diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000..0ce8880 Binary files /dev/null and b/.DS_Store differ diff --git a/404.html b/404.html new file mode 100644 index 0000000..43e118e --- /dev/null +++ b/404.html @@ -0,0 +1,1016 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 404 Page not found | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ +

Page not found

+ + + +
+ +
+ + + + +

Perhaps you were looking for one of these?

+ + + + +

Latest

+ + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_headers b/_headers new file mode 100644 index 0000000..9abdadc --- /dev/null +++ b/_headers @@ -0,0 +1,15 @@ +# Netlify headers +# Automatically generated +# Documentation: https://wowchemy.com/docs/hugo-tutorials/security/ +/* + X-Frame-Options: DENY + X-XSS-Protection: 1; mode=block + X-Content-Type-Options: nosniff + Strict-Transport-Security: max-age=31536000; includeSubDomains + Referrer-Policy: strict-origin-when-cross-origin + + Permissions-Policy: accelerometer=(), camera=(), geolocation=(), gyroscope=(), magnetometer=(), microphone=(), payment=(), usb=() +/index.webmanifest + Content-Type: application/manifest+json +/index.xml + Content-Type: application/rss+xml diff --git a/_redirects b/_redirects new file mode 100644 index 0000000..0797697 --- /dev/null +++ b/_redirects @@ -0,0 +1,3 @@ +# Netlify redirects +# Automatically generated +# Documentation: https://docs.netlify.com/routing/redirects/ \ No newline at end of file diff --git a/admin/config.yml b/admin/config.yml new file mode 100644 index 0000000..3688ec1 --- /dev/null +++ b/admin/config.yml @@ -0,0 +1,834 @@ +backend: + branch: main + name: git-gateway + squash_merges: true +collections: +- create: true + fields: + - label: Widget Type (https://wowchemy.com/docs/page-builder/) + name: widget + required: true + widget: string + - default: my-widget-123 + label: Your reference for this widget (e.g. recent-posts) + name: widget_id + widget: string + - default: true + label: Headless? + name: headless + widget: hidden + - default: 10 + label: Widget position + max: 1001 + min: 0 + name: weight + step: 10 + value_type: int + widget: number + - label: Title + name: title + required: false + widget: string + - label: Subtitle + name: subtitle + required: false + widget: string + - default: true + label: Enabled? + name: active + required: false + widget: boolean + - fields: + - default: "2" + label: 'Columns (options: `1` or `2`)' + name: columns + required: false + widget: string + - fields: + - allowInput: true + enableAlpha: true + label: Solid color + name: color + required: false + widget: color + - allowInput: true + enableAlpha: true + label: Gradient start + name: gradient_start + required: false + widget: color + - allowInput: true + enableAlpha: true + label: Gradient end + name: gradient_end + required: false + widget: color + - default: false + label: Use a light text color? + name: text_color_light + required: false + widget: boolean + - label: Image + media_folder: /assets/media + media_library: + config: + multiple: false + name: image + public_folder: "" + required: false + widget: image + - default: 0 + label: Darken the image? (0 is transparent & 1 is opaque) + max: 1 + min: 0 + name: image_darken + required: false + step: 0.1 + value_type: float + widget: number + label: Background + name: background + required: false + widget: object + label: Widget Style + name: design + required: false + widget: object + - label: Body + name: body + required: false + widget: markdown + folder: content/home + identifier_field: widget_id + label: Homepage + media_folder: /assets/media + name: home + path: '{{slug}}' + public_folder: "" + summary: '{{filename}}: {{title}}' +- create: true + fields: + - label: Display name (such as your full name) + name: title + widget: string + - label: Position or tagline (such as Professor of AI) + name: role + required: false + widget: string + - default: avatar + label: Avatar (upload an image named `avatar.jpg/png`) + media_library: + config: + multiple: false + name: avatar_filename + required: false + widget: image + - label: Short biography (shown in author boxes) + name: bio + required: false + widget: string + - label: Full biography (shown in About widget) + name: body + required: false + widget: markdown + - label: Interests (shown in About widget) + name: interests + required: false + widget: list + - fields: + - label: Link + name: link + widget: string + - label: Icon pack + multiple: false + name: icon_pack + options: + - label: None + value: "" + - label: Solid + value: fas + - label: Regular + value: far + - label: Brand + value: fab + - label: Academic + value: ai + widget: select + - label: Icon (see https://wowchemy.com/docs/page-builder/#icons) + name: icon + widget: string + - label: Label (tooltip) + name: label + required: false + widget: string + - fields: + - default: false + label: Header (main menu) + name: header + required: false + widget: boolean + label: Display in About widget and... + name: display + widget: object + label: Social links + name: social + required: false + widget: list + - fields: + - label: Organization + name: name + required: true + widget: string + - label: Link + name: url + required: false + widget: string + label: Organizations you belong to or are affiliated with (shown in About widget) + name: organizations + required: false + widget: list + - fields: + - fields: + - label: Course + name: course + required: true + widget: string + - label: Institution + name: institution + required: true + widget: string + - label: Year + name: year + required: false + value_type: int + widget: number + label: Courses + name: courses + required: false + widget: list + label: Education + name: education + required: false + widget: object + - label: Email (to use a Gravatar.com avatar) + name: email + required: false + widget: string + - default: false + label: Super user (is this the primary site user?) + name: superuser + widget: boolean + - label: User groups (only for organization websites) + name: user_groups + required: false + widget: list + filter: + field: cms_exclude + folder: content/authors + label: Authors + label_singular: Author + name: authors + path: '{{slug}}/_index' +- create: true + fields: + - label: Title + name: title + widget: string + - label: Subtitle + name: subtitle + required: false + widget: string + - label: Body + name: body + widget: markdown + - label: Publish this page on + name: date + widget: datetime + - label: Summary + name: summary + required: false + widget: markdown + - default: false + label: Draft + name: draft + required: false + widget: boolean + - default: false + label: Featured + name: featured + required: false + widget: boolean + - label: Authors + name: authors + required: false + widget: list + - label: Tags + name: tags + required: false + widget: list + - label: Categories + name: categories + required: false + widget: list + - label: Projects + name: projects + required: false + widget: list + - fields: + - default: featured + label: Upload an image named `featured.jpg/png` + media_library: + config: + multiple: false + name: filename + required: false + widget: image + - label: Caption + name: caption + required: false + widget: string + - label: Description for screen readers + name: alt_text + required: false + widget: string + - default: Smart + label: Where's the focal point in the image? Smart, Center, TopLeft, Top, TopRight, + Left, Right, BottomLeft, Bottom, BottomRight. + name: focal_point + required: false + widget: string + - default: false + label: Thumbnail Only? + name: preview_only + required: false + widget: boolean + label: Featured Image + name: image + required: false + widget: object + filter: + field: cms_exclude + folder: content/post + label: Posts + label_singular: Post + name: posts + path: '{{slug}}/index' +- create: true + fields: + - label: Title + name: title + widget: string + - label: Subtitle + name: subtitle + required: false + widget: string + - label: Body + name: body + required: false + widget: markdown + - label: Publish this page on + name: date + widget: datetime + - label: Summary + name: summary + required: false + widget: markdown + - default: false + label: Draft + name: draft + required: false + widget: boolean + - default: false + label: Featured + name: featured + required: false + widget: boolean + - label: Authors + name: authors + required: false + widget: list + - label: Tags + name: tags + required: false + widget: list + - label: Categories + name: categories + required: false + widget: list + - label: External link (optional - replaces link to project page) + name: external_link + required: false + widget: string + - fields: + - label: Link + name: url + widget: string + - label: Link text + name: name + required: false + widget: string + - label: Icon pack + multiple: false + name: icon_pack + options: + - label: None + value: "" + - label: Solid + value: fas + - label: Regular + value: far + - label: Brand + value: fab + - label: Academic + value: ai + required: false + widget: select + - label: Icon (see https://wowchemy.com/docs/page-builder/#icons) + name: icon + required: false + widget: string + label: Links + name: links + required: false + widget: list + - fields: + - default: featured + label: Upload an image named `featured.jpg/png` + media_library: + config: + multiple: false + name: filename + required: false + widget: image + - label: Caption + name: caption + required: false + widget: string + - label: Description for screen readers + name: alt_text + required: false + widget: string + - default: Smart + label: Where's the focal point in the image? Smart, Center, TopLeft, Top, TopRight, + Left, Right, BottomLeft, Bottom, BottomRight. + name: focal_point + required: false + widget: string + - default: false + label: Thumbnail Only? + name: preview_only + required: false + widget: boolean + label: Featured Image + name: image + required: false + widget: object + filter: + field: cms_exclude + folder: content/project + label: Projects + label_singular: Project + name: projects + path: '{{slug}}/index' +- create: true + fields: + - label: Title + name: title + widget: string + - label: Abstract + name: abstract + widget: text + - label: Where + name: location + widget: text + - label: From + name: date + widget: datetime + - default: "" + label: To + name: date_end + widget: datetime + - default: false + label: All day event? + name: all_day + widget: boolean + - fields: + - label: Link + name: url + widget: string + - label: Link text + name: name + required: false + widget: string + - label: Icon pack + multiple: false + name: icon_pack + options: + - label: None + value: "" + - label: Solid + value: fas + - label: Regular + value: far + - label: Brand + value: fab + - label: Academic + value: ai + required: false + widget: select + - label: Icon (see https://wowchemy.com/docs/page-builder/#icons) + name: icon + required: false + widget: string + label: Links/Tickets + name: links + required: false + widget: list + - label: Event + name: event + widget: string + - label: Event link + name: event_url + widget: string + - label: Publish this page on + name: publishDate + widget: datetime + - label: Markdown slides (reference a deck in 'content/slides/') + name: slides + required: false + widget: string + - default: false + label: Draft + name: draft + required: false + widget: boolean + - default: false + label: Featured + name: featured + required: false + widget: boolean + - label: Authors + name: authors + required: false + widget: list + - label: Tags + name: tags + required: false + widget: list + - label: Categories + name: categories + required: false + widget: list + - label: Projects (reference projects in 'content/project/') + name: projects + required: false + widget: list + - fields: + - default: featured + label: Upload an image named `featured.jpg/png` + media_library: + config: + multiple: false + name: filename + required: false + widget: image + - label: Caption + name: caption + required: false + widget: string + - label: Description for screen readers + name: alt_text + required: false + widget: string + - default: Smart + label: Where's the focal point in the image? Smart, Center, TopLeft, Top, TopRight, + Left, Right, BottomLeft, Bottom, BottomRight. + name: focal_point + required: false + widget: string + - default: false + label: Thumbnail Only? + name: preview_only + required: false + widget: boolean + label: Featured Image + name: image + required: false + widget: object + - label: Details + name: body + required: false + widget: markdown + filter: + field: cms_exclude + folder: content/event + label: Events + label_singular: Event + name: events + path: '{{slug}}/index' +- create: true + fields: + - label: Title + name: title + widget: string + - label: Subtitle + name: subtitle + required: false + widget: string + - default: + - "0" + label: Publication type + multiple: true + name: publication_types + options: + - label: Uncategorized + value: "0" + - label: Conference paper + value: "1" + - label: Journal article + value: "2" + - label: Preprint / Working Paper + value: "3" + - label: Report + value: "4" + - label: Book + value: "5" + - label: Book section + value: "6" + - label: Thesis + value: "7" + - label: Patent + value: "8" + required: true + widget: select + - label: Authors + name: authors + required: true + widget: list + - label: Author Notes (contributions or affiliations for each author) + name: author_notes + required: false + widget: list + - label: DOI + name: doi + required: false + widget: string + - label: Publication + name: publication + required: false + widget: string + - label: Publication (abbreviated) + name: publication_short + required: false + widget: string + - label: Abstract + name: abstract + required: false + widget: text + - default: false + label: Draft + name: draft + required: false + widget: boolean + - default: false + label: Featured + name: featured + required: false + widget: boolean + - label: Tags + name: tags + required: false + widget: list + - label: Categories + name: categories + required: false + widget: list + - label: Projects + name: projects + required: false + widget: list + - label: Markdown slides (reference a deck in 'content/slides/') + name: slides + required: false + widget: string + - fields: + - default: featured + label: Upload an image named `featured.jpg/png` + media_library: + config: + multiple: false + name: filename + required: false + widget: image + - label: Caption + name: caption + required: false + widget: string + - label: Description for screen readers + name: alt_text + required: false + widget: string + - default: Smart + label: Where's the focal point in the image? Smart, Center, TopLeft, Top, TopRight, + Left, Right, BottomLeft, Bottom, BottomRight. + name: focal_point + required: false + widget: string + - default: false + label: Thumbnail Only? + name: preview_only + required: false + widget: boolean + label: Featured Image + name: image + required: false + widget: object + - label: Summary (shortened abstract) + name: summary + required: false + widget: text + - label: Details + name: body + required: false + widget: markdown + - label: Publish this page on + name: date + widget: datetime + filter: + field: cms_exclude + folder: content/publication + label: Publications + label_singular: Publication + name: publications + path: '{{slug}}/index' +- create: true + fields: + - label: Title + name: title + widget: string + - label: Slides (separate with `---`) + name: body + widget: markdown + - label: Publish on + name: date + widget: datetime + - label: Summary + name: summary + required: false + widget: text + - default: false + label: Draft + name: draft + required: false + widget: boolean + - label: Tags + name: tags + required: false + widget: list + - fields: + - default: black + label: Theme (see https://github.com/hakimel/reveal.js#theming) + name: theme + required: false + widget: string + label: Slide options + name: slides + required: false + widget: object + - fields: + - default: featured + label: Upload an image named `featured.jpg/png` + media_library: + config: + multiple: false + name: filename + required: false + widget: image + - label: Caption + name: caption + required: false + widget: string + - label: Description for screen readers + name: alt_text + required: false + widget: string + - default: Smart + label: Where's the focal point in the image? Smart, Center, TopLeft, Top, TopRight, + Left, Right, BottomLeft, Bottom, BottomRight. + name: focal_point + required: false + widget: string + - default: false + label: Thumbnail Only? + name: preview_only + required: false + widget: boolean + label: Featured Image + name: image + required: false + widget: object + filter: + field: cms_exclude + folder: content/slides + label: Slides + label_singular: Slides + name: slides + path: '{{slug}}/index' +- files: + - fields: + - label: Title + name: title + widget: string + - label: Publish Date + name: date + widget: datetime + - label: Subtitle + name: subtitle + required: false + widget: string + - label: Summary + name: summary + required: false + widget: markdown + - default: false + label: Draft + name: draft + required: false + widget: boolean + - label: Body + name: body + widget: markdown + file: content/privacy.md + label: Privacy Policy + name: privacy + - fields: + - label: Title + name: title + widget: string + - label: Publish Date + name: date + widget: datetime + - label: Subtitle + name: subtitle + required: false + widget: string + - label: Summary + name: summary + required: false + widget: markdown + - default: false + label: Draft + name: draft + required: false + widget: boolean + - label: Body + name: body + widget: markdown + file: content/terms.md + label: Terms + name: terms + label: Pages + name: pages +local_backend: false +media_folder: assets/media +public_folder: /media diff --git a/admin/index.html b/admin/index.html new file mode 100644 index 0000000..a1066a4 --- /dev/null +++ b/admin/index.html @@ -0,0 +1,15 @@ + + + + + + + Wowchemy CMS + + + + + + + + diff --git a/author/alejandro-f-frangi/index.html b/author/alejandro-f-frangi/index.html new file mode 100644 index 0000000..385f474 --- /dev/null +++ b/author/alejandro-f-frangi/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Alejandro F Frangi | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Alejandro F Frangi

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/alejandro-f-frangi/index.xml b/author/alejandro-f-frangi/index.xml new file mode 100644 index 0000000..1c0e819 --- /dev/null +++ b/author/alejandro-f-frangi/index.xml @@ -0,0 +1,24 @@ + + + + Alejandro F Frangi | Computational Imaging and AI in Medicine + https://compai-lab.io/author/alejandro-f-frangi/ + + Alejandro F Frangi + Wowchemy (https://wowchemy.com)en-usWed, 01 Jan 2003 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Alejandro F Frangi + https://compai-lab.io/author/alejandro-f-frangi/ + + + + Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + Wed, 01 Jan 2003 00:00:00 +0000 + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + + + + + diff --git a/author/alistair-a-young/index.html b/author/alistair-a-young/index.html new file mode 100644 index 0000000..a80a06b --- /dev/null +++ b/author/alistair-a-young/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Alistair A Young | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Alistair A Young

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/alistair-a-young/index.xml b/author/alistair-a-young/index.xml new file mode 100644 index 0000000..5331fc7 --- /dev/null +++ b/author/alistair-a-young/index.xml @@ -0,0 +1,24 @@ + + + + Alistair A Young | Computational Imaging and AI in Medicine + https://compai-lab.io/author/alistair-a-young/ + + Alistair A Young + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Alistair A Young + https://compai-lab.io/author/alistair-a-young/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + diff --git a/author/andrew-p-king/index.html b/author/andrew-p-king/index.html new file mode 100644 index 0000000..55bee5c --- /dev/null +++ b/author/andrew-p-king/index.html @@ -0,0 +1,1009 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Andrew P King | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Andrew P King

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/andrew-p-king/index.xml b/author/andrew-p-king/index.xml new file mode 100644 index 0000000..f93a93c --- /dev/null +++ b/author/andrew-p-king/index.xml @@ -0,0 +1,32 @@ + + + + Andrew P King | Computational Imaging and AI in Medicine + https://compai-lab.io/author/andrew-p-king/ + + Andrew P King + Wowchemy (https://wowchemy.com)en-usTue, 01 Dec 2020 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Andrew P King + https://compai-lab.io/author/andrew-p-king/ + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + diff --git a/author/andrew-p.-king/index.html b/author/andrew-p.-king/index.html new file mode 100644 index 0000000..a13ff4b --- /dev/null +++ b/author/andrew-p.-king/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Andrew P. King | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Andrew P. King

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/andrew-p.-king/index.xml b/author/andrew-p.-king/index.xml new file mode 100644 index 0000000..5edcd0e --- /dev/null +++ b/author/andrew-p.-king/index.xml @@ -0,0 +1,24 @@ + + + + Andrew P. King | Computational Imaging and AI in Medicine + https://compai-lab.io/author/andrew-p.-king/ + + Andrew P. King + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Andrew P. King + https://compai-lab.io/author/andrew-p.-king/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/andy-d-castellano-smith/index.html b/author/andy-d-castellano-smith/index.html new file mode 100644 index 0000000..3a61276 --- /dev/null +++ b/author/andy-d-castellano-smith/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Andy D Castellano-Smith | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Andy D Castellano-Smith

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/andy-d-castellano-smith/index.xml b/author/andy-d-castellano-smith/index.xml new file mode 100644 index 0000000..da2460d --- /dev/null +++ b/author/andy-d-castellano-smith/index.xml @@ -0,0 +1,24 @@ + + + + Andy D Castellano-Smith | Computational Imaging and AI in Medicine + https://compai-lab.io/author/andy-d-castellano-smith/ + + Andy D Castellano-Smith + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Andy D Castellano-Smith + https://compai-lab.io/author/andy-d-castellano-smith/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/anna-reithmeir/avatar.jpg b/author/anna-reithmeir/avatar.jpg new file mode 100644 index 0000000..27cea9b Binary files /dev/null and b/author/anna-reithmeir/avatar.jpg differ diff --git a/author/anna-reithmeir/avatar_hua2d592eef98e1fa5362a62d72665a4f3_289115_270x270_fill_q75_lanczos_center.jpg b/author/anna-reithmeir/avatar_hua2d592eef98e1fa5362a62d72665a4f3_289115_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..553bdad Binary files /dev/null and b/author/anna-reithmeir/avatar_hua2d592eef98e1fa5362a62d72665a4f3_289115_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/anna-reithmeir/index.html b/author/anna-reithmeir/index.html new file mode 100644 index 0000000..40a32c5 --- /dev/null +++ b/author/anna-reithmeir/index.html @@ -0,0 +1,1252 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Anna Reithmeir | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Anna Reithmeir + + +
+ +

Anna Reithmeir

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + Munich Center for Machine Learning (MCML) + +

+ +
+ + + +
+
+
+ + + + +
+

Anna Reithmeir is a PhD student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her B.Sc. and M.Sc. in Informatics from TU Munich with a focus on computer vision and high performance computing. In her Master’s thesis at the Munich Institute for Robotics and Machine Intelligence (MIRMI), she developed a novel algorithm for human-robot manipulability domain adaptation. Her current research interests lie in data-driven models for image registration, physics-inspired regularization, and Riemannian manifolds.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Image Registration
  • + +
  • Physics-Inspired Regularization
  • + +
  • Manifold-Valued Data
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Informatics, 2022

    +

    TU Munich

    +
    +
  • + +
  • + +
    +

    B.Sc. in Informatics, 2019

    +

    TU Munich

    +
    +
  • + +
+
+ + + + +
+ + +
+
Teaching
+
    + +
  • +
    +

    Medical Image Registration

    +

    Master seminar | WS24/25 |

    +
    +
  • + +
  • +
    +

    Learning of and on Manifolds in Medical Imaging

    +

    Master seminar | WS23/24 |

    +
    +
  • + +
+
+ + + +
+
Student Projects & Theses
+
    + +
  • +
    +

    Exploring SPD Feature Descriptors for Medical Image Classification

    +

    Master's Thesis | 2024 | Josef Mayr | ongoing |

    +
    +
  • + +
+
+ + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/anna-reithmeir/index.xml b/author/anna-reithmeir/index.xml new file mode 100644 index 0000000..b14d061 --- /dev/null +++ b/author/anna-reithmeir/index.xml @@ -0,0 +1,165 @@ + + + + Anna Reithmeir | Computational Imaging and AI in Medicine + https://compai-lab.io/author/anna-reithmeir/ + + Anna Reithmeir + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/anna-reithmeir/avatar_hua2d592eef98e1fa5362a62d72665a4f3_289115_270x270_fill_q75_lanczos_center.jpg + Anna Reithmeir + https://compai-lab.io/author/anna-reithmeir/ + + + + Master Seminar - Medical Image Registration (IN2107, IN4462) + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + <p><strong>Time</strong>: Wednesday 10-12 a.m.</p> +<p><strong>Location</strong>: Garching (in-person)</p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning</li> +<li>Interest in medical image analysis</li> +</ul> +<p>Goal and organization:</p> +<p>The participating students will learn the fundamental concepts of image registration. They will acquire the skills to analyze critically state-of-the-art research work and to define own research questions. Basic concepts will be introduced with an overview of different research topics. +The participants will select a research paper (suggestions given by the lecturers) and independently work on it with a final oral presentation and a written report. +Presentations of members of international research groups will provide the students with insights into state-of-the-art research in the field.</p> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an email to <a href="mailto:anna.reithmeir@tum.de">anna.reithmeir@tum.de</a>.</p> +<p>The seminar will take place Wednesdays from 10 a.m. to 12.a.m. in Garching.</p> + + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Paper accepted at SPIE Medical Imaging 2024 and Finalist of Best Student Paper Award + https://compai-lab.io/post/reithmeir_spie_24/ + Wed, 20 Mar 2024 00:00:00 +0000 + https://compai-lab.io/post/reithmeir_spie_24/ + <p>Anna Reithmeir&rsquo;s paper &lsquo;Learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks&rsquo; was accepted at SPIE Medical Imaging 2024 which was held 18-22 Feb. 2024 in San Diego, US.</p> +<p>The paper is among the finalists for the best student paper award.</p> + + + + + diff --git a/author/anneliese-riess/avatar.JPG b/author/anneliese-riess/avatar.JPG new file mode 100644 index 0000000..75153ab Binary files /dev/null and b/author/anneliese-riess/avatar.JPG differ diff --git a/author/anneliese-riess/avatar_hue46f792cd9d495822491a6b835623762_1149743_270x270_fill_q75_lanczos_center.JPG b/author/anneliese-riess/avatar_hue46f792cd9d495822491a6b835623762_1149743_270x270_fill_q75_lanczos_center.JPG new file mode 100644 index 0000000..87d9817 Binary files /dev/null and b/author/anneliese-riess/avatar_hue46f792cd9d495822491a6b835623762_1149743_270x270_fill_q75_lanczos_center.JPG differ diff --git a/author/anneliese-riess/index.html b/author/anneliese-riess/index.html new file mode 100644 index 0000000..546b187 --- /dev/null +++ b/author/anneliese-riess/index.html @@ -0,0 +1,1137 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Anneliese Riess | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Anneliese Riess + + +
+ +

Anneliese Riess

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Anneliese Riess is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and Technical University Munich (TUM). She received her B.Sc. and M.Sc. in Mathematics at TUM and devoted a substantial part of her studies to the field of probability theory. In her Master’s thesis she investigated Majority Voting Processes, a class of interacting particle systems. The main focus of the thesis was the equilibrium behaviour of such stochastic models. Prior to her PhD, she worked on two different projects at the university in her final year of her Master’s degree. In the first project, she worked on creating a model that describes the behaviour of DNA methylation. The second project involved modelling and analysing the propagation of underground water. Her research interests lie in the mathematical foundations of privacy-preserving artificial intelligence.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Mathematical Foundations of Privacy Preserving AI
  • + +
  • Probability Theory
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Mathematics, 2023

    +

    TU Munich

    +
    +
  • + +
  • + +
    +

    B.Sc. in Mathematics, 2019

    +

    TU Munich

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/anneliese-riess/index.xml b/author/anneliese-riess/index.xml new file mode 100644 index 0000000..1a2f83a --- /dev/null +++ b/author/anneliese-riess/index.xml @@ -0,0 +1,81 @@ + + + + Anneliese Riess | Computational Imaging and AI in Medicine + https://compai-lab.io/author/anneliese-riess/ + + Anneliese Riess + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/anneliese-riess/avatar_hue46f792cd9d495822491a6b835623762_1149743_270x270_fill_q75_lanczos_center.JPG + Anneliese Riess + https://compai-lab.io/author/anneliese-riess/ + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + diff --git a/author/aurelien-bustin/index.html b/author/aurelien-bustin/index.html new file mode 100644 index 0000000..446a691 --- /dev/null +++ b/author/aurelien-bustin/index.html @@ -0,0 +1,1009 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Aurelien Bustin | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Aurelien Bustin

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/aurelien-bustin/index.xml b/author/aurelien-bustin/index.xml new file mode 100644 index 0000000..5bee390 --- /dev/null +++ b/author/aurelien-bustin/index.xml @@ -0,0 +1,32 @@ + + + + Aurelien Bustin | Computational Imaging and AI in Medicine + https://compai-lab.io/author/aurelien-bustin/ + + Aurelien Bustin + Wowchemy (https://wowchemy.com)en-usTue, 01 Dec 2020 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Aurelien Bustin + https://compai-lab.io/author/aurelien-bustin/ + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git "a/author/bart\305\202omiej-w.-papiez/index.html" "b/author/bart\305\202omiej-w.-papiez/index.html" new file mode 100644 index 0000000..fcd6b28 --- /dev/null +++ "b/author/bart\305\202omiej-w.-papiez/index.html" @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Bartłomiej W. Papież | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Bartłomiej W. Papież

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git "a/author/bart\305\202omiej-w.-papiez/index.xml" "b/author/bart\305\202omiej-w.-papiez/index.xml" new file mode 100644 index 0000000..23e5906 --- /dev/null +++ "b/author/bart\305\202omiej-w.-papiez/index.xml" @@ -0,0 +1,24 @@ + + + + Bartłomiej W. Papież | Computational Imaging and AI in Medicine + https://compai-lab.io/author/bart%C5%82omiej-w.-papiez/ + + Bartłomiej W. Papież + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Bartłomiej W. Papież + https://compai-lab.io/author/bart%C5%82omiej-w.-papiez/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/author/bram-ruijsink/index.html b/author/bram-ruijsink/index.html new file mode 100644 index 0000000..bbfbe42 --- /dev/null +++ b/author/bram-ruijsink/index.html @@ -0,0 +1,1013 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Bram Ruijsink | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Bram Ruijsink

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/bram-ruijsink/index.xml b/author/bram-ruijsink/index.xml new file mode 100644 index 0000000..3f8bfd5 --- /dev/null +++ b/author/bram-ruijsink/index.xml @@ -0,0 +1,40 @@ + + + + Bram Ruijsink | Computational Imaging and AI in Medicine + https://compai-lab.io/author/bram-ruijsink/ + + Bram Ruijsink + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Bram Ruijsink + https://compai-lab.io/author/bram-ruijsink/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/charles-l-truwit/index.html b/author/charles-l-truwit/index.html new file mode 100644 index 0000000..c72a80d --- /dev/null +++ b/author/charles-l-truwit/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Charles L Truwit | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Charles L Truwit

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/charles-l-truwit/index.xml b/author/charles-l-truwit/index.xml new file mode 100644 index 0000000..b7e52ca --- /dev/null +++ b/author/charles-l-truwit/index.xml @@ -0,0 +1,24 @@ + + + + Charles L Truwit | Computational Imaging and AI in Medicine + https://compai-lab.io/author/charles-l-truwit/ + + Charles L Truwit + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Charles L Truwit + https://compai-lab.io/author/charles-l-truwit/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/christine-preibisch/index.html b/author/christine-preibisch/index.html new file mode 100644 index 0000000..3285c00 --- /dev/null +++ b/author/christine-preibisch/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Christine Preibisch | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Christine Preibisch

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/christine-preibisch/index.xml b/author/christine-preibisch/index.xml new file mode 100644 index 0000000..c90730e --- /dev/null +++ b/author/christine-preibisch/index.xml @@ -0,0 +1,24 @@ + + + + Christine Preibisch | Computational Imaging and AI in Medicine + https://compai-lab.io/author/christine-preibisch/ + + Christine Preibisch + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Christine Preibisch + https://compai-lab.io/author/christine-preibisch/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + diff --git a/author/chun-kit-wong/avatar.png b/author/chun-kit-wong/avatar.png new file mode 100644 index 0000000..cdbe97c Binary files /dev/null and b/author/chun-kit-wong/avatar.png differ diff --git a/author/chun-kit-wong/avatar_hubfaafc67610281f62ca5a2dae4dd2c37_127759_270x270_fill_lanczos_center_3.png b/author/chun-kit-wong/avatar_hubfaafc67610281f62ca5a2dae4dd2c37_127759_270x270_fill_lanczos_center_3.png new file mode 100644 index 0000000..238310a Binary files /dev/null and b/author/chun-kit-wong/avatar_hubfaafc67610281f62ca5a2dae4dd2c37_127759_270x270_fill_lanczos_center_3.png differ diff --git a/author/chun-kit-wong/index.html b/author/chun-kit-wong/index.html new file mode 100644 index 0000000..4207878 --- /dev/null +++ b/author/chun-kit-wong/index.html @@ -0,0 +1,1137 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Chun Kit Wong | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Chun Kit Wong + + + + + + +
+
+
+ + + + +
+

Chun Kit Wong is a Ph.D. student at the Technical University of Denmark (SONAI project group), working on translating AI to fetal ultrasound clinic. Prior to this he studied liver diseases with histology images in the industry. Even earlier than that he was with an academic lab in Singapore, where he worked on MRI image analysis and sequence programming, in addition to providing research computing support to the lab.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Medical Image Analysis
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Eng. in Electrical Engineering, 2016

    +

    National University of Singapore

    +
    +
  • + +
  • + +
    +

    B.Eng. in Electrical Engineering, 2014

    +

    National University of Singapore

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/chun-kit-wong/index.xml b/author/chun-kit-wong/index.xml new file mode 100644 index 0000000..6544bf4 --- /dev/null +++ b/author/chun-kit-wong/index.xml @@ -0,0 +1,16 @@ + + + + Chun Kit Wong | Computational Imaging and AI in Medicine + https://compai-lab.io/author/chun-kit-wong/ + + Chun Kit Wong + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/chun-kit-wong/avatar_hubfaafc67610281f62ca5a2dae4dd2c37_127759_270x270_fill_lanczos_center_3.png + Chun Kit Wong + https://compai-lab.io/author/chun-kit-wong/ + + + + diff --git a/author/claude-comtat/index.html b/author/claude-comtat/index.html new file mode 100644 index 0000000..3df501a --- /dev/null +++ b/author/claude-comtat/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Claude Comtat | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Claude Comtat

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/claude-comtat/index.xml b/author/claude-comtat/index.xml new file mode 100644 index 0000000..7621999 --- /dev/null +++ b/author/claude-comtat/index.xml @@ -0,0 +1,24 @@ + + + + Claude Comtat | Computational Imaging and AI in Medicine + https://compai-lab.io/author/claude-comtat/ + + Claude Comtat + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Claude Comtat + https://compai-lab.io/author/claude-comtat/ + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/author/claudia-prieto/index.html b/author/claudia-prieto/index.html new file mode 100644 index 0000000..5bfae4e --- /dev/null +++ b/author/claudia-prieto/index.html @@ -0,0 +1,1009 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Claudia Prieto | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Claudia Prieto

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/claudia-prieto/index.xml b/author/claudia-prieto/index.xml new file mode 100644 index 0000000..bf822ad --- /dev/null +++ b/author/claudia-prieto/index.xml @@ -0,0 +1,32 @@ + + + + Claudia Prieto | Computational Imaging and AI in Medicine + https://compai-lab.io/author/claudia-prieto/ + + Claudia Prieto + Wowchemy (https://wowchemy.com)en-usTue, 01 Dec 2020 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Claudia Prieto + https://compai-lab.io/author/claudia-prieto/ + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/cosmin-i.-bercea/avatar.jpg b/author/cosmin-i.-bercea/avatar.jpg new file mode 100644 index 0000000..456036a Binary files /dev/null and b/author/cosmin-i.-bercea/avatar.jpg differ diff --git a/author/cosmin-i.-bercea/avatar_huc30509e39f40f5e42a3e593aaa26fe4e_5750588_270x270_fill_q75_lanczos_center.jpg b/author/cosmin-i.-bercea/avatar_huc30509e39f40f5e42a3e593aaa26fe4e_5750588_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..a4c6953 Binary files /dev/null and b/author/cosmin-i.-bercea/avatar_huc30509e39f40f5e42a3e593aaa26fe4e_5750588_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/cosmin-i.-bercea/index.html b/author/cosmin-i.-bercea/index.html new file mode 100644 index 0000000..2f91153 --- /dev/null +++ b/author/cosmin-i.-bercea/index.html @@ -0,0 +1,1320 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Cosmin I. Bercea | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Cosmin I. Bercea + + +
+ +

Cosmin I. Bercea

+ +

Research Scientist

+ + +

+ + Technical University of Munich + +

+ +

+ + TUM School of Medicine and Health + +

+ +
+ + + +
+
+
+ + + + +
+

Cosmin Bercea is a postdoctoral researcher at the Computational Imaging and AI in Medicine chair (Prof. Schnabel), TUM School of Computation, Information, and Technology, and at the AI for Image-Guided Diagnosis and Therapy chair (Prof. Wiestler), TUM School of Medicine and Health. His current research focuses on vision and multimodal learning for medical image analysis.

+

His research background encompasses machine learning for medical image analysis and computer vision for autonomous driving. During his doctoral studies at the Technical University of Munich, he focused on machine learning and image understanding, with a specific emphasis on creating robust algorithms capable of identifying a wide array of unknown anomalies in medical images. +He earned his B.Sc. and M.Sc. degrees in Computer Science from FAU University in Erlangen, Germany, where he specialized in pattern recognition and medical image analysis.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Vision & Multimodal Learning
  • + +
  • Generative AI
  • + +
  • Foundation Models
  • + +
  • Anomaly Detection
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    Dr.rer.nat. in Computer Science, 2024 (expected)

    +

    Technical University of Munich

    +
    +
  • + +
  • + +
    +

    M.Sc. in Computer Science, 2018

    +

    FAU Erlangen

    +
    +
  • + +
  • + +
    +

    B.Sc. in Computer Science, 2015

    +

    FAU Erlangen

    +
    +
  • + +
+
+ + + + +
+ + +
+
Teaching
+
    + +
  • +
    +

    AI for Vision-Language Models in Medical Imaging

    +

    Master seminar | WS24/25 | Seminar Page

    +
    +
  • + +
  • +
    +

    Unsupervised Anomaly Detection in Medical Imaging

    +

    Master seminar | WS23/24 | SS22/23 | WS22/23 | Seminar Page

    +
    +
  • + +
+
+ + + +
+
Student Projects & Theses
+
    + +
  • +
    +

    Text-based Image Editing

    +

    Master's Thesis | 1.06.2024 | Karim ElGhandour | running |

    +
    +
  • + +
  • +
    +

    Vision-Language Models for Medical Imaging

    +

    IDP | 1.06.2024 | Danica Rovó | running |

    +
    +
  • + +
  • +
    +

    Multimodal Learning for Medical Imaging

    +

    Master's Thesis | 1.06.2024 | Hanna Mykula | running |

    +
    +
  • + +
  • +
    +

    Diffusion Models for Counterfactual Pathology Synthesis

    +

    Master's Thesis | 1.11.2023 | Malek Ben Alaya | running | Paper [MICCAI Workshops]

    +
    +
  • + +
  • +
    +

    Diffusion Models for Fetal US Anomaly Detection

    +

    GRP | 12.03.2024 | Hanna Mykula | finished | Paper [MICCAI Workshops]

    +
    +
  • + +
  • +
    +

    Unsupervised Representation Learning for Alzheimer’s Disease Quantification

    +

    GRP & PMSD | 12.03.2024 | Mehmet Yigit Avci | finished | Paper [MICCAI Workshops]

    +
    +
  • + +
  • +
    +

    Diffusion Models for Unsupervised Anomaly Detection

    +

    GRP | 24.10.2023 | Michael Neumayr | finished | Paper [ICML Workshops]

    +
    +
  • + +
  • +
    +

    Unsupervised Anomaly Detection in Fetal Brain Ultrasound

    +

    Master's Thesis | 15.08.2023 | Ruxandra Petrescu | finished |

    +
    +
  • + +
+
+ + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/cosmin-i.-bercea/index.xml b/author/cosmin-i.-bercea/index.xml new file mode 100644 index 0000000..10c025f --- /dev/null +++ b/author/cosmin-i.-bercea/index.xml @@ -0,0 +1,441 @@ + + + + Cosmin I. Bercea | Computational Imaging and AI in Medicine + https://compai-lab.io/author/cosmin-i.-bercea/ + + Cosmin I. Bercea + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/cosmin-i.-bercea/avatar_huc30509e39f40f5e42a3e593aaa26fe4e_5750588_270x270_fill_q75_lanczos_center.jpg + Cosmin I. Bercea + https://compai-lab.io/author/cosmin-i.-bercea/ + + + + AI for Vision-Language Models in Medical Imaging (IN2107) + https://compai-lab.io/teaching/vlm_seminar/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/teaching/vlm_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/vlm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p><strong>Time</strong>: Wednesday 14-16.</p> +<p><strong>Location</strong>: - Garching (in-person): FMI, 5610.01.11 <a href="https://nav.tum.de/room/5610.01.011" target="_blank" rel="noopener">https://nav.tum.de/room/5610.01.011</a></p> +<ul> +<li>some invited talks on Zoom: <a href="https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09" target="_blank" rel="noopener">https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09</a></li> +</ul> +<p>Vision-language models (VLMs) in medical imaging leverage the integration of visual data and textual information to enhance representation learning. These models can be pre-trained to improve representations, enabling a wide range of downstream applications. This seminar will explore foundational concepts, current methodologies, and recent advancements in applying vision-language models to diverse tasks in medical imaging, such as:</p> +<ul> +<li>Synthetic image synthesis</li> +<li>Anomaly detection</li> +<li>Clinical report generation</li> +<li>Visual-question answering</li> +<li>Classification</li> +<li>Segmentation</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an e-mail to <a href="mailto:cosmin.bercea@tum.de">cosmin.bercea@tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/VLM_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/VLM_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Five papers accepted at MICCAI 2023 workshops + https://compai-lab.io/post/iml_miccai_workshops/ + Thu, 14 Sep 2023 00:00:00 +0000 + https://compai-lab.io/post/iml_miccai_workshops/ + <p>Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p>Interested to hear more about our work? Then join us at the following workshops:</p> +<ul> +<li> +<p>Veronika Spieker will be at the <a href="https://dgm4miccai.github.io/" target="_blank" rel="noopener">DGM4</a> workshop to talk about <a href="https://arxiv.org/abs/2308.08830" target="_blank" rel="noopener">Neural Implicit Representations for Abdominal MR Reconstruction</a> on October 8, at 10:25.</p> +</li> +<li> +<p>Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the <a href="https://2023.sashimi-workshop.org/program/" target="_blank" rel="noopener">SASHIMI</a> workshop on October 8, at 14:40. Check out the <a href="https://arxiv.org/abs/2303.10987" target="_blank" rel="noopener">preprint</a> for more information!</p> +</li> +<li> +<p>Maxime Di Folco presents at the <a href="https://stacom.github.io/stacom2023/" target="_blank" rel="noopener">STACOM</a> workshop on October 12, at 11:15 the work of Josh Stein on &ldquo;Sparse annotation strategies for segmentation of short axis cardiac MRI&rdquo; (<a href="https://arxiv.org/abs/2307.12619" target="_blank" rel="noopener">preprint</a>).</p> +</li> +<li> +<p>Cosmin Bercea will talk about <a href="https://arxiv.org/pdf/2308.13861.pdf" target="_blank" rel="noopener">Bias in Unsupervised Anomaly Detection</a> at the <a href="https://faimi-workshop.github.io/2023-miccai/" target="_blank" rel="noopener">FAIMI</a> workshop on October 12, at 2:50 PDT.</p> +</li> +<li> +<p>Daniel Lang will talk about <a href="https://arxiv.org/abs/2303.05861" target="_blank" rel="noopener">Anomaly Detection in Non-Contrast Enhanced Breast MRI</a> at the <a href="https://caption-workshop.github.io/miccai2023/#Workshop%20sessions" target="_blank" rel="noopener">CaPTion</a> workshop on October 12.</p> +</li> +</ul> + + + + Unsupervised Anomaly Detection in Medical Imaging + https://compai-lab.io/teaching/anomaly_seminar/ + Wed, 19 Jul 2023 00:00:00 +0000 + https://compai-lab.io/teaching/anomaly_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/autoddpm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Anomaly detection aims to identify patterns that do not conform to the expected normal distribution. Despite its importance for clinical applications, the detection of outliers is still a very challenging task due to the rarity, unknownness, diversity, and heterogeneity of anomalies. Basic problem formulations to recent advances in the field will be discussed.</p> +<p>This includes, but is not limited to:</p> +<ul> +<li>Reconstruction-based anomaly segmentation</li> +<li>Probabilistic models, i.e., anomaly likelihood estimation</li> +<li>Generative models</li> +<li>Self-supervised-, contrastive methods</li> +<li>Unsupervised methods</li> +<li>Clinical Applications</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/UAD_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/UAD_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Two papers accepted at MICCAI 2023 + https://compai-lab.io/post/bercea_miccai/ + Fri, 26 May 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_miccai/ + <p>&ldquo;<em>What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection</em> and <em>Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection</em> by Cosmin I. Bercea et al. have been accepted for publication at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/morphaeus.gif" alt="MorphAEus" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<ul> +<li>Curios what auto-encoders actually learn? Check out <a href="https://ci.bercea.net/project/morphaeus/" target="_blank" rel="noopener">this</a> project page to find out more.</li> +</ul> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/phanes.gif" alt="PHANES" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<ul> +<li>How can we reverse anomalies in medical images? Check out the project <a href="https://ci.bercea.net/project/phanes/" target="_blank" rel="noopener">here</a>.</li> +</ul> + + + + Paper accepted at ICML IMLH 2023 + https://compai-lab.io/post/bercea_icml/ + Thu, 25 May 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_icml/ + <p>We are delighted to announce that our research on developing automatic diffusion models for anomaly detection has been accepted and will be published in the proceedings of the 3rd workshop for Interpretable Machine Learning in Healthcare, held at the International Conference on Machine Learning 2023. Congratulations to our dedicated student Michael for his outstanding contribution to this achievement!</p> +<p>Curious about how to solve the noise paradox illustrated below? Check out our <a href="https://ci.bercea.net/project/autoddpm/" target="_blank" rel="noopener">project page</a>.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/noise_paradox.gif" alt="AutoDDPM" loading="lazy" data-zoomable /></div> + </div></figure> +</p> + + + + Paper accepted at MIDL 2023 (oral talk) + https://compai-lab.io/post/bercea_midl/ + Fri, 28 Apr 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_midl/ + <p>&ldquo;<em>Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening</em>&rdquo; by Cosmin I. Bercea et al. has been accepted for publication at Medical Imaging with Deep Learning, Nashville, 2023. Cosmin Bercea will present his work on Monday, 10 July 2023 at 9:15 pm CEST.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/ra.png" alt="RA" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Moving beyond hyperintensity thresholding: This paper analyzes the challenges and outlines opportunities for advancing the field of unsupervised anomaly detection. Our proposed method RA outperformed SOTA methods on T1w brain MRIs, detecting more global anomalies (AUROC increased from 73.1 to 89.4) and local pathologies (detection rate increased from 52.6% to 86.0%).</p> +<p>Want to know more? Check the <a href="https://ci.bercea.net/project/ra/" target="_blank" rel="noopener">project site</a>.</p> + + + + New publication at Nature Machine Intelligence + https://compai-lab.io/post/bercea_nature/ + Tue, 02 Aug 2022 00:00:00 +0000 + https://compai-lab.io/post/bercea_nature/ + <p><em>Federated disentangled representation learning for unsupervised brain anomaly detection</em> by Cosmin I. Bercea et al. has been published at Nature Machine Intelligence.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/feddis.png" alt="Feddis" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>In this work, a federated algorithm was trained on more than 1,500 MR scans of healthy study participants from four institutions while maintaining data privacy with the goal to detect diseases such as multiple sclerosis, vascular disease, and various forms of brain tumors that the algorithm had never seen before.</p> +<p>Check the <a href="https://ci.bercea.net/project/feddis/" target="_blank" rel="noopener">project site</a> for more information.</p> + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection + https://compai-lab.io/publication/bercea-2022-we/ + Wed, 08 Jun 2022 00:00:00 +0000 + https://compai-lab.io/publication/bercea-2022-we/ + <div class="alert alert-note"> + <div> + Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software. + </div> +</div> + + + + + diff --git a/author/daniel-m.-lang/avatar.png b/author/daniel-m.-lang/avatar.png new file mode 100644 index 0000000..92246a6 Binary files /dev/null and b/author/daniel-m.-lang/avatar.png differ diff --git a/author/daniel-m.-lang/avatar_hu30628bf96a1bbbf825de70e7e388d37a_614916_270x270_fill_lanczos_center_3.png b/author/daniel-m.-lang/avatar_hu30628bf96a1bbbf825de70e7e388d37a_614916_270x270_fill_lanczos_center_3.png new file mode 100644 index 0000000..85abcbf Binary files /dev/null and b/author/daniel-m.-lang/avatar_hu30628bf96a1bbbf825de70e7e388d37a_614916_270x270_fill_lanczos_center_3.png differ diff --git a/author/daniel-m.-lang/index.html b/author/daniel-m.-lang/index.html new file mode 100644 index 0000000..89f6fd6 --- /dev/null +++ b/author/daniel-m.-lang/index.html @@ -0,0 +1,1206 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Daniel M. Lang | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Daniel M. Lang + + +
+ +

Daniel M. Lang

+ +

Research Scientist

+ + +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Daniel Lang will be a postdoc at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. +His research interest focuses on the application of deep learning models for problem settings in the field of +medical imaging with a special focus on cancer management. +He is particularly interested in topics like transfer and selfsupervised learning, out of distribution problems and +domain adaptation, and survival analysis.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Self-supervised Learning
  • + +
  • Transfer Learning
  • + +
  • Survival Analysis
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    PhD in Physics, 2022

