execute_reply": "2024-08-12T10:36:05.090467Z" + "iopub.execute_input": "2024-08-12T18:58:36.371024Z", + "iopub.status.busy": "2024-08-12T18:58:36.370494Z", + "iopub.status.idle": "2024-08-12T18:58:46.129472Z", + "shell.execute_reply": "2024-08-12T18:58:46.128923Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:05.093209Z", - "iopub.status.busy": "2024-08-12T10:36:05.093024Z", - "iopub.status.idle": "2024-08-12T10:36:05.252383Z", - "shell.execute_reply": "2024-08-12T10:36:05.251714Z" + "iopub.execute_input": "2024-08-12T18:58:46.131756Z", + "iopub.status.busy": "2024-08-12T18:58:46.131373Z", + "iopub.status.idle": "2024-08-12T18:58:46.324220Z", + "shell.execute_reply": "2024-08-12T18:58:46.323687Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:05.254938Z", - "iopub.status.busy": "2024-08-12T10:36:05.254748Z", - "iopub.status.idle": "2024-08-12T10:36:06.582564Z", - "shell.execute_reply": "2024-08-12T10:36:06.581974Z" + "iopub.execute_input": "2024-08-12T18:58:46.326841Z", + "iopub.status.busy": "2024-08-12T18:58:46.326478Z", + "iopub.status.idle": "2024-08-12T18:58:47.671516Z", + "shell.execute_reply": "2024-08-12T18:58:47.670901Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.584851Z", - "iopub.status.busy": "2024-08-12T10:36:06.584491Z", - "iopub.status.idle": "2024-08-12T10:36:06.786894Z", - "shell.execute_reply": "2024-08-12T10:36:06.786302Z" + "iopub.execute_input": "2024-08-12T18:58:47.673692Z", + "iopub.status.busy": "2024-08-12T18:58:47.673500Z", + "iopub.status.idle": "2024-08-12T18:58:48.008455Z", + "shell.execute_reply": "2024-08-12T18:58:48.007859Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.789478Z", - "iopub.status.busy": "2024-08-12T10:36:06.788956Z", - "iopub.status.idle": "2024-08-12T10:36:06.802195Z", - "shell.execute_reply": "2024-08-12T10:36:06.801709Z" + "iopub.execute_input": "2024-08-12T18:58:48.010951Z", + "iopub.status.busy": "2024-08-12T18:58:48.010444Z", + "iopub.status.idle": "2024-08-12T18:58:48.023807Z", + "shell.execute_reply": "2024-08-12T18:58:48.023327Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.804254Z", - "iopub.status.busy": "2024-08-12T10:36:06.803919Z", - "iopub.status.idle": "2024-08-12T10:36:06.822049Z", - "shell.execute_reply": "2024-08-12T10:36:06.821624Z" + "iopub.execute_input": "2024-08-12T18:58:48.025787Z", + "iopub.status.busy": "2024-08-12T18:58:48.025610Z", + "iopub.status.idle": "2024-08-12T18:58:48.044448Z", + "shell.execute_reply": "2024-08-12T18:58:48.043957Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:06.824031Z", - "iopub.status.busy": "2024-08-12T10:36:06.823698Z", - "iopub.status.idle": "2024-08-12T10:36:07.035508Z", - "shell.execute_reply": "2024-08-12T10:36:07.034970Z" + "iopub.execute_input": "2024-08-12T18:58:48.046497Z", + "iopub.status.busy": "2024-08-12T18:58:48.046158Z", + "iopub.status.idle": "2024-08-12T18:58:48.285984Z", + "shell.execute_reply": "2024-08-12T18:58:48.285450Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.037963Z", - "iopub.status.busy": "2024-08-12T10:36:07.037705Z", - "iopub.status.idle": "2024-08-12T10:36:07.057870Z", - "shell.execute_reply": "2024-08-12T10:36:07.057360Z" + "iopub.execute_input": "2024-08-12T18:58:48.288600Z", + "iopub.status.busy": "2024-08-12T18:58:48.288414Z", + "iopub.status.idle": "2024-08-12T18:58:48.307909Z", + "shell.execute_reply": "2024-08-12T18:58:48.307390Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.060124Z", - "iopub.status.busy": "2024-08-12T10:36:07.059749Z", - "iopub.status.idle": "2024-08-12T10:36:07.211976Z", - "shell.execute_reply": "2024-08-12T10:36:07.211435Z" + "iopub.execute_input": "2024-08-12T18:58:48.310085Z", + "iopub.status.busy": "2024-08-12T18:58:48.309902Z", + "iopub.status.idle": "2024-08-12T18:58:48.479863Z", + "shell.execute_reply": "2024-08-12T18:58:48.479263Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.214229Z", - "iopub.status.busy": "2024-08-12T10:36:07.213870Z", - "iopub.status.idle": "2024-08-12T10:36:07.224062Z", - "shell.execute_reply": "2024-08-12T10:36:07.223486Z" + "iopub.execute_input": "2024-08-12T18:58:48.482094Z", + "iopub.status.busy": "2024-08-12T18:58:48.481913Z", + "iopub.status.idle": "2024-08-12T18:58:48.492262Z", + "shell.execute_reply": "2024-08-12T18:58:48.491815Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.226288Z", - "iopub.status.busy": "2024-08-12T10:36:07.225962Z", - "iopub.status.idle": "2024-08-12T10:36:07.235291Z", - "shell.execute_reply": "2024-08-12T10:36:07.234743Z" + "iopub.execute_input": "2024-08-12T18:58:48.494349Z", + "iopub.status.busy": "2024-08-12T18:58:48.494005Z", + "iopub.status.idle": "2024-08-12T18:58:48.503362Z", + "shell.execute_reply": "2024-08-12T18:58:48.502898Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.237432Z", - "iopub.status.busy": "2024-08-12T10:36:07.237103Z", - "iopub.status.idle": "2024-08-12T10:36:07.262730Z", - "shell.execute_reply": "2024-08-12T10:36:07.262231Z" + "iopub.execute_input": "2024-08-12T18:58:48.505548Z", + "iopub.status.busy": "2024-08-12T18:58:48.505209Z", + "iopub.status.idle": "2024-08-12T18:58:48.530999Z", + "shell.execute_reply": "2024-08-12T18:58:48.530573Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.264692Z", - "iopub.status.busy": "2024-08-12T10:36:07.264376Z", - "iopub.status.idle": "2024-08-12T10:36:07.267245Z", - "shell.execute_reply": "2024-08-12T10:36:07.266678Z" + "iopub.execute_input": "2024-08-12T18:58:48.533100Z", + "iopub.status.busy": "2024-08-12T18:58:48.532754Z", + "iopub.status.idle": "2024-08-12T18:58:48.535405Z", + "shell.execute_reply": "2024-08-12T18:58:48.534950Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.269215Z", - "iopub.status.busy": "2024-08-12T10:36:07.268903Z", - "iopub.status.idle": "2024-08-12T10:36:07.288822Z", - "shell.execute_reply": "2024-08-12T10:36:07.288343Z" + "iopub.execute_input": "2024-08-12T18:58:48.537559Z", + "iopub.status.busy": "2024-08-12T18:58:48.537229Z", + "iopub.status.idle": "2024-08-12T18:58:48.557131Z", + "shell.execute_reply": "2024-08-12T18:58:48.556530Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.290777Z", - "iopub.status.busy": "2024-08-12T10:36:07.290602Z", - "iopub.status.idle": "2024-08-12T10:36:07.294723Z", - "shell.execute_reply": "2024-08-12T10:36:07.294281Z" + "iopub.execute_input": "2024-08-12T18:58:48.559284Z", + "iopub.status.busy": "2024-08-12T18:58:48.559093Z", + "iopub.status.idle": "2024-08-12T18:58:48.563631Z", + "shell.execute_reply": "2024-08-12T18:58:48.563160Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.296561Z", - "iopub.status.busy": "2024-08-12T10:36:07.296393Z", - "iopub.status.idle": "2024-08-12T10:36:07.324069Z", - "shell.execute_reply": "2024-08-12T10:36:07.323629Z" + "iopub.execute_input": "2024-08-12T18:58:48.565611Z", + "iopub.status.busy": "2024-08-12T18:58:48.565430Z", + "iopub.status.idle": "2024-08-12T18:58:48.594740Z", + "shell.execute_reply": "2024-08-12T18:58:48.594193Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.325925Z", - "iopub.status.busy": "2024-08-12T10:36:07.325755Z", - "iopub.status.idle": "2024-08-12T10:36:07.697505Z", - "shell.execute_reply": "2024-08-12T10:36:07.696910Z" + "iopub.execute_input": "2024-08-12T18:58:48.596930Z", + "iopub.status.busy": "2024-08-12T18:58:48.596743Z", + "iopub.status.idle": "2024-08-12T18:58:48.915286Z", + "shell.execute_reply": "2024-08-12T18:58:48.914655Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.699604Z", - "iopub.status.busy": "2024-08-12T10:36:07.699417Z", - "iopub.status.idle": "2024-08-12T10:36:07.702433Z", - "shell.execute_reply": "2024-08-12T10:36:07.701866Z" + "iopub.execute_input": "2024-08-12T18:58:48.917554Z", + "iopub.status.busy": "2024-08-12T18:58:48.917331Z", + "iopub.status.idle": "2024-08-12T18:58:48.920951Z", + "shell.execute_reply": "2024-08-12T18:58:48.920337Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.704427Z", - "iopub.status.busy": "2024-08-12T10:36:07.704252Z", - "iopub.status.idle": "2024-08-12T10:36:07.717642Z", - "shell.execute_reply": "2024-08-12T10:36:07.717105Z" + "iopub.execute_input": "2024-08-12T18:58:48.923307Z", + "iopub.status.busy": "2024-08-12T18:58:48.922856Z", + "iopub.status.idle": "2024-08-12T18:58:48.936475Z", + "shell.execute_reply": "2024-08-12T18:58:48.935867Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.720309Z", - "iopub.status.busy": "2024-08-12T10:36:07.719991Z", - "iopub.status.idle": "2024-08-12T10:36:07.733571Z", - "shell.execute_reply": "2024-08-12T10:36:07.733014Z" + "iopub.execute_input": "2024-08-12T18:58:48.939768Z", + "iopub.status.busy": "2024-08-12T18:58:48.939280Z", + "iopub.status.idle": "2024-08-12T18:58:48.953750Z", + "shell.execute_reply": "2024-08-12T18:58:48.953140Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.735571Z", - "iopub.status.busy": "2024-08-12T10:36:07.735255Z", - "iopub.status.idle": "2024-08-12T10:36:07.745655Z", - "shell.execute_reply": "2024-08-12T10:36:07.745087Z" + "iopub.execute_input": "2024-08-12T18:58:48.955892Z", + "iopub.status.busy": "2024-08-12T18:58:48.955606Z", + "iopub.status.idle": "2024-08-12T18:58:48.966964Z", + "shell.execute_reply": "2024-08-12T18:58:48.966339Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.747816Z", - "iopub.status.busy": "2024-08-12T10:36:07.747483Z", - "iopub.status.idle": "2024-08-12T10:36:07.756627Z", - "shell.execute_reply": "2024-08-12T10:36:07.756169Z" + "iopub.execute_input": "2024-08-12T18:58:48.969417Z", + "iopub.status.busy": "2024-08-12T18:58:48.969078Z", + "iopub.status.idle": "2024-08-12T18:58:48.978995Z", + "shell.execute_reply": "2024-08-12T18:58:48.978417Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.758631Z", - "iopub.status.busy": "2024-08-12T10:36:07.758279Z", - "iopub.status.idle": "2024-08-12T10:36:07.762000Z", - "shell.execute_reply": "2024-08-12T10:36:07.761551Z" + "iopub.execute_input": "2024-08-12T18:58:48.981220Z", + "iopub.status.busy": "2024-08-12T18:58:48.980883Z", + "iopub.status.idle": "2024-08-12T18:58:48.984861Z", + "shell.execute_reply": "2024-08-12T18:58:48.984275Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.764123Z", - "iopub.status.busy": "2024-08-12T10:36:07.763787Z", - "iopub.status.idle": "2024-08-12T10:36:07.814348Z", - "shell.execute_reply": "2024-08-12T10:36:07.813826Z" + "iopub.execute_input": "2024-08-12T18:58:48.986942Z", + "iopub.status.busy": "2024-08-12T18:58:48.986600Z", + "iopub.status.idle": "2024-08-12T18:58:49.039015Z", + "shell.execute_reply": "2024-08-12T18:58:49.038408Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.816619Z", - "iopub.status.busy": "2024-08-12T10:36:07.816166Z", - "iopub.status.idle": "2024-08-12T10:36:07.822673Z", - "shell.execute_reply": "2024-08-12T10:36:07.822197Z" + "iopub.execute_input": "2024-08-12T18:58:49.041588Z", + "iopub.status.busy": "2024-08-12T18:58:49.041136Z", + "iopub.status.idle": "2024-08-12T18:58:49.048316Z", + "shell.execute_reply": "2024-08-12T18:58:49.047854Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.824684Z", - "iopub.status.busy": "2024-08-12T10:36:07.824371Z", - "iopub.status.idle": "2024-08-12T10:36:07.835809Z", - "shell.execute_reply": "2024-08-12T10:36:07.835239Z" + "iopub.execute_input": "2024-08-12T18:58:49.050457Z", + "iopub.status.busy": "2024-08-12T18:58:49.050118Z", + "iopub.status.idle": "2024-08-12T18:58:49.061463Z", + "shell.execute_reply": "2024-08-12T18:58:49.060888Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:07.837999Z", - "iopub.status.busy": "2024-08-12T10:36:07.837680Z", - "iopub.status.idle": "2024-08-12T10:36:08.054639Z", - "shell.execute_reply": "2024-08-12T10:36:08.053990Z" + "iopub.execute_input": "2024-08-12T18:58:49.063774Z", + "iopub.status.busy": "2024-08-12T18:58:49.063445Z", + "iopub.status.idle": "2024-08-12T18:58:49.282520Z", + "shell.execute_reply": "2024-08-12T18:58:49.281931Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:08.056912Z", - "iopub.status.busy": "2024-08-12T10:36:08.056543Z", - "iopub.status.idle": "2024-08-12T10:36:08.064093Z", - "shell.execute_reply": "2024-08-12T10:36:08.063620Z" + "iopub.execute_input": "2024-08-12T18:58:49.284947Z", + "iopub.status.busy": "2024-08-12T18:58:49.284525Z", + "iopub.status.idle": "2024-08-12T18:58:49.292566Z", + "shell.execute_reply": "2024-08-12T18:58:49.292062Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:08.066343Z", - "iopub.status.busy": "2024-08-12T10:36:08.066010Z", - "iopub.status.idle": "2024-08-12T10:36:08.546606Z", - "shell.execute_reply": "2024-08-12T10:36:08.545889Z" + "iopub.execute_input": "2024-08-12T18:58:49.294849Z", + "iopub.status.busy": "2024-08-12T18:58:49.294514Z", + "iopub.status.idle": "2024-08-12T18:58:49.928407Z", + "shell.execute_reply": "2024-08-12T18:58:49.927648Z" } }, "outputs": [ @@ -3767,8 +3767,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 10:36:08-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.108.153, ...\r\n", + "--2024-08-12 18:58:49-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.111.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] @@ -3783,9 +3783,9 @@ "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.008s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.04s \r\n", "\r\n", - "2024-08-12 10:36:08 (114 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-12 18:58:49 (22.6 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:08.549381Z", - "iopub.status.busy": "2024-08-12T10:36:08.548982Z", - "iopub.status.idle": "2024-08-12T10:36:10.480188Z", - "shell.execute_reply": "2024-08-12T10:36:10.479637Z" + "iopub.execute_input": "2024-08-12T18:58:49.931184Z", + "iopub.status.busy": "2024-08-12T18:58:49.930775Z", + "iopub.status.idle": "2024-08-12T18:58:51.929317Z", + "shell.execute_reply": "2024-08-12T18:58:51.928757Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:10.482794Z", - "iopub.status.busy": "2024-08-12T10:36:10.482318Z", - "iopub.status.idle": "2024-08-12T10:36:10.957321Z", - "shell.execute_reply": "2024-08-12T10:36:10.956627Z" + "iopub.execute_input": "2024-08-12T18:58:51.932133Z", + "iopub.status.busy": "2024-08-12T18:58:51.931579Z", + "iopub.status.idle": "2024-08-12T18:58:52.415840Z", + "shell.execute_reply": "2024-08-12T18:58:52.415213Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "198e7e813a74495796c698a5c11fff7c", + "model_id": "c0b69f70cccc4c2cb212d2804eaaa895", "version_major": 2, "version_minor": 0 }, @@ -3950,10 +3950,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:10.961341Z", - "iopub.status.busy": "2024-08-12T10:36:10.960396Z", - "iopub.status.idle": "2024-08-12T10:36:10.978338Z", - "shell.execute_reply": "2024-08-12T10:36:10.977816Z" + "iopub.execute_input": "2024-08-12T18:58:52.419360Z", + "iopub.status.busy": "2024-08-12T18:58:52.418978Z", + "iopub.status.idle": "2024-08-12T18:58:52.433093Z", + "shell.execute_reply": "2024-08-12T18:58:52.432477Z" } }, "outputs": [ @@ -4211,10 +4211,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:10.981885Z", - "iopub.status.busy": "2024-08-12T10:36:10.980974Z", - "iopub.status.idle": "2024-08-12T10:36:11.510195Z", - "shell.execute_reply": "2024-08-12T10:36:11.509548Z" + "iopub.execute_input": "2024-08-12T18:58:52.437120Z", + "iopub.status.busy": "2024-08-12T18:58:52.436115Z", + "iopub.status.idle": "2024-08-12T18:58:52.963139Z", + "shell.execute_reply": "2024-08-12T18:58:52.962468Z" } }, "outputs": [ @@ -4229,7 +4229,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f89ff9b9eb5c42518512b4ef234ab8aa", + "model_id": "4a0ec50ba0624a1dbbe73cc4ad48d5c2", "version_major": 2, "version_minor": 0 }, @@ -4497,181 +4497,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0f53bc8810064eaab2afd661d577c62c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dbfcd9249caf4579bafa6d165af7a204", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e9a5ebacb994e0bbde90cf0d112b32d", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "198e7e813a74495796c698a5c11fff7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dba3a943e5d149939a0071eccc1c7b19", - "IPY_MODEL_0f53bc8810064eaab2afd661d577c62c", - "IPY_MODEL_376deb7d42824cf09ccee37e80d3f2ce" - ], - "layout": "IPY_MODEL_a76dd6c6962e41f09c6c75ece448a897", - "tabbable": null, - "tooltip": null - } - }, - "3584f7c966b04ebdbd8acf49d20e75f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82d08af0e9fc440a835fb28e2737645f", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a01967b640ae4c4d8f977e456aa04abd", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "376deb7d42824cf09ccee37e80d3f2ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b59bf04208dd487585084bf58a071fe6", - "placeholder": "​", - "style": "IPY_MODEL_ec85262ee17f48a09708e083268d7c48", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 777.91it/s]" - } - }, - "47c7bda2d6bb45f2a45ed618ffea312d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "543f8ddaa6ac478f95e74bbd9cfb1ff5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "60785226114e48d592cb4cbcf93c8a85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d873bd2086f247e2aeee87ed55940bb4", - "placeholder": "​", - "style": "IPY_MODEL_47c7bda2d6bb45f2a45ed618ffea312d", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 689.25it/s]" - } - }, - "7e9a5ebacb994e0bbde90cf0d112b32d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "82d08af0e9fc440a835fb28e2737645f": { + "0a1d4a795cea4368bfe801319f6bfa56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4724,41 +4550,48 @@ "width": null } }, - "84d564647e7344fda7ea4531ad6fd6b1": { + "15abb84193a243528666ebc7929e204b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_629b3803f80f47f78a312e9773869e99", + "placeholder": "​", + "style": "IPY_MODEL_d50b005bb100446d8effbbe10def949d", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "a01967b640ae4c4d8f977e456aa04abd": { + "24c54c690ba349a98a6611f44fc4e1cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a76dd6c6962e41f09c6c75ece448a897": { + "31387dc410ba4ac08097c6cdf1214b46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4811,30 +4644,23 @@ "width": null } }, - "aaf556c48f454605a7e83e2ff17b37a0": { + "340abbf345c247009cab505ac17bf88e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb46f828ab8c4e03b6cc855501408887", - "placeholder": "​", - "style": "IPY_MODEL_84d564647e7344fda7ea4531ad6fd6b1", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b59bf04208dd487585084bf58a071fe6": { + "419e162125f94925b4776a8268ab2f13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4887,7 +4713,67 @@ "width": null } }, - "bfe86b5013904e0eb93edff800acee02": { + "47ca085961074718b132ce70262f23f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "48c731e8cf064b9784b5dd2b4d6be5de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a0ec50ba0624a1dbbe73cc4ad48d5c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8bdbf2497dd4a7aaec510ff6b6969d7", + "IPY_MODEL_a44d53c425b44681bf2a4266b2562f52", + "IPY_MODEL_71f08b6d9e454988a5ff0d3a3109bfba" + ], + "layout": "IPY_MODEL_830f77b51c5d45ac8f6ceacb5c21f500", + "tabbable": null, + "tooltip": null + } + }, + "629b3803f80f47f78a312e9773869e99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4940,7 +4826,30 @@ "width": null } }, - "c27b0c39a9ed449ea379599286810547": { + "71f08b6d9e454988a5ff0d3a3109bfba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e451cadbebfe41029d5d3cb34c96f9d0", + "placeholder": "​", + "style": "IPY_MODEL_47ca085961074718b132ce70262f23f9", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 721.87it/s]" + } + }, + "830f77b51c5d45ac8f6ceacb5c21f500": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4993,7 +4902,7 @@ "width": null } }, - "d873bd2086f247e2aeee87ed55940bb4": { + "865e16ee50ec4a31ac0e00b475bd9ede": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5046,30 +4955,49 @@ "width": null } }, - "dba3a943e5d149939a0071eccc1c7b19": { + "a44d53c425b44681bf2a4266b2562f52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c27b0c39a9ed449ea379599286810547", - "placeholder": "​", - "style": "IPY_MODEL_543f8ddaa6ac478f95e74bbd9cfb1ff5", + "layout": "IPY_MODEL_b639f4a5d7434b0fb852ee16636dc5ce", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_340abbf345c247009cab505ac17bf88e", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 + } + }, + "b11b3fa000794406af4de521bf6381e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dbfcd9249caf4579bafa6d165af7a204": { + "b639f4a5d7434b0fb852ee16636dc5ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5122,7 +5050,31 @@ "width": null } }, - "ec85262ee17f48a09708e083268d7c48": { + "c0b69f70cccc4c2cb212d2804eaaa895": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_15abb84193a243528666ebc7929e204b", + "IPY_MODEL_fc333b4698444611a9ef2c362a197831", + "IPY_MODEL_e7cff525d0ed4da79ea4db12e670ea42" + ], + "layout": "IPY_MODEL_865e16ee50ec4a31ac0e00b475bd9ede", + "tabbable": null, + "tooltip": null + } + }, + "d50b005bb100446d8effbbe10def949d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5140,31 +5092,30 @@ "text_color": null } }, - "f89ff9b9eb5c42518512b4ef234ab8aa": { + "d8bdbf2497dd4a7aaec510ff6b6969d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_aaf556c48f454605a7e83e2ff17b37a0", - "IPY_MODEL_3584f7c966b04ebdbd8acf49d20e75f1", - "IPY_MODEL_60785226114e48d592cb4cbcf93c8a85" - ], - "layout": "IPY_MODEL_bfe86b5013904e0eb93edff800acee02", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a1d4a795cea4368bfe801319f6bfa56", + "placeholder": "​", + "style": "IPY_MODEL_48c731e8cf064b9784b5dd2b4d6be5de", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "fb46f828ab8c4e03b6cc855501408887": { + "e451cadbebfe41029d5d3cb34c96f9d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5216,6 +5167,55 @@ "visibility": null, "width": null } + }, + "e7cff525d0ed4da79ea4db12e670ea42": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31387dc410ba4ac08097c6cdf1214b46", + "placeholder": "​", + "style": "IPY_MODEL_24c54c690ba349a98a6611f44fc4e1cd", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 753.06it/s]" + } + }, + "fc333b4698444611a9ef2c362a197831": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_419e162125f94925b4776a8268ab2f13", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b11b3fa000794406af4de521bf6381e4", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 7b0b34cad..a972cd809 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:15.864856Z", - "iopub.status.busy": "2024-08-12T10:36:15.864680Z", - "iopub.status.idle": "2024-08-12T10:36:17.280483Z", - "shell.execute_reply": "2024-08-12T10:36:17.279892Z" + "iopub.execute_input": "2024-08-12T18:58:57.416743Z", + "iopub.status.busy": "2024-08-12T18:58:57.416562Z", + "iopub.status.idle": "2024-08-12T18:58:58.889432Z", + "shell.execute_reply": "2024-08-12T18:58:58.888841Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:17.283412Z", - "iopub.status.busy": "2024-08-12T10:36:17.282882Z", - "iopub.status.idle": "2024-08-12T10:36:17.286705Z", - "shell.execute_reply": "2024-08-12T10:36:17.286193Z" + "iopub.execute_input": "2024-08-12T18:58:58.892133Z", + "iopub.status.busy": "2024-08-12T18:58:58.891633Z", + "iopub.status.idle": "2024-08-12T18:58:58.894507Z", + "shell.execute_reply": "2024-08-12T18:58:58.894046Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:17.288880Z", - "iopub.status.busy": "2024-08-12T10:36:17.288690Z", - "iopub.status.idle": "2024-08-12T10:36:17.303362Z", - "shell.execute_reply": "2024-08-12T10:36:17.302893Z" + "iopub.execute_input": "2024-08-12T18:58:58.896557Z", + "iopub.status.busy": "2024-08-12T18:58:58.896376Z", + "iopub.status.idle": "2024-08-12T18:58:58.908772Z", + "shell.execute_reply": "2024-08-12T18:58:58.908263Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:17.305574Z", - "iopub.status.busy": "2024-08-12T10:36:17.305171Z", - "iopub.status.idle": "2024-08-12T10:36:25.907394Z", - "shell.execute_reply": "2024-08-12T10:36:25.906876Z" + "iopub.execute_input": "2024-08-12T18:58:58.910826Z", + "iopub.status.busy": "2024-08-12T18:58:58.910636Z", + "iopub.status.idle": "2024-08-12T18:59:06.267643Z", + "shell.execute_reply": "2024-08-12T18:59:06.267042Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 574155af9..800d8f271 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 42fd50581..82cd5d47d 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:28.352405Z", - "iopub.status.busy": "2024-08-12T10:36:28.352234Z", - "iopub.status.idle": "2024-08-12T10:36:29.772908Z", - "shell.execute_reply": "2024-08-12T10:36:29.772267Z" + "iopub.execute_input": "2024-08-12T18:59:09.036162Z", + "iopub.status.busy": "2024-08-12T18:59:09.035980Z", + "iopub.status.idle": "2024-08-12T18:59:10.530018Z", + "shell.execute_reply": "2024-08-12T18:59:10.529347Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:29.775613Z", - "iopub.status.busy": "2024-08-12T10:36:29.775315Z", - "iopub.status.idle": "2024-08-12T10:36:29.778674Z", - "shell.execute_reply": "2024-08-12T10:36:29.778113Z" + "iopub.execute_input": "2024-08-12T18:59:10.532800Z", + "iopub.status.busy": "2024-08-12T18:59:10.532485Z", + "iopub.status.idle": "2024-08-12T18:59:10.536043Z", + "shell.execute_reply": "2024-08-12T18:59:10.535464Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:29.780891Z", - "iopub.status.busy": "2024-08-12T10:36:29.780563Z", - "iopub.status.idle": "2024-08-12T10:36:33.346280Z", - "shell.execute_reply": "2024-08-12T10:36:33.345609Z" + "iopub.execute_input": "2024-08-12T18:59:10.538323Z", + "iopub.status.busy": "2024-08-12T18:59:10.537990Z", + "iopub.status.idle": "2024-08-12T18:59:14.370319Z", + "shell.execute_reply": "2024-08-12T18:59:14.369463Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.349771Z", - "iopub.status.busy": "2024-08-12T10:36:33.348851Z", - "iopub.status.idle": "2024-08-12T10:36:33.396667Z", - "shell.execute_reply": "2024-08-12T10:36:33.396037Z" + "iopub.execute_input": "2024-08-12T18:59:14.374238Z", + "iopub.status.busy": "2024-08-12T18:59:14.373122Z", + "iopub.status.idle": "2024-08-12T18:59:14.430561Z", + "shell.execute_reply": "2024-08-12T18:59:14.429766Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.399404Z", - "iopub.status.busy": "2024-08-12T10:36:33.399007Z", - "iopub.status.idle": "2024-08-12T10:36:33.444013Z", - "shell.execute_reply": "2024-08-12T10:36:33.443221Z" + "iopub.execute_input": "2024-08-12T18:59:14.433816Z", + "iopub.status.busy": "2024-08-12T18:59:14.433400Z", + "iopub.status.idle": "2024-08-12T18:59:14.483159Z", + "shell.execute_reply": "2024-08-12T18:59:14.482495Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.446938Z", - "iopub.status.busy": "2024-08-12T10:36:33.446592Z", - "iopub.status.idle": "2024-08-12T10:36:33.449911Z", - "shell.execute_reply": "2024-08-12T10:36:33.449428Z" + "iopub.execute_input": "2024-08-12T18:59:14.485853Z", + "iopub.status.busy": "2024-08-12T18:59:14.485594Z", + "iopub.status.idle": "2024-08-12T18:59:14.488767Z", + "shell.execute_reply": "2024-08-12T18:59:14.488266Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.451993Z", - "iopub.status.busy": "2024-08-12T10:36:33.451652Z", - "iopub.status.idle": "2024-08-12T10:36:33.454282Z", - "shell.execute_reply": "2024-08-12T10:36:33.453832Z" + "iopub.execute_input": "2024-08-12T18:59:14.490990Z", + "iopub.status.busy": "2024-08-12T18:59:14.490655Z", + "iopub.status.idle": "2024-08-12T18:59:14.493275Z", + "shell.execute_reply": "2024-08-12T18:59:14.492800Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.456395Z", - "iopub.status.busy": "2024-08-12T10:36:33.456118Z", - "iopub.status.idle": "2024-08-12T10:36:33.481466Z", - "shell.execute_reply": "2024-08-12T10:36:33.480901Z" + "iopub.execute_input": "2024-08-12T18:59:14.495455Z", + "iopub.status.busy": "2024-08-12T18:59:14.495115Z", + "iopub.status.idle": "2024-08-12T18:59:14.521134Z", + "shell.execute_reply": "2024-08-12T18:59:14.520510Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf893ccecfea429e8cfde5bd91777d9d", + "model_id": "af1e5c81ccc74ab0acfdc1b6416375f5", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c8e651ba1af4313a9317a199ae1548d", + "model_id": "db2f5b228c3e48cd86e8e39d81d5b986", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.488831Z", - "iopub.status.busy": "2024-08-12T10:36:33.488477Z", - "iopub.status.idle": "2024-08-12T10:36:33.495007Z", - "shell.execute_reply": "2024-08-12T10:36:33.494549Z" + "iopub.execute_input": "2024-08-12T18:59:14.527676Z", + "iopub.status.busy": "2024-08-12T18:59:14.527289Z", + "iopub.status.idle": "2024-08-12T18:59:14.534069Z", + "shell.execute_reply": "2024-08-12T18:59:14.533601Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.496972Z", - "iopub.status.busy": "2024-08-12T10:36:33.496691Z", - "iopub.status.idle": "2024-08-12T10:36:33.500096Z", - "shell.execute_reply": "2024-08-12T10:36:33.499604Z" + "iopub.execute_input": "2024-08-12T18:59:14.536214Z", + "iopub.status.busy": "2024-08-12T18:59:14.535837Z", + "iopub.status.idle": "2024-08-12T18:59:14.539527Z", + "shell.execute_reply": "2024-08-12T18:59:14.538942Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.502247Z", - "iopub.status.busy": "2024-08-12T10:36:33.501920Z", - "iopub.status.idle": "2024-08-12T10:36:33.508693Z", - "shell.execute_reply": "2024-08-12T10:36:33.508215Z" + "iopub.execute_input": "2024-08-12T18:59:14.541766Z", + "iopub.status.busy": "2024-08-12T18:59:14.541486Z", + "iopub.status.idle": "2024-08-12T18:59:14.548179Z", + "shell.execute_reply": "2024-08-12T18:59:14.547598Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.510843Z", - "iopub.status.busy": "2024-08-12T10:36:33.510491Z", - "iopub.status.idle": "2024-08-12T10:36:33.561499Z", - "shell.execute_reply": "2024-08-12T10:36:33.560758Z" + "iopub.execute_input": "2024-08-12T18:59:14.550302Z", + "iopub.status.busy": "2024-08-12T18:59:14.549985Z", + "iopub.status.idle": "2024-08-12T18:59:14.600720Z", + "shell.execute_reply": "2024-08-12T18:59:14.599885Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.564026Z", - "iopub.status.busy": "2024-08-12T10:36:33.563765Z", - "iopub.status.idle": "2024-08-12T10:36:33.612273Z", - "shell.execute_reply": "2024-08-12T10:36:33.611653Z" + "iopub.execute_input": "2024-08-12T18:59:14.603468Z", + "iopub.status.busy": "2024-08-12T18:59:14.603189Z", + "iopub.status.idle": "2024-08-12T18:59:14.655777Z", + "shell.execute_reply": "2024-08-12T18:59:14.654974Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.615254Z", - "iopub.status.busy": "2024-08-12T10:36:33.614772Z", - "iopub.status.idle": "2024-08-12T10:36:33.752925Z", - "shell.execute_reply": "2024-08-12T10:36:33.752366Z" + "iopub.execute_input": "2024-08-12T18:59:14.658937Z", + "iopub.status.busy": "2024-08-12T18:59:14.658494Z", + "iopub.status.idle": "2024-08-12T18:59:14.805784Z", + "shell.execute_reply": "2024-08-12T18:59:14.805105Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:33.755750Z", - "iopub.status.busy": "2024-08-12T10:36:33.754993Z", - "iopub.status.idle": "2024-08-12T10:36:36.831227Z", - "shell.execute_reply": "2024-08-12T10:36:36.830642Z" + "iopub.execute_input": "2024-08-12T18:59:14.808869Z", + "iopub.status.busy": "2024-08-12T18:59:14.808057Z", + "iopub.status.idle": "2024-08-12T18:59:17.892504Z", + "shell.execute_reply": "2024-08-12T18:59:17.891775Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.833500Z", - "iopub.status.busy": "2024-08-12T10:36:36.833308Z", - "iopub.status.idle": "2024-08-12T10:36:36.892690Z", - "shell.execute_reply": "2024-08-12T10:36:36.892211Z" + "iopub.execute_input": "2024-08-12T18:59:17.894854Z", + "iopub.status.busy": "2024-08-12T18:59:17.894644Z", + "iopub.status.idle": "2024-08-12T18:59:17.957007Z", + "shell.execute_reply": "2024-08-12T18:59:17.956422Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.894763Z", - "iopub.status.busy": "2024-08-12T10:36:36.894578Z", - "iopub.status.idle": "2024-08-12T10:36:36.937430Z", - "shell.execute_reply": "2024-08-12T10:36:36.936946Z" + "iopub.execute_input": "2024-08-12T18:59:17.959404Z", + "iopub.status.busy": "2024-08-12T18:59:17.959048Z", + "iopub.status.idle": "2024-08-12T18:59:18.001668Z", + "shell.execute_reply": "2024-08-12T18:59:18.001055Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "e2b15791", + "id": "7596b65c", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "13d6c9cb", + "id": "8cd71820", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "4a406eed", + "id": "74548889", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "879b26f8", + "id": "06b1a332", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.939556Z", - "iopub.status.busy": "2024-08-12T10:36:36.939373Z", - "iopub.status.idle": "2024-08-12T10:36:36.947114Z", - "shell.execute_reply": "2024-08-12T10:36:36.946635Z" + "iopub.execute_input": "2024-08-12T18:59:18.004021Z", + "iopub.status.busy": "2024-08-12T18:59:18.003656Z", + "iopub.status.idle": "2024-08-12T18:59:18.011463Z", + "shell.execute_reply": "2024-08-12T18:59:18.010982Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "4369b5e2", + "id": "df33427d", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "150b15ac", + "id": "442bf65a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.948929Z", - "iopub.status.busy": "2024-08-12T10:36:36.948750Z", - "iopub.status.idle": "2024-08-12T10:36:36.967965Z", - "shell.execute_reply": "2024-08-12T10:36:36.967525Z" + "iopub.execute_input": "2024-08-12T18:59:18.013746Z", + "iopub.status.busy": "2024-08-12T18:59:18.013327Z", + "iopub.status.idle": "2024-08-12T18:59:18.033961Z", + "shell.execute_reply": "2024-08-12T18:59:18.033341Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "c14c0b83", + "id": "8c4cf9b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:36.969804Z", - "iopub.status.busy": "2024-08-12T10:36:36.969629Z", - "iopub.status.idle": "2024-08-12T10:36:36.972857Z", - "shell.execute_reply": "2024-08-12T10:36:36.972314Z" + "iopub.execute_input": "2024-08-12T18:59:18.036179Z", + "iopub.status.busy": "2024-08-12T18:59:18.035977Z", + "iopub.status.idle": "2024-08-12T18:59:18.039688Z", + "shell.execute_reply": "2024-08-12T18:59:18.039180Z" } }, "outputs": [ @@ -1622,7 +1622,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "049b52761beb48df99fe23cd8baeebfb": { + "08c5c77d9ca9420b853ae917da3e18e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "181815186c96459ca3638cab03324592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,31 +1691,7 @@ "width": null } }, - "0c8e651ba1af4313a9317a199ae1548d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77b09a1dcb164489bb12a039cfe3b4c1", - "IPY_MODEL_e46bbd36792e43bbb201508b8bce8a47", - "IPY_MODEL_827cdb9a53984947ae7014f9483b5bbf" - ], - "layout": "IPY_MODEL_0e9314d6bb654e358a5b655abefbce94", - "tabbable": null, - "tooltip": null - } - }, - "0e9314d6bb654e358a5b655abefbce94": { + "27ac5ec495b64f1ea58b7acd0885d40f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1752,7 +1744,7 @@ "width": null } }, - "383e13499cb54e3788bb93b9baee6cda": { + "32fc56c95a28457bb4e908274994cc68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1770,60 +1762,7 @@ "text_color": null } }, - "495280da9a8c4ce295214df8980d9dd1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4ee68ec8f5664db5a49b4d5c67236357": { + "44b8216644ca4116ac75b89bf104debf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,23 +1815,25 @@ "width": null } }, - "5fea7cef55724962825cc3fc0d2f606b": { + "6e6b25a5ab8248cabe2a958063d58241": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "731256f7397c4df989b63b1f641980e8": { + "6e717fbc461a45f9b6c3fc0b31b2318a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1907,38 +1848,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_495280da9a8c4ce295214df8980d9dd1", + "layout": "IPY_MODEL_d987f42307724a30bd2f60b2878d6da7", "placeholder": "​", - "style": "IPY_MODEL_c485687bf15f4420adbaf32ba3cefa12", + "style": "IPY_MODEL_71f49736aa664c71abf733c244d17002", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1014587.32it/s]" + "value": " 10000/? [00:00<00:00, 974354.54it/s]" } }, - "77b09a1dcb164489bb12a039cfe3b4c1": { + "71f49736aa664c71abf733c244d17002": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f04c9e1d2c1c4ccb8f63c5daf273cb1e", - "placeholder": "​", - "style": "IPY_MODEL_383e13499cb54e3788bb93b9baee6cda", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8019ab3b21b84b569a5f1cee114d146f": { + "7c21cda8c98e4c9ca010c13c650e8203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1954,58 +1890,123 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ee68ec8f5664db5a49b4d5c67236357", + "layout": "IPY_MODEL_a636304a2f7f46d09012b254244a0ae0", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d5c5f29848304634a66b93d99d0e58fc", + "style": "IPY_MODEL_e85d95d4044f43a99f60efa7544c1111", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "827cdb9a53984947ae7014f9483b5bbf": { - "model_module": "@jupyter-widgets/controls", + "99f87daccefd4060b6e950c8ae96836f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5c5c8359a9349638e1ec483ccda88ec", - "placeholder": "​", - "style": "IPY_MODEL_d718ad321254435985038e766b1ab7ae", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1544351.41it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b24365c9c78b470ca67c61e541773477": { - "model_module": "@jupyter-widgets/controls", + "a288125de45149a393ab10bde84ce6cf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ba8eccc77bce49db8cd963dfef9f9200": { + "a636304a2f7f46d09012b254244a0ae0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2058,7 +2059,33 @@ "width": null } }, - "bf893ccecfea429e8cfde5bd91777d9d": { + "ac14e637c7f04acc97796172112d3529": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99f87daccefd4060b6e950c8ae96836f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08c5c77d9ca9420b853ae917da3e18e7", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "af1e5c81ccc74ab0acfdc1b6416375f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2073,16 +2100,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c0bb7bf7365d4a35a8155eaf55a88e67", - "IPY_MODEL_8019ab3b21b84b569a5f1cee114d146f", - "IPY_MODEL_731256f7397c4df989b63b1f641980e8" + "IPY_MODEL_bc575d7b0b79495c9606ca1325cec69d", + "IPY_MODEL_7c21cda8c98e4c9ca010c13c650e8203", + "IPY_MODEL_6e717fbc461a45f9b6c3fc0b31b2318a" ], - "layout": "IPY_MODEL_ea3c5899e87b4c7281939fe595139e5a", + "layout": "IPY_MODEL_c83458446be04ba48fb6bdfc9201ce68", "tabbable": null, "tooltip": null } }, - "c0bb7bf7365d4a35a8155eaf55a88e67": { + "b104473fbfd5417bb0b76e11bfc6b8df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2097,49 +2124,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_049b52761beb48df99fe23cd8baeebfb", + "layout": "IPY_MODEL_27ac5ec495b64f1ea58b7acd0885d40f", "placeholder": "​", - "style": "IPY_MODEL_b24365c9c78b470ca67c61e541773477", + "style": "IPY_MODEL_6e6b25a5ab8248cabe2a958063d58241", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "c485687bf15f4420adbaf32ba3cefa12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d5c5f29848304634a66b93d99d0e58fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 10000/? [00:00<00:00, 1472408.90it/s]" } }, - "d718ad321254435985038e766b1ab7ae": { + "b85dd87608eb48debd3fc09f4d4794ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2157,33 +2150,30 @@ "text_color": null } }, - "e46bbd36792e43bbb201508b8bce8a47": { + "bc575d7b0b79495c9606ca1325cec69d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ba8eccc77bce49db8cd963dfef9f9200", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5fea7cef55724962825cc3fc0d2f606b", + "layout": "IPY_MODEL_a288125de45149a393ab10bde84ce6cf", + "placeholder": "​", + "style": "IPY_MODEL_32fc56c95a28457bb4e908274994cc68", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "ea3c5899e87b4c7281939fe595139e5a": { + "c83458446be04ba48fb6bdfc9201ce68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2236,7 +2226,7 @@ "width": null } }, - "f04c9e1d2c1c4ccb8f63c5daf273cb1e": { + "d987f42307724a30bd2f60b2878d6da7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2289,57 +2279,67 @@ "width": null } }, - "f5c5c8359a9349638e1ec483ccda88ec": { - "model_module": "@jupyter-widgets/base", + "db2f5b228c3e48cd86e8e39d81d5b986": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f58762774d224c0b8327cb6a1d62ea0c", + "IPY_MODEL_ac14e637c7f04acc97796172112d3529", + "IPY_MODEL_b104473fbfd5417bb0b76e11bfc6b8df" + ], + "layout": "IPY_MODEL_181815186c96459ca3638cab03324592", + "tabbable": null, + "tooltip": null + } + }, + "e85d95d4044f43a99f60efa7544c1111": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f58762774d224c0b8327cb6a1d62ea0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44b8216644ca4116ac75b89bf104debf", + "placeholder": "​", + "style": "IPY_MODEL_b85dd87608eb48debd3fc09f4d4794ce", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 740b12830..5a4b84c49 