-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathUtil.sml
244 lines (213 loc) · 10.9 KB
/
Util.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
(* Celf
* Copyright (C) 2008 Anders Schack-Nielsen and Carsten Schürmann
*
* This file is part of Celf.
*
* Celf is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Celf is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Celf. If not, see <http://www.gnu.org/licenses/>.
*)
signature TLU_Util = TOP_LEVEL_UTIL
structure Util :> UTIL =
struct
open Syntax infix with'ty
structure ObjAuxDefs = AuxDefs (structure T = Typ1From4 (structure T = Obj))
structure NfExpObjAuxDefs = AuxDefs (structure T = Typ1From3 (structure T = NfExpObj))
structure KindRec = Rec2 (structure T = Kind)
structure AsyncTypeRec = Rec3 (structure T = AsyncType)
structure TypeSpineRec = Rec2 (structure T = TypeSpine)
structure SyncTypeRec = Rec2 (structure T = SyncType)
structure ObjRec = Rec4 (structure T = Obj)
structure SpineRec = Rec2 (structure T = Spine)
structure ExpObjRec = Rec4 (structure T = ExpObj)
structure MonadObjRec = Rec2 (structure T = MonadObj)
type ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) foldFuns = {
fki : ('aTy, 'ki) kindFF -> 'ki,
faTy : ('tyS, 'sTy, 'aTy) asyncTypeFF -> 'aTy,
ftyS : ('o, 'tyS) typeSpineFF -> 'tyS,
fsTy : ('aTy, 'sTy) syncTypeFF -> 'sTy,
fo : ('aTy, 'sp, 'e, 'o) objFF -> 'o,
fsp : ('m, 'sp) spineFF -> 'sp,
fe : ('o, 'sp, 'm, 'e) expObjFF -> 'e,
fm : ('o, 'm) monadObjFF -> 'm }
type ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) unfoldFuns = {
fki : 'ki -> ('aTy, 'ki) kindFF,
faTy : 'aTy -> ('tyS, 'sTy, 'aTy) asyncTypeFF,
ftyS : 'tyS -> ('o, 'tyS) typeSpineFF,
fsTy : 'sTy -> ('aTy, 'sTy) syncTypeFF,
fo : 'o -> ('aTy, 'sp, 'e, 'o) objFF,
fsp : 'sp -> ('m, 'sp) spineFF,
fe : 'e -> ('o, 'sp, 'm, 'e) expObjFF,
fm : 'm -> ('o, 'm) monadObjFF }
fun foldKind (fs : ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) foldFuns) x =
KindRec.fold (foldType fs) (#fki fs) x
and foldType fs x = AsyncTypeRec.fold (foldTypeSpine fs, foldSyncType fs) (#faTy fs) x
and foldTypeSpine fs x = TypeSpineRec.fold (foldObj fs) (#ftyS fs) x
and foldSyncType fs x = SyncTypeRec.fold (foldType fs) (#fsTy fs) x
and foldObj fs x = ObjRec.fold (foldType fs, foldSpine fs, foldExpObj fs) (#fo fs) x
and foldSpine fs x = SpineRec.fold (foldMonadObj fs) (#fsp fs) x
and foldExpObj fs x = ExpObjRec.fold (foldObj fs, foldSpine fs, foldMonadObj fs) (#fe fs) x
and foldMonadObj fs x = MonadObjRec.fold (foldObj fs) (#fm fs) x
fun unfoldKind (fs : ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) unfoldFuns) x =
KindRec.unfold (unfoldType fs) (#fki fs) x
