-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathcsidh.go
335 lines (290 loc) · 7.16 KB
/
csidh.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
package csidh
import (
"io"
)
// 511-bit number representing prime field element GF(p)
type fp [numWords]uint64
// Represents projective point on elliptic curve E over GF(p)
type point struct {
x fp
z fp
}
// Curve coefficients
type coeff struct {
a fp
c fp
}
type fpRngGen struct {
// working buffer needed to avoid memory allocation
wbuf [64]byte
}
// Defines operations on public key
type PublicKey struct {
fpRngGen
// Montgomery coefficient A from GF(p) of the elliptic curve
// y^2 = x^3 + Ax^2 + x.
a fp
}
// Defines operations on private key
type PrivateKey struct {
fpRngGen
// private key is a set of integers randomly
// each sampled from a range [-5, 5].
e [PrivateKeySize]int8
}
// randFp generates random element from Fp.
func (s *fpRngGen) randFp(v *fp, rng io.Reader) {
mask := uint64(1<<(pbits%limbBitSize)) - 1
for {
*v = fp{}
_, err := io.ReadFull(rng, s.wbuf[:])
if err != nil {
panic("Can't read random number")
}
for i := 0; i < len(s.wbuf); i++ {
j := i / limbByteSize
k := uint(i % 8)
v[j] |= uint64(s.wbuf[i]) << (8 * k)
}
v[len(v)-1] &= mask
if isLess(v, &p) {
return
}
}
}
// cofactorMul helper implements batch cofactor multiplication as described
// in the ia.cr/2018/383 (algo. 3). Returns tuple of two booleans, first indicates
// if function has finished successfully. In case first return value is true,
// second return value indicates if curve represented by cofactor 'a' is
// supersingular.
// Implementation uses divide-and-conquer strategy and recursion in order to
// speed up calculation of Q_i = [(p+1)/l_i] * P.
// Implementation is not constant time, but it operates on public data only.
func cofactorMul(p *point, a *coeff, halfL, halfR int, order *fp) (bool, bool) {
var Q point
var r1, d1, r2, d2 bool
if (halfR - halfL) == 1 {
// base case
if !p.z.isZero() {
tmp := fp{primes[halfL]}
xMul(p, p, a, &tmp)
if !p.z.isZero() {
// order does not divide p+1 -> ordinary curve
return true, false
}
mul512(order, order, primes[halfL])
if isLess(&fourSqrtP, order) {
// order > 4*sqrt(p) -> supersingular curve
return true, true
}
}
return false, false
}
// perform another recursive step
mid := halfL + ((halfR - halfL + 1) / 2)
mulL, mulR := fp{1}, fp{1}
// compute u = primes_1 * ... * primes_m
for i := halfL; i < mid; i++ {
mul512(&mulR, &mulR, primes[i])
}
// compute v = primes_m+1 * ... * primes_n
for i := mid; i < halfR; i++ {
mul512(&mulL, &mulL, primes[i])
}
// calculate Q_i
xMul(&Q, p, a, &mulR)
xMul(p, p, a, &mulL)
d1, r1 = cofactorMul(&Q, a, mid, halfR, order)
d2, r2 = cofactorMul(p, a, halfL, mid, order)
return d1 || d2, r1 || r2
}
// groupAction evaluates group action of prv.e on a Montgomery
// curve represented by coefficient pub.A.
// This is implementation of algorithm 2 from ia.cr/2018/383.