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:40.626370Z", - "iopub.status.busy": "2024-08-12T10:36:40.626194Z", - "iopub.status.idle": "2024-08-12T10:36:42.106598Z", - "shell.execute_reply": "2024-08-12T10:36:42.105905Z" + "iopub.execute_input": "2024-08-12T18:59:21.826268Z", + "iopub.status.busy": "2024-08-12T18:59:21.826079Z", + "iopub.status.idle": "2024-08-12T18:59:23.362509Z", + "shell.execute_reply": "2024-08-12T18:59:23.361803Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.109356Z", - "iopub.status.busy": "2024-08-12T10:36:42.108963Z", - "iopub.status.idle": "2024-08-12T10:36:42.112835Z", - "shell.execute_reply": "2024-08-12T10:36:42.112359Z" + "iopub.execute_input": "2024-08-12T18:59:23.365369Z", + "iopub.status.busy": "2024-08-12T18:59:23.365034Z", + "iopub.status.idle": "2024-08-12T18:59:23.369094Z", + "shell.execute_reply": "2024-08-12T18:59:23.368592Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.115049Z", - "iopub.status.busy": "2024-08-12T10:36:42.114626Z", - "iopub.status.idle": "2024-08-12T10:36:42.736214Z", - "shell.execute_reply": "2024-08-12T10:36:42.735738Z" + "iopub.execute_input": "2024-08-12T18:59:23.371289Z", + "iopub.status.busy": "2024-08-12T18:59:23.370919Z", + "iopub.status.idle": "2024-08-12T18:59:23.992532Z", + "shell.execute_reply": "2024-08-12T18:59:23.992005Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.738371Z", - "iopub.status.busy": "2024-08-12T10:36:42.738098Z", - "iopub.status.idle": "2024-08-12T10:36:42.744090Z", - "shell.execute_reply": "2024-08-12T10:36:42.743513Z" + "iopub.execute_input": "2024-08-12T18:59:23.994795Z", + "iopub.status.busy": "2024-08-12T18:59:23.994427Z", + "iopub.status.idle": "2024-08-12T18:59:24.000752Z", + "shell.execute_reply": "2024-08-12T18:59:24.000271Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.746252Z", - "iopub.status.busy": "2024-08-12T10:36:42.745914Z", - "iopub.status.idle": "2024-08-12T10:36:42.752617Z", - "shell.execute_reply": "2024-08-12T10:36:42.752168Z" + "iopub.execute_input": "2024-08-12T18:59:24.002858Z", + "iopub.status.busy": "2024-08-12T18:59:24.002508Z", + "iopub.status.idle": "2024-08-12T18:59:24.009343Z", + "shell.execute_reply": "2024-08-12T18:59:24.008818Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.754505Z", - "iopub.status.busy": "2024-08-12T10:36:42.754292Z", - "iopub.status.idle": "2024-08-12T10:36:42.759107Z", - "shell.execute_reply": "2024-08-12T10:36:42.758539Z" + "iopub.execute_input": "2024-08-12T18:59:24.011516Z", + "iopub.status.busy": "2024-08-12T18:59:24.011159Z", + "iopub.status.idle": "2024-08-12T18:59:24.015977Z", + "shell.execute_reply": "2024-08-12T18:59:24.015484Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.761053Z", - "iopub.status.busy": "2024-08-12T10:36:42.760745Z", - "iopub.status.idle": "2024-08-12T10:36:42.766649Z", - "shell.execute_reply": "2024-08-12T10:36:42.766061Z" + "iopub.execute_input": "2024-08-12T18:59:24.018166Z", + "iopub.status.busy": "2024-08-12T18:59:24.017823Z", + "iopub.status.idle": "2024-08-12T18:59:24.023580Z", + "shell.execute_reply": "2024-08-12T18:59:24.023107Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.768883Z", - "iopub.status.busy": "2024-08-12T10:36:42.768475Z", - "iopub.status.idle": "2024-08-12T10:36:42.772746Z", - "shell.execute_reply": "2024-08-12T10:36:42.772309Z" + "iopub.execute_input": "2024-08-12T18:59:24.025655Z", + "iopub.status.busy": "2024-08-12T18:59:24.025309Z", + "iopub.status.idle": "2024-08-12T18:59:24.029614Z", + "shell.execute_reply": "2024-08-12T18:59:24.028928Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.774665Z", - "iopub.status.busy": "2024-08-12T10:36:42.774342Z", - "iopub.status.idle": "2024-08-12T10:36:42.840283Z", - "shell.execute_reply": "2024-08-12T10:36:42.839717Z" + "iopub.execute_input": "2024-08-12T18:59:24.031973Z", + "iopub.status.busy": "2024-08-12T18:59:24.031689Z", + "iopub.status.idle": "2024-08-12T18:59:24.101331Z", + "shell.execute_reply": "2024-08-12T18:59:24.100635Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.843017Z", - "iopub.status.busy": "2024-08-12T10:36:42.842439Z", - "iopub.status.idle": "2024-08-12T10:36:42.853415Z", - "shell.execute_reply": "2024-08-12T10:36:42.852911Z" + "iopub.execute_input": "2024-08-12T18:59:24.104215Z", + "iopub.status.busy": "2024-08-12T18:59:24.103661Z", + "iopub.status.idle": "2024-08-12T18:59:24.114955Z", + "shell.execute_reply": "2024-08-12T18:59:24.114435Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.855835Z", - "iopub.status.busy": "2024-08-12T10:36:42.855510Z", - "iopub.status.idle": "2024-08-12T10:36:42.874998Z", - "shell.execute_reply": "2024-08-12T10:36:42.874495Z" + "iopub.execute_input": "2024-08-12T18:59:24.117518Z", + "iopub.status.busy": "2024-08-12T18:59:24.117223Z", + "iopub.status.idle": "2024-08-12T18:59:24.138341Z", + "shell.execute_reply": "2024-08-12T18:59:24.137783Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.877350Z", - "iopub.status.busy": "2024-08-12T10:36:42.877026Z", - "iopub.status.idle": "2024-08-12T10:36:42.880884Z", - "shell.execute_reply": "2024-08-12T10:36:42.880387Z" + "iopub.execute_input": "2024-08-12T18:59:24.141061Z", + "iopub.status.busy": "2024-08-12T18:59:24.140659Z", + "iopub.status.idle": "2024-08-12T18:59:24.144913Z", + "shell.execute_reply": "2024-08-12T18:59:24.144417Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.883257Z", - "iopub.status.busy": "2024-08-12T10:36:42.882896Z", - "iopub.status.idle": "2024-08-12T10:36:42.887060Z", - "shell.execute_reply": "2024-08-12T10:36:42.886565Z" + "iopub.execute_input": "2024-08-12T18:59:24.147445Z", + "iopub.status.busy": "2024-08-12T18:59:24.147051Z", + "iopub.status.idle": "2024-08-12T18:59:24.151429Z", + "shell.execute_reply": "2024-08-12T18:59:24.150931Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.889441Z", - "iopub.status.busy": "2024-08-12T10:36:42.889082Z", - "iopub.status.idle": "2024-08-12T10:36:42.900374Z", - "shell.execute_reply": "2024-08-12T10:36:42.899885Z" + "iopub.execute_input": "2024-08-12T18:59:24.154790Z", + "iopub.status.busy": "2024-08-12T18:59:24.153828Z", + "iopub.status.idle": "2024-08-12T18:59:24.165935Z", + "shell.execute_reply": "2024-08-12T18:59:24.165486Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.902302Z", - "iopub.status.busy": "2024-08-12T10:36:42.902009Z", - "iopub.status.idle": "2024-08-12T10:36:42.906390Z", - "shell.execute_reply": "2024-08-12T10:36:42.905809Z" + "iopub.execute_input": "2024-08-12T18:59:24.168518Z", + "iopub.status.busy": "2024-08-12T18:59:24.168008Z", + "iopub.status.idle": "2024-08-12T18:59:24.173279Z", + "shell.execute_reply": "2024-08-12T18:59:24.172745Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:42.908354Z", - "iopub.status.busy": "2024-08-12T10:36:42.908181Z", - "iopub.status.idle": "2024-08-12T10:36:43.022711Z", - "shell.execute_reply": "2024-08-12T10:36:43.022121Z" + "iopub.execute_input": "2024-08-12T18:59:24.175732Z", + "iopub.status.busy": "2024-08-12T18:59:24.175539Z", + "iopub.status.idle": "2024-08-12T18:59:24.290251Z", + "shell.execute_reply": "2024-08-12T18:59:24.289739Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:43.024780Z", - "iopub.status.busy": "2024-08-12T10:36:43.024600Z", - "iopub.status.idle": "2024-08-12T10:36:43.032352Z", - "shell.execute_reply": "2024-08-12T10:36:43.031812Z" + "iopub.execute_input": "2024-08-12T18:59:24.292625Z", + "iopub.status.busy": "2024-08-12T18:59:24.292246Z", + "iopub.status.idle": "2024-08-12T18:59:24.298593Z", + "shell.execute_reply": "2024-08-12T18:59:24.298095Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:43.034725Z", - "iopub.status.busy": "2024-08-12T10:36:43.034251Z", - "iopub.status.idle": "2024-08-12T10:36:45.303150Z", - "shell.execute_reply": "2024-08-12T10:36:45.302523Z" + "iopub.execute_input": "2024-08-12T18:59:24.301176Z", + "iopub.status.busy": "2024-08-12T18:59:24.300603Z", + "iopub.status.idle": "2024-08-12T18:59:26.626151Z", + "shell.execute_reply": "2024-08-12T18:59:26.625494Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.306901Z", - "iopub.status.busy": "2024-08-12T10:36:45.305628Z", - "iopub.status.idle": "2024-08-12T10:36:45.320641Z", - "shell.execute_reply": "2024-08-12T10:36:45.320130Z" + "iopub.execute_input": "2024-08-12T18:59:26.629258Z", + "iopub.status.busy": "2024-08-12T18:59:26.628623Z", + "iopub.status.idle": "2024-08-12T18:59:26.642060Z", + "shell.execute_reply": "2024-08-12T18:59:26.641543Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.324257Z", - "iopub.status.busy": "2024-08-12T10:36:45.323292Z", - "iopub.status.idle": "2024-08-12T10:36:45.327320Z", - "shell.execute_reply": "2024-08-12T10:36:45.326813Z" + "iopub.execute_input": "2024-08-12T18:59:26.644567Z", + "iopub.status.busy": "2024-08-12T18:59:26.644161Z", + "iopub.status.idle": "2024-08-12T18:59:26.647095Z", + "shell.execute_reply": "2024-08-12T18:59:26.646603Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.330800Z", - "iopub.status.busy": "2024-08-12T10:36:45.329853Z", - "iopub.status.idle": "2024-08-12T10:36:45.335401Z", - "shell.execute_reply": "2024-08-12T10:36:45.334898Z" + "iopub.execute_input": "2024-08-12T18:59:26.650162Z", + "iopub.status.busy": "2024-08-12T18:59:26.649219Z", + "iopub.status.idle": "2024-08-12T18:59:26.654885Z", + "shell.execute_reply": "2024-08-12T18:59:26.654380Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.338898Z", - "iopub.status.busy": "2024-08-12T10:36:45.337952Z", - "iopub.status.idle": "2024-08-12T10:36:45.369119Z", - "shell.execute_reply": "2024-08-12T10:36:45.368622Z" + "iopub.execute_input": "2024-08-12T18:59:26.658482Z", + "iopub.status.busy": "2024-08-12T18:59:26.657542Z", + "iopub.status.idle": "2024-08-12T18:59:26.694816Z", + "shell.execute_reply": "2024-08-12T18:59:26.694252Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.372525Z", - "iopub.status.busy": "2024-08-12T10:36:45.371632Z", - "iopub.status.idle": "2024-08-12T10:36:45.905387Z", - "shell.execute_reply": "2024-08-12T10:36:45.904814Z" + "iopub.execute_input": "2024-08-12T18:59:26.697458Z", + "iopub.status.busy": "2024-08-12T18:59:26.697065Z", + "iopub.status.idle": "2024-08-12T18:59:27.254855Z", + "shell.execute_reply": "2024-08-12T18:59:27.254284Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:45.909279Z", - "iopub.status.busy": "2024-08-12T10:36:45.908383Z", - "iopub.status.idle": "2024-08-12T10:36:46.041822Z", - "shell.execute_reply": "2024-08-12T10:36:46.041200Z" + "iopub.execute_input": "2024-08-12T18:59:27.257761Z", + "iopub.status.busy": "2024-08-12T18:59:27.257381Z", + "iopub.status.idle": "2024-08-12T18:59:27.403783Z", + "shell.execute_reply": "2024-08-12T18:59:27.403129Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.045278Z", - "iopub.status.busy": "2024-08-12T10:36:46.044751Z", - "iopub.status.idle": "2024-08-12T10:36:46.053676Z", - "shell.execute_reply": "2024-08-12T10:36:46.053168Z" + "iopub.execute_input": "2024-08-12T18:59:27.407718Z", + "iopub.status.busy": "2024-08-12T18:59:27.406705Z", + "iopub.status.idle": "2024-08-12T18:59:27.416124Z", + "shell.execute_reply": "2024-08-12T18:59:27.415579Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.057145Z", - "iopub.status.busy": "2024-08-12T10:36:46.056094Z", - "iopub.status.idle": "2024-08-12T10:36:46.064218Z", - "shell.execute_reply": "2024-08-12T10:36:46.063721Z" + "iopub.execute_input": "2024-08-12T18:59:27.419912Z", + "iopub.status.busy": "2024-08-12T18:59:27.418954Z", + "iopub.status.idle": "2024-08-12T18:59:27.427553Z", + "shell.execute_reply": "2024-08-12T18:59:27.427031Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.066943Z", - "iopub.status.busy": "2024-08-12T10:36:46.066574Z", - "iopub.status.idle": "2024-08-12T10:36:46.073843Z", - "shell.execute_reply": "2024-08-12T10:36:46.073350Z" + "iopub.execute_input": "2024-08-12T18:59:27.431276Z", + "iopub.status.busy": "2024-08-12T18:59:27.430306Z", + "iopub.status.idle": "2024-08-12T18:59:27.438426Z", + "shell.execute_reply": "2024-08-12T18:59:27.437887Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.077228Z", - "iopub.status.busy": "2024-08-12T10:36:46.076190Z", - "iopub.status.idle": "2024-08-12T10:36:46.082285Z", - "shell.execute_reply": "2024-08-12T10:36:46.081799Z" + "iopub.execute_input": "2024-08-12T18:59:27.442229Z", + "iopub.status.busy": "2024-08-12T18:59:27.441274Z", + "iopub.status.idle": "2024-08-12T18:59:27.446605Z", + "shell.execute_reply": "2024-08-12T18:59:27.445954Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.084361Z", - "iopub.status.busy": "2024-08-12T10:36:46.084023Z", - "iopub.status.idle": "2024-08-12T10:36:46.088860Z", - "shell.execute_reply": "2024-08-12T10:36:46.088303Z" + "iopub.execute_input": "2024-08-12T18:59:27.448859Z", + "iopub.status.busy": "2024-08-12T18:59:27.448667Z", + "iopub.status.idle": "2024-08-12T18:59:27.454140Z", + "shell.execute_reply": "2024-08-12T18:59:27.453686Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.091098Z", - "iopub.status.busy": "2024-08-12T10:36:46.090782Z", - "iopub.status.idle": "2024-08-12T10:36:46.172998Z", - "shell.execute_reply": "2024-08-12T10:36:46.172344Z" + "iopub.execute_input": "2024-08-12T18:59:27.456194Z", + "iopub.status.busy": "2024-08-12T18:59:27.456000Z", + "iopub.status.idle": "2024-08-12T18:59:27.537799Z", + "shell.execute_reply": "2024-08-12T18:59:27.537248Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.175651Z", - "iopub.status.busy": "2024-08-12T10:36:46.175429Z", - "iopub.status.idle": "2024-08-12T10:36:46.187531Z", - "shell.execute_reply": "2024-08-12T10:36:46.186972Z" + "iopub.execute_input": "2024-08-12T18:59:27.540099Z", + "iopub.status.busy": "2024-08-12T18:59:27.539886Z", + "iopub.status.idle": "2024-08-12T18:59:27.554683Z", + "shell.execute_reply": "2024-08-12T18:59:27.553987Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.190271Z", - "iopub.status.busy": "2024-08-12T10:36:46.190072Z", - "iopub.status.idle": "2024-08-12T10:36:46.193436Z", - "shell.execute_reply": "2024-08-12T10:36:46.193003Z" + "iopub.execute_input": "2024-08-12T18:59:27.557753Z", + "iopub.status.busy": "2024-08-12T18:59:27.557171Z", + "iopub.status.idle": "2024-08-12T18:59:27.560724Z", + "shell.execute_reply": "2024-08-12T18:59:27.560114Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.195626Z", - "iopub.status.busy": "2024-08-12T10:36:46.195293Z", - "iopub.status.idle": "2024-08-12T10:36:46.205150Z", - "shell.execute_reply": "2024-08-12T10:36:46.204713Z" + "iopub.execute_input": "2024-08-12T18:59:27.562976Z", + "iopub.status.busy": "2024-08-12T18:59:27.562789Z", + "iopub.status.idle": "2024-08-12T18:59:27.573678Z", + "shell.execute_reply": "2024-08-12T18:59:27.573001Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.207247Z", - "iopub.status.busy": "2024-08-12T10:36:46.206910Z", - "iopub.status.idle": "2024-08-12T10:36:46.213503Z", - "shell.execute_reply": "2024-08-12T10:36:46.213035Z" + "iopub.execute_input": "2024-08-12T18:59:27.576419Z", + "iopub.status.busy": "2024-08-12T18:59:27.576012Z", + "iopub.status.idle": "2024-08-12T18:59:27.582946Z", + "shell.execute_reply": "2024-08-12T18:59:27.582421Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.215507Z", - "iopub.status.busy": "2024-08-12T10:36:46.215170Z", - "iopub.status.idle": "2024-08-12T10:36:46.218497Z", - "shell.execute_reply": "2024-08-12T10:36:46.218007Z" + "iopub.execute_input": "2024-08-12T18:59:27.585144Z", + "iopub.status.busy": "2024-08-12T18:59:27.584831Z", + "iopub.status.idle": "2024-08-12T18:59:27.588435Z", + "shell.execute_reply": "2024-08-12T18:59:27.587844Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:46.220478Z", - "iopub.status.busy": "2024-08-12T10:36:46.220119Z", - "iopub.status.idle": "2024-08-12T10:36:50.293411Z", - "shell.execute_reply": "2024-08-12T10:36:50.292905Z" + "iopub.execute_input": "2024-08-12T18:59:27.590688Z", + "iopub.status.busy": "2024-08-12T18:59:27.590349Z", + "iopub.status.idle": "2024-08-12T18:59:31.669748Z", + "shell.execute_reply": "2024-08-12T18:59:31.669230Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:50.296575Z", - "iopub.status.busy": "2024-08-12T10:36:50.295692Z", - "iopub.status.idle": "2024-08-12T10:36:50.299685Z", - "shell.execute_reply": "2024-08-12T10:36:50.299227Z" + "iopub.execute_input": "2024-08-12T18:59:31.672207Z", + "iopub.status.busy": "2024-08-12T18:59:31.671838Z", + "iopub.status.idle": "2024-08-12T18:59:31.675032Z", + "shell.execute_reply": "2024-08-12T18:59:31.674603Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:50.301503Z", - "iopub.status.busy": "2024-08-12T10:36:50.301346Z", - "iopub.status.idle": "2024-08-12T10:36:50.304200Z", - "shell.execute_reply": "2024-08-12T10:36:50.303734Z" + "iopub.execute_input": "2024-08-12T18:59:31.677196Z", + "iopub.status.busy": "2024-08-12T18:59:31.676887Z", + "iopub.status.idle": "2024-08-12T18:59:31.679964Z", + "shell.execute_reply": "2024-08-12T18:59:31.679566Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index f91499b91..9eab66f97 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:53.576141Z", - "iopub.status.busy": "2024-08-12T10:36:53.575962Z", - "iopub.status.idle": "2024-08-12T10:36:55.014555Z", - "shell.execute_reply": "2024-08-12T10:36:55.014010Z" + "iopub.execute_input": "2024-08-12T18:59:35.304974Z", + "iopub.status.busy": "2024-08-12T18:59:35.304798Z", + "iopub.status.idle": "2024-08-12T18:59:36.757045Z", + "shell.execute_reply": "2024-08-12T18:59:36.756394Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.017150Z", - "iopub.status.busy": "2024-08-12T10:36:55.016843Z", - "iopub.status.idle": "2024-08-12T10:36:55.020291Z", - "shell.execute_reply": "2024-08-12T10:36:55.019828Z" + "iopub.execute_input": "2024-08-12T18:59:36.759809Z", + "iopub.status.busy": "2024-08-12T18:59:36.759444Z", + "iopub.status.idle": "2024-08-12T18:59:36.763080Z", + "shell.execute_reply": "2024-08-12T18:59:36.762530Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.022265Z", - "iopub.status.busy": "2024-08-12T10:36:55.022084Z", - "iopub.status.idle": "2024-08-12T10:36:55.033553Z", - "shell.execute_reply": "2024-08-12T10:36:55.033077Z" + "iopub.execute_input": "2024-08-12T18:59:36.765342Z", + "iopub.status.busy": "2024-08-12T18:59:36.764890Z", + "iopub.status.idle": "2024-08-12T18:59:36.776716Z", + "shell.execute_reply": "2024-08-12T18:59:36.776099Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.035570Z", - "iopub.status.busy": "2024-08-12T10:36:55.035381Z", - "iopub.status.idle": "2024-08-12T10:36:55.275119Z", - "shell.execute_reply": "2024-08-12T10:36:55.274521Z" + "iopub.execute_input": "2024-08-12T18:59:36.779257Z", + "iopub.status.busy": "2024-08-12T18:59:36.778841Z", + "iopub.status.idle": "2024-08-12T18:59:36.993253Z", + "shell.execute_reply": "2024-08-12T18:59:36.992612Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.277529Z", - "iopub.status.busy": "2024-08-12T10:36:55.277197Z", - "iopub.status.idle": "2024-08-12T10:36:55.304345Z", - "shell.execute_reply": "2024-08-12T10:36:55.303759Z" + "iopub.execute_input": "2024-08-12T18:59:36.995645Z", + "iopub.status.busy": "2024-08-12T18:59:36.995301Z", + "iopub.status.idle": "2024-08-12T18:59:37.022394Z", + "shell.execute_reply": "2024-08-12T18:59:37.021879Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:55.306815Z", - "iopub.status.busy": "2024-08-12T10:36:55.306461Z", - "iopub.status.idle": "2024-08-12T10:36:57.481211Z", - "shell.execute_reply": "2024-08-12T10:36:57.480509Z" + "iopub.execute_input": "2024-08-12T18:59:37.025051Z", + "iopub.status.busy": "2024-08-12T18:59:37.024560Z", + "iopub.status.idle": "2024-08-12T18:59:39.262272Z", + "shell.execute_reply": "2024-08-12T18:59:39.261549Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:57.483792Z", - "iopub.status.busy": "2024-08-12T10:36:57.483415Z", - "iopub.status.idle": "2024-08-12T10:36:57.501958Z", - "shell.execute_reply": "2024-08-12T10:36:57.501474Z" + "iopub.execute_input": "2024-08-12T18:59:39.265033Z", + "iopub.status.busy": "2024-08-12T18:59:39.264285Z", + "iopub.status.idle": "2024-08-12T18:59:39.282778Z", + "shell.execute_reply": "2024-08-12T18:59:39.282196Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:57.504352Z", - "iopub.status.busy": "2024-08-12T10:36:57.503863Z", - "iopub.status.idle": "2024-08-12T10:36:59.103702Z", - "shell.execute_reply": "2024-08-12T10:36:59.103079Z" + "iopub.execute_input": "2024-08-12T18:59:39.285167Z", + "iopub.status.busy": "2024-08-12T18:59:39.284691Z", + "iopub.status.idle": "2024-08-12T18:59:40.937315Z", + "shell.execute_reply": "2024-08-12T18:59:40.936613Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.106686Z", - "iopub.status.busy": "2024-08-12T10:36:59.105759Z", - "iopub.status.idle": "2024-08-12T10:36:59.119934Z", - "shell.execute_reply": "2024-08-12T10:36:59.119452Z" + "iopub.execute_input": "2024-08-12T18:59:40.940438Z", + "iopub.status.busy": "2024-08-12T18:59:40.939654Z", + "iopub.status.idle": "2024-08-12T18:59:40.954542Z", + "shell.execute_reply": "2024-08-12T18:59:40.953980Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.122050Z", - "iopub.status.busy": "2024-08-12T10:36:59.121694Z", - "iopub.status.idle": "2024-08-12T10:36:59.205641Z", - "shell.execute_reply": "2024-08-12T10:36:59.205023Z" + "iopub.execute_input": "2024-08-12T18:59:40.956770Z", + "iopub.status.busy": "2024-08-12T18:59:40.956575Z", + "iopub.status.idle": "2024-08-12T18:59:41.043940Z", + "shell.execute_reply": "2024-08-12T18:59:41.043268Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.208167Z", - "iopub.status.busy": "2024-08-12T10:36:59.207756Z", - "iopub.status.idle": "2024-08-12T10:36:59.420275Z", - "shell.execute_reply": "2024-08-12T10:36:59.419661Z" + "iopub.execute_input": "2024-08-12T18:59:41.046625Z", + "iopub.status.busy": "2024-08-12T18:59:41.046255Z", + "iopub.status.idle": "2024-08-12T18:59:41.261565Z", + "shell.execute_reply": "2024-08-12T18:59:41.260957Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.422483Z", - "iopub.status.busy": "2024-08-12T10:36:59.422110Z", - "iopub.status.idle": "2024-08-12T10:36:59.439047Z", - "shell.execute_reply": "2024-08-12T10:36:59.438607Z" + "iopub.execute_input": "2024-08-12T18:59:41.264074Z", + "iopub.status.busy": "2024-08-12T18:59:41.263645Z", + "iopub.status.idle": "2024-08-12T18:59:41.282286Z", + "shell.execute_reply": "2024-08-12T18:59:41.281805Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.441204Z", - "iopub.status.busy": "2024-08-12T10:36:59.440871Z", - "iopub.status.idle": "2024-08-12T10:36:59.450881Z", - "shell.execute_reply": "2024-08-12T10:36:59.450435Z" + "iopub.execute_input": "2024-08-12T18:59:41.284554Z", + "iopub.status.busy": "2024-08-12T18:59:41.284169Z", + "iopub.status.idle": "2024-08-12T18:59:41.293947Z", + "shell.execute_reply": "2024-08-12T18:59:41.293461Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.452925Z", - "iopub.status.busy": "2024-08-12T10:36:59.452588Z", - "iopub.status.idle": "2024-08-12T10:36:59.545