    +

    Helmholtz Munich and Technical University Munich

    +
    +
  • + +
  • + +
    +

    MSc in Physics, 2018

    +

    University Regensburg

    +
    +
  • + +
  • + +
    +

    BSc in Physics, 2016

    +

    University Regensburg

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/daniel-m.-lang/index.xml b/author/daniel-m.-lang/index.xml new file mode 100644 index 0000000..237cbe1 --- /dev/null +++ b/author/daniel-m.-lang/index.xml @@ -0,0 +1,129 @@ + + + + Daniel M. Lang | Computational Imaging and AI in Medicine + https://compai-lab.io/author/daniel-m.-lang/ + + Daniel M. Lang + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/daniel-m.-lang/avatar_hu30628bf96a1bbbf825de70e7e388d37a_614916_270x270_fill_lanczos_center_3.png + Daniel M. Lang + https://compai-lab.io/author/daniel-m.-lang/ + + + + Temporal Landmark Tracking on Medical Imaging + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + <p>Abstract:</p> +<p>Even though various learning-based computer vision methods have been developed for pixel tracking, motion estimation in video data depicts a challenging task. Part of the problem arises from the 3D-to-2D projection process that can lead to out-of-plane motion, which impedes long-range pixel trajectory estimation. In the medical domain, video data, i.e. fast magnetic resonance imaging (MRI) sequences, can be used for guidance during treatment. Specifically, in radiation therapy, contouring algorithms are used for tracking of the target volume supposed to receive the main radiation dose during treatment. Delineation can, for example, be performed with a U-Net architecture. However, such an approach only allows for identification of larger structures, while irregular movement can be subtle and localized. Landmark detection models are able to identify such localized regions between different representations of the same object. Furthermore, they are faster than semantic segmentation models, and therefore, allow for computer aided intervention during treatment. In this thesis, different state-of-the-art landmark and pixel tracking algorithms will be tested and further enhanced to identify movement on temporal imaging data of the lungs, i.e. 4D CT. Furthermore, ability of such landmarks to identify movement differing from a normal state, i.e. allowing for identification of anomalies, will be studied.</p> + + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + Paper Accepted at MELBA Journal + https://compai-lab.io/post/fischer_melba_24/ + Fri, 14 Jun 2024 00:00:00 +0000 + https://compai-lab.io/post/fischer_melba_24/ + <p>Stefan M. Fischer&rsquo;s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.<br> +Therefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal. +The journal submission &ldquo;<em>Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge</em>&rdquo; is now available at MELBA.<br> +The paper is available <a href="https://www.melba-journal.org/papers/2024:008.html" target="_blank" rel="noopener">here</a>.</p> + + + + + Five papers accepted at MICCAI 2023 workshops + https://compai-lab.io/post/iml_miccai_workshops/ + Thu, 14 Sep 2023 00:00:00 +0000 + https://compai-lab.io/post/iml_miccai_workshops/ + <p>Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p>Interested to hear more about our work? Then join us at the following workshops:</p> +<ul> +<li> +<p>Veronika Spieker will be at the <a href="https://dgm4miccai.github.io/" target="_blank" rel="noopener">DGM4</a> workshop to talk about <a href="https://arxiv.org/abs/2308.08830" target="_blank" rel="noopener">Neural Implicit Representations for Abdominal MR Reconstruction</a> on October 8, at 10:25.</p> +</li> +<li> +<p>Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the <a href="https://2023.sashimi-workshop.org/program/" target="_blank" rel="noopener">SASHIMI</a> workshop on October 8, at 14:40. Check out the <a href="https://arxiv.org/abs/2303.10987" target="_blank" rel="noopener">preprint</a> for more information!</p> +</li> +<li> +<p>Maxime Di Folco presents at the <a href="https://stacom.github.io/stacom2023/" target="_blank" rel="noopener">STACOM</a> workshop on October 12, at 11:15 the work of Josh Stein on &ldquo;Sparse annotation strategies for segmentation of short axis cardiac MRI&rdquo; (<a href="https://arxiv.org/abs/2307.12619" target="_blank" rel="noopener">preprint</a>).</p> +</li> +<li> +<p>Cosmin Bercea will talk about <a href="https://arxiv.org/pdf/2308.13861.pdf" target="_blank" rel="noopener">Bias in Unsupervised Anomaly Detection</a> at the <a href="https://faimi-workshop.github.io/2023-miccai/" target="_blank" rel="noopener">FAIMI</a> workshop on October 12, at 2:50 PDT.</p> +</li> +<li> +<p>Daniel Lang will talk about <a href="https://arxiv.org/abs/2303.05861" target="_blank" rel="noopener">Anomaly Detection in Non-Contrast Enhanced Breast MRI</a> at the <a href="https://caption-workshop.github.io/miccai2023/#Workshop%20sessions" target="_blank" rel="noopener">CaPTion</a> workshop on October 12.</p> +</li> +</ul> + + + + diff --git a/author/daniel-rueckert/index.html b/author/daniel-rueckert/index.html new file mode 100644 index 0000000..cb13d84 --- /dev/null +++ b/author/daniel-rueckert/index.html @@ -0,0 +1,1025 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Daniel Rueckert | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Daniel Rueckert

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/daniel-rueckert/index.xml b/author/daniel-rueckert/index.xml new file mode 100644 index 0000000..23757b5 --- /dev/null +++ b/author/daniel-rueckert/index.xml @@ -0,0 +1,69 @@ + + + + Daniel Rueckert | Computational Imaging and AI in Medicine + https://compai-lab.io/author/daniel-rueckert/ + + Daniel Rueckert + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Daniel Rueckert + https://compai-lab.io/author/daniel-rueckert/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection + https://compai-lab.io/publication/bercea-2022-we/ + Wed, 08 Jun 2022 00:00:00 +0000 + https://compai-lab.io/publication/bercea-2022-we/ + <div class="alert alert-note"> + <div> + Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software. + </div> +</div> + + + + + Model-Based and Data-Driven Strategies in Medical Image Computing + https://compai-lab.io/fpublications/8867900/ + Wed, 01 Jan 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/8867900/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + Wed, 01 Jan 2003 00:00:00 +0000 + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/devran-ugurlu/index.html b/author/devran-ugurlu/index.html new file mode 100644 index 0000000..71c5e96 --- /dev/null +++ b/author/devran-ugurlu/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Devran Ugurlu | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Devran Ugurlu

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/devran-ugurlu/index.xml b/author/devran-ugurlu/index.xml new file mode 100644 index 0000000..a9ea897 --- /dev/null +++ b/author/devran-ugurlu/index.xml @@ -0,0 +1,24 @@ + + + + Devran Ugurlu | Computational Imaging and AI in Medicine + https://compai-lab.io/author/devran-ugurlu/ + + Devran Ugurlu + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Devran Ugurlu + https://compai-lab.io/author/devran-ugurlu/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + diff --git a/author/dimitrios-c.-karampinos/index.html b/author/dimitrios-c.-karampinos/index.html new file mode 100644 index 0000000..df6b747 --- /dev/null +++ b/author/dimitrios-c.-karampinos/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Dimitrios C. Karampinos | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Dimitrios C. Karampinos

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/dimitrios-c.-karampinos/index.xml b/author/dimitrios-c.-karampinos/index.xml new file mode 100644 index 0000000..77c576e --- /dev/null +++ b/author/dimitrios-c.-karampinos/index.xml @@ -0,0 +1,24 @@ + + + + Dimitrios C. Karampinos | Computational Imaging and AI in Medicine + https://compai-lab.io/author/dimitrios-c.-karampinos/ + + Dimitrios C. Karampinos + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Dimitrios C. Karampinos + https://compai-lab.io/author/dimitrios-c.-karampinos/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + diff --git a/author/emily-chan/avatar.jpeg b/author/emily-chan/avatar.jpeg new file mode 100644 index 0000000..adb4555 Binary files /dev/null and b/author/emily-chan/avatar.jpeg differ diff --git a/author/emily-chan/avatar_huab130116b9157878b623ecf4f875c2f7_2491220_270x270_fill_q75_lanczos_center.jpeg b/author/emily-chan/avatar_huab130116b9157878b623ecf4f875c2f7_2491220_270x270_fill_q75_lanczos_center.jpeg new file mode 100644 index 0000000..510ace8 Binary files /dev/null and b/author/emily-chan/avatar_huab130116b9157878b623ecf4f875c2f7_2491220_270x270_fill_q75_lanczos_center.jpeg differ diff --git a/author/emily-chan/index.html b/author/emily-chan/index.html new file mode 100644 index 0000000..c17841a --- /dev/null +++ b/author/emily-chan/index.html @@ -0,0 +1,1158 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Emily Chan | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Emily Chan + + +
+ +

Emily Chan

+ +

Research Scientist

+ + +

+ + Helmholtz Center Munich + +

+ +

+ + King's College London + +

+ +
+ + + +
+
+
+ + + + +
+

Emily Chan is a postdoctoral researcher at the Institute of Machine Learning for Biomedical Imaging at Helmholtz Munich. She received her PhD in 2022 from King’s College London, where she worked on utilising classical machine learning and deep learning techniques with limited and imbalanced data for MR liver imaging, in collaboration with Perspectum. She is particularly interested in the automation of various clinically-relevant tasks in radiology, with her research at the IML focusing on deep learning for the early diagnosis and prognosis of Alzheimer’s disease.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Medical image computing
  • + +
  • Transfer learning
  • + +
  • Multi-modal learning
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    PhD in Biomedical Engineering, 2022

    +

    King's College London

    +
    +
  • + +
  • + +
    +

    MEng in Biomedical Engineering, 2016

    +

    Imperial College London

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/emily-chan/index.xml b/author/emily-chan/index.xml new file mode 100644 index 0000000..b9018e4 --- /dev/null +++ b/author/emily-chan/index.xml @@ -0,0 +1,16 @@ + + + + Emily Chan | Computational Imaging and AI in Medicine + https://compai-lab.io/author/emily-chan/ + + Emily Chan + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/emily-chan/avatar_huab130116b9157878b623ecf4f875c2f7_2491220_270x270_fill_q75_lanczos_center.jpeg + Emily Chan + https://compai-lab.io/author/emily-chan/ + + + + diff --git a/author/esther-puyol-anton/index.html b/author/esther-puyol-anton/index.html new file mode 100644 index 0000000..518bb2b --- /dev/null +++ b/author/esther-puyol-anton/index.html @@ -0,0 +1,1013 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Esther Puyol-Antón | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Esther Puyol-Antón

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/esther-puyol-anton/index.xml b/author/esther-puyol-anton/index.xml new file mode 100644 index 0000000..331975c --- /dev/null +++ b/author/esther-puyol-anton/index.xml @@ -0,0 +1,40 @@ + + + + Esther Puyol-Antón | Computational Imaging and AI in Medicine + https://compai-lab.io/author/esther-puyol-anton/ + + Esther Puyol-Antón + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Esther Puyol-Antón + https://compai-lab.io/author/esther-puyol-anton/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/fergus-v-gleeson/index.html b/author/fergus-v-gleeson/index.html new file mode 100644 index 0000000..461372f --- /dev/null +++ b/author/fergus-v-gleeson/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Fergus V Gleeson | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Fergus V Gleeson

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/fergus-v-gleeson/index.xml b/author/fergus-v-gleeson/index.xml new file mode 100644 index 0000000..e88bc5e --- /dev/null +++ b/author/fergus-v-gleeson/index.xml @@ -0,0 +1,24 @@ + + + + Fergus V Gleeson | Computational Imaging and AI in Medicine + https://compai-lab.io/author/fergus-v-gleeson/ + + Fergus V Gleeson + Wowchemy (https://wowchemy.com)en-usSun, 01 Jan 2012 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Fergus V Gleeson + https://compai-lab.io/author/fergus-v-gleeson/ + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + diff --git a/author/fryderyk-kogl/avatar.jpg b/author/fryderyk-kogl/avatar.jpg new file mode 100644 index 0000000..f343b2e Binary files /dev/null and b/author/fryderyk-kogl/avatar.jpg differ diff --git a/author/fryderyk-kogl/avatar_hud2a3dd6e2d1bc63c3ea6e1af5c8037be_4177857_270x270_fill_q75_lanczos_center.jpg b/author/fryderyk-kogl/avatar_hud2a3dd6e2d1bc63c3ea6e1af5c8037be_4177857_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..858ec11 Binary files /dev/null and b/author/fryderyk-kogl/avatar_hud2a3dd6e2d1bc63c3ea6e1af5c8037be_4177857_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/fryderyk-kogl/index.html b/author/fryderyk-kogl/index.html new file mode 100644 index 0000000..ed3dd30 --- /dev/null +++ b/author/fryderyk-kogl/index.html @@ -0,0 +1,1192 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Fryderyk Kögl | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Fryderyk Kögl + + +
+ +

Fryderyk Kögl

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + MRI TUM Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Fryderyk Kögl is a PhD student at the Chair of Computational Imaging and AI in Medicine at the Technical University Munich (TUM). He received his B.Sc. in Engineering Science and M.Sc. in Biomedical Computing from TUM. In his Master’s thesis at the Harvard Medical School he curated the largest public dataset for pre- to post-MR/iMR/US registration, developed a 3D Slicer extension for data curation, developed a low-cost and tool-free neuronavigation method and worked on deep learning patch-based registration. His research interests lie in deep Learning-based image registration, data curation & visualisation and neuronavigation.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Deep Learning-Based Image Registration
  • + +
  • Data Curation & Visualisation
  • + +
  • Neuronavigation
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Biomedical Computing, 2023

    +

    TU Munich

    +
    +
  • + +
  • + +
    +

    B.Sc. in Engineering Science, 2019

    +

    TU Munich

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/fryderyk-kogl/index.xml b/author/fryderyk-kogl/index.xml new file mode 100644 index 0000000..f66f036 --- /dev/null +++ b/author/fryderyk-kogl/index.xml @@ -0,0 +1,112 @@ + + + + Fryderyk Kögl | Computational Imaging and AI in Medicine + https://compai-lab.io/author/fryderyk-kogl/ + + Fryderyk Kögl + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/fryderyk-kogl/avatar_hud2a3dd6e2d1bc63c3ea6e1af5c8037be_4177857_270x270_fill_q75_lanczos_center.jpg + Fryderyk Kögl + https://compai-lab.io/author/fryderyk-kogl/ + + + + Master Seminar - Medical Image Registration (IN2107, IN4462) + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + <p><strong>Time</strong>: Wednesday 10-12 a.m.</p> +<p><strong>Location</strong>: Garching (in-person)</p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning</li> +<li>Interest in medical image analysis</li> +</ul> +<p>Goal and organization:</p> +<p>The participating students will learn the fundamental concepts of image registration. They will acquire the skills to analyze critically state-of-the-art research work and to define own research questions. Basic concepts will be introduced with an overview of different research topics. +The participants will select a research paper (suggestions given by the lecturers) and independently work on it with a final oral presentation and a written report. +Presentations of members of international research groups will provide the students with insights into state-of-the-art research in the field.</p> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an email to <a href="mailto:anna.reithmeir@tum.de">anna.reithmeir@tum.de</a>.</p> +<p>The seminar will take place Wednesdays from 10 a.m. to 12.a.m. in Garching.</p> + + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + diff --git a/author/gary-cook/index.html b/author/gary-cook/index.html new file mode 100644 index 0000000..7df396d --- /dev/null +++ b/author/gary-cook/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Gary Cook | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Gary Cook

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/gary-cook/index.xml b/author/gary-cook/index.xml new file mode 100644 index 0000000..cce85ce --- /dev/null +++ b/author/gary-cook/index.xml @@ -0,0 +1,24 @@ + + + + Gary Cook | Computational Imaging and AI in Medicine + https://compai-lab.io/author/gary-cook/ + + Gary Cook + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Gary Cook + https://compai-lab.io/author/gary-cook/ + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/author/gastao-cruz/index.html b/author/gastao-cruz/index.html new file mode 100644 index 0000000..da9ce35 --- /dev/null +++ b/author/gastao-cruz/index.html @@ -0,0 +1,1013 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Gastao Cruz | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Gastao Cruz

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/gastao-cruz/index.xml b/author/gastao-cruz/index.xml new file mode 100644 index 0000000..d0b92ba --- /dev/null +++ b/author/gastao-cruz/index.xml @@ -0,0 +1,40 @@ + + + + Gastao Cruz | Computational Imaging and AI in Medicine + https://compai-lab.io/author/gastao-cruz/ + + Gastao Cruz + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Gastao Cruz + https://compai-lab.io/author/gastao-cruz/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/georgios-kaissis/avatar.jpg b/author/georgios-kaissis/avatar.jpg new file mode 100644 index 0000000..28a67fc Binary files /dev/null and b/author/georgios-kaissis/avatar.jpg differ diff --git a/author/georgios-kaissis/avatar_hu69214d0d22e213af59e9b178bb07c547_14158_270x270_fill_q75_lanczos_center.jpg b/author/georgios-kaissis/avatar_hu69214d0d22e213af59e9b178bb07c547_14158_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..803f6d8 Binary files /dev/null and b/author/georgios-kaissis/avatar_hu69214d0d22e213af59e9b178bb07c547_14158_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/georgios-kaissis/index.html b/author/georgios-kaissis/index.html new file mode 100644 index 0000000..f3fd5c5 --- /dev/null +++ b/author/georgios-kaissis/index.html @@ -0,0 +1,1176 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Georgios Kaissis | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Georgios Kaissis + + +
+ +

Georgios Kaissis

+ +

Principal Investigator

+ + +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Georgios Kaissis is a principal investigator at the Institute of Biomedical Machine Learning (IML) at the Helmholtz Center Munich, a senior research scientist at the Institute of Artificial Intelligence and Informatics in Medicine and specialist diagnostic radiologist at the Institute for Radiology at TUM, a postdoctoral researcher at the Department of Computing at Imperial College London and leads the Healthcare Unit at OpenMined. His research concentrates on biomedical image analysis with a focus on next-generation privacy-preserving machine learning methods as well as probabilistic methods for the design and deployment of robust, secure, fair and transparent machine learning algorithms to medical imaging workflows.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Reliable artificial intelligence
  • + +
  • Medical image computing
  • + +
  • Probabilistic methods
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    PostDoc in AI for medical imaging

    +

    Imperial College London, UK

    +
    +
  • + +
  • + +
    +

    Specialist Radiologist

    +

    Technical University of Munich, Germany

    +
    +
  • + +
  • + +
    +

    Doctorate in molecular medicine and systems biology (Dr. med.)

    +

    LMU Munich, Germany

    +
    +
  • + +
  • + +
    +

    Medical Degree

    +

    LMU Munich, Germany

    +
    +
  • + +
  • + +
    +

    Master of Healthcare Business Administration

    +

    FAU Erlangen-Nuremberg, Germany

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/georgios-kaissis/index.xml b/author/georgios-kaissis/index.xml new file mode 100644 index 0000000..5b91283 --- /dev/null +++ b/author/georgios-kaissis/index.xml @@ -0,0 +1,16 @@ + + + + Georgios Kaissis | Computational Imaging and AI in Medicine + https://compai-lab.io/author/georgios-kaissis/ + + Georgios Kaissis + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/georgios-kaissis/avatar_hu69214d0d22e213af59e9b178bb07c547_14158_270x270_fill_q75_lanczos_center.jpg + Georgios Kaissis + https://compai-lab.io/author/georgios-kaissis/ + + + + diff --git a/author/graeme-p-penney/index.html b/author/graeme-p-penney/index.html new file mode 100644 index 0000000..3cb7351 --- /dev/null +++ b/author/graeme-p-penney/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Graeme P Penney | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Graeme P Penney

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/graeme-p-penney/index.xml b/author/graeme-p-penney/index.xml new file mode 100644 index 0000000..8270805 --- /dev/null +++ b/author/graeme-p-penney/index.xml @@ -0,0 +1,24 @@ + + + + Graeme P Penney | Computational Imaging and AI in Medicine + https://compai-lab.io/author/graeme-p-penney/ + + Graeme P Penney + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Graeme P Penney + https://compai-lab.io/author/graeme-p-penney/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/ha-young-kim/avatar.jpg b/author/ha-young-kim/avatar.jpg new file mode 100644 index 0000000..36a9e76 Binary files /dev/null and b/author/ha-young-kim/avatar.jpg differ diff --git a/author/ha-young-kim/avatar_huf9e14263d504df0501347eacdbd4fdc6_301176_270x270_fill_q75_lanczos_center.jpg b/author/ha-young-kim/avatar_huf9e14263d504df0501347eacdbd4fdc6_301176_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..703353c Binary files /dev/null and b/author/ha-young-kim/avatar_huf9e14263d504df0501347eacdbd4fdc6_301176_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/ha-young-kim/index.html b/author/ha-young-kim/index.html new file mode 100644 index 0000000..3a3685c --- /dev/null +++ b/author/ha-young-kim/index.html @@ -0,0 +1,1142 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Ha Young Kim | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Ha Young Kim + + +
+ +

Ha Young Kim

+ +

Doctoral Researcher

+ + +

+ + GE HealthCare + +

+ +

+ + Technical University of Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Ha Young Kim is a PhD student at the Chair of Computational Imaging and AI in Medicine at TU Munich. +She received her M.Sc. in Biomedical Computing from TU Munich with a focus on magnetic resonance image reconstruction and postprocessing. +In her Master’s thesis at GE HealthCare, she demonstrated the feasibility of using deep learning reconstruction for quantitative transient-state imaging on prostate imaging. +Her research interests lie in the analysis and development magnetic resonance imaging in combination with machine learning algorithms.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Magnetic Resonance Imaging
  • + +
  • Alzheimer’s disease
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Biomedical Computing, 2024

    +

    TU Munich

    +
    +
  • + +
  • + +
    +

    B.Sc. Electrical and Computer Engineering, 2020

    +

    Jacobs University

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/ha-young-kim/index.xml b/author/ha-young-kim/index.xml new file mode 100644 index 0000000..432299b --- /dev/null +++ b/author/ha-young-kim/index.xml @@ -0,0 +1,16 @@ + + + + Ha Young Kim | Computational Imaging and AI in Medicine + https://compai-lab.io/author/ha-young-kim/ + + Ha Young Kim + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/ha-young-kim/avatar_huf9e14263d504df0501347eacdbd4fdc6_301176_270x270_fill_q75_lanczos_center.jpg + Ha Young Kim + https://compai-lab.io/author/ha-young-kim/ + + + + diff --git a/author/haiying-liu/index.html b/author/haiying-liu/index.html new file mode 100644 index 0000000..4194ceb --- /dev/null +++ b/author/haiying-liu/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Haiying Liu | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Haiying Liu

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/haiying-liu/index.xml b/author/haiying-liu/index.xml new file mode 100644 index 0000000..a63eff5 --- /dev/null +++ b/author/haiying-liu/index.xml @@ -0,0 +1,24 @@ + + + + Haiying Liu | Computational Imaging and AI in Medicine + https://compai-lab.io/author/haiying-liu/ + + Haiying Liu + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Haiying Liu + https://compai-lab.io/author/haiying-liu/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/hannah-eichhorn/avatar.jpg b/author/hannah-eichhorn/avatar.jpg new file mode 100644 index 0000000..601e688 Binary files /dev/null and b/author/hannah-eichhorn/avatar.jpg differ diff --git a/author/hannah-eichhorn/avatar_hu9531ded0c7e72b6a4aaaeb59428f1070_698566_270x270_fill_q75_lanczos_center.jpg b/author/hannah-eichhorn/avatar_hu9531ded0c7e72b6a4aaaeb59428f1070_698566_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..c392cea Binary files /dev/null and b/author/hannah-eichhorn/avatar_hu9531ded0c7e72b6a4aaaeb59428f1070_698566_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/hannah-eichhorn/index.html b/author/hannah-eichhorn/index.html new file mode 100644 index 0000000..9bfd159 --- /dev/null +++ b/author/hannah-eichhorn/index.html @@ -0,0 +1,1212 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Hannah Eichhorn | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Hannah Eichhorn + + +
+ +

Hannah Eichhorn

+ +

Doctoral Researcher

+ + +

+ + Helmholtz Center Munich + +

+ +

+ + Technical University Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Hannah Eichhorn is a PhD student at the Institute of Machine Learning in Biomedical Imaging (IML), Helmholtz Munich. She received her B.Sc. in Physics from Heidelberg University and her M.Sc. in Bio- and Medical Physics from University of Copenhagen. In her Master’s thesis at the Neurobiology Research Unit, Copenhagen University Hospital, she worked on prospective motion correction for brain magnetic resonance imaging (MRI). Her doctoral research focuses on deep-learning based reconstruction and motion correction of multi-parametric brain MRI, in collaboration with the Neuroscientific MR-Physics research group at Klinikum rechts der Isar (TUM).

+ +
+ +
+ + +
+
Interests
+
    + +
  • Brain Magnetic Resonance Imaging
  • + +
  • Image reconstruction & Motion Correction
  • + +
  • Deep learning
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    MSc in Bio- and Medical Physics, 2021

    +

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    +
    +
  • + +
  • + +
    +

    BSc in Physics, 2018

    +

    Heidelberg University, Heidelberg, Germany

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/hannah-eichhorn/index.xml b/author/hannah-eichhorn/index.xml new file mode 100644 index 0000000..e0946cc --- /dev/null +++ b/author/hannah-eichhorn/index.xml @@ -0,0 +1,162 @@ + + + + Hannah Eichhorn | Computational Imaging and AI in Medicine + https://compai-lab.io/author/hannah-eichhorn/ + + Hannah Eichhorn + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/hannah-eichhorn/avatar_hu9531ded0c7e72b6a4aaaeb59428f1070_698566_270x270_fill_q75_lanczos_center.jpg + Hannah Eichhorn + https://compai-lab.io/author/hannah-eichhorn/ + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Hannah Eichhorn elected as ISMRM Study Group Trainee Representative + https://compai-lab.io/post/eichhorn_study_group_5_24/ + Thu, 23 May 2024 00:00:00 +0000 + https://compai-lab.io/post/eichhorn_study_group_5_24/ + <p>Hannah Eichhorn has been elected as Trainee Representative of the ISMRM Motion Detection &amp; Correction Study Group. She started her term at the ISMRM Annual Meeting in Singapore in the beginning of May.</p> +<p>The Study Group&rsquo;s mission is to investigate how various forms of motion can affect MR data, how motion can be detected, how to deal best with motion-corrupted data, and what can be done to prevent MR data from getting corrupted by motion.</p> + + + + + Two abstracts accepted at 2024 ISMRM & ISMRT Annual Meeting (oral talks) + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + Thu, 01 Feb 2024 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as orals at the 2024 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Hannah Eichhorn will present her work &ldquo;<em>PHIMO: Physics-Informed Motion Correction of GRE MRI for T2</em> Quantification*&rdquo; on Tuesday, 07 May 2024 at 8:15 am SGT. Check <a href="https://github.com/HannahEichhorn/PHIMO" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> +<p>Veronika Spieker will present her work &ldquo;<em>DE-NIK: Leveraging Dual-Echo Data for Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit k-Space Representations</em>&rdquo; on Monday, 06 May 2024 at 8:15 am SGT. Check <a href="https://github.com/vjspi/DE-NIK" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + Review paper accepted at IEEE Transactions on Medical Imaging + https://compai-lab.io/post/spieker_eichhorn_tmi/ + Wed, 25 Oct 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_tmi/ + <p><em>Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review</em> by Veronika Spieker and Hannah Eichhorn et al. has been accepted for publication at IEEE Transactions on Medical Imaging.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img alt="img" srcset=" + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp 400w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_59a22aa363f30bc9c49ab63c04f6c200.webp 760w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_1200x1200_fit_q75_h2_lanczos_3.webp 1200w" + src="https://compai-lab.io/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp" + width="760" + height="713" + loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Motion remains a major challenge in MRI and various deep learning solutions have been proposed – but what are common challenges and potentials? Check out <a href="https://ieeexplore.ieee.org/document/10285512" target="_blank" rel="noopener">this review</a>, which identifies differences and synergies of recent methods and bridges the gap between AI and MR physics.</p> + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + Five papers accepted at MICCAI 2023 workshops + https://compai-lab.io/post/iml_miccai_workshops/ + Thu, 14 Sep 2023 00:00:00 +0000 + https://compai-lab.io/post/iml_miccai_workshops/ + <p>Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p>Interested to hear more about our work? Then join us at the following workshops:</p> +<ul> +<li> +<p>Veronika Spieker will be at the <a href="https://dgm4miccai.github.io/" target="_blank" rel="noopener">DGM4</a> workshop to talk about <a href="https://arxiv.org/abs/2308.08830" target="_blank" rel="noopener">Neural Implicit Representations for Abdominal MR Reconstruction</a> on October 8, at 10:25.</p> +</li> +<li> +<p>Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the <a href="https://2023.sashimi-workshop.org/program/" target="_blank" rel="noopener">SASHIMI</a> workshop on October 8, at 14:40. Check out the <a href="https://arxiv.org/abs/2303.10987" target="_blank" rel="noopener">preprint</a> for more information!</p> +</li> +<li> +<p>Maxime Di Folco presents at the <a href="https://stacom.github.io/stacom2023/" target="_blank" rel="noopener">STACOM</a> workshop on October 12, at 11:15 the work of Josh Stein on &ldquo;Sparse annotation strategies for segmentation of short axis cardiac MRI&rdquo; (<a href="https://arxiv.org/abs/2307.12619" target="_blank" rel="noopener">preprint</a>).</p> +</li> +<li> +<p>Cosmin Bercea will talk about <a href="https://arxiv.org/pdf/2308.13861.pdf" target="_blank" rel="noopener">Bias in Unsupervised Anomaly Detection</a> at the <a href="https://faimi-workshop.github.io/2023-miccai/" target="_blank" rel="noopener">FAIMI</a> workshop on October 12, at 2:50 PDT.</p> +</li> +<li> +<p>Daniel Lang will talk about <a href="https://arxiv.org/abs/2303.05861" target="_blank" rel="noopener">Anomaly Detection in Non-Contrast Enhanced Breast MRI</a> at the <a href="https://caption-workshop.github.io/miccai2023/#Workshop%20sessions" target="_blank" rel="noopener">CaPTion</a> workshop on October 12.</p> +</li> +</ul> + + + + Abstracts accepted at 2023 ISMRM & ISMRT Annual Meeting + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + Tue, 25 Apr 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as digital posters at the 2023 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Veronika Spieker will present her work on &ldquo;<em>Patient-specific respiratory liver motion analysis for individual motion-resolved reconstruction</em>&rdquo; on Monday, 05 June 2023 at 1:45 pm EDT.</p> +<p>Hannah Eichhorn will present her work on &ldquo;<em>Investigating the Impact of Motion and Associated B0 Changes on Oxygenation Sensitive MRI through Realistic Simulations</em>&rdquo; on Tuesday, 06 June 2023 at 4:45 pm EDT. Check <a href="https://github.com/HannahEichhorn/T2starRealisticMotionSimulation" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + diff --git a/author/ihsane-olakorede/index.html b/author/ihsane-olakorede/index.html new file mode 100644 index 0000000..d68d068 --- /dev/null +++ b/author/ihsane-olakorede/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Ihsane Olakorede | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Ihsane Olakorede

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/ihsane-olakorede/index.xml b/author/ihsane-olakorede/index.xml new file mode 100644 index 0000000..5cd6268 --- /dev/null +++ b/author/ihsane-olakorede/index.xml @@ -0,0 +1,24 @@ + + + + Ihsane Olakorede | Computational Imaging and AI in Medicine + https://compai-lab.io/author/ihsane-olakorede/ + + Ihsane Olakorede + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Ihsane Olakorede + https://compai-lab.io/author/ihsane-olakorede/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + diff --git a/author/ilkay-oksuz/index.html b/author/ilkay-oksuz/index.html new file mode 100644 index 0000000..4572fe1 --- /dev/null +++ b/author/ilkay-oksuz/index.html @@ -0,0 +1,1017 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Ilkay Oksuz | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Ilkay Oksuz

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/ilkay-oksuz/index.xml b/author/ilkay-oksuz/index.xml new file mode 100644 index 0000000..547dbe7 --- /dev/null +++ b/author/ilkay-oksuz/index.xml @@ -0,0 +1,48 @@ + + + + Ilkay Oksuz | Computational Imaging and AI in Medicine + https://compai-lab.io/author/ilkay-oksuz/ + + Ilkay Oksuz + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Ilkay Oksuz + https://compai-lab.io/author/ilkay-oksuz/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/ines-p-machado/index.html b/author/ines-p-machado/index.html new file mode 100644 index 0000000..b34f845 --- /dev/null +++ b/author/ines-p-machado/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Inês P Machado | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Inês P Machado

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/ines-p-machado/index.xml b/author/ines-p-machado/index.xml new file mode 100644 index 0000000..022cd10 --- /dev/null +++ b/author/ines-p-machado/index.xml @@ -0,0 +1,24 @@ + + + + Inês P Machado | Computational Imaging and AI in Medicine + https://compai-lab.io/author/ines-p-machado/ + + Inês P Machado + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Inês P Machado + https://compai-lab.io/author/ines-p-machado/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + diff --git a/author/irene-buvat/index.html b/author/irene-buvat/index.html new file mode 100644 index 0000000..61a003e --- /dev/null +++ b/author/irene-buvat/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Irène Buvat | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Irène Buvat

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/irene-buvat/index.xml b/author/irene-buvat/index.xml new file mode 100644 index 0000000..71fd977 --- /dev/null +++ b/author/irene-buvat/index.xml @@ -0,0 +1,24 @@ + + + + Irène Buvat | Computational Imaging and AI in Medicine + https://compai-lab.io/author/irene-buvat/ + + Irène Buvat + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Irène Buvat + https://compai-lab.io/author/irene-buvat/ + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/author/james-r-clough/index.html b/author/james-r-clough/index.html new file mode 100644 index 0000000..1252f44 --- /dev/null +++ b/author/james-r-clough/index.html @@ -0,0 +1,1009 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + James R Clough | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

James R Clough

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/james-r-clough/index.xml b/author/james-r-clough/index.xml new file mode 100644 index 0000000..1ab962d --- /dev/null +++ b/author/james-r-clough/index.xml @@ -0,0 +1,32 @@ + + + + James R Clough | Computational Imaging and AI in Medicine + https://compai-lab.io/author/james-r-clough/ + + James R Clough + Wowchemy (https://wowchemy.com)en-usTue, 01 Dec 2020 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + James R Clough + https://compai-lab.io/author/james-r-clough/ + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + diff --git a/author/james-r.-clough/index.html b/author/james-r.-clough/index.html new file mode 100644 index 0000000..be0ffd3 --- /dev/null +++ b/author/james-r.-clough/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + James R. Clough | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

James R. Clough

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/james-r.-clough/index.xml b/author/james-r.-clough/index.xml new file mode 100644 index 0000000..1299d21 --- /dev/null +++ b/author/james-r.-clough/index.xml @@ -0,0 +1,24 @@ + + + + James R. Clough | Computational Imaging and AI in Medicine + https://compai-lab.io/author/james-r.-clough/ + + James R. Clough + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + James R. Clough + https://compai-lab.io/author/james-r.-clough/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/jane-m-blackall/index.html b/author/jane-m-blackall/index.html new file mode 100644 index 0000000..6fd73ef --- /dev/null +++ b/author/jane-m-blackall/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Jane M Blackall | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Jane M Blackall

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/jane-m-blackall/index.xml b/author/jane-m-blackall/index.xml new file mode 100644 index 0000000..882a9a1 --- /dev/null +++ b/author/jane-m-blackall/index.xml @@ -0,0 +1,24 @@ + + + + Jane M Blackall | Computational Imaging and AI in Medicine + https://compai-lab.io/author/jane-m-blackall/ + + Jane M Blackall + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Jane M Blackall + https://compai-lab.io/author/jane-m-blackall/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/johannes-kiechle/avatar.png b/author/johannes-kiechle/avatar.png new file mode 100644 index 0000000..6770546 Binary files /dev/null and b/author/johannes-kiechle/avatar.png differ diff --git a/author/johannes-kiechle/avatar_hu5f4a8e9025c21d01db9dde6e2d671dad_32286_270x270_fill_lanczos_center_3.png b/author/johannes-kiechle/avatar_hu5f4a8e9025c21d01db9dde6e2d671dad_32286_270x270_fill_lanczos_center_3.png new file mode 100644 index 0000000..81269a7 Binary files /dev/null and b/author/johannes-kiechle/avatar_hu5f4a8e9025c21d01db9dde6e2d671dad_32286_270x270_fill_lanczos_center_3.png differ diff --git a/author/johannes-kiechle/index.html b/author/johannes-kiechle/index.html new file mode 100644 index 0000000..4f6672e --- /dev/null +++ b/author/johannes-kiechle/index.html @@ -0,0 +1,1139 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Johannes Kiechle | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Johannes Kiechle + + +
+ +

Johannes Kiechle

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + MRI TUM Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Johannes Kiechle is a Ph.D. Student at the Technical University of Munich. He received his B.Eng. from Munich University of Applied Sciences and M.Sc. from Technical University of Munich. In his Master’s thesis, he investigated the shape change of the human hippocampus in the course of ageing within a population of healthy individuals using graph neural networks. For his PhD project, he works in collaboration with the department of Radiation Oncology at the University Hospital rechts der Isar. Therein the focus is on the development and validation of histology-specific AI-based decision support systems for soft-tissue-sarcoma patients.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Shape Analysis
  • + +
  • Representation Learning
  • + +
  • Magnetic Resonance Imaging
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Electrical and Computer Engineering, 2023

    +

    Technical University of Munich

    +
    +
  • + +
  • + +
    +

    B.Eng. in Electrical Engineering and Information Technology, 2020

    +

    Munich University of Applied Sciences

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/johannes-kiechle/index.xml b/author/johannes-kiechle/index.xml new file mode 100644 index 0000000..b4a7b52 --- /dev/null +++ b/author/johannes-kiechle/index.xml @@ -0,0 +1,28 @@ + + + + Johannes Kiechle | Computational Imaging and AI in Medicine + https://compai-lab.io/author/johannes-kiechle/ + + Johannes Kiechle + Wowchemy (https://wowchemy.com)en-usFri, 14 Jun 2024 00:00:00 +0000 + + https://compai-lab.io/author/johannes-kiechle/avatar_hu5f4a8e9025c21d01db9dde6e2d671dad_32286_270x270_fill_lanczos_center_3.png + Johannes Kiechle + https://compai-lab.io/author/johannes-kiechle/ + + + + Paper Accepted at MELBA Journal + https://compai-lab.io/post/fischer_melba_24/ + Fri, 14 Jun 2024 00:00:00 +0000 + https://compai-lab.io/post/fischer_melba_24/ + <p>Stefan M. Fischer&rsquo;s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.<br> +Therefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal. +The journal submission &ldquo;<em>Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge</em>&rdquo; is now available at MELBA.<br> +The paper is available <a href="https://www.melba-journal.org/papers/2024:008.html" target="_blank" rel="noopener">here</a>.</p> + + + + + diff --git a/author/julia-a.-schnabel/avatar.jpg b/author/julia-a.-schnabel/avatar.jpg new file mode 100644 index 0000000..55a2ddb Binary files /dev/null and b/author/julia-a.-schnabel/avatar.jpg differ diff --git a/author/julia-a.-schnabel/avatar_hu535661bce2c742bf7a0f6a055ac0b6d1_816920_270x270_fill_q75_lanczos_center.jpg b/author/julia-a.-schnabel/avatar_hu535661bce2c742bf7a0f6a055ac0b6d1_816920_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..e977210 Binary files /dev/null and b/author/julia-a.-schnabel/avatar_hu535661bce2c742bf7a0f6a055ac0b6d1_816920_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/julia-a.-schnabel/index.html b/author/julia-a.-schnabel/index.html new file mode 100644 index 0000000..968bfcb --- /dev/null +++ b/author/julia-a.-schnabel/index.html @@ -0,0 +1,1227 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Julia A. Schnabel | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Julia A. Schnabel + + +
+ +

Julia A. Schnabel

+ +

Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging

+ + +

+ + Technical University Munich + +

+ +

+ + Helmholtz Center Munich + +

+ +

+ + King's College London + +

+ +
+ + + +
+
+
+ + + + +
+

Julia A. Schnabel is Professor of Computational Imaging and AI in Medicine at Technical University of Munich (TUM Liesel Beckmann Distinguished Professorship) and Director of a new Institute of Machine Learning in Biomedical Imaging at Helmholtz Center Munich (Helmholtz Distinguished Professorship), with secondary appointment as Chair in Computational Imaging at King’s College London. She graduated in Computer Science (equiv. MSc) from Technical University of Berlin, Berlin, Germany, and was awarded the PhD in Computer Science from University College London, UK. In 2007, she joined the University of Oxford, UK as Associate Professor in Engineering Science (Medical Imaging), where she became Full Professor of Engineering Science by Recognition of Distinction in 2014. She joined King’s College London as a new Chair in 2015, and in 2021 joined TUM and Helmholtz Munich for her current positions. Her research interests include machine/deep learning, nonlinear motion modeling, as well as multimodality and quantitative imaging, for cancer imaging, cardiac imaging, neuroimaging and perinatal imaging. Dr. Schnabel has been elected Fellow of IEEE (2021), Fellow of ELLIS (2019), and Fellow of the MICCAI Society (2018). She is an Associate Editor of the IEEE Transactions on Medical Imaging on whose steering board she serves since 2021, the IEEE Transactions of Biomedical Engineering, on the Editorial Board of Medical Image Analysis and Executive/Founding Editor of MELBA. She currently serves as elected Technical Representative on IEEE EMBS AdCom, as voting member of the IEEE EMBS Technical Committee on Biomedical Imaging and Image Processing (BIIP), as Executive Secretary to the MICCAI board, and as member of ELLIS Health and ELLIS Munich.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Biomedical Imaging
  • + +
  • Artificial Intelligence in Medicine
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    PhD in Computer Science, 1998

    +

    University College London

    +
    +
  • + +
  • + +
    +

    Diplom (Msc. eq) in Computer Science, 1993

    +

    Technical University of Berlin

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/julia-a.-schnabel/index.xml b/author/julia-a.-schnabel/index.xml new file mode 100644 index 0000000..620ffce --- /dev/null +++ b/author/julia-a.-schnabel/index.xml @@ -0,0 +1,136 @@ + + + + Julia A. Schnabel | Computational Imaging and AI in Medicine + https://compai-lab.io/author/julia-a.-schnabel/ + + Julia A. Schnabel + Wowchemy (https://wowchemy.com)en-usFri, 10 May 2024 00:00:00 +0000 + + https://compai-lab.io/author/julia-a.-schnabel/avatar_hu535661bce2c742bf7a0f6a055ac0b6d1_816920_270x270_fill_q75_lanczos_center.jpg + Julia A. Schnabel + https://compai-lab.io/author/julia-a.-schnabel/ + + + + German Radiological Society Awards the Alfred Breit Prize to Prof. Julia Schnabel + https://compai-lab.io/post/schnabel_alfred_breit_preis_24/ + Fri, 10 May 2024 00:00:00 +0000 + https://compai-lab.io/post/schnabel_alfred_breit_preis_24/ + <p>The Alfred Breit Prize 2024 of the Radiological Society was awarded to Prof. Julia Schnabel, Professor at the Technical University of Munich and Director at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. The prize honors outstanding work in the research of radio-oncology.</p> +<p>More information <a href="https://www.drg.de/de-DE/10884/zweifache-ehrung-drg-verleiht-alfred-breit-preis-an-prof-dr-julia-schnabel-aus-muenchen-und-prof-dr-norbert-hosten-aus-greifswald/" target="_blank" rel="noopener">here</a> and <a href="https://www.helmholtz-munich.de/newsroom/news/artikel/deutsche-roentgengesellschaft-verleiht-alfred-breit-preis-an-prof-julia-schnabel" target="_blank" rel="noopener">here</a>.</p> + + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + Süddeutsche Zeitung Interview with Prof. Julia Schnabel + https://compai-lab.io/post/schnabel_sueddeutsche_23/ + Wed, 23 Aug 2023 00:00:00 +0000 + https://compai-lab.io/post/schnabel_sueddeutsche_23/ + <p>Interview with Prof. Julia Schnabel by Süddeutsche Zeitung about artificial intelligence in clinical practice. Available online <a href="https://www.sueddeutsche.de/kultur/kuenstliche-intelligenz-medizin-gesundheitsversorgung-1.6074505?reduced=true" target="_blank" rel="noopener">here</a></p> + + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection + https://compai-lab.io/publication/bercea-2022-we/ + Wed, 08 Jun 2022 00:00:00 +0000 + https://compai-lab.io/publication/bercea-2022-we/ + <div class="alert alert-note"> + <div> + Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software. + </div> +</div> + + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Model-Based and Data-Driven Strategies in Medical Image Computing + https://compai-lab.io/fpublications/8867900/ + Wed, 01 Jan 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/8867900/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + Wed, 01 Jan 2003 00:00:00 +0000 + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/jun-li/avatar.jpg b/author/jun-li/avatar.jpg new file mode 100644 index 0000000..918f024 Binary files /dev/null and b/author/jun-li/avatar.jpg differ diff --git a/author/jun-li/avatar_hu5504c0dc9d75e72190a64b06972982f3_85248_270x270_fill_q75_lanczos_center.jpg b/author/jun-li/avatar_hu5504c0dc9d75e72190a64b06972982f3_85248_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..0867e0d Binary files /dev/null and b/author/jun-li/avatar_hu5504c0dc9d75e72190a64b06972982f3_85248_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/jun-li/index.html b/author/jun-li/index.html new file mode 100644 index 0000000..d3a0ab0 --- /dev/null +++ b/author/jun-li/index.html @@ -0,0 +1,1175 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Jun Li | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Jun Li + + +
+ +

Jun Li

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + Munich Center for Machine Learning (MCML) + +

+ +
+ + + +
+
+
+ + + + +
+

Jun Li is a Ph.D. Student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her M.E. in Computer Technology from the University of Chinese Academy of Sciences, China. In her Master’s thesis, she developed a novel framework that combines supervised and unsupervised learning for ultrasound report generation. Her research interests lie in Vision and Language, Multi-Modal Learning, and Cross-Modality Generation.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Vision and Language
  • + +
  • Multi-Modal Learning
  • + +
  • Cross-Modality Generation
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.E. in Computer Technology, 2023

    +

    University of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology

    +
    +
  • + +
  • + +
    +

    B.E. in Traffic and Transportation, 2020

    +

    Shenzhen University

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/jun-li/index.xml b/author/jun-li/index.xml new file mode 100644 index 0000000..31f99c3 --- /dev/null +++ b/author/jun-li/index.xml @@ -0,0 +1,148 @@ + + + + Jun Li | Computational Imaging and AI in Medicine + https://compai-lab.io/author/jun-li/ + + Jun Li + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/jun-li/avatar_hu5504c0dc9d75e72190a64b06972982f3_85248_270x270_fill_q75_lanczos_center.jpg + Jun Li + https://compai-lab.io/author/jun-li/ + + + + AI for Vision-Language Models in Medical Imaging (IN2107) + https://compai-lab.io/teaching/vlm_seminar/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/teaching/vlm_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/vlm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p><strong>Time</strong>: Wednesday 14-16.</p> +<p><strong>Location</strong>: - Garching (in-person): FMI, 5610.01.11 <a href="https://nav.tum.de/room/5610.01.011" target="_blank" rel="noopener">https://nav.tum.de/room/5610.01.011</a></p> +<ul> +<li>some invited talks on Zoom: <a href="https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09" target="_blank" rel="noopener">https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09</a></li> +</ul> +<p>Vision-language models (VLMs) in medical imaging leverage the integration of visual data and textual information to enhance representation learning. These models can be pre-trained to improve representations, enabling a wide range of downstream applications. This seminar will explore foundational concepts, current methodologies, and recent advancements in applying vision-language models to diverse tasks in medical imaging, such as:</p> +<ul> +<li>Synthetic image synthesis</li> +<li>Anomaly detection</li> +<li>Clinical report generation</li> +<li>Visual-question answering</li> +<li>Classification</li> +<li>Segmentation</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an e-mail to <a href="mailto:cosmin.bercea@tum.de">cosmin.bercea@tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/VLM_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/VLM_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + diff --git a/author/kerstin-hammernik/index.html b/author/kerstin-hammernik/index.html new file mode 100644 index 0000000..4d6a8fb --- /dev/null +++ b/author/kerstin-hammernik/index.html @@ -0,0 +1,1009 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Kerstin Hammernik | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Kerstin Hammernik

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/kerstin-hammernik/index.xml b/author/kerstin-hammernik/index.xml new file mode 100644 index 0000000..b69474d --- /dev/null +++ b/author/kerstin-hammernik/index.xml @@ -0,0 +1,32 @@ + + + + Kerstin Hammernik | Computational Imaging and AI in Medicine + https://compai-lab.io/author/kerstin-hammernik/ + + Kerstin Hammernik + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Kerstin Hammernik + https://compai-lab.io/author/kerstin-hammernik/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + diff --git a/author/laura-dal-toso/index.html b/author/laura-dal-toso/index.html new file mode 100644 index 0000000..4c62366 --- /dev/null +++ b/author/laura-dal-toso/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Laura Dal Toso | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Laura Dal Toso