func groupAction(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
var k [2]fp
var e [2][primeCount]uint8
done := [2]bool{false, false}
A := coeff{a: pub.a, c: one}
k[0][0] = 4
k[1][0] = 4
for i, v := range primes {
t := (prv.e[uint(i)>>1] << ((uint(i) % 2) * 4)) >> 4
if t > 0 {
e[0][i] = uint8(t)
e[1][i] = 0
mul512(&k[1], &k[1], v)
} else if t < 0 {
e[1][i] = uint8(-t)
e[0][i] = 0
mul512(&k[0], &k[0], v)
} else {
e[0][i] = 0
e[1][i] = 0
mul512(&k[0], &k[0], v)
mul512(&k[1], &k[1], v)
}
}
for {
var P point
var rhs fp
prv.randFp(&P.x, rng)
P.z = one
montEval(&rhs, &A.a, &P.x)
sign := rhs.isNonQuadRes()
if done[sign] {
continue
}
xMul(&P, &P, &A, &k[sign])
done[sign] = true
for i, v := range primes {
if e[sign][i] != 0 {
cof := fp{1}
var K point
for j := i + 1; j < len(primes); j++ {
if e[sign][j] != 0 {
mul512(&cof, &cof, primes[j])
}
}
xMul(&K, &P, &A, &cof)
if !K.z.isZero() {
xIso(&P, &A, &K, v)
e[sign][i] = e[sign][i] - 1
if e[sign][i] == 0 {
mul512(&k[sign], &k[sign], primes[i])
}
}
}
done[sign] = done[sign] && (e[sign][i] == 0)
}
modExpRdc512(&A.c, &A.c, &pMin1)
mulRdc(&A.a, &A.a, &A.c)
A.c = one
if done[0] && done[1] {
break
}
}
pub.a = A.a
}
// PrivateKey operations
func (c *PrivateKey) Import(key []byte) bool {
if len(key) < len(c.e) {
return false
}
for i, v := range key {
c.e[i] = int8(v)
}
return true
}
func (c PrivateKey) Export(out []byte) bool {
if len(out) < len(c.e) {
return false
}
for i, v := range c.e {
out[i] = byte(v)
}
return true
}
func GeneratePrivateKey(key *PrivateKey, rng io.Reader) error {
for i := range key.e {
key.e[i] = 0
}
for i := 0; i < len(primes); {
_, err := io.ReadFull(rng, key.wbuf[:])
if err != nil {
return err
}
for j := range key.wbuf {
if int8(key.wbuf[j]) <= expMax && int8(key.wbuf[j]) >= -expMax {
key.e[i>>1] |= int8((key.wbuf[j] & 0xF) << uint((i%2)*4))
i = i + 1
if i == len(primes) {
break
}
}
}
}
return nil
}
// Public key operations
// reset removes key material from PublicKey.
func (c *PublicKey) reset() {
for i := range c.a {
c.a[i] = 0
}
}
// Assumes key is in Montgomery domain.
func (c *PublicKey) Import(key []byte) bool {
if len(key) != numWords*limbByteSize {
return false
}
for i := 0; i < len(key); i++ {
j := i / limbByteSize
k := uint64(i % 8)
c.a[j] |= uint64(key[i]) << (8 * k)
}
return true
}
// Assumes key is exported as encoded in Montgomery domain.
func (c *PublicKey) Export(out []byte) bool {
if len(out) != numWords*limbByteSize {
return false
}
for i := 0; i < len(out); i++ {
j := i / limbByteSize
k := uint64(i % 8)
out[i] = byte(c.a[j] >> (8 * k))
}
return true
}
func GeneratePublicKey(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
pub.reset()
groupAction(pub, prv, rng)
}
// Validate returns true if 'pub' is a valid cSIDH public key,
// otherwise false.
// More precisely, the function verifies that curve
//
// y^2 = x^3 + pub.a * x^2 + x
//
// is supersingular.
func Validate(pub *PublicKey, rng io.Reader) bool {
// Check if in range
if !isLess(&pub.a, &p) {
return false
}
// Check if pub represents a smooth Montgomery curve.
if pub.a.equal(&two) || pub.a.equal(&twoNeg) {
return false
}
// Check if pub represents a supersingular curve.
for {
var P point
A := point{pub.a, one}
// Randomly chosen P must have big enough order to check
// supersingularity. Probability of random P having big
// enough order is very high, as proven by W.Castryck et
// al. (ia.cr/2018/383, ch 5)
pub.randFp(&P.x, rng)
P.z = one
xDbl(&P, &P, &A)
xDbl(&P, &P, &A)
done, res := cofactorMul(&P, &coeff{A.x, A.z}, 0, len(primes), &fp{1})
if done {
return res
}
}
}
// DeriveSecret computes a cSIDH shared secret. If successful, returns true
// and fills 'out' with shared secret. Function returns false in case 'pub' is invalid.
// More precisely, shared secret is a Montgomery coefficient A of a secret
// curve y^2 = x^3 + Ax^2 + x, computed by applying action of a prv.e
// on a curve represented by pub.a.
func DeriveSecret(out *[64]byte, pub *PublicKey, prv *PrivateKey, rng io.Reader) bool {
if !Validate(pub, rng) {
return false
}
groupAction(pub, prv, rng)
pub.Export(out[:])
return true
}