723Z", - "shell.execute_reply": "2024-08-12T10:36:59.545075Z" + "iopub.execute_input": "2024-08-12T18:59:41.296255Z", + "iopub.status.busy": "2024-08-12T18:59:41.295902Z", + "iopub.status.idle": "2024-08-12T18:59:41.393592Z", + "shell.execute_reply": "2024-08-12T18:59:41.392998Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.548352Z", - "iopub.status.busy": "2024-08-12T10:36:59.547991Z", - "iopub.status.idle": "2024-08-12T10:36:59.687429Z", - "shell.execute_reply": "2024-08-12T10:36:59.686780Z" + "iopub.execute_input": "2024-08-12T18:59:41.396125Z", + "iopub.status.busy": "2024-08-12T18:59:41.395728Z", + "iopub.status.idle": "2024-08-12T18:59:41.553831Z", + "shell.execute_reply": "2024-08-12T18:59:41.553173Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.690123Z", - "iopub.status.busy": "2024-08-12T10:36:59.689562Z", - "iopub.status.idle": "2024-08-12T10:36:59.693688Z", - "shell.execute_reply": "2024-08-12T10:36:59.693154Z" + "iopub.execute_input": "2024-08-12T18:59:41.556448Z", + "iopub.status.busy": "2024-08-12T18:59:41.556095Z", + "iopub.status.idle": "2024-08-12T18:59:41.560097Z", + "shell.execute_reply": "2024-08-12T18:59:41.559551Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.696034Z", - "iopub.status.busy": "2024-08-12T10:36:59.695722Z", - "iopub.status.idle": "2024-08-12T10:36:59.699496Z", - "shell.execute_reply": "2024-08-12T10:36:59.698951Z" + "iopub.execute_input": "2024-08-12T18:59:41.562409Z", + "iopub.status.busy": "2024-08-12T18:59:41.562052Z", + "iopub.status.idle": "2024-08-12T18:59:41.565967Z", + "shell.execute_reply": "2024-08-12T18:59:41.565404Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.701481Z", - "iopub.status.busy": "2024-08-12T10:36:59.701177Z", - "iopub.status.idle": "2024-08-12T10:36:59.738773Z", - "shell.execute_reply": "2024-08-12T10:36:59.738181Z" + "iopub.execute_input": "2024-08-12T18:59:41.568132Z", + "iopub.status.busy": "2024-08-12T18:59:41.567785Z", + "iopub.status.idle": "2024-08-12T18:59:41.606435Z", + "shell.execute_reply": "2024-08-12T18:59:41.605862Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.740888Z", - "iopub.status.busy": "2024-08-12T10:36:59.740542Z", - "iopub.status.idle": "2024-08-12T10:36:59.781556Z", - "shell.execute_reply": "2024-08-12T10:36:59.781066Z" + "iopub.execute_input": "2024-08-12T18:59:41.608980Z", + "iopub.status.busy": "2024-08-12T18:59:41.608519Z", + "iopub.status.idle": "2024-08-12T18:59:41.650825Z", + "shell.execute_reply": "2024-08-12T18:59:41.650241Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.783621Z", - "iopub.status.busy": "2024-08-12T10:36:59.783276Z", - "iopub.status.idle": "2024-08-12T10:36:59.886618Z", - "shell.execute_reply": "2024-08-12T10:36:59.885902Z" + "iopub.execute_input": "2024-08-12T18:59:41.653201Z", + "iopub.status.busy": "2024-08-12T18:59:41.652768Z", + "iopub.status.idle": "2024-08-12T18:59:41.758338Z", + "shell.execute_reply": "2024-08-12T18:59:41.757712Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:36:59.889214Z", - "iopub.status.busy": "2024-08-12T10:36:59.888964Z", - "iopub.status.idle": "2024-08-12T10:36:59.998717Z", - "shell.execute_reply": "2024-08-12T10:36:59.998068Z" + "iopub.execute_input": "2024-08-12T18:59:41.761298Z", + "iopub.status.busy": "2024-08-12T18:59:41.760816Z", + "iopub.status.idle": "2024-08-12T18:59:41.886836Z", + "shell.execute_reply": "2024-08-12T18:59:41.886199Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.001204Z", - "iopub.status.busy": "2024-08-12T10:37:00.000820Z", - "iopub.status.idle": "2024-08-12T10:37:00.213727Z", - "shell.execute_reply": "2024-08-12T10:37:00.213136Z" + "iopub.execute_input": "2024-08-12T18:59:41.889204Z", + "iopub.status.busy": "2024-08-12T18:59:41.888953Z", + "iopub.status.idle": "2024-08-12T18:59:42.106786Z", + "shell.execute_reply": "2024-08-12T18:59:42.106237Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.216034Z", - "iopub.status.busy": "2024-08-12T10:37:00.215683Z", - "iopub.status.idle": "2024-08-12T10:37:00.436763Z", - "shell.execute_reply": "2024-08-12T10:37:00.436178Z" + "iopub.execute_input": "2024-08-12T18:59:42.109159Z", + "iopub.status.busy": "2024-08-12T18:59:42.108706Z", + "iopub.status.idle": "2024-08-12T18:59:42.343381Z", + "shell.execute_reply": "2024-08-12T18:59:42.342735Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.439376Z", - "iopub.status.busy": "2024-08-12T10:37:00.438962Z", - "iopub.status.idle": "2024-08-12T10:37:00.445033Z", - "shell.execute_reply": "2024-08-12T10:37:00.444579Z" + "iopub.execute_input": "2024-08-12T18:59:42.345991Z", + "iopub.status.busy": "2024-08-12T18:59:42.345741Z", + "iopub.status.idle": "2024-08-12T18:59:42.352404Z", + "shell.execute_reply": "2024-08-12T18:59:42.351909Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.447166Z", - "iopub.status.busy": "2024-08-12T10:37:00.446833Z", - "iopub.status.idle": "2024-08-12T10:37:00.664000Z", - "shell.execute_reply": "2024-08-12T10:37:00.663425Z" + "iopub.execute_input": "2024-08-12T18:59:42.354511Z", + "iopub.status.busy": "2024-08-12T18:59:42.354162Z", + "iopub.status.idle": "2024-08-12T18:59:42.575035Z", + "shell.execute_reply": "2024-08-12T18:59:42.574431Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:00.666198Z", - "iopub.status.busy": "2024-08-12T10:37:00.665906Z", - "iopub.status.idle": "2024-08-12T10:37:01.745237Z", - "shell.execute_reply": "2024-08-12T10:37:01.744556Z" + "iopub.execute_input": "2024-08-12T18:59:42.577426Z", + "iopub.status.busy": "2024-08-12T18:59:42.577078Z", + "iopub.status.idle": "2024-08-12T18:59:43.656887Z", + "shell.execute_reply": "2024-08-12T18:59:43.656289Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index df5a01e40..1b995e101 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:05.388871Z", - "iopub.status.busy": "2024-08-12T10:37:05.388693Z", - "iopub.status.idle": "2024-08-12T10:37:06.803277Z", - "shell.execute_reply": "2024-08-12T10:37:06.802643Z" + "iopub.execute_input": "2024-08-12T18:59:47.417596Z", + "iopub.status.busy": "2024-08-12T18:59:47.417079Z", + "iopub.status.idle": "2024-08-12T18:59:48.878644Z", + "shell.execute_reply": "2024-08-12T18:59:48.878070Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.805938Z", - "iopub.status.busy": "2024-08-12T10:37:06.805652Z", - "iopub.status.idle": "2024-08-12T10:37:06.808825Z", - "shell.execute_reply": "2024-08-12T10:37:06.808280Z" + "iopub.execute_input": "2024-08-12T18:59:48.881128Z", + "iopub.status.busy": "2024-08-12T18:59:48.880825Z", + "iopub.status.idle": "2024-08-12T18:59:48.883983Z", + "shell.execute_reply": "2024-08-12T18:59:48.883519Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.810942Z", - "iopub.status.busy": "2024-08-12T10:37:06.810637Z", - "iopub.status.idle": "2024-08-12T10:37:06.818311Z", - "shell.execute_reply": "2024-08-12T10:37:06.817756Z" + "iopub.execute_input": "2024-08-12T18:59:48.886113Z", + "iopub.status.busy": "2024-08-12T18:59:48.885774Z", + "iopub.status.idle": "2024-08-12T18:59:48.893491Z", + "shell.execute_reply": "2024-08-12T18:59:48.893014Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.820375Z", - "iopub.status.busy": "2024-08-12T10:37:06.820045Z", - "iopub.status.idle": "2024-08-12T10:37:06.867480Z", - "shell.execute_reply": "2024-08-12T10:37:06.866999Z" + "iopub.execute_input": "2024-08-12T18:59:48.895624Z", + "iopub.status.busy": "2024-08-12T18:59:48.895212Z", + "iopub.status.idle": "2024-08-12T18:59:48.944247Z", + "shell.execute_reply": "2024-08-12T18:59:48.943678Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.869923Z", - "iopub.status.busy": "2024-08-12T10:37:06.869561Z", - "iopub.status.idle": "2024-08-12T10:37:06.886443Z", - "shell.execute_reply": "2024-08-12T10:37:06.885835Z" + "iopub.execute_input": "2024-08-12T18:59:48.946974Z", + "iopub.status.busy": "2024-08-12T18:59:48.946526Z", + "iopub.status.idle": "2024-08-12T18:59:48.963914Z", + "shell.execute_reply": "2024-08-12T18:59:48.963313Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.888629Z", - "iopub.status.busy": "2024-08-12T10:37:06.888293Z", - "iopub.status.idle": "2024-08-12T10:37:06.892059Z", - "shell.execute_reply": "2024-08-12T10:37:06.891606Z" + "iopub.execute_input": "2024-08-12T18:59:48.966276Z", + "iopub.status.busy": "2024-08-12T18:59:48.965835Z", + "iopub.status.idle": "2024-08-12T18:59:48.969991Z", + "shell.execute_reply": "2024-08-12T18:59:48.969454Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.894154Z", - "iopub.status.busy": "2024-08-12T10:37:06.893890Z", - "iopub.status.idle": "2024-08-12T10:37:06.909322Z", - "shell.execute_reply": "2024-08-12T10:37:06.908906Z" + "iopub.execute_input": "2024-08-12T18:59:48.972099Z", + "iopub.status.busy": "2024-08-12T18:59:48.971921Z", + "iopub.status.idle": "2024-08-12T18:59:48.989790Z", + "shell.execute_reply": "2024-08-12T18:59:48.989320Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.911202Z", - "iopub.status.busy": "2024-08-12T10:37:06.911016Z", - "iopub.status.idle": "2024-08-12T10:37:06.937454Z", - "shell.execute_reply": "2024-08-12T10:37:06.936962Z" + "iopub.execute_input": "2024-08-12T18:59:48.992099Z", + "iopub.status.busy": "2024-08-12T18:59:48.991748Z", + "iopub.status.idle": "2024-08-12T18:59:49.018554Z", + "shell.execute_reply": "2024-08-12T18:59:49.018031Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:06.939565Z", - "iopub.status.busy": "2024-08-12T10:37:06.939384Z", - "iopub.status.idle": "2024-08-12T10:37:09.089293Z", - "shell.execute_reply": "2024-08-12T10:37:09.088628Z" + "iopub.execute_input": "2024-08-12T18:59:49.021208Z", + "iopub.status.busy": "2024-08-12T18:59:49.020835Z", + "iopub.status.idle": "2024-08-12T18:59:51.271455Z", + "shell.execute_reply": "2024-08-12T18:59:51.270767Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.092048Z", - "iopub.status.busy": "2024-08-12T10:37:09.091539Z", - "iopub.status.idle": "2024-08-12T10:37:09.098539Z", - "shell.execute_reply": "2024-08-12T10:37:09.098049Z" + "iopub.execute_input": "2024-08-12T18:59:51.274510Z", + "iopub.status.busy": "2024-08-12T18:59:51.273875Z", + "iopub.status.idle": "2024-08-12T18:59:51.281259Z", + "shell.execute_reply": "2024-08-12T18:59:51.280795Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.100427Z", - "iopub.status.busy": "2024-08-12T10:37:09.100246Z", - "iopub.status.idle": "2024-08-12T10:37:09.113060Z", - "shell.execute_reply": "2024-08-12T10:37:09.112607Z" + "iopub.execute_input": "2024-08-12T18:59:51.283421Z", + "iopub.status.busy": "2024-08-12T18:59:51.283094Z", + "iopub.status.idle": "2024-08-12T18:59:51.295523Z", + "shell.execute_reply": "2024-08-12T18:59:51.294970Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.114954Z", - "iopub.status.busy": "2024-08-12T10:37:09.114778Z", - "iopub.status.idle": "2024-08-12T10:37:09.121345Z", - "shell.execute_reply": "2024-08-12T10:37:09.120881Z" + "iopub.execute_input": "2024-08-12T18:59:51.297742Z", + "iopub.status.busy": "2024-08-12T18:59:51.297424Z", + "iopub.status.idle": "2024-08-12T18:59:51.304426Z", + "shell.execute_reply": "2024-08-12T18:59:51.303921Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.123474Z", - "iopub.status.busy": "2024-08-12T10:37:09.123132Z", - "iopub.status.idle": "2024-08-12T10:37:09.125850Z", - "shell.execute_reply": "2024-08-12T10:37:09.125398Z" + "iopub.execute_input": "2024-08-12T18:59:51.306560Z", + "iopub.status.busy": "2024-08-12T18:59:51.306375Z", + "iopub.status.idle": "2024-08-12T18:59:51.308977Z", + "shell.execute_reply": "2024-08-12T18:59:51.308522Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.127879Z", - "iopub.status.busy": "2024-08-12T10:37:09.127535Z", - "iopub.status.idle": "2024-08-12T10:37:09.131216Z", - "shell.execute_reply": "2024-08-12T10:37:09.130751Z" + "iopub.execute_input": "2024-08-12T18:59:51.310933Z", + "iopub.status.busy": "2024-08-12T18:59:51.310756Z", + "iopub.status.idle": "2024-08-12T18:59:51.314521Z", + "shell.execute_reply": "2024-08-12T18:59:51.314048Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.133188Z", - "iopub.status.busy": "2024-08-12T10:37:09.132921Z", - "iopub.status.idle": "2024-08-12T10:37:09.135464Z", - "shell.execute_reply": "2024-08-12T10:37:09.135011Z" + "iopub.execute_input": "2024-08-12T18:59:51.316522Z", + "iopub.status.busy": "2024-08-12T18:59:51.316329Z", + "iopub.status.idle": "2024-08-12T18:59:51.319058Z", + "shell.execute_reply": "2024-08-12T18:59:51.318594Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.137485Z", - "iopub.status.busy": "2024-08-12T10:37:09.137147Z", - "iopub.status.idle": "2024-08-12T10:37:09.141490Z", - "shell.execute_reply": "2024-08-12T10:37:09.140918Z" + "iopub.execute_input": "2024-08-12T18:59:51.321120Z", + "iopub.status.busy": "2024-08-12T18:59:51.320800Z", + "iopub.status.idle": "2024-08-12T18:59:51.325200Z", + "shell.execute_reply": "2024-08-12T18:59:51.324719Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.143733Z", - "iopub.status.busy": "2024-08-12T10:37:09.143297Z", - "iopub.status.idle": "2024-08-12T10:37:09.171860Z", - "shell.execute_reply": "2024-08-12T10:37:09.171290Z" + "iopub.execute_input": "2024-08-12T18:59:51.327285Z", + "iopub.status.busy": "2024-08-12T18:59:51.326972Z", + "iopub.status.idle": "2024-08-12T18:59:51.355218Z", + "shell.execute_reply": "2024-08-12T18:59:51.354758Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:09.174329Z", - "iopub.status.busy": "2024-08-12T10:37:09.173962Z", - "iopub.status.idle": "2024-08-12T10:37:09.179620Z", - "shell.execute_reply": "2024-08-12T10:37:09.178987Z" + "iopub.execute_input": "2024-08-12T18:59:51.357340Z", + "iopub.status.busy": "2024-08-12T18:59:51.357164Z", + "iopub.status.idle": "2024-08-12T18:59:51.362121Z", + "shell.execute_reply": "2024-08-12T18:59:51.361539Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index b1134ea67..a251e1b8c 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:12.374296Z", - "iopub.status.busy": "2024-08-12T10:37:12.373799Z", - "iopub.status.idle": "2024-08-12T10:37:13.806289Z", - "shell.execute_reply": "2024-08-12T10:37:13.805637Z" + "iopub.execute_input": "2024-08-12T18:59:54.476742Z", + "iopub.status.busy": "2024-08-12T18:59:54.476563Z", + "iopub.status.idle": "2024-08-12T18:59:55.941034Z", + "shell.execute_reply": "2024-08-12T18:59:55.940368Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:13.809008Z", - "iopub.status.busy": "2024-08-12T10:37:13.808701Z", - "iopub.status.idle": "2024-08-12T10:37:13.828959Z", - "shell.execute_reply": "2024-08-12T10:37:13.828395Z" + "iopub.execute_input": "2024-08-12T18:59:55.943675Z", + "iopub.status.busy": "2024-08-12T18:59:55.943355Z", + "iopub.status.idle": "2024-08-12T18:59:55.964343Z", + "shell.execute_reply": "2024-08-12T18:59:55.963737Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:13.831637Z", - "iopub.status.busy": "2024-08-12T10:37:13.831199Z", - "iopub.status.idle": "2024-08-12T10:37:13.844329Z", - "shell.execute_reply": "2024-08-12T10:37:13.843766Z" + "iopub.execute_input": "2024-08-12T18:59:55.967190Z", + "iopub.status.busy": "2024-08-12T18:59:55.966718Z", + "iopub.status.idle": "2024-08-12T18:59:55.980296Z", + "shell.execute_reply": "2024-08-12T18:59:55.979692Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:13.846676Z", - "iopub.status.busy": "2024-08-12T10:37:13.846320Z", - "iopub.status.idle": "2024-08-12T10:37:16.510716Z", - "shell.execute_reply": "2024-08-12T10:37:16.510096Z" + "iopub.execute_input": "2024-08-12T18:59:55.982590Z", + "iopub.status.busy": "2024-08-12T18:59:55.982109Z", + "iopub.status.idle": "2024-08-12T18:59:58.712481Z", + "shell.execute_reply": "2024-08-12T18:59:58.711874Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:16.513014Z", - "iopub.status.busy": "2024-08-12T10:37:16.512642Z", - "iopub.status.idle": "2024-08-12T10:37:17.880117Z", - "shell.execute_reply": "2024-08-12T10:37:17.879556Z" + "iopub.execute_input": "2024-08-12T18:59:58.714680Z", + "iopub.status.busy": "2024-08-12T18:59:58.714484Z", + "iopub.status.idle": "2024-08-12T19:00:00.087689Z", + "shell.execute_reply": "2024-08-12T19:00:00.087120Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:17.882596Z", - "iopub.status.busy": "2024-08-12T10:37:17.882225Z", - "iopub.status.idle": "2024-08-12T10:37:17.886361Z", - "shell.execute_reply": "2024-08-12T10:37:17.885898Z" + "iopub.execute_input": "2024-08-12T19:00:00.090114Z", + "iopub.status.busy": "2024-08-12T19:00:00.089917Z", + "iopub.status.idle": "2024-08-12T19:00:00.094093Z", + "shell.execute_reply": "2024-08-12T19:00:00.093606Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:17.888349Z", - "iopub.status.busy": "2024-08-12T10:37:17.888007Z", - "iopub.status.idle": "2024-08-12T10:37:20.071756Z", - "shell.execute_reply": "2024-08-12T10:37:20.071124Z" + "iopub.execute_input": "2024-08-12T19:00:00.096133Z", + "iopub.status.busy": "2024-08-12T19:00:00.095947Z", + "iopub.status.idle": "2024-08-12T19:00:02.393180Z", + "shell.execute_reply": "2024-08-12T19:00:02.392409Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:20.074339Z", - "iopub.status.busy": "2024-08-12T10:37:20.073809Z", - "iopub.status.idle": "2024-08-12T10:37:20.082089Z", - "shell.execute_reply": "2024-08-12T10:37:20.081508Z" + "iopub.execute_input": "2024-08-12T19:00:02.395957Z", + "iopub.status.busy": "2024-08-12T19:00:02.395557Z", + "iopub.status.idle": "2024-08-12T19:00:02.404909Z", + "shell.execute_reply": "2024-08-12T19:00:02.404317Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:20.084278Z", - "iopub.status.busy": "2024-08-12T10:37:20.083850Z", - "iopub.status.idle": "2024-08-12T10:37:22.681899Z", - "shell.execute_reply": "2024-08-12T10:37:22.681336Z" + "iopub.execute_input": "2024-08-12T19:00:02.407237Z", + "iopub.status.busy": "2024-08-12T19:00:02.406886Z", + "iopub.status.idle": "2024-08-12T19:00:05.052633Z", + "shell.execute_reply": "2024-08-12T19:00:05.051949Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:22.684061Z", - "iopub.status.busy": "2024-08-12T10:37:22.683869Z", - "iopub.status.idle": "2024-08-12T10:37:22.687750Z", - "shell.execute_reply": "2024-08-12T10:37:22.687180Z" + "iopub.execute_input": "2024-08-12T19:00:05.055108Z", + "iopub.status.busy": "2024-08-12T19:00:05.054701Z", + "iopub.status.idle": "2024-08-12T19:00:05.058341Z", + "shell.execute_reply": "2024-08-12T19:00:05.057777Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:22.689932Z", - "iopub.status.busy": "2024-08-12T10:37:22.689525Z", - "iopub.status.idle": "2024-08-12T10:37:22.693276Z", - "shell.execute_reply": "2024-08-12T10:37:22.692719Z" + "iopub.execute_input": "2024-08-12T19:00:05.060592Z", + "iopub.status.busy": "2024-08-12T19:00:05.060231Z", + "iopub.status.idle": "2024-08-12T19:00:05.064081Z", + "shell.execute_reply": "2024-08-12T19:00:05.063515Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:22.695409Z", - "iopub.status.busy": "2024-08-12T10:37:22.694998Z", - "iopub.status.idle": "2024-08-12T10:37:22.698292Z", - "shell.execute_reply": "2024-08-12T10:37:22.697713Z" + "iopub.execute_input": "2024-08-12T19:00:05.066213Z", + "iopub.status.busy": "2024-08-12T19:00:05.066030Z", + "iopub.status.idle": "2024-08-12T19:00:05.069385Z", + "shell.execute_reply": "2024-08-12T19:00:05.068796Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index f65b26375..825856313 