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/laura-dal-toso/index.xml b/author/laura-dal-toso/index.xml new file mode 100644 index 0000000..46076d4 --- /dev/null +++ b/author/laura-dal-toso/index.xml @@ -0,0 +1,24 @@ + + + + Laura Dal Toso | Computational Imaging and AI in Medicine + https://compai-lab.io/author/laura-dal-toso/ + + Laura Dal Toso + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Laura Dal Toso + https://compai-lab.io/author/laura-dal-toso/ + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/author/laura-daza/avatar.jpg b/author/laura-daza/avatar.jpg new file mode 100644 index 0000000..ad27148 Binary files /dev/null and b/author/laura-daza/avatar.jpg differ diff --git a/author/laura-daza/avatar_hu4c6d9adb6b78cebde9e47b41eef52693_1450306_270x270_fill_q75_lanczos_center.jpg b/author/laura-daza/avatar_hu4c6d9adb6b78cebde9e47b41eef52693_1450306_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..b520225 Binary files /dev/null and b/author/laura-daza/avatar_hu4c6d9adb6b78cebde9e47b41eef52693_1450306_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/laura-daza/index.html b/author/laura-daza/index.html new file mode 100644 index 0000000..3f25b88 --- /dev/null +++ b/author/laura-daza/index.html @@ -0,0 +1,1152 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Laura Daza | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Laura Daza + + +
+ +

Laura Daza

+ +

Research Scientist

+ + +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Laura Daza is a postdoctoral researcher at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich. She received her Ph.D. at the Research and Formation in Artificial Intelligence (CINFONIA) at Universidad de los Andes advised by Pablo Arbeláez and did an internship with Professor René Vidal at Johns Hopkins University. Her areas of interest are Computer Vision, Machine Learning and Deep Learning, as well as their application to biomedical problems. During her Ph.D., her research was focused on the analysis of adversarial robustness of medical image analysis methods and natural image and video classification methods. She also worked on early lung cancer diagnosis leveraging multimodal data, pharmaceutical discovery, and automatic bone age assesment in children.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Medical image segmentation
  • + +
  • Multi-modal Learning
  • + +
  • Foundation models
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    Ph.D in Engineering, 2022

    +

    Universidad de Los Andes, Colombia

    +
    +
  • + +
  • + +
    +

    B.Sc. in Biomedical Engineering, 2018

    +

    Universidad de Los Andes, Colombia

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/laura-daza/index.xml b/author/laura-daza/index.xml new file mode 100644 index 0000000..dea7492 --- /dev/null +++ b/author/laura-daza/index.xml @@ -0,0 +1,16 @@ + + + + Laura Daza | Computational Imaging and AI in Medicine + https://compai-lab.io/author/laura-daza/ + + Laura Daza + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/laura-daza/avatar_hu4c6d9adb6b78cebde9e47b41eef52693_1450306_270x270_fill_q75_lanczos_center.jpg + Laura Daza + https://compai-lab.io/author/laura-daza/ + + + + diff --git a/author/lei-li/index.html b/author/lei-li/index.html new file mode 100644 index 0000000..82b8e11 --- /dev/null +++ b/author/lei-li/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Lei Li | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Lei Li

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/lei-li/index.xml b/author/lei-li/index.xml new file mode 100644 index 0000000..d49d5ce --- /dev/null +++ b/author/lei-li/index.xml @@ -0,0 +1,24 @@ + + + + Lei Li | Computational Imaging and AI in Medicine + https://compai-lab.io/author/lei-li/ + + Lei Li + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Lei Li + https://compai-lab.io/author/lei-li/ + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + + + + + diff --git a/author/lina-felsner/avatar.jpg b/author/lina-felsner/avatar.jpg new file mode 100644 index 0000000..ec00b0d Binary files /dev/null and b/author/lina-felsner/avatar.jpg differ diff --git a/author/lina-felsner/avatar_hu60e932604a75cc0995bfb2f4902df59a_1322838_270x270_fill_q75_lanczos_center.jpg b/author/lina-felsner/avatar_hu60e932604a75cc0995bfb2f4902df59a_1322838_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..306ea8d Binary files /dev/null and b/author/lina-felsner/avatar_hu60e932604a75cc0995bfb2f4902df59a_1322838_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/lina-felsner/index.html b/author/lina-felsner/index.html new file mode 100644 index 0000000..542bd3d --- /dev/null +++ b/author/lina-felsner/index.html @@ -0,0 +1,1191 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Lina Felsner | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Lina Felsner + + +
+ +

Lina Felsner

+ +

Principal Investigator

+ + +

+ + Technical University of Munich + +

+ +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Lina Felsner is a postdoctoral researcher at the Chair of Computational Imaging and AI in Medicine at TU Munich. +She received her B.Sc. and M.Sc. in Medical Imaging from FAU Erlangen-Nürnberg with a specialization in Mediacl Image and Data Processing. +During her Ph.D at the Pattern Recognition Lab at FAU Lina worked on Advanced 3-D Reconstruction of Talbot Lau Data. +From 2022 to 2023 Lina was a postdoctoral Research Assistant at the King’s College London working on the motion corrected reconstruction of cardiovascular MR data. +Her research interests lie at the intersection of Medical Image Computing, Inverse Problems, and Machine Learning, where she explores novel algorithms and methodologies to enhance medical imaging techniques and diagnostic accuracy.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Medical Image Computing
  • + +
  • Inverse Problems
  • + +
  • Machine Learning
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    Postdoctoral Research Associate, 2022-2023

    +

    King's College London

    +
    +
  • + +
  • + +
    +

    Ph.D. in Informatics, 2021

    +

    FAU Erlangen-Nürnberg

    +
    +
  • + +
  • + +
    +

    M.Sc. in Medical Engineering, 2017

    +

    FAU Erlangen-Nürnberg

    +
    +
  • + +
  • + +
    +

    B.Sc. in Medical Engineering, 2015

    +

    FAU Erlangen-Nürnberg

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/lina-felsner/index.xml b/author/lina-felsner/index.xml new file mode 100644 index 0000000..2791ac4 --- /dev/null +++ b/author/lina-felsner/index.xml @@ -0,0 +1,81 @@ + + + + Lina Felsner | Computational Imaging and AI in Medicine + https://compai-lab.io/author/lina-felsner/ + + Lina Felsner + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/lina-felsner/avatar_hu60e932604a75cc0995bfb2f4902df59a_1322838_270x270_fill_q75_lanczos_center.jpg + Lina Felsner + https://compai-lab.io/author/lina-felsner/ + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + diff --git a/author/manav-bhushan/index.html b/author/manav-bhushan/index.html new file mode 100644 index 0000000..f898ab9 --- /dev/null +++ b/author/manav-bhushan/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Manav Bhushan | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Manav Bhushan

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/manav-bhushan/index.xml b/author/manav-bhushan/index.xml new file mode 100644 index 0000000..3cb5a83 --- /dev/null +++ b/author/manav-bhushan/index.xml @@ -0,0 +1,24 @@ + + + + Manav Bhushan | Computational Imaging and AI in Medicine + https://compai-lab.io/author/manav-bhushan/ + + Manav Bhushan + Wowchemy (https://wowchemy.com)en-usSun, 01 Jan 2012 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Manav Bhushan + https://compai-lab.io/author/manav-bhushan/ + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + diff --git a/author/marcel-quist/index.html b/author/marcel-quist/index.html new file mode 100644 index 0000000..b120431 --- /dev/null +++ b/author/marcel-quist/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Marcel Quist | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Marcel Quist

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/marcel-quist/index.xml b/author/marcel-quist/index.xml new file mode 100644 index 0000000..78af37f --- /dev/null +++ b/author/marcel-quist/index.xml @@ -0,0 +1,24 @@ + + + + Marcel Quist | Computational Imaging and AI in Medicine + https://compai-lab.io/author/marcel-quist/ + + Marcel Quist + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Marcel Quist + https://compai-lab.io/author/marcel-quist/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/mark-jenkinson/index.html b/author/mark-jenkinson/index.html new file mode 100644 index 0000000..2c854ca --- /dev/null +++ b/author/mark-jenkinson/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Mark Jenkinson | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Mark Jenkinson

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/mark-jenkinson/index.xml b/author/mark-jenkinson/index.xml new file mode 100644 index 0000000..4659b8f --- /dev/null +++ b/author/mark-jenkinson/index.xml @@ -0,0 +1,24 @@ + + + + Mark Jenkinson | Computational Imaging and AI in Medicine + https://compai-lab.io/author/mark-jenkinson/ + + Mark Jenkinson + Wowchemy (https://wowchemy.com)en-usSun, 01 Jan 2012 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Mark Jenkinson + https://compai-lab.io/author/mark-jenkinson/ + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + diff --git a/author/marta-hasny/avatar.jpeg b/author/marta-hasny/avatar.jpeg new file mode 100644 index 0000000..9048b00 Binary files /dev/null and b/author/marta-hasny/avatar.jpeg differ diff --git a/author/marta-hasny/avatar_hu2df0a6597d356c4bfb79b06a76edc68f_455157_270x270_fill_q75_lanczos_center.jpeg b/author/marta-hasny/avatar_hu2df0a6597d356c4bfb79b06a76edc68f_455157_270x270_fill_q75_lanczos_center.jpeg new file mode 100644 index 0000000..9dc56be Binary files /dev/null and b/author/marta-hasny/avatar_hu2df0a6597d356c4bfb79b06a76edc68f_455157_270x270_fill_q75_lanczos_center.jpeg differ diff --git a/author/marta-hasny/index.html b/author/marta-hasny/index.html new file mode 100644 index 0000000..d2cefe8 --- /dev/null +++ b/author/marta-hasny/index.html @@ -0,0 +1,1158 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Marta Hasny | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Marta Hasny + + +
+ +

Marta Hasny

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Marta Hasny is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and the Technical University of Munich (TUM). She received her B.Sc. in Computer Science from Pace University and completed her M.Sc. in Biomedical Computing at TUM. For her master’s thesis at Harvard Medical School, she worked on improving the visualization of myocardial scar in late gadolinium enhancement cardiac MR using diffusion models. Her research interests include generative AI, foundation models, and their applications in cardiology.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Foundation Models
  • + +
  • Generative AI
  • + +
  • Cardiology
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Biomedical Computing, 2024

    +

    TU Munich

    +
    +
  • + +
  • + +
    +

    B.Sc. in Computer Science, 2021

    +

    Pace University

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/marta-hasny/index.xml b/author/marta-hasny/index.xml new file mode 100644 index 0000000..66407cc --- /dev/null +++ b/author/marta-hasny/index.xml @@ -0,0 +1,16 @@ + + + + Marta Hasny | Computational Imaging and AI in Medicine + https://compai-lab.io/author/marta-hasny/ + + Marta Hasny + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/marta-hasny/avatar_hu2df0a6597d356c4bfb79b06a76edc68f_455157_270x270_fill_q75_lanczos_center.jpeg + Marta Hasny + https://compai-lab.io/author/marta-hasny/ + + + + diff --git a/author/mattias-p-heinrich/index.html b/author/mattias-p-heinrich/index.html new file mode 100644 index 0000000..8acf232 --- /dev/null +++ b/author/mattias-p-heinrich/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Mattias P Heinrich | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Mattias P Heinrich

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/mattias-p-heinrich/index.xml b/author/mattias-p-heinrich/index.xml new file mode 100644 index 0000000..32c1157 --- /dev/null +++ b/author/mattias-p-heinrich/index.xml @@ -0,0 +1,24 @@ + + + + Mattias P Heinrich | Computational Imaging and AI in Medicine + https://compai-lab.io/author/mattias-p-heinrich/ + + Mattias P Heinrich + Wowchemy (https://wowchemy.com)en-usSun, 01 Jan 2012 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Mattias P Heinrich + https://compai-lab.io/author/mattias-p-heinrich/ + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + diff --git a/author/mattias-p.-heinrich/index.html b/author/mattias-p.-heinrich/index.html new file mode 100644 index 0000000..7981c2f --- /dev/null +++ b/author/mattias-p.-heinrich/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Mattias P. Heinrich | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Mattias P. Heinrich

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/mattias-p.-heinrich/index.xml b/author/mattias-p.-heinrich/index.xml new file mode 100644 index 0000000..add6b39 --- /dev/null +++ b/author/mattias-p.-heinrich/index.xml @@ -0,0 +1,24 @@ + + + + Mattias P. Heinrich | Computational Imaging and AI in Medicine + https://compai-lab.io/author/mattias-p.-heinrich/ + + Mattias P. Heinrich + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Mattias P. Heinrich + https://compai-lab.io/author/mattias-p.-heinrich/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/author/maxime-di-folco/avatar.jpg b/author/maxime-di-folco/avatar.jpg new file mode 100644 index 0000000..ea29d4d Binary files /dev/null and b/author/maxime-di-folco/avatar.jpg differ diff --git a/author/maxime-di-folco/avatar_hub43e7a5903b40f0a40369ad9f2cf0390_106345_270x270_fill_q75_lanczos_center.jpg b/author/maxime-di-folco/avatar_hub43e7a5903b40f0a40369ad9f2cf0390_106345_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..b40f72b Binary files /dev/null and b/author/maxime-di-folco/avatar_hub43e7a5903b40f0a40369ad9f2cf0390_106345_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/maxime-di-folco/index.html b/author/maxime-di-folco/index.html new file mode 100644 index 0000000..b5291d1 --- /dev/null +++ b/author/maxime-di-folco/index.html @@ -0,0 +1,1248 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Maxime Di Folco | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Maxime Di Folco + + +
+ +

Maxime Di Folco

+ +

Research Scientist

+ + +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Maxime Di Folco is a PostDoctoral researcher at the Institute of Machine Learning for Biomedical Imaging at Helmholtz Center Munich. His research interest is the study of the cardiac function via machine learning methods, in particular representation learning methods, that aim to acquire low dimensional representation of high dimensional data, with a strong focus on cardiac remodelling (adaptation of the heart to its environment or a disease), notably the study of the deformation and shape aspects.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Representation learning
  • + +
  • Cardiac imaging
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    PhD in Artificial Intelligence, 2021

    +

    Université de Lyon, CREATIS Laboratory

    +
    +
  • + +
  • + +
    +

    MEng in Image Processing, 2018

    +

    CPE Lyon

    +
    +
  • + +
  • + +
    +

    MSc in Image development and 3D technologies, 2018

    +

    Université Lyon 1

    +
    +
  • + +
+
+ + + + +
+ + +
+
Teaching
+
    + +
  • +
    +

    From Self-supervised Learning to Foundation Models in Medical Imaging

    +

    Master seminar | WS24/25 |

    +
    +
  • + +
  • +
    +

    Learning of and on Manifolds in Medical Imaging

    +

    Master seminar | WS23/24 |

    +
    +
  • + +
  • +
    +

    Interpretable AI in Medical Imaging

    +

    Master seminar | SS22/23 |

    +
    +
  • + +
+
+ + + +
+
Student Projects & Theses
+
    + +
  • +
    +

    Exploring SPD Feature Descriptors for Medical Image Classification

    +

    Master's Thesis | 2024 | Josef Mayr | ongoing |

    +
    +
  • + +
  • +
    +

    Conditional 3D Cardiac MRI Synthesis Using Differentially Private Latent Diffusion Models

    +

    Master's Thesis | 2024 | Deniz Daum | |

    +
    +
  • + +
  • +
    +

    Segmentation of sparse annotated data - application to cardiac imaging

    +

    Master's Thesis | 2023 | Joshua Stein | |

    +
    +
  • + +
  • +
    +

    Segmentation and morphological comparison of distal radial articular surfaces

    +

    Master's Thesis | 2023 | Sarah Remus | |

    +
    +
  • + +
+
+ + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/maxime-di-folco/index.xml b/author/maxime-di-folco/index.xml new file mode 100644 index 0000000..a9cf75d --- /dev/null +++ b/author/maxime-di-folco/index.xml @@ -0,0 +1,161 @@ + + + + Maxime Di Folco | Computational Imaging and AI in Medicine + https://compai-lab.io/author/maxime-di-folco/ + + Maxime Di Folco + Wowchemy (https://wowchemy.com)en-usTue, 13 Aug 2024 00:00:00 +0000 + + https://compai-lab.io/author/maxime-di-folco/avatar_hub43e7a5903b40f0a40369ad9f2cf0390_106345_270x270_fill_q75_lanczos_center.jpg + Maxime Di Folco + https://compai-lab.io/author/maxime-di-folco/ + + + + Latent Functional Maps for Medical Imaging + https://compai-lab.io/vacancies/msc_functionalmaps/ + Tue, 13 Aug 2024 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_functionalmaps/ + <p>Abstract:</p> +<p>Neural Networks (NNs) learn to represent high-dimensional data as elements of lower-dimensional latent spaces. Modeling the relationships between these representational spaces is an ongoing challenge. Successfully addressing this challenge could enable the reuse of representations in downstream tasks, reducing the need to retrain similar models multiple times. Recently, Fumero et al. leveraged the internal geometry of representations and proposed applying latent functional maps to align representations across distinct models, demonstrating its relevance for comparing representations. However, these kinds of approaches have not yet been explored in the context of medical imaging datasets, where aligning multimodal representa- +tions could significantly enhance the effectiveness of models in medical applications. This project aims to use latent functional maps to align multimodal medical representations (e.g., text and vision). The first part of the thesis will involve a literature review on representation similarity. This will be followed by experimenting with the latent functional maps approach on a toy dataset of medical images and later applying it to real medical imaging tasks.</p> + + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Five papers accepted at MICCAI 2023 workshops + https://compai-lab.io/post/iml_miccai_workshops/ + Thu, 14 Sep 2023 00:00:00 +0000 + https://compai-lab.io/post/iml_miccai_workshops/ + <p>Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p>Interested to hear more about our work? Then join us at the following workshops:</p> +<ul> +<li> +<p>Veronika Spieker will be at the <a href="https://dgm4miccai.github.io/" target="_blank" rel="noopener">DGM4</a> workshop to talk about <a href="https://arxiv.org/abs/2308.08830" target="_blank" rel="noopener">Neural Implicit Representations for Abdominal MR Reconstruction</a> on October 8, at 10:25.</p> +</li> +<li> +<p>Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the <a href="https://2023.sashimi-workshop.org/program/" target="_blank" rel="noopener">SASHIMI</a> workshop on October 8, at 14:40. Check out the <a href="https://arxiv.org/abs/2303.10987" target="_blank" rel="noopener">preprint</a> for more information!</p> +</li> +<li> +<p>Maxime Di Folco presents at the <a href="https://stacom.github.io/stacom2023/" target="_blank" rel="noopener">STACOM</a> workshop on October 12, at 11:15 the work of Josh Stein on &ldquo;Sparse annotation strategies for segmentation of short axis cardiac MRI&rdquo; (<a href="https://arxiv.org/abs/2307.12619" target="_blank" rel="noopener">preprint</a>).</p> +</li> +<li> +<p>Cosmin Bercea will talk about <a href="https://arxiv.org/pdf/2308.13861.pdf" target="_blank" rel="noopener">Bias in Unsupervised Anomaly Detection</a> at the <a href="https://faimi-workshop.github.io/2023-miccai/" target="_blank" rel="noopener">FAIMI</a> workshop on October 12, at 2:50 PDT.</p> +</li> +<li> +<p>Daniel Lang will talk about <a href="https://arxiv.org/abs/2303.05861" target="_blank" rel="noopener">Anomaly Detection in Non-Contrast Enhanced Breast MRI</a> at the <a href="https://caption-workshop.github.io/miccai2023/#Workshop%20sessions" target="_blank" rel="noopener">CaPTion</a> workshop on October 12.</p> +</li> +</ul> + + + + diff --git a/author/michael-brady/index.html b/author/michael-brady/index.html new file mode 100644 index 0000000..9f2ba46 --- /dev/null +++ b/author/michael-brady/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Michael Brady | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Michael Brady

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/michael-brady/index.xml b/author/michael-brady/index.xml new file mode 100644 index 0000000..8a87df8 --- /dev/null +++ b/author/michael-brady/index.xml @@ -0,0 +1,24 @@ + + + + Michael Brady | Computational Imaging and AI in Medicine + https://compai-lab.io/author/michael-brady/ + + Michael Brady + Wowchemy (https://wowchemy.com)en-usSun, 01 Jan 2012 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Michael Brady + https://compai-lab.io/author/michael-brady/ + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + diff --git a/author/miguel-castelo-branco/index.html b/author/miguel-castelo-branco/index.html new file mode 100644 index 0000000..9fcde91 --- /dev/null +++ b/author/miguel-castelo-branco/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Miguel Castelo-Branco | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Miguel Castelo-Branco

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/miguel-castelo-branco/index.xml b/author/miguel-castelo-branco/index.xml new file mode 100644 index 0000000..2c2f213 --- /dev/null +++ b/author/miguel-castelo-branco/index.xml @@ -0,0 +1,24 @@ + + + + Miguel Castelo-Branco | Computational Imaging and AI in Medicine + https://compai-lab.io/author/miguel-castelo-branco/ + + Miguel Castelo-Branco + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Miguel Castelo-Branco + https://compai-lab.io/author/miguel-castelo-branco/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + diff --git a/author/natascha-niessen/avatar.jpg b/author/natascha-niessen/avatar.jpg new file mode 100644 index 0000000..18a0771 Binary files /dev/null and b/author/natascha-niessen/avatar.jpg differ diff --git a/author/natascha-niessen/avatar_hu9af5966520882a14db9b53f5642a7350_123885_270x270_fill_q75_lanczos_center.jpg b/author/natascha-niessen/avatar_hu9af5966520882a14db9b53f5642a7350_123885_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..b6784c8 Binary files /dev/null and b/author/natascha-niessen/avatar_hu9af5966520882a14db9b53f5642a7350_123885_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/natascha-niessen/index.html b/author/natascha-niessen/index.html new file mode 100644 index 0000000..d1e84f5 --- /dev/null +++ b/author/natascha-niessen/index.html @@ -0,0 +1,1141 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Natascha Niessen | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Natascha Niessen + + +
+ +

Natascha Niessen

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + GE Healthcare + +

+ +
+ + + +
+
+
+ + + + +
+

Natascha Niessen pursues her PhD project in a joint collaboration between GE Healthcare and the Chair of Computational Imaging and AI in Medicine at TU Munich, as well as the department of psychiatry at LMU. As part of her French-German double-degree she received her Engineering Diploma (M.Sc.) from CentraleSupélec and her M.Sc. in Electrical Engineering from TU Munich with a focus on medical imaging and machine learning. In her Master‘s thesis at Stanford University, she developed a novel approach for validating multi- compartment fitting algorithms for brain magnetic resonance imaging (MRI). Her research interests lie in the development of Deep Learning-enabled MRI reconstruction and early Alzheimer’s Disease prediction as part of the european PREDICTOM project.

+ +
+ +
+ + +
+
Interests
+
    + +
  • MRI reconstruction
  • + +
  • Early Alzheimer’s Disease prediction
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Electrical Engineering, 2024

    +

    TU Munich

    +
    +
  • + +
  • + +
    +

    Engineering Diploma (M.Sc.), 2024

    +

    CentraleSupélec

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/natascha-niessen/index.xml b/author/natascha-niessen/index.xml new file mode 100644 index 0000000..bc0545f --- /dev/null +++ b/author/natascha-niessen/index.xml @@ -0,0 +1,16 @@ + + + + Natascha Niessen | Computational Imaging and AI in Medicine + https://compai-lab.io/author/natascha-niessen/ + + Natascha Niessen + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/natascha-niessen/avatar_hu9af5966520882a14db9b53f5642a7350_123885_270x270_fill_q75_lanczos_center.jpg + Natascha Niessen + https://compai-lab.io/author/natascha-niessen/ + + + + diff --git a/author/nicholas-byrne/index.html b/author/nicholas-byrne/index.html new file mode 100644 index 0000000..d1bc6c9 --- /dev/null +++ b/author/nicholas-byrne/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Nicholas Byrne | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Nicholas Byrne

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/nicholas-byrne/index.xml b/author/nicholas-byrne/index.xml new file mode 100644 index 0000000..5e9f4a6 --- /dev/null +++ b/author/nicholas-byrne/index.xml @@ -0,0 +1,24 @@ + + + + Nicholas Byrne | Computational Imaging and AI in Medicine + https://compai-lab.io/author/nicholas-byrne/ + + Nicholas Byrne + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Nicholas Byrne + https://compai-lab.io/author/nicholas-byrne/ + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + diff --git a/author/others/index.html b/author/others/index.html new file mode 100644 index 0000000..7c3b8bf --- /dev/null +++ b/author/others/index.html @@ -0,0 +1,1009 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + others | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

others

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/others/index.xml b/author/others/index.xml new file mode 100644 index 0000000..d70469e --- /dev/null +++ b/author/others/index.xml @@ -0,0 +1,32 @@ + + + + others | Computational Imaging and AI in Medicine + https://compai-lab.io/author/others/ + + others + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + others + https://compai-lab.io/author/others/ + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/paul-k-marsden/index.html b/author/paul-k-marsden/index.html new file mode 100644 index 0000000..da74aa6 --- /dev/null +++ b/author/paul-k-marsden/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Paul K Marsden | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Paul K Marsden

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/paul-k-marsden/index.xml b/author/paul-k-marsden/index.xml new file mode 100644 index 0000000..3e18826 --- /dev/null +++ b/author/paul-k-marsden/index.xml @@ -0,0 +1,24 @@ + + + + Paul K Marsden | Computational Imaging and AI in Medicine + https://compai-lab.io/author/paul-k-marsden/ + + Paul K Marsden + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Paul K Marsden + https://compai-lab.io/author/paul-k-marsden/ + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/author/rene-botnar/index.html b/author/rene-botnar/index.html new file mode 100644 index 0000000..913211d --- /dev/null +++ b/author/rene-botnar/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Rene Botnar | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Rene Botnar

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/rene-botnar/index.xml b/author/rene-botnar/index.xml new file mode 100644 index 0000000..a7922ea --- /dev/null +++ b/author/rene-botnar/index.xml @@ -0,0 +1,24 @@ + + + + Rene Botnar | Computational Imaging and AI in Medicine + https://compai-lab.io/author/rene-botnar/ + + Rene Botnar + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Rene Botnar + https://compai-lab.io/author/rene-botnar/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/author/richard-osuala/avatar.png b/author/richard-osuala/avatar.png new file mode 100644 index 0000000..b72fffb Binary files /dev/null and b/author/richard-osuala/avatar.png differ diff --git a/author/richard-osuala/avatar_hubb48c8398d49cf4dc99ba05407721c27_370988_270x270_fill_lanczos_center_3.png b/author/richard-osuala/avatar_hubb48c8398d49cf4dc99ba05407721c27_370988_270x270_fill_lanczos_center_3.png new file mode 100644 index 0000000..ccfc363 Binary files /dev/null and b/author/richard-osuala/avatar_hubb48c8398d49cf4dc99ba05407721c27_370988_270x270_fill_lanczos_center_3.png differ diff --git a/author/richard-osuala/index.html b/author/richard-osuala/index.html new file mode 100644 index 0000000..dc0e707 --- /dev/null +++ b/author/richard-osuala/index.html @@ -0,0 +1,1175 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Richard Osuala | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Richard Osuala + + +
+ +

Richard Osuala

+ +

Doctoral Researcher (Visiting)

+ + +

+ + BCN-AIM Lab, University of Barcelona + +

+ +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Richard Osuala is a Ph.D. student at the University of Barcelona (BCN-AIM Lab) and visiting researcher at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and Technical University of Munich (TUM). After working for 4 years as data scientist and AI solution architect in industry, his research focuses on generative AI to solve medical imaging problems. His work is part of the European projects EuCanImage (H2020) and RadioVal (Horizon Europe) investigating and creating machine learning solutions for medical image analysis with the goal of enhancing cancer diagnosis and treatment.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Generative AI
  • + +
  • Image Synthesis
  • + +
  • Medical Image Analysis
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Computing, 2016

    +

    University of St Andrews

    +
    +
  • + +
  • + +
    +

    B.Sc. in Management and Technology, 2015

    +

    Technical University of Munich

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/richard-osuala/index.xml b/author/richard-osuala/index.xml new file mode 100644 index 0000000..c401779 --- /dev/null +++ b/author/richard-osuala/index.xml @@ -0,0 +1,124 @@ + + + + Richard Osuala | Computational Imaging and AI in Medicine + https://compai-lab.io/author/richard-osuala/ + + Richard Osuala + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/richard-osuala/avatar_hubb48c8398d49cf4dc99ba05407721c27_370988_270x270_fill_lanczos_center_3.png + Richard Osuala + https://compai-lab.io/author/richard-osuala/ + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + diff --git a/author/sabine-franke/avatar.jpg b/author/sabine-franke/avatar.jpg new file mode 100644 index 0000000..4646934 Binary files /dev/null and b/author/sabine-franke/avatar.jpg differ diff --git a/author/sabine-franke/avatar_hu2a294044d97aa801d6b074517f9bfece_18017_270x270_fill_q75_lanczos_center.jpg b/author/sabine-franke/avatar_hu2a294044d97aa801d6b074517f9bfece_18017_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..d071033 Binary files /dev/null and b/author/sabine-franke/avatar_hu2a294044d97aa801d6b074517f9bfece_18017_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/sabine-franke/index.html b/author/sabine-franke/index.html new file mode 100644 index 0000000..572a24d --- /dev/null +++ b/author/sabine-franke/index.html @@ -0,0 +1,1112 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Sabine Franke | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Sabine Franke + + +
+ +

Sabine Franke

+ +

Administrative Assistant

+ + +

+ + Technical University Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Sabine Franke supports the Lab for Computational Imaging and AI in Medicine as a member of the administrative staff at the TU campus in Garching. She graduated in 2014 from the University of Graz, Austria, with a degree in conference interpreting for German, English and Spanish. Before joining the team at the TU Munich, she spent several years working as a translator and interpreter in Germany as well as in the Netherlands, adding Dutch to her working languages.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Project Management and Administration
  • + +
  • Team Management and Support
  • + +
  • Communication and Relations
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    Conference Interpreter (MA), 2014

    +

    University of Graz, Austria

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/sabine-franke/index.xml b/author/sabine-franke/index.xml new file mode 100644 index 0000000..54629d6 --- /dev/null +++ b/author/sabine-franke/index.xml @@ -0,0 +1,16 @@ + + + + Sabine Franke | Computational Imaging and AI in Medicine + https://compai-lab.io/author/sabine-franke/ + + Sabine Franke + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/sabine-franke/avatar_hu2a294044d97aa801d6b074517f9bfece_18017_270x270_fill_q75_lanczos_center.jpg + Sabine Franke + https://compai-lab.io/author/sabine-franke/ + + + + diff --git a/author/sameer-ambekar/avatar.jpeg b/author/sameer-ambekar/avatar.jpeg new file mode 100644 index 0000000..fee51f7 Binary files /dev/null and b/author/sameer-ambekar/avatar.jpeg differ diff --git a/author/sameer-ambekar/avatar_huf06922ba297c55dd6030e91aa17955db_98458_270x270_fill_q75_lanczos_center.jpeg b/author/sameer-ambekar/avatar_huf06922ba297c55dd6030e91aa17955db_98458_270x270_fill_q75_lanczos_center.jpeg new file mode 100644 index 0000000..a19e718 Binary files /dev/null and b/author/sameer-ambekar/avatar_huf06922ba297c55dd6030e91aa17955db_98458_270x270_fill_q75_lanczos_center.jpeg differ diff --git a/author/sameer-ambekar/index.html b/author/sameer-ambekar/index.html new file mode 100644 index 0000000..107a249 --- /dev/null +++ b/author/sameer-ambekar/index.html @@ -0,0 +1,1193 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Sameer Ambekar | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Sameer Ambekar + + +
+ +

Sameer Ambekar

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Sameer Ambekar is a Ph.D. Student at the Technical University of Munich (TUM). He received his Masters in Artificial Intelligence (MSc AI) from the University of Amsterdam (UvA), Netherlands. For his Master’s thesis (48 ECTS), he worked on ‘Test-Time Adaptation for Domain Generalization by generating models and labels through Variational meta-learning’ at the AIM Lab, UvA. Prior to his master’s, he worked as a Research Assistant (RA) at IIT Delhi (IITD) to address Unsupervised Domain Adaptation through methods such as Variational generative latent search. He is interested in solving problems in unsupervised learning through methods such as meta-learning and variational inference alongside learning efficient and transferable features.

+
+
    +
  • Open Theses and Projects: +Looking for Bachelor / Master Thesis for Summer semester 2025. Please reach out via email or website - https://ambekarsameer.com if you are interested in working on Test-time adaptation, Domain Generalization, Meta Learning or related topics.
  • +
+ +
+ +
+ + +
+
Interests
+
    + +
  • Domain Generalization
  • + +
  • Meta Learning
  • + +
  • Variational Inference
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Artificial Intelligence (MSc AI), 2023

    +

    University of Amsterdam, Netherlands

    +
    +
  • + +
  • + +
    +

    B.E. in Computer Science, 2018

    +

    VTU, India

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/sameer-ambekar/index.xml b/author/sameer-ambekar/index.xml new file mode 100644 index 0000000..eca33eb --- /dev/null +++ b/author/sameer-ambekar/index.xml @@ -0,0 +1,81 @@ + + + + Sameer Ambekar | Computational Imaging and AI in Medicine + https://compai-lab.io/author/sameer-ambekar/ + + Sameer Ambekar + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/sameer-ambekar/avatar_huf06922ba297c55dd6030e91aa17955db_98458_270x270_fill_q75_lanczos_center.jpeg + Sameer Ambekar + https://compai-lab.io/author/sameer-ambekar/ + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + diff --git a/author/sandra-mayer/avatar.jpg b/author/sandra-mayer/avatar.jpg new file mode 100644 index 0000000..0f3c8d4 Binary files /dev/null and b/author/sandra-mayer/avatar.jpg differ diff --git a/author/sandra-mayer/avatar_hu454783bec73824e56e1325fa9b8458f6_60745_270x270_fill_q75_lanczos_center.jpg b/author/sandra-mayer/avatar_hu454783bec73824e56e1325fa9b8458f6_60745_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..910093f Binary files /dev/null and b/author/sandra-mayer/avatar_hu454783bec73824e56e1325fa9b8458f6_60745_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/sandra-mayer/index.html b/author/sandra-mayer/index.html new file mode 100644 index 0000000..00f8029 --- /dev/null +++ b/author/sandra-mayer/index.html @@ -0,0 +1,1112 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Sandra Mayer | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Sandra Mayer + + +
+ +

Sandra Mayer

+ +

Administrative Assistant

+ + +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Sandra Mayer supports the Lab for Computational Imaging and AI in Medicine as a member of the administrative staff at the Helmholtz Campus in Neuherberg.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Project Management and Administration
  • + +
  • Team Management and Support
  • + +
  • Communication and Relations
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    +

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/sandra-mayer/index.xml b/author/sandra-mayer/index.xml new file mode 100644 index 0000000..17b2eec --- /dev/null +++ b/author/sandra-mayer/index.xml @@ -0,0 +1,16 @@ + + + + Sandra Mayer | Computational Imaging and AI in Medicine + https://compai-lab.io/author/sandra-mayer/ + + Sandra Mayer + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/sandra-mayer/avatar_hu454783bec73824e56e1325fa9b8458f6_60745_270x270_fill_q75_lanczos_center.jpg + Sandra Mayer + https://compai-lab.io/author/sandra-mayer/ + + + + diff --git a/author/simona-bottani/avatar.jpg b/author/simona-bottani/avatar.jpg new file mode 100644 index 0000000..ae9c03d Binary files /dev/null and b/author/simona-bottani/avatar.jpg differ diff --git a/author/simona-bottani/avatar_huac6ea744cb389d41095e273856ed987c_167029_270x270_fill_q75_lanczos_center.jpg b/author/simona-bottani/avatar_huac6ea744cb389d41095e273856ed987c_167029_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..a7e824a Binary files /dev/null and b/author/simona-bottani/avatar_huac6ea744cb389d41095e273856ed987c_167029_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/simona-bottani/index.html b/author/simona-bottani/index.html new file mode 100644 index 0000000..a877ba7 --- /dev/null +++ b/author/simona-bottani/index.html @@ -0,0 +1,1177 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Simona Bottani | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Simona Bottani + + +
+ +

Simona Bottani

+ +

Research Scientist

+ + +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Simona Bottani is a PostDoctoral Fellow at the IML where she works on deep learning applied to big research medical imaging cohort. She received her PhD in computer science from Sorbonne University in April 2022. She worked at the ARAMIS Lab and her thesis focused on the application of deep learning models for neuroimaging studies using a large scale clinical data warehouse of the Paris Great Area Hospitals (AP-HP). From 2017 to 2018 she worked as research engineer in the ARAMIS Lab. She received a Master Degree in 2016 and a Bachelor degree in 2014 in Biomedical engineering from Politecnico di Torino.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Deep learning
  • + +
  • Big data sets
  • + +
  • Brain imaging
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    PhD in Computer Science, 2021

    +

    Sorbonne Université

    +
    +
  • + +
  • + +
    +

    MSc in Biomedical Engineer, 2016

    +

    Politecnico di Torino

    +
    +
  • + +
  • + +
    +

    BSc in Biomedical Engineer, 2014

    +

    Politecnico di Torino

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/simona-bottani/index.xml b/author/simona-bottani/index.xml new file mode 100644 index 0000000..6c07e34 --- /dev/null +++ b/author/simona-bottani/index.xml @@ -0,0 +1,16 @@ + + + + Simona Bottani | Computational Imaging and AI in Medicine + https://compai-lab.io/author/simona-bottani/ + + Simona Bottani + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/author/simona-bottani/avatar_huac6ea744cb389d41095e273856ed987c_167029_270x270_fill_q75_lanczos_center.jpg + Simona Bottani + https://compai-lab.io/author/simona-bottani/ + + + + diff --git a/author/sir-j.-michael-brady/index.html b/author/sir-j.-michael-brady/index.html new file mode 100644 index 0000000..2e7feb5 --- /dev/null +++ b/author/sir-j.-michael-brady/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Sir J. Michael Brady | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Sir J. Michael Brady

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/sir-j.-michael-brady/index.xml b/author/sir-j.-michael-brady/index.xml new file mode 100644 index 0000000..ec4129b --- /dev/null +++ b/author/sir-j.-michael-brady/index.xml @@ -0,0 +1,24 @@ + + + + Sir J. Michael Brady | Computational Imaging and AI in Medicine + https://compai-lab.io/author/sir-j.-michael-brady/ + + Sir J. Michael Brady + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Sir J. Michael Brady + https://compai-lab.io/author/sir-j.-michael-brady/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/author/stefan-fischer/avatar.png b/author/stefan-fischer/avatar.png new file mode 100644 index 0000000..5778bfb Binary files /dev/null and b/author/stefan-fischer/avatar.png differ diff --git a/author/stefan-fischer/avatar_hu0b3bfded9873b98a8650d229e61b5476_259031_270x270_fill_lanczos_center_3.png b/author/stefan-fischer/avatar_hu0b3bfded9873b98a8650d229e61b5476_259031_270x270_fill_lanczos_center_3.png new file mode 100644 index 0000000..c8cf617 Binary files /dev/null and b/author/stefan-fischer/avatar_hu0b3bfded9873b98a8650d229e61b5476_259031_270x270_fill_lanczos_center_3.png differ diff --git a/author/stefan-fischer/index.html b/author/stefan-fischer/index.html new file mode 100644 index 0000000..0111be9 --- /dev/null +++ b/author/stefan-fischer/index.html @@ -0,0 +1,1158 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Stefan Fischer | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Stefan Fischer + + +
+ +

Stefan Fischer

+ +

Doctoral Researcher

+ + +

+ + Technical University of Munich + +

+ +

+ + MRI TUM Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Stefan Fischer is a Ph.D. Student at the Technical University of Munich (TUM). He received his B.Sc. and M.Sc. from FAU in Erlangen, Germany with a focus on medical image analysis. In his Master’s thesis at the Radiooncology department of the university hospital Erlangen, he build a generative approach for brain metastasis for data augmentation in MR Imaging. His research interest lies in deep learning based segmentation, transfer learning and curriculum learning.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Segmentation
  • + +
  • Radiooncology
  • + +
  • Transfer Learning/Curriculum Learning
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    M.Sc. in Computer Science, 2022

    +

    FAU Erlangen

    +
    +
  • + +
  • + +
    +

    B.Sc. in Medical Engineering, 2019

    +

    FAU Erlangen

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/stefan-fischer/index.xml b/author/stefan-fischer/index.xml new file mode 100644 index 0000000..4ef77ce --- /dev/null +++ b/author/stefan-fischer/index.xml @@ -0,0 +1,71 @@ + + + + Stefan Fischer | Computational Imaging and AI in Medicine + https://compai-lab.io/author/stefan-fischer/ + + Stefan Fischer + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/stefan-fischer/avatar_hu0b3bfded9873b98a8650d229e61b5476_259031_270x270_fill_lanczos_center_3.png + Stefan Fischer + https://compai-lab.io/author/stefan-fischer/ + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Paper Accepted at MELBA Journal + https://compai-lab.io/post/fischer_melba_24/ + Fri, 14 Jun 2024 00:00:00 +0000 + https://compai-lab.io/post/fischer_melba_24/ + <p>Stefan M. Fischer&rsquo;s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.<br> +Therefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal. +The journal submission &ldquo;<em>Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge</em>&rdquo; is now available at MELBA.<br> +The paper is available <a href="https://www.melba-journal.org/papers/2024:008.html" target="_blank" rel="noopener">here</a>.</p> + + + + + diff --git a/author/tahreema-matin/index.html b/author/tahreema-matin/index.html new file mode 100644 index 0000000..3a1952a --- /dev/null +++ b/author/tahreema-matin/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Tahreema Matin | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Tahreema Matin

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/tahreema-matin/index.xml b/author/tahreema-matin/index.xml new file mode 100644 index 0000000..cb845cd --- /dev/null +++ b/author/tahreema-matin/index.xml @@ -0,0 +1,24 @@ + + + + Tahreema Matin | Computational Imaging and AI in Medicine + https://compai-lab.io/author/tahreema-matin/ + + Tahreema Matin + Wowchemy (https://wowchemy.com)en-usSun, 01 Jan 2012 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Tahreema Matin + https://compai-lab.io/author/tahreema-matin/ + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + diff --git a/author/thomas-hartkens/index.html b/author/thomas-hartkens/index.html new file mode 100644 index 0000000..558469f --- /dev/null +++ b/author/thomas-hartkens/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Thomas Hartkens | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Thomas Hartkens

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/thomas-hartkens/index.xml b/author/thomas-hartkens/index.xml new file mode 100644 index 0000000..901338f --- /dev/null +++ b/author/thomas-hartkens/index.xml @@ -0,0 +1,24 @@ + + + + Thomas Hartkens | Computational Imaging and AI in Medicine + https://compai-lab.io/author/thomas-hartkens/ + + Thomas Hartkens + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Thomas Hartkens + https://compai-lab.io/author/thomas-hartkens/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/veronika-spieker/avatar.jpg b/author/veronika-spieker/avatar.jpg new file mode 100644 index 0000000..479b81f Binary files /dev/null and b/author/veronika-spieker/avatar.jpg differ diff --git a/author/veronika-spieker/avatar_huf11cf5591158d8961a7689dd9ee617d8_90836_270x270_fill_q75_lanczos_center.jpg b/author/veronika-spieker/avatar_huf11cf5591158d8961a7689dd9ee617d8_90836_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..4470820 Binary files /dev/null and b/author/veronika-spieker/avatar_huf11cf5591158d8961a7689dd9ee617d8_90836_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/veronika-spieker/index.html b/author/veronika-spieker/index.html new file mode 100644 index 0000000..941c495 --- /dev/null +++ b/author/veronika-spieker/index.html @@ -0,0 +1,1237 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Veronika Spieker | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Veronika Spieker + + +
+ +

Veronika Spieker

+ +

Doctoral Researcher

+ + +

+ + Technical University Munich + +

+ +

+ + Helmholtz Center Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Veronika Spieker is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Munich and Technical University of Munich (TUM). After completing her B.Sc. in engineering at TU Darmstadt and Virginia Tech, she pursued her interest in the medical domain with a M.Sc. in Medical Technologies at TUM. For her PhD project, she works on Physics-Based AI for Motion Correction in Abdominal MRI in collaboration with the Body Magnetic Resonance Group at the Klinikum rechts der Isar. Her research interests include concepts such as neural implicit representations and it’s application to MR reconstruction and motion estimation.

+ +
+ +
+ + +
+
Interests
+
    + +
  • MRI Reconstruction
  • + +
  • Motion Detection & Correction
  • + +
  • Neural Implicit Representations
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    MSc Medical Technologies and Asstistant Systems, 2021

    +

    Technical University of Munich

    +
    +
  • + +
  • + +
    +

    MSc Mechanical Engineering, 2021

    +

    Technical University of Munich

    +
    +
  • + +
  • + +
    +

    BSc Mechanical Engineering, 2017

    +

    Technical University of Darmstadt / Virginia Tech

    +
    +
  • + +
+
+ + + + +
+ + + + +
+
Student Projects & Theses
+
    + +
  • +
    +

    Reducing Labeling Efforts in Segmentation-based Registration in Medical Imaging

    +

    Master's thesis | 1.11.2023 | Varsha Raveendran | finished |

    +
    +
  • + +
  • +
    +

    Deep Learning For Medical Image Registration

    +

    GRP | 1.11.2023 | Varsha Raveendran | finished |

    +
    +
  • + +
+
+ + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/veronika-spieker/index.xml b/author/veronika-spieker/index.xml new file mode 100644 index 0000000..6b2115b --- /dev/null +++ b/author/veronika-spieker/index.xml @@ -0,0 +1,152 @@ + + + + Veronika Spieker | Computational Imaging and AI in Medicine + https://compai-lab.io/author/veronika-spieker/ + + Veronika Spieker + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/author/veronika-spieker/avatar_huf11cf5591158d8961a7689dd9ee617d8_90836_270x270_fill_q75_lanczos_center.jpg + Veronika Spieker + https://compai-lab.io/author/veronika-spieker/ + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Two abstracts accepted at 2024 ISMRM & ISMRT Annual Meeting (oral talks) + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + Thu, 01 Feb 2024 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as orals at the 2024 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Hannah Eichhorn will present her work &ldquo;<em>PHIMO: Physics-Informed Motion Correction of GRE MRI for T2</em> Quantification*&rdquo; on Tuesday, 07 May 2024 at 8:15 am SGT. Check <a href="https://github.com/HannahEichhorn/PHIMO" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> +<p>Veronika Spieker will present her work &ldquo;<em>DE-NIK: Leveraging Dual-Echo Data for Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit k-Space Representations</em>&rdquo; on Monday, 06 May 2024 at 8:15 am SGT. Check <a href="https://github.com/vjspi/DE-NIK" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + Review paper accepted at IEEE Transactions on Medical Imaging + https://compai-lab.io/post/spieker_eichhorn_tmi/ + Wed, 25 Oct 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_tmi/ + <p><em>Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review</em> by Veronika Spieker and Hannah Eichhorn et al. has been accepted for publication at IEEE Transactions on Medical Imaging.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img alt="img" srcset=" + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp 400w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_59a22aa363f30bc9c49ab63c04f6c200.webp 760w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_1200x1200_fit_q75_h2_lanczos_3.webp 1200w" + src="https://compai-lab.io/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp" + width="760" + height="713" + loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Motion remains a major challenge in MRI and various deep learning solutions have been proposed – but what are common challenges and potentials? Check out <a href="https://ieeexplore.ieee.org/document/10285512" target="_blank" rel="noopener">this review</a>, which identifies differences and synergies of recent methods and bridges the gap between AI and MR physics.</p> + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + Five papers accepted at MICCAI 2023 workshops + https://compai-lab.io/post/iml_miccai_workshops/ + Thu, 14 Sep 2023 00:00:00 +0000 + https://compai-lab.io/post/iml_miccai_workshops/ + <p>Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p>Interested to hear more about our work? Then join us at the following workshops:</p> +<ul> +<li> +<p>Veronika Spieker will be at the <a href="https://dgm4miccai.github.io/" target="_blank" rel="noopener">DGM4</a> workshop to talk about <a href="https://arxiv.org/abs/2308.08830" target="_blank" rel="noopener">Neural Implicit Representations for Abdominal MR Reconstruction</a> on October 8, at 10:25.</p> +</li> +<li> +<p>Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the <a href="https://2023.sashimi-workshop.org/program/" target="_blank" rel="noopener">SASHIMI</a> workshop on October 8, at 14:40. Check out the <a href="https://arxiv.org/abs/2303.10987" target="_blank" rel="noopener">preprint</a> for more information!</p> +</li> +<li> +<p>Maxime Di Folco presents at the <a href="https://stacom.github.io/stacom2023/" target="_blank" rel="noopener">STACOM</a> workshop on October 12, at 11:15 the work of Josh Stein on &ldquo;Sparse annotation strategies for segmentation of short axis cardiac MRI&rdquo; (<a href="https://arxiv.org/abs/2307.12619" target="_blank" rel="noopener">preprint</a>).</p> +</li> +<li> +<p>Cosmin Bercea will talk about <a href="https://arxiv.org/pdf/2308.13861.pdf" target="_blank" rel="noopener">Bias in Unsupervised Anomaly Detection</a> at the <a href="https://faimi-workshop.github.io/2023-miccai/" target="_blank" rel="noopener">FAIMI</a> workshop on October 12, at 2:50 PDT.</p> +</li> +<li> +<p>Daniel Lang will talk about <a href="https://arxiv.org/abs/2303.05861" target="_blank" rel="noopener">Anomaly Detection in Non-Contrast Enhanced Breast MRI</a> at the <a href="https://caption-workshop.github.io/miccai2023/#Workshop%20sessions" target="_blank" rel="noopener">CaPTion</a> workshop on October 12.</p> +</li> +</ul> + + + + Abstracts accepted at 2023 ISMRM & ISMRT Annual Meeting + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + Tue, 25 Apr 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as digital posters at the 2023 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Veronika Spieker will present her work on &ldquo;<em>Patient-specific respiratory liver motion analysis for individual motion-resolved reconstruction</em>&rdquo; on Monday, 05 June 2023 at 1:45 pm EDT.</p> +<p>Hannah Eichhorn will present her work on &ldquo;<em>Investigating the Impact of Motion and Associated B0 Changes on Oxygenation Sensitive MRI through Realistic Simulations</em>&rdquo; on Tuesday, 06 June 2023 at 4:45 pm EDT. Check <a href="https://github.com/HannahEichhorn/T2starRealisticMotionSimulation" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + diff --git a/author/veronika-zimmer/avatar.jpg b/author/veronika-zimmer/avatar.jpg new file mode 100644 index 0000000..f871204 Binary files /dev/null and b/author/veronika-zimmer/avatar.jpg differ diff --git a/author/veronika-zimmer/avatar_hu7d3339efd454f84887db003b20ae29f7_22328_270x270_fill_q75_lanczos_center.jpg b/author/veronika-zimmer/avatar_hu7d3339efd454f84887db003b20ae29f7_22328_270x270_fill_q75_lanczos_center.jpg new file mode 100644 index 0000000..acc1ec5 Binary files /dev/null and b/author/veronika-zimmer/avatar_hu7d3339efd454f84887db003b20ae29f7_22328_270x270_fill_q75_lanczos_center.jpg differ diff --git a/author/veronika-zimmer/index.html b/author/veronika-zimmer/index.html new file mode 100644 index 0000000..106962c --- /dev/null +++ b/author/veronika-zimmer/index.html @@ -0,0 +1,1181 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Veronika Zimmer | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + Veronika Zimmer + + +
+ +

Veronika Zimmer

+ +

Principal Investigator

+ + +

+ + Technical University Munich + +

+ +
+ + + +
+
+
+ + + + +
+

Veronika A. Zimmer is a principal investigator at the Institute of Computer Sciences at TUM and a visiting researcher at the School of Biomedical Engineering & Imaging Sciences at King’s College London. She received her PhD in Information and Communication Technologies from the Universitat Pompeu Fabra, Barcelona, Spain, in 2017. Her research focuses on image analysis and machine learning with a particular interest in robust and generalizable methods for multimodal registration and segmentation in medical imaging.

