forked from HarveyYan/RNAonGraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Joint-MRT.py
250 lines (217 loc) · 9.92 KB
/
Joint-MRT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import sys
import shutil
import inspect
import datetime
import functools
import numpy as np
import tensorflow as tf
from importlib import reload
import multiprocessing as mp
import lib.plot, lib.graphprot_dataloader, lib.rgcn_utils, lib.logger, lib.ops.LSTM, lib.rna_utils
from lib.general_utils import Pool
from Model.Joint_MRT import JMRT
tf.logging.set_verbosity(tf.logging.FATAL)
tf.app.flags.DEFINE_string('output_dir', '', '')
tf.app.flags.DEFINE_integer('epochs', 400, '')
tf.app.flags.DEFINE_list('gpu_device', '0,1', '')
tf.app.flags.DEFINE_bool('use_clr', True, '')
tf.app.flags.DEFINE_bool('use_momentum', False, '')
tf.app.flags.DEFINE_integer('parallel_processes', 2, '')
tf.app.flags.DEFINE_integer('batch_size', 128, '')
tf.app.flags.DEFINE_bool('share_device', True, '')
# some experiment settings
tf.app.flags.DEFINE_bool('use_embedding', False, '')
# major changes !
tf.app.flags.DEFINE_string('train_rbp_id', 'CAPRIN1_Baltz2012', '')
tf.app.flags.DEFINE_float('mixing_ratio', 0.05, '')
tf.app.flags.DEFINE_bool('use_ghm', False, '')
FLAGS = tf.app.flags.FLAGS
lib.graphprot_dataloader._initialize()
TRAIN_RBP_ID = FLAGS.train_rbp_id
BATCH_SIZE = FLAGS.batch_size
EPOCHS = FLAGS.epochs # How many iterations to train for
DEVICES = ['/gpu:%s' % (device) for device in FLAGS.gpu_device] if len(FLAGS.gpu_device) > 0 else ['/cpu:0']
RBP_LIST = lib.graphprot_dataloader.all_rbps
assert (TRAIN_RBP_ID in RBP_LIST)
if FLAGS.share_device:
DEVICES *= 2
print('Warning, sharing devices. Make sure you have enough video card memory!')
if FLAGS.parallel_processes > len(DEVICES):
print('Warning: parallel_processes %d is larger than available devices %d. Adjusting to %d.' % \
(FLAGS.parallel_processes, len(DEVICES), len(DEVICES)))
FLAGS.parallel_processes = len(DEVICES)
hp = {
'learning_rate': 2e-4,
'dropout_rate': 0.2,
'use_clr': FLAGS.use_clr,
'use_momentum': FLAGS.use_momentum,
'use_bn': False,
'units': 32,
'lstm_encoder': True,
'mixing_ratio': FLAGS.mixing_ratio,
'use_ghm': FLAGS.use_ghm,
}
def Logger(q):
import time
all_auc = []
registered_gpus = {}
logger = lib.logger.CSVLogger('results.csv', output_dir,
['fold', 'seq_acc', 'nuc_acc', 'auc',
'original_seq_acc', 'original_nuc_acc', 'original_auc'])
while True:
msg = q.get()
print(msg)
if type(msg) is str and msg == 'kill':
logger.close()
print('%s ROC AUC: %.3f\u00B1%.3f' % (TRAIN_RBP_ID, np.mean(all_auc), np.std(all_auc)))
break
elif type(msg) is str and msg.startswith('worker'):
process_id = int(msg.split('_')[-1])
if process_id in registered_gpus:
print(process_id, 'found, returning', registered_gpus[process_id])
q.put('master_%d_' % (process_id) + registered_gpus[process_id])
else:
print(process_id, 'not found')
all_registered_devices = list(registered_gpus.values())
from collections import Counter
c1 = Counter(DEVICES)
c2 = Counter(all_registered_devices)
free_devices = list((c1 - c2).elements())
# free_devices = list(set(DEVICES).difference(set(all_registered_devices)))
if len(free_devices) > 0:
print('free device', free_devices[0])
q.put('master_%d_' % (process_id) + free_devices[0])
registered_gpus[process_id] = free_devices[0]
else:
print('no free device!')