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:25.163455Z", - "iopub.status.busy": "2024-08-12T10:37:25.163026Z", - "iopub.status.idle": "2024-08-12T10:37:26.589902Z", - "shell.execute_reply": "2024-08-12T10:37:26.589214Z" + "iopub.execute_input": "2024-08-12T19:00:07.744973Z", + "iopub.status.busy": "2024-08-12T19:00:07.744802Z", + "iopub.status.idle": "2024-08-12T19:00:09.232129Z", + "shell.execute_reply": "2024-08-12T19:00:09.231463Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:26.592929Z", - "iopub.status.busy": "2024-08-12T10:37:26.592372Z", - "iopub.status.idle": "2024-08-12T10:37:29.427927Z", - "shell.execute_reply": "2024-08-12T10:37:29.427190Z" + "iopub.execute_input": "2024-08-12T19:00:09.234897Z", + "iopub.status.busy": "2024-08-12T19:00:09.234541Z", + "iopub.status.idle": "2024-08-12T19:00:11.915101Z", + "shell.execute_reply": "2024-08-12T19:00:11.914359Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.430776Z", - "iopub.status.busy": "2024-08-12T10:37:29.430357Z", - "iopub.status.idle": "2024-08-12T10:37:29.433637Z", - "shell.execute_reply": "2024-08-12T10:37:29.433182Z" + "iopub.execute_input": "2024-08-12T19:00:11.917833Z", + "iopub.status.busy": "2024-08-12T19:00:11.917612Z", + "iopub.status.idle": "2024-08-12T19:00:11.921571Z", + "shell.execute_reply": "2024-08-12T19:00:11.921101Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.435768Z", - "iopub.status.busy": "2024-08-12T10:37:29.435355Z", - "iopub.status.idle": "2024-08-12T10:37:29.442998Z", - "shell.execute_reply": "2024-08-12T10:37:29.442441Z" + "iopub.execute_input": "2024-08-12T19:00:11.923756Z", + "iopub.status.busy": "2024-08-12T19:00:11.923398Z", + "iopub.status.idle": "2024-08-12T19:00:11.931022Z", + "shell.execute_reply": "2024-08-12T19:00:11.930496Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.445161Z", - "iopub.status.busy": "2024-08-12T10:37:29.444815Z", - "iopub.status.idle": "2024-08-12T10:37:29.761652Z", - "shell.execute_reply": "2024-08-12T10:37:29.761027Z" + "iopub.execute_input": "2024-08-12T19:00:11.933415Z", + "iopub.status.busy": "2024-08-12T19:00:11.933040Z", + "iopub.status.idle": "2024-08-12T19:00:12.256254Z", + "shell.execute_reply": "2024-08-12T19:00:12.255623Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.764688Z", - "iopub.status.busy": "2024-08-12T10:37:29.764324Z", - "iopub.status.idle": "2024-08-12T10:37:29.769578Z", - "shell.execute_reply": "2024-08-12T10:37:29.769125Z" + "iopub.execute_input": "2024-08-12T19:00:12.259525Z", + "iopub.status.busy": "2024-08-12T19:00:12.259155Z", + "iopub.status.idle": "2024-08-12T19:00:12.265184Z", + "shell.execute_reply": "2024-08-12T19:00:12.264699Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.771585Z", - "iopub.status.busy": "2024-08-12T10:37:29.771282Z", - "iopub.status.idle": "2024-08-12T10:37:29.775247Z", - "shell.execute_reply": "2024-08-12T10:37:29.774794Z" + "iopub.execute_input": "2024-08-12T19:00:12.267306Z", + "iopub.status.busy": "2024-08-12T19:00:12.266962Z", + "iopub.status.idle": "2024-08-12T19:00:12.270759Z", + "shell.execute_reply": "2024-08-12T19:00:12.270274Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:29.777435Z", - "iopub.status.busy": "2024-08-12T10:37:29.777036Z", - "iopub.status.idle": "2024-08-12T10:37:30.784967Z", - "shell.execute_reply": "2024-08-12T10:37:30.784372Z" + "iopub.execute_input": "2024-08-12T19:00:12.272845Z", + "iopub.status.busy": "2024-08-12T19:00:12.272501Z", + "iopub.status.idle": "2024-08-12T19:00:13.251328Z", + "shell.execute_reply": "2024-08-12T19:00:13.250639Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:30.787260Z", - "iopub.status.busy": "2024-08-12T10:37:30.787051Z", - "iopub.status.idle": "2024-08-12T10:37:30.987997Z", - "shell.execute_reply": "2024-08-12T10:37:30.987390Z" + "iopub.execute_input": "2024-08-12T19:00:13.253843Z", + "iopub.status.busy": "2024-08-12T19:00:13.253432Z", + "iopub.status.idle": "2024-08-12T19:00:13.457386Z", + "shell.execute_reply": "2024-08-12T19:00:13.456904Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:30.990363Z", - "iopub.status.busy": "2024-08-12T10:37:30.989918Z", - "iopub.status.idle": "2024-08-12T10:37:30.994564Z", - "shell.execute_reply": "2024-08-12T10:37:30.993981Z" + "iopub.execute_input": "2024-08-12T19:00:13.459660Z", + "iopub.status.busy": "2024-08-12T19:00:13.459285Z", + "iopub.status.idle": "2024-08-12T19:00:13.463485Z", + "shell.execute_reply": "2024-08-12T19:00:13.462963Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:30.996807Z", - "iopub.status.busy": "2024-08-12T10:37:30.996466Z", - "iopub.status.idle": "2024-08-12T10:37:31.364226Z", - "shell.execute_reply": "2024-08-12T10:37:31.363566Z" + "iopub.execute_input": "2024-08-12T19:00:13.465606Z", + "iopub.status.busy": "2024-08-12T19:00:13.465247Z", + "iopub.status.idle": "2024-08-12T19:00:13.843786Z", + "shell.execute_reply": "2024-08-12T19:00:13.843149Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:31.367681Z", - "iopub.status.busy": "2024-08-12T10:37:31.367170Z", - "iopub.status.idle": "2024-08-12T10:37:31.706920Z", - "shell.execute_reply": "2024-08-12T10:37:31.706339Z" + "iopub.execute_input": "2024-08-12T19:00:13.846938Z", + "iopub.status.busy": "2024-08-12T19:00:13.846715Z", + "iopub.status.idle": "2024-08-12T19:00:14.186146Z", + "shell.execute_reply": "2024-08-12T19:00:14.185542Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:31.709609Z", - "iopub.status.busy": "2024-08-12T10:37:31.709409Z", - "iopub.status.idle": "2024-08-12T10:37:32.078993Z", - "shell.execute_reply": "2024-08-12T10:37:32.078441Z" + "iopub.execute_input": "2024-08-12T19:00:14.189289Z", + "iopub.status.busy": "2024-08-12T19:00:14.188801Z", + "iopub.status.idle": "2024-08-12T19:00:14.531251Z", + "shell.execute_reply": "2024-08-12T19:00:14.530600Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:32.081360Z", - "iopub.status.busy": "2024-08-12T10:37:32.081154Z", - "iopub.status.idle": "2024-08-12T10:37:32.527879Z", - "shell.execute_reply": "2024-08-12T10:37:32.527315Z" + "iopub.execute_input": "2024-08-12T19:00:14.534669Z", + "iopub.status.busy": "2024-08-12T19:00:14.534462Z", + "iopub.status.idle": "2024-08-12T19:00:14.981300Z", + "shell.execute_reply": "2024-08-12T19:00:14.980718Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:32.532540Z", - "iopub.status.busy": "2024-08-12T10:37:32.532142Z", - "iopub.status.idle": "2024-08-12T10:37:32.985799Z", - "shell.execute_reply": "2024-08-12T10:37:32.985162Z" + "iopub.execute_input": "2024-08-12T19:00:14.986021Z", + "iopub.status.busy": "2024-08-12T19:00:14.985784Z", + "iopub.status.idle": "2024-08-12T19:00:15.419680Z", + "shell.execute_reply": "2024-08-12T19:00:15.419087Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:32.989074Z", - "iopub.status.busy": "2024-08-12T10:37:32.988698Z", - "iopub.status.idle": "2024-08-12T10:37:33.208103Z", - "shell.execute_reply": "2024-08-12T10:37:33.207522Z" + "iopub.execute_input": "2024-08-12T19:00:15.423219Z", + "iopub.status.busy": "2024-08-12T19:00:15.422852Z", + "iopub.status.idle": "2024-08-12T19:00:15.641955Z", + "shell.execute_reply": "2024-08-12T19:00:15.641306Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:33.210458Z", - "iopub.status.busy": "2024-08-12T10:37:33.210088Z", - "iopub.status.idle": "2024-08-12T10:37:33.410728Z", - "shell.execute_reply": "2024-08-12T10:37:33.410096Z" + "iopub.execute_input": "2024-08-12T19:00:15.644256Z", + "iopub.status.busy": "2024-08-12T19:00:15.643880Z", + "iopub.status.idle": "2024-08-12T19:00:15.829580Z", + "shell.execute_reply": "2024-08-12T19:00:15.828972Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:33.413025Z", - "iopub.status.busy": "2024-08-12T10:37:33.412734Z", - "iopub.status.idle": "2024-08-12T10:37:33.415627Z", - "shell.execute_reply": "2024-08-12T10:37:33.415176Z" + "iopub.execute_input": "2024-08-12T19:00:15.831912Z", + "iopub.status.busy": "2024-08-12T19:00:15.831726Z", + "iopub.status.idle": "2024-08-12T19:00:15.834898Z", + "shell.execute_reply": "2024-08-12T19:00:15.834335Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:33.417482Z", - "iopub.status.busy": "2024-08-12T10:37:33.417296Z", - "iopub.status.idle": "2024-08-12T10:37:34.448180Z", - "shell.execute_reply": "2024-08-12T10:37:34.447519Z" + "iopub.execute_input": "2024-08-12T19:00:15.837304Z", + "iopub.status.busy": "2024-08-12T19:00:15.837106Z", + "iopub.status.idle": "2024-08-12T19:00:16.840169Z", + "shell.execute_reply": "2024-08-12T19:00:16.839611Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:34.451508Z", - "iopub.status.busy": "2024-08-12T10:37:34.450862Z", - "iopub.status.idle": "2024-08-12T10:37:34.573013Z", - "shell.execute_reply": "2024-08-12T10:37:34.572407Z" + "iopub.execute_input": "2024-08-12T19:00:16.842986Z", + "iopub.status.busy": "2024-08-12T19:00:16.842795Z", + "iopub.status.idle": "2024-08-12T19:00:17.013055Z", + "shell.execute_reply": "2024-08-12T19:00:17.012447Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:34.575711Z", - "iopub.status.busy": "2024-08-12T10:37:34.575257Z", - "iopub.status.idle": "2024-08-12T10:37:34.734036Z", - "shell.execute_reply": "2024-08-12T10:37:34.733425Z" + "iopub.execute_input": "2024-08-12T19:00:17.015418Z", + "iopub.status.busy": "2024-08-12T19:00:17.014952Z", + "iopub.status.idle": "2024-08-12T19:00:17.154380Z", + "shell.execute_reply": "2024-08-12T19:00:17.153704Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:34.736711Z", - "iopub.status.busy": "2024-08-12T10:37:34.736306Z", - "iopub.status.idle": "2024-08-12T10:37:35.504840Z", - "shell.execute_reply": "2024-08-12T10:37:35.504202Z" + "iopub.execute_input": "2024-08-12T19:00:17.157210Z", + "iopub.status.busy": "2024-08-12T19:00:17.156832Z", + "iopub.status.idle": "2024-08-12T19:00:17.940088Z", + "shell.execute_reply": "2024-08-12T19:00:17.939515Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:35.507164Z", - "iopub.status.busy": "2024-08-12T10:37:35.506804Z", - "iopub.status.idle": "2024-08-12T10:37:35.510605Z", - "shell.execute_reply": "2024-08-12T10:37:35.510109Z" + "iopub.execute_input": "2024-08-12T19:00:17.942465Z", + "iopub.status.busy": "2024-08-12T19:00:17.942094Z", + "iopub.status.idle": "2024-08-12T19:00:17.945988Z", + "shell.execute_reply": "2024-08-12T19:00:17.945408Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 4773a2282..9b9466013 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:03<00:00, 43962237.05it/s]
+100%|██████████| 170498071/170498071 [00:04<00:00, 40165594.79it/s]
 

-
+
@@ -1130,7 +1130,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index a766c6800..29b2c9f91 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:38.065729Z", - "iopub.status.busy": "2024-08-12T10:37:38.065301Z", - "iopub.status.idle": "2024-08-12T10:37:41.286106Z", - "shell.execute_reply": "2024-08-12T10:37:41.285531Z" + "iopub.execute_input": "2024-08-12T19:00:20.285190Z", + "iopub.status.busy": "2024-08-12T19:00:20.285019Z", + "iopub.status.idle": "2024-08-12T19:00:23.633953Z", + "shell.execute_reply": "2024-08-12T19:00:23.633344Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:41.288948Z", - "iopub.status.busy": "2024-08-12T10:37:41.288365Z", - "iopub.status.idle": "2024-08-12T10:37:41.308889Z", - "shell.execute_reply": "2024-08-12T10:37:41.308264Z" + "iopub.execute_input": "2024-08-12T19:00:23.636656Z", + "iopub.status.busy": "2024-08-12T19:00:23.636296Z", + "iopub.status.idle": "2024-08-12T19:00:23.656607Z", + "shell.execute_reply": "2024-08-12T19:00:23.656031Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:41.311645Z", - "iopub.status.busy": "2024-08-12T10:37:41.311095Z", - "iopub.status.idle": "2024-08-12T10:37:41.315091Z", - "shell.execute_reply": "2024-08-12T10:37:41.314659Z" + "iopub.execute_input": "2024-08-12T19:00:23.659450Z", + "iopub.status.busy": "2024-08-12T19:00:23.658866Z", + "iopub.status.idle": "2024-08-12T19:00:23.663050Z", + "shell.execute_reply": "2024-08-12T19:00:23.662569Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:41.317247Z", - "iopub.status.busy": "2024-08-12T10:37:41.316846Z", - "iopub.status.idle": "2024-08-12T10:37:48.393813Z", - "shell.execute_reply": "2024-08-12T10:37:48.393216Z" + "iopub.execute_input": "2024-08-12T19:00:23.665359Z", + "iopub.status.busy": "2024-08-12T19:00:23.665006Z", + "iopub.status.idle": "2024-08-12T19:00:31.351770Z", + "shell.execute_reply": "2024-08-12T19:00:31.351225Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<10:21, 274108.21it/s]" + " 0%| | 32768/170498071 [00:00<11:24, 249157.84it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 196608/170498071 [00:00<03:07, 908944.76it/s]" + " 0%| | 196608/170498071 [00:00<03:25, 827471.69it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 753664/170498071 [00:00<01:05, 2576934.58it/s]" + " 0%| | 819200/170498071 [00:00<01:05, 2583423.64it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3014656/170498071 [00:00<00:17, 9427987.53it/s]" + " 2%|▏ | 3244032/170498071 [00:00<00:17, 9350135.25it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 8323072/170498071 [00:00<00:06, 23803182.24it/s]" + " 4%|▍ | 7012352/170498071 [00:00<00:08, 18172606.14it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12124160/170498071 [00:00<00:05, 28239859.63it/s]" + " 7%|▋ | 12484608/170498071 [00:00<00:05, 29413436.51it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 17989632/170498071 [00:00<00:04, 37732622.19it/s]" + " 9%|▉ | 15728640/170498071 [00:00<00:05, 30170949.62it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21987328/170498071 [00:00<00:03, 37894761.72it/s]" + " 13%|█▎ | 21823488/170498071 [00:00<00:03, 39459011.05it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 27721728/170498071 [00:00<00:03, 43568105.00it/s]" + " 15%|█▌ | 25952256/170498071 [00:01<00:03, 37968019.50it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32440320/170498071 [00:01<00:03, 44642004.11it/s]" + " 18%|█▊ | 31195136/170498071 [00:01<00:03, 38943792.14it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37289984/170498071 [00:01<00:02, 45780248.62it/s]" + " 22%|██▏ | 36962304/170498071 [00:01<00:03, 44109490.91it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42565632/170498071 [00:01<00:02, 47872643.79it/s]" + " 24%|██▍ | 41484288/170498071 [00:01<00:03, 41905861.00it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47415296/170498071 [00:01<00:02, 45988822.57it/s]" + " 27%|██▋ | 46694400/170498071 [00:01<00:02, 43598155.05it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 53313536/170498071 [00:01<00:02, 49526120.54it/s]" + " 30%|███ | 51150848/170498071 [00:01<00:02, 43328013.65it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 58327040/170498071 [00:01<00:02, 49116657.11it/s]" + " 33%|███▎ | 56098816/170498071 [00:01<00:02, 44719966.49it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 63275008/170498071 [00:01<00:02, 46949788.50it/s]" + " 36%|███▌ | 60620800/170498071 [00:01<00:02, 43523232.99it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 69009408/170498071 [00:01<00:02, 49782525.23it/s]" + " 38%|███▊ | 65503232/170498071 [00:01<00:02, 44488462.61it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 74055680/170498071 [00:01<00:01, 49319325.77it/s]" + " 41%|████ | 69992448/170498071 [00:02<00:02, 43753129.73it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 79036416/170498071 [00:02<00:01, 47966329.96it/s]" + " 44%|████▍ | 75137024/170498071 [00:02<00:02, 45892131.60it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 84770816/170498071 [00:02<00:01, 49856821.30it/s]" + " 47%|████▋ | 79757312/170498071 [00:02<00:02, 44212549.56it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 89784320/170498071 [00:02<00:01, 49255046.52it/s]" + " 50%|████▉ | 84672512/170498071 [00:02<00:01, 45080581.65it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 94732288/170498071 [00:02<00:01, 49133238.59it/s]" + " 52%|█████▏ | 89227264/170498071 [00:02<00:01, 44302853.83it/s]" ] }, { @@ -428,7 +428,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 99876864/170498071 [00:02<00:01, 49552459.46it/s]" + " 55%|█████▌ | 94339072/170498071 [00:02<00:01, 46248373.73it/s]" ] }, { @@ -436,7 +436,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 104857600/170498071 [00:02<00:01, 47815966.10it/s]" + " 58%|█████▊ | 98992128/170498071 [00:02<00:01, 44516846.40it/s]" ] }, { @@ -444,7 +444,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110460928/170498071 [00:02<00:01, 50063421.22it/s]" + " 61%|██████ | 103841792/170498071 [00:02<00:01, 45315879.59it/s]" ] }, { @@ -452,7 +452,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 115507200/170498071 [00:02<00:01, 49809431.51it/s]" + " 64%|██████▎ | 108396544/170498071 [00:02<00:01, 44103142.22it/s]" ] }, { @@ -460,7 +460,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 120520704/170498071 [00:02<00:01, 47904030.30it/s]" + " 66%|██████▋ | 113377280/170498071 [00:02<00:01, 45293527.69it/s]" ] }, { @@ -468,7 +468,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 126255104/170498071 [00:02<00:00, 50586524.68it/s]" + " 69%|██████▉ | 117932032/170498071 [00:03<00:01, 44445448.20it/s]" ] }, { @@ -476,7 +476,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 131366912/170498071 [00:03<00:00, 49554490.83it/s]" + " 72%|███████▏ | 122781696/170498071 [00:03<00:01, 45121971.44it/s]" ] }, { @@ -484,7 +484,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 136347648/170498071 [00:03<00:00, 47123730.03it/s]" + " 75%|███████▍ | 127303680/170498071 [00:03<00:00, 44118259.88it/s]" ] }, { @@ -492,7 +492,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 142049280/170498071 [00:03<00:00, 49371013.50it/s]" + " 78%|███████▊ | 132349952/170498071 [00:03<00:00, 45803527.73it/s]" ] }, { @@ -500,7 +500,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 147030016/170498071 [00:03<00:00, 49389515.73it/s]" + " 80%|████████ | 136970240/170498071 [00:03<00:00, 44328264.50it/s]" ] }, { @@ -508,7 +508,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 152010752/170498071 [00:03<00:00, 48630973.86it/s]" + " 83%|████████▎ | 141688832/170498071 [00:03<00:00, 44772479.87it/s]" ] }, { @@ -516,7 +516,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 157483008/170498071 [00:03<00:00, 50364282.82it/s]" + " 86%|████████▌ | 146178048/170498071 [00:03<00:00, 44025135.69it/s]" ] }, { @@ -524,7 +524,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162562048/170498071 [00:03<00:00, 48565960.51it/s]" + " 89%|████████▊ | 151158784/170498071 [00:03<00:00, 45306429.18it/s]" ] }, { @@ -532,7 +532,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 167870464/170498071 [00:03<00:00, 48926388.73it/s]" + " 91%|█████████▏| 155713536/170498071 [00:03<00:00, 44169697.14it/s]" ] }, { @@ -540,7 +540,31 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 43962237.05it/s]" + " 94%|█████████▍| 160759808/170498071 [00:04<00:00, 45207366.04it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 165314560/170498071 [00:04<00:00, 44337622.71it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 170295296/170498071 [00:04<00:00, 45868708.35it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 40165594.79it/s]" ] }, { @@ -658,10 +682,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:48.396125Z", - "iopub.status.busy": "2024-08-12T10:37:48.395766Z", - "iopub.status.idle": "2024-08-12T10:37:48.400477Z", - "shell.execute_reply": "2024-08-12T10:37:48.400028Z" + "iopub.execute_input": "2024-08-12T19:00:31.354406Z", + "iopub.status.busy": "2024-08-12T19:00:31.353939Z", + "iopub.status.idle": "2024-08-12T19:00:31.358764Z", + "shell.execute_reply": "2024-08-12T19:00:31.358312Z" }, "nbsphinx": "hidden" }, @@ -712,10 +736,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:48.402698Z", - "iopub.status.busy": "2024-08-12T10:37:48.402218Z", - "iopub.status.idle": "2024-08-12T10:37:48.949380Z", - "shell.execute_reply": "2024-08-12T10:37:48.948822Z" + "iopub.execute_input": "2024-08-12T19:00:31.360792Z", + "iopub.status.busy": "2024-08-12T19:00:31.360605Z", + "iopub.status.idle": "2024-08-12T19:00:31.923812Z", + "shell.execute_reply": "2024-08-12T19:00:31.923180Z" } }, "outputs": [ @@ -748,10 +772,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:48.951673Z", - "iopub.status.busy": "2024-08-12T10:37:48.951322Z", - "iopub.status.idle": "2024-08-12T10:37:49.445300Z", - "shell.execute_reply": "2024-08-12T10:37:49.444702Z" + "iopub.execute_input": "2024-08-12T19:00:31.926228Z", + "iopub.status.busy": "2024-08-12T19:00:31.925847Z", + "iopub.status.idle": "2024-08-12T19:00:32.452460Z", + "shell.execute_reply": "2024-08-12T19:00:32.451834Z" } }, "outputs": [ @@ -789,10 +813,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:49.447437Z", - "iopub.status.busy": "2024-08-12T10:37:49.447249Z", - "iopub.status.idle": "2024-08-12T10:37:49.450529Z", - "shell.execute_reply": "2024-08-12T10:37:49.450053Z" + "iopub.execute_input": "2024-08-12T19:00:32.454955Z", + "iopub.status.busy": "2024-08-12T19:00:32.454540Z", + "iopub.status.idle": "2024-08-12T19:00:32.457996Z", + "shell.execute_reply": "2024-08-12T19:00:32.457535Z" } }, "outputs": [], @@ -815,17 +839,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:37:49.452441Z", - "iopub.status.busy": "2024-08-12T10:37:49.452265Z", - "iopub.status.idle": "2024-08-12T10:38:01.958435Z", - "shell.execute_reply": "2024-08-12T10:38:01.957792Z" + "iopub.execute_input": "2024-08-12T19:00:32.459913Z", + "iopub.status.busy": "2024-08-12T19:00:32.459734Z", + "iopub.status.idle": "2024-08-12T19:00:45.325277Z", + "shell.execute_reply": "2024-08-12T19:00:45.324697Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2509f48fd1ed4a62ad24fb1513c2d81a", + "model_id": "7e4fc5c79f684873aca29643ab5213d6", "version_major": 2, "version_minor": 0 }, @@ -884,10 +908,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:01.960907Z", - "iopub.status.busy": "2024-08-12T10:38:01.960497Z", - "iopub.status.idle": "2024-08-12T10:38:04.092827Z", - "shell.execute_reply": "2024-08-12T10:38:04.092254Z" + "iopub.execute_input": "2024-08-12T19:00:45.327911Z", + "iopub.status.busy": "2024-08-12T19:00:45.327546Z", + "iopub.status.idle": "2024-08-12T19:00:47.473285Z", + "shell.execute_reply": "2024-08-12T19:00:47.472582Z" } }, "outputs": [ @@ -931,10 +955,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:04.095661Z", - "iopub.status.busy": "2024-08-12T10:38:04.095199Z", - "iopub.status.idle": "2024-08-12T10:38:04.357246Z", - "shell.execute_reply": "2024-08-12T10:38:04.356649Z" + "iopub.execute_input": "2024-08-12T19:00:47.476197Z", + "iopub.status.busy": "2024-08-12T19:00:47.475653Z", + "iopub.status.idle": "2024-08-12T19:00:47.741842Z", + "shell.execute_reply": "2024-08-12T19:00:47.741157Z" } }, "outputs": [ @@ -970,10 +994,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:04.360205Z", - "iopub.status.busy": "2024-08-12T10:38:04.359731Z", - "iopub.status.idle": "2024-08-12T10:38:05.053430Z", - "shell.execute_reply": "2024-08-12T10:38:05.052864Z" + "iopub.execute_input": "2024-08-12T19:00:47.744874Z", + "iopub.status.busy": "2024-08-12T19:00:47.744331Z", + "iopub.status.idle": "2024-08-12T19:00:48.420941Z", + "shell.execute_reply": "2024-08-12T19:00:48.420354Z" } }, "outputs": [ @@ -1023,10 +1047,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.056495Z", - "iopub.status.busy": "2024-08-12T10:38:05.056048Z", - "iopub.status.idle": "2024-08-12T10:38:05.397275Z", - "shell.execute_reply": "2024-08-12T10:38:05.396713Z" + "iopub.execute_input": "2024-08-12T19:00:48.423834Z", + "iopub.status.busy": "2024-08-12T19:00:48.423300Z", + "iopub.status.idle": "2024-08-12T19:00:48.777069Z", + "shell.execute_reply": "2024-08-12T19:00:48.776492Z" } }, "outputs": [ @@ -1074,10 +1098,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.399451Z", - "iopub.status.busy": "2024-08-12T10:38:05.399262Z", - "iopub.status.idle": "2024-08-12T10:38:05.651456Z", - "shell.execute_reply": "2024-08-12T10:38:05.650825Z" + "iopub.execute_input": "2024-08-12T19:00:48.779436Z", + "iopub.status.busy": "2024-08-12T19:00:48.779092Z", + "iopub.status.idle": "2024-08-12T19:00:49.030804Z", + "shell.execute_reply": "2024-08-12T19:00:49.030162Z" } }, "outputs": [ @@ -1133,10 +1157,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.654454Z", - "iopub.status.busy": "2024-08-12T10:38:05.653989Z", - "iopub.status.idle": "2024-08-12T10:38:05.743235Z", - "shell.execute_reply": "2024-08-12T10:38:05.742733Z" + "iopub.execute_input": "2024-08-12T19:00:49.033695Z", + "iopub.status.busy": "2024-08-12T19:00:49.033452Z", + "iopub.status.idle": "2024-08-12T19:00:49.129989Z", + "shell.execute_reply": "2024-08-12T19:00:49.129464Z" } }, "outputs": [], @@ -1157,10 +1181,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:05.745752Z", - "iopub.status.busy": "2024-08-12T10:38:05.745420Z", - "iopub.status.idle": "2024-08-12T10:38:16.159454Z", - "shell.execute_reply": "2024-08-12T10:38:16.158759Z" + "iopub.execute_input": "2024-08-12T19:00:49.132284Z", + "iopub.status.busy": "2024-08-12T19:00:49.132107Z", + "iopub.status.idle": "2024-08-12T19:00:59.836874Z", + "shell.execute_reply": "2024-08-12T19:00:59.836169Z" } }, "outputs": [ @@ -1197,10 +1221,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:16.162032Z", - "iopub.status.busy": "2024-08-12T10:38:16.161608Z", - "iopub.status.idle": "2024-08-12T10:38:18.469804Z", - "shell.execute_reply": "2024-08-12T10:38:18.469284Z" + "iopub.execute_input": "2024-08-12T19:00:59.839766Z", + "iopub.status.busy": "2024-08-12T19:00:59.839249Z", + "iopub.status.idle": "2024-08-12T19:01:02.226449Z", + "shell.execute_reply": "2024-08-12T19:01:02.225800Z" } }, "outputs": [ @@ -1231,10 +1255,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:18.472461Z", - "iopub.status.busy": "2024-08-12T10:38:18.471934Z", - "iopub.status.idle": "2024-08-12T10:38:18.693678Z", - "shell.execute_reply": "2024-08-12T10:38:18.693177Z" + "iopub.execute_input": "2024-08-12T19:01:02.229141Z", + "iopub.status.busy": "2024-08-12T19:01:02.228744Z", + "iopub.status.idle": "2024-08-12T19:01:02.433344Z", + "shell.execute_reply": "2024-08-12T19:01:02.432819Z" } }, "outputs": [], @@ -1248,10 +1272,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:18.696055Z", - "iopub.status.busy": "2024-08-12T10:38:18.695868Z", - "iopub.status.idle": "2024-08-12T10:38:18.699138Z", - "shell.execute_reply": "2024-08-12T10:38:18.698703Z" + "iopub.execute_input": "2024-08-12T19:01:02.435897Z", + "iopub.status.busy": "2024-08-12T19:01:02.435430Z", + "iopub.status.idle": "2024-08-12T19:01:02.438731Z", + "shell.execute_reply": "2024-08-12T19:01:02.438202Z" } }, "outputs": [], @@ -1289,10 +1313,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:18.701265Z", - "iopub.status.busy": "2024-08-12T10:38:18.700945Z", - "iopub.status.idle": "2024-08-12T10:38:18.709241Z", - "shell.execute_reply": "2024-08-12T10:38:18.708774Z" + "iopub.execute_input": "2024-08-12T19:01:02.440833Z", + "iopub.status.busy": "2024-08-12T19:01:02.440515Z", + "iopub.status.idle": "2024-08-12T19:01:02.448965Z", + "shell.execute_reply": "2024-08-12T19:01:02.448383Z" }, "nbsphinx": "hidden" }, @@ -1337,72 +1361,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "139e4e91a1484e8ba04022044c812479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2686af12e78443eaa75828809f5a37c", - "placeholder": "​", - "style": "IPY_MODEL_2e9fa535960e4d16aa34f1aa46aaa432", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 255MB/s]" - } - }, - "2509f48fd1ed4a62ad24fb1513c2d81a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ab049ed404064be38422d534105ce1fe", - "IPY_MODEL_cbca1c46e73540d29af597198e334466", - "IPY_MODEL_139e4e91a1484e8ba04022044c812479" - ], - "layout": "IPY_MODEL_5fc5d569f4d24463a83b8ec47acfe23e", - "tabbable": null, - "tooltip": null - } - }, - "2e9fa535960e4d16aa34f1aa46aaa432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5fc5d569f4d24463a83b8ec47acfe23e": { + "281d904d63634ba2bc515e56e280b18a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1455,23 +1414,7 @@ "width": null } }, - "8644689e0baa47239b9d96c02db45587": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a42a0f001b844ad9bd9f6a36419e975": { + "370d465ea34c4da9906a0a85d82d056b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1524,7 +1467,7 @@ "width": null } }, - "a2686af12e78443eaa75828809f5a37c": { + "691cb5820f224f97a76ae4bde2e746e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,74 +1520,54 @@ "width": null } }, - "ab049ed404064be38422d534105ce1fe": { + "7e4fc5c79f684873aca29643ab5213d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ea6e3fff8a484b4d9d66bc5738b031f3", - "placeholder": "​", - "style": "IPY_MODEL_b79b90517fd54c8c82916c9f4f30a4b6", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fc42d1facc844e459afc09ef7c687042", + "IPY_MODEL_f86698037fa647aca0a9fa209c430b2b", + "IPY_MODEL_90831226eb3e4b068e5309c838071a8c" + ], + "layout": "IPY_MODEL_691cb5820f224f97a76ae4bde2e746e6", "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "b79b90517fd54c8c82916c9f4f30a4b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "cbca1c46e73540d29af597198e334466": { + "90831226eb3e4b068e5309c838071a8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a42a0f001b844ad9bd9f6a36419e975", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8644689e0baa47239b9d96c02db45587", + "layout": "IPY_MODEL_281d904d63634ba2bc515e56e280b18a", + "placeholder": "​", + "style": "IPY_MODEL_9f62f6674a964c1aa565f872301096e5", "tabbable": null, "tooltip": null, - "value": 102469840.0 + "value": " 102M/102M [00:00<00:00, 205MB/s]" } }, - "ea6e3fff8a484b4d9d66bc5738b031f3": { + "924131cdce89473fb5ed8528e97a50f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1696,6 +1619,107 @@ "visibility": null, "width": null } + }, + "9f62f6674a964c1aa565f872301096e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a4817168f39c4d4591bf97329c9379f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b47804059351482a8c58b8dda5743345": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f86698037fa647aca0a9fa209c430b2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_924131cdce89473fb5ed8528e97a50f1", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a4817168f39c4d4591bf97329c9379f2", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "fc42d1facc844e459afc09ef7c687042": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_370d465ea34c4da9906a0a85d82d056b", + "placeholder": "​", + "style": "IPY_MODEL_b47804059351482a8c58b8dda5743345", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 6c6180b19..76fbdefa7 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:23.106311Z", - "iopub.status.busy": "2024-08-12T10:38:23.106127Z", - "iopub.status.idle": "2024-08-12T10:38:24.561027Z", - "shell.execute_reply": "2024-08-12T10:38:24.560457Z" + "iopub.execute_input": "2024-08-12T19:01:06.712529Z", + "iopub.status.busy": "2024-08-12T19:01:06.712319Z", + "iopub.status.idle": "2024-08-12T19:01:08.153165Z", + "shell.execute_reply": "2024-08-12T19:01:08.152492Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.563924Z", - "iopub.status.busy": "2024-08-12T10:38:24.563331Z", - "iopub.status.idle": "2024-08-12T10:38:24.582833Z", - "shell.execute_reply": "2024-08-12T10:38:24.582349Z" + "iopub.execute_input": "2024-08-12T19:01:08.155797Z", + "iopub.status.busy": "2024-08-12T19:01:08.155495Z", + "iopub.status.idle": "2024-08-12T19:01:08.174435Z", + "shell.execute_reply": "2024-08-12T19:01:08.173861Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.585400Z", - "iopub.status.busy": "2024-08-12T10:38:24.584732Z", - "iopub.status.idle": "2024-08-12T10:38:24.588095Z", - "shell.execute_reply": "2024-08-12T10:38:24.587528Z" + "iopub.execute_input": "2024-08-12T19:01:08.177045Z", + "iopub.status.busy": "2024-08-12T19:01:08.176495Z", + "iopub.status.idle": "2024-08-12T19:01:08.179648Z", + "shell.execute_reply": "2024-08-12T19:01:08.179143Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.590164Z", - "iopub.status.busy": "2024-08-12T10:38:24.589785Z", - "iopub.status.idle": "2024-08-12T10:38:24.804068Z", - "shell.execute_reply": "2024-08-12T10:38:24.803465Z" + "iopub.execute_input": "2024-08-12T19:01:08.181771Z", + "iopub.status.busy": "2024-08-12T19:01:08.181384Z", + "iopub.status.idle": "2024-08-12T19:01:08.453781Z", + "shell.execute_reply": "2024-08-12T19:01:08.453196Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.806521Z", - "iopub.status.busy": "2024-08-12T10:38:24.806108Z", - "iopub.status.idle": "2024-08-12T10:38:24.810570Z", - "shell.execute_reply": "2024-08-12T10:38:24.809985Z" + "iopub.execute_input": "2024-08-12T19:01:08.456263Z", + "iopub.status.busy": "2024-08-12T19:01:08.455844Z", + "iopub.status.idle": "2024-08-12T19:01:08.460424Z", + "shell.execute_reply": "2024-08-12T19:01:08.459864Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:24.812753Z", - "iopub.status.busy": "2024-08-12T10:38:24.812418Z", - "iopub.status.idle": "2024-08-12T10:38:25.059755Z", - "shell.execute_reply": "2024-08-12T10:38:25.059259Z" + "iopub.execute_input": "2024-08-12T19:01:08.462528Z", + "iopub.status.busy": "2024-08-12T19:01:08.462216Z", + "iopub.status.idle": "2024-08-12T19:01:08.707993Z", + "shell.execute_reply": "2024-08-12T19:01:08.707383Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.061903Z", - "iopub.status.busy": "2024-08-12T10:38:25.061709Z", - "iopub.status.idle": "2024-08-12T10:38:25.066278Z", - "shell.execute_reply": "2024-08-12T10:38:25.065794Z" + "iopub.execute_input": "2024-08-12T19:01:08.710301Z", + "iopub.status.busy": "2024-08-12T19:01:08.709890Z", + "iopub.status.idle": "2024-08-12T19:01:08.714510Z", + "shell.execute_reply": "2024-08-12T19:01:08.713939Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.068321Z", - "iopub.status.busy": "2024-08-12T10:38:25.067922Z", - "iopub.status.idle": "2024-08-12T10:38:25.074136Z", - "shell.execute_reply": "2024-08-12T10:38:25.073586Z" + "iopub.execute_input": "2024-08-12T19:01:08.716693Z", + "iopub.status.busy": "2024-08-12T19:01:08.716512Z", + "iopub.status.idle": "2024-08-12T19:01:08.722640Z", + "shell.execute_reply": "2024-08-12T19:01:08.722141Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.076256Z", - "iopub.status.busy": "2024-08-12T10:38:25.075869Z", - "iopub.status.idle": "2024-08-12T10:38:25.078496Z", - "shell.execute_reply": "2024-08-12T10:38:25.078020Z" + "iopub.execute_input": "2024-08-12T19:01:08.724891Z", + "iopub.status.busy": "2024-08-12T19:01:08.724714Z", + "iopub.status.idle": "2024-08-12T19:01:08.727505Z", + "shell.execute_reply": "2024-08-12T19:01:08.726971Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:25.080454Z", - "iopub.status.busy": "2024-08-12T10:38:25.080143Z", - "iopub.status.idle": "2024-08-12T10:38:34.275824Z", - "shell.execute_reply": "2024-08-12T10:38:34.275257Z" + "iopub.execute_input": "2024-08-12T19:01:08.729639Z", + "iopub.status.busy": "2024-08-12T19:01:08.729330Z", + "iopub.status.idle": "2024-08-12T19:01:17.979569Z", + "shell.execute_reply": "2024-08-12T19:01:17.978818Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.278905Z", - "iopub.status.busy": "2024-08-12T10:38:34.278220Z", - "iopub.status.idle": "2024-08-12T10:38:34.285441Z", - "shell.execute_reply": "2024-08-12T10:38:34.284934Z" + "iopub.execute_input": "2024-08-12T19:01:17.983017Z", + "iopub.status.busy": "2024-08-12T19:01:17.982303Z", + "iopub.status.idle": "2024-08-12T19:01:17.990196Z", + "shell.execute_reply": "2024-08-12T19:01:17.989677Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.287596Z", - "iopub.status.busy": "2024-08-12T10:38:34.287249Z", - "iopub.status.idle": "2024-08-12T10:38:34.290844Z", - "shell.execute_reply": "2024-08-12T10:38:34.290392Z" + "iopub.execute_input": "2024-08-12T19:01:17.992517Z", + "iopub.status.busy": "2024-08-12T19:01:17.992064Z", + "iopub.status.idle": "2024-08-12T19:01:17.996208Z", + "shell.execute_reply": "2024-08-12T19:01:17.995603Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.292807Z", - "iopub.status.busy": "2024-08-12T10:38:34.292472Z", - "iopub.status.idle": "2024-08-12T10:38:34.295505Z", - "shell.execute_reply": "2024-08-12T10:38:34.294963Z" + "iopub.execute_input": "2024-08-12T19:01:17.998537Z", + "iopub.status.busy": "2024-08-12T19:01:17.998176Z", + "iopub.status.idle": "2024-08-12T19:01:18.001616Z", + "shell.execute_reply": "2024-08-12T19:01:18.001073Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.297619Z", - "iopub.status.busy": "2024-08-12T10:38:34.297287Z", - "iopub.status.idle": "2024-08-12T10:38:34.300228Z", - "shell.execute_reply": "2024-08-12T10:38:34.299788Z" + "iopub.execute_input": "2024-08-12T19:01:18.003807Z", + "iopub.status.busy": "2024-08-12T19:01:18.003450Z", + "iopub.status.idle": "2024-08-12T19:01:18.006493Z", + "shell.execute_reply": "2024-08-12T19:01:18.006035Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.302181Z", - "iopub.status.busy": "2024-08-12T10:38:34.301846Z", - "iopub.status.idle": "2024-08-12T10:38:34.309866Z", - "shell.execute_reply": "2024-08-12T10:38:34.309401Z" + "iopub.execute_input": "2024-08-12T19:01:18.008664Z", + "iopub.status.busy": "2024-08-12T19:01:18.008301Z", + "iopub.status.idle": "2024-08-12T19:01:18.017065Z", + "shell.execute_reply": "2024-08-12T19:01:18.016561Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.311916Z", - "iopub.status.busy": "2024-08-12T10:38:34.311580Z", - "iopub.status.idle": "2024-08-12T10:38:34.314224Z", - "shell.execute_reply": "2024-08-12T10:38:34.313758Z" + "iopub.execute_input": "2024-08-12T19:01:18.019389Z", + "iopub.status.busy": "2024-08-12T19:01:18.019019Z", + "iopub.status.idle": "2024-08-12T19:01:18.021739Z", + "shell.execute_reply": "2024-08-12T19:01:18.021283Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.316300Z", - "iopub.status.busy": "2024-08-12T10:38:34.315973Z", - "iopub.status.idle": "2024-08-12T10:38:34.447434Z", - "shell.execute_reply": "2024-08-12T10:38:34.446909Z" + "iopub.execute_input": "2024-08-12T19:01:18.023854Z", + "iopub.status.busy": "2024-08-12T19:01:18.023506Z", + "iopub.status.idle": "2024-08-12T19:01:18.152059Z", + "shell.execute_reply": "2024-08-12T19:01:18.151421Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.450013Z", - "iopub.status.busy": "2024-08-12T10:38:34.449571Z", - "iopub.status.idle": "2024-08-12T10:38:34.560887Z", - "shell.execute_reply": "2024-08-12T10:38:34.560277Z" + "iopub.execute_input": "2024-08-12T19:01:18.154862Z", + "iopub.status.busy": "2024-08-12T19:01:18.154342Z", + "iopub.status.idle": "2024-08-12T19:01:18.265817Z", + "shell.execute_reply": "2024-08-12T19:01:18.265229Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:34.563495Z", - "iopub.status.busy": "2024-08-12T10:38:34.563083Z", - "iopub.status.idle": "2024-08-12T10:38:35.086810Z", - "shell.execute_reply": "2024-08-12T10:38:35.086226Z" + "iopub.execute_input": "2024-08-12T19:01:18.268452Z", + "iopub.status.busy": "2024-08-12T19:01:18.268024Z", + "iopub.status.idle": "2024-08-12T19:01:18.780926Z", + "shell.execute_reply": "2024-08-12T19:01:18.780306Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.089656Z", - "iopub.status.busy": "2024-08-12T10:38:35.089208Z", - "iopub.status.idle": "2024-08-12T10:38:35.189179Z", - "shell.execute_reply": "2024-08-12T10:38:35.188526Z" + "iopub.execute_input": "2024-08-12T19:01:18.783826Z", + "iopub.status.busy": "2024-08-12T19:01:18.783373Z", + "iopub.status.idle": "2024-08-12T19:01:18.883252Z", + "shell.execute_reply": "2024-08-12T19:01:18.882631Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.191757Z", - "iopub.status.busy": "2024-08-12T10:38:35.191311Z", - "iopub.status.idle": "2024-08-12T10:38:35.200051Z", - "shell.execute_reply": "2024-08-12T10:38:35.199511Z" + "iopub.execute_input": "2024-08-12T19:01:18.885599Z", + "iopub.status.busy": "2024-08-12T19:01:18.885409Z", + "iopub.status.idle": "2024-08-12T19:01:18.894332Z", + "shell.execute_reply": "2024-08-12T19:01:18.893863Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.202162Z", - "iopub.status.busy": "2024-08-12T10:38:35.201840Z", - "iopub.status.idle": "2024-08-12T10:38:35.204702Z", - "shell.execute_reply": "2024-08-12T10:38:35.204149Z" + "iopub.execute_input": "2024-08-12T19:01:18.896338Z", + "iopub.status.busy": "2024-08-12T19:01:18.896157Z", + "iopub.status.idle": "2024-08-12T19:01:18.898954Z", + "shell.execute_reply": "2024-08-12T19:01:18.898495Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:35.206675Z", - "iopub.status.busy": "2024-08-12T10:38:35.206390Z", - "iopub.status.idle": "2024-08-12T10:38:40.863741Z", - "shell.execute_reply": "2024-08-12T10:38:40.863149Z" + "iopub.execute_input": "2024-08-12T19:01:18.901071Z", + "iopub.status.busy": "2024-08-12T19:01:18.900755Z", + "iopub.status.idle": "2024-08-12T19:01:24.618254Z", + "shell.execute_reply": "2024-08-12T19:01:24.617650Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:40.866094Z", - "iopub.status.busy": "2024-08-12T10:38:40.865698Z", - "iopub.status.idle": "2024-08-12T10:38:40.874237Z", - "shell.execute_reply": "2024-08-12T10:38:40.873673Z" + "iopub.execute_input": "2024-08-12T19:01:24.620810Z", + "iopub.status.busy": "2024-08-12T19:01:24.620418Z", + "iopub.status.idle": "2024-08-12T19:01:24.629086Z", + "shell.execute_reply": "2024-08-12T19:01:24.628626Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:40.876578Z", - "iopub.status.busy": "2024-08-12T10:38:40.876136Z", - "iopub.status.idle": "2024-08-12T10:38:40.940208Z", - "shell.execute_reply": "2024-08-12T10:38:40.939737Z" + "iopub.execute_input": "2024-08-12T19:01:24.631181Z", + "iopub.status.busy": "2024-08-12T19:01:24.630841Z", + "iopub.status.idle": "2024-08-12T19:01:24.698102Z", + "shell.execute_reply": "2024-08-12T19:01:24.697571Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 6a533d848..59ac62019 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"010e44b48d974beeb7690f8542184e1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a5c3be4f2994ba5a9fe278b993dff8b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cd7f1bbed2b3453992c2294fb7b8f062": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_010e44b48d974beeb7690f8542184e1b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5a5c3be4f2994ba5a9fe278b993dff8b", "tabbable": null, "tooltip": null, "value": 30.0}}, "1563dcc38303423d9edbed3b08c05b03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f4a5ca89bd44246a9513173bf74a65d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0416c162024a4fc381a45c2144135cc1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1563dcc38303423d9edbed3b08c05b03", "placeholder": "\u200b", "style": "IPY_MODEL_0f4a5ca89bd44246a9513173bf74a65d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "bafbe32ede834e3e9065c92397de6f8c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a0fd43aebf8429ebed382e82d7f51e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d2a6db5bcf94f70b3a4ad24b832cd90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bafbe32ede834e3e9065c92397de6f8c", "placeholder": "\u200b", "style": "IPY_MODEL_8a0fd43aebf8429ebed382e82d7f51e7", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007802.43it/s]"}}, "844ec110d7c84f3fb856b6b598512108": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61e605b04d874c93b6bfbb1c76fe56ef": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0416c162024a4fc381a45c2144135cc1", "IPY_MODEL_cd7f1bbed2b3453992c2294fb7b8f062", "IPY_MODEL_4d2a6db5bcf94f70b3a4ad24b832cd90"], "layout": "IPY_MODEL_844ec110d7c84f3fb856b6b598512108", "tabbable": null, "tooltip": null}}, "1c4405e9f09347f69b059265ffec86fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "399bc87e579745ad9a2930ba8605db78": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a936ea8d446f4dc6846eb16e30670216": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c4405e9f09347f69b059265ffec86fc", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_399bc87e579745ad9a2930ba8605db78", "tabbable": null, "tooltip": null, "value": 