-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSubTN.mod
300 lines (248 loc) · 5.39 KB
/
SubTN.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
TITLE SubTN ion channels for single compartment model
UNITSON
NEURON {
SUFFIX SubTN
NONSPECIFIC_CURRENT ilk
NONSPECIFIC_CURRENT icaT,icaL,ikD,ikA,ikAHP,ina, idbs
RANGE gnabar, ena, m_inf, h_inf, tau_h, tau_m : fast sodium
RANGE gkdrbar, ek, n_inf, tau_n : delayed K rectifier
RANGE gl, el : leak
RANGE gcatbar, p_inf, tau_p, q_inf, tau_q : T-type ca current
RANGE gcalbar, eca, c_inf, d1_inf, d2_inf, tau_c, tau_d1, tau_d2 : L-type ca current
RANGE gkabar, ek, a_inf, tau_a, b_inf, tau_b : A-type K current
RANGE gkcabar, ek, r_inf : ca dependent AHP K current
RANGE periodo, tezao, cai, dbs
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(molar) = (1/liter)
(mM) = (millimolar)
}
PARAMETER {
ena = 60 (mV)
ek = -90 (mV)
cao = 2000
con =12.8392 (mV)
tezao = 7.6923 (ms)
dbs
:Fast Na channel
gnabar = 49e-3 (S/cm2)
theta_m = -40 (mV)
theta_h = -45.5 (mV)
k_m = -8 (mV)
k_h = 6.4 (mV)
tau_m0 = 0.2 (ms)
tau_m1 = 3 (ms)
tau_h0 = 0 (ms)
tau_h1 = 24.5 (ms)
tht_m = -53 (mV)
tht_h1 = -50 (mV)
tht_h2 = -50 (mV)
sig_m = -0.7 (mV)
sig_h1 = -15 (mV)
sig_h2 = 16 (mV)
: Delayed rectifier K
gkdrbar = 57e-3 (S/cm2)
theta_n = -41 (mV)
k_n = -14 (mV)
tau_n0 = 0 (ms)
tau_n1 = 11 (ms)
tht_n1 = -40 (mV)
tht_n2 = -40 (mV)
sig_n1 = -40 (mV)
sig_n2 = 50 (mV)
:Leakage current
gl = 0.35e-3 (S/cm2)
el = -60 (mV)
:T-type ca current
gcatbar = 5e-3 (S/cm2)
theta_p = -56 (mV)
theta_q = -85 (mV)
k_p = -6.7 (mV)
k_q = 5.8 (mV)
tau_p0 = 5 (ms)
tau_p1 = 0.33 (ms)
tau_q0 = 0 (ms)
tau_q1 = 400 (ms)
tht_p1 = -27 (mV)
tht_p2 = -102 (mV)
tht_q1 = -50 (mV)
tht_q2 = -50 (mV)
sig_p1 = -10 (mV)
sig_p2 = 15 (mV)
sig_q1 = -15 (mV)
sig_q2 = 16 (mV)
:Ca L current
gcalbar = 15e-3 (S/cm2)
theta_c = -30.6 (mV)
theta_d1 = -60 (mV)
theta_d2 = 0.1 (mV)
k_c = -5 (mV)
k_d1 = 7.5 (mV)
k_d2 = 0.02 (mV)
tau_c0 = 45 (ms)
tau_c1 = 10 (ms)
tau_d10 = 400 (ms)
tau_d11 = 500 (ms)
tht_c1 = -27 (mV)
tht_c2 = -50 (mV)
tht_d11 = -40 (mV)
tht_d12 = -20 (mV)
sig_c1 = -20 (mV)
sig_c2 = 15 (mV)
sig_d11 = -15 (mV)
sig_d12 = 20 (mV)
tau_d2 = 130 (ms)
:A current
gkabar = 5e-3 (S/cm2)
theta_a = -45 (mV)
theta_b = -90 (mV)
k_a = -14.7 (mV)
k_b = 7.5 (mV)
tau_a0 = 1 (ms)
tau_a1 = 1 (ms)
tau_b0 = 0 (ms)
tau_b1 = 200 (ms)
tht_a = -40 (mV)
tht_b1 = -60 (mV)
tht_b2 = -40 (mV)
sig_a = -0.5 (mV)
sig_b1 = -30 (mV)
sig_b2 = 10 (mV)
:AHP current (Ca dependent K current)
gkcabar = 1e-3 (S/cm2)
theta_r = 0.17 (mV)
k_r = -0.08 (mV)
tau_r = 2 (ms)
:cai
acai=5.18e-3 (cm2/mA/ms)