+ +
+ +
+ + +
+
Interests
+
    + +
  • Medical Image Computing
  • + +
  • Ultrasound Image Analysis
  • + +
  • Fetal Image Analysis
  • + +
+
+ + + +
+
Education
+
    + +
  • + +
    +

    Medical Image Computing (Ph. D.), 2017

    +

    Universitat Pompeu Fabra, Barcelona, Spain

    +
    +
  • + +
  • + +
    +

    Computational Life Science (M. Sc.), 2011

    +

    University of Luebeck, Germany

    +
    +
  • + +
  • + +
    +

    Computational Life Science (B. Sc.), 2008

    +

    University of Luebeck, Germany

    +
    +
  • + +
+
+ + + + +
+ + + + + + +
+
+ + + + + + +
+

Latest

+ +
+ +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/veronika-zimmer/index.xml b/author/veronika-zimmer/index.xml new file mode 100644 index 0000000..9bd75de --- /dev/null +++ b/author/veronika-zimmer/index.xml @@ -0,0 +1,45 @@ + + + + Veronika Zimmer | Computational Imaging and AI in Medicine + https://compai-lab.io/author/veronika-zimmer/ + + Veronika Zimmer + Wowchemy (https://wowchemy.com)en-usMon, 21 Nov 2022 00:00:00 +0000 + + https://compai-lab.io/author/veronika-zimmer/avatar_hu7d3339efd454f84887db003b20ae29f7_22328_270x270_fill_q75_lanczos_center.jpg + Veronika Zimmer + https://compai-lab.io/author/veronika-zimmer/ + + + + Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) + https://compai-lab.io/vacancies/msc_surface/ + Mon, 21 Nov 2022 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_surface/ + <p>Abstract:</p> +<p>In recent years, unsupervised and semi-supervised learning from populations of surfaces and curves has received a lot of attention. Such data representations are analyzed according to their shapes which open a broad range of applications in machine learning, robotics, statistics and engineering. In particular, studying the shape of surfaces have become an important tool in biology and medical imaging. The extraction of appropriate data representations, such as triangulated surfaces, is crucial for the subsequent analysis. These surfaces are for example obtained from binary segmentations or 3D point clouds. Using standard methods, such surfaces are often not very accurate and require several post-processing steps, such as smoothing and simplifications. +Deep learning based methods are of great interest in various fields such as medical imaging, com- puter vision, applied mathematics and are successfully used in the field of image segmentation. Gener- ally, a specific formulation requires a particular attention to representations, loss functions, probability models, optimization techniques, etc. This choice is very crucial due to the underlying geometry on the space of representations and constraints. we aim to develop a new set of automatic methods that can compute a triangulation and a normal field from a 3D dataset (binary image and/or 3D point cloud). +The goal of this project is to understand the-state-of-the-art methods (e.g., [?]) and to propose solutions in the context of constructing a mesh from 3D images/point sets. We are interested in learn- ing from a dataset of smooth surfaces and their corresponding 3D datasets to make the triangulation or resampling accurate. The application will be the extraction of a smooth surfaces from μ-CT and CT data of the cochlea and inner ear, whose shapes can then be analyzed subsequently for population studies. +To summarize, the key steps are : (i) Literature review and getting familiar with some state-of- the-art methods in the medical context; (ii) Implementing and testing the code before validation on real data; (iii) Optimizing the code and comparing with baseline methods. If successful, the method would be applied to analyze and classify surfaces.</p> + + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + diff --git a/author/vicky-goh/index.html b/author/vicky-goh/index.html new file mode 100644 index 0000000..4c8566d --- /dev/null +++ b/author/vicky-goh/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Vicky Goh | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Vicky Goh

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/vicky-goh/index.xml b/author/vicky-goh/index.xml new file mode 100644 index 0000000..6f08b98 --- /dev/null +++ b/author/vicky-goh/index.xml @@ -0,0 +1,24 @@ + + + + Vicky Goh | Computational Imaging and AI in Medicine + https://compai-lab.io/author/vicky-goh/ + + Vicky Goh + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Vicky Goh + https://compai-lab.io/author/vicky-goh/ + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/author/walter-a-hall/index.html b/author/walter-a-hall/index.html new file mode 100644 index 0000000..537bfff --- /dev/null +++ b/author/walter-a-hall/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Walter A Hall | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Walter A Hall

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/walter-a-hall/index.xml b/author/walter-a-hall/index.xml new file mode 100644 index 0000000..9e4997d --- /dev/null +++ b/author/walter-a-hall/index.xml @@ -0,0 +1,24 @@ + + + + Walter A Hall | Computational Imaging and AI in Medicine + https://compai-lab.io/author/walter-a-hall/ + + Walter A Hall + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Walter A Hall + https://compai-lab.io/author/walter-a-hall/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/author/xiahai-zhuang/index.html b/author/xiahai-zhuang/index.html new file mode 100644 index 0000000..6dbb8e5 --- /dev/null +++ b/author/xiahai-zhuang/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Xiahai Zhuang | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Xiahai Zhuang

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/xiahai-zhuang/index.xml b/author/xiahai-zhuang/index.xml new file mode 100644 index 0000000..6b7adcb --- /dev/null +++ b/author/xiahai-zhuang/index.xml @@ -0,0 +1,24 @@ + + + + Xiahai Zhuang | Computational Imaging and AI in Medicine + https://compai-lab.io/author/xiahai-zhuang/ + + Xiahai Zhuang + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Xiahai Zhuang + https://compai-lab.io/author/xiahai-zhuang/ + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + + + + + diff --git a/author/zacharias-chalampalakis/index.html b/author/zacharias-chalampalakis/index.html new file mode 100644 index 0000000..5f49d1c --- /dev/null +++ b/author/zacharias-chalampalakis/index.html @@ -0,0 +1,1005 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Zacharias Chalampalakis | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Zacharias Chalampalakis

+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/author/zacharias-chalampalakis/index.xml b/author/zacharias-chalampalakis/index.xml new file mode 100644 index 0000000..b193bc8 --- /dev/null +++ b/author/zacharias-chalampalakis/index.xml @@ -0,0 +1,24 @@ + + + + Zacharias Chalampalakis | Computational Imaging and AI in Medicine + https://compai-lab.io/author/zacharias-chalampalakis/ + + Zacharias Chalampalakis + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Zacharias Chalampalakis + https://compai-lab.io/author/zacharias-chalampalakis/ + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/authors/index.html b/authors/index.html new file mode 100644 index 0000000..d564b4e --- /dev/null +++ b/authors/index.html @@ -0,0 +1,1057 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/authors/index.xml b/authors/index.xml new file mode 100644 index 0000000..86fb6a1 --- /dev/null +++ b/authors/index.xml @@ -0,0 +1,16 @@ + + + + Authors | Computational Imaging and AI in Medicine + https://compai-lab.io/authors/ + + Authors + Wowchemy (https://wowchemy.com)en-usTue, 13 Aug 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Authors + https://compai-lab.io/authors/ + + + + diff --git a/authors/page/1/index.html b/authors/page/1/index.html new file mode 100644 index 0000000..be07e0e --- /dev/null +++ b/authors/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/authors/ + + + + + + diff --git a/authors/page/2/index.html b/authors/page/2/index.html new file mode 100644 index 0000000..07d004f --- /dev/null +++ b/authors/page/2/index.html @@ -0,0 +1,1059 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/authors/page/3/index.html b/authors/page/3/index.html new file mode 100644 index 0000000..58c33e5 --- /dev/null +++ b/authors/page/3/index.html @@ -0,0 +1,1059 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/authors/page/4/index.html b/authors/page/4/index.html new file mode 100644 index 0000000..7c6e938 --- /dev/null +++ b/authors/page/4/index.html @@ -0,0 +1,1059 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/authors/page/5/index.html b/authors/page/5/index.html new file mode 100644 index 0000000..282a3fc --- /dev/null +++ b/authors/page/5/index.html @@ -0,0 +1,1059 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/authors/page/6/index.html b/authors/page/6/index.html new file mode 100644 index 0000000..1492bb6 --- /dev/null +++ b/authors/page/6/index.html @@ -0,0 +1,1059 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/authors/page/7/index.html b/authors/page/7/index.html new file mode 100644 index 0000000..bc57534 --- /dev/null +++ b/authors/page/7/index.html @@ -0,0 +1,1059 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/authors/page/8/index.html b/authors/page/8/index.html new file mode 100644 index 0000000..e0cc039 --- /dev/null +++ b/authors/page/8/index.html @@ -0,0 +1,1045 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Authors | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Authors

+ + + + +
+ + + +
+ + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/categories/index.html b/categories/index.html new file mode 100644 index 0000000..ac5fa84 --- /dev/null +++ b/categories/index.html @@ -0,0 +1,1012 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Categories | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Categories

+ + + + +
+ + + +
+ + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/categories/index.xml b/categories/index.xml new file mode 100644 index 0000000..c6fc416 --- /dev/null +++ b/categories/index.xml @@ -0,0 +1,16 @@ + + + + Categories | Computational Imaging and AI in Medicine + https://compai-lab.io/categories/ + + Categories + Wowchemy (https://wowchemy.com)en-us + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Categories + https://compai-lab.io/categories/ + + + + diff --git a/categories/page/1/index.html b/categories/page/1/index.html new file mode 100644 index 0000000..c222241 --- /dev/null +++ b/categories/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/categories/ + + + + + + diff --git a/contact/index.html b/contact/index.html new file mode 100644 index 0000000..46ab98d --- /dev/null +++ b/contact/index.html @@ -0,0 +1,1285 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+

Technical University Munich

+

Faculty of Informatics and Institute for Advanced Study

+
+ + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ + + +
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+

