-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathdocker_initialise.py
141 lines (120 loc) · 4.61 KB
/
docker_initialise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys
import subprocess
import re
def get_version_from_toml():
try:
with open("pyproject.toml", "r") as file:
content = file.read()
version_match = re.search(r'version = "([^"]+)"', content)
if version_match:
return version_match.group(1)
except Exception:
return "Unknown"
def check_tensorflow():
"""
To check tensorflow version and GPU Support and number of GPUs available
"""
tensor_flow_version = "Not Found"
gpu_support = "Not Found"
number_of_gpus = "Not Found"
tensorflow_version = subprocess.run(
["python3", "-c", "import tensorflow as tf; print(tf.__version__)"],
capture_output=True,
text=True,
)
gpu_support = subprocess.run(
["python3", "-c", "import tensorflow as tf; print(tf.test.is_gpu_available())"],
capture_output=True,
text=True,
)
number_of_gpus = subprocess.run(
[
"python3",
"-c",
"import tensorflow as tf; print(len(tf.config.experimental.list_physical_devices('GPU')))",
],
capture_output=True,
text=True,
)
return (
tensorflow_version.stdout.strip(),
gpu_support.stdout.strip(),
number_of_gpus.stdout.strip(),
)
def get_cuda_cudnn_nvidia_versions():
cuda_version = 'Not found'
# Get CUDA version
try:
cuda_version = subprocess.run(['nvcc', '--version'], capture_output=True, text=True)
cuda_version = (
re.search(r'release (\d+\.\d+)', cuda_version.stdout).group(1)
if cuda_version.stdout
else 'Not found'
)
except Exception:
pass
# Get cuDNN version
try:
with open('/usr/local/cuda/include/cudnn_version.h', 'r') as f:
cudnn_version = f.read()
cudnn_version = re.search(
r'#define CUDNN_MAJOR (\d+)\n#define CUDNN_MINOR (\d+)\n#define CUDNN_PATCHLEVEL (\d+)',
cudnn_version,
)
cudnn_version = (
f"{cudnn_version.group(1)}.{cudnn_version.group(2)}.{cudnn_version.group(3)}"
if cudnn_version
else 'Not found'
)
except Exception:
cudnn_version = 'Not found'
# Get NVIDIA driver version
nvidia_driver_version = 'Not found'
try:
nvidia_driver_version = subprocess.run(
['nvidia-smi', '--query-gpu=driver_version', '--format=csv,noheader'],
capture_output=True,
text=True,
)
nvidia_driver_version = (
nvidia_driver_version.stdout.strip() if nvidia_driver_version.stdout else 'Not found'
)
except Exception:
pass
return cuda_version, cudnn_version, nvidia_driver_version.split('\n')[0]
def main():
version = get_version_from_toml()
# run the ascii-image-converter in subprocess
subprocess.run(["ascii-image-converter", "Fastvpinns_logo.png", "--braille", "-d", "70,10"])
print("**********************************************************")
print(f"Official Docker Image for FastVPINNs - Version {version}")
print(f"URL: https://cmgcds.github.io/fastvpinns/")
print("Docker Image Author : Thivin Anandh")
print("**********************************************************\n")
# Execute any additional command passed to the Docker container
# Should be a security risk, so commented out
# if len(sys.argv) > 1:
# subprocess.run(sys.argv[1:])
# obtain the cuda versions
cuda_version, cudnn_version, nvidia_driver_version = get_cuda_cudnn_nvidia_versions()
if cuda_version != 'Not found' and nvidia_driver_version != 'Not found':
print(f"\033[92mGPU Checks Passed - GPU Acceleration is Available \033[0m")
else:
print(f"\033[91mGPU Checks Failed - Execution is available on CPU only\033[0m")
# get tensorflow versions
tensor_flow_version, gpu_support, number_of_gpus = check_tensorflow()
column_width = 10
print(
"-----------------------------------------------------------------------------------------------------"
)
print(
f"| CUDA Version: {cuda_version:<{column_width}} || cuDNN Version: {cudnn_version:<{column_width}} || NVIDIA Driver Version: {nvidia_driver_version:<{column_width}} |"
)
print(
f"| Tensorflow Version: {tensor_flow_version:<{column_width}} || GPU Support: {gpu_support:<{column_width}} || Number of GPUs: {number_of_gpus:<{column_width}} |"
)
print(
"-----------------------------------------------------------------------------------------------------"
)
if __name__ == "__main__":
main()