bcai=2e-3 (1/ms)
}
ASSIGNED {
v (mV)
ina (mA/cm2)
ikD (mA/cm2)
ikA (mA/cm2)
ikAHP(mA/cm2)
icaT(mA/cm2)
icaL (mA/cm2)
ilk (mA/cm2)
idbs (mA/cm2)
periodo (ms)
:Fast Na
h_inf
tau_h (ms)
m_inf
tau_m (ms)
:Delayed rectifier
n_inf
tau_n (ms)
:ca T current
p_inf
q_inf
tau_p (ms)
tau_q (ms)
eca (mV) :calc from Nernst
:ca L current
c_inf
tau_c (ms)
d1_inf
tau_d1 (ms)
d2_inf
:A current
a_inf
tau_a (ms)
b_inf
tau_b (ms)
:AHP (Ca dependent K current)
r_inf
}
STATE {
m h n
p q
c d1 d2
cai
a b r
}
BREAKPOINT {
SOLVE states METHOD cnexp
eca = con*log(cao/cai)
ina = gnabar * m*m*m*h * (v - ena)
ikD = gkdrbar * n^4 * (v - ek)
ikA = gkabar * a*a*b * (v - ek)
ikAHP = gkcabar *r*r* (v - ek)
icaT = gcatbar * p*p*q * (v - eca)
icaL = gcalbar * c*c*d1*d2 * (v - eca)
ilk = gl * (v - el)
if (t >= periodo + tezao){
periodo = periodo + tezao
}
if (t >= periodo && t <= periodo + 0.3) {
idbs = -0.3*dbs
} else{
idbs = 0
}
}
DERIVATIVE states {
evaluate_fct(v)
h' = (h_inf - h)/tau_h
m' = (m_inf - m)/tau_m
n' = (n_inf - n)/tau_n
p' = (p_inf - p)/tau_p
q' = (q_inf - q)/tau_q
c' = (c_inf - c)/tau_c
d1' = (d1_inf - d1)/tau_d1
d2' = (d2_inf - d2)/tau_d2
cai' = -acai*(icaL+icaT)-bcai*cai
a' = (a_inf - a)/tau_a
b' = (b_inf - b)/tau_b
r' = (r_inf - r)/tau_r
}
UNITSOFF
INITIAL {
evaluate_fct(v)
m = m_inf
h = h_inf
n = n_inf
p = p_inf
q = q_inf
c = c_inf
d1 = d1_inf
d2 = d2_inf
a = a_inf
b = b_inf
r = r_inf
cai= 0.005
periodo = 0
}
PROCEDURE evaluate_fct(v(mV)) {
:Fast Na current
h_inf = 1/(1+exp((v-theta_h)/k_h))
m_inf = 1/(1+exp((v-theta_m)/k_m))
tau_h = tau_h0 + tau_h1/(exp(-(v-tht_h1)/sig_h1) + exp(-(v-tht_h2)/sig_h2))
tau_m = tau_m0 + tau_m1/(1+exp(-(v-tht_m)/sig_m))
:Delayed rectifier K
n_inf = 1/(1+exp((v-theta_n)/k_n))
tau_n = tau_n0 + tau_n1/(exp(-(v-tht_n1)/sig_n1) + exp(-(v-tht_n2)/sig_n2))
:Ca T current
p_inf = 1/(1+exp((v-theta_p)/k_p))
q_inf = 1/(1+exp((v-theta_q)/k_q))
tau_p = tau_p0 + tau_p1/(exp(-(v-tht_p1)/sig_p1) + exp(-(v-tht_p2)/sig_p2))
tau_q = tau_q0 + tau_q1/(exp(-(v-tht_q1)/sig_q1) + exp(-(v-tht_q2)/sig_q2))
:Ca L current
c_inf = 1/(1+exp((v-theta_c)/k_c))
d1_inf = 1/(1+exp((v-theta_d1)/k_d1))
d2_inf = 1/(1+exp((v-theta_d2)/k_d2))
tau_c = tau_c0 + tau_c1/(exp(-(v-tht_c1)/sig_c1) + exp(-(v-tht_c2)/sig_c2))
tau_d1 = tau_d10 + tau_d11/(exp(-(v-tht_d11)/sig_d11) + exp(-(v-tht_d12)/sig_d12))
:A current
a_inf = 1/(1+exp((v-theta_a)/k_a))
b_inf = 1/(1+exp((v-theta_b)/k_b))
tau_a = tau_a0 + tau_a1/(1+exp(-(v-tht_a)/sig_a))
tau_b = tau_b0 + tau_b1/(exp(-(v-tht_b1)/sig_b1) + exp(-(v-tht_b2)/sig_b2))
:AHP current
r_inf = 1/(1+exp((v-theta_r)/k_r))
}
UNITSON