and unfoldType fs x = AsyncTypeRec.unfold (unfoldTypeSpine fs, unfoldSyncType fs) (#faTy fs) x
and unfoldTypeSpine fs x = TypeSpineRec.unfold (unfoldObj fs) (#ftyS fs) x
and unfoldSyncType fs x = SyncTypeRec.unfold (unfoldType fs) (#fsTy fs) x
and unfoldObj fs x = ObjRec.unfold (unfoldType fs, unfoldSpine fs, unfoldExpObj fs) (#fo fs) x
and unfoldSpine fs x = SpineRec.unfold (unfoldMonadObj fs) (#fsp fs) x
and unfoldExpObj fs x = ExpObjRec.unfold (unfoldObj fs, unfoldSpine fs, unfoldMonadObj fs) (#fe fs) x
and unfoldMonadObj fs x = MonadObjRec.unfold (unfoldObj fs) (#fm fs) x
structure NfKindRec = Rec2 (structure T = NfKind)
structure NfAsyncTypeRec = Rec3 (structure T = NfAsyncType)
structure NfTypeSpineRec = Rec2 (structure T = NfTypeSpine)
structure NfSyncTypeRec = Rec2 (structure T = NfSyncType)
structure NfObjRec = Rec3 (structure T = NfObj)
structure NfSpineRec = Rec2 (structure T = NfSpine)
structure NfExpObjRec = Rec3 (structure T = NfExpObj)
structure NfMonadObjRec = Rec2 (structure T = NfMonadObj)
type ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) nfFoldFuns = {
fki : ('aTy, 'ki) kindFF -> 'ki,
faTy : ('tyS, 'sTy, 'aTy) asyncTypeFF -> 'aTy,
ftyS : ('o, 'tyS) typeSpineFF -> 'tyS,
fsTy : ('aTy, 'sTy) syncTypeFF -> 'sTy,
fo : ('sp, 'e, 'o) nfObjFF -> 'o,
fsp : ('m, 'sp) spineFF -> 'sp,
fe : ('sp, 'm, 'e) nfExpObjFF -> 'e,
fm : ('o, 'm) monadObjFF -> 'm }
type ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) nfUnfoldFuns = {
fki : 'ki -> ('aTy, 'ki) kindFF,
faTy : 'aTy -> ('tyS, 'sTy, 'aTy) asyncTypeFF,
ftyS : 'tyS -> ('o, 'tyS) typeSpineFF,
fsTy : 'sTy -> ('aTy, 'sTy) syncTypeFF,
fo : 'o -> ('sp, 'e, 'o) nfObjFF,
fsp : 'sp -> ('m, 'sp) spineFF,
fe : 'e -> ('sp, 'm, 'e) nfExpObjFF,
fm : 'm -> ('o, 'm) monadObjFF }
fun foldNfKind (fs : ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) nfFoldFuns) x =
NfKindRec.fold (foldNfType fs) (#fki fs) x
and foldNfType fs x = NfAsyncTypeRec.fold (foldNfTypeSpine fs, foldNfSyncType fs) (#faTy fs) x
and foldNfTypeSpine fs x = NfTypeSpineRec.fold (foldNfObj fs) (#ftyS fs) x
and foldNfSyncType fs x = NfSyncTypeRec.fold (foldNfType fs) (#fsTy fs) x
and foldNfObj fs x = NfObjRec.fold (foldNfSpine fs, foldNfExpObj fs) (#fo fs) x
and foldNfSpine fs x = NfSpineRec.fold (foldNfMonadObj fs) (#fsp fs) x
and foldNfExpObj fs x = NfExpObjRec.fold (foldNfSpine fs, foldNfMonadObj fs) (#fe fs) x
and foldNfMonadObj fs x = NfMonadObjRec.fold (foldNfObj fs) (#fm fs) x
fun unfoldNfKind (fs : ('ki, 'aTy, 'tyS, 'sTy, 'o, 'sp, 'e, 'm) nfUnfoldFuns) x =
NfKindRec.unfold (unfoldNfType fs) (#fki fs) x
and unfoldNfType fs x = NfAsyncTypeRec.unfold (unfoldNfTypeSpine fs, unfoldNfSyncType fs) (#faTy fs) x
and unfoldNfTypeSpine fs x = NfTypeSpineRec.unfold (unfoldNfObj fs) (#ftyS fs) x