Helmholtz Center Munich

+

Institute of Machine Learning in Biomedical Imaging

+
+ + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ + + +
+ + +
+
+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/css/libs/chroma/dracula.min.css b/css/libs/chroma/dracula.min.css new file mode 100644 index 0000000..d31f6fc --- /dev/null +++ b/css/libs/chroma/dracula.min.css @@ -0,0 +1 @@ +.bg{color:#f8f8f2;background-color:#282a36}.chroma{color:#f8f8f2;background-color:#282a36}.chroma .x{}.chroma .err{}.chroma .cl{}.chroma .lntd{vertical-align:top;padding:0;margin:0;border:0}.chroma .lntable{border-spacing:0;padding:0;margin:0;border:0}.chroma .hl{background-color:#ffc}.chroma .lnt{white-space:pre;user-select:none;margin-right:.4em;padding:0 .4em;color:#7f7f7f}.chroma .ln{white-space:pre;user-select:none;margin-right:.4em;padding:0 .4em;color:#7f7f7f}.chroma .line{display:flex}.chroma .k{color:#ff79c6}.chroma .kc{color:#ff79c6}.chroma .kd{color:#8be9fd;font-style:italic}.chroma .kn{color:#ff79c6}.chroma .kp{color:#ff79c6}.chroma .kr{color:#ff79c6}.chroma .kt{color:#8be9fd}.chroma .n{}.chroma .na{color:#50fa7b}.chroma .nb{color:#8be9fd;font-style:italic}.chroma .bp{}.chroma .nc{color:#50fa7b}.chroma .no{}.chroma .nd{}.chroma .ni{}.chroma .ne{}.chroma .nf{color:#50fa7b}.chroma .fm{}.chroma .nl{color:#8be9fd;font-style:italic}.chroma .nn{}.chroma .nx{}.chroma .py{}.chroma .nt{color:#ff79c6}.chroma .nv{color:#8be9fd;font-style:italic}.chroma .vc{color:#8be9fd;font-style:italic}.chroma .vg{color:#8be9fd;font-style:italic}.chroma .vi{color:#8be9fd;font-style:italic}.chroma .vm{}.chroma .l{}.chroma .ld{}.chroma .s{color:#f1fa8c}.chroma .sa{color:#f1fa8c}.chroma .sb{color:#f1fa8c}.chroma .sc{color:#f1fa8c}.chroma .dl{color:#f1fa8c}.chroma .sd{color:#f1fa8c}.chroma .s2{color:#f1fa8c}.chroma .se{color:#f1fa8c}.chroma .sh{color:#f1fa8c}.chroma .si{color:#f1fa8c}.chroma .sx{color:#f1fa8c}.chroma .sr{color:#f1fa8c}.chroma .s1{color:#f1fa8c}.chroma .ss{color:#f1fa8c}.chroma .m{color:#bd93f9}.chroma .mb{color:#bd93f9}.chroma .mf{color:#bd93f9}.chroma .mh{color:#bd93f9}.chroma .mi{color:#bd93f9}.chroma .il{color:#bd93f9}.chroma .mo{color:#bd93f9}.chroma .o{color:#ff79c6}.chroma .ow{color:#ff79c6}.chroma .p{}.chroma .c{color:#6272a4}.chroma .ch{color:#6272a4}.chroma .cm{color:#6272a4}.chroma .c1{color:#6272a4}.chroma .cs{color:#6272a4}.chroma .cp{color:#ff79c6}.chroma .cpf{color:#ff79c6}.chroma .g{}.chroma .gd{color:#f55}.chroma .ge{text-decoration:underline}.chroma .gr{}.chroma .gh{font-weight:700}.chroma .gi{color:#50fa7b;font-weight:700}.chroma .go{color:#44475a}.chroma .gp{}.chroma .gs{}.chroma .gu{font-weight:700}.chroma .gt{}.chroma .gl{text-decoration:underline}.chroma .w{} \ No newline at end of file diff --git a/css/libs/chroma/github-light.min.css b/css/libs/chroma/github-light.min.css new file mode 100644 index 0000000..dc5acf8 --- /dev/null +++ b/css/libs/chroma/github-light.min.css @@ -0,0 +1 @@ +.bg{background-color:#fff}.chroma{background-color:#fff}.chroma .x{}.chroma .err{color:#a61717;background-color:#e3d2d2}.chroma .cl{}.chroma .lntd{vertical-align:top;padding:0;margin:0;border:0}.chroma .lntable{border-spacing:0;padding:0;margin:0;border:0}.chroma .hl{background-color:#ffc}.chroma .lnt{white-space:pre;user-select:none;margin-right:.4em;padding:0 .4em;color:#7f7f7f}.chroma .ln{white-space:pre;user-select:none;margin-right:.4em;padding:0 .4em;color:#7f7f7f}.chroma .line{display:flex}.chroma .k{color:#000;font-weight:700}.chroma .kc{color:#000;font-weight:700}.chroma .kd{color:#000;font-weight:700}.chroma .kn{color:#000;font-weight:700}.chroma .kp{color:#000;font-weight:700}.chroma .kr{color:#000;font-weight:700}.chroma .kt{color:#458;font-weight:700}.chroma .n{}.chroma .na{color:teal}.chroma .nb{color:#0086b3}.chroma .bp{color:#999}.chroma .nc{color:#458;font-weight:700}.chroma .no{color:teal}.chroma .nd{color:#3c5d5d;font-weight:700}.chroma .ni{color:purple}.chroma .ne{color:#900;font-weight:700}.chroma .nf{color:#900;font-weight:700}.chroma .fm{}.chroma .nl{color:#900;font-weight:700}.chroma .nn{color:#555}.chroma .nx{}.chroma .py{}.chroma .nt{color:navy}.chroma .nv{color:teal}.chroma .vc{color:teal}.chroma .vg{color:teal}.chroma .vi{color:teal}.chroma .vm{}.chroma .l{}.chroma .ld{}.chroma .s{color:#d14}.chroma .sa{color:#d14}.chroma .sb{color:#d14}.chroma .sc{color:#d14}.chroma .dl{color:#d14}.chroma .sd{color:#d14}.chroma .s2{color:#d14}.chroma .se{color:#d14}.chroma .sh{color:#d14}.chroma .si{color:#d14}.chroma .sx{color:#d14}.chroma .sr{color:#009926}.chroma .s1{color:#d14}.chroma .ss{color:#990073}.chroma .m{color:#099}.chroma .mb{color:#099}.chroma .mf{color:#099}.chroma .mh{color:#099}.chroma .mi{color:#099}.chroma .il{color:#099}.chroma .mo{color:#099}.chroma .o{color:#000;font-weight:700}.chroma .ow{color:#000;font-weight:700}.chroma .p{}.chroma .c{color:#998;font-style:italic}.chroma .ch{color:#998;font-style:italic}.chroma .cm{color:#998;font-style:italic}.chroma .c1{color:#998;font-style:italic}.chroma .cs{color:#999;font-weight:700;font-style:italic}.chroma .cp{color:#999;font-weight:700;font-style:italic}.chroma .cpf{color:#999;font-weight:700;font-style:italic}.chroma .g{}.chroma .gd{color:#000;background-color:#fdd}.chroma .ge{color:#000;font-style:italic}.chroma .gr{color:#a00}.chroma .gh{color:#999}.chroma .gi{color:#000;background-color:#dfd}.chroma .go{color:#888}.chroma .gp{color:#555}.chroma .gs{font-weight:700}.chroma .gu{color:#aaa}.chroma .gt{color:#a00}.chroma .gl{text-decoration:underline}.chroma .w{color:#bbb} \ No newline at end of file diff --git a/css/vendor-bundle.min.c7b8d9abd591ba2253ea42747e3ac3f5.css b/css/vendor-bundle.min.c7b8d9abd591ba2253ea42747e3ac3f5.css new file mode 100644 index 0000000..ed0fc80 --- /dev/null +++ b/css/vendor-bundle.min.c7b8d9abd591ba2253ea42747e3ac3f5.css @@ -0,0 +1,3 @@ +/*!* Font Awesome Free 6.0.0 by @fontawesome - https://fontawesome.com +* License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) +* Copyright 2022 Fonticons, Inc.*/.fa{font-family:var(--fa-style-family,"Font Awesome 6 Free");font-weight:var(--fa-style,900)}.fa,.fa-brands,.fa-duotone,.fa-light,.fa-regular,.fa-solid,.fa-thin,.fab,.fad,.fal,.far,.fas,.fat{-moz-osx-font-smoothing:grayscale;-webkit-font-smoothing:antialiased;display:var(--fa-display,inline-block);font-style:normal;font-variant:normal;line-height:1;text-rendering:auto}.fa-1x{font-size:1em}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-6x{font-size:6em}.fa-7x{font-size:7em}.fa-8x{font-size:8em}.fa-9x{font-size:9em}.fa-10x{font-size:10em}.fa-2xs{font-size:.625em;line-height:.1em;vertical-align:.225em}.fa-xs{font-size:.75em;line-height:.08333em;vertical-align:.125em}.fa-sm{font-size:.875em;line-height:.07143em;vertical-align:.05357em}.fa-lg{font-size:1.25em;line-height:.05em;vertical-align:-.075em}.fa-xl{font-size:1.5em;line-height:.04167em;vertical-align:-.125em}.fa-2xl{font-size:2em;line-height:.03125em;vertical-align:-.1875em}.fa-fw{text-align:center;width:1.25em}.fa-ul{list-style-type:none;margin-left:var(--fa-li-margin,2.5em);padding-left:0}.fa-ul>li{position:relative}.fa-li{left:calc(var(--fa-li-width,2em)*-1);position:absolute;text-align:center;width:var(--fa-li-width,2em);line-height:inherit}.fa-border{border-radius:var(--fa-border-radius,.1em);border:var(--fa-border-width,.08em)var(--fa-border-style,solid)var(--fa-border-color,#eee);padding:var(--fa-border-padding,.2em .25em .15em)}.fa-pull-left{float:left;margin-right:var(--fa-pull-margin,.3em)}.fa-pull-right{float:right;margin-left:var(--fa-pull-margin,.3em)}.fa-beat{-webkit-animation-name:fa-beat;animation-name:fa-beat;-webkit-animation-delay:var(--fa-animation-delay,0);animation-delay:var(--fa-animation-delay,0);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,ease-in-out);animation-timing-function:var(--fa-animation-timing,ease-in-out)}.fa-bounce{-webkit-animation-name:fa-bounce;animation-name:fa-bounce;-webkit-animation-delay:var(--fa-animation-delay,0);animation-delay:var(--fa-animation-delay,0);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,cubic-bezier(.28,.84,.42,1));animation-timing-function:var(--fa-animation-timing,cubic-bezier(.28,.84,.42,1))}.fa-fade{-webkit-animation-name:fa-fade;animation-name:fa-fade;-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1));animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1))}.fa-beat-fade,.fa-fade{-webkit-animation-delay:var(--fa-animation-delay,0);animation-delay:var(--fa-animation-delay,0);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s)}.fa-beat-fade{-webkit-animation-name:fa-beat-fade;animation-name:fa-beat-fade;-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1));animation-timing-function:var(--fa-animation-timing,cubic-bezier(.4,0,.6,1))}.fa-flip{-webkit-animation-name:fa-flip;animation-name:fa-flip;-webkit-animation-delay:var(--fa-animation-delay,0);animation-delay:var(--fa-animation-delay,0);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,ease-in-out);animation-timing-function:var(--fa-animation-timing,ease-in-out)}.fa-shake{-webkit-animation-name:fa-shake;animation-name:fa-shake;-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,linear);animation-timing-function:var(--fa-animation-timing,linear)}.fa-shake,.fa-spin{-webkit-animation-delay:var(--fa-animation-delay,0);animation-delay:var(--fa-animation-delay,0);-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal)}.fa-spin{-webkit-animation-name:fa-spin;animation-name:fa-spin;-webkit-animation-duration:var(--fa-animation-duration,2s);animation-duration:var(--fa-animation-duration,2s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,linear);animation-timing-function:var(--fa-animation-timing,linear)}.fa-spin-reverse{--fa-animation-direction:reverse}.fa-pulse,.fa-spin-pulse{-webkit-animation-name:fa-spin;animation-name:fa-spin;-webkit-animation-direction:var(--fa-animation-direction,normal);animation-direction:var(--fa-animation-direction,normal);-webkit-animation-duration:var(--fa-animation-duration,1s);animation-duration:var(--fa-animation-duration,1s);-webkit-animation-iteration-count:var(--fa-animation-iteration-count,infinite);animation-iteration-count:var(--fa-animation-iteration-count,infinite);-webkit-animation-timing-function:var(--fa-animation-timing,steps(8));animation-timing-function:var(--fa-animation-timing,steps(8))}@media(prefers-reduced-motion:reduce){.fa-beat,.fa-beat-fade,.fa-bounce,.fa-fade,.fa-flip,.fa-pulse,.fa-shake,.fa-spin,.fa-spin-pulse{-webkit-animation-delay:-1ms;animation-delay:-1ms;-webkit-animation-duration:1ms;animation-duration:1ms;-webkit-animation-iteration-count:1;animation-iteration-count:1;transition-delay:0s;transition-duration:0s}}@-webkit-keyframes fa-beat{0%,90%{-webkit-transform:scale(1);transform:scale(1)}45%{-webkit-transform:scale(var(--fa-beat-scale,1.25));transform:scale(var(--fa-beat-scale,1.25))}}@keyframes fa-beat{0%,90%{-webkit-transform:scale(1);transform:scale(1)}45%{-webkit-transform:scale(var(--fa-beat-scale,1.25));transform:scale(var(--fa-beat-scale,1.25))}}@-webkit-keyframes fa-bounce{0%{-webkit-transform:scale(1)translateY(0);transform:scale(1)translateY(0)}10%{-webkit-transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9))translateY(0);transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9))translateY(0)}30%{-webkit-transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1))translateY(var(--fa-bounce-height,-.5em));transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1))translateY(var(--fa-bounce-height,-.5em))}50%{-webkit-transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95))translateY(0);transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95))translateY(0)}57%{-webkit-transform:scale(1)translateY(var(--fa-bounce-rebound,-.125em));transform:scale(1)translateY(var(--fa-bounce-rebound,-.125em))}64%{-webkit-transform:scale(1)translateY(0);transform:scale(1)translateY(0)}to{-webkit-transform:scale(1)translateY(0);transform:scale(1)translateY(0)}}@keyframes fa-bounce{0%{-webkit-transform:scale(1)translateY(0);transform:scale(1)translateY(0)}10%{-webkit-transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9))translateY(0);transform:scale(var(--fa-bounce-start-scale-x,1.1),var(--fa-bounce-start-scale-y,.9))translateY(0)}30%{-webkit-transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1))translateY(var(--fa-bounce-height,-.5em));transform:scale(var(--fa-bounce-jump-scale-x,.9),var(--fa-bounce-jump-scale-y,1.1))translateY(var(--fa-bounce-height,-.5em))}50%{-webkit-transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95))translateY(0);transform:scale(var(--fa-bounce-land-scale-x,1.05),var(--fa-bounce-land-scale-y,.95))translateY(0)}57%{-webkit-transform:scale(1)translateY(var(--fa-bounce-rebound,-.125em));transform:scale(1)translateY(var(--fa-bounce-rebound,-.125em))}64%{-webkit-transform:scale(1)translateY(0);transform:scale(1)translateY(0)}to{-webkit-transform:scale(1)translateY(0);transform:scale(1)translateY(0)}}@-webkit-keyframes fa-fade{50%{opacity:var(--fa-fade-opacity,.4)}}@keyframes fa-fade{50%{opacity:var(--fa-fade-opacity,.4)}}@-webkit-keyframes fa-beat-fade{0%,to{opacity:var(--fa-beat-fade-opacity,.4);-webkit-transform:scale(1);transform:scale(1)}50%{opacity:1;-webkit-transform:scale(var(--fa-beat-fade-scale,1.125));transform:scale(var(--fa-beat-fade-scale,1.125))}}@keyframes fa-beat-fade{0%,to{opacity:var(--fa-beat-fade-opacity,.4);-webkit-transform:scale(1);transform:scale(1)}50%{opacity:1;-webkit-transform:scale(var(--fa-beat-fade-scale,1.125));transform:scale(var(--fa-beat-fade-scale,1.125))}}@-webkit-keyframes fa-flip{50%{-webkit-transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg));transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg))}}@keyframes fa-flip{50%{-webkit-transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg));transform:rotate3d(var(--fa-flip-x,0),var(--fa-flip-y,1),var(--fa-flip-z,0),var(--fa-flip-angle,-180deg))}}@-webkit-keyframes fa-shake{0%{-webkit-transform:rotate(-15deg);transform:rotate(-15deg)}4%{-webkit-transform:rotate(15deg);transform:rotate(15deg)}8%,24%{-webkit-transform:rotate(-18deg);transform:rotate(-18deg)}12%,28%{-webkit-transform:rotate(18deg);transform:rotate(18deg)}16%{-webkit-transform:rotate(-22deg);transform:rotate(-22deg)}20%{-webkit-transform:rotate(22deg);transform:rotate(22deg)}32%{-webkit-transform:rotate(-12deg);transform:rotate(-12deg)}36%{-webkit-transform:rotate(12deg);transform:rotate(12deg)}40%,to{-webkit-transform:rotate(0);transform:rotate(0)}}@keyframes fa-shake{0%{-webkit-transform:rotate(-15deg);transform:rotate(-15deg)}4%{-webkit-transform:rotate(15deg);transform:rotate(15deg)}8%,24%{-webkit-transform:rotate(-18deg);transform:rotate(-18deg)}12%,28%{-webkit-transform:rotate(18deg);transform:rotate(18deg)}16%{-webkit-transform:rotate(-22deg);transform:rotate(-22deg)}20%{-webkit-transform:rotate(22deg);transform:rotate(22deg)}32%{-webkit-transform:rotate(-12deg);transform:rotate(-12deg)}36%{-webkit-transform:rotate(12deg);transform:rotate(12deg)}40%,to{-webkit-transform:rotate(0);transform:rotate(0)}}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0);transform:rotate(0)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0);transform:rotate(0)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}.fa-rotate-90{-webkit-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-webkit-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-webkit-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-webkit-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-webkit-transform:scaleY(-1);transform:scaleY(-1)}.fa-flip-both,.fa-flip-horizontal.fa-flip-vertical{-webkit-transform:scale(-1);transform:scale(-1)}.fa-rotate-by{-webkit-transform:rotate(var(--fa-rotate-angle,none));transform:rotate(var(--fa-rotate-angle,none))}.fa-stack{display:inline-block;height:2em;line-height:2em;position:relative;vertical-align:middle;width:2.5em}.fa-stack-1x,.fa-stack-2x{left:0;position:absolute;text-align:center;width:100%;z-index:var(--fa-stack-z-index,auto)}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:var(--fa-inverse,#fff)}.fa-0:before{content:"\30"}.fa-1:before{content:"\31"}.fa-2:before{content:"\32"}.fa-3:before{content:"\33"}.fa-4:before{content:"\34"}.fa-5:before{content:"\35"}.fa-6:before{content:"\36"}.fa-7:before{content:"\37"}.fa-8:before{content:"\38"}.fa-9:before{content:"\39"}.fa-a:before{content:"\41"}.fa-address-book:before,.fa-contact-book:before{content:"\f2b9"}.fa-address-card:before,.fa-contact-card:before,.fa-vcard:before{content:"\f2bb"}.fa-align-center:before{content:"\f037"}.fa-align-justify:before{content:"\f039"}.fa-align-left:before{content:"\f036"}.fa-align-right:before{content:"\f038"}.fa-anchor:before{content:"\f13d"}.fa-angle-down:before{content:"\f107"}.fa-angle-left:before{content:"\f104"}.fa-angle-right:before{content:"\f105"}.fa-angle-up:before{content:"\f106"}.fa-angle-double-down:before,.fa-angles-down:before{content:"\f103"}.fa-angle-double-left:before,.fa-angles-left:before{content:"\f100"}.fa-angle-double-right:before,.fa-angles-right:before{content:"\f101"}.fa-angle-double-up:before,.fa-angles-up:before{content:"\f102"}.fa-ankh:before{content:"\f644"}.fa-apple-alt:before,.fa-apple-whole:before{content:"\f5d1"}.fa-archway:before{content:"\f557"}.fa-arrow-down:before{content:"\f063"}.fa-arrow-down-1-9:before,.fa-sort-numeric-asc:before,.fa-sort-numeric-down:before{content:"\f162"}.fa-arrow-down-9-1:before,.fa-sort-numeric-desc:before,.fa-sort-numeric-down-alt:before{content:"\f886"}.fa-arrow-down-a-z:before,.fa-sort-alpha-asc:before,.fa-sort-alpha-down:before{content:"\f15d"}.fa-arrow-down-long:before,.fa-long-arrow-down:before{content:"\f175"}.fa-arrow-down-short-wide:before,.fa-sort-amount-desc:before,.fa-sort-amount-down-alt:before{content:"\f884"}.fa-arrow-down-wide-short:before,.fa-sort-amount-asc:before,.fa-sort-amount-down:before{content:"\f160"}.fa-arrow-down-z-a:before,.fa-sort-alpha-desc:before,.fa-sort-alpha-down-alt:before{content:"\f881"}.fa-arrow-left:before{content:"\f060"}.fa-arrow-left-long:before,.fa-long-arrow-left:before{content:"\f177"}.fa-arrow-pointer:before,.fa-mouse-pointer:before{content:"\f245"}.fa-arrow-right:before{content:"\f061"}.fa-arrow-right-arrow-left:before,.fa-exchange:before{content:"\f0ec"}.fa-arrow-right-from-bracket:before,.fa-sign-out:before{content:"\f08b"}.fa-arrow-right-long:before,.fa-long-arrow-right:before{content:"\f178"}.fa-arrow-right-to-bracket:before,.fa-sign-in:before{content:"\f090"}.fa-arrow-left-rotate:before,.fa-arrow-rotate-back:before,.fa-arrow-rotate-backward:before,.fa-arrow-rotate-left:before,.fa-undo:before{content:"\f0e2"}.fa-arrow-right-rotate:before,.fa-arrow-rotate-forward:before,.fa-arrow-rotate-right:before,.fa-redo:before{content:"\f01e"}.fa-arrow-trend-down:before{content:"\e097"}.fa-arrow-trend-up:before{content:"\e098"}.fa-arrow-turn-down:before,.fa-level-down:before{content:"\f149"}.fa-arrow-turn-up:before,.fa-level-up:before{content:"\f148"}.fa-arrow-up:before{content:"\f062"}.fa-arrow-up-1-9:before,.fa-sort-numeric-up:before{content:"\f163"}.fa-arrow-up-9-1:before,.fa-sort-numeric-up-alt:before{content:"\f887"}.fa-arrow-up-a-z:before,.fa-sort-alpha-up:before{content:"\f15e"}.fa-arrow-up-from-bracket:before{content:"\e09a"}.fa-arrow-up-long:before,.fa-long-arrow-up:before{content:"\f176"}.fa-arrow-up-right-from-square:before,.fa-external-link:before{content:"\f08e"}.fa-arrow-up-short-wide:before,.fa-sort-amount-up-alt:before{content:"\f885"}.fa-arrow-up-wide-short:before,.fa-sort-amount-up:before{content:"\f161"}.fa-arrow-up-z-a:before,.fa-sort-alpha-up-alt:before{content:"\f882"}.fa-arrows-h:before,.fa-arrows-left-right:before{content:"\f07e"}.fa-arrows-rotate:before,.fa-refresh:before,.fa-sync:before{content:"\f021"}.fa-arrows-up-down:before,.fa-arrows-v:before{content:"\f07d"}.fa-arrows-up-down-left-right:before,.fa-arrows:before{content:"\f047"}.fa-asterisk:before{content:"\2a"}.fa-at:before{content:"\40"}.fa-atom:before{content:"\f5d2"}.fa-audio-description:before{content:"\f29e"}.fa-austral-sign:before{content:"\e0a9"}.fa-award:before{content:"\f559"}.fa-b:before{content:"\42"}.fa-baby:before{content:"\f77c"}.fa-baby-carriage:before,.fa-carriage-baby:before{content:"\f77d"}.fa-backward:before{content:"\f04a"}.fa-backward-fast:before,.fa-fast-backward:before{content:"\f049"}.fa-backward-step:before,.fa-step-backward:before{content:"\f048"}.fa-bacon:before{content:"\f7e5"}.fa-bacteria:before{content:"\e059"}.fa-bacterium:before{content:"\e05a"}.fa-bag-shopping:before,.fa-shopping-bag:before{content:"\f290"}.fa-bahai:before{content:"\f666"}.fa-baht-sign:before{content:"\e0ac"}.fa-ban:before,.fa-cancel:before{content:"\f05e"}.fa-ban-smoking:before,.fa-smoking-ban:before{content:"\f54d"}.fa-band-aid:before,.fa-bandage:before{content:"\f462"}.fa-barcode:before{content:"\f02a"}.fa-bars:before,.fa-navicon:before{content:"\f0c9"}.fa-bars-progress:before,.fa-tasks-alt:before{content:"\f828"}.fa-bars-staggered:before,.fa-reorder:before,.fa-stream:before{content:"\f550"}.fa-baseball-ball:before,.fa-baseball:before{content:"\f433"}.fa-baseball-bat-ball:before{content:"\f432"}.fa-basket-shopping:before,.fa-shopping-basket:before{content:"\f291"}.fa-basketball-ball:before,.fa-basketball:before{content:"\f434"}.fa-bath:before,.fa-bathtub:before{content:"\f2cd"}.fa-battery-0:before,.fa-battery-empty:before{content:"\f244"}.fa-battery-5:before,.fa-battery-full:before,.fa-battery:before{content:"\f240"}.fa-battery-3:before,.fa-battery-half:before{content:"\f242"}.fa-battery-2:before,.fa-battery-quarter:before{content:"\f243"}.fa-battery-4:before,.fa-battery-three-quarters:before{content:"\f241"}.fa-bed:before{content:"\f236"}.fa-bed-pulse:before,.fa-procedures:before{content:"\f487"}.fa-beer-mug-empty:before,.fa-beer:before{content:"\f0fc"}.fa-bell:before{content:"\f0f3"}.fa-bell-concierge:before,.fa-concierge-bell:before{content:"\f562"}.fa-bell-slash:before{content:"\f1f6"}.fa-bezier-curve:before{content:"\f55b"}.fa-bicycle:before{content:"\f206"}.fa-binoculars:before{content:"\f1e5"}.fa-biohazard:before{content:"\f780"}.fa-bitcoin-sign:before{content:"\e0b4"}.fa-blender:before{content:"\f517"}.fa-blender-phone:before{content:"\f6b6"}.fa-blog:before{content:"\f781"}.fa-bold:before{content:"\f032"}.fa-bolt:before,.fa-zap:before{content:"\f0e7"}.fa-bolt-lightning:before{content:"\e0b7"}.fa-bomb:before{content:"\f1e2"}.fa-bone:before{content:"\f5d7"}.fa-bong:before{content:"\f55c"}.fa-book:before{content:"\f02d"}.fa-atlas:before,.fa-book-atlas:before{content:"\f558"}.fa-bible:before,.fa-book-bible:before{content:"\f647"}.fa-book-journal-whills:before,.fa-journal-whills:before{content:"\f66a"}.fa-book-medical:before{content:"\f7e6"}.fa-book-open:before{content:"\f518"}.fa-book-open-reader:before,.fa-book-reader:before{content:"\f5da"}.fa-book-quran:before,.fa-quran:before{content:"\f687"}.fa-book-dead:before,.fa-book-skull:before{content:"\f6b7"}.fa-bookmark:before{content:"\f02e"}.fa-border-all:before{content:"\f84c"}.fa-border-none:before{content:"\f850"}.fa-border-style:before,.fa-border-top-left:before{content:"\f853"}.fa-bowling-ball:before{content:"\f436"}.fa-box:before{content:"\f466"}.fa-archive:before,.fa-box-archive:before{content:"\f187"}.fa-box-open:before{content:"\f49e"}.fa-box-tissue:before{content:"\e05b"}.fa-boxes-alt:before,.fa-boxes-stacked:before,.fa-boxes:before{content:"\f468"}.fa-braille:before{content:"\f2a1"}.fa-brain:before{content:"\f5dc"}.fa-brazilian-real-sign:before{content:"\e46c"}.fa-bread-slice:before{content:"\f7ec"}.fa-briefcase:before{content:"\f0b1"}.fa-briefcase-medical:before{content:"\f469"}.fa-broom:before{content:"\f51a"}.fa-broom-ball:before,.fa-quidditch-broom-ball:before,.fa-quidditch:before{content:"\f458"}.fa-brush:before{content:"\f55d"}.fa-bug:before{content:"\f188"}.fa-bug-slash:before{content:"\e490"}.fa-building:before{content:"\f1ad"}.fa-bank:before,.fa-building-columns:before,.fa-institution:before,.fa-museum:before,.fa-university:before{content:"\f19c"}.fa-bullhorn:before{content:"\f0a1"}.fa-bullseye:before{content:"\f140"}.fa-burger:before,.fa-hamburger:before{content:"\f805"}.fa-bus:before{content:"\f207"}.fa-bus-alt:before,.fa-bus-simple:before{content:"\f55e"}.fa-briefcase-clock:before,.fa-business-time:before{content:"\f64a"}.fa-c:before{content:"\43"}.fa-birthday-cake:before,.fa-cake-candles:before,.fa-cake:before{content:"\f1fd"}.fa-calculator:before{content:"\f1ec"}.fa-calendar:before{content:"\f133"}.fa-calendar-check:before{content:"\f274"}.fa-calendar-day:before{content:"\f783"}.fa-calendar-alt:before,.fa-calendar-days:before{content:"\f073"}.fa-calendar-minus:before{content:"\f272"}.fa-calendar-plus:before{content:"\f271"}.fa-calendar-week:before{content:"\f784"}.fa-calendar-times:before,.fa-calendar-xmark:before{content:"\f273"}.fa-camera-alt:before,.fa-camera:before{content:"\f030"}.fa-camera-retro:before{content:"\f083"}.fa-camera-rotate:before{content:"\e0d8"}.fa-campground:before{content:"\f6bb"}.fa-candy-cane:before{content:"\f786"}.fa-cannabis:before{content:"\f55f"}.fa-capsules:before{content:"\f46b"}.fa-automobile:before,.fa-car:before{content:"\f1b9"}.fa-battery-car:before,.fa-car-battery:before{content:"\f5df"}.fa-car-crash:before{content:"\f5e1"}.fa-car-alt:before,.fa-car-rear:before{content:"\f5de"}.fa-car-side:before{content:"\f5e4"}.fa-caravan:before{content:"\f8ff"}.fa-caret-down:before{content:"\f0d7"}.fa-caret-left:before{content:"\f0d9"}.fa-caret-right:before{content:"\f0da"}.fa-caret-up:before{content:"\f0d8"}.fa-carrot:before{content:"\f787"}.fa-cart-arrow-down:before{content:"\f218"}.fa-cart-flatbed:before,.fa-dolly-flatbed:before{content:"\f474"}.fa-cart-flatbed-suitcase:before,.fa-luggage-cart:before{content:"\f59d"}.fa-cart-plus:before{content:"\f217"}.fa-cart-shopping:before,.fa-shopping-cart:before{content:"\f07a"}.fa-cash-register:before{content:"\f788"}.fa-cat:before{content:"\f6be"}.fa-cedi-sign:before{content:"\e0df"}.fa-cent-sign:before{content:"\e3f5"}.fa-certificate:before{content:"\f0a3"}.fa-chair:before{content:"\f6c0"}.fa-blackboard:before,.fa-chalkboard:before{content:"\f51b"}.fa-chalkboard-teacher:before,.fa-chalkboard-user:before{content:"\f51c"}.fa-champagne-glasses:before,.fa-glass-cheers:before{content:"\f79f"}.fa-charging-station:before{content:"\f5e7"}.fa-area-chart:before,.fa-chart-area:before{content:"\f1fe"}.fa-bar-chart:before,.fa-chart-bar:before{content:"\f080"}.fa-chart-column:before{content:"\e0e3"}.fa-chart-gantt:before{content:"\e0e4"}.fa-chart-line:before,.fa-line-chart:before{content:"\f201"}.fa-chart-pie:before,.fa-pie-chart:before{content:"\f200"}.fa-check:before{content:"\f00c"}.fa-check-double:before{content:"\f560"}.fa-check-to-slot:before,.fa-vote-yea:before{content:"\f772"}.fa-cheese:before{content:"\f7ef"}.fa-chess:before{content:"\f439"}.fa-chess-bishop:before{content:"\f43a"}.fa-chess-board:before{content:"\f43c"}.fa-chess-king:before{content:"\f43f"}.fa-chess-knight:before{content:"\f441"}.fa-chess-pawn:before{content:"\f443"}.fa-chess-queen:before{content:"\f445"}.fa-chess-rook:before{content:"\f447"}.fa-chevron-down:before{content:"\f078"}.fa-chevron-left:before{content:"\f053"}.fa-chevron-right:before{content:"\f054"}.fa-chevron-up:before{content:"\f077"}.fa-child:before{content:"\f1ae"}.fa-church:before{content:"\f51d"}.fa-circle:before{content:"\f111"}.fa-arrow-circle-down:before,.fa-circle-arrow-down:before{content:"\f0ab"}.fa-arrow-circle-left:before,.fa-circle-arrow-left:before{content:"\f0a8"}.fa-arrow-circle-right:before,.fa-circle-arrow-right:before{content:"\f0a9"}.fa-arrow-circle-up:before,.fa-circle-arrow-up:before{content:"\f0aa"}.fa-check-circle:before,.fa-circle-check:before{content:"\f058"}.fa-chevron-circle-down:before,.fa-circle-chevron-down:before{content:"\f13a"}.fa-chevron-circle-left:before,.fa-circle-chevron-left:before{content:"\f137"}.fa-chevron-circle-right:before,.fa-circle-chevron-right:before{content:"\f138"}.fa-chevron-circle-up:before,.fa-circle-chevron-up:before{content:"\f139"}.fa-circle-dollar-to-slot:before,.fa-donate:before{content:"\f4b9"}.fa-circle-dot:before,.fa-dot-circle:before{content:"\f192"}.fa-arrow-alt-circle-down:before,.fa-circle-down:before{content:"\f358"}.fa-circle-exclamation:before,.fa-exclamation-circle:before{content:"\f06a"}.fa-circle-h:before,.fa-hospital-symbol:before{content:"\f47e"}.fa-adjust:before,.fa-circle-half-stroke:before{content:"\f042"}.fa-circle-info:before,.fa-info-circle:before{content:"\f05a"}.fa-arrow-alt-circle-left:before,.fa-circle-left:before{content:"\f359"}.fa-circle-minus:before,.fa-minus-circle:before{content:"\f056"}.fa-circle-notch:before{content:"\f1ce"}.fa-circle-pause:before,.fa-pause-circle:before{content:"\f28b"}.fa-circle-play:before,.fa-play-circle:before{content:"\f144"}.fa-circle-plus:before,.fa-plus-circle:before{content:"\f055"}.fa-circle-question:before,.fa-question-circle:before{content:"\f059"}.fa-circle-radiation:before,.fa-radiation-alt:before{content:"\f7ba"}.fa-arrow-alt-circle-right:before,.fa-circle-right:before{content:"\f35a"}.fa-circle-stop:before,.fa-stop-circle:before{content:"\f28d"}.fa-arrow-alt-circle-up:before,.fa-circle-up:before{content:"\f35b"}.fa-circle-user:before,.fa-user-circle:before{content:"\f2bd"}.fa-circle-xmark:before,.fa-times-circle:before,.fa-xmark-circle:before{content:"\f057"}.fa-city:before{content:"\f64f"}.fa-clapperboard:before{content:"\e131"}.fa-clipboard:before{content:"\f328"}.fa-clipboard-check:before{content:"\f46c"}.fa-clipboard-list:before{content:"\f46d"}.fa-clock-four:before,.fa-clock:before{content:"\f017"}.fa-clock-rotate-left:before,.fa-history:before{content:"\f1da"}.fa-clone:before{content:"\f24d"}.fa-closed-captioning:before{content:"\f20a"}.fa-cloud:before{content:"\f0c2"}.fa-cloud-arrow-down:before,.fa-cloud-download-alt:before,.fa-cloud-download:before{content:"\f0ed"}.fa-cloud-arrow-up:before,.fa-cloud-upload-alt:before,.fa-cloud-upload:before{content:"\f0ee"}.fa-cloud-meatball:before{content:"\f73b"}.fa-cloud-moon:before{content:"\f6c3"}.fa-cloud-moon-rain:before{content:"\f73c"}.fa-cloud-rain:before{content:"\f73d"}.fa-cloud-showers-heavy:before{content:"\f740"}.fa-cloud-sun:before{content:"\f6c4"}.fa-cloud-sun-rain:before{content:"\f743"}.fa-clover:before{content:"\e139"}.fa-code:before{content:"\f121"}.fa-code-branch:before{content:"\f126"}.fa-code-commit:before{content:"\f386"}.fa-code-compare:before{content:"\e13a"}.fa-code-fork:before{content:"\e13b"}.fa-code-merge:before{content:"\f387"}.fa-code-pull-request:before{content:"\e13c"}.fa-coins:before{content:"\f51e"}.fa-colon-sign:before{content:"\e140"}.fa-comment:before{content:"\f075"}.fa-comment-dollar:before{content:"\f651"}.fa-comment-dots:before,.fa-commenting:before{content:"\f4ad"}.fa-comment-medical:before{content:"\f7f5"}.fa-comment-slash:before{content:"\f4b3"}.fa-comment-sms:before,.fa-sms:before{content:"\f7cd"}.fa-comments:before{content:"\f086"}.fa-comments-dollar:before{content:"\f653"}.fa-compact-disc:before{content:"\f51f"}.fa-compass:before{content:"\f14e"}.fa-compass-drafting:before,.fa-drafting-compass:before{content:"\f568"}.fa-compress:before{content:"\f066"}.fa-computer-mouse:before,.fa-mouse:before{content:"\f8cc"}.fa-cookie:before{content:"\f563"}.fa-cookie-bite:before{content:"\f564"}.fa-copy:before{content:"\f0c5"}.fa-copyright:before{content:"\f1f9"}.fa-couch:before{content:"\f4b8"}.fa-credit-card-alt:before,.fa-credit-card:before{content:"\f09d"}.fa-crop:before{content:"\f125"}.fa-crop-alt:before,.fa-crop-simple:before{content:"\f565"}.fa-cross:before{content:"\f654"}.fa-crosshairs:before{content:"\f05b"}.fa-crow:before{content:"\f520"}.fa-crown:before{content:"\f521"}.fa-crutch:before{content:"\f7f7"}.fa-cruzeiro-sign:before{content:"\e152"}.fa-cube:before{content:"\f1b2"}.fa-cubes:before{content:"\f1b3"}.fa-d:before{content:"\44"}.fa-database:before{content:"\f1c0"}.fa-backspace:before,.fa-delete-left:before{content:"\f55a"}.fa-democrat:before{content:"\f747"}.fa-desktop-alt:before,.fa-desktop:before{content:"\f390"}.fa-dharmachakra:before{content:"\f655"}.fa-diagram-next:before{content:"\e476"}.fa-diagram-predecessor:before{content:"\e477"}.fa-diagram-project:before,.fa-project-diagram:before{content:"\f542"}.fa-diagram-successor:before{content:"\e47a"}.fa-diamond:before{content:"\f219"}.fa-diamond-turn-right:before,.fa-directions:before{content:"\f5eb"}.fa-dice:before{content:"\f522"}.fa-dice-d20:before{content:"\f6cf"}.fa-dice-d6:before{content:"\f6d1"}.fa-dice-five:before{content:"\f523"}.fa-dice-four:before{content:"\f524"}.fa-dice-one:before{content:"\f525"}.fa-dice-six:before{content:"\f526"}.fa-dice-three:before{content:"\f527"}.fa-dice-two:before{content:"\f528"}.fa-disease:before{content:"\f7fa"}.fa-divide:before{content:"\f529"}.fa-dna:before{content:"\f471"}.fa-dog:before{content:"\f6d3"}.fa-dollar-sign:before,.fa-dollar:before,.fa-usd:before{content:"\24"}.fa-dolly-box:before,.fa-dolly:before{content:"\f472"}.fa-dong-sign:before{content:"\e169"}.fa-door-closed:before{content:"\f52a"}.fa-door-open:before{content:"\f52b"}.fa-dove:before{content:"\f4ba"}.fa-compress-alt:before,.fa-down-left-and-up-right-to-center:before{content:"\f422"}.fa-down-long:before,.fa-long-arrow-alt-down:before{content:"\f309"}.fa-download:before{content:"\f019"}.fa-dragon:before{content:"\f6d5"}.fa-draw-polygon:before{content:"\f5ee"}.fa-droplet:before,.fa-tint:before{content:"\f043"}.fa-droplet-slash:before,.fa-tint-slash:before{content:"\f5c7"}.fa-drum:before{content:"\f569"}.fa-drum-steelpan:before{content:"\f56a"}.fa-drumstick-bite:before{content:"\f6d7"}.fa-dumbbell:before{content:"\f44b"}.fa-dumpster:before{content:"\f793"}.fa-dumpster-fire:before{content:"\f794"}.fa-dungeon:before{content:"\f6d9"}.fa-e:before{content:"\45"}.fa-deaf:before,.fa-deafness:before,.fa-ear-deaf:before,.fa-hard-of-hearing:before{content:"\f2a4"}.fa-assistive-listening-systems:before,.fa-ear-listen:before{content:"\f2a2"}.fa-earth-africa:before,.fa-globe-africa:before{content:"\f57c"}.fa-earth-america:before,.fa-earth-americas:before,.fa-earth:before,.fa-globe-americas:before{content:"\f57d"}.fa-earth-asia:before,.fa-globe-asia:before{content:"\f57e"}.fa-earth-europe:before,.fa-globe-europe:before{content:"\f7a2"}.fa-earth-oceania:before,.fa-globe-oceania:before{content:"\e47b"}.fa-egg:before{content:"\f7fb"}.fa-eject:before{content:"\f052"}.fa-elevator:before{content:"\e16d"}.fa-ellipsis-h:before,.fa-ellipsis:before{content:"\f141"}.fa-ellipsis-v:before,.fa-ellipsis-vertical:before{content:"\f142"}.fa-envelope:before{content:"\f0e0"}.fa-envelope-open:before{content:"\f2b6"}.fa-envelope-open-text:before{content:"\f658"}.fa-envelopes-bulk:before,.fa-mail-bulk:before{content:"\f674"}.fa-equals:before{content:"\3d"}.fa-eraser:before{content:"\f12d"}.fa-ethernet:before{content:"\f796"}.fa-eur:before,.fa-euro-sign:before,.fa-euro:before{content:"\f153"}.fa-exclamation:before{content:"\21"}.fa-expand:before{content:"\f065"}.fa-eye:before{content:"\f06e"}.fa-eye-dropper-empty:before,.fa-eye-dropper:before,.fa-eyedropper:before{content:"\f1fb"}.fa-eye-low-vision:before,.fa-low-vision:before{content:"\f2a8"}.fa-eye-slash:before{content:"\f070"}.fa-f:before{content:"\46"}.fa-angry:before,.fa-face-angry:before{content:"\f556"}.fa-dizzy:before,.fa-face-dizzy:before{content:"\f567"}.fa-face-flushed:before,.fa-flushed:before{content:"\f579"}.fa-face-frown:before,.fa-frown:before{content:"\f119"}.fa-face-frown-open:before,.fa-frown-open:before{content:"\f57a"}.fa-face-grimace:before,.fa-grimace:before{content:"\f57f"}.fa-face-grin:before,.fa-grin:before{content:"\f580"}.fa-face-grin-beam:before,.fa-grin-beam:before{content:"\f582"}.fa-face-grin-beam-sweat:before,.fa-grin-beam-sweat:before{content:"\f583"}.fa-face-grin-hearts:before,.fa-grin-hearts:before{content:"\f584"}.fa-face-grin-squint:before,.fa-grin-squint:before{content:"\f585"}.fa-face-grin-squint-tears:before,.fa-grin-squint-tears:before{content:"\f586"}.fa-face-grin-stars:before,.fa-grin-stars:before{content:"\f587"}.fa-face-grin-tears:before,.fa-grin-tears:before{content:"\f588"}.fa-face-grin-tongue:before,.fa-grin-tongue:before{content:"\f589"}.fa-face-grin-tongue-squint:before,.fa-grin-tongue-squint:before{content:"\f58a"}.fa-face-grin-tongue-wink:before,.fa-grin-tongue-wink:before{content:"\f58b"}.fa-face-grin-wide:before,.fa-grin-alt:before{content:"\f581"}.fa-face-grin-wink:before,.fa-grin-wink:before{content:"\f58c"}.fa-face-kiss:before,.fa-kiss:before{content:"\f596"}.fa-face-kiss-beam:before,.fa-kiss-beam:before{content:"\f597"}.fa-face-kiss-wink-heart:before,.fa-kiss-wink-heart:before{content:"\f598"}.fa-face-laugh:before,.fa-laugh:before{content:"\f599"}.fa-face-laugh-beam:before,.fa-laugh-beam:before{content:"\f59a"}.fa-face-laugh-squint:before,.fa-laugh-squint:before{content:"\f59b"}.fa-face-laugh-wink:before,.fa-laugh-wink:before{content:"\f59c"}.fa-face-meh:before,.fa-meh:before{content:"\f11a"}.fa-face-meh-blank:before,.fa-meh-blank:before{content:"\f5a4"}.fa-face-rolling-eyes:before,.fa-meh-rolling-eyes:before{content:"\f5a5"}.fa-face-sad-cry:before,.fa-sad-cry:before{content:"\f5b3"}.fa-face-sad-tear:before,.fa-sad-tear:before{content:"\f5b4"}.fa-face-smile:before,.fa-smile:before{content:"\f118"}.fa-face-smile-beam:before,.fa-smile-beam:before{content:"\f5b8"}.fa-face-smile-wink:before,.fa-smile-wink:before{content:"\f4da"}.fa-face-surprise:before,.fa-surprise:before{content:"\f5c2"}.fa-face-tired:before,.fa-tired:before{content:"\f5c8"}.fa-fan:before{content:"\f863"}.fa-faucet:before{content:"\e005"}.fa-fax:before{content:"\f1ac"}.fa-feather:before{content:"\f52d"}.fa-feather-alt:before,.fa-feather-pointed:before{content:"\f56b"}.fa-file:before{content:"\f15b"}.fa-file-arrow-down:before,.fa-file-download:before{content:"\f56d"}.fa-file-arrow-up:before,.fa-file-upload:before{content:"\f574"}.fa-file-audio:before{content:"\f1c7"}.fa-file-code:before{content:"\f1c9"}.fa-file-contract:before{content:"\f56c"}.fa-file-csv:before{content:"\f6dd"}.fa-file-excel:before{content:"\f1c3"}.fa-arrow-right-from-file:before,.fa-file-export:before{content:"\f56e"}.fa-file-image:before{content:"\f1c5"}.fa-arrow-right-to-file:before,.fa-file-import:before{content:"\f56f"}.fa-file-invoice:before{content:"\f570"}.fa-file-invoice-dollar:before{content:"\f571"}.fa-file-alt:before,.fa-file-lines:before,.fa-file-text:before{content:"\f15c"}.fa-file-medical:before{content:"\f477"}.fa-file-pdf:before{content:"\f1c1"}.fa-file-powerpoint:before{content:"\f1c4"}.fa-file-prescription:before{content:"\f572"}.fa-file-signature:before{content:"\f573"}.fa-file-video:before{content:"\f1c8"}.fa-file-medical-alt:before,.fa-file-waveform:before{content:"\f478"}.fa-file-word:before{content:"\f1c2"}.fa-file-archive:before,.fa-file-zipper:before{content:"\f1c6"}.fa-fill:before{content:"\f575"}.fa-fill-drip:before{content:"\f576"}.fa-film:before{content:"\f008"}.fa-filter:before{content:"\f0b0"}.fa-filter-circle-dollar:before,.fa-funnel-dollar:before{content:"\f662"}.fa-filter-circle-xmark:before{content:"\e17b"}.fa-fingerprint:before{content:"\f577"}.fa-fire:before{content:"\f06d"}.fa-fire-extinguisher:before{content:"\f134"}.fa-fire-alt:before,.fa-fire-flame-curved:before{content:"\f7e4"}.fa-burn:before,.fa-fire-flame-simple:before{content:"\f46a"}.fa-fish:before{content:"\f578"}.fa-flag:before{content:"\f024"}.fa-flag-checkered:before{content:"\f11e"}.fa-flag-usa:before{content:"\f74d"}.fa-flask:before{content:"\f0c3"}.fa-floppy-disk:before,.fa-save:before{content:"\f0c7"}.fa-florin-sign:before{content:"\e184"}.fa-folder:before{content:"\f07b"}.fa-folder-minus:before{content:"\f65d"}.fa-folder-open:before{content:"\f07c"}.fa-folder-plus:before{content:"\f65e"}.fa-folder-tree:before{content:"\f802"}.fa-font:before{content:"\f031"}.fa-football-ball:before,.fa-football:before{content:"\f44e"}.fa-forward:before{content:"\f04e"}.fa-fast-forward:before,.fa-forward-fast:before{content:"\f050"}.fa-forward-step:before,.fa-step-forward:before{content:"\f051"}.fa-franc-sign:before{content:"\e18f"}.fa-frog:before{content:"\f52e"}.fa-futbol-ball:before,.fa-futbol:before,.fa-soccer-ball:before{content:"\f1e3"}.fa-g:before{content:"\47"}.fa-gamepad:before{content:"\f11b"}.fa-gas-pump:before{content:"\f52f"}.fa-dashboard:before,.fa-gauge-med:before,.fa-gauge:before,.fa-tachometer-alt-average:before{content:"\f624"}.fa-gauge-high:before,.fa-tachometer-alt-fast:before,.fa-tachometer-alt:before{content:"\f625"}.fa-gauge-simple-med:before,.fa-gauge-simple:before,.fa-tachometer-average:before{content:"\f629"}.fa-gauge-simple-high:before,.fa-tachometer-fast:before,.fa-tachometer:before{content:"\f62a"}.fa-gavel:before,.fa-legal:before{content:"\f0e3"}.fa-cog:before,.fa-gear:before{content:"\f013"}.fa-cogs:before,.fa-gears:before{content:"\f085"}.fa-gem:before{content:"\f3a5"}.fa-genderless:before{content:"\f22d"}.fa-ghost:before{content:"\f6e2"}.fa-gift:before{content:"\f06b"}.fa-gifts:before{content:"\f79c"}.fa-glasses:before{content:"\f530"}.fa-globe:before{content:"\f0ac"}.fa-golf-ball-tee:before,.fa-golf-ball:before{content:"\f450"}.fa-gopuram:before{content:"\f664"}.fa-graduation-cap:before,.fa-mortar-board:before{content:"\f19d"}.fa-greater-than:before{content:"\3e"}.fa-greater-than-equal:before{content:"\f532"}.fa-grip-horizontal:before,.fa-grip:before{content:"\f58d"}.fa-grip-lines:before{content:"\f7a4"}.fa-grip-lines-vertical:before{content:"\f7a5"}.fa-grip-vertical:before{content:"\f58e"}.fa-guarani-sign:before{content:"\e19a"}.fa-guitar:before{content:"\f7a6"}.fa-gun:before{content:"\e19b"}.fa-h:before{content:"\48"}.fa-hammer:before{content:"\f6e3"}.fa-hamsa:before{content:"\f665"}.fa-hand-paper:before,.fa-hand:before{content:"\f256"}.fa-hand-back-fist:before,.fa-hand-rock:before{content:"\f255"}.fa-allergies:before,.fa-hand-dots:before{content:"\f461"}.fa-fist-raised:before,.fa-hand-fist:before{content:"\f6de"}.fa-hand-holding:before{content:"\f4bd"}.fa-hand-holding-dollar:before,.fa-hand-holding-usd:before{content:"\f4c0"}.fa-hand-holding-droplet:before,.fa-hand-holding-water:before{content:"\f4c1"}.fa-hand-holding-heart:before{content:"\f4be"}.fa-hand-holding-medical:before{content:"\e05c"}.fa-hand-lizard:before{content:"\f258"}.fa-hand-middle-finger:before{content:"\f806"}.fa-hand-peace:before{content:"\f25b"}.fa-hand-point-down:before{content:"\f0a7"}.fa-hand-point-left:before{content:"\f0a5"}.fa-hand-point-right:before{content:"\f0a4"}.fa-hand-point-up:before{content:"\f0a6"}.fa-hand-pointer:before{content:"\f25a"}.fa-hand-scissors:before{content:"\f257"}.fa-hand-sparkles:before{content:"\e05d"}.fa-hand-spock:before{content:"\f259"}.fa-hands:before,.fa-sign-language:before,.fa-signing:before{content:"\f2a7"}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before,.fa-hands-american-sign-language-interpreting:before,.fa-hands-asl-interpreting:before{content:"\f2a3"}.fa-hands-bubbles:before,.fa-hands-wash:before{content:"\e05e"}.fa-hands-clapping:before{content:"\e1a8"}.fa-hands-holding:before{content:"\f4c2"}.fa-hands-praying:before,.fa-praying-hands:before{content:"\f684"}.fa-handshake:before{content:"\f2b5"}.fa-hands-helping:before,.fa-handshake-angle:before{content:"\f4c4"}.fa-handshake-alt-slash:before,.fa-handshake-simple-slash:before{content:"\e05f"}.fa-handshake-slash:before{content:"\e060"}.fa-hanukiah:before{content:"\f6e6"}.fa-hard-drive:before,.fa-hdd:before{content:"\f0a0"}.fa-hashtag:before{content:"\23"}.fa-hat-cowboy:before{content:"\f8c0"}.fa-hat-cowboy-side:before{content:"\f8c1"}.fa-hat-wizard:before{content:"\f6e8"}.fa-head-side-cough:before{content:"\e061"}.fa-head-side-cough-slash:before{content:"\e062"}.fa-head-side-mask:before{content:"\e063"}.fa-head-side-virus:before{content:"\e064"}.fa-header:before,.fa-heading:before{content:"\f1dc"}.fa-headphones:before{content:"\f025"}.fa-headphones-alt:before,.fa-headphones-simple:before{content:"\f58f"}.fa-headset:before{content:"\f590"}.fa-heart:before{content:"\f004"}.fa-heart-broken:before,.fa-heart-crack:before{content:"\f7a9"}.fa-heart-pulse:before,.fa-heartbeat:before{content:"\f21e"}.fa-helicopter:before{content:"\f533"}.fa-hard-hat:before,.fa-hat-hard:before,.fa-helmet-safety:before{content:"\f807"}.fa-highlighter:before{content:"\f591"}.fa-hippo:before{content:"\f6ed"}.fa-hockey-puck:before{content:"\f453"}.fa-holly-berry:before{content:"\f7aa"}.fa-horse:before{content:"\f6f0"}.fa-horse-head:before{content:"\f7ab"}.fa-hospital-alt:before,.fa-hospital-wide:before,.fa-hospital:before{content:"\f0f8"}.fa-hospital-user:before{content:"\f80d"}.fa-hot-tub-person:before,.fa-hot-tub:before{content:"\f593"}.fa-hotdog:before{content:"\f80f"}.fa-hotel:before{content:"\f594"}.fa-hourglass-2:before,.fa-hourglass-half:before,.fa-hourglass:before{content:"\f254"}.fa-hourglass-empty:before{content:"\f252"}.fa-hourglass-3:before,.fa-hourglass-end:before{content:"\f253"}.fa-hourglass-1:before,.fa-hourglass-start:before{content:"\f251"}.fa-home-alt:before,.fa-home-lg-alt:before,.fa-home:before,.fa-house:before{content:"\f015"}.fa-home-lg:before,.fa-house-chimney:before{content:"\e3af"}.fa-house-chimney-crack:before,.fa-house-damage:before{content:"\f6f1"}.fa-clinic-medical:before,.fa-house-chimney-medical:before{content:"\f7f2"}.fa-house-chimney-user:before{content:"\e065"}.fa-house-chimney-window:before{content:"\e00d"}.fa-house-crack:before{content:"\e3b1"}.fa-house-laptop:before,.fa-laptop-house:before{content:"\e066"}.fa-house-medical:before{content:"\e3b2"}.fa-home-user:before,.fa-house-user:before{content:"\e1b0"}.fa-hryvnia-sign:before,.fa-hryvnia:before{content:"\f6f2"}.fa-i:before{content:"\49"}.fa-i-cursor:before{content:"\f246"}.fa-ice-cream:before{content:"\f810"}.fa-icicles:before{content:"\f7ad"}.fa-heart-music-camera-bolt:before,.fa-icons:before{content:"\f86d"}.fa-id-badge:before{content:"\f2c1"}.fa-drivers-license:before,.fa-id-card:before{content:"\f2c2"}.fa-id-card-alt:before,.fa-id-card-clip:before{content:"\f47f"}.fa-igloo:before{content:"\f7ae"}.fa-image:before{content:"\f03e"}.fa-image-portrait:before,.fa-portrait:before{content:"\f3e0"}.fa-images:before{content:"\f302"}.fa-inbox:before{content:"\f01c"}.fa-indent:before{content:"\f03c"}.fa-indian-rupee-sign:before,.fa-indian-rupee:before,.fa-inr:before{content:"\e1bc"}.fa-industry:before{content:"\f275"}.fa-infinity:before{content:"\f534"}.fa-info:before{content:"\f129"}.fa-italic:before{content:"\f033"}.fa-j:before{content:"\4a"}.fa-jedi:before{content:"\f669"}.fa-fighter-jet:before,.fa-jet-fighter:before{content:"\f0fb"}.fa-joint:before{content:"\f595"}.fa-k:before{content:"\4b"}.fa-kaaba:before{content:"\f66b"}.fa-key:before{content:"\f084"}.fa-keyboard:before{content:"\f11c"}.fa-khanda:before{content:"\f66d"}.fa-kip-sign:before{content:"\e1c4"}.fa-first-aid:before,.fa-kit-medical:before{content:"\f479"}.fa-kiwi-bird:before{content:"\f535"}.fa-l:before{content:"\4c"}.fa-landmark:before{content:"\f66f"}.fa-language:before{content:"\f1ab"}.fa-laptop:before{content:"\f109"}.fa-laptop-code:before{content:"\f5fc"}.fa-laptop-medical:before{content:"\f812"}.fa-lari-sign:before{content:"\e1c8"}.fa-layer-group:before{content:"\f5fd"}.fa-leaf:before{content:"\f06c"}.fa-left-long:before,.fa-long-arrow-alt-left:before{content:"\f30a"}.fa-arrows-alt-h:before,.fa-left-right:before{content:"\f337"}.fa-lemon:before{content:"\f094"}.fa-less-than:before{content:"\3c"}.fa-less-than-equal:before{content:"\f537"}.fa-life-ring:before{content:"\f1cd"}.fa-lightbulb:before{content:"\f0eb"}.fa-chain:before,.fa-link:before{content:"\f0c1"}.fa-chain-broken:before,.fa-chain-slash:before,.fa-link-slash:before,.fa-unlink:before{content:"\f127"}.fa-lira-sign:before{content:"\f195"}.fa-list-squares:before,.fa-list:before{content:"\f03a"}.fa-list-check:before,.fa-tasks:before{content:"\f0ae"}.fa-list-1-2:before,.fa-list-numeric:before,.fa-list-ol:before{content:"\f0cb"}.fa-list-dots:before,.fa-list-ul:before{content:"\f0ca"}.fa-litecoin-sign:before{content:"\e1d3"}.fa-location-arrow:before{content:"\f124"}.fa-location-crosshairs:before,.fa-location:before{content:"\f601"}.fa-location-dot:before,.fa-map-marker-alt:before{content:"\f3c5"}.fa-location-pin:before,.fa-map-marker:before{content:"\f041"}.fa-lock:before{content:"\f023"}.fa-lock-open:before{content:"\f3c1"}.fa-lungs:before{content:"\f604"}.fa-lungs-virus:before{content:"\e067"}.fa-m:before{content:"\4d"}.fa-magnet:before{content:"\f076"}.fa-magnifying-glass:before,.fa-search:before{content:"\f002"}.fa-magnifying-glass-dollar:before,.fa-search-dollar:before{content:"\f688"}.fa-magnifying-glass-location:before,.fa-search-location:before{content:"\f689"}.fa-magnifying-glass-minus:before,.fa-search-minus:before{content:"\f010"}.fa-magnifying-glass-plus:before,.fa-search-plus:before{content:"\f00e"}.fa-manat-sign:before{content:"\e1d5"}.fa-map:before{content:"\f279"}.fa-map-location:before,.fa-map-marked:before{content:"\f59f"}.fa-map-location-dot:before,.fa-map-marked-alt:before{content:"\f5a0"}.fa-map-pin:before{content:"\f276"}.fa-marker:before{content:"\f5a1"}.fa-mars:before{content:"\f222"}.fa-mars-and-venus:before{content:"\f224"}.fa-mars-double:before{content:"\f227"}.fa-mars-stroke:before{content:"\f229"}.fa-mars-stroke-h:before,.fa-mars-stroke-right:before{content:"\f22b"}.fa-mars-stroke-up:before,.fa-mars-stroke-v:before{content:"\f22a"}.fa-glass-martini-alt:before,.fa-martini-glass:before{content:"\f57b"}.fa-cocktail:before,.fa-martini-glass-citrus:before{content:"\f561"}.fa-glass-martini:before,.fa-martini-glass-empty:before{content:"\f000"}.fa-mask:before{content:"\f6fa"}.fa-mask-face:before{content:"\e1d7"}.fa-masks-theater:before,.fa-theater-masks:before{content:"\f630"}.fa-expand-arrows-alt:before,.fa-maximize:before{content:"\f31e"}.fa-medal:before{content:"\f5a2"}.fa-memory:before{content:"\f538"}.fa-menorah:before{content:"\f676"}.fa-mercury:before{content:"\f223"}.fa-comment-alt:before,.fa-message:before{content:"\f27a"}.fa-meteor:before{content:"\f753"}.fa-microchip:before{content:"\f2db"}.fa-microphone:before{content:"\f130"}.fa-microphone-alt:before,.fa-microphone-lines:before{content:"\f3c9"}.fa-microphone-alt-slash:before,.fa-microphone-lines-slash:before{content:"\f539"}.fa-microphone-slash:before{content:"\f131"}.fa-microscope:before{content:"\f610"}.fa-mill-sign:before{content:"\e1ed"}.fa-compress-arrows-alt:before,.fa-minimize:before{content:"\f78c"}.fa-minus:before,.fa-subtract:before{content:"\f068"}.fa-mitten:before{content:"\f7b5"}.fa-mobile-android:before,.fa-mobile-phone:before,.fa-mobile:before{content:"\f3ce"}.fa-mobile-button:before{content:"\f10b"}.fa-mobile-alt:before,.fa-mobile-screen-button:before{content:"\f3cd"}.fa-money-bill:before{content:"\f0d6"}.fa-money-bill-1:before,.fa-money-bill-alt:before{content:"\f3d1"}.fa-money-bill-1-wave:before,.fa-money-bill-wave-alt:before{content:"\f53b"}.fa-money-bill-wave:before{content:"\f53a"}.fa-money-check:before{content:"\f53c"}.fa-money-check-alt:before,.fa-money-check-dollar:before{content:"\f53