-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
212 lines (175 loc) · 8.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
'''
Copyright (c) 2020-present NAVER Corp.
MIT license
'''
# encoding: utf-8
# this code is modified from https://github.com/naver/cgd
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import mxnet as mx
import numpy as np
import os
import sys
import random
import argparse
import dataset as D
import transforms as T
from model import Model
from loss import HPHNTripletLoss
from runner import Trainer, Evaluator
from util import SummaryWriter
# define argparse
parser = argparse.ArgumentParser(description='Embedding Expansion Official MXNet codes')
parser.add_argument('--gpu_idx', default=None, type=str,
help='gpu index')
parser.add_argument('--lr_decay_factor', default=0.5, type=float,
help='value for learning rate decay')
parser.add_argument('--epochs', default=5000, type=int,
help='total training epochs')
parser.add_argument('--save_dir', default='./log/will/be/saved/here', type=str,
help='path for train and eval log')
parser.add_argument('--base_lr_mult', default=1.0, type=float,
help='scale for gradients calculated at backbone')
parser.add_argument('--eval_epoch_term', default=50, type=int,
help='check every eval_epoch_term')
parser.add_argument('--beta', default=1.2, type=float,
help='beta is beta')
parser.add_argument('--lr', default=0.0001, type=float,
help='base learning rate')
parser.add_argument('--optim', default='adam', type=str,
help='use adam')
parser.add_argument('--image_size', default=227, type=int,
help='width and height of input image')
parser.add_argument('--data_name', default='car196', type=str,
help='car196 | sop')
parser.add_argument('--start_epoch', default=0, type=int,
help='start epoch')
parser.add_argument('--sigma', default=0.5, type=float,
help='sigma is sigma')
parser.add_argument('--data_dir', default='./data/CARS_196', type=str,
help='image_path')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum is momentum')
parser.add_argument('--summary_step', default=10, type=int,
help='write summary every summary_step')
parser.add_argument('--wd', default=0.0005, type=float,
help='scale for weight decay')
parser.add_argument('--embed_dim', default=512, type=int,
help='dimension of embeddings')
parser.add_argument('--seed', default=0, type=int,
help='random seed value')
parser.add_argument('--batch_size', default=128, type=int,
help='batch size')
parser.add_argument('--soft_margin', default=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'],
help='parameter for hphn triplet loss')
parser.add_argument('--lr_decay_epochs', default='10,20,40,80', type=str,
help='split by comma')
parser.add_argument('--n_inner_pts', default=2, type=int,
help='the number of inner points. when it is 0, no EE')
parser.add_argument('--ee_l2norm', default=True, type=lambda s: s.lower() in ['true', 't', 'yes', '1'],
help='whether do l2 normalizing augmented embeddings')
parser.add_argument('--alpha', default=10, type=float,
help='alpha is alpha')
parser.add_argument('--margin', default=1e-5, type=float,
help='margin')
parser.add_argument('--num_workers', default=10, type=int,
help='for data preprocessing')
parser.add_argument('--num_instances', default=32, type=int,
help='how many instances per class')
parser.add_argument('--backbone', default='googlenet', type=str,
help='googlenet')
parser.add_argument('--recallk', default='1,2,4,8', type=str,
help='k values for recall')
parser.add_argument('--loss', default='hphn-triplet', type=str,
help='hphn-triplet')
parser.add_argument('--kvstore', default='device', type=str,
help='kvstore')
def add_best_values_summary(summary_writer, global_step, epoch, recallk, best_recall):
if summary_writer is None:
return
summary_writer.add_scalar('metric/R%d/best' % (recallk), best_recall, global_step)
summary_writer.add_scalar('metric_epoch/R%d/best' % (recallk), best_recall, epoch)
def add_summary(summary_writer, step, epoch, ranks, recall_at_ranks):
for recallk, recall in zip(ranks, recall_at_ranks):
if summary_writer is not None:
summary_writer.add_scalar('metric/R%d' % (recallk), recall, step)
summary_writer.add_scalar('metric_epoch/R%d' % (recallk), recall, epoch)
print("R@{:3d}: {:.4f}".format(recallk, recall))
def evaluate_and_log(summary_writer, evaluator, ranks, step, epoch, best_metrics):
metrics = []
distmat, labels = evaluator.get_distmat()
recall_at_ranks = evaluator.get_metric_at_ranks(distmat, labels, ranks)
add_summary(summary_writer, step, epoch, ranks, recall_at_ranks)
metrics.append(recall_at_ranks[0])
for idx, best_recall1 in enumerate(best_metrics):
recall1 = metrics[idx]
if recall1 > best_recall1:
best_recall1 = recall1
best_metrics[idx] = best_recall1
add_best_values_summary(summary_writer, step, epoch if epoch is not None else None,
ranks[0], best_recall1)
return best_metrics
def main():
args = parser.parse_args()
# define args more
args.train_meta = './meta/CARS196/train.txt'
args.test_meta = './meta/CARS196/test.txt'
args.lr_decay_epochs = [int(epoch) for epoch in args.lr_decay_epochs.split(',')]
args.recallk = [int(k) for k in args.recallk.split(',')]
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_idx)
args.ctx = [mx.gpu(0)]
print(args)
# Set random seed
mx.random.seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# Load image transform
train_transform, test_transform = T.get_transform(image_size=args.image_size)
# Load data loader
train_loader, test_loader = D.get_data_loader(args.data_dir, args.train_meta, args.test_meta, train_transform, test_transform,
args.batch_size, args.num_instances, args.num_workers)
# Load model
model = Model(args.embed_dim, args.ctx)
model.hybridize()
# Load loss
loss = HPHNTripletLoss(margin=args.margin, soft_margin=False, num_instances=args.num_instances, n_inner_pts=args.n_inner_pts, l2_norm=args.ee_l2norm)
# Load logger and saver
summary_writer = SummaryWriter(os.path.join(args.save_dir, 'tensorboard_log'))
print("steps in epoch:", args.lr_decay_epochs)
steps = list(map(lambda x: x*len(train_loader) , args.lr_decay_epochs))
print("steps in iter:", steps)
lr_schedule = mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=args.lr_decay_factor)
lr_schedule.base_lr = args.lr
# Load optimizer for training
optimizer = mx.gluon.Trainer(model.collect_params(),
'adam', {'learning_rate': args.lr, 'wd': args.wd},
kvstore=args.kvstore)
# Load trainer & evaluator
trainer = Trainer(model, loss, optimizer, train_loader, summary_writer, args.ctx,
summary_step=args.summary_step,
lr_schedule=lr_schedule)
evaluator = Evaluator(model, test_loader, args.ctx)
best_metrics = [0.0] # all query
global_step = args.start_epoch * len(train_loader)
# Enter to training loop
print("base lr mult:", args.base_lr_mult)
for epoch in range(args.start_epoch, args.epochs):
model.backbone.collect_params().setattr('lr_mult', args.base_lr_mult)
trainer.train(epoch)
global_step = (epoch + 1) * len(train_loader)
if (epoch + 1) % args.eval_epoch_term == 0:
old_best_metric = best_metrics[0]
# evaluate_and_log(summary_writer, evaluator, ranks, step, epoch, best_metrics)
best_metrics = evaluate_and_log(summary_writer, evaluator, args.recallk,
global_step, epoch + 1,
best_metrics=best_metrics)
if best_metrics[0] != old_best_metric:
save_path = os.path.join(args.save_dir, 'model_epoch_%05d.params' % (epoch + 1))
model.save_parameters(save_path)
sys.stdout.flush()
if __name__ == '__main__':
# https://github.com/dmlc/gluon-cv/issues/493
sys.setrecursionlimit(2000)
main()