and unfoldNfSyncType fs x = NfSyncTypeRec.unfold (unfoldNfType fs) (#fsTy fs) x
and unfoldNfObj fs x = NfObjRec.unfold (unfoldNfSpine fs, unfoldNfExpObj fs) (#fo fs) x
and unfoldNfSpine fs x = NfSpineRec.unfold (unfoldNfMonadObj fs) (#fsp fs) x
and unfoldNfExpObj fs x = NfExpObjRec.unfold (unfoldNfSpine fs, unfoldNfMonadObj fs) (#fe fs) x
and unfoldNfMonadObj fs x = NfMonadObjRec.unfold (unfoldNfObj fs) (#fm fs) x
(*
type ('o, 'sp, 'e, 'm) nfFoldObjFuns = {
fo : ('sp, 'e, 'o) nfObjFF -> 'o,
fsp : ('m, 'sp) spineFF -> 'sp,
fe : ('sp, 'm, 'e) nfExpObjFF -> 'e,
fm : ('o, 'm) monadObjFF -> 'm }
type ('o, 'sp, 'e, 'm) nfUnfoldObjFuns = {
fo : 'o -> ('sp, 'e, 'o) nfObjFF,
fsp : 'sp -> ('m, 'sp) spineFF,
fe : 'e -> ('sp, 'm, 'e) nfExpObjFF,
fm : 'm -> ('o, 'm) monadObjFF }
fun refoldNfObj ((u, f) : ('o, 'sp, 'e, 'm) nfUnfoldObjFuns * ('o, 'sp, 'e, 'm) nfFoldObjFuns) x =
NfObjRec.refold (refoldNfSpine (u, f), refoldNfExpObj (u, f)) (#fo u) (#fo f) x
and refoldNfSpine (u, f) x = NfSpineRec.refold (refoldNfMonadObj (u, f)) (#fsp u) (#fsp f) x
and refoldNfExpObj (u, f) x =
NfExpObjRec.refold (refoldNfSpine (u, f), refoldNfMonadObj (u, f)) (#fe u) (#fe f) x
and refoldNfMonadObj (u, f) x = NfMonadObjRec.refold (refoldNfObj (u, f)) (#fm u) (#fm f) x
*)
(* typePrjAbbrev : asyncType -> asyncType asyncTypeF *)
fun typePrjAbbrev ty = case AsyncType.prj ty of
TAbbrev (a, ty) => typePrjAbbrev ty
| A => A
(* nfTypePrjAbbrev : nfAsyncType -> nfAsyncType nfAsyncTypeF *)
fun nfTypePrjAbbrev ty = case NfAsyncType.prj ty of
TAbbrev (a, ty) => nfTypePrjAbbrev ty
| A => A
(* apxTypePrjAbbrev : apxAsyncType -> apxAsyncType apxAsyncTypeF *)
fun apxTypePrjAbbrev ty = case ApxAsyncType.prj ty of
ApxTAbbrev (a, ty) => apxTypePrjAbbrev (asyncTypeToApx ty)
| A => A
(* isNil : spine -> bool *)
fun isNil S = case Spine.prj S of Nil => true | _ => false
(* objAppKind : ((unit, unit, unit, unit) objFF -> unit) -> kind -> unit *)
(* objAppType : ((unit, unit, unit, unit) objFF -> unit) -> asyncType -> unit *)
(* objAppObj : ((unit, unit, unit, unit) objFF -> unit) -> obj -> unit *)
fun ffsApp f =
let val u = ignore
fun fe (Let (_, h, _)) = f (Atomic h)
| fe _ = ()
in {fki=u, faTy=u, ftyS=u, fsTy=u, fo=f, fsp=u, fe=fe, fm=u} end
fun objAppKind f = foldKind (ffsApp f)
fun objAppType f = foldType (ffsApp f)
fun objAppObj f = foldObj (ffsApp f)
(* objMapKind : (obj -> obj objF) -> kind -> kind *)
(* objMapType : (obj -> obj objF) -> asyncType -> asyncType *)
(* objMapSyncType : (obj -> obj objF) -> syncType -> syncType *)
(* objMapObj : (obj -> obj objF) -> obj -> obj *)
fun uffsMap f =
let fun fe e = case ExpObj.prj e of
Let (p, hS, E) => (case f $ Atomic' hS of