30.0}}, "b1eb120d532440b884214ef8eacb43b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b982f6012464407b8042bc862b7ede1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5abd9dbf83d4476a7edecdc934d3ecd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b1eb120d532440b884214ef8eacb43b4", "placeholder": "\u200b", "style": "IPY_MODEL_2b982f6012464407b8042bc862b7ede1", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "91d043d8d3d34fb18e60e06a40ab070d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6de6c5c76e4c4c2e977861cd171624e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bf43cbf39f1744c5b97ce89faa09ab90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_91d043d8d3d34fb18e60e06a40ab070d", "placeholder": "\u200b", "style": "IPY_MODEL_6de6c5c76e4c4c2e977861cd171624e7", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "6583a0a60fe54eda962c904c18cf76f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f08907b075b945d98f02eb7bb46dde87": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d5abd9dbf83d4476a7edecdc934d3ecd", "IPY_MODEL_a936ea8d446f4dc6846eb16e30670216", "IPY_MODEL_bf43cbf39f1744c5b97ce89faa09ab90"], "layout": "IPY_MODEL_6583a0a60fe54eda962c904c18cf76f1", "tabbable": null, "tooltip": null}}, "51800615e4584a51830cc28b3452f7e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57f6c0fe38904916a9c68353b56e9d0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fbe9c46e48b14c9f84f96b3a07c47b9b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51800615e4584a51830cc28b3452f7e9", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_57f6c0fe38904916a9c68353b56e9d0f", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "e23f7a500c77422180ae8c0b19fed597": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6b0aaa7478443f8a5807573545ef4dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c662917f77845909c734188e0849f3f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e23f7a500c77422180ae8c0b19fed597", "placeholder": "\u200b", "style": "IPY_MODEL_e6b0aaa7478443f8a5807573545ef4dd", "tabbable": null, "tooltip": null, "value": "100%"}}, "e6c3c5326bbc4655b166d18c64e5cbd1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cb6725acf0d4146a26d14bcab9727f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "538a035bd9374f96a81b2ec775e07cd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6c3c5326bbc4655b166d18c64e5cbd1", "placeholder": "\u200b", "style": "IPY_MODEL_4cb6725acf0d4146a26d14bcab9727f0", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007151534.24it/s]"}}, "f5b61e50c8ea418facc9fca22ce157b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "561557a580184250a3d202d08116c4ee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c662917f77845909c734188e0849f3f", "IPY_MODEL_fbe9c46e48b14c9f84f96b3a07c47b9b", "IPY_MODEL_538a035bd9374f96a81b2ec775e07cd3"], "layout": "IPY_MODEL_f5b61e50c8ea418facc9fca22ce157b9", "tabbable": null, "tooltip": null}}, "988ac07c05a442529f798cef6e50fb3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da9d3e1909784dd798b07568fde6b3f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9ab476bf29c7452b97de539b14f89cba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_988ac07c05a442529f798cef6e50fb3b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_da9d3e1909784dd798b07568fde6b3f2", "tabbable": null, "tooltip": null, "value": 30.0}}, "9ebd02d6b2a6471d91183ddc979dd134": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3630df7de7c24e1dbde38fd5b3ec5335": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5796a1d25a2402f8ac7189ad2c91f00": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ebd02d6b2a6471d91183ddc979dd134", "placeholder": "\u200b", "style": "IPY_MODEL_3630df7de7c24e1dbde38fd5b3ec5335", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "640ae108c5fd43c48a63563c80f03c92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "019c971db6eb4ae58639c1bdf5010f25": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "410bebdd912b4f52baf94752cefcdb90": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_640ae108c5fd43c48a63563c80f03c92", "placeholder": "\u200b", "style": "IPY_MODEL_019c971db6eb4ae58639c1bdf5010f25", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200718.13it/s]"}}, "d5384d275afa4ecc9afe700c7fabaee9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0e8171b866d49d29b94f359a1afd3b9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c5796a1d25a2402f8ac7189ad2c91f00", "IPY_MODEL_9ab476bf29c7452b97de539b14f89cba", "IPY_MODEL_410bebdd912b4f52baf94752cefcdb90"], "layout": "IPY_MODEL_d5384d275afa4ecc9afe700c7fabaee9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"0fc3bef3f9844f6fb287502b87a6863b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f424c67480447b880ec906f4c5cbec6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6aad1688a3b94f17bd18eb231ee1e939": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0fc3bef3f9844f6fb287502b87a6863b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2f424c67480447b880ec906f4c5cbec6", "tabbable": null, "tooltip": null, "value": 30.0}}, "08061431cab04a78be2ba6bab4e6de4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "132557767ab84f1f9d47f3c8e6dcc619": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d4b495caf9f445d8864cd1f7838be76d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_08061431cab04a78be2ba6bab4e6de4d", "placeholder": "\u200b", "style": "IPY_MODEL_132557767ab84f1f9d47f3c8e6dcc619", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "dd3b9502f5e642efbc90fb3650ca6206": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4993227e9ac34382a676edb57effd656": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a56889a6273745c5a6f3820dd94e34fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd3b9502f5e642efbc90fb3650ca6206", "placeholder": "\u200b", "style": "IPY_MODEL_4993227e9ac34382a676edb57effd656", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007766.94it/s]"}}, "d6e60ce442ec4e32a669a893f502825f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "39affc08e5f34107aecde4923e369b00": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d4b495caf9f445d8864cd1f7838be76d", "IPY_MODEL_6aad1688a3b94f17bd18eb231ee1e939", "IPY_MODEL_a56889a6273745c5a6f3820dd94e34fe"], "layout": "IPY_MODEL_d6e60ce442ec4e32a669a893f502825f", "tabbable": null, "tooltip": null}}, "0740c4207b7347a3a772f9c9c182619b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a08ec44416b248198693b50d8eb4d2c6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "539944518ea34bc880950aa71098cb31": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0740c4207b7347a3a772f9c9c182619b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a08ec44416b248198693b50d8eb4d2c6", "tabbable": null, "tooltip": null, "value": 30.0}}, "17870847fdb04d1aa4e039e0ceb41614": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4d4c32f40e742a7bd248fa6c41e7d02": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5354d093ec9644d8970a2004c3ce6c79": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_17870847fdb04d1aa4e039e0ceb41614", "placeholder": "\u200b", "style": "IPY_MODEL_a4d4c32f40e742a7bd248fa6c41e7d02", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "3904af1e4bcd4a0d8afd75787da68a5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb75fa4c780f4017826a2de1efeb2336": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8b4473063bb2450988c38350dc734e4b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3904af1e4bcd4a0d8afd75787da68a5b", "placeholder": "\u200b", "style": "IPY_MODEL_bb75fa4c780f4017826a2de1efeb2336", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "f3617f1439aa40c5863d02dd79e69b9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17e6f9789f2940c89eb85d25b9f2b5ff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5354d093ec9644d8970a2004c3ce6c79", "IPY_MODEL_539944518ea34bc880950aa71098cb31", "IPY_MODEL_8b4473063bb2450988c38350dc734e4b"], "layout": "IPY_MODEL_f3617f1439aa40c5863d02dd79e69b9d", "tabbable": null, "tooltip": null}}, "9e72e0c3fd934d74b9ecb9406799ccec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e975cb09b5fb4dad8b6215988f884e0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "63e2d47f92464a259f0c641b4527bfb0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9e72e0c3fd934d74b9ecb9406799ccec", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e975cb09b5fb4dad8b6215988f884e0f", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f0d024ffb40d4323925031a610b5c544": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4a6b2c531f14092a8e8353af9d1999b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5cd5e5d59df7465b935d61b09af11030": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0d024ffb40d4323925031a610b5c544", "placeholder": "\u200b", "style": "IPY_MODEL_b4a6b2c531f14092a8e8353af9d1999b", "tabbable": null, "tooltip": null, "value": "100%"}}, "7f56285a494e483c8b8f3ac96242d9f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ec66ba58fe54932af6cbb1ab91dcb6b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc38a91ac3804731920245901af1acf2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f56285a494e483c8b8f3ac96242d9f8", "placeholder": "\u200b", "style": "IPY_MODEL_4ec66ba58fe54932af6cbb1ab91dcb6b", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007152729.22it/s]"}}, "1d9b0615d1744575b62340adfff3203e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cea57f4c054406789022773eb73c17b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5cd5e5d59df7465b935d61b09af11030", "IPY_MODEL_63e2d47f92464a259f0c641b4527bfb0", "IPY_MODEL_dc38a91ac3804731920245901af1acf2"], "layout": "IPY_MODEL_1d9b0615d1744575b62340adfff3203e", "tabbable": null, "tooltip": null}}, "c7a1d863ef2c4625925ecf896cc0a86d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2353559e79724ee8a0926d64c719898b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fbf99f5d7afe4e95b559f8c15e690d0c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c7a1d863ef2c4625925ecf896cc0a86d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2353559e79724ee8a0926d64c719898b", "tabbable": null, "tooltip": null, "value": 30.0}}, "3728e4ededeb4e1ca18c79b9a5e42de1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dc882ee12ca44a58baf920edc940b24": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bcf28ccdedf4419ea3b468271ce48c56": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3728e4ededeb4e1ca18c79b9a5e42de1", "placeholder": "\u200b", "style": "IPY_MODEL_7dc882ee12ca44a58baf920edc940b24", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "3957584db666432db36b60f87f0ad803": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79d5a2fe01344bd39bab7add605e078e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b0af2604040640acb87032e779ec2f65": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3957584db666432db36b60f87f0ad803", "placeholder": "\u200b", "style": "IPY_MODEL_79d5a2fe01344bd39bab7add605e078e", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200719.59it/s]"}}, "64b02d2363df447ba1be3901c9030594": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea1f518daf634c3588642d3f767b31eb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bcf28ccdedf4419ea3b468271ce48c56", "IPY_MODEL_fbf99f5d7afe4e95b559f8c15e690d0c", "IPY_MODEL_b0af2604040640acb87032e779ec2f65"], "layout": "IPY_MODEL_64b02d2363df447ba1be3901c9030594", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index b98e8669b..3569da24c 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:45.300927Z", - "iopub.status.busy": "2024-08-12T10:38:45.300755Z", - "iopub.status.idle": "2024-08-12T10:38:47.705900Z", - "shell.execute_reply": "2024-08-12T10:38:47.705194Z" + "iopub.execute_input": "2024-08-12T19:01:29.035588Z", + "iopub.status.busy": "2024-08-12T19:01:29.035417Z", + "iopub.status.idle": "2024-08-12T19:01:31.382670Z", + "shell.execute_reply": "2024-08-12T19:01:31.381948Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:38:47.708436Z", - "iopub.status.busy": "2024-08-12T10:38:47.708244Z", - "iopub.status.idle": "2024-08-12T10:40:01.410752Z", - "shell.execute_reply": "2024-08-12T10:40:01.410038Z" + "iopub.execute_input": "2024-08-12T19:01:31.385281Z", + "iopub.status.busy": "2024-08-12T19:01:31.385088Z", + "iopub.status.idle": "2024-08-12T19:02:51.389352Z", + "shell.execute_reply": "2024-08-12T19:02:51.388576Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:01.413413Z", - "iopub.status.busy": "2024-08-12T10:40:01.413181Z", - "iopub.status.idle": "2024-08-12T10:40:02.882844Z", - "shell.execute_reply": "2024-08-12T10:40:02.882249Z" + "iopub.execute_input": "2024-08-12T19:02:51.392413Z", + "iopub.status.busy": "2024-08-12T19:02:51.391923Z", + "iopub.status.idle": "2024-08-12T19:02:52.823997Z", + "shell.execute_reply": "2024-08-12T19:02:52.823349Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.885477Z", - "iopub.status.busy": "2024-08-12T10:40:02.885002Z", - "iopub.status.idle": "2024-08-12T10:40:02.888203Z", - "shell.execute_reply": "2024-08-12T10:40:02.887746Z" + "iopub.execute_input": "2024-08-12T19:02:52.826500Z", + "iopub.status.busy": "2024-08-12T19:02:52.826198Z", + "iopub.status.idle": "2024-08-12T19:02:52.829390Z", + "shell.execute_reply": "2024-08-12T19:02:52.828941Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.890475Z", - "iopub.status.busy": "2024-08-12T10:40:02.890011Z", - "iopub.status.idle": "2024-08-12T10:40:02.894575Z", - "shell.execute_reply": "2024-08-12T10:40:02.894008Z" + "iopub.execute_input": "2024-08-12T19:02:52.831431Z", + "iopub.status.busy": "2024-08-12T19:02:52.831252Z", + "iopub.status.idle": "2024-08-12T19:02:52.835175Z", + "shell.execute_reply": "2024-08-12T19:02:52.834636Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.896712Z", - "iopub.status.busy": "2024-08-12T10:40:02.896410Z", - "iopub.status.idle": "2024-08-12T10:40:02.900059Z", - "shell.execute_reply": "2024-08-12T10:40:02.899526Z" + "iopub.execute_input": "2024-08-12T19:02:52.837164Z", + "iopub.status.busy": "2024-08-12T19:02:52.836866Z", + "iopub.status.idle": "2024-08-12T19:02:52.840479Z", + "shell.execute_reply": "2024-08-12T19:02:52.839931Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.901997Z", - "iopub.status.busy": "2024-08-12T10:40:02.901691Z", - "iopub.status.idle": "2024-08-12T10:40:02.904562Z", - "shell.execute_reply": "2024-08-12T10:40:02.904109Z" + "iopub.execute_input": "2024-08-12T19:02:52.842525Z", + "iopub.status.busy": "2024-08-12T19:02:52.842229Z", + "iopub.status.idle": "2024-08-12T19:02:52.845060Z", + "shell.execute_reply": "2024-08-12T19:02:52.844585Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:02.906531Z", - "iopub.status.busy": "2024-08-12T10:40:02.906183Z", - "iopub.status.idle": "2024-08-12T10:40:40.641176Z", - "shell.execute_reply": "2024-08-12T10:40:40.640533Z" + "iopub.execute_input": "2024-08-12T19:02:52.847164Z", + "iopub.status.busy": "2024-08-12T19:02:52.846766Z", + "iopub.status.idle": "2024-08-12T19:03:30.979394Z", + "shell.execute_reply": "2024-08-12T19:03:30.978678Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "61e605b04d874c93b6bfbb1c76fe56ef", + "model_id": "39affc08e5f34107aecde4923e369b00", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f08907b075b945d98f02eb7bb46dde87", + "model_id": "17e6f9789f2940c89eb85d25b9f2b5ff", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:40.643965Z", - "iopub.status.busy": "2024-08-12T10:40:40.643744Z", - "iopub.status.idle": "2024-08-12T10:40:41.093555Z", - "shell.execute_reply": "2024-08-12T10:40:41.093058Z" + "iopub.execute_input": "2024-08-12T19:03:30.982173Z", + "iopub.status.busy": "2024-08-12T19:03:30.981956Z", + "iopub.status.idle": "2024-08-12T19:03:31.426214Z", + "shell.execute_reply": "2024-08-12T19:03:31.425623Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:41.095831Z", - "iopub.status.busy": "2024-08-12T10:40:41.095457Z", - "iopub.status.idle": "2024-08-12T10:40:44.123477Z", - "shell.execute_reply": "2024-08-12T10:40:44.122854Z" + "iopub.execute_input": "2024-08-12T19:03:31.428570Z", + "iopub.status.busy": "2024-08-12T19:03:31.428224Z", + "iopub.status.idle": "2024-08-12T19:03:34.405754Z", + "shell.execute_reply": "2024-08-12T19:03:34.405232Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:40:44.125614Z", - "iopub.status.busy": "2024-08-12T10:40:44.125421Z", - "iopub.status.idle": "2024-08-12T10:41:17.218406Z", - "shell.execute_reply": "2024-08-12T10:41:17.217894Z" + "iopub.execute_input": "2024-08-12T19:03:34.408101Z", + "iopub.status.busy": "2024-08-12T19:03:34.407750Z", + "iopub.status.idle": "2024-08-12T19:04:07.024847Z", + "shell.execute_reply": "2024-08-12T19:04:07.024240Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "561557a580184250a3d202d08116c4ee", + "model_id": "5cea57f4c054406789022773eb73c17b", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:17.220681Z", - "iopub.status.busy": "2024-08-12T10:41:17.220324Z", - "iopub.status.idle": "2024-08-12T10:41:33.032204Z", - "shell.execute_reply": "2024-08-12T10:41:33.031621Z" + "iopub.execute_input": "2024-08-12T19:04:07.027236Z", + "iopub.status.busy": "2024-08-12T19:04:07.026840Z", + "iopub.status.idle": "2024-08-12T19:04:22.516785Z", + "shell.execute_reply": "2024-08-12T19:04:22.516124Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:33.034823Z", - "iopub.status.busy": "2024-08-12T10:41:33.034402Z", - "iopub.status.idle": "2024-08-12T10:41:36.912406Z", - "shell.execute_reply": "2024-08-12T10:41:36.911872Z" + "iopub.execute_input": "2024-08-12T19:04:22.519248Z", + "iopub.status.busy": "2024-08-12T19:04:22.519000Z", + "iopub.status.idle": "2024-08-12T19:04:26.398885Z", + "shell.execute_reply": "2024-08-12T19:04:26.398352Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:36.914664Z", - "iopub.status.busy": "2024-08-12T10:41:36.914293Z", - "iopub.status.idle": "2024-08-12T10:41:38.508661Z", - "shell.execute_reply": "2024-08-12T10:41:38.508099Z" + "iopub.execute_input": "2024-08-12T19:04:26.401114Z", + "iopub.status.busy": "2024-08-12T19:04:26.400928Z", + "iopub.status.idle": "2024-08-12T19:04:27.971203Z", + "shell.execute_reply": "2024-08-12T19:04:27.970622Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0e8171b866d49d29b94f359a1afd3b9", + "model_id": "ea1f518daf634c3588642d3f767b31eb", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:38.510876Z", - "iopub.status.busy": "2024-08-12T10:41:38.510569Z", - "iopub.status.idle": "2024-08-12T10:41:38.541247Z", - "shell.execute_reply": "2024-08-12T10:41:38.540581Z" + "iopub.execute_input": "2024-08-12T19:04:27.973318Z", + "iopub.status.busy": "2024-08-12T19:04:27.973133Z", + "iopub.status.idle": "2024-08-12T19:04:28.006396Z", + "shell.execute_reply": "2024-08-12T19:04:28.005739Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:38.543961Z", - "iopub.status.busy": "2024-08-12T10:41:38.543566Z", - "iopub.status.idle": "2024-08-12T10:41:44.851830Z", - "shell.execute_reply": "2024-08-12T10:41:44.851223Z" + "iopub.execute_input": "2024-08-12T19:04:28.008962Z", + "iopub.status.busy": "2024-08-12T19:04:28.008758Z", + "iopub.status.idle": "2024-08-12T19:04:34.283402Z", + "shell.execute_reply": "2024-08-12T19:04:34.282787Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:44.854065Z", - "iopub.status.busy": "2024-08-12T10:41:44.853866Z", - "iopub.status.idle": "2024-08-12T10:41:44.911138Z", - "shell.execute_reply": "2024-08-12T10:41:44.910619Z" + "iopub.execute_input": "2024-08-12T19:04:34.285573Z", + "iopub.status.busy": "2024-08-12T19:04:34.285381Z", + "iopub.status.idle": "2024-08-12T19:04:34.341558Z", + "shell.execute_reply": "2024-08-12T19:04:34.340978Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "010e44b48d974beeb7690f8542184e1b": { + "0740c4207b7347a3a772f9c9c182619b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,66 +1091,7 @@ "width": null } }, - "019c971db6eb4ae58639c1bdf5010f25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0416c162024a4fc381a45c2144135cc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1563dcc38303423d9edbed3b08c05b03", - "placeholder": "​", - "style": "IPY_MODEL_0f4a5ca89bd44246a9513173bf74a65d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "0f4a5ca89bd44246a9513173bf74a65d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1563dcc38303423d9edbed3b08c05b03": { + "08061431cab04a78be2ba6bab4e6de4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1203,7 +1144,7 @@ "width": null } }, - "1c4405e9f09347f69b059265ffec86fc": { + "0fc3bef3f9844f6fb287502b87a6863b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1256,82 +1197,7 @@ "width": null } }, - "2b982f6012464407b8042bc862b7ede1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3630df7de7c24e1dbde38fd5b3ec5335": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "399bc87e579745ad9a2930ba8605db78": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "410bebdd912b4f52baf94752cefcdb90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_640ae108c5fd43c48a63563c80f03c92", - "placeholder": "​", - "style": "IPY_MODEL_019c971db6eb4ae58639c1bdf5010f25", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 18.13it/s]" - } - }, - "4cb6725acf0d4146a26d14bcab9727f0": { + "132557767ab84f1f9d47f3c8e6dcc619": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1349,30 +1215,7 @@ "text_color": null } }, - "4d2a6db5bcf94f70b3a4ad24b832cd90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bafbe32ede834e3e9065c92397de6f8c", - "placeholder": "​", - "style": "IPY_MODEL_8a0fd43aebf8429ebed382e82d7f51e7", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 802.43it/s]" - } - }, - "51800615e4584a51830cc28b3452f7e9": { + "17870847fdb04d1aa4e039e0ceb41614": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1425,30 +1268,7 @@ "width": null } }, - "538a035bd9374f96a81b2ec775e07cd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6c3c5326bbc4655b166d18c64e5cbd1", - "placeholder": "​", - "style": "IPY_MODEL_4cb6725acf0d4146a26d14bcab9727f0", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 151534.24it/s]" - } - }, - "561557a580184250a3d202d08116c4ee": { + "17e6f9789f2940c89eb85d25b9f2b5ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1463,125 +1283,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6c662917f77845909c734188e0849f3f", - "IPY_MODEL_fbe9c46e48b14c9f84f96b3a07c47b9b", - "IPY_MODEL_538a035bd9374f96a81b2ec775e07cd3" + "IPY_MODEL_5354d093ec9644d8970a2004c3ce6c79", + "IPY_MODEL_539944518ea34bc880950aa71098cb31", + "IPY_MODEL_8b4473063bb2450988c38350dc734e4b" ], - "layout": "IPY_MODEL_f5b61e50c8ea418facc9fca22ce157b9", + "layout": "IPY_MODEL_f3617f1439aa40c5863d02dd79e69b9d", "tabbable": null, "tooltip": null } }, - "57f6c0fe38904916a9c68353b56e9d0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5a5c3be4f2994ba5a9fe278b993dff8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "61e605b04d874c93b6bfbb1c76fe56ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0416c162024a4fc381a45c2144135cc1", - "IPY_MODEL_cd7f1bbed2b3453992c2294fb7b8f062", - "IPY_MODEL_4d2a6db5bcf94f70b3a4ad24b832cd90" - ], - "layout": "IPY_MODEL_844ec110d7c84f3fb856b6b598512108", - "tabbable": null, - "tooltip": null - } - }, - "640ae108c5fd43c48a63563c80f03c92": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6583a0a60fe54eda962c904c18cf76f1": { + "1d9b0615d1744575b62340adfff3203e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1634,48 +1345,39 @@ "width": null } }, - "6c662917f77845909c734188e0849f3f": { + "2353559e79724ee8a0926d64c719898b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e23f7a500c77422180ae8c0b19fed597", - "placeholder": "​", - "style": "IPY_MODEL_e6b0aaa7478443f8a5807573545ef4dd", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6de6c5c76e4c4c2e977861cd171624e7": { + "2f424c67480447b880ec906f4c5cbec6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "844ec110d7c84f3fb856b6b598512108": { + "3728e4ededeb4e1ca18c79b9a5e42de1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,25 +1430,7 @@ "width": null } }, - "8a0fd43aebf8429ebed382e82d7f51e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "91d043d8d3d34fb18e60e06a40ab070d": { + "3904af1e4bcd4a0d8afd75787da68a5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1799,7 +1483,7 @@ "width": null } }, - "988ac07c05a442529f798cef6e50fb3b": { + "3957584db666432db36b60f87f0ad803": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1852,7 +1536,163 @@ "width": null } }, - "9ab476bf29c7452b97de539b14f89cba": { + "39affc08e5f34107aecde4923e369b00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4b495caf9f445d8864cd1f7838be76d", + "IPY_MODEL_6aad1688a3b94f17bd18eb231ee1e939", + "IPY_MODEL_a56889a6273745c5a6f3820dd94e34fe" + ], + "layout": "IPY_MODEL_d6e60ce442ec4e32a669a893f502825f", + "tabbable": null, + "tooltip": null + } + }, + "4993227e9ac34382a676edb57effd656": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4ec66ba58fe54932af6cbb1ab91dcb6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5354d093ec9644d8970a2004c3ce6c79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_17870847fdb04d1aa4e039e0ceb41614", + "placeholder": "​", + "style": "IPY_MODEL_a4d4c32f40e742a7bd248fa6c41e7d02", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "539944518ea34bc880950aa71098cb31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0740c4207b7347a3a772f9c9c182619b", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a08ec44416b248198693b50d8eb4d2c6", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "5cd5e5d59df7465b935d61b09af11030": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0d024ffb40d4323925031a610b5c544", + "placeholder": "​", + "style": "IPY_MODEL_b4a6b2c531f14092a8e8353af9d1999b", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "5cea57f4c054406789022773eb73c17b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5cd5e5d59df7465b935d61b09af11030", + "IPY_MODEL_63e2d47f92464a259f0c641b4527bfb0", + "IPY_MODEL_dc38a91ac3804731920245901af1acf2" + ], + "layout": "IPY_MODEL_1d9b0615d1744575b62340adfff3203e", + "tabbable": null, + "tooltip": null + } + }, + "63e2d47f92464a259f0c641b4527bfb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1868,17 +1708,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_988ac07c05a442529f798cef6e50fb3b", - "max": 30.0, + "layout": "IPY_MODEL_9e72e0c3fd934d74b9ecb9406799ccec", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_da9d3e1909784dd798b07568fde6b3f2", + "style": "IPY_MODEL_e975cb09b5fb4dad8b6215988f884e0f", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "9ebd02d6b2a6471d91183ddc979dd134": { + "64b02d2363df447ba1be3901c9030594": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1931,7 +1771,7 @@ "width": null } }, - "a936ea8d446f4dc6846eb16e30670216": { + "6aad1688a3b94f17bd18eb231ee1e939": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1947,17 +1787,53 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c4405e9f09347f69b059265ffec86fc", + "layout": "IPY_MODEL_0fc3bef3f9844f6fb287502b87a6863b", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_399bc87e579745ad9a2930ba8605db78", + "style": "IPY_MODEL_2f424c67480447b880ec906f4c5cbec6", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "b1eb120d532440b884214ef8eacb43b4": { + "79d5a2fe01344bd39bab7add605e078e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7dc882ee12ca44a58baf920edc940b24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f56285a494e483c8b8f3ac96242d9f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2010,7 +1886,30 @@ "width": null } }, - "bafbe32ede834e3e9065c92397de6f8c": { + "8b4473063bb2450988c38350dc734e4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3904af1e4bcd4a0d8afd75787da68a5b", + "placeholder": "​", + "style": "IPY_MODEL_bb75fa4c780f4017826a2de1efeb2336", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.17it/s]" + } + }, + "9e72e0c3fd934d74b9ecb9406799ccec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2063,7 +1962,41 @@ "width": null } }, - "bf43cbf39f1744c5b97ce89faa09ab90": { + "a08ec44416b248198693b50d8eb4d2c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4d4c32f40e742a7bd248fa6c41e7d02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a56889a6273745c5a6f3820dd94e34fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2078,15 +2011,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_91d043d8d3d34fb18e60e06a40ab070d", + "layout": "IPY_MODEL_dd3b9502f5e642efbc90fb3650ca6206", "placeholder": "​", - "style": "IPY_MODEL_6de6c5c76e4c4c2e977861cd171624e7", + "style": "IPY_MODEL_4993227e9ac34382a676edb57effd656", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.17it/s]" + "value": " 30/30 [00:00<00:00, 766.94it/s]" } }, - "c5796a1d25a2402f8ac7189ad2c91f00": { + "b0af2604040640acb87032e779ec2f65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2101,65 +2034,74 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9ebd02d6b2a6471d91183ddc979dd134", + "layout": "IPY_MODEL_3957584db666432db36b60f87f0ad803", "placeholder": "​", - "style": "IPY_MODEL_3630df7de7c24e1dbde38fd5b3ec5335", + "style": "IPY_MODEL_79d5a2fe01344bd39bab7add605e078e", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:01<00:00, 19.59it/s]" } }, - "cd7f1bbed2b3453992c2294fb7b8f062": { + "b4a6b2c531f14092a8e8353af9d1999b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_010e44b48d974beeb7690f8542184e1b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a5c3be4f2994ba5a9fe278b993dff8b", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d0e8171b866d49d29b94f359a1afd3b9": { + "bb75fa4c780f4017826a2de1efeb2336": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bcf28ccdedf4419ea3b468271ce48c56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5796a1d25a2402f8ac7189ad2c91f00", - "IPY_MODEL_9ab476bf29c7452b97de539b14f89cba", - "IPY_MODEL_410bebdd912b4f52baf94752cefcdb90" - ], - "layout": "IPY_MODEL_d5384d275afa4ecc9afe700c7fabaee9", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3728e4ededeb4e1ca18c79b9a5e42de1", + "placeholder": "​", + "style": "IPY_MODEL_7dc882ee12ca44a58baf920edc940b24", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "d5384d275afa4ecc9afe700c7fabaee9": { + "c7a1d863ef2c4625925ecf896cc0a86d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2212,7 +2154,7 @@ "width": null } }, - "d5abd9dbf83d4476a7edecdc934d3ecd": { + "d4b495caf9f445d8864cd1f7838be76d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2227,31 +2169,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b1eb120d532440b884214ef8eacb43b4", + "layout": "IPY_MODEL_08061431cab04a78be2ba6bab4e6de4d", "placeholder": "​", - "style": "IPY_MODEL_2b982f6012464407b8042bc862b7ede1", + "style": "IPY_MODEL_132557767ab84f1f9d47f3c8e6dcc619", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "da9d3e1909784dd798b07568fde6b3f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e23f7a500c77422180ae8c0b19fed597": { + "d6e60ce442ec4e32a669a893f502825f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2304,25 +2230,30 @@ "width": null } }, - "e6b0aaa7478443f8a5807573545ef4dd": { + "dc38a91ac3804731920245901af1acf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f56285a494e483c8b8f3ac96242d9f8", + "placeholder": "​", + "style": "IPY_MODEL_4ec66ba58fe54932af6cbb1ab91dcb6b", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152729.22it/s]" } }, - "e6c3c5326bbc4655b166d18c64e5cbd1": { + "dd3b9502f5e642efbc90fb3650ca6206": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2375,7 +2306,23 @@ "width": null } }, - "f08907b075b945d98f02eb7bb46dde87": { + "e975cb09b5fb4dad8b6215988f884e0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ea1f518daf634c3588642d3f767b31eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2390,16 +2337,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d5abd9dbf83d4476a7edecdc934d3ecd", - "IPY_MODEL_a936ea8d446f4dc6846eb16e30670216", - "IPY_MODEL_bf43cbf39f1744c5b97ce89faa09ab90" + "IPY_MODEL_bcf28ccdedf4419ea3b468271ce48c56", + "IPY_MODEL_fbf99f5d7afe4e95b559f8c15e690d0c", + "IPY_MODEL_b0af2604040640acb87032e779ec2f65" ], - "layout": "IPY_MODEL_6583a0a60fe54eda962c904c18cf76f1", + "layout": "IPY_MODEL_64b02d2363df447ba1be3901c9030594", "tabbable": null, "tooltip": null } }, - "f5b61e50c8ea418facc9fca22ce157b9": { + "f0d024ffb40d4323925031a610b5c544": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3617f1439aa40c5863d02dd79e69b9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2452,7 +2452,7 @@ "width": null } }, - "fbe9c46e48b14c9f84f96b3a07c47b9b": { + "fbf99f5d7afe4e95b559f8c15e690d0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2468,14 +2468,14 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_51800615e4584a51830cc28b3452f7e9", - "max": 4997683.0, + "layout": "IPY_MODEL_c7a1d863ef2c4625925ecf896cc0a86d", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_57f6c0fe38904916a9c68353b56e9d0f", + "style": "IPY_MODEL_2353559e79724ee8a0926d64c719898b", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index a675f2db2..4eb4b23fb 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 3f733500b..b937d8f5c 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:47.559339Z", - "iopub.status.busy": "2024-08-12T10:41:47.559162Z", - "iopub.status.idle": "2024-08-12T10:41:49.515675Z", - "shell.execute_reply": "2024-08-12T10:41:49.515029Z" + "iopub.execute_input": "2024-08-12T19:04:36.973694Z", + "iopub.status.busy": "2024-08-12T19:04:36.973533Z", + "iopub.status.idle": "2024-08-12T19:04:38.928223Z", + "shell.execute_reply": "2024-08-12T19:04:38.927569Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 10:41:47-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-12 19:04:36-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.50.84, 2400:52e0:1a01::1109:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.50.84|:443... connected.\r\n", - "HTTP request sent, awaiting response... " + "169.150.249.167, 2400:52e0:1a01::1108:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.249.167|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "200 OK\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,10 +115,16 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.07s \r\n", - "\r\n", - "2024-08-12 10:41:47 (13.6 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s \r\n", "\r\n", + "2024-08-12 19:04:37 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "mkdir: cannot create directory ‘data’: File exists\r\n" ] }, @@ -130,7 +135,14 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", + " inflating: data/train.txt " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", " inflating: data/valid.txt \r\n" ] }, @@ -138,9 +150,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 10:41:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.207.57, 3.5.25.245, 16.182.66.65, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.207.57|:443... " + "--2024-08-12 19:04:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.136.129, 16.182.36.201, 3.5.10.169, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.136.129|:443... " ] }, { @@ -174,15 +186,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 151.53K 708KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 8%[> ] 1.39M 3.25MB/s " + "pred_probs.npz 1%[ ] 295.53K 1.20MB/s " ] }, { @@ -190,7 +194,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 52%[=========> ] 8.55M 13.3MB/s " + "pred_probs.npz 30%[=====> ] 4.92M 10.2MB/s " ] }, { @@ -198,9 +202,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 20.3MB/s in 0.8s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 24.1MB/s in 0.7s \r\n", "\r\n", - "2024-08-12 10:41:49 (20.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-12 19:04:38 (24.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -217,10 +221,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:49.518505Z", - "iopub.status.busy": "2024-08-12T10:41:49.518059Z", - "iopub.status.idle": "2024-08-12T10:41:51.104068Z", - "shell.execute_reply": "2024-08-12T10:41:51.103430Z" + "iopub.execute_input": "2024-08-12T19:04:38.931095Z", + "iopub.status.busy": "2024-08-12T19:04:38.930692Z", + "iopub.status.idle": "2024-08-12T19:04:40.560281Z", + "shell.execute_reply": "2024-08-12T19:04:40.559629Z" }, "nbsphinx": "hidden" }, @@ -231,7 +235,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@399938be1f46b62c047276c21928e3071ce4ba6d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -257,10 +261,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:51.106639Z", - "iopub.status.busy": "2024-08-12T10:41:51.106310Z", - "iopub.status.idle": "2024-08-12T10:41:51.109732Z", - "shell.execute_reply": "2024-08-12T10:41:51.109273Z" + "iopub.execute_input": "2024-08-12T19:04:40.563056Z", + "iopub.status.busy": "2024-08-12T19:04:40.562726Z", + "iopub.status.idle": "2024-08-12T19:04:40.566447Z", + "shell.execute_reply": "2024-08-12T19:04:40.565965Z" } }, "outputs": [], @@ -310,10 +314,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:51.111950Z", - "iopub.status.busy": "2024-08-12T10:41:51.111595Z", - "iopub.status.idle": "2024-08-12T10:41:51.114751Z", - "shell.execute_reply": "2024-08-12T10:41:51.114249Z" + "iopub.execute_input": "2024-08-12T19:04:40.568406Z", + "iopub.status.busy": "2024-08-12T19:04:40.568215Z", + "iopub.status.idle": "2024-08-12T19:04:40.571337Z", + "shell.execute_reply": "2024-08-12T19:04:40.570894Z" }, "nbsphinx": "hidden" }, @@ -331,10 +335,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:41:51.116586Z", - "iopub.status.busy": "2024-08-12T10:41:51.116411Z", - "iopub.status.idle": "2024-08-12T10:42:00.381031Z", - "shell.execute_reply": "2024-08-12T10:42:00.380471Z" + "iopub.execute_input": "2024-08-12T19:04:40.573600Z", + "iopub.status.busy": "2024-08-12T19:04:40.573107Z", + "iopub.status.idle": "2024-08-12T19:04:49.797790Z", + "shell.execute_reply": "2024-08-12T19:04:49.797189Z" } }, "outputs": [], @@ -408,10 +412,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.383579Z", - "iopub.status.busy": "2024-08-12T10:42:00.383224Z", - "iopub.status.idle": "2024-08-12T10:42:00.388847Z", - "shell.execute_reply": "2024-08-12T10:42:00.388389Z" + "iopub.execute_input": "2024-08-12T19:04:49.800253Z", + "iopub.status.busy": "2024-08-12T19:04:49.800047Z", + "iopub.status.idle": "2024-08-12T19:04:49.805958Z", + "shell.execute_reply": "2024-08-12T19:04:49.805478Z" }, "nbsphinx": "hidden" }, @@ -451,10 +455,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.390872Z", - "iopub.status.busy": "2024-08-12T10:42:00.390560Z", - "iopub.status.idle": "2024-08-12T10:42:00.760332Z", - "shell.execute_reply": "2024-08-12T10:42:00.759676Z" + "iopub.execute_input": "2024-08-12T19:04:49.808179Z", + "iopub.status.busy": "2024-08-12T19:04:49.807741Z", + "iopub.status.idle": "2024-08-12T19:04:50.206957Z", + "shell.execute_reply": "2024-08-12T19:04:50.206380Z" } }, "outputs": [], @@ -491,10 +495,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.762761Z", - "iopub.status.busy": "2024-08-12T10:42:00.762568Z", - "iopub.status.idle": "2024-08-12T10:42:00.767072Z", - "shell.execute_reply": "2024-08-12T10:42:00.766515Z" + "iopub.execute_input": "2024-08-12T19:04:50.209465Z", + "iopub.status.busy": "2024-08-12T19:04:50.209239Z", + "iopub.status.idle": "2024-08-12T19:04:50.214098Z", + "shell.execute_reply": "2024-08-12T19:04:50.213547Z" } }, "outputs": [ @@ -566,10 +570,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:00.769251Z", - "iopub.status.busy": "2024-08-12T10:42:00.768906Z", - "iopub.status.idle": "2024-08-12T10:42:03.524332Z", - "shell.execute_reply": "2024-08-12T10:42:03.523593Z" + "iopub.execute_input": "2024-08-12T19:04:50.216424Z", + "iopub.status.busy": "2024-08-12T19:04:50.216093Z", + "iopub.status.idle": "2024-08-12T19:04:53.028488Z", + "shell.execute_reply": "2024-08-12T19:04:53.027771Z" } }, "outputs": [], @@ -591,10 +595,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.527301Z", - "iopub.status.busy": "2024-08-12T10:42:03.526667Z", - "iopub.status.idle": "2024-08-12T10:42:03.531067Z", - "shell.execute_reply": "2024-08-12T10:42:03.530504Z" + "iopub.execute_input": "2024-08-12T19:04:53.031980Z", + "iopub.status.busy": "2024-08-12T19:04:53.030986Z", + "iopub.status.idle": "2024-08-12T19:04:53.035538Z", + "shell.execute_reply": "2024-08-12T19:04:53.035049Z" } }, "outputs": [ @@ -630,10 +634,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.533302Z", - "iopub.status.busy": "2024-08-12T10:42:03.532960Z", - "iopub.status.idle": "2024-08-12T10:42:03.538385Z", - "shell.execute_reply": "2024-08-12T10:42:03.537896Z" + "iopub.execute_input": "2024-08-12T19:04:53.037496Z", + "iopub.status.busy": "2024-08-12T19:04:53.037328Z", + "iopub.status.idle": "2024-08-12T19:04:53.042801Z", + "shell.execute_reply": "2024-08-12T19:04:53.042346Z" } }, "outputs": [ @@ -811,10 +815,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.540370Z", - "iopub.status.busy": "2024-08-12T10:42:03.540061Z", - "iopub.status.idle": "2024-08-12T10:42:03.566319Z", - "shell.execute_reply": "2024-08-12T10:42:03.565770Z" + "iopub.execute_input": "2024-08-12T19:04:53.044863Z", + "iopub.status.busy": "2024-08-12T19:04:53.044545Z", + "iopub.status.idle": "2024-08-12T19:04:53.071401Z", + "shell.execute_reply": "2024-08-12T19:04:53.070922Z" } }, "outputs": [ @@ -916,10 +920,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.568292Z", - "iopub.status.busy": "2024-08-12T10:42:03.568116Z", - "iopub.status.idle": "2024-08-12T10:42:03.572650Z", - "shell.execute_reply": "2024-08-12T10:42:03.572178Z" + "iopub.execute_input": "2024-08-12T19:04:53.073476Z", + "iopub.status.busy": "2024-08-12T19:04:53.073299Z", + "iopub.status.idle": "2024-08-12T19:04:53.077762Z", + "shell.execute_reply": "2024-08-12T19:04:53.077215Z" } }, "outputs": [ @@ -993,10 +997,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:03.574856Z", - "iopub.status.busy": "2024-08-12T10:42:03.574378Z", - "iopub.status.idle": "2024-08-12T10:42:05.062747Z", - "shell.execute_reply": "2024-08-12T10:42:05.062151Z" + "iopub.execute_input": "2024-08-12T19:04:53.079859Z", + "iopub.status.busy": "2024-08-12T19:04:53.079550Z", + "iopub.status.idle": "2024-08-12T19:04:54.603315Z", + "shell.execute_reply": "2024-08-12T19:04:54.602668Z" } }, "outputs": [ @@ -1168,10 +1172,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T10:42:05.064817Z", - "iopub.status.busy": "2024-08-12T10:42:05.064623Z", - "iopub.status.idle": "2024-08-12T10:42:05.068882Z", - "shell.execute_reply": "2024-08-12T10:42:05.068420Z" + "iopub.execute_input": "2024-08-12T19:04:54.605501Z", + "iopub.status.busy": "2024-08-12T19:04:54.605297Z", + "iopub.status.idle": "2024-08-12T19:04:54.609527Z", + "shell.execute_reply": "2024-08-12T19:04:54.609049Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index d8baadbd2..bc6dead51 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "399938be1f46b62c047276c21928e3071ce4ba6d", + commit_hash: "5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b", }; \ No newline at end of file