d"}.fa-monument:before{content:"\f5a6"}.fa-moon:before{content:"\f186"}.fa-mortar-pestle:before{content:"\f5a7"}.fa-mosque:before{content:"\f678"}.fa-motorcycle:before{content:"\f21c"}.fa-mountain:before{content:"\f6fc"}.fa-mug-hot:before{content:"\f7b6"}.fa-coffee:before,.fa-mug-saucer:before{content:"\f0f4"}.fa-music:before{content:"\f001"}.fa-n:before{content:"\4e"}.fa-naira-sign:before{content:"\e1f6"}.fa-network-wired:before{content:"\f6ff"}.fa-neuter:before{content:"\f22c"}.fa-newspaper:before{content:"\f1ea"}.fa-not-equal:before{content:"\f53e"}.fa-note-sticky:before,.fa-sticky-note:before{content:"\f249"}.fa-notes-medical:before{content:"\f481"}.fa-o:before{content:"\4f"}.fa-object-group:before{content:"\f247"}.fa-object-ungroup:before{content:"\f248"}.fa-oil-can:before{content:"\f613"}.fa-om:before{content:"\f679"}.fa-otter:before{content:"\f700"}.fa-dedent:before,.fa-outdent:before{content:"\f03b"}.fa-p:before{content:"\50"}.fa-pager:before{content:"\f815"}.fa-paint-roller:before{content:"\f5aa"}.fa-paint-brush:before,.fa-paintbrush:before{content:"\f1fc"}.fa-palette:before{content:"\f53f"}.fa-pallet:before{content:"\f482"}.fa-panorama:before{content:"\e209"}.fa-paper-plane:before{content:"\f1d8"}.fa-paperclip:before{content:"\f0c6"}.fa-parachute-box:before{content:"\f4cd"}.fa-paragraph:before{content:"\f1dd"}.fa-passport:before{content:"\f5ab"}.fa-file-clipboard:before,.fa-paste:before{content:"\f0ea"}.fa-pause:before{content:"\f04c"}.fa-paw:before{content:"\f1b0"}.fa-peace:before{content:"\f67c"}.fa-pen:before{content:"\f304"}.fa-pen-alt:before,.fa-pen-clip:before{content:"\f305"}.fa-pen-fancy:before{content:"\f5ac"}.fa-pen-nib:before{content:"\f5ad"}.fa-pen-ruler:before,.fa-pencil-ruler:before{content:"\f5ae"}.fa-edit:before,.fa-pen-to-square:before{content:"\f044"}.fa-pencil-alt:before,.fa-pencil:before{content:"\f303"}.fa-people-arrows-left-right:before,.fa-people-arrows:before{content:"\e068"}.fa-people-carry-box:before,.fa-people-carry:before{content:"\f4ce"}.fa-pepper-hot:before{content:"\f816"}.fa-percent:before,.fa-percentage:before{content:"\25"}.fa-male:before,.fa-person:before{content:"\f183"}.fa-biking:before,.fa-person-biking:before{content:"\f84a"}.fa-person-booth:before{content:"\f756"}.fa-diagnoses:before,.fa-person-dots-from-line:before{content:"\f470"}.fa-female:before,.fa-person-dress:before{content:"\f182"}.fa-hiking:before,.fa-person-hiking:before{content:"\f6ec"}.fa-person-praying:before,.fa-pray:before{content:"\f683"}.fa-person-running:before,.fa-running:before{content:"\f70c"}.fa-person-skating:before,.fa-skating:before{content:"\f7c5"}.fa-person-skiing:before,.fa-skiing:before{content:"\f7c9"}.fa-person-skiing-nordic:before,.fa-skiing-nordic:before{content:"\f7ca"}.fa-person-snowboarding:before,.fa-snowboarding:before{content:"\f7ce"}.fa-person-swimming:before,.fa-swimmer:before{content:"\f5c4"}.fa-person-walking:before,.fa-walking:before{content:"\f554"}.fa-blind:before,.fa-person-walking-with-cane:before{content:"\f29d"}.fa-peseta-sign:before{content:"\e221"}.fa-peso-sign:before{content:"\e222"}.fa-phone:before{content:"\f095"}.fa-phone-alt:before,.fa-phone-flip:before{content:"\f879"}.fa-phone-slash:before{content:"\f3dd"}.fa-phone-volume:before,.fa-volume-control-phone:before{content:"\f2a0"}.fa-photo-film:before,.fa-photo-video:before{content:"\f87c"}.fa-piggy-bank:before{content:"\f4d3"}.fa-pills:before{content:"\f484"}.fa-pizza-slice:before{content:"\f818"}.fa-place-of-worship:before{content:"\f67f"}.fa-plane:before{content:"\f072"}.fa-plane-arrival:before{content:"\f5af"}.fa-plane-departure:before{content:"\f5b0"}.fa-plane-slash:before{content:"\e069"}.fa-play:before{content:"\f04b"}.fa-plug:before{content:"\f1e6"}.fa-add:before,.fa-plus:before{content:"\2b"}.fa-plus-minus:before{content:"\e43c"}.fa-podcast:before{content:"\f2ce"}.fa-poo:before{content:"\f2fe"}.fa-poo-bolt:before,.fa-poo-storm:before{content:"\f75a"}.fa-poop:before{content:"\f619"}.fa-power-off:before{content:"\f011"}.fa-prescription:before{content:"\f5b1"}.fa-prescription-bottle:before{content:"\f485"}.fa-prescription-bottle-alt:before,.fa-prescription-bottle-medical:before{content:"\f486"}.fa-print:before{content:"\f02f"}.fa-pump-medical:before{content:"\e06a"}.fa-pump-soap:before{content:"\e06b"}.fa-puzzle-piece:before{content:"\f12e"}.fa-q:before{content:"\51"}.fa-qrcode:before{content:"\f029"}.fa-question:before{content:"\3f"}.fa-quote-left-alt:before,.fa-quote-left:before{content:"\f10d"}.fa-quote-right-alt:before,.fa-quote-right:before{content:"\f10e"}.fa-r:before{content:"\52"}.fa-radiation:before{content:"\f7b9"}.fa-rainbow:before{content:"\f75b"}.fa-receipt:before{content:"\f543"}.fa-record-vinyl:before{content:"\f8d9"}.fa-ad:before,.fa-rectangle-ad:before{content:"\f641"}.fa-list-alt:before,.fa-rectangle-list:before{content:"\f022"}.fa-rectangle-times:before,.fa-rectangle-xmark:before,.fa-times-rectangle:before,.fa-window-close:before{content:"\f410"}.fa-recycle:before{content:"\f1b8"}.fa-registered:before{content:"\f25d"}.fa-repeat:before{content:"\f363"}.fa-mail-reply:before,.fa-reply:before{content:"\f3e5"}.fa-mail-reply-all:before,.fa-reply-all:before{content:"\f122"}.fa-republican:before{content:"\f75e"}.fa-restroom:before{content:"\f7bd"}.fa-retweet:before{content:"\f079"}.fa-ribbon:before{content:"\f4d6"}.fa-right-from-bracket:before,.fa-sign-out-alt:before{content:"\f2f5"}.fa-exchange-alt:before,.fa-right-left:before{content:"\f362"}.fa-long-arrow-alt-right:before,.fa-right-long:before{content:"\f30b"}.fa-right-to-bracket:before,.fa-sign-in-alt:before{content:"\f2f6"}.fa-ring:before{content:"\f70b"}.fa-road:before{content:"\f018"}.fa-robot:before{content:"\f544"}.fa-rocket:before{content:"\f135"}.fa-rotate:before,.fa-sync-alt:before{content:"\f2f1"}.fa-rotate-back:before,.fa-rotate-backward:before,.fa-rotate-left:before,.fa-undo-alt:before{content:"\f2ea"}.fa-redo-alt:before,.fa-rotate-forward:before,.fa-rotate-right:before{content:"\f2f9"}.fa-route:before{content:"\f4d7"}.fa-feed:before,.fa-rss:before{content:"\f09e"}.fa-rouble:before,.fa-rub:before,.fa-ruble-sign:before,.fa-ruble:before{content:"\f158"}.fa-ruler:before{content:"\f545"}.fa-ruler-combined:before{content:"\f546"}.fa-ruler-horizontal:before{content:"\f547"}.fa-ruler-vertical:before{content:"\f548"}.fa-rupee-sign:before,.fa-rupee:before{content:"\f156"}.fa-rupiah-sign:before{content:"\e23d"}.fa-s:before{content:"\53"}.fa-sailboat:before{content:"\e445"}.fa-satellite:before{content:"\f7bf"}.fa-satellite-dish:before{content:"\f7c0"}.fa-balance-scale:before,.fa-scale-balanced:before{content:"\f24e"}.fa-balance-scale-left:before,.fa-scale-unbalanced:before{content:"\f515"}.fa-balance-scale-right:before,.fa-scale-unbalanced-flip:before{content:"\f516"}.fa-school:before{content:"\f549"}.fa-cut:before,.fa-scissors:before{content:"\f0c4"}.fa-screwdriver:before{content:"\f54a"}.fa-screwdriver-wrench:before,.fa-tools:before{content:"\f7d9"}.fa-scroll:before{content:"\f70e"}.fa-scroll-torah:before,.fa-torah:before{content:"\f6a0"}.fa-sd-card:before{content:"\f7c2"}.fa-section:before{content:"\e447"}.fa-seedling:before,.fa-sprout:before{content:"\f4d8"}.fa-server:before{content:"\f233"}.fa-shapes:before,.fa-triangle-circle-square:before{content:"\f61f"}.fa-arrow-turn-right:before,.fa-mail-forward:before,.fa-share:before{content:"\f064"}.fa-share-from-square:before,.fa-share-square:before{content:"\f14d"}.fa-share-alt:before,.fa-share-nodes:before{content:"\f1e0"}.fa-ils:before,.fa-shekel-sign:before,.fa-shekel:before,.fa-sheqel-sign:before,.fa-sheqel:before{content:"\f20b"}.fa-shield:before{content:"\f132"}.fa-shield-alt:before,.fa-shield-blank:before{content:"\f3ed"}.fa-shield-virus:before{content:"\e06c"}.fa-ship:before{content:"\f21a"}.fa-shirt:before,.fa-t-shirt:before,.fa-tshirt:before{content:"\f553"}.fa-shoe-prints:before{content:"\f54b"}.fa-shop:before,.fa-store-alt:before{content:"\f54f"}.fa-shop-slash:before,.fa-store-alt-slash:before{content:"\e070"}.fa-shower:before{content:"\f2cc"}.fa-shrimp:before{content:"\e448"}.fa-random:before,.fa-shuffle:before{content:"\f074"}.fa-shuttle-space:before,.fa-space-shuttle:before{content:"\f197"}.fa-sign-hanging:before,.fa-sign:before{content:"\f4d9"}.fa-signal-5:before,.fa-signal-perfect:before,.fa-signal:before{content:"\f012"}.fa-signature:before{content:"\f5b7"}.fa-map-signs:before,.fa-signs-post:before{content:"\f277"}.fa-sim-card:before{content:"\f7c4"}.fa-sink:before{content:"\e06d"}.fa-sitemap:before{content:"\f0e8"}.fa-skull:before{content:"\f54c"}.fa-skull-crossbones:before{content:"\f714"}.fa-slash:before{content:"\f715"}.fa-sleigh:before{content:"\f7cc"}.fa-sliders-h:before,.fa-sliders:before{content:"\f1de"}.fa-smog:before{content:"\f75f"}.fa-smoking:before{content:"\f48d"}.fa-snowflake:before{content:"\f2dc"}.fa-snowman:before{content:"\f7d0"}.fa-snowplow:before{content:"\f7d2"}.fa-soap:before{content:"\e06e"}.fa-socks:before{content:"\f696"}.fa-solar-panel:before{content:"\f5ba"}.fa-sort:before,.fa-unsorted:before{content:"\f0dc"}.fa-sort-desc:before,.fa-sort-down:before{content:"\f0dd"}.fa-sort-asc:before,.fa-sort-up:before{content:"\f0de"}.fa-spa:before{content:"\f5bb"}.fa-pastafarianism:before,.fa-spaghetti-monster-flying:before{content:"\f67b"}.fa-spell-check:before{content:"\f891"}.fa-spider:before{content:"\f717"}.fa-spinner:before{content:"\f110"}.fa-splotch:before{content:"\f5bc"}.fa-spoon:before,.fa-utensil-spoon:before{content:"\f2e5"}.fa-spray-can:before{content:"\f5bd"}.fa-air-freshener:before,.fa-spray-can-sparkles:before{content:"\f5d0"}.fa-square:before{content:"\f0c8"}.fa-external-link-square:before,.fa-square-arrow-up-right:before{content:"\f14c"}.fa-caret-square-down:before,.fa-square-caret-down:before{content:"\f150"}.fa-caret-square-left:before,.fa-square-caret-left:before{content:"\f191"}.fa-caret-square-right:before,.fa-square-caret-right:before{content:"\f152"}.fa-caret-square-up:before,.fa-square-caret-up:before{content:"\f151"}.fa-check-square:before,.fa-square-check:before{content:"\f14a"}.fa-envelope-square:before,.fa-square-envelope:before{content:"\f199"}.fa-square-full:before{content:"\f45c"}.fa-h-square:before,.fa-square-h:before{content:"\f0fd"}.fa-minus-square:before,.fa-square-minus:before{content:"\f146"}.fa-parking:before,.fa-square-parking:before{content:"\f540"}.fa-pen-square:before,.fa-pencil-square:before,.fa-square-pen:before{content:"\f14b"}.fa-phone-square:before,.fa-square-phone:before{content:"\f098"}.fa-phone-square-alt:before,.fa-square-phone-flip:before{content:"\f87b"}.fa-plus-square:before,.fa-square-plus:before{content:"\f0fe"}.fa-poll-h:before,.fa-square-poll-horizontal:before{content:"\f682"}.fa-poll:before,.fa-square-poll-vertical:before{content:"\f681"}.fa-square-root-alt:before,.fa-square-root-variable:before{content:"\f698"}.fa-rss-square:before,.fa-square-rss:before{content:"\f143"}.fa-share-alt-square:before,.fa-square-share-nodes:before{content:"\f1e1"}.fa-external-link-square-alt:before,.fa-square-up-right:before{content:"\f360"}.fa-square-xmark:before,.fa-times-square:before,.fa-xmark-square:before{content:"\f2d3"}.fa-stairs:before{content:"\e289"}.fa-stamp:before{content:"\f5bf"}.fa-star:before{content:"\f005"}.fa-star-and-crescent:before{content:"\f699"}.fa-star-half:before{content:"\f089"}.fa-star-half-alt:before,.fa-star-half-stroke:before{content:"\f5c0"}.fa-star-of-david:before{content:"\f69a"}.fa-star-of-life:before{content:"\f621"}.fa-gbp:before,.fa-pound-sign:before,.fa-sterling-sign:before{content:"\f154"}.fa-stethoscope:before{content:"\f0f1"}.fa-stop:before{content:"\f04d"}.fa-stopwatch:before{content:"\f2f2"}.fa-stopwatch-20:before{content:"\e06f"}.fa-store:before{content:"\f54e"}.fa-store-slash:before{content:"\e071"}.fa-street-view:before{content:"\f21d"}.fa-strikethrough:before{content:"\f0cc"}.fa-stroopwafel:before{content:"\f551"}.fa-subscript:before{content:"\f12c"}.fa-suitcase:before{content:"\f0f2"}.fa-medkit:before,.fa-suitcase-medical:before{content:"\f0fa"}.fa-suitcase-rolling:before{content:"\f5c1"}.fa-sun:before{content:"\f185"}.fa-superscript:before{content:"\f12b"}.fa-swatchbook:before{content:"\f5c3"}.fa-synagogue:before{content:"\f69b"}.fa-syringe:before{content:"\f48e"}.fa-t:before{content:"\54"}.fa-table:before{content:"\f0ce"}.fa-table-cells:before,.fa-th:before{content:"\f00a"}.fa-table-cells-large:before,.fa-th-large:before{content:"\f009"}.fa-columns:before,.fa-table-columns:before{content:"\f0db"}.fa-table-list:before,.fa-th-list:before{content:"\f00b"}.fa-ping-pong-paddle-ball:before,.fa-table-tennis-paddle-ball:before,.fa-table-tennis:before{content:"\f45d"}.fa-tablet-android:before,.fa-tablet:before{content:"\f3fb"}.fa-tablet-button:before{content:"\f10a"}.fa-tablet-alt:before,.fa-tablet-screen-button:before{content:"\f3fa"}.fa-tablets:before{content:"\f490"}.fa-digital-tachograph:before,.fa-tachograph-digital:before{content:"\f566"}.fa-tag:before{content:"\f02b"}.fa-tags:before{content:"\f02c"}.fa-tape:before{content:"\f4db"}.fa-cab:before,.fa-taxi:before{content:"\f1ba"}.fa-teeth:before{content:"\f62e"}.fa-teeth-open:before{content:"\f62f"}.fa-temperature-0:before,.fa-temperature-empty:before,.fa-thermometer-0:before,.fa-thermometer-empty:before{content:"\f2cb"}.fa-temperature-4:before,.fa-temperature-full:before,.fa-thermometer-4:before,.fa-thermometer-full:before{content:"\f2c7"}.fa-temperature-2:before,.fa-temperature-half:before,.fa-thermometer-2:before,.fa-thermometer-half:before{content:"\f2c9"}.fa-temperature-high:before{content:"\f769"}.fa-temperature-low:before{content:"\f76b"}.fa-temperature-1:before,.fa-temperature-quarter:before,.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:"\f2ca"}.fa-temperature-3:before,.fa-temperature-three-quarters:before,.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:"\f2c8"}.fa-tenge-sign:before,.fa-tenge:before{content:"\f7d7"}.fa-terminal:before{content:"\f120"}.fa-text-height:before{content:"\f034"}.fa-remove-format:before,.fa-text-slash:before{content:"\f87d"}.fa-text-width:before{content:"\f035"}.fa-thermometer:before{content:"\f491"}.fa-thumbs-down:before{content:"\f165"}.fa-thumbs-up:before{content:"\f164"}.fa-thumb-tack:before,.fa-thumbtack:before{content:"\f08d"}.fa-ticket:before{content:"\f145"}.fa-ticket-alt:before,.fa-ticket-simple:before{content:"\f3ff"}.fa-timeline:before{content:"\e29c"}.fa-toggle-off:before{content:"\f204"}.fa-toggle-on:before{content:"\f205"}.fa-toilet:before{content:"\f7d8"}.fa-toilet-paper:before{content:"\f71e"}.fa-toilet-paper-slash:before{content:"\e072"}.fa-toolbox:before{content:"\f552"}.fa-tooth:before{content:"\f5c9"}.fa-torii-gate:before{content:"\f6a1"}.fa-broadcast-tower:before,.fa-tower-broadcast:before{content:"\f519"}.fa-tractor:before{content:"\f722"}.fa-trademark:before{content:"\f25c"}.fa-traffic-light:before{content:"\f637"}.fa-trailer:before{content:"\e041"}.fa-train:before{content:"\f238"}.fa-subway:before,.fa-train-subway:before{content:"\f239"}.fa-train-tram:before,.fa-tram:before{content:"\f7da"}.fa-transgender-alt:before,.fa-transgender:before{content:"\f225"}.fa-trash:before{content:"\f1f8"}.fa-trash-arrow-up:before,.fa-trash-restore:before{content:"\f829"}.fa-trash-alt:before,.fa-trash-can:before{content:"\f2ed"}.fa-trash-can-arrow-up:before,.fa-trash-restore-alt:before{content:"\f82a"}.fa-tree:before{content:"\f1bb"}.fa-exclamation-triangle:before,.fa-triangle-exclamation:before,.fa-warning:before{content:"\f071"}.fa-trophy:before{content:"\f091"}.fa-truck:before{content:"\f0d1"}.fa-shipping-fast:before,.fa-truck-fast:before{content:"\f48b"}.fa-ambulance:before,.fa-truck-medical:before{content:"\f0f9"}.fa-truck-monster:before{content:"\f63b"}.fa-truck-moving:before{content:"\f4df"}.fa-truck-pickup:before{content:"\f63c"}.fa-truck-loading:before,.fa-truck-ramp-box:before{content:"\f4de"}.fa-teletype:before,.fa-tty:before{content:"\f1e4"}.fa-try:before,.fa-turkish-lira-sign:before,.fa-turkish-lira:before{content:"\e2bb"}.fa-level-down-alt:before,.fa-turn-down:before{content:"\f3be"}.fa-level-up-alt:before,.fa-turn-up:before{content:"\f3bf"}.fa-television:before,.fa-tv-alt:before,.fa-tv:before{content:"\f26c"}.fa-u:before{content:"\55"}.fa-umbrella:before{content:"\f0e9"}.fa-umbrella-beach:before{content:"\f5ca"}.fa-underline:before{content:"\f0cd"}.fa-universal-access:before{content:"\f29a"}.fa-unlock:before{content:"\f09c"}.fa-unlock-alt:before,.fa-unlock-keyhole:before{content:"\f13e"}.fa-arrows-alt-v:before,.fa-up-down:before{content:"\f338"}.fa-arrows-alt:before,.fa-up-down-left-right:before{content:"\f0b2"}.fa-long-arrow-alt-up:before,.fa-up-long:before{content:"\f30c"}.fa-expand-alt:before,.fa-up-right-and-down-left-from-center:before{content:"\f424"}.fa-external-link-alt:before,.fa-up-right-from-square:before{content:"\f35d"}.fa-upload:before{content:"\f093"}.fa-user:before{content:"\f007"}.fa-user-astronaut:before{content:"\f4fb"}.fa-user-check:before{content:"\f4fc"}.fa-user-clock:before{content:"\f4fd"}.fa-user-doctor:before,.fa-user-md:before{content:"\f0f0"}.fa-user-cog:before,.fa-user-gear:before{content:"\f4fe"}.fa-user-graduate:before{content:"\f501"}.fa-user-friends:before,.fa-user-group:before{content:"\f500"}.fa-user-injured:before{content:"\f728"}.fa-user-alt:before,.fa-user-large:before{content:"\f406"}.fa-user-alt-slash:before,.fa-user-large-slash:before{content:"\f4fa"}.fa-user-lock:before{content:"\f502"}.fa-user-minus:before{content:"\f503"}.fa-user-ninja:before{content:"\f504"}.fa-user-nurse:before{content:"\f82f"}.fa-user-edit:before,.fa-user-pen:before{content:"\f4ff"}.fa-user-plus:before{content:"\f234"}.fa-user-secret:before{content:"\f21b"}.fa-user-shield:before{content:"\f505"}.fa-user-slash:before{content:"\f506"}.fa-user-tag:before{content:"\f507"}.fa-user-tie:before{content:"\f508"}.fa-user-times:before,.fa-user-xmark:before{content:"\f235"}.fa-users:before{content:"\f0c0"}.fa-users-cog:before,.fa-users-gear:before{content:"\f509"}.fa-users-slash:before{content:"\e073"}.fa-cutlery:before,.fa-utensils:before{content:"\f2e7"}.fa-v:before{content:"\56"}.fa-shuttle-van:before,.fa-van-shuttle:before{content:"\f5b6"}.fa-vault:before{content:"\e2c5"}.fa-vector-square:before{content:"\f5cb"}.fa-venus:before{content:"\f221"}.fa-venus-double:before{content:"\f226"}.fa-venus-mars:before{content:"\f228"}.fa-vest:before{content:"\e085"}.fa-vest-patches:before{content:"\e086"}.fa-vial:before{content:"\f492"}.fa-vials:before{content:"\f493"}.fa-video-camera:before,.fa-video:before{content:"\f03d"}.fa-video-slash:before{content:"\f4e2"}.fa-vihara:before{content:"\f6a7"}.fa-virus:before{content:"\e074"}.fa-virus-covid:before{content:"\e4a8"}.fa-virus-covid-slash:before{content:"\e4a9"}.fa-virus-slash:before{content:"\e075"}.fa-viruses:before{content:"\e076"}.fa-voicemail:before{content:"\f897"}.fa-volleyball-ball:before,.fa-volleyball:before{content:"\f45f"}.fa-volume-high:before,.fa-volume-up:before{content:"\f028"}.fa-volume-down:before,.fa-volume-low:before{content:"\f027"}.fa-volume-off:before{content:"\f026"}.fa-volume-mute:before,.fa-volume-times:before,.fa-volume-xmark:before{content:"\f6a9"}.fa-vr-cardboard:before{content:"\f729"}.fa-w:before{content:"\57"}.fa-wallet:before{content:"\f555"}.fa-magic:before,.fa-wand-magic:before{content:"\f0d0"}.fa-magic-wand-sparkles:before,.fa-wand-magic-sparkles:before{content:"\e2ca"}.fa-wand-sparkles:before{content:"\f72b"}.fa-warehouse:before{content:"\f494"}.fa-water:before{content:"\f773"}.fa-ladder-water:before,.fa-swimming-pool:before,.fa-water-ladder:before{content:"\f5c5"}.fa-wave-square:before{content:"\f83e"}.fa-weight-hanging:before{content:"\f5cd"}.fa-weight-scale:before,.fa-weight:before{content:"\f496"}.fa-wheelchair:before{content:"\f193"}.fa-glass-whiskey:before,.fa-whiskey-glass:before{content:"\f7a0"}.fa-wifi-3:before,.fa-wifi-strong:before,.fa-wifi:before{content:"\f1eb"}.fa-wind:before{content:"\f72e"}.fa-window-maximize:before{content:"\f2d0"}.fa-window-minimize:before{content:"\f2d1"}.fa-window-restore:before{content:"\f2d2"}.fa-wine-bottle:before{content:"\f72f"}.fa-wine-glass:before{content:"\f4e3"}.fa-wine-glass-alt:before,.fa-wine-glass-empty:before{content:"\f5ce"}.fa-krw:before,.fa-won-sign:before,.fa-won:before{content:"\f159"}.fa-wrench:before{content:"\f0ad"}.fa-x:before{content:"\58"}.fa-x-ray:before{content:"\f497"}.fa-close:before,.fa-multiply:before,.fa-remove:before,.fa-times:before,.fa-xmark:before{content:"\f00d"}.fa-y:before{content:"\59"}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen-sign:before,.fa-yen:before{content:"\f157"}.fa-yin-yang:before{content:"\f6ad"}.fa-z:before{content:"\5a"}.fa-sr-only,.fa-sr-only-focusable:not(:focus),.sr-only,.sr-only-focusable:not(:focus){position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);white-space:nowrap;border-width:0}:host,:root{--fa-font-brands:normal 400 1em/1 "Font Awesome 6 Brands"}@font-face{font-family:"font awesome 6 brands";font-style:normal;font-weight:400;font-display:block;src:url(../webfonts/fa-brands-400.woff2)format("woff2"),url(../webfonts/fa-brands-400.ttf)format("truetype")}.fa-brands,.fab{font-family:"font awesome 6 brands";font-weight:400}.fa-42-group:before,.fa-innosoft:before{content:"\e080"}.fa-500px:before{content:"\f26e"}.fa-accessible-icon:before{content:"\f368"}.fa-accusoft:before{content:"\f369"}.fa-adn:before{content:"\f170"}.fa-adversal:before{content:"\f36a"}.fa-affiliatetheme:before{content:"\f36b"}.fa-airbnb:before{content:"\f834"}.fa-algolia:before{content:"\f36c"}.fa-alipay:before{content:"\f642"}.fa-amazon:before{content:"\f270"}.fa-amazon-pay:before{content:"\f42c"}.fa-amilia:before{content:"\f36d"}.fa-android:before{content:"\f17b"}.fa-angellist:before{content:"\f209"}.fa-angrycreative:before{content:"\f36e"}.fa-angular:before{content:"\f420"}.fa-app-store:before{content:"\f36f"}.fa-app-store-ios:before{content:"\f370"}.fa-apper:before{content:"\f371"}.fa-apple:before{content:"\f179"}.fa-apple-pay:before{content:"\f415"}.fa-artstation:before{content:"\f77a"}.fa-asymmetrik:before{content:"\f372"}.fa-atlassian:before{content:"\f77b"}.fa-audible:before{content:"\f373"}.fa-autoprefixer:before{content:"\f41c"}.fa-avianex:before{content:"\f374"}.fa-aviato:before{content:"\f421"}.fa-aws:before{content:"\f375"}.fa-bandcamp:before{content:"\f2d5"}.fa-battle-net:before{content:"\f835"}.fa-behance:before{content:"\f1b4"}.fa-behance-square:before{content:"\f1b5"}.fa-bilibili:before{content:"\e3d9"}.fa-bimobject:before{content:"\f378"}.fa-bitbucket:before{content:"\f171"}.fa-bitcoin:before{content:"\f379"}.fa-bity:before{content:"\f37a"}.fa-black-tie:before{content:"\f27e"}.fa-blackberry:before{content:"\f37b"}.fa-blogger:before{content:"\f37c"}.fa-blogger-b:before{content:"\f37d"}.fa-bluetooth:before{content:"\f293"}.fa-bluetooth-b:before{content:"\f294"}.fa-bootstrap:before{content:"\f836"}.fa-bots:before{content:"\e340"}.fa-btc:before{content:"\f15a"}.fa-buffer:before{content:"\f837"}.fa-buromobelexperte:before{content:"\f37f"}.fa-buy-n-large:before{content:"\f8a6"}.fa-buysellads:before{content:"\f20d"}.fa-canadian-maple-leaf:before{content:"\f785"}.fa-cc-amazon-pay:before{content:"\f42d"}.fa-cc-amex:before{content:"\f1f3"}.fa-cc-apple-pay:before{content:"\f416"}.fa-cc-diners-club:before{content:"\f24c"}.fa-cc-discover:before{content:"\f1f2"}.fa-cc-jcb:before{content:"\f24b"}.fa-cc-mastercard:before{content:"\f1f1"}.fa-cc-paypal:before{content:"\f1f4"}.fa-cc-stripe:before{content:"\f1f5"}.fa-cc-visa:before{content:"\f1f0"}.fa-centercode:before{content:"\f380"}.fa-centos:before{content:"\f789"}.fa-chrome:before{content:"\f268"}.fa-chromecast:before{content:"\f838"}.fa-cloudflare:before{content:"\e07d"}.fa-cloudscale:before{content:"\f383"}.fa-cloudsmith:before{content:"\f384"}.fa-cloudversify:before{content:"\f385"}.fa-cmplid:before{content:"\e360"}.fa-codepen:before{content:"\f1cb"}.fa-codiepie:before{content:"\f284"}.fa-confluence:before{content:"\f78d"}.fa-connectdevelop:before{content:"\f20e"}.fa-contao:before{content:"\f26d"}.fa-cotton-bureau:before{content:"\f89e"}.fa-cpanel:before{content:"\f388"}.fa-creative-commons:before{content:"\f25e"}.fa-creative-commons-by:before{content:"\f4e7"}.fa-creative-commons-nc:before{content:"\f4e8"}.fa-creative-commons-nc-eu:before{content:"\f4e9"}.fa-creative-commons-nc-jp:before{content:"\f4ea"}.fa-creative-commons-nd:before{content:"\f4eb"}.fa-creative-commons-pd:before{content:"\f4ec"}.fa-creative-commons-pd-alt:before{content:"\f4ed"}.fa-creative-commons-remix:before{content:"\f4ee"}.fa-creative-commons-sa:before{content:"\f4ef"}.fa-creative-commons-sampling:before{content:"\f4f0"}.fa-creative-commons-sampling-plus:before{content:"\f4f1"}.fa-creative-commons-share:before{content:"\f4f2"}.fa-creative-commons-zero:before{content:"\f4f3"}.fa-critical-role:before{content:"\f6c9"}.fa-css3:before{content:"\f13c"}.fa-css3-alt:before{content:"\f38b"}.fa-cuttlefish:before{content:"\f38c"}.fa-d-and-d:before{content:"\f38d"}.fa-d-and-d-beyond:before{content:"\f6ca"}.fa-dailymotion:before{content:"\e052"}.fa-dashcube:before{content:"\f210"}.fa-deezer:before{content:"\e077"}.fa-delicious:before{content:"\f1a5"}.fa-deploydog:before{content:"\f38e"}.fa-deskpro:before{content:"\f38f"}.fa-dev:before{content:"\f6cc"}.fa-deviantart:before{content:"\f1bd"}.fa-dhl:before{content:"\f790"}.fa-diaspora:before{content:"\f791"}.fa-digg:before{content:"\f1a6"}.fa-digital-ocean:before{content:"\f391"}.fa-discord:before{content:"\f392"}.fa-discourse:before{content:"\f393"}.fa-dochub:before{content:"\f394"}.fa-docker:before{content:"\f395"}.fa-draft2digital:before{content:"\f396"}.fa-dribbble:before{content:"\f17d"}.fa-dribbble-square:before{content:"\f397"}.fa-dropbox:before{content:"\f16b"}.fa-drupal:before{content:"\f1a9"}.fa-dyalog:before{content:"\f399"}.fa-earlybirds:before{content:"\f39a"}.fa-ebay:before{content:"\f4f4"}.fa-edge:before{content:"\f282"}.fa-edge-legacy:before{content:"\e078"}.fa-elementor:before{content:"\f430"}.fa-ello:before{content:"\f5f1"}.fa-ember:before{content:"\f423"}.fa-empire:before{content:"\f1d1"}.fa-envira:before{content:"\f299"}.fa-erlang:before{content:"\f39d"}.fa-ethereum:before{content:"\f42e"}.fa-etsy:before{content:"\f2d7"}.fa-evernote:before{content:"\f839"}.fa-expeditedssl:before{content:"\f23e"}.fa-facebook:before{content:"\f09a"}.fa-facebook-f:before{content:"\f39e"}.fa-facebook-messenger:before{content:"\f39f"}.fa-facebook-square:before{content:"\f082"}.fa-fantasy-flight-games:before{content:"\f6dc"}.fa-fedex:before{content:"\f797"}.fa-fedora:before{content:"\f798"}.fa-figma:before{content:"\f799"}.fa-firefox:before{content:"\f269"}.fa-firefox-browser:before{content:"\e007"}.fa-first-order:before{content:"\f2b0"}.fa-first-order-alt:before{content:"\f50a"}.fa-firstdraft:before{content:"\f3a1"}.fa-flickr:before{content:"\f16e"}.fa-flipboard:before{content:"\f44d"}.fa-fly:before{content:"\f417"}.fa-font-awesome-flag:before,.fa-font-awesome-logo-full:before,.fa-font-awesome:before{content:"\f2b4"}.fa-fonticons:before{content:"\f280"}.fa-fonticons-fi:before{content:"\f3a2"}.fa-fort-awesome:before{content:"\f286"}.fa-fort-awesome-alt:before{content:"\f3a3"}.fa-forumbee:before{content:"\f211"}.fa-foursquare:before{content:"\f180"}.fa-free-code-camp:before{content:"\f2c5"}.fa-freebsd:before{content:"\f3a4"}.fa-fulcrum:before{content:"\f50b"}.fa-galactic-republic:before{content:"\f50c"}.fa-galactic-senate:before{content:"\f50d"}.fa-get-pocket:before{content:"\f265"}.fa-gg:before{content:"\f260"}.fa-gg-circle:before{content:"\f261"}.fa-git:before{content:"\f1d3"}.fa-git-alt:before{content:"\f841"}.fa-git-square:before{content:"\f1d2"}.fa-github:before{content:"\f09b"}.fa-github-alt:before{content:"\f113"}.fa-github-square:before{content:"\f092"}.fa-gitkraken:before{content:"\f3a6"}.fa-gitlab:before{content:"\f296"}.fa-gitter:before{content:"\f426"}.fa-glide:before{content:"\f2a5"}.fa-glide-g:before{content:"\f2a6"}.fa-gofore:before{content:"\f3a7"}.fa-golang:before{content:"\e40f"}.fa-goodreads:before{content:"\f3a8"}.fa-goodreads-g:before{content:"\f3a9"}.fa-google:before{content:"\f1a0"}.fa-google-drive:before{content:"\f3aa"}.fa-google-pay:before{content:"\e079"}.fa-google-play:before{content:"\f3ab"}.fa-google-plus:before{content:"\f2b3"}.fa-google-plus-g:before{content:"\f0d5"}.fa-google-plus-square:before{content:"\f0d4"}.fa-google-wallet:before{content:"\f1ee"}.fa-gratipay:before{content:"\f184"}.fa-grav:before{content:"\f2d6"}.fa-gripfire:before{content:"\f3ac"}.fa-grunt:before{content:"\f3ad"}.fa-guilded:before{content:"\e07e"}.fa-gulp:before{content:"\f3ae"}.fa-hacker-news:before{content:"\f1d4"}.fa-hacker-news-square:before{content:"\f3af"}.fa-hackerrank:before{content:"\f5f7"}.fa-hashnode:before{content:"\e499"}.fa-hips:before{content:"\f452"}.fa-hire-a-helper:before{content:"\f3b0"}.fa-hive:before{content:"\e07f"}.fa-hooli:before{content:"\f427"}.fa-hornbill:before{content:"\f592"}.fa-hotjar:before{content:"\f3b1"}.fa-houzz:before{content:"\f27c"}.fa-html5:before{content:"\f13b"}.fa-hubspot:before{content:"\f3b2"}.fa-ideal:before{content:"\e013"}.fa-imdb:before{content:"\f2d8"}.fa-instagram:before{content:"\f16d"}.fa-instagram-square:before{content:"\e055"}.fa-instalod:before{content:"\e081"}.fa-intercom:before{content:"\f7af"}.fa-internet-explorer:before{content:"\f26b"}.fa-invision:before{content:"\f7b0"}.fa-ioxhost:before{content:"\f208"}.fa-itch-io:before{content:"\f83a"}.fa-itunes:before{content:"\f3b4"}.fa-itunes-note:before{content:"\f3b5"}.fa-java:before{content:"\f4e4"}.fa-jedi-order:before{content:"\f50e"}.fa-jenkins:before{content:"\f3b6"}.fa-jira:before{content:"\f7b1"}.fa-joget:before{content:"\f3b7"}.fa-joomla:before{content:"\f1aa"}.fa-js:before{content:"\f3b8"}.fa-js-square:before{content:"\f3b9"}.fa-jsfiddle:before{content:"\f1cc"}.fa-kaggle:before{content:"\f5fa"}.fa-keybase:before{content:"\f4f5"}.fa-keycdn:before{content:"\f3ba"}.fa-kickstarter:before{content:"\f3bb"}.fa-kickstarter-k:before{content:"\f3bc"}.fa-korvue:before{content:"\f42f"}.fa-laravel:before{content:"\f3bd"}.fa-lastfm:before{content:"\f202"}.fa-lastfm-square:before{content:"\f203"}.fa-leanpub:before{content:"\f212"}.fa-less:before{content:"\f41d"}.fa-line:before{content:"\f3c0"}.fa-linkedin:before{content:"\f08c"}.fa-linkedin-in:before{content:"\f0e1"}.fa-linode:before{content:"\f2b8"}.fa-linux:before{content:"\f17c"}.fa-lyft:before{content:"\f3c3"}.fa-magento:before{content:"\f3c4"}.fa-mailchimp:before{content:"\f59e"}.fa-mandalorian:before{content:"\f50f"}.fa-markdown:before{content:"\f60f"}.fa-mastodon:before{content:"\f4f6"}.fa-maxcdn:before{content:"\f136"}.fa-mdb:before{content:"\f8ca"}.fa-medapps:before{content:"\f3c6"}.fa-medium-m:before,.fa-medium:before{content:"\f23a"}.fa-medrt:before{content:"\f3c8"}.fa-meetup:before{content:"\f2e0"}.fa-megaport:before{content:"\f5a3"}.fa-mendeley:before{content:"\f7b3"}.fa-microblog:before{content:"\e01a"}.fa-microsoft:before{content:"\f3ca"}.fa-mix:before{content:"\f3cb"}.fa-mixcloud:before{content:"\f289"}.fa-mixer:before{content:"\e056"}.fa-mizuni:before{content:"\f3cc"}.fa-modx:before{content:"\f285"}.fa-monero:before{content:"\f3d0"}.fa-napster:before{content:"\f3d2"}.fa-neos:before{content:"\f612"}.fa-nimblr:before{content:"\f5a8"}.fa-node:before{content:"\f419"}.fa-node-js:before{content:"\f3d3"}.fa-npm:before{content:"\f3d4"}.fa-ns8:before{content:"\f3d5"}.fa-nutritionix:before{content:"\f3d6"}.fa-octopus-deploy:before{content:"\e082"}.fa-odnoklassniki:before{content:"\f263"}.fa-odnoklassniki-square:before{content:"\f264"}.fa-old-republic:before{content:"\f510"}.fa-opencart:before{content:"\f23d"}.fa-openid:before{content:"\f19b"}.fa-opera:before{content:"\f26a"}.fa-optin-monster:before{content:"\f23c"}.fa-orcid:before{content:"\f8d2"}.fa-osi:before{content:"\f41a"}.fa-padlet:before{content:"\e4a0"}.fa-page4:before{content:"\f3d7"}.fa-pagelines:before{content:"\f18c"}.fa-palfed:before{content:"\f3d8"}.fa-patreon:before{content:"\f3d9"}.fa-paypal:before{content:"\f1ed"}.fa-perbyte:before{content:"\e083"}.fa-periscope:before{content:"\f3da"}.fa-phabricator:before{content:"\f3db"}.fa-phoenix-framework:before{content:"\f3dc"}.fa-phoenix-squadron:before{content:"\f511"}.fa-php:before{content:"\f457"}.fa-pied-piper:before{content:"\f2ae"}.fa-pied-piper-alt:before{content:"\f1a8"}.fa-pied-piper-hat:before{content:"\f4e5"}.fa-pied-piper-pp:before{content:"\f1a7"}.fa-pied-piper-square:before{content:"\e01e"}.fa-pinterest:before{content:"\f0d2"}.fa-pinterest-p:before{content:"\f231"}.fa-pinterest-square:before{content:"\f0d3"}.fa-pix:before{content:"\e43a"}.fa-playstation:before{content:"\f3df"}.fa-product-hunt:before{content:"\f288"}.fa-pushed:before{content:"\f3e1"}.fa-python:before{content:"\f3e2"}.fa-qq:before{content:"\f1d6"}.fa-quinscape:before{content:"\f459"}.fa-quora:before{content:"\f2c4"}.fa-r-project:before{content:"\f4f7"}.fa-raspberry-pi:before{content:"\f7bb"}.fa-ravelry:before{content:"\f2d9"}.fa-react:before{content:"\f41b"}.fa-reacteurope:before{content:"\f75d"}.fa-readme:before{content:"\f4d5"}.fa-rebel:before{content:"\f1d0"}.fa-red-river:before{content:"\f3e3"}.fa-reddit:before{content:"\f1a1"}.fa-reddit-alien:before{content:"\f281"}.fa-reddit-square:before{content:"\f1a2"}.fa-redhat:before{content:"\f7bc"}.fa-renren:before{content:"\f18b"}.fa-replyd:before{content:"\f3e6"}.fa-researchgate:before{content:"\f4f8"}.fa-resolving:before{content:"\f3e7"}.fa-rev:before{content:"\f5b2"}.fa-rocketchat:before{content:"\f3e8"}.fa-rockrms:before{content:"\f3e9"}.fa-rust:before{content:"\e07a"}.fa-safari:before{content:"\f267"}.fa-salesforce:before{content:"\f83b"}.fa-sass:before{content:"\f41e"}.fa-schlix:before{content:"\f3ea"}.fa-scribd:before{content:"\f28a"}.fa-searchengin:before{content:"\f3eb"}.fa-sellcast:before{content:"\f2da"}.fa-sellsy:before{content:"\f213"}.fa-servicestack:before{content:"\f3ec"}.fa-shirtsinbulk:before{content:"\f214"}.fa-shopify:before{content:"\e057"}.fa-shopware:before{content:"\f5b5"}.fa-simplybuilt:before{content:"\f215"}.fa-sistrix:before{content:"\f3ee"}.fa-sith:before{content:"\f512"}.fa-sitrox:before{content:"\e44a"}.fa-sketch:before{content:"\f7c6"}.fa-skyatlas:before{content:"\f216"}.fa-skype:before{content:"\f17e"}.fa-slack-hash:before,.fa-slack:before{content:"\f198"}.fa-slideshare:before{content:"\f1e7"}.fa-snapchat-ghost:before,.fa-snapchat:before{content:"\f2ab"}.fa-snapchat-square:before{content:"\f2ad"}.fa-soundcloud:before{content:"\f1be"}.fa-sourcetree:before{content:"\f7d3"}.fa-speakap:before{content:"\f3f3"}.fa-speaker-deck:before{content:"\f83c"}.fa-spotify:before{content:"\f1bc"}.fa-square-font-awesome:before{content:"\f425"}.fa-font-awesome-alt:before,.fa-square-font-awesome-stroke:before{content:"\f35c"}.fa-squarespace:before{content:"\f5be"}.fa-stack-exchange:before{content:"\f18d"}.fa-stack-overflow:before{content:"\f16c"}.fa-stackpath:before{content:"\f842"}.fa-staylinked:before{content:"\f3f5"}.fa-steam:before{content:"\f1b6"}.fa-steam-square:before{content:"\f1b7"}.fa-steam-symbol:before{content:"\f3f6"}.fa-sticker-mule:before{content:"\f3f7"}.fa-strava:before{content:"\f428"}.fa-stripe:before{content:"\f429"}.fa-stripe-s:before{content:"\f42a"}.fa-studiovinari:before{content:"\f3f8"}.fa-stumbleupon:before{content:"\f1a4"}.fa-stumbleupon-circle:before{content:"\f1a3"}.fa-superpowers:before{content:"\f2dd"}.fa-supple:before{content:"\f3f9"}.fa-suse:before{content:"\f7d6"}.fa-swift:before{content:"\f8e1"}.fa-symfony:before{content:"\f83d"}.fa-teamspeak:before{content:"\f4f9"}.fa-telegram-plane:before,.fa-telegram:before{content:"\f2c6"}.fa-tencent-weibo:before{content:"\f1d5"}.fa-the-red-yeti:before{content:"\f69d"}.fa-themeco:before{content:"\f5c6"}.fa-themeisle:before{content:"\f2b2"}.fa-think-peaks:before{content:"\f731"}.fa-tiktok:before{content:"\e07b"}.fa-trade-federation:before{content:"\f513"}.fa-trello:before{content:"\f181"}.fa-tumblr:before{content:"\f173"}.fa-tumblr-square:before{content:"\f174"}.fa-twitch:before{content:"\f1e8"}.fa-twitter:before{content:"\f099"}.fa-twitter-square:before{content:"\f081"}.fa-typo3:before{content:"\f42b"}.fa-uber:before{content:"\f402"}.fa-ubuntu:before{content:"\f7df"}.fa-uikit:before{content:"\f403"}.fa-umbraco:before{content:"\f8e8"}.fa-uncharted:before{content:"\e084"}.fa-uniregistry:before{content:"\f404"}.fa-unity:before{content:"\e049"}.fa-unsplash:before{content:"\e07c"}.fa-untappd:before{content:"\f405"}.fa-ups:before{content:"\f7e0"}.fa-usb:before{content:"\f287"}.fa-usps:before{content:"\f7e1"}.fa-ussunnah:before{content:"\f407"}.fa-vaadin:before{content:"\f408"}.fa-viacoin:before{content:"\f237"}.fa-viadeo:before{content:"\f2a9"}.fa-viadeo-square:before{content:"\f2aa"}.fa-viber:before{content:"\f409"}.fa-vimeo:before{content:"\f40a"}.fa-vimeo-square:before{content:"\f194"}.fa-vimeo-v:before{content:"\f27d"}.fa-vine:before{content:"\f1ca"}.fa-vk:before{content:"\f189"}.fa-vnv:before{content:"\f40b"}.fa-vuejs:before{content:"\f41f"}.fa-watchman-monitoring:before{content:"\e087"}.fa-waze:before{content:"\f83f"}.fa-weebly:before{content:"\f5cc"}.fa-weibo:before{content:"\f18a"}.fa-weixin:before{content:"\f1d7"}.fa-whatsapp:before{content:"\f232"}.fa-whatsapp-square:before{content:"\f40c"}.fa-whmcs:before{content:"\f40d"}.fa-wikipedia-w:before{content:"\f266"}.fa-windows:before{content:"\f17a"}.fa-wirsindhandwerk:before,.fa-wsh:before{content:"\e2d0"}.fa-wix:before{content:"\f5cf"}.fa-wizards-of-the-coast:before{content:"\f730"}.fa-wodu:before{content:"\e088"}.fa-wolf-pack-battalion:before{content:"\f514"}.fa-wordpress:before{content:"\f19a"}.fa-wordpress-simple:before{content:"\f411"}.fa-wpbeginner:before{content:"\f297"}.fa-wpexplorer:before{content:"\f2de"}.fa-wpforms:before{content:"\f298"}.fa-wpressr:before{content:"\f3e4"}.fa-xbox:before{content:"\f412"}.fa-xing:before{content:"\f168"}.fa-xing-square:before{content:"\f169"}.fa-y-combinator:before{content:"\f23b"}.fa-yahoo:before{content:"\f19e"}.fa-yammer:before{content:"\f840"}.fa-yandex:before{content:"\f413"}.fa-yandex-international:before{content:"\f414"}.fa-yarn:before{content:"\f7e3"}.fa-yelp:before{content:"\f1e9"}.fa-yoast:before{content:"\f2b1"}.fa-youtube:before{content:"\f167"}.fa-youtube-square:before{content:"\f431"}.fa-zhihu:before{content:"\f63f"}:host,:root{--fa-font-regular:normal 400 1em/1 "Font Awesome 6 Free"}@font-face{font-family:"font awesome 6 free";font-style:normal;font-weight:400;font-display:block;src:url(../webfonts/fa-regular-400.woff2)format("woff2"),url(../webfonts/fa-regular-400.ttf)format("truetype")}.fa-regular,.far{font-family:"font awesome 6 free";font-weight:400}:host,:root{--fa-font-solid:normal 900 1em/1 "Font Awesome 6 Free"}@font-face{font-family:"font awesome 6 free";font-style:normal;font-weight:900;font-display:block;src:url(../webfonts/fa-solid-900.woff2)format("woff2"),url(../webfonts/fa-solid-900.ttf)format("truetype")}.fa-solid,.fas{font-family:"font awesome 6 free";font-weight:900}@font-face{font-family:"font awesome 5 brands";font-display:block;font-weight:400;src:url(../webfonts/fa-brands-400.woff2)format("woff2"),url(../webfonts/fa-brands-400.ttf)format("truetype")}@font-face{font-family:"font awesome 5 free";font-display:block;font-weight:900;src:url(../webfonts/fa-solid-900.woff2)format("woff2"),url(../webfonts/fa-solid-900.ttf)format("truetype")}@font-face{font-family:"font awesome 5 free";font-display:block;font-weight:400;src:url(../webfonts/fa-regular-400.woff2)format("woff2"),url(../webfonts/fa-regular-400.ttf)format("truetype")}@font-face{font-family:fontawesome;font-display:block;src:url(../webfonts/fa-solid-900.woff2)format("woff2"),url(../webfonts/fa-solid-900.ttf)format("truetype")}@font-face{font-family:fontawesome;font-display:block;src:url(../webfonts/fa-brands-400.woff2)format("woff2"),url(../webfonts/fa-brands-400.ttf)format("truetype")}@font-face{font-family:fontawesome;font-display:block;src:url(../webfonts/fa-regular-400.woff2)format("woff2"),url(../webfonts/fa-regular-400.ttf)format("truetype");unicode-range:u+f003,u+f006,u+f014,u+f016-f017,u+f01a-f01b,u+f01d,u+f022,u+f03e,u+f044,u+f046,u+f05c-f05d,u+f06e,u+f070,u+f087-f088,u+f08a,u+f094,u+f096-f097,u+f09d,u+f0a0,u+f0a2,u+f0a4-f0a7,u+f0c5,u+f0c7,u+f0e5-f0e6,u+f0eb,u+f0f6-f0f8,u+f10c,u+f114-f115,u+f118-f11a,u+f11c-f11d,u+f133,u+f147,u+f14e,u+f150-f152,u+f185-f186,u+f18e,u+f190-f192,u+f196,u+f1c1-f1c9,u+f1d9,u+f1db,u+f1e3,u+f1ea,u+f1f7,u+f1f9,u+f20a,u+f247-f248,u+f24a,u+f24d,u+f255-f25b,u+f25d,u+f271-f274,u+f278,u+f27b,u+f28c,u+f28e,u+f29c,u+f2b5,u+f2b7,u+f2ba,u+f2bc,u+f2be,u+f2c0-f2c1,u+f2c3,u+f2d0,u+f2d2,u+f2d4,u+f2dc}@font-face{font-family:fontawesome;font-display:block;src:url(../webfonts/fa-v4compatibility.woff2)format("woff2"),url(../webfonts/fa-v4compatibility.ttf)format("truetype");unicode-range:U+F041,U+F047,U+F065-F066,U+F07D-F07E,U+F080,U+F08B,U+F08E,U+F090,U+F09A,U+F0AC,U+F0AE,U+F0B2,U+F0D0,U+F0D6,U+F0E4,U+F0EC,U+F10A-F10B,U+F123,U+F13E,U+F148-F149,U+F14C,U+F156,U+F15E,U+F160-F161,U+F163,U+F175-F178,U+F195,U+F1F8,U+F219,U+F250,U+F252,U+F27A} \ No newline at end of file diff --git a/css/wowchemy.a8b9b2914b18ad8ed9ca0350917ed059.css b/css/wowchemy.a8b9b2914b18ad8ed9ca0350917ed059.css new file mode 100644 index 0000000..1d54546 --- /dev/null +++ b/css/wowchemy.a8b9b2914b18ad8ed9ca0350917ed059.css @@ -0,0 +1,4 @@ +/*! Wowchemy v5.5.0 | https://wowchemy.com/ */ +/*! Copyright 2016-present George Cushen (https://georgecushen.com/) */ +/*! License: https://github.com/wowchemy/wowchemy-hugo-themes/blob/main/LICENSE.md */ +:root{--blue:#007bff;--indigo:#6610f2;--purple:#6f42c1;--pink:#e83e8c;--red:#dc3545;--orange:#fd7e14;--yellow:#ffc107;--green:#28a745;--teal:#20c997;--cyan:#17a2b8;--white:#fff;--gray:#6c757d;--gray-dark:#343a40;--primary:#0072BD;--secondary:#6c757d;--success:#28a745;--info:#17a2b8;--warning:#ffc107;--danger:#dc3545;--light:#f8f9fa;--dark:#343a40;--breakpoint-xs:0;--breakpoint-sm:576px;--breakpoint-md:768px;--breakpoint-lg:992px;--breakpoint-xl:1200px;--font-family-sans-serif:-apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", "Liberation Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";--font-family-monospace:SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace}*,*::before,*::after{box-sizing:border-box}html{font-family:sans-serif;line-height:1.15;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:transparent}article,aside,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}body{margin:0;font-family:-apple-system,BlinkMacSystemFont,segoe ui,Roboto,helvetica neue,Arial,noto sans,liberation sans,sans-serif,apple color emoji,segoe ui emoji,segoe ui symbol,noto color emoji;font-size:1rem;font-weight:400;line-height:1.5;color:#212529;text-align:left;background-color:#fff}[tabindex="-1"]:focus:not(:focus-visible){outline:0!important}hr{box-sizing:content-box;height:0;overflow:visible}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem}p{margin-top:0;margin-bottom:1rem}abbr[title],abbr[data-original-title]{text-decoration:underline;text-decoration:underline dotted;cursor:help;border-bottom:0;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul,dl{margin-top:0;margin-bottom:1rem}ol ol,ul ul,ol ul,ul ol{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#0072bd;text-decoration:none;background-color:transparent}a:hover{color:#004471;text-decoration:underline}a:not([href]):not([class]){color:inherit;text-decoration:none}a:not([href]):not([class]):hover{color:inherit;text-decoration:none}pre,code,kbd,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,liberation mono,courier new,monospace;font-size:1em}pre{margin-top:0;margin-bottom:1rem;overflow:auto;-ms-overflow-style:scrollbar}figure{margin:0 0 1rem}img{vertical-align:middle;border-style:none}svg{overflow:hidden;vertical-align:middle}table{border-collapse:collapse}caption{padding-top:.75rem;padding-bottom:.75rem;color:rgba(0,0,0,.54);text-align:left;caption-side:bottom}th{text-align:inherit;text-align:-webkit-match-parent}label{display:inline-block;margin-bottom:.5rem}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,input{overflow:visible}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}button,[type=button],[type=reset],[type=submit]{-webkit-appearance:button}button:not(:disabled),[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled){cursor:pointer}button::-moz-focus-inner,[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner{padding:0;border-style:none}input[type=radio],input[type=checkbox]{box-sizing:border-box;padding:0}textarea{overflow:auto;resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;max-width:100%;padding:0;margin-bottom:.5rem;font-size:1.5rem;line-height:inherit;color:inherit;white-space:normal}progress{vertical-align:baseline}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:none}[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}summary{display:list-item;cursor:pointer}template{display:none}[hidden]{display:none!important}h1,h2,h3,h4,h5,h6,.h1,.h2,.h3,.h4,.h5,.h6{margin-bottom:.5rem;font-weight:500;line-height:1.2}h1,.h1{font-size:2.5rem}h2,.h2{font-size:2rem}h3,.h3{font-size:1.75rem}h4,.h4{font-size:1.5rem}h5,.h5{font-size:1.25rem}h6,.h6{font-size:1rem}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:6rem;font-weight:300;line-height:1.2}.display-2{font-size:5.5rem;font-weight:300;line-height:1.2}.display-3{font-size:4.5rem;font-weight:300;line-height:1.2}.display-4{font-size:3.5rem;font-weight:300;line-height:1.2}hr{margin-top:1rem;margin-bottom:1rem;border:0;border-top:1px solid rgba(0,0,0,.1)}small,.small{font-size:80%;font-weight:400}mark,.mark{padding:.2em;background-color:#fcf8e3}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:90%;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote-footer{display:block;font-size:80%;color:#6c757d}.blockquote-footer::before{content:"\2014\00A0"}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem;max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:90%;color:#6c757d}code{font-size:87.5%;color:#e83e8c;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:87.5%;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:100%;font-weight:700}pre{display:block;font-size:87.5%;color:#212529}pre code{font-size:inherit;color:inherit;word-break:normal}.pre-scrollable{max-height:340px;overflow-y:scroll}.container,.container-fluid,.container-xl,.container-lg,.container-md,.container-sm{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media(min-width:576px){.container-sm,.container{max-width:540px}}@media(min-width:768px){.container-md,.container-sm,.container{max-width:720px}}@media(min-width:992px){.container-lg,.container-md,.container-sm,.container{max-width:960px}}@media(min-width:1200px){.