Atomic hS' => Let (p, hS', E)
| N => raise Fail "Internal error: objMap")
| E => E
in {fki=Kind.prj, faTy=AsyncType.prj, ftyS=TypeSpine.prj, fsTy=SyncType.prj,
fo=f, fsp=Spine.prj, fe=fe, fm=MonadObj.prj} end
fun objMapKind f = unfoldKind (uffsMap f)
fun objMapType f = unfoldType (uffsMap f)
fun objMapSyncType f = unfoldSyncType (uffsMap f)
fun objMapObj f = unfoldObj (uffsMap f)
val ffsCopy = {fki=NfKind.inj, faTy=NfAsyncType.inj, ftyS=NfTypeSpine.inj, fsTy=NfSyncType.inj,
fo=NfObj.inj, fsp=NfSpine.inj, fe=NfExpObj.inj, fm=NfMonadObj.inj}
val forceNormalizeKind = unnormalizeKind o (foldNfKind ffsCopy) o normalizeKind
val forceNormalizeType = unnormalizeType o (foldNfType ffsCopy) o normalizeType
val forceNormalizeObj = unnormalizeObj o (foldNfObj ffsCopy) o normalizeObj
structure NfExpObjAuxDefs = AuxDefs (structure T = Typ1From3 (structure T = NfExpObj))
val whnfLetSpine = unnormalizeExpObj o (NfExpObjAuxDefs.fold NfExpObj.inj) o normalizeExpObj
fun lvarTypeMap f (Atomic (LogicVar X, S)) =
Atomic (LogicVar (X with'ty (f $ #ty X)), S)
| lvarTypeMap _ N = N
fun removeApxKind a = objMapKind (lvarTypeMap removeApxType o Obj.prj) a
and removeApxType a = objMapType (lvarTypeMap removeApxType o Obj.prj) a
fun removeApxSyncType a = objMapSyncType (lvarTypeMap removeApxType o Obj.prj) a
fun removeApxObj a = objMapObj (lvarTypeMap removeApxType o Obj.prj) a
val asyncTypeFromApx = removeApxType o injectApxType
val syncTypeFromApx = removeApxSyncType o injectApxSyncType
(* pat2apxSyncType : pattern -> apxSyncType *)
fun pat2apxSyncType p = case Pattern.prj p of
PDepTensor (p1, p2) => ApxTTensor' (pat2apxSyncType p1, pat2apxSyncType p2)
| POne => ApxTOne'
| PDown _ => ApxTDown' $ newApxTVar ()
| PAffi _ => ApxTAffi' $ newApxTVar ()
| PBang _ => ApxTBang' $ newApxTVar ()
fun pConv _ _ (PDepTensor pp) = PDepTensor' pp
| pConv _ _ POne = POne'
| pConv f _ (PDown x) = PDown' (f x)
| pConv f _ (PAffi x) = PAffi' (f x)
| pConv _ f (PBang x) = PBang' (f x)
fun patternO2T p = OPatternRec.fold (pConv (fn _ => ()) SOME) p
fun patternT2O p = TPatternRec.fold (pConv (fn () => "") (fn x => getOpt (x, ""))) p
fun patternAddDep (p1, p2) = case (Pattern.prj p1, Pattern.prj p2) of
(PDepTensor (p11, p12), PDepTensor (p21, p22)) =>
PDepTensor' (patternAddDep (p11, p21), patternAddDep (p12, p22))
| (POne, POne) => POne'
| (PDown (), PDown ()) => PDown' ()
| (PAffi (), PAffi ()) => PAffi' ()
| (PBang NONE, PBang NONE) => PBang' NONE
| (PBang (SOME x), PBang NONE) => PBang' (SOME x)
| (PBang NONE, PBang (SOME x)) => PBang' (SOME x)
| (PBang (SOME x), PBang (SOME _)) => PBang' (SOME x)
| _ => raise Fail "Internal error: patternAddDep pattern mismatch"
end