print(registered_gpus)
q.put('master_%d_/cpu:0' % (process_id))
elif type(msg) is dict:
logger.update_with_dict(msg)
all_auc.append(msg['original_auc'])
else:
q.put(msg)
time.sleep(np.random.rand() * 5)
def run_one_rbp(fold_idx, q):
fold_output = os.path.join(output_dir, 'fold%d' % (fold_idx))
os.makedirs(fold_output)
outfile = open(os.path.join(fold_output, str(os.getpid())) + ".out", "w")
sys.stdout = outfile
sys.stderr = outfile
import time
# todo: replace _identity with pid and let logger check if pid still alive
process_id = mp.current_process()._identity[0]
print('sending process id', mp.current_process()._identity[0])
q.put('worker_%d' % (process_id))
while True:
msg = q.get()
if type(msg) is str and msg.startswith('master'):
print('worker %d received' % (process_id), msg, str(int(msg.split('_')[1])))
if int(msg.split('_')[1]) == process_id:
device = msg.split('_')[-1]
print('Process', mp.current_process(), 'received', device)
break
q.put(msg)
time.sleep(np.random.rand() * 2)
print('training fold', fold_idx)
train_idx, test_idx = dataset['splits'][fold_idx]
model = JMRT(dataset['VOCAB_VEC'].shape[1], dataset['VOCAB_VEC'], device, **hp)
train_data = [dataset['seq'][train_idx], dataset['segment_size'][train_idx], dataset['raw_seq'][train_idx]]
model.fit(train_data, dataset['label'][train_idx], EPOCHS, BATCH_SIZE, fold_output, logging=True)
test_data = [dataset['seq'][test_idx], dataset['segment_size'][test_idx], dataset['raw_seq'][test_idx]]
cost, acc, auc = model.evaluate(test_data, dataset['label'][test_idx], BATCH_SIZE, random_crop=False)
print('Evaluation (with masking) on modified held-out test set, acc: %s, auc: %.3f' % (acc, auc))
original_test_data = [original_dataset['seq'][test_idx], original_dataset['segment_size'][test_idx],
original_dataset['raw_seq'][test_idx]]
original_cost, original_acc, original_auc = model.evaluate(original_test_data, original_dataset['label'][test_idx],
BATCH_SIZE, random_crop=False)
print('Evaluation (with masking) on original held-out test set, acc: %s, auc: %.3f' % (original_acc, original_auc))
# get predictions
logger = lib.logger.CSVLogger('predictions.csv', fold_output,
['id', 'label', 'pred_neg', 'pred_pos'])
all_pos_preds = []
all_idx = []
for idx, (_id, _label, _pred) in enumerate(
zip(original_dataset['id'][test_idx], original_dataset['label'][test_idx],
model.predict(original_test_data, BATCH_SIZE))):
logger.update_with_dict({
'id': _id,
'label': np.max(_label),
'pred_neg': _pred[0],
'pred_pos': _pred[1],
})
if np.max(_label) == 1:
all_pos_preds.append(_pred[1])
all_idx.append(idx)
logger.close()
# plot some motifs
graph_dir = os.path.join(fold_output, 'integrated_gradients')
if not os.path.exists(graph_dir):
os.makedirs(graph_dir)
all_pos_preds = np.array(all_pos_preds)
all_idx = np.array(all_idx)
# top 10 strongly predicted examples, descending order
idx = all_idx[np.argsort(all_pos_preds)[::-1][:min(10, len(all_pos_preds))]]
model.integrated_gradients(model.indexing_iterable(original_test_data, idx),
original_dataset['label'][test_idx][idx],
original_dataset['id'][test_idx][idx], save_path=graph_dir)
# common ig plots
idx = []
for i, _id in enumerate(dataset['id'][test_idx]):
if _id in ig_ids:
idx.append(i)
common_graph_path = os.path.join(output_dir, 'common_integrated_gradients')
if not os.path.exists(common_graph_path):
os.makedirs(common_graph_path)
model.integrated_gradients(model.indexing_iterable(original_test_data, idx),
original_dataset['label'][test_idx][idx],
original_dataset['id'][test_idx][idx], save_path=common_graph_path)
model.delete()
reload(lib.plot)
reload(lib.logger)
q.put({
'fold': fold_idx,
'seq_acc': acc[0],
'nuc_acc': acc[1],
'auc': auc,
'original_seq_acc': original_acc[0],
'original_nuc_acc': original_acc[1],
'original_auc': original_auc
})
if __name__ == "__main__":
cur_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
if FLAGS.output_dir == '':
output_dir = os.path.join('output', 'Joint-MRT-Graphprot-debiased', cur_time)
else:
output_dir = os.path.join('output', 'Joint-MRT-Graphprot-debiased', cur_time + '-' + FLAGS.output_dir)
os.makedirs(output_dir)
lib.plot.set_output_dir(output_dir)
# backup python scripts, for future reference
backup_dir = os.path.join(output_dir, 'backup/')
os.makedirs(backup_dir)
shutil.copy(__file__, backup_dir)
shutil.copy(inspect.getfile(lib.rgcn_utils), backup_dir)
shutil.copy(inspect.getfile(JMRT), backup_dir)
shutil.copy(inspect.getfile(lib.ops.LSTM), backup_dir)
shutil.copy(inspect.getfile(lib.graphprot_dataloader), backup_dir)
shutil.copy(inspect.getfile(lib.rna_utils), backup_dir)
dataset = \
lib.graphprot_dataloader.load_clip_seq(
[TRAIN_RBP_ID], use_embedding=FLAGS.use_embedding,
load_mat=False, nucleotide_label=True, modify_leaks=True)[0]
original_dataset = \
lib.graphprot_dataloader.load_clip_seq(
[TRAIN_RBP_ID], use_embedding=FLAGS.use_embedding,
load_mat=False, nucleotide_label=True, modify_leaks=False)[0]
# # First 400 positive examples, same for the CNN model and the GNN model
ig_ids = list(original_dataset['id'][:20])
np.save(os.path.join(output_dir, 'splits.npy'), dataset['splits'])
manager = mp.Manager()
q = manager.Queue()
pool = Pool(FLAGS.parallel_processes + 1)
logger_thread = pool.apply_async(Logger, (q,))
pool.map(functools.partial(run_one_rbp, q=q), list(range(len(dataset['splits']))), chunksize=1)
q.put('kill') # terminate logger thread
pool.close()
pool.join()