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1290px}}.row{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.no-gutters{margin-right:0;margin-left:0}.no-gutters>.col,.no-gutters>[class*=col-]{padding-right:0;padding-left:0}.col-xl,.col-xl-auto,.col-xl-12,.col-xl-11,.col-xl-10,.col-xl-9,.col-xl-8,.col-xl-7,.col-xl-6,.col-xl-5,.col-xl-4,.col-xl-3,.col-xl-2,.col-xl-1,.col-lg,.col-lg-auto,.col-lg-12,.col-lg-11,.col-lg-10,.col-lg-9,.col-lg-8,.col-lg-7,.col-lg-6,.col-lg-5,.col-lg-4,.col-lg-3,.col-lg-2,.col-lg-1,.col-md,.col-md-auto,.col-md-12,.col-md-11,.col-md-10,.col-md-9,.col-md-8,.col-md-7,.col-md-6,.col-md-5,.col-md-4,.col-md-3,.col-md-2,.col-md-1,.col-sm,.col-sm-auto,.col-sm-12,.col-sm-11,.col-sm-10,.col-sm-9,.col-sm-8,.col-sm-7,.col-sm-6,.col-sm-5,.col-sm-4,.col-sm-3,.col-sm-2,.col-sm-1,.col,.col-auto,.col-12,.col-11,.col-10,.col-9,.col-8,.col-7,.col-6,.col-5,.col-4,.col-3,.col-2,.col-1{position:relative;width:100%;padding-right:15px;padding-left:15px}.col{flex-basis:0;flex-grow:1;max-width:100%}.row-cols-1>*{flex:0 0 100%;max-width:100%}.row-cols-2>*{flex:0 0 50%;max-width:50%}.row-cols-3>*{flex:0 0 33.33333333%;max-width:33.33333333%}.row-cols-4>*{flex:0 0 25%;max-width:25%}.row-cols-5>*{flex:0 0 20%;max-width:20%}.row-cols-6>*{flex:0 0 16.66666667%;max-width:16.66666667%}.col-auto{flex:none;width:auto;max-width:100%}.col-1{flex:0 0 8.33333333%;max-width:8.33333333%}.col-2{flex:0 0 16.66666667%;max-width:16.66666667%}.col-3{flex:0 0 25%;max-width:25%}.col-4{flex:0 0 33.33333333%;max-width:33.33333333%}.col-5{flex:0 0 41.66666667%;max-width:41.66666667%}.col-6{flex:0 0 50%;max-width:50%}.col-7{flex:0 0 58.33333333%;max-width:58.33333333%}.col-8{flex:0 0 66.66666667%;max-width:66.66666667%}.col-9{flex:0 0 75%;max-width:75%}.col-10{flex:0 0 83.33333333%;max-width:83.33333333%}.col-11{flex:0 0 91.66666667%;max-width:91.66666667%}.col-12{flex:0 0 100%;max-width:100%}.order-first{order:-1}.order-last{order:13}.order-0{order:0}.order-1{order:1}.order-2{order:2}.order-3{order:3}.order-4{order:4}.order-5{order:5}.order-6{order:6}.order-7{order:7}.order-8{order:8}.order-9{order:9}.order-10{order:10}.order-11{order:11}.order-12{order:12}.offset-1{margin-left:8.33333333%}.offset-2{margin-left:16.66666667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.33333333%}.offset-5{margin-left:41.66666667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.33333333%}.offset-8{margin-left:66.66666667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.33333333%}.offset-11{margin-left:91.66666667%}@media(min-width:576px){.col-sm{flex-basis:0;flex-grow:1;max-width:100%}.row-cols-sm-1>*{flex:0 0 100%;max-width:100%}.row-cols-sm-2>*{flex:0 0 50%;max-width:50%}.row-cols-sm-3>*{flex:0 0 33.33333333%;max-width:33.33333333%}.row-cols-sm-4>*{flex:0 0 25%;max-width:25%}.row-cols-sm-5>*{flex:0 0 20%;max-width:20%}.row-cols-sm-6>*{flex:0 0 16.66666667%;max-width:16.66666667%}.col-sm-auto{flex:none;width:auto;max-width:100%}.col-sm-1{flex:0 0 8.33333333%;max-width:8.33333333%}.col-sm-2{flex:0 0 16.66666667%;max-width:16.66666667%}.col-sm-3{flex:0 0 25%;max-width:25%}.col-sm-4{flex:0 0 33.33333333%;max-width:33.33333333%}.col-sm-5{flex:0 0 41.66666667%;max-width:41.66666667%}.col-sm-6{flex:0 0 50%;max-width:50%}.col-sm-7{flex:0 0 58.33333333%;max-width:58.33333333%}.col-sm-8{flex:0 0 66.66666667%;max-width:66.66666667%}.col-sm-9{flex:0 0 75%;max-width:75%}.col-sm-10{flex:0 0 83.33333333%;max-width:83.33333333%}.col-sm-11{flex:0 0 91.66666667%;max-width:91.66666667%}.col-sm-12{flex:0 0 100%;max-width:100%}.order-sm-first{order:-1}.order-sm-last{order:13}.order-sm-0{order:0}.order-sm-1{order:1}.order-sm-2{order:2}.order-sm-3{order:3}.order-sm-4{order:4}.order-sm-5{order:5}.order-sm-6{order:6}.order-sm-7{order:7}.order-sm-8{order:8}.order-sm-9{order:9}.order-sm-10{order:10}.order-sm-11{order:11}.order-sm-12{order:12}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333333%}.offset-sm-2{margin-left:16.66666667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.33333333%}.offset-sm-5{margin-left:41.66666667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.33333333%}.offset-sm-8{margin-left:66.66666667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.33333333%}.offset-sm-11{margin-left:91.66666667%}}@media(min-width:768px){.col-md{flex-basis:0;flex-grow:1;max-width:100%}.row-cols-md-1>*{flex:0 0 100%;max-width:100%}.row-cols-md-2>*{flex:0 0 50%;max-width:50%}.row-cols-md-3>*{flex:0 0 33.33333333%;max-width:33.33333333%}.row-cols-md-4>*{flex:0 0 25%;max-width:25%}.row-cols-md-5>*{flex:0 0 20%;max-width:20%}.row-cols-md-6>*{flex:0 0 16.66666667%;max-width:16.66666667%}.col-md-auto{flex:none;width:auto;max-width:100%}.col-md-1{flex:0 0 8.33333333%;max-width:8.33333333%}.col-md-2{flex:0 0 16.66666667%;max-width:16.66666667%}.col-md-3{flex:0 0 25%;max-width:25%}.col-md-4{flex:0 0 33.33333333%;max-width:33.33333333%}.col-md-5{flex:0 0 41.66666667%;max-width:41.66666667%}.col-md-6{flex:0 0 50%;max-width:50%}.col-md-7{flex:0 0 58.33333333%;max-width:58.33333333%}.col-md-8{flex:0 0 66.66666667%;max-width:66.66666667%}.col-md-9{flex:0 0 75%;max-width:75%}.col-md-10{flex:0 0 83.33333333%;max-width:83.33333333%}.col-md-11{flex:0 0 91.66666667%;max-width:91.66666667%}.col-md-12{flex:0 0 100%;max-width:100%}.order-md-first{order:-1}.order-md-last{order:13}.order-md-0{order:0}.order-md-1{order:1}.order-md-2{order:2}.order-md-3{order:3}.order-md-4{order:4}.order-md-5{order:5}.order-md-6{order:6}.order-md-7{order:7}.order-md-8{order:8}.order-md-9{order:9}.order-md-10{order:10}.order-md-11{order:11}.order-md-12{order:12}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333333%}.offset-md-2{margin-left:16.66666667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.33333333%}.offset-md-5{margin-left:41.66666667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.33333333%}.offset-md-8{margin-left:66.66666667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.33333333%}.offset-md-11{margin-left:91.66666667%}}@media(min-width:992px){.col-lg{flex-basis:0;flex-grow:1;max-width:100%}.row-cols-lg-1>*{flex:0 0 100%;max-width:100%}.row-cols-lg-2>*{flex:0 0 50%;max-width:50%}.row-cols-lg-3>*{flex:0 0 33.33333333%;max-width:33.33333333%}.row-cols-lg-4>*{flex:0 0 25%;max-width:25%}.row-cols-lg-5>*{flex:0 0 20%;max-width:20%}.row-cols-lg-6>*{flex:0 0 16.66666667%;max-width:16.66666667%}.col-lg-auto{flex:none;width:auto;max-width:100%}.col-lg-1{flex:0 0 8.33333333%;max-width:8.33333333%}.col-lg-2{flex:0 0 16.66666667%;max-width:16.66666667%}.col-lg-3{flex:0 0 25%;max-width:25%}.col-lg-4{flex:0 0 33.33333333%;max-width:33.33333333%}.col-lg-5{flex:0 0 41.66666667%;max-width:41.66666667%}.col-lg-6{flex:0 0 50%;max-width:50%}.col-lg-7{flex:0 0 58.33333333%;max-width:58.33333333%}.col-lg-8{flex:0 0 66.66666667%;max-width:66.66666667%}.col-lg-9{flex:0 0 75%;max-width:75%}.col-lg-10{flex:0 0 83.33333333%;max-width:83.33333333%}.col-lg-11{flex:0 0 91.66666667%;max-width:91.66666667%}.col-lg-12{flex:0 0 100%;max-width:100%}.order-lg-first{order:-1}.order-lg-last{order:13}.order-lg-0{order:0}.order-lg-1{order:1}.order-lg-2{order:2}.order-lg-3{order:3}.order-lg-4{order:4}.order-lg-5{order:5}.order-lg-6{order:6}.order-lg-7{order:7}.order-lg-8{order:8}.order-lg-9{order:9}.order-lg-10{order:10}.order-lg-11{order:11}.order-lg-12{order:12}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.33333333%}.offset-lg-2{margin-left:16.66666667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.33333333%}.offset-lg-5{margin-left:41.66666667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.33333333%}.offset-lg-8{margin-left:66.66666667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.33333333%}.offset-lg-11{margin-left:91.66666667%}}@media(min-width:1200px){.col-xl{flex-basis:0;flex-grow:1;max-width:100%}.row-cols-xl-1>*{flex:0 0 100%;max-width:100%}.row-cols-xl-2>*{flex:0 0 50%;max-width:50%}.row-cols-xl-3>*{flex:0 0 33.33333333%;max-width:33.33333333%}.row-cols-xl-4>*{flex:0 0 25%;max-width:25%}.row-cols-xl-5>*{flex:0 0 20%;max-width:20%}.row-cols-xl-6>*{flex:0 0 16.66666667%;max-width:16.66666667%}.col-xl-auto{flex:none;width:auto;max-width:100%}.col-xl-1{flex:0 0 8.33333333%;max-width:8.33333333%}.col-xl-2{flex:0 0 16.66666667%;max-width:16.66666667%}.col-xl-3{flex:0 0 25%;max-width:25%}.col-xl-4{flex:0 0 33.33333333%;max-width:33.33333333%}.col-xl-5{flex:0 0 41.66666667%;max-width:41.66666667%}.col-xl-6{flex:0 0 50%;max-width:50%}.col-xl-7{flex:0 0 58.33333333%;max-width:58.33333333%}.col-xl-8{flex:0 0 66.66666667%;max-width:66.66666667%}.col-xl-9{flex:0 0 75%;max-width:75%}.col-xl-10{flex:0 0 83.33333333%;max-width:83.33333333%}.col-xl-11{flex:0 0 91.66666667%;max-width:91.66666667%}.col-xl-12{flex:0 0 100%;max-width:100%}.order-xl-first{order:-1}.order-xl-last{order:13}.order-xl-0{order:0}.order-xl-1{order:1}.order-xl-2{order:2}.order-xl-3{order:3}.order-xl-4{order:4}.order-xl-5{order:5}.order-xl-6{order:6}.order-xl-7{order:7}.order-xl-8{order:8}.order-xl-9{order:9}.order-xl-10{order:10}.order-xl-11{order:11}.order-xl-12{order:12}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333333%}.offset-xl-2{margin-left:16.66666667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.33333333%}.offset-xl-5{margin-left:41.66666667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.33333333%}.offset-xl-8{margin-left:66.66666667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.33333333%}.offset-xl-11{margin-left:91.66666667%}}.table{width:100%;margin-bottom:1rem;color:#212529}.table th,.table td{padding:.75rem;vertical-align:top;border-top:1px solid #dee2e6}.table thead th{vertical-align:bottom;border-bottom:2px solid #dee2e6}.table tbody+tbody{border-top:2px solid #dee2e6}.table-sm th,.table-sm td{padding:.3rem}.table-bordered{border:1px solid #dee2e6}.table-bordered th,.table-bordered td{border:1px solid #dee2e6}.table-bordered thead th,.table-bordered thead td{border-bottom-width:2px}.table-borderless th,.table-borderless td,.table-borderless thead th,.table-borderless tbody+tbody{border:0}.table-striped tbody tr:nth-of-type(odd){background-color:rgba(0,0,0,5%)}.table-hover tbody tr:hover{color:#212529;background-color:rgba(0,0,0,.075)}.table-primary,.table-primary>th,.table-primary>td{background-color:#b8d8ed}.table-primary th,.table-primary td,.table-primary thead th,.table-primary tbody+tbody{border-color:#7ab6dd}.table-hover .table-primary:hover{background-color:#a4cde8}.table-hover .table-primary:hover>td,.table-hover .table-primary:hover>th{background-color:#a4cde8}.table-secondary,.table-secondary>th,.table-secondary>td{background-color:#d6d8db}.table-secondary th,.table-secondary td,.table-secondary thead th,.table-secondary tbody+tbody{border-color:#b3b7bb}.table-hover .table-secondary:hover{background-color:#c8cbcf}.table-hover .table-secondary:hover>td,.table-hover .table-secondary:hover>th{background-color:#c8cbcf}.table-success,.table-success>th,.table-success>td{background-color:#c3e6cb}.table-success th,.table-success td,.table-success thead th,.table-success tbody+tbody{border-color:#8fd19e}.table-hover .table-success:hover{background-color:#b1dfbb}.table-hover .table-success:hover>td,.table-hover .table-success:hover>th{background-color:#b1dfbb}.table-info,.table-info>th,.table-info>td{background-color:#bee5eb}.table-info th,.table-info td,.table-info thead th,.table-info tbody+tbody{border-color:#86cfda}.table-hover .table-info:hover{background-color:#abdde5}.table-hover .table-info:hover>td,.table-hover .table-info:hover>th{background-color:#abdde5}.table-warning,.table-warning>th,.table-warning>td{background-color:#ffeeba}.table-warning th,.table-warning td,.table-warning thead th,.table-warning tbody+tbody{border-color:#ffdf7e}.table-hover .table-warning:hover{background-color:#ffe8a1}.table-hover .table-warning:hover>td,.table-hover .table-warning:hover>th{background-color:#ffe8a1}.table-danger,.table-danger>th,.table-danger>td{background-color:#f5c6cb}.table-danger th,.table-danger td,.table-danger thead th,.table-danger tbody+tbody{border-color:#ed969e}.table-hover .table-danger:hover{background-color:#f1b0b7}.table-hover .table-danger:hover>td,.table-hover .table-danger:hover>th{background-color:#f1b0b7}.table-light,.table-light>th,.table-light>td{background-color:#fdfdfe}.table-light th,.table-light td,.table-light thead th,.table-light tbody+tbody{border-color:#fbfcfc}.table-hover .table-light:hover{background-color:#ececf6}.table-hover .table-light:hover>td,.table-hover .table-light:hover>th{background-color:#ececf6}.table-dark,.table-dark>th,.table-dark>td{background-color:#c6c8ca}.table-dark th,.table-dark td,.table-dark thead th,.table-dark tbody+tbody{border-color:#95999c}.table-hover .table-dark:hover{background-color:#b9bbbe}.table-hover .table-dark:hover>td,.table-hover .table-dark:hover>th{background-color:#b9bbbe}.table-active,.table-active>th,.table-active>td{background-color:rgba(0,0,0,.075)}.table-hover .table-active:hover{background-color:rgba(0,0,0,.075)}.table-hover .table-active:hover>td,.table-hover .table-active:hover>th{background-color:rgba(0,0,0,.075)}.table .thead-dark th{color:#fff;background-color:#343a40;border-color:#454d55}.table .thead-light th{color:#495057;background-color:#e9ecef;border-color:#dee2e6}.table-dark{color:#fff;background-color:#343a40}.table-dark th,.table-dark td,.table-dark thead th{border-color:#454d55}.table-dark.table-bordered{border:0}.table-dark.table-striped tbody tr:nth-of-type(odd){background-color:rgba(255,255,255,5%)}.table-dark.table-hover tbody tr:hover{color:#fff;background-color:rgba(255,255,255,.075)}@media(max-width:575.98px){.table-responsive-sm{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-sm>.table-bordered{border:0}}@media(max-width:767.98px){.table-responsive-md{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-md>.table-bordered{border:0}}@media(max-width:991.98px){.table-responsive-lg{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-lg>.table-bordered{border:0}}@media(max-width:1199.98px){.table-responsive-xl{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-xl>.table-bordered{border:0}}.table-responsive{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive>.table-bordered{border:0}.form-control{display:block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;background-color:#fff;background-clip:padding-box;border:1px solid #ced4da;border-radius:.25rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion:reduce){.form-control{transition:none}}.form-control::-ms-expand{background-color:transparent;border:0}.form-control:focus{color:#495057;background-color:#fff;border-color:#3eb2ff;outline:0;box-shadow:0 0 0 .2rem rgba(0,114,189,.25)}.form-control::placeholder{color:#6c757d;opacity:1}.form-control:disabled,.form-control[readonly]{background-color:#e9ecef;opacity:1}input[type=date].form-control,input[type=time].form-control,input[type=datetime-local].form-control,input[type=month].form-control{appearance:none}select.form-control:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}select.form-control:focus::-ms-value{color:#495057;background-color:#fff}.form-control-file,.form-control-range{display:block;width:100%}.col-form-label{padding-top:calc(.375rem + 1px);padding-bottom:calc(.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + 1px);padding-bottom:calc(.5rem + 1px);font-size:1.25rem;line-height:1.5}.col-form-label-sm{padding-top:calc(.25rem + 1px);padding-bottom:calc(.25rem + 1px);font-size:.875rem;line-height:1.5}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;font-size:1rem;line-height:1.5;color:#212529;background-color:transparent;border:solid transparent;border-width:1px 0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{height:calc(1.5em + .5rem + 2px);padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.form-control-lg{height:calc(1.5em + 1rem + 2px);padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}select.form-control[size],select.form-control[multiple]{height:auto}textarea.form-control{height:auto}.form-group{margin-bottom:1rem}.form-text{display:block;margin-top:.25rem}.form-row{display:flex;flex-wrap:wrap;margin-right:-5px;margin-left:-5px}.form-row>.col,.form-row>[class*=col-]{padding-right:5px;padding-left:5px}.form-check{position:relative;display:block;padding-left:1.25rem}.form-check-input{position:absolute;margin-top:.3rem;margin-left:-1.25rem}.form-check-input[disabled]~.form-check-label,.form-check-input:disabled~.form-check-label{color:rgba(0,0,0,.54)}.form-check-label{margin-bottom:0}.form-check-inline{display:inline-flex;align-items:center;padding-left:0;margin-right:.75rem}.form-check-inline .form-check-input{position:static;margin-top:0;margin-right:.3125rem;margin-left:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#28a745}.valid-tooltip{position:absolute;top:100%;left:0;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(40,167,69,.9);border-radius:.25rem}.form-row>.col>.valid-tooltip,.form-row>[class*=col-]>.valid-tooltip{left:5px}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:#28a745;padding-right:calc(1.5em + .75rem)!important;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem)center;background-size:calc(.75em + .375rem)calc(.75em + .375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.was-validated select.form-control:valid,select.form-control.is-valid{padding-right:3rem!important;background-position:right 1.5rem center}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem)right calc(.375em + .1875rem)}.was-validated .custom-select:valid,.custom-select.is-valid{border-color:#28a745;padding-right:calc(.75em + 2.3125rem)!important;background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e")right .75rem center/8px 10px no-repeat,#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e")center right 1.75rem/calc(.75em + .375rem)calc(.75em + .375rem)no-repeat}.was-validated .custom-select:valid:focus,.custom-select.is-valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:#28a745}.was-validated .form-check-input:valid~.valid-feedback,.was-validated .form-check-input:valid~.valid-tooltip,.form-check-input.is-valid~.valid-feedback,.form-check-input.is-valid~.valid-tooltip{display:block}.was-validated .custom-control-input:valid~.custom-control-label,.custom-control-input.is-valid~.custom-control-label{color:#28a745}.was-validated .custom-control-input:valid~.custom-control-label::before,.custom-control-input.is-valid~.custom-control-label::before{border-color:#28a745}.was-validated .custom-control-input:valid:checked~.custom-control-label::before,.custom-control-input.is-valid:checked~.custom-control-label::before{border-color:#34ce57;background-color:#34ce57}.was-validated .custom-control-input:valid:focus~.custom-control-label::before,.custom-control-input.is-valid:focus~.custom-control-label::before{box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.was-validated .custom-control-input:valid:focus:not(:checked)~.custom-control-label::before,.custom-control-input.is-valid:focus:not(:checked)~.custom-control-label::before{border-color:#28a745}.was-validated .custom-file-input:valid~.custom-file-label,.custom-file-input.is-valid~.custom-file-label{border-color:#28a745}.was-validated .custom-file-input:valid:focus~.custom-file-label,.custom-file-input.is-valid:focus~.custom-file-label{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:80%;color:#dc3545}.invalid-tooltip{position:absolute;top:100%;left:0;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(220,53,69,.9);border-radius:.25rem}.form-row>.col>.invalid-tooltip,.form-row>[class*=col-]>.invalid-tooltip{left:5px}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:#dc3545;padding-right:calc(1.5em + .75rem)!important;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545' viewBox='0 0 12 12'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem)center;background-size:calc(.75em + .375rem)calc(.75em + .375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.was-validated select.form-control:invalid,select.form-control.is-invalid{padding-right:3rem!important;background-position:right 1.5rem center}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem)right calc(.375em + .1875rem)}.was-validated .custom-select:invalid,.custom-select.is-invalid{border-color:#dc3545;padding-right:calc(.75em + 2.3125rem)!important;background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e")right .75rem center/8px 10px no-repeat,#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545' viewBox='0 0 12 12'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e")center right 1.75rem/calc(.75em + .375rem)calc(.75em + .375rem)no-repeat}.was-validated .custom-select:invalid:focus,.custom-select.is-invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:#dc3545}.was-validated .form-check-input:invalid~.invalid-feedback,.was-validated .form-check-input:invalid~.invalid-tooltip,.form-check-input.is-invalid~.invalid-feedback,.form-check-input.is-invalid~.invalid-tooltip{display:block}.was-validated .custom-control-input:invalid~.custom-control-label,.custom-control-input.is-invalid~.custom-control-label{color:#dc3545}.was-validated .custom-control-input:invalid~.custom-control-label::before,.custom-control-input.is-invalid~.custom-control-label::before{border-color:#dc3545}.was-validated .custom-control-input:invalid:checked~.custom-control-label::before,.custom-control-input.is-invalid:checked~.custom-control-label::before{border-color:#e4606d;background-color:#e4606d}.was-validated .custom-control-input:invalid:focus~.custom-control-label::before,.custom-control-input.is-invalid:focus~.custom-control-label::before{box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.was-validated .custom-control-input:invalid:focus:not(:checked)~.custom-control-label::before,.custom-control-input.is-invalid:focus:not(:checked)~.custom-control-label::before{border-color:#dc3545}.was-validated .custom-file-input:invalid~.custom-file-label,.custom-file-input.is-invalid~.custom-file-label{border-color:#dc3545}.was-validated .custom-file-input:invalid:focus~.custom-file-label,.custom-file-input.is-invalid:focus~.custom-file-label{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-inline{display:flex;flex-flow:row wrap;align-items:center}.form-inline .form-check{width:100%}@media(min-width:576px){.form-inline label{display:flex;align-items:center;justify-content:center;margin-bottom:0}.form-inline .form-group{display:flex;flex:none;flex-flow:row wrap;align-items:center;margin-bottom:0}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-plaintext{display:inline-block}.form-inline .input-group,.form-inline .custom-select{width:auto}.form-inline .form-check{display:flex;align-items:center;justify-content:center;width:auto;padding-left:0}.form-inline .form-check-input{position:relative;flex-shrink:0;margin-top:0;margin-right:.25rem;margin-left:0}.form-inline .custom-control{align-items:center;justify-content:center}.form-inline .custom-control-label{margin-bottom:0}}.btn{display:inline-block;font-weight:400;color:#212529;text-align:center;vertical-align:middle;user-select:none;background-color:transparent;border:1px solid transparent;padding:.375rem .75rem;font-size:1rem;line-height:1.5;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion:reduce){.btn{transition:none}}.btn:hover{color:#212529;text-decoration:none}.btn:focus,.btn.focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,114,189,.25)}.btn.disabled,.btn:disabled{opacity:.65}.btn:not(:disabled):not(.disabled){cursor:pointer}a.btn.disabled,fieldset:disabled a.btn{pointer-events:none}.btn-primary{color:#fff;background-color:#0072bd;border-color:#0072bd}.btn-primary:hover{color:#fff;background-color:#005b97;border-color:#00538a}.btn-primary:focus,.btn-primary.focus{color:#fff;background-color:#005b97;border-color:#00538a;box-shadow:0 0 0 .2rem rgba(38,135,199,.5)}.btn-primary.disabled,.btn-primary:disabled{color:#fff;background-color:#0072bd;border-color:#0072bd}.btn-primary:not(:disabled):not(.disabled):active,.btn-primary:not(:disabled):not(.disabled).active,.show>.btn-primary.dropdown-toggle{color:#fff;background-color:#00538a;border-color:#004c7d}.btn-primary:not(:disabled):not(.disabled):active:focus,.btn-primary:not(:disabled):not(.disabled).active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(38,135,199,.5)}.btn-secondary{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:hover{color:#fff;background-color:#5a6268;border-color:#545b62}.btn-secondary:focus,.btn-secondary.focus{color:#fff;background-color:#5a6268;border-color:#545b62;box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-secondary.disabled,.btn-secondary:disabled{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:not(:disabled):not(.disabled):active,.btn-secondary:not(:disabled):not(.disabled).active,.show>.btn-secondary.dropdown-toggle{color:#fff;background-color:#545b62;border-color:#4e555b}.btn-secondary:not(:disabled):not(.disabled):active:focus,.btn-secondary:not(:disabled):not(.disabled).active:focus,.show>.btn-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-success{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:hover{color:#fff;background-color:#218838;border-color:#1e7e34}.btn-success:focus,.btn-success.focus{color:#fff;background-color:#218838;border-color:#1e7e34;box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-success.disabled,.btn-success:disabled{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:not(:disabled):not(.disabled):active,.btn-success:not(:disabled):not(.disabled).active,.show>.btn-success.dropdown-toggle{color:#fff;background-color:#1e7e34;border-color:#1c7430}.btn-success:not(:disabled):not(.disabled):active:focus,.btn-success:not(:disabled):not(.disabled).active:focus,.show>.btn-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-info{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:hover{color:#fff;background-color:#138496;border-color:#117a8b}.btn-info:focus,.btn-info.focus{color:#fff;background-color:#138496;border-color:#117a8b;box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-info.disabled,.btn-info:disabled{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:not(:disabled):not(.disabled):active,.btn-info:not(:disabled):not(.disabled).active,.show>.btn-info.dropdown-toggle{color:#fff;background-color:#117a8b;border-color:#10707f}.btn-info:not(:disabled):not(.disabled):active:focus,.btn-info:not(:disabled):not(.disabled).active:focus,.show>.btn-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-warning{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:hover{color:#212529;background-color:#e0a800;border-color:#d39e00}.btn-warning:focus,.btn-warning.focus{color:#212529;background-color:#e0a800;border-color:#d39e00;box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-warning.disabled,.btn-warning:disabled{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:not(:disabled):not(.disabled):active,.btn-warning:not(:disabled):not(.disabled).active,.show>.btn-warning.dropdown-toggle{color:#212529;background-color:#d39e00;border-color:#c69500}.btn-warning:not(:disabled):not(.disabled):active:focus,.btn-warning:not(:disabled):not(.disabled).active:focus,.show>.btn-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-danger{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:hover{color:#fff;background-color:#c82333;border-color:#bd2130}.btn-danger:focus,.btn-danger.focus{color:#fff;background-color:#c82333;border-color:#bd2130;box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-danger.disabled,.btn-danger:disabled{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:not(:disabled):not(.disabled):active,.btn-danger:not(:disabled):not(.disabled).active,.show>.btn-danger.dropdown-toggle{color:#fff;background-color:#bd2130;border-color:#b21f2d}.btn-danger:not(:disabled):not(.disabled):active:focus,.btn-danger:not(:disabled):not(.disabled).active:focus,.show>.btn-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-light{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:hover{color:#212529;background-color:#e2e6ea;border-color:#dae0e5}.btn-light:focus,.btn-light.focus{color:#212529;background-color:#e2e6ea;border-color:#dae0e5;box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-light.disabled,.btn-light:disabled{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:not(:disabled):not(.disabled):active,.btn-light:not(:disabled):not(.disabled).active,.show>.btn-light.dropdown-toggle{color:#212529;background-color:#dae0e5;border-color:#d3d9df}.btn-light:not(:disabled):not(.disabled):active:focus,.btn-light:not(:disabled):not(.disabled).active:focus,.show>.btn-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-dark{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:hover{color:#fff;background-color:#23272b;border-color:#1d2124}.btn-dark:focus,.btn-dark.focus{color:#fff;background-color:#23272b;border-color:#1d2124;box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-dark.disabled,.btn-dark:disabled{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:not(:disabled):not(.disabled):active,.btn-dark:not(:disabled):not(.disabled).active,.show>.btn-dark.dropdown-toggle{color:#fff;background-color:#1d2124;border-color:#171a1d}.btn-dark:not(:disabled):not(.disabled):active:focus,.btn-dark:not(:disabled):not(.disabled).active:focus,.show>.btn-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-outline-primary{color:#0072bd;border-color:#0072bd}.btn-outline-primary:hover{color:#fff;background-color:#0072bd;border-color:#0072bd}.btn-outline-primary:focus,.btn-outline-primary.focus{box-shadow:0 0 0 .2rem rgba(0,114,189,.5)}.btn-outline-primary.disabled,.btn-outline-primary:disabled{color:#0072bd;background-color:transparent}.btn-outline-primary:not(:disabled):not(.disabled):active,.btn-outline-primary:not(:disabled):not(.disabled).active,.show>.btn-outline-primary.dropdown-toggle{color:#fff;background-color:#0072bd;border-color:#0072bd}.btn-outline-primary:not(:disabled):not(.disabled):active:focus,.btn-outline-primary:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(0,114,189,.5)}.btn-outline-secondary{color:#6c757d;border-color:#6c757d}.btn-outline-secondary:hover{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary:focus,.btn-outline-secondary.focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-secondary.disabled,.btn-outline-secondary:disabled{color:#6c757d;background-color:transparent}.btn-outline-secondary:not(:disabled):not(.disabled):active,.btn-outline-secondary:not(:disabled):not(.disabled).active,.show>.btn-outline-secondary.dropdown-toggle{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary:not(:disabled):not(.disabled):active:focus,.btn-outline-secondary:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-success{color:#28a745;border-color:#28a745}.btn-outline-success:hover{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success:focus,.btn-outline-success.focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-success.disabled,.btn-outline-success:disabled{color:#28a745;background-color:transparent}.btn-outline-success:not(:disabled):not(.disabled):active,.btn-outline-success:not(:disabled):not(.disabled).active,.show>.btn-outline-success.dropdown-toggle{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success:not(:disabled):not(.disabled):active:focus,.btn-outline-success:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-info{color:#17a2b8;border-color:#17a2b8}.btn-outline-info:hover{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info:focus,.btn-outline-info.focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-info.disabled,.btn-outline-info:disabled{color:#17a2b8;background-color:transparent}.btn-outline-info:not(:disabled):not(.disabled):active,.btn-outline-info:not(:disabled):not(.disabled).active,.show>.btn-outline-info.dropdown-toggle{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info:not(:disabled):not(.disabled):active:focus,.btn-outline-info:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-warning{color:#ffc107;border-color:#ffc107}.btn-outline-warning:hover{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning:focus,.btn-outline-warning.focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-warning.disabled,.btn-outline-warning:disabled{color:#ffc107;background-color:transparent}.btn-outline-warning:not(:disabled):not(.disabled):active,.btn-outline-warning:not(:disabled):not(.disabled).active,.show>.btn-outline-warning.dropdown-toggle{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning:not(:disabled):not(.disabled):active:focus,.btn-outline-warning:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-danger{color:#dc3545;border-color:#dc3545}.btn-outline-danger:hover{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger:focus,.btn-outline-danger.focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-danger.disabled,.btn-outline-danger:disabled{color:#dc3545;background-color:transparent}.btn-outline-danger:not(:disabled):not(.disabled):active,.btn-outline-danger:not(:disabled):not(.disabled).active,.show>.btn-outline-danger.dropdown-toggle{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger:not(:disabled):not(.disabled):active:focus,.btn-outline-danger:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-light{color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:hover{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:focus,.btn-outline-light.focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-light.disabled,.btn-outline-light:disabled{color:#f8f9fa;background-color:transparent}.btn-outline-light:not(:disabled):not(.disabled):active,.btn-outline-light:not(:disabled):not(.disabled).active,.show>.btn-outline-light.dropdown-toggle{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:not(:disabled):not(.disabled):active:focus,.btn-outline-light:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-dark{color:#343a40;border-color:#343a40}.btn-outline-dark:hover{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark:focus,.btn-outline-dark.focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-outline-dark.disabled,.btn-outline-dark:disabled{color:#343a40;background-color:transparent}.btn-outline-dark:not(:disabled):not(.disabled):active,.btn-outline-dark:not(:disabled):not(.disabled).active,.show>.btn-outline-dark.dropdown-toggle{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark:not(:disabled):not(.disabled):active:focus,.btn-outline-dark:not(:disabled):not(.disabled).active:focus,.show>.btn-outline-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-link{font-weight:400;color:#0072bd;text-decoration:none}.btn-link:hover{color:#004471;text-decoration:underline}.btn-link:focus,.btn-link.focus{text-decoration:underline}.btn-link:disabled,.btn-link.disabled{color:#6c757d;pointer-events:none}.btn-lg,.btn-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.btn-sm,.btn-group-sm>.btn{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:.5rem}input[type=submit].btn-block,input[type=reset].btn-block,input[type=button].btn-block{width:100%}.fade{transition:opacity .15s linear}@media(prefers-reduced-motion:reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{position:relative;height:0;overflow:hidden;transition:height .35s ease}@media(prefers-reduced-motion:reduce){.collapsing{transition:none}}.dropup,.dropright,.dropdown,.dropleft{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid transparent;border-bottom:0;border-left:.3em solid transparent}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:10rem;padding:.5rem 0;margin:.125rem 0 0;font-size:1rem;color:#212529;text-align:left;list-style:none;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.15);border-radius:.25rem}.dropdown-menu-left{right:auto;left:0}.dropdown-menu-right{right:0;left:auto}@media(min-width:576px){.dropdown-menu-sm-left{right:auto;left:0}.dropdown-menu-sm-right{right:0;left:auto}}@media(min-width:768px){.dropdown-menu-md-left{right:auto;left:0}.dropdown-menu-md-right{right:0;left:auto}}@media(min-width:992px){.dropdown-menu-lg-left{right:auto;left:0}.dropdown-menu-lg-right{right:0;left:auto}}@media(min-width:1200px){.dropdown-menu-xl-left{right:auto;left:0}.dropdown-menu-xl-right{right:0;left:auto}}.dropup .dropdown-menu{top:auto;bottom:100%;margin-top:0;margin-bottom:.125rem}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid transparent;border-bottom:.3em solid;border-left:.3em solid transparent}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropright .dropdown-menu{top:0;right:auto;left:100%;margin-top:0;margin-left:.125rem}.dropright .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:0;border-bottom:.3em solid transparent;border-left:.3em solid}.dropright .dropdown-toggle:empty::after{margin-left:0}.dropright .dropdown-toggle::after{vertical-align:0}.dropleft .dropdown-menu{top:0;right:100%;left:auto;margin-top:0;margin-right:.125rem}.dropleft .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropleft .dropdown-toggle::after{display:none}.dropleft .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:.3em solid;border-bottom:.3em solid transparent}.dropleft .dropdown-toggle:empty::after{margin-left:0}.dropleft .dropdown-toggle::before{vertical-align:0}.dropdown-menu[x-placement^=top],.dropdown-menu[x-placement^=right],.dropdown-menu[x-placement^=bottom],.dropdown-menu[x-placement^=left]{right:auto;bottom:auto}.dropdown-divider{height:0;margin:.5rem 0;overflow:hidden;border-top:1px solid #e9ecef}.dropdown-item{display:block;width:100%;padding:.25rem 1.5rem;clear:both;font-weight:400;color:#212529;text-align:inherit;white-space:nowrap;background-color:transparent;border:0}.dropdown-item:hover,.dropdown-item:focus{color:#16181b;text-decoration:none;background-color:#e9ecef}.dropdown-item.active,.dropdown-item:active{color:#fff;text-decoration:none;background-color:#0072bd}.dropdown-item.disabled,.dropdown-item:disabled{color:#adb5bd;pointer-events:none;background-color:transparent}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:.5rem 1.5rem;margin-bottom:0;font-size:.875rem;color:#6c757d;white-space:nowrap}.dropdown-item-text{display:block;padding:.25rem 1.5rem;color:#212529}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:auto}.btn-group>.btn:hover,.btn-group-vertical>.btn:hover{z-index:1}.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;flex-wrap:wrap;justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>.btn:not(:first-child),.btn-group>.btn-group:not(:first-child){margin-left:-1px}.btn-group>.btn:not(:last-child):not(.dropdown-toggle),.btn-group>.btn-group:not(:last-child)>.btn{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:not(:first-child),.btn-group>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropright .dropdown-toggle-split::after{margin-left:0}.dropleft .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;align-items:flex-start;justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:-1px}.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle),.btn-group-vertical>.btn-group:not(:last-child)>.btn{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-top-right-radius:0}.btn-group-toggle>.btn,.btn-group-toggle>.btn-group>.btn{margin-bottom:0}.btn-group-toggle>.btn input[type=radio],.btn-group-toggle>.btn input[type=checkbox],.btn-group-toggle>.btn-group>.btn input[type=radio],.btn-group-toggle>.btn-group>.btn input[type=checkbox]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:flex;flex-wrap:wrap;align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-control-plaintext,.input-group>.custom-select,.input-group>.custom-file{position:relative;flex:auto;width:1%;min-width:0;margin-bottom:0}.input-group>.form-control+.form-control,.input-group>.form-control+.custom-select,.input-group>.form-control+.custom-file,.input-group>.form-control-plaintext+.form-control,.input-group>.form-control-plaintext+.custom-select,.input-group>.form-control-plaintext+.custom-file,.input-group>.custom-select+.form-control,.input-group>.custom-select+.custom-select,.input-group>.custom-select+.custom-file,.input-group>.custom-file+.form-control,.input-group>.custom-file+.custom-select,.input-group>.custom-file+.custom-file{margin-left:-1px}.input-group>.form-control:focus,.input-group>.custom-select:focus,.input-group>.custom-file .custom-file-input:focus~.custom-file-label{z-index:3}.input-group>.custom-file .custom-file-input:focus{z-index:4}.input-group>.form-control:not(:first-child),.input-group>.custom-select:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.custom-file{display:flex;align-items:center}.input-group>.custom-file:not(:last-child) .custom-file-label,.input-group>.custom-file:not(:last-child) .custom-file-label::after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-file:not(:first-child) .custom-file-label{border-top-left-radius:0;border-bottom-left-radius:0}.input-group:not(.has-validation)>.form-control:not(:last-child),.input-group:not(.has-validation)>.custom-select:not(:last-child),.input-group:not(.has-validation)>.custom-file:not(:last-child) .custom-file-label,.input-group:not(.has-validation)>.custom-file:not(:last-child) .custom-file-label::after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group.has-validation>.form-control:nth-last-child(n+3),.input-group.has-validation>.custom-select:nth-last-child(n+3),.input-group.has-validation>.custom-file:nth-last-child(n+3) .custom-file-label,.input-group.has-validation>.custom-file:nth-last-child(n+3) .custom-file-label::after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group-prepend,.input-group-append{display:flex}.input-group-prepend .btn,.input-group-append .btn{position:relative;z-index:2}.input-group-prepend .btn:focus,.input-group-append .btn:focus{z-index:3}.input-group-prepend .btn+.btn,.input-group-prepend .btn+.input-group-text,.input-group-prepend .input-group-text+.input-group-text,.input-group-prepend .input-group-text+.btn,.input-group-append .btn+.btn,.input-group-append .btn+.input-group-text,.input-group-append .input-group-text+.input-group-text,.input-group-append .input-group-text+.btn{margin-left:-1px}.input-group-prepend{margin-right:-1px}.input-group-append{margin-left:-1px}.input-group-text{display:flex;align-items:center;padding:.375rem .75rem;margin-bottom:0;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;text-align:center;white-space:nowrap;background-color:#e9ecef;border:1px solid #ced4da;border-radius:.25rem}.input-group-text input[type=radio],.input-group-text input[type=checkbox]{margin-top:0}.input-group-lg>.form-control:not(textarea),.input-group-lg>.custom-select{height:calc(1.5em + 1rem + 2px)}.input-group-lg>.form-control,.input-group-lg>.custom-select,.input-group-lg>.input-group-prepend>.input-group-text,.input-group-lg>.input-group-append>.input-group-text,.input-group-lg>.input-group-prepend>.btn,.input-group-lg>.input-group-append>.btn{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.input-group-sm>.form-control:not(textarea),.input-group-sm>.custom-select{height:calc(1.5em + .5rem + 2px)}.input-group-sm>.form-control,.input-group-sm>.custom-select,.input-group-sm>.input-group-prepend>.input-group-text,.input-group-sm>.input-group-append>.input-group-text,.input-group-sm>.input-group-prepend>.btn,.input-group-sm>.input-group-append>.btn{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.input-group-lg>.custom-select,.input-group-sm>.custom-select{padding-right:1.75rem}.input-group>.input-group-prepend>.btn,.input-group>.input-group-prepend>.input-group-text,.input-group:not(.has-validation)>.input-group-append:not(:last-child)>.btn,.input-group:not(.has-validation)>.input-group-append:not(:last-child)>.input-group-text,.input-group.has-validation>.input-group-append:nth-last-child(n+3)>.btn,.input-group.has-validation>.input-group-append:nth-last-child(n+3)>.input-group-text,.input-group>.input-group-append:last-child>.btn:not(:last-child):not(.dropdown-toggle),.input-group>.input-group-append:last-child>.input-group-text:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.input-group-append>.btn,.input-group>.input-group-append>.input-group-text,.input-group>.input-group-prepend:not(:first-child)>.btn,.input-group>.input-group-prepend:not(:first-child)>.input-group-text,.input-group>.input-group-prepend:first-child>.btn:not(:first-child),.input-group>.input-group-prepend:first-child>.input-group-text:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.custom-control{position:relative;z-index:1;display:block;min-height:1.5rem;padding-left:1.5rem;color-adjust:exact}.custom-control-inline{display:inline-flex;margin-right:1rem}.custom-control-input{position:absolute;left:0;z-index:-1;width:1rem;height:1.25rem;opacity:0}.custom-control-input:checked~.custom-control-label::before{color:#fff;border-color:#0072bd;background-color:#0072bd}.custom-control-input:focus~.custom-control-label::before{box-shadow:0 0 0 .2rem rgba(0,114,189,.25)}.custom-control-input:focus:not(:checked)~.custom-control-label::before{border-color:#3eb2ff}.custom-control-input:not(:disabled):active~.custom-control-label::before{color:#fff;background-color:#71c6ff;border-color:#71c6ff}.custom-control-input[disabled]~.custom-control-label,.custom-control-input:disabled~.custom-control-label{color:#6c757d}.custom-control-input[disabled]~.custom-control-label::before,.custom-control-input:disabled~.custom-control-label::before{background-color:#e9ecef}.custom-control-label{position:relative;margin-bottom:0;vertical-align:top}.custom-control-label::before{position:absolute;top:.25rem;left:-1.5rem;display:block;width:1rem;height:1rem;pointer-events:none;content:"";background-color:#fff;border:#adb5bd solid 1px}.custom-control-label::after{position:absolute;top:.25rem;left:-1.5rem;display:block;width:1rem;height:1rem;content:"";background:50%/50% no-repeat}.custom-checkbox .custom-control-label::before{border-radius:.25rem}.custom-checkbox .custom-control-input:checked~.custom-control-label::after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%23fff' d='M6.564.75l-3.59 3.612-1.538-1.55L0 4.26l2.974 2.99L8 2.193z'/%3e%3c/svg%3e")}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label::before{border-color:#0072bd;background-color:#0072bd}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label::after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='4' viewBox='0 0 4 4'%3e%3cpath stroke='%23fff' d='M0 2h4'/%3e%3c/svg%3e")}.custom-checkbox .custom-control-input:disabled:checked~.custom-control-label::before{background-color:rgba(0,114,189,.5)}.custom-checkbox .custom-control-input:disabled:indeterminate~.custom-control-label::before{background-color:rgba(0,114,189,.5)}.custom-radio .custom-control-label::before{border-radius:50%}.custom-radio .custom-control-input:checked~.custom-control-label::after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.custom-radio .custom-control-input:disabled:checked~.custom-control-label::before{background-color:rgba(0,114,189,.5)}.custom-switch{padding-left:2.25rem}.custom-switch .custom-control-label::before{left:-2.25rem;width:1.75rem;pointer-events:all;border-radius:.5rem}.custom-switch .custom-control-label::after{top:calc(.25rem + 2px);left:calc(-2.25rem + 2px);width:calc(1rem - 4px);height:calc(1rem - 4px);background-color:#adb5bd;border-radius:.5rem;transition:transform .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion:reduce){.custom-switch .custom-control-label::after{transition:none}}.custom-switch .custom-control-input:checked~.custom-control-label::after{background-color:#fff;transform:translateX(.75rem)}.custom-switch .custom-control-input:disabled:checked~.custom-control-label::before{background-color:rgba(0,114,189,.5)}.custom-select{display:inline-block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem 1.75rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;vertical-align:middle;background:#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e")right .75rem center/8px 10px no-repeat;border:1px solid #ced4da;border-radius:.25rem;appearance:none}.custom-select:focus{border-color:#3eb2ff;outline:0;box-shadow:0 0 0 .2rem rgba(0,114,189,.25)}.custom-select:focus::-ms-value{color:#495057;background-color:#fff}.custom-select[multiple],.custom-select[size]:not([size="1"]){height:auto;padding-right:.75rem;background-image:none}.custom-select:disabled{color:#6c757d;background-color:#e9ecef}.custom-select::-ms-expand{display:none}.custom-select:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.custom-select-sm{height:calc(1.5em + .5rem + 2px);padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem}.custom-select-lg{height:calc(1.5em + 1rem + 2px);padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}.custom-file{position:relative;display:inline-block;width:100%;height:calc(1.5em + .75rem + 2px);margin-bottom:0}.custom-file-input{position:relative;z-index:2;width:100%;height:calc(1.5em + .75rem + 2px);margin:0;overflow:hidden;opacity:0}.custom-file-input:focus~.custom-file-label{border-color:#3eb2ff;box-shadow:0 0 0 .2rem rgba(0,114,189,.25)}.custom-file-input[disabled]~.custom-file-label,.custom-file-input:disabled~.custom-file-label{background-color:#e9ecef}.custom-file-input:lang(en)~.custom-file-label::after{content:"Browse"}.custom-file-input~.custom-file-label[data-browse]::after{content:attr(data-browse)}.custom-file-label{position:absolute;top:0;right:0;left:0;z-index:1;height:calc(1.5em + .75rem + 2px);padding:.375rem .75rem;overflow:hidden;font-weight:400;line-height:1.5;color:#495057;background-color:#fff;border:1px solid #ced4da;border-radius:.25rem}.custom-file-label::after{position:absolute;top:0;right:0;bottom:0;z-index:3;display:block;height:calc(1.5em + .75rem);padding:.375rem .75rem;line-height:1.5;color:#495057;content:"Browse";background-color:#e9ecef;border-left:inherit;border-radius:0 .25rem .25rem 0}.custom-range{width:100%;height:1.4rem;padding:0;background-color:transparent;appearance:none}.custom-range:focus{outline:0}.custom-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,114,189,.25)}.custom-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,114,189,.25)}.custom-range:focus::-ms-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,114,189,.25)}.custom-range::-moz-focus-outer{border:0}.custom-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-.25rem;background-color:#0072bd;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media(prefers-reduced-motion:reduce){.custom-range::-webkit-slider-thumb{transition:none}}.custom-range::-webkit-slider-thumb:active{background-color:#71c6ff}.custom-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-moz-range-thumb{width:1rem;height:1rem;background-color:#0072bd;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media(prefers-reduced-motion:reduce){.custom-range::-moz-range-thumb{transition:none}}.custom-range::-moz-range-thumb:active{background-color:#71c6ff}.custom-range::-moz-range-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-ms-thumb{width:1rem;height:1rem;margin-top:0;margin-right:.2rem;margin-left:.2rem;background-color:#0072bd;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media(prefers-reduced-motion:reduce){.custom-range::-ms-thumb{transition:none}}.custom-range::-ms-thumb:active{background-color:#71c6ff}.custom-range::-ms-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:transparent;border-color:transparent;border-width:.5rem}.custom-range::-ms-fill-lower{background-color:#dee2e6;border-radius:1rem}.custom-range::-ms-fill-upper{margin-right:15px;background-color:#dee2e6;border-radius:1rem}.custom-range:disabled::-webkit-slider-thumb{background-color:#adb5bd}.custom-range:disabled::-webkit-slider-runnable-track{cursor:default}.custom-range:disabled::-moz-range-thumb{background-color:#adb5bd}.custom-range:disabled::-moz-range-track{cursor:default}.custom-range:disabled::-ms-thumb{background-color:#adb5bd}.custom-control-label::before,.custom-file-label,.custom-select{transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion:reduce){.custom-control-label::before,.custom-file-label,.custom-select{transition:none}}.nav{display:flex;flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:.5rem 1rem}.nav-link:hover,.nav-link:focus{text-decoration:none}.nav-link.disabled{color:#6c757d;pointer-events:none;cursor:default}.nav-tabs{border-bottom:1px solid #dee2e6}.nav-tabs .nav-link{margin-bottom:-1px;border:1px solid transparent;border-top-left-radius:.25rem;border-top-right-radius:.25rem}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{border-color:#e9ecef #e9ecef #dee2e6}.nav-tabs .nav-link.disabled{color:#6c757d;background-color:transparent;border-color:transparent}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:#495057;background-color:#fff;border-color:#dee2e6 #dee2e6 #fff}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.nav-pills .nav-link{border-radius:.25rem}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:#fff;background-color:#0072bd}.nav-fill>.nav-link,.nav-fill .nav-item{flex:auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;flex-grow:1;text-align:center}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{position:relative;display:flex;flex-wrap:wrap;align-items:center;justify-content:space-between;padding:.5rem 1rem}.navbar .container,.navbar .container-fluid,.navbar .container-sm,.navbar .container-md,.navbar .container-lg,.navbar .container-xl{display:flex;flex-wrap:wrap;align-items:center;justify-content:space-between}.navbar-brand{display:inline-block;padding-top:.35rem;padding-bottom:.35rem;margin-right:1rem;font-size:1.2rem;line-height:inherit;white-space:nowrap}.navbar-brand:hover,.navbar-brand:focus{text-decoration:none}.navbar-nav{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link{padding-right:0;padding-left:0}.navbar-nav .dropdown-menu{position:static;float:none}.navbar-text{display:inline-block;padding-top:.5rem;padding-bottom:.5rem}.navbar-collapse{flex-basis:100%;flex-grow:1;align-items:center}.navbar-toggler{padding:.25rem 0;font-size:1.125rem;line-height:1;background-color:transparent;border:1px solid transparent;border-radius:.25rem}.navbar-toggler:hover,.navbar-toggler:focus{text-decoration:none}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;content:"";background:50%/100% 100% no-repeat}.navbar-nav-scroll{max-height:75vh;overflow-y:auto}@media(max-width:575.98px){.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-xl{padding-right:0;padding-left:0}}@media(min-width:576px){.navbar-expand-sm{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-xl{flex-wrap:nowrap}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}}@media(max-width:767.98px){.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-md,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-xl{padding-right:0;padding-left:0}}@media(min-width:768px){.navbar-expand-md{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-md,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-xl{flex-wrap:nowrap}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}}@media(max-width:991.98px){.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-xl{padding-right:0;padding-left:0}}@media(min-width:992px){.navbar-expand-lg{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-xl{flex-wrap:nowrap}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}}@media(max-width:1199.98px){.