-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgenerate_data.py
68 lines (58 loc) · 2.43 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# This script was adapted from Jacob Tomlinson's 1BRC submission
# https://github.com/gunnarmorling/1brc/discussions/487
import os
import tempfile
import coiled
import fsspec
import numpy as np
import pandas as pd
from dask.distributed import progress
n = 1_000_000_000_000 # Total number of rows of data to generate
chunksize = 10_000_000 # Number of rows of data per file
std = 10.0 # Assume normally distributed temperatures with a standard deviation of 10
lookup_df = pd.read_csv("lookup.csv") # Lookup table of stations and their mean temperatures
bucket = "s3://coiled-datasets-rp/1trc"
def generate_chunk(partition_idx, bucket, chunksize, std, lookup_df):
"""Generate some sample data based on the lookup table."""
rng = np.random.default_rng(partition_idx) # Determinisitic data generation
df = pd.DataFrame(
{
# Choose a random station from the lookup table for each row in our output
"station": rng.integers(0, len(lookup_df) - 1, int(chunksize)),
# Generate a normal distibution around zero for each row in our output
# Because the std is the same for every station we can adjust the mean for each row afterwards
"measure": rng.normal(0, std, int(chunksize)),
}
)
# Offset each measurement by the station's mean value
df.measure += df.station.map(lookup_df.mean_temp)
# Round the temprature to one decimal place
df.measure = df.measure.round(decimals=1)
# Convert the station index to the station name
df.station = df.station.map(lookup_df.station)
# Save this chunk to the output file
filename = f"measurements-{partition_idx}.parquet"
with tempfile.TemporaryDirectory() as tmpdir:
local = os.path.join(tmpdir, filename)
df.to_parquet(local, engine="pyarrow")
fs = fsspec.filesystem("s3")
fs.put(local, f"{bucket}/{filename}")
if __name__ == "__main__":
with coiled.Cluster(
n_workers=500,
worker_cpu=1,
arm=True,
region="us-east-1",
spot_policy="spot_with_fallback",
) as cluster:
with cluster.get_client() as client:
# Generate partitioned dataset
results = client.map(
generate_chunk,
range(int(n / chunksize)),
bucket=bucket,
chunksize=chunksize,
std=std,
lookup_df=lookup_df,
)
progress(results)