-
Notifications
You must be signed in to change notification settings - Fork 1
/
GP.mod
155 lines (121 loc) · 2.56 KB
/
GP.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
TITLE All ion channels used in GP models
UNITSON
NEURON {
SUFFIX GP
NONSPECIFIC_CURRENT ilk, inaD, ikD, icaDT,icaD,iahp
RANGE gnabar, enaD, m_inf, h_inf, tau_h : fast sodium
RANGE gkdrbar, ekD, n_inf, tau_n, ikDD : delayed K rectifier
RANGE gl, el : leak
RANGE gcatbar, ecaD, s_inf : T-type ca current
RANGE r_inf : ca dependent AHP K current
RANGE a_inf
RANGE gahp
}
UNITS {
(uA) = (microamp)
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
PARAMETER {
enaD = 55 (mV)
ekD = -80 (mV)
ecaD = 120 (mV)
:Fast Na channel
gnabar = 120e-3 (S/cm2)
theta_m = -37 (mV)
theta_h = -58 (mV)
k_m = -10 (mV)
k_h = 12 (mV)
tau_h0 = 0.05 (ms)
tau_h1 = 0.27 (ms)
tht_h2 = -40 (mV)
sig_h2 = -12 (mV)
: delayed K rectifier
gkdrbar = 30e-3 (S/cm2)
theta_n = -50 (mV)
k_n = -14 (mV)
tau_n0 = 0.05 (ms)
tau_n1 = 0.27 (ms)
tht_n2 = -40 (mV)
sig_n2 = -12 (mV)
:Leakage current
gl = 0.1e-3 (S/cm2)
el = -65 (mV)
:T-type ca current
gcatbar = 0.15e-3 (S/cm2)
theta_s = -35 (mV)
k_s = -2 (mV)
:AHP current (Ca current)
gt = 0.5e-3 (S/cm2)
theta_r = -70 (mV)
k_r = 2 (mV)
tau_r = 30 (ms)
theta_a = -57 (mV)
k_a = -2 (mV)
:AHP
gahp = 10e-3 (S/cm2)
:cai
k1_ca=1e-1 (cm2/mA/ms)
k2_ca=15e-3 (mA/cm2)
}
ASSIGNED {
v (mV)
inaD (mA/cm2)
ikD (mA/cm2)
icaD (mA/cm2)
icaDT(mA/cm2)
ilk (mA/cm2)
iahp (mA/cm2)
:Fast Na
h_inf
tau_h (ms)
m_inf
:K rectifier
n_inf
tau_n (ms)
:T-type ca current
s_inf
:AHP (Ca dependent K current)
r_inf
a_inf
}
STATE {
h n r
CA
}
BREAKPOINT {
SOLVE states METHOD cnexp
inaD = gnabar * m_inf*m_inf*m_inf*h * (v - enaD)
ikD = gkdrbar * n^4 * (v - ekD)
icaDT = gt *a_inf*a_inf*a_inf*r* (v - ecaD)
ilk = gl * (v - el)
icaD = gcatbar * s_inf*s_inf * (v - ecaD)
iahp=gahp*(v - ekD)*(CA/(CA+10))
}
DERIVATIVE states {
evaluate_fct(v)
n' = 0.1*(n_inf - n)/tau_n
h' = 0.05*(h_inf - h)/tau_h
r' = (r_inf - r)/tau_r
CA' =k1_ca*(-icaD-icaDT-k2_ca*CA)
}
UNITSOFF
INITIAL {
evaluate_fct(v)
h = h_inf
n = n_inf
r = r_inf
CA= 0.1 :pq = 0.1? n eh pra calcular a partir de icaD e icaDT?
}
PROCEDURE evaluate_fct(v(mV)) {
h_inf = 1/(1+exp((v-theta_h)/k_h))
m_inf = 1/(1+exp((v-theta_m)/k_m))
tau_h = tau_h0 + tau_h1/(1 + exp(-(v-tht_h2)/sig_h2))
n_inf = 1/(1+exp((v-theta_n)/k_n))
tau_n = tau_n0 + tau_n1/(1 + exp(-(v-tht_n2)/sig_n2))
s_inf = 1/(1+exp((v-theta_s)/k_s))
r_inf = 1/(1+exp((v-theta_r)/k_r))
a_inf = 1/(1+exp((v-theta_a)/k_a))
}
UNITSON