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-xl{padding-right:0;padding-left:0}}@media(min-width:1200px){.navbar-expand-xl{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-xl{flex-wrap:nowrap}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}}.navbar-expand{flex-flow:row nowrap;justify-content:flex-start}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-sm,.navbar-expand>.container-md,.navbar-expand>.container-lg,.navbar-expand>.container-xl{padding-right:0;padding-left:0}.navbar-expand .navbar-nav{flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-sm,.navbar-expand>.container-md,.navbar-expand>.container-lg,.navbar-expand>.container-xl{flex-wrap:nowrap}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex!important;flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-light .navbar-brand{color:#2b2b2b}.navbar-light .navbar-brand:hover,.navbar-light .navbar-brand:focus{color:#0072bd}.navbar-light .navbar-nav .nav-link{color:#34495e}.navbar-light .navbar-nav .nav-link:hover,.navbar-light .navbar-nav .nav-link:focus{color:rgba(0,0,0,.7)}.navbar-light .navbar-nav .nav-link.disabled{color:rgba(0,0,0,.3)}.navbar-light .navbar-nav .show>.nav-link,.navbar-light .navbar-nav .active>.nav-link,.navbar-light .navbar-nav .nav-link.show,.navbar-light .navbar-nav .nav-link.active{color:#0072bd}.navbar-light .navbar-toggler{color:#34495e;border-color:transparent}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30' viewBox='0 0 30 30'%3e%3cpath stroke='%2334495e' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-light .navbar-text{color:#34495e}.navbar-light .navbar-text a{color:#0072bd}.navbar-light .navbar-text a:hover,.navbar-light .navbar-text a:focus{color:#0072bd}.navbar-dark .navbar-brand{color:#fff}.navbar-dark .navbar-brand:hover,.navbar-dark .navbar-brand:focus{color:#fff}.navbar-dark .navbar-nav .nav-link{color:rgba(255,255,255,.5)}.navbar-dark .navbar-nav .nav-link:hover,.navbar-dark .navbar-nav .nav-link:focus{color:rgba(255,255,255,.75)}.navbar-dark .navbar-nav .nav-link.disabled{color:rgba(255,255,255,.25)}.navbar-dark .navbar-nav .show>.nav-link,.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.show,.navbar-dark .navbar-nav .nav-link.active{color:#fff}.navbar-dark .navbar-toggler{color:rgba(255,255,255,.5);border-color:rgba(255,255,255,.1)}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255,255,255,0.5%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-dark .navbar-text{color:rgba(255,255,255,.5)}.navbar-dark .navbar-text a{color:#fff}.navbar-dark .navbar-text a:hover,.navbar-dark .navbar-text a:focus{color:#fff}.card{position:relative;display:flex;flex-direction:column;min-width:0;word-wrap:break-word;background-color:#fff;background-clip:border-box;border:1px solid rgba(0,0,0,.125);border-radius:.25rem}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:auto;min-height:1px;padding:1.25rem}.card-title{margin-bottom:.75rem}.card-subtitle{margin-top:-.375rem;margin-bottom:0}.card-text:last-child{margin-bottom:0}.card-link:hover{text-decoration:none}.card-link+.card-link{margin-left:1.25rem}.card-header{padding:.75rem 1.25rem;margin-bottom:0;background-color:rgba(0,0,0,3%);border-bottom:1px solid rgba(0,0,0,.125)}.card-header:first-child{border-radius:calc(.25rem - 1px)calc(.25rem - 1px)0 0}.card-footer{padding:.75rem 1.25rem;background-color:rgba(0,0,0,3%);border-top:1px solid rgba(0,0,0,.125)}.card-footer:last-child{border-radius:0 0 calc(.25rem - 1px)calc(.25rem - 1px)}.card-header-tabs{margin-right:-.625rem;margin-bottom:-.75rem;margin-left:-.625rem;border-bottom:0}.card-header-pills{margin-right:-.625rem;margin-left:-.625rem}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1.25rem;border-radius:calc(.25rem - 1px)}.card-img,.card-img-top,.card-img-bottom{flex-shrink:0;width:100%}.card-img,.card-img-top{border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card-img,.card-img-bottom{border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-deck .card{margin-bottom:15px}@media(min-width:576px){.card-deck{display:flex;flex-flow:row wrap;margin-right:-15px;margin-left:-15px}.card-deck .card{flex:1 0;margin-right:15px;margin-bottom:0;margin-left:15px}}.card-group>.card{margin-bottom:15px}@media(min-width:576px){.card-group{display:flex;flex-flow:row wrap}.card-group>.card{flex:1 0;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-img-top,.card-group>.card:not(:last-child) .card-header{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-img-bottom,.card-group>.card:not(:last-child) .card-footer{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-img-top,.card-group>.card:not(:first-child) .card-header{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-img-bottom,.card-group>.card:not(:first-child) .card-footer{border-bottom-left-radius:0}}.card-columns .card{margin-bottom:.75rem}@media(min-width:576px){.card-columns{column-count:3;column-gap:1.25rem;orphans:1;widows:1}.card-columns .card{display:inline-block;width:100%}}.accordion{overflow-anchor:none}.accordion>.card{overflow:hidden}.accordion>.card:not(:last-of-type){border-bottom:0;border-bottom-right-radius:0;border-bottom-left-radius:0}.accordion>.card:not(:first-of-type){border-top-left-radius:0;border-top-right-radius:0}.accordion>.card>.card-header{border-radius:0;margin-bottom:-1px}.breadcrumb{display:flex;flex-wrap:wrap;padding:.75rem 1rem;margin-bottom:1rem;list-style:none;background-color:#e9ecef;border-radius:.25rem}.breadcrumb-item+.breadcrumb-item{padding-left:.5rem}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:.5rem;color:#6c757d;content:"/"}.breadcrumb-item+.breadcrumb-item:hover::before{text-decoration:underline}.breadcrumb-item+.breadcrumb-item:hover::before{text-decoration:none}.breadcrumb-item.active{color:#6c757d}.pagination{display:flex;padding-left:0;list-style:none;border-radius:.25rem}.page-link{position:relative;display:block;padding:.5rem .75rem;margin-left:-1px;line-height:1.25;color:#0072bd;background-color:#fff;border:1px solid #dee2e6}.page-link:hover{z-index:2;color:#004471;text-decoration:none;background-color:#e9ecef;border-color:#dee2e6}.page-link:focus{z-index:3;outline:0;box-shadow:0 0 0 .2rem rgba(0,114,189,.25)}.page-item:first-child .page-link{margin-left:0;border-top-left-radius:.25rem;border-bottom-left-radius:.25rem}.page-item:last-child .page-link{border-top-right-radius:.25rem;border-bottom-right-radius:.25rem}.page-item.active .page-link{z-index:3;color:#fff;background-color:#0072bd;border-color:#0072bd}.page-item.disabled .page-link{color:#6c757d;pointer-events:none;cursor:auto;background-color:#fff;border-color:#dee2e6}.pagination-lg .page-link{padding:.75rem 1.5rem;font-size:1.25rem;line-height:1.5}.pagination-lg .page-item:first-child .page-link{border-top-left-radius:.3rem;border-bottom-left-radius:.3rem}.pagination-lg .page-item:last-child .page-link{border-top-right-radius:.3rem;border-bottom-right-radius:.3rem}.pagination-sm .page-link{padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.pagination-sm .page-item:first-child .page-link{border-top-left-radius:.2rem;border-bottom-left-radius:.2rem}.pagination-sm .page-item:last-child .page-link{border-top-right-radius:.2rem;border-bottom-right-radius:.2rem}.badge{display:inline-block;padding:.25em .4em;font-size:75%;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion:reduce){.badge{transition:none}}a.badge:hover,a.badge:focus{text-decoration:none}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.badge-pill{padding-right:.6em;padding-left:.6em;border-radius:10rem}.badge-primary{color:#fff;background-color:#0072bd}a.badge-primary:hover,a.badge-primary:focus{color:#fff;background-color:#00538a}a.badge-primary:focus,a.badge-primary.focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,114,189,.5)}.badge-secondary{color:#fff;background-color:#6c757d}a.badge-secondary:hover,a.badge-secondary:focus{color:#fff;background-color:#545b62}a.badge-secondary:focus,a.badge-secondary.focus{outline:0;box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.badge-success{color:#fff;background-color:#28a745}a.badge-success:hover,a.badge-success:focus{color:#fff;background-color:#1e7e34}a.badge-success:focus,a.badge-success.focus{outline:0;box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.badge-info{color:#fff;background-color:#17a2b8}a.badge-info:hover,a.badge-info:focus{color:#fff;background-color:#117a8b}a.badge-info:focus,a.badge-info.focus{outline:0;box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.badge-warning{color:#212529;background-color:#ffc107}a.badge-warning:hover,a.badge-warning:focus{color:#212529;background-color:#d39e00}a.badge-warning:focus,a.badge-warning.focus{outline:0;box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.badge-danger{color:#fff;background-color:#dc3545}a.badge-danger:hover,a.badge-danger:focus{color:#fff;background-color:#bd2130}a.badge-danger:focus,a.badge-danger.focus{outline:0;box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.badge-light{color:#212529;background-color:#f8f9fa}a.badge-light:hover,a.badge-light:focus{color:#212529;background-color:#dae0e5}a.badge-light:focus,a.badge-light.focus{outline:0;box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.badge-dark{color:#fff;background-color:#343a40}a.badge-dark:hover,a.badge-dark:focus{color:#fff;background-color:#1d2124}a.badge-dark:focus,a.badge-dark.focus{outline:0;box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.jumbotron{padding:2rem 1rem;margin-bottom:2rem;background-color:#e9ecef;border-radius:.3rem}@media(min-width:576px){.jumbotron{padding:4rem 2rem}}.jumbotron-fluid{padding-right:0;padding-left:0;border-radius:0}.alert,.article-style aside{position:relative;padding:.75rem 1.25rem;margin-bottom:1rem;border:1px solid transparent;border-radius:.25rem}.alert-heading{color:inherit}.alert-link{font-weight:700}.alert-dismissible{padding-right:4rem}.alert-dismissible .close{position:absolute;top:0;right:0;z-index:2;padding:.75rem 1.25rem;color:inherit}.alert-primary{color:#003b62;background-color:#cce3f2;border-color:#b8d8ed}.alert-primary hr{border-top-color:#a4cde8}.alert-primary .alert-link{color:#001c2f}.alert-secondary{color:#383d41;background-color:#e2e3e5;border-color:#d6d8db}.alert-secondary hr{border-top-color:#c8cbcf}.alert-secondary .alert-link{color:#202326}.alert-success{color:#155724;background-color:#d4edda;border-color:#c3e6cb}.alert-success hr{border-top-color:#b1dfbb}.alert-success .alert-link{color:#0b2e13}.alert-info{color:#0c5460;background-color:#d1ecf1;border-color:#bee5eb}.alert-info hr{border-top-color:#abdde5}.alert-info .alert-link{color:#062c33}.alert-warning{color:#856404;background-color:#fff3cd;border-color:#ffeeba}.alert-warning hr{border-top-color:#ffe8a1}.alert-warning .alert-link{color:#533f03}.alert-danger{color:#721c24;background-color:#f8d7da;border-color:#f5c6cb}.alert-danger hr{border-top-color:#f1b0b7}.alert-danger .alert-link{color:#491217}.alert-light{color:#818182;background-color:#fefefe;border-color:#fdfdfe}.alert-light hr{border-top-color:#ececf6}.alert-light .alert-link{color:#686868}.alert-dark{color:#1b1e21;background-color:#d6d8d9;border-color:#c6c8ca}.alert-dark hr{border-top-color:#b9bbbe}.alert-dark .alert-link{color:#040505}@keyframes progress-bar-stripes{from{background-position:1rem 0}to{background-position:0 0}}.progress{display:flex;height:1rem;overflow:hidden;line-height:0;font-size:.75rem;background-color:#e9ecef;border-radius:.25rem}.progress-bar{display:flex;flex-direction:column;justify-content:center;overflow:hidden;color:#fff;text-align:center;white-space:nowrap;background-color:#0072bd;transition:width .6s ease}@media(prefers-reduced-motion:reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-size:1rem 1rem}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media(prefers-reduced-motion:reduce){.progress-bar-animated{animation:none}}.media{display:flex;align-items:flex-start}.media-body{flex:1}.list-group{display:flex;flex-direction:column;padding-left:0;margin-bottom:0;border-radius:.25rem}.list-group-item-action{width:100%;color:#495057;text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:#495057;text-decoration:none;background-color:#f8f9fa}.list-group-item-action:active{color:#212529;background-color:#e9ecef}.list-group-item{position:relative;display:block;padding:.75rem 1.25rem;background-color:#fff;border:1px solid rgba(0,0,0,.125)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:#6c757d;pointer-events:none;background-color:#fff}.list-group-item.active{z-index:2;color:#fff;background-color:#0072bd;border-color:#0072bd}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:-1px;border-top-width:1px}.list-group-horizontal{flex-direction:row}.list-group-horizontal>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}@media(min-width:576px){.list-group-horizontal-sm{flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media(min-width:768px){.list-group-horizontal-md{flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media(min-width:992px){.list-group-horizontal-lg{flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media(min-width:1200px){.list-group-horizontal-xl{flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 1px}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-primary{color:#003b62;background-color:#b8d8ed}.list-group-item-primary.list-group-item-action:hover,.list-group-item-primary.list-group-item-action:focus{color:#003b62;background-color:#a4cde8}.list-group-item-primary.list-group-item-action.active{color:#fff;background-color:#003b62;border-color:#003b62}.list-group-item-secondary{color:#383d41;background-color:#d6d8db}.list-group-item-secondary.list-group-item-action:hover,.list-group-item-secondary.list-group-item-action:focus{color:#383d41;background-color:#c8cbcf}.list-group-item-secondary.list-group-item-action.active{color:#fff;background-color:#383d41;border-color:#383d41}.list-group-item-success{color:#155724;background-color:#c3e6cb}.list-group-item-success.list-group-item-action:hover,.list-group-item-success.list-group-item-action:focus{color:#155724;background-color:#b1dfbb}.list-group-item-success.list-group-item-action.active{color:#fff;background-color:#155724;border-color:#155724}.list-group-item-info{color:#0c5460;background-color:#bee5eb}.list-group-item-info.list-group-item-action:hover,.list-group-item-info.list-group-item-action:focus{color:#0c5460;background-color:#abdde5}.list-group-item-info.list-group-item-action.active{color:#fff;background-color:#0c5460;border-color:#0c5460}.list-group-item-warning{color:#856404;background-color:#ffeeba}.list-group-item-warning.list-group-item-action:hover,.list-group-item-warning.list-group-item-action:focus{color:#856404;background-color:#ffe8a1}.list-group-item-warning.list-group-item-action.active{color:#fff;background-color:#856404;border-color:#856404}.list-group-item-danger{color:#721c24;background-color:#f5c6cb}.list-group-item-danger.list-group-item-action:hover,.list-group-item-danger.list-group-item-action:focus{color:#721c24;background-color:#f1b0b7}.list-group-item-danger.list-group-item-action.active{color:#fff;background-color:#721c24;border-color:#721c24}.list-group-item-light{color:#818182;background-color:#fdfdfe}.list-group-item-light.list-group-item-action:hover,.list-group-item-light.list-group-item-action:focus{color:#818182;background-color:#ececf6}.list-group-item-light.list-group-item-action.active{color:#fff;background-color:#818182;border-color:#818182}.list-group-item-dark{color:#1b1e21;background-color:#c6c8ca}.list-group-item-dark.list-group-item-action:hover,.list-group-item-dark.list-group-item-action:focus{color:#1b1e21;background-color:#b9bbbe}.list-group-item-dark.list-group-item-action.active{color:#fff;background-color:#1b1e21;border-color:#1b1e21}.close{float:right;font-size:1.5rem;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;opacity:.5}.close:hover{color:#000;text-decoration:none}.close:not(:disabled):not(.disabled):hover,.close:not(:disabled):not(.disabled):focus{opacity:.75}button.close{padding:0;background-color:transparent;border:0}a.close.disabled{pointer-events:none}.toast{flex-basis:350px;max-width:350px;font-size:.875rem;background-color:rgba(255,255,255,.85);background-clip:padding-box;border:1px solid rgba(0,0,0,.1);box-shadow:0 .25rem .75rem rgba(0,0,0,.1);opacity:0;border-radius:.25rem}.toast:not(:last-child){margin-bottom:.75rem}.toast.showing{opacity:1}.toast.show{display:block;opacity:1}.toast.hide{display:none}.toast-header{display:flex;align-items:center;padding:.25rem .75rem;color:#6c757d;background-color:rgba(255,255,255,.85);background-clip:padding-box;border-bottom:1px solid rgba(0,0,0,5%);border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.toast-body{padding:.75rem}.modal-open{overflow:hidden}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal{position:fixed;top:0;left:0;z-index:1050;display:none;width:100%;height:100%;overflow:hidden;outline:0}.modal-dialog{position:relative;width:auto;margin:.5rem;pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translate(0,-50px)}@media(prefers-reduced-motion:reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{display:flex;max-height:calc(100% - 1rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 1rem);overflow:hidden}.modal-dialog-scrollable .modal-header,.modal-dialog-scrollable .modal-footer{flex-shrink:0}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;align-items:center;min-height:calc(100% - 1rem)}.modal-dialog-centered::before{display:block;height:calc(100vh - 1rem);height:min-content;content:""}.modal-dialog-centered.modal-dialog-scrollable{flex-direction:column;justify-content:center;height:100%}.modal-dialog-centered.modal-dialog-scrollable .modal-content{max-height:none}.modal-dialog-centered.modal-dialog-scrollable::before{content:none}.modal-content{position:relative;display:flex;flex-direction:column;width:100%;pointer-events:auto;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem;outline:0}.modal-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:.5}.modal-header{display:flex;align-items:flex-start;justify-content:space-between;padding:1rem;border-bottom:1px solid #dee2e6;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.modal-header .close{padding:1rem;margin:-1rem -1rem -1rem auto}.modal-title{margin-bottom:0;line-height:1.5}.modal-body{position:relative;flex:auto;padding:1rem}.modal-footer{display:flex;flex-wrap:wrap;align-items:center;justify-content:flex-end;padding:.75rem;border-top:1px solid #dee2e6;border-bottom-right-radius:calc(.3rem - 1px);border-bottom-left-radius:calc(.3rem - 1px)}.modal-footer>*{margin:.25rem}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media(min-width:576px){.modal-dialog{max-width:500px;margin:1.75rem auto}.modal-dialog-scrollable{max-height:calc(100% - 3.5rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 3.5rem)}.modal-dialog-centered{min-height:calc(100% - 3.5rem)}.modal-dialog-centered::before{height:calc(100vh - 3.5rem);height:min-content}.modal-sm{max-width:300px}}@media(min-width:992px){.modal-lg,.modal-xl{max-width:800px}}@media(min-width:1200px){.modal-xl{max-width:1140px}}.tooltip{position:absolute;z-index:1070;display:block;margin:0;font-family:-apple-system,BlinkMacSystemFont,segoe ui,Roboto,helvetica neue,Arial,noto sans,liberation sans,sans-serif,apple color emoji,segoe ui emoji,segoe ui symbol,noto color emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;opacity:0}.tooltip.show{opacity:.9}.tooltip .arrow{position:absolute;display:block;width:.8rem;height:.4rem}.tooltip .arrow::before{position:absolute;content:"";border-color:transparent;border-style:solid}.bs-tooltip-top,.bs-tooltip-auto[x-placement^=top]{padding:.4rem 0}.bs-tooltip-top .arrow,.bs-tooltip-auto[x-placement^=top] .arrow{bottom:0}.bs-tooltip-top .arrow::before,.bs-tooltip-auto[x-placement^=top] .arrow::before{top:0;border-width:.4rem .4rem 0;border-top-color:#000}.bs-tooltip-right,.bs-tooltip-auto[x-placement^=right]{padding:0 .4rem}.bs-tooltip-right .arrow,.bs-tooltip-auto[x-placement^=right] .arrow{left:0;width:.4rem;height:.8rem}.bs-tooltip-right .arrow::before,.bs-tooltip-auto[x-placement^=right] .arrow::before{right:0;border-width:.4rem .4rem .4rem 0;border-right-color:#000}.bs-tooltip-bottom,.bs-tooltip-auto[x-placement^=bottom]{padding:.4rem 0}.bs-tooltip-bottom .arrow,.bs-tooltip-auto[x-placement^=bottom] .arrow{top:0}.bs-tooltip-bottom .arrow::before,.bs-tooltip-auto[x-placement^=bottom] .arrow::before{bottom:0;border-width:0 .4rem .4rem;border-bottom-color:#000}.bs-tooltip-left,.bs-tooltip-auto[x-placement^=left]{padding:0 .4rem}.bs-tooltip-left .arrow,.bs-tooltip-auto[x-placement^=left] .arrow{right:0;width:.4rem;height:.8rem}.bs-tooltip-left .arrow::before,.bs-tooltip-auto[x-placement^=left] .arrow::before{left:0;border-width:.4rem 0 .4rem .4rem;border-left-color:#000}.tooltip-inner{max-width:200px;padding:.25rem .5rem;color:#fff;text-align:center;background-color:#000;border-radius:.25rem}.popover{position:absolute;top:0;left:0;z-index:1060;display:block;max-width:276px;font-family:-apple-system,BlinkMacSystemFont,segoe ui,Roboto,helvetica neue,Arial,noto sans,liberation sans,sans-serif,apple color emoji,segoe ui emoji,segoe ui symbol,noto color emoji;font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;word-spacing:normal;white-space:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem}.popover .arrow{position:absolute;display:block;width:1rem;height:.5rem;margin:0 .3rem}.popover .arrow::before,.popover .arrow::after{position:absolute;display:block;content:"";border-color:transparent;border-style:solid}.bs-popover-top,.bs-popover-auto[x-placement^=top]{margin-bottom:.5rem}.bs-popover-top>.arrow,.bs-popover-auto[x-placement^=top]>.arrow{bottom:calc(-.5rem - 1px)}.bs-popover-top>.arrow::before,.bs-popover-auto[x-placement^=top]>.arrow::before{bottom:0;border-width:.5rem .5rem 0;border-top-color:rgba(0,0,0,.25)}.bs-popover-top>.arrow::after,.bs-popover-auto[x-placement^=top]>.arrow::after{bottom:1px;border-width:.5rem .5rem 0;border-top-color:#fff}.bs-popover-right,.bs-popover-auto[x-placement^=right]{margin-left:.5rem}.bs-popover-right>.arrow,.bs-popover-auto[x-placement^=right]>.arrow{left:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-right>.arrow::before,.bs-popover-auto[x-placement^=right]>.arrow::before{left:0;border-width:.5rem .5rem .5rem 0;border-right-color:rgba(0,0,0,.25)}.bs-popover-right>.arrow::after,.bs-popover-auto[x-placement^=right]>.arrow::after{left:1px;border-width:.5rem .5rem .5rem 0;border-right-color:#fff}.bs-popover-bottom,.bs-popover-auto[x-placement^=bottom]{margin-top:.5rem}.bs-popover-bottom>.arrow,.bs-popover-auto[x-placement^=bottom]>.arrow{top:calc(-.5rem - 1px)}.bs-popover-bottom>.arrow::before,.bs-popover-auto[x-placement^=bottom]>.arrow::before{top:0;border-width:0 .5rem .5rem;border-bottom-color:rgba(0,0,0,.25)}.bs-popover-bottom>.arrow::after,.bs-popover-auto[x-placement^=bottom]>.arrow::after{top:1px;border-width:0 .5rem .5rem;border-bottom-color:#fff}.bs-popover-bottom .popover-header::before,.bs-popover-auto[x-placement^=bottom] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:1rem;margin-left:-.5rem;content:"";border-bottom:1px solid #f7f7f7}.bs-popover-left,.bs-popover-auto[x-placement^=left]{margin-right:.5rem}.bs-popover-left>.arrow,.bs-popover-auto[x-placement^=left]>.arrow{right:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-left>.arrow::before,.bs-popover-auto[x-placement^=left]>.arrow::before{right:0;border-width:.5rem 0 .5rem .5rem;border-left-color:rgba(0,0,0,.25)}.bs-popover-left>.arrow::after,.bs-popover-auto[x-placement^=left]>.arrow::after{right:1px;border-width:.5rem 0 .5rem .5rem;border-left-color:#fff}.popover-header{padding:.5rem .75rem;margin-bottom:0;font-size:1rem;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.popover-header:empty{display:none}.popover-body{padding:.5rem .75rem;color:#212529}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;transition:transform .6s ease-in-out}@media(prefers-reduced-motion:reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-left),.active.carousel-item-right{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-right),.active.carousel-item-left{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-left,.carousel-fade .carousel-item-prev.carousel-item-right{z-index:1;opacity:1}.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{z-index:0;opacity:0;transition:opacity 0s .6s}@media(prefers-reduced-motion:reduce){.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;align-items:center;justify-content:center;width:6rem;padding:0;color:#fff;text-align:center;background:0 0;border:0;opacity:.5;transition:opacity .15s ease}@media(prefers-reduced-motion:reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:4rem;height:4rem;background:50%/100% 100% no-repeat}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath d='M5.25 0l-4 4 4 4 1.5-1.5L4.25 4l2.5-2.5L5.25 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath d='M2.75 0l-1.5 1.5L3.75 4l-2.5 2.5L2.75 8l4-4-4-4z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:15;display:flex;justify-content:center;padding-left:0;margin-right:6rem;margin-left:6rem;list-style:none}.carousel-indicators li{box-sizing:content-box;flex:initial;width:30px;height:3px;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border-top:10px solid transparent;border-bottom:10px solid transparent;opacity:.5;transition:opacity .6s ease}@media(prefers-reduced-motion:reduce){.carousel-indicators li{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center}@keyframes spinner-border{to{transform:rotate(360deg)}}.spinner-border{display:inline-block;width:2rem;height:2rem;vertical-align:-.125em;border:.25em solid;border-right-color:transparent;border-radius:50%;animation:.75s linear infinite spinner-border}.spinner-border-sm{width:1rem;height:1rem;border-width:.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{display:inline-block;width:2rem;height:2rem;vertical-align:-.125em;background-color:currentColor;border-radius:50%;opacity:0;animation:.75s linear infinite spinner-grow}.spinner-grow-sm{width:1rem;height:1rem}@media(prefers-reduced-motion:reduce){.spinner-border,.spinner-grow{animation-duration:1.5s}}.align-baseline{vertical-align:baseline!important}.align-top{vertical-align:top!important}.align-middle{vertical-align:middle!important}.align-bottom{vertical-align:bottom!important}.align-text-bottom{vertical-align:text-bottom!important}.align-text-top{vertical-align:text-top!important}.bg-primary{background-color:#0072bd!important}a.bg-primary:hover,a.bg-primary:focus,button.bg-primary:hover,button.bg-primary:focus{background-color:#00538a!important}.bg-secondary{background-color:#6c757d!important}a.bg-secondary:hover,a.bg-secondary:focus,button.bg-secondary:hover,button.bg-secondary:focus{background-color:#545b62!important}.bg-success{background-color:#28a745!important}a.bg-success:hover,a.bg-success:focus,button.bg-success:hover,button.bg-success:focus{background-color:#1e7e34!important}.bg-info{background-color:#17a2b8!important}a.bg-info:hover,a.bg-info:focus,button.bg-info:hover,button.bg-info:focus{background-color:#117a8b!important}.bg-warning{background-color:#ffc107!important}a.bg-warning:hover,a.bg-warning:focus,button.bg-warning:hover,button.bg-warning:focus{background-color:#d39e00!important}.bg-danger{background-color:#dc3545!important}a.bg-danger:hover,a.bg-danger:focus,button.bg-danger:hover,button.bg-danger:focus{background-color:#bd2130!important}.bg-light{background-color:#f8f9fa!important}a.bg-light:hover,a.bg-light:focus,button.bg-light:hover,button.bg-light:focus{background-color:#dae0e5!important}.bg-dark{background-color:#343a40!important}a.bg-dark:hover,a.bg-dark:focus,button.bg-dark:hover,button.bg-dark:focus{background-color:#1d2124!important}.bg-white{background-color:#fff!important}.bg-transparent{background-color:transparent!important}.border{border:1px solid #dee2e6!important}.border-top{border-top:1px solid #dee2e6!important}.border-right{border-right:1px solid #dee2e6!important}.border-bottom{border-bottom:1px solid #dee2e6!important}.border-left{border-left:1px solid #dee2e6!important}.border-0{border:0!important}.border-top-0{border-top:0!important}.border-right-0{border-right:0!important}.border-bottom-0{border-bottom:0!important}.border-left-0{border-left:0!important}.border-primary{border-color:#0072bd!important}.border-secondary{border-color:#6c757d!important}.border-success{border-color:#28a745!important}.border-info{border-color:#17a2b8!important}.border-warning{border-color:#ffc107!important}.border-danger{border-color:#dc3545!important}.border-light{border-color:#f8f9fa!important}.border-dark{border-color:#343a40!important}.border-white{border-color:#fff!important}.rounded-sm{border-radius:.2rem!important}.rounded{border-radius:.25rem!important}.rounded-top{border-top-left-radius:.25rem!important;border-top-right-radius:.25rem!important}.rounded-right{border-top-right-radius:.25rem!important;border-bottom-right-radius:.25rem!important}.rounded-bottom{border-bottom-right-radius:.25rem!important;border-bottom-left-radius:.25rem!important}.rounded-left{border-top-left-radius:.25rem!important;border-bottom-left-radius:.25rem!important}.rounded-lg{border-radius:.3rem!important}.rounded-circle{border-radius:50%!important}.rounded-pill{border-radius:50rem!important}.rounded-0{border-radius:0!important}.clearfix::after{display:block;clear:both;content:""}.d-none{display:none!important}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:flex!important}.d-inline-flex{display:inline-flex!important}@media(min-width:576px){.d-sm-none{display:none!important}.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:flex!important}.d-sm-inline-flex{display:inline-flex!important}}@media(min-width:768px){.d-md-none{display:none!important}.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:flex!important}.d-md-inline-flex{display:inline-flex!important}}@media(min-width:992px){.d-lg-none{display:none!important}.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:flex!important}.d-lg-inline-flex{display:inline-flex!important}}@media(min-width:1200px){.d-xl-none{display:none!important}.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:flex!important}.d-xl-inline-flex{display:inline-flex!important}}@media print{.d-print-none{display:none!important}.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:flex!important}.d-print-inline-flex{display:inline-flex!important}}.embed-responsive{position:relative;display:block;width:100%;padding:0;overflow:hidden}.embed-responsive::before{display:block;content:""}.embed-responsive .embed-responsive-item,.embed-responsive iframe,.embed-responsive embed,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-21by9::before{padding-top:42.85714286%}.embed-responsive-16by9::before{padding-top:56.25%}.embed-responsive-4by3::before{padding-top:75%}.embed-responsive-1by1::before{padding-top:100%}.flex-row{flex-direction:row!important}.flex-column{flex-direction:column!important}.flex-row-reverse{flex-direction:row-reverse!important}.flex-column-reverse{flex-direction:column-reverse!important}.flex-wrap{flex-wrap:wrap!important}.flex-nowrap{flex-wrap:nowrap!important}.flex-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-fill{flex:auto!important}.flex-grow-0{flex-grow:0!important}.flex-grow-1{flex-grow:1!important}.flex-shrink-0{flex-shrink:0!important}.flex-shrink-1{flex-shrink:1!important}.justify-content-start{justify-content:flex-start!important}.justify-content-end{justify-content:flex-end!important}.justify-content-center{justify-content:center!important}.justify-content-between{justify-content:space-between!important}.justify-content-around{justify-content:space-around!important}.align-items-start{align-items:flex-start!important}.align-items-end{align-items:flex-end!important}.align-items-center{align-items:center!important}.align-items-baseline{align-items:baseline!important}.align-items-stretch{align-items:stretch!important}.align-content-start{align-content:flex-start!important}.align-content-end{align-content:flex-end!important}.align-content-center{align-content:center!important}.align-content-between{align-content:space-between!important}.align-content-around{align-content:space-around!important}.align-content-stretch{align-content:stretch!important}.align-self-auto{align-self:auto!important}.align-self-start{align-self:flex-start!important}.align-self-end{align-self:flex-end!important}.align-self-center{align-self:center!important}.align-self-baseline{align-self:baseline!important}.align-self-stretch{align-self:stretch!important}@media(min-width:576px){.flex-sm-row{flex-direction:row!important}.flex-sm-column{flex-direction:column!important}.flex-sm-row-reverse{flex-direction:row-reverse!important}.flex-sm-column-reverse{flex-direction:column-reverse!important}.flex-sm-wrap{flex-wrap:wrap!important}.flex-sm-nowrap{flex-wrap:nowrap!important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-sm-fill{flex:auto!important}.flex-sm-grow-0{flex-grow:0!important}.flex-sm-grow-1{flex-grow:1!important}.flex-sm-shrink-0{flex-shrink:0!important}.flex-sm-shrink-1{flex-shrink:1!important}.justify-content-sm-start{justify-content:flex-start!important}.justify-content-sm-end{justify-content:flex-end!important}.justify-content-sm-center{justify-content:center!important}.justify-content-sm-between{justify-content:space-between!important}.justify-content-sm-around{justify-content:space-around!important}.align-items-sm-start{align-items:flex-start!important}.align-items-sm-end{align-items:flex-end!important}.align-items-sm-center{align-items:center!important}.align-items-sm-baseline{align-items:baseline!important}.align-items-sm-stretch{align-items:stretch!important}.align-content-sm-start{align-content:flex-start!important}.align-content-sm-end{align-content:flex-end!important}.align-content-sm-center{align-content:center!important}.align-content-sm-between{align-content:space-between!important}.align-content-sm-around{align-content:space-around!important}.align-content-sm-stretch{align-content:stretch!important}.align-self-sm-auto{align-self:auto!important}.align-self-sm-start{align-self:flex-start!important}.align-self-sm-end{align-self:flex-end!important}.align-self-sm-center{align-self:center!important}.align-self-sm-baseline{align-self:baseline!important}.align-self-sm-stretch{align-self:stretch!important}}@media(min-width:768px){.flex-md-row{flex-direction:row!important}.flex-md-column{flex-direction:column!important}.flex-md-row-reverse{flex-direction:row-reverse!important}.flex-md-column-reverse{flex-direction:column-reverse!important}.flex-md-wrap{flex-wrap:wrap!important}.flex-md-nowrap{flex-wrap:nowrap!important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-md-fill{flex:auto!important}.flex-md-grow-0{flex-grow:0!important}.flex-md-grow-1{flex-grow:1!important}.flex-md-shrink-0{flex-shrink:0!important}.flex-md-shrink-1{flex-shrink:1!important}.justify-content-md-start{justify-content:flex-start!important}.justify-content-md-end{justify-content:flex-end!important}.justify-content-md-center{justify-content:center!important}.justify-content-md-between{justify-content:space-between!important}.justify-content-md-around{justify-content:space-around!important}.align-items-md-start{align-items:flex-start!important}.align-items-md-end{align-items:flex-end!important}.align-items-md-center{align-items:center!important}.align-items-md-baseline{align-items:baseline!important}.align-items-md-stretch{align-items:stretch!important}.align-content-md-start{align-content:flex-start!important}.align-content-md-end{align-content:flex-end!important}.align-content-md-center{align-content:center!important}.align-content-md-between{align-content:space-between!important}.align-content-md-around{align-content:space-around!important}.align-content-md-stretch{align-content:stretch!important}.align-self-md-auto{align-self:auto!important}.align-self-md-start{align-self:flex-start!important}.align-self-md-end{align-self:flex-end!important}.align-self-md-center{align-self:center!important}.align-self-md-baseline{align-self:baseline!important}.align-self-md-stretch{align-self:stretch!important}}@media(min-width:992px){.flex-lg-row{flex-direction:row!important}.flex-lg-column{flex-direction:column!important}.flex-lg-row-reverse{flex-direction:row-reverse!important}.flex-lg-column-reverse{flex-direction:column-reverse!important}.flex-lg-wrap{flex-wrap:wrap!important}.flex-lg-nowrap{flex-wrap:nowrap!important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-lg-fill{flex:auto!important}.flex-lg-grow-0{flex-grow:0!important}.flex-lg-grow-1{flex-grow:1!important}.flex-lg-shrink-0{flex-shrink:0!important}.flex-lg-shrink-1{flex-shrink:1!important}.justify-content-lg-start{justify-content:flex-start!important}.justify-content-lg-end{justify-content:flex-end!important}.justify-content-lg-center{justify-content:center!important}.justify-content-lg-between{justify-content:space-between!important}.justify-content-lg-around{justify-content:space-around!important}.align-items-lg-start{align-items:flex-start!important}.align-items-lg-end{align-items:flex-end!important}.align-items-lg-center{align-items:center!important}.align-items-lg-baseline{align-items:baseline!important}.align-items-lg-stretch{align-items:stretch!important}.align-content-lg-start{align-content:flex-start!important}.align-content-lg-end{align-content:flex-end!important}.align-content-lg-center{align-content:center!important}.align-content-lg-between{align-content:space-between!important}.align-content-lg-around{align-content:space-around!important}.align-content-lg-stretch{align-content:stretch!important}.align-self-lg-auto{align-self:auto!important}.align-self-lg-start{align-self:flex-start!important}.align-self-lg-end{align-self:flex-end!important}.align-self-lg-center{align-self:center!important}.align-self-lg-baseline{align-self:baseline!important}.align-self-lg-stretch{align-self:stretch!important}}@media(min-width:1200px){.flex-xl-row{flex-direction:row!important}.flex-xl-column{flex-direction:column!important}.flex-xl-row-reverse{flex-direction:row-reverse!important}.flex-xl-column-reverse{flex-direction:column-reverse!important}.flex-xl-wrap{flex-wrap:wrap!important}.flex-xl-nowrap{flex-wrap:nowrap!important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse!important}.flex-xl-fill{flex:auto!important}.flex-xl-grow-0{flex-grow:0!important}.flex-xl-grow-1{flex-grow:1!important}.flex-xl-shrink-0{flex-shrink:0!important}.flex-xl-shrink-1{flex-shrink:1!important}.justify-content-xl-start{justify-content:flex-start!important}.justify-content-xl-end{justify-content:flex-end!important}.justify-content-xl-center{justify-content:center!important}.justify-content-xl-between{justify-content:space-between!important}.justify-content-xl-around{justify-content:space-around!important}.align-items-xl-start{align-items:flex-start!important}.align-items-xl-end{align-items:flex-end!important}.align-items-xl-center{align-items:center!important}.align-items-xl-baseline{align-items:baseline!important}.align-items-xl-stretch{align-items:stretch!important}.align-content-xl-start{align-content:flex-start!important}.align-content-xl-end{align-content:flex-end!important}.align-content-xl-center{align-content:center!important}.align-content-xl-between{align-content:space-between!important}.align-content-xl-around{align-content:space-around!important}.align-content-xl-stretch{align-content:stretch!important}.align-self-xl-auto{align-self:auto!important}.align-self-xl-start{align-self:flex-start!important}.align-self-xl-end{align-self:flex-end!important}.align-self-xl-center{align-self:center!important}.align-self-xl-baseline{align-self:baseline!important}.align-self-xl-stretch{align-self:stretch!important}}.float-left{float:left!important}.float-right{float:right!important}.float-none{float:none!important}@media(min-width:576px){.float-sm-left{float:left!important}.float-sm-right{float:right!important}.float-sm-none{float:none!important}}@media(min-width:768px){.float-md-left{float:left!important}.float-md-right{float:right!important}.float-md-none{float:none!important}}@media(min-width:992px){.float-lg-left{float:left!important}.float-lg-right{float:right!important}.float-lg-none{float:none!important}}@media(min-width:1200px){.float-xl-left{float:left!important}.float-xl-right{float:right!important}.float-xl-none{float:none!important}}.user-select-all{user-select:all!important}.user-select-auto{user-select:auto!important}.user-select-none{user-select:none!important}.overflow-auto{overflow:auto!important}.overflow-hidden{overflow:hidden!important}.position-static{position:static!important}.position-relative{position:relative!important}.position-absolute{position:absolute!important}.position-fixed{position:fixed!important}.position-sticky{position:sticky!important}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}@supports(position:sticky){.sticky-top{position:sticky;top:0;z-index:1020}}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);white-space:nowrap;border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;overflow:visible;clip:auto;white-space:normal}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075)!important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15)!important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175)!important}.shadow-none{box-shadow:none!important}.w-25{width:25%!important}.w-50{width:50%!important}.w-75{width:75%!important}.w-100{width:100%!important}.w-auto{width:auto!important}.h-25{height:25%!important}.h-50{height:50%!important}.h-75{height:75%!important}.h-100{height:100%!important}.h-auto{height:auto!important}.mw-100{max-width:100%!important}.mh-100{max-height:100%!important}.min-vw-100{min-width:100vw!important}.min-vh-100{min-height:100vh!important}.vw-100{width:100vw!important}.vh-100{height:100vh!important}.m-0{margin:0!important}.mt-0,.my-0{margin-top:0!important}.mr-0,.mx-0{margin-right:0!important}.mb-0,.my-0{margin-bottom:0!important}.ml-0,.mx-0{margin-left:0!important}.m-1{margin:.25rem!important}.mt-1,.my-1{margin-top:.25rem!important}.mr-1,.mx-1{margin-right:.25rem!important}.mb-1,.my-1{margin-bottom:.25rem!important}.ml-1,.mx-1{margin-left:.25rem!important}.m-2{margin:.5rem!important}.mt-2,.my-2{margin-top:.5rem!important}.mr-2,.mx-2{margin-right:.5rem!important}.mb-2,.my-2{margin-bottom:.5rem!important}.ml-2,.mx-2{margin-left:.5rem!important}.m-3{margin:1rem!important}.mt-3,.my-3{margin-top:1rem!important}.mr-3,.mx-3{margin-right:1rem!important}.mb-3,.my-3{margin-bottom:1rem!important}.ml-3,.mx-3{margin-left:1rem!important}.m-4{margin:1.5rem!important}.mt-4,.my-4{margin-top:1.5rem!important}.mr-4,.mx-4{margin-right:1.5rem!important}.mb-4,.my-4{margin-bottom:1.5rem!important}.ml-4,.mx-4{margin-left:1.5rem!important}.m-5{margin:3rem!important}.mt-5,.my-5{margin-top:3rem!important}.mr-5,.mx-5{margin-right:3rem!important}.mb-5,.my-5{margin-bottom:3rem!important}.ml-5,.mx-5{margin-left:3rem!important}.p-0{padding:0!important}.pt-0,.py-0{padding-top:0!important}.pr-0,.px-0{padding-right:0!important}.pb-0,.py-0{padding-bottom:0!important}.pl-0,.px-0{padding-left:0!important}.p-1{padding:.25rem!important}.pt-1,.py-1{padding-top:.25rem!important}.pr-1,.px-1{padding-right:.25rem!important}.pb-1,.py-1{padding-bottom:.25rem!important}.pl-1,.px-1{padding-left:.25rem!important}.p-2{padding:.5rem!important}.pt-2,.py-2{padding-top:.5rem!important}.pr-2,.px-2{padding-right:.5rem!important}.pb-2,.py-2{padding-bottom:.5rem!important}.pl-2,.px-2{padding-left:.5rem!important}.p-3{padding:1rem!important}.pt-3,.py-3{padding-top:1rem!important}.pr-3,.px-3{padding-right:1rem!important}.pb-3,.py-3{padding-bottom:1rem!important}.pl-3,.px-3{padding-left:1rem!important}.p-4{padding:1.5rem!important}.pt-4,.py-4{padding-top:1.5rem!important}.pr-4,.px-4{padding-right:1.5rem!important}.pb-4,.py-4{padding-bottom:1.5rem!important}.pl-4,.px-4{padding-left:1.5rem!important}.p-5{padding:3rem!important}.pt-5,.py-5{padding-top:3rem!important}.pr-5,.px-5{padding-right:3rem!important}.pb-5,.py-5{padding-bottom:3rem!important}.pl-5,.px-5{padding-left:3rem!important}.m-n1{margin:-.25rem!important}.mt-n1,.my-n1{margin-top:-.25rem!important}.mr-n1,.mx-n1{margin-right:-.25rem!important}.mb-n1,.my-n1{margin-bottom:-.25rem!important}.ml-n1,.mx-n1{margin-left:-.25rem!important}.m-n2{margin:-.5rem!important}.mt-n2,.my-n2{margin-top:-.5rem!important}.mr-n2,.mx-n2{margin-right:-.5rem!important}.mb-n2,.my-n2{margin-bottom:-.5rem!important}.ml-n2,.mx-n2{margin-left:-.5rem!important}.m-n3{margin:-1rem!important}.mt-n3,.my-n3{margin-top:-1rem!important}.mr-n3,.mx-n3{margin-right:-1rem!important}.mb-n3,.my-n3{margin-bottom:-1rem!important}.ml-n3,.mx-n3{margin-left:-1rem!important}.m-n4{margin:-1.5rem!important}.mt-n4,.my-n4{margin-top:-1.5rem!important}.mr-n4,.mx-n4{margin-right:-1.5rem!important}.mb-n4,.my-n4{margin-bottom:-1.5rem!important}.ml-n4,.mx-n4{margin-left:-1.5rem!important}.m-n5{margin:-3rem!important}.mt-n5,.my-n5{margin-top:-3rem!important}.mr-n5,.mx-n5{margin-right:-3rem!important}.mb-n5,.my-n5{margin-bottom:-3rem!important}.ml-n5,.mx-n5{margin-left:-3rem!important}.m-auto{margin:auto!important}.mt-auto,.my-auto{margin-top:auto!important}.mr-auto,.mx-auto{margin-right:auto!important}.mb-auto,.my-auto{margin-bottom:auto!important}.ml-auto,.mx-auto{margin-left:auto!important}@media(min-width:576px){.m-sm-0{margin:0!important}.mt-sm-0,.my-sm-0{margin-top:0!important}.mr-sm-0,.mx-sm-0{margin-right:0!important}.mb-sm-0,.my-sm-0{margin-bottom:0!important}.ml-sm-0,.mx-sm-0{margin-left:0!important}.m-sm-1{margin:.25rem!important}.mt-sm-1,.my-sm-1{margin-top:.25rem!important}.mr-sm-1,.mx-sm-1{margin-right:.25rem!important}.mb-sm-1,.my-sm-1{margin-bottom:.25rem!important}.ml-sm-1,.mx-sm-1{margin-left:.25rem!important}.m-sm-2{margin:.5rem!important}.mt-sm-2,.my-sm-2{margin-top:.5rem!important}.mr-sm-2,.mx-sm-2{margin-right:.5rem!important}.mb-sm-2,.my-sm-2{margin-bottom:.5rem!important}.ml-sm-2,.mx-sm-2{margin-left:.5rem!important}.m-sm-3{margin:1rem!important}.mt-sm-3,.my-sm-3{margin-top:1rem!important}.mr-sm-3,.mx-sm-3{margin-right:1rem!important}.mb-sm-3,.my-sm-3{margin-bottom:1rem!important}.ml-sm-3,.mx-sm-3{margin-left:1rem!important}.m-sm-4{margin:1.5rem!important}.mt-sm-4,.my-sm-4{margin-top:1.5rem!important}.mr-sm-4,.mx-sm-4{margin-right:1.5rem!important}.mb-sm-4,.my-sm-4{margin-bottom:1.5rem!important}.ml-sm-4,.mx-sm-4{margin-left:1.5rem!important}.m-sm-5{margin:3rem!important}.mt-sm-5,.my-sm-5{margin-top:3rem!important}.mr-sm-5,.mx-sm-5{margin-right:3rem!important}.mb-sm-5,.my-sm-5{margin-bottom:3rem!important}.ml-sm-5,.mx-sm-5{margin-left:3rem!important}.p-sm-0{padding:0!important}.pt-sm-0,.py-sm-0{padding-top:0!important}.pr-sm-0,.px-sm-0{padding-right:0!important}.pb-sm-0,.py-sm-0{padding-bottom:0!important}.pl-sm-0,.px-sm-0{padding-left:0!important}.p-sm-1{padding:.25rem!important}.pt-sm-1,.py-sm-1{padding-top:.25rem!important}.pr-sm-1,.px-sm-1{padding-right:.25rem!important}.pb-sm-1,.py-sm-1{padding-bottom:.25rem!important}.pl-sm-1,.px-sm-1{padding-left:.25rem!important}.p-sm-2{padding:.5rem!important}.pt-sm-2,.py-sm-2{padding-top:.5rem!important}.pr-sm-2,.px-sm-2{padding-right:.5rem!important}.pb-sm-2,.py-sm-2{padding-bottom:.5rem!important}.pl-sm-2,.px-sm-2{padding-left:.5rem!important}.p-sm-3{padding:1rem!important}.pt-sm-3,.py-sm-3{padding-top:1rem!important}.pr-sm-3,.px-sm-3{padding-right:1rem!important}.pb-sm-3,.py-sm-3{padding-bottom:1rem!important}.pl-sm-3,.px-sm-3{padding-left:1rem!important}.p-sm-4{padding:1.5rem!important}.pt-sm-4,.py-sm-4{padding-top:1.5rem!important}.pr-sm-4,.px-sm-4{padding-right:1.5rem!important}.pb-sm-4,.py-sm-4{padding-bottom:1.5rem!important}.pl-sm-4,.px-sm-4{padding-left:1.5rem!important}.p-sm-5{padding:3rem!important}.pt-sm-5,.py-sm-5{padding-top:3rem!important}.pr-sm-5,.px-sm-5{padding-right:3rem!important}.pb-sm-5,.py-sm-5{padding-bottom:3rem!important}.pl-sm-5,.px-sm-5{padding-left:3rem!important}.m-sm-n1{margin:-.25rem!important}.mt-sm-n1,.my-sm-n1{margin-top:-.25rem!important}.mr-sm-n1,.mx-sm-n1{margin-right:-.25rem!important}.mb-sm-n1,.my-sm-n1{margin-bottom:-.25rem!important}.ml-sm-n1,.mx-sm-n1{margin-left:-.25rem!important}.m-sm-n2{margin:-.5rem!important}.mt-sm-n2,.my-sm-n2{margin-top:-.5rem!important}.mr-sm-n2,.mx-sm-n2{margin-right:-.5rem!important}.mb-sm-n2,.my-sm-n2{margin-bottom:-.5rem!important}.ml-sm-n2,.mx-sm-n2{margin-left:-.5rem!important}.m-sm-n3{margin:-1rem!important}.mt-sm-n3,.my-sm-n3{margin-top:-1rem!important}.mr-sm-n3,.mx-sm-n3{margin-right:-1rem!important}.mb-sm-n3,.my-sm-n3{margin-bottom:-1rem!important}.ml-sm-n3,.mx-sm-n3{margin-left:-1rem!important}.m-sm-n4{margin:-1.5rem!important}.mt-sm-n4,.my-sm-n4{margin-top:-1.5rem!important}.mr-sm-n4,.mx-sm-n4{margin-right:-1.5rem!important}.mb-sm-n4,.my-sm-n4{margin-bottom:-1.5rem!important}.ml-sm-n4,.mx-sm-n4{margin-left:-1.5rem!important}.m-sm-n5{margin:-3rem!important}.mt-sm-n5,.my-sm-n5{margin-top:-3rem!important}.mr-sm-n5,.mx-sm-n5{margin-right:-3rem!important}.mb-sm-n5,.my-sm-n5{margin-bottom:-3rem!important}.ml-sm-n5,.mx-sm-n5{margin-left:-3rem!important}.m-sm-auto{margin:auto!important}.mt-sm-auto,.my-sm-auto{margin-top:auto!important}.mr-sm-auto,.mx-sm-auto{margin-right:auto!important}.mb-sm-auto,.my-sm-auto{margin-bottom:auto!important}.ml-sm-auto,.mx-sm-auto{margin-left:auto!important}}@media(min-width:768px){.m-md-0{margin:0!important}.mt-md-0,.my-md-0{margin-top:0!important}.mr-md-0,.mx-md-0{margin-right:0!important}.mb-md-0,.my-md-0{margin-bottom:0!important}.ml-md-0,.mx-md-0{margin-left:0!important}.m-md-1{margin:.25rem!important}.mt-md-1,.my-md-1{margin-top:.25rem!important}.mr-md-1,.mx-md-1{margin-right:.25rem!important}.mb-md-1,.my-md-1{margin-bottom:.25rem!important}.ml-md-1,.mx-md-1{margin-left:.25rem!important}.m-md-2{margin:.5rem!important}.mt-md-2,.my-md-2{margin-top:.5rem!important}.mr-md-2,.mx-md-2{margin-right:.5rem!important}.mb-md-2,.my-md-2{margin-bottom:.5rem!important}.ml-md-2,.mx-md-2{margin-left:.5rem!important}.m-md-3{margin:1rem!important}.mt-md-3,.my-md-3{margin-top:1rem!important}.mr-md-3,.mx-md-3{margin-right:1rem!important}.mb-md-3,.my-md-3{margin-bottom:1rem!important}.ml-md-3,.mx-md-3{margin-left:1rem!important}.m-md-4{margin:1.5rem!important}.mt-md-4,.my-md-4{margin-top:1.5rem!important}.mr-md-4,.mx-md-4{margin-right:1.5rem!important}.mb-md-4,.my-md-4{margin-bottom:1.5rem!important}.ml-md-4,.mx-md-4{margin-left:1.5rem!important}.m-md-5{margin:3rem!important}.mt-md-5,.my-md-5{margin-top:3rem!important}.mr-md-5,.mx-md-5{margin-right:3rem!important}.mb-md-5,.my-md-5{margin-bottom:3rem!important}.ml-md-5,.mx-md-5{margin-left:3rem!important}.p-md-0{padding:0!important}.pt-md-0,.py-md-0{padding-top:0!important}.pr-md-0,.px-md-0{padding-right:0!important}.pb-md-0,.py-md-0{padding-bottom:0!important}.pl-md-0,.px-md-0{padding-left:0!important}.p-md-1{padding:.25rem!important}.pt-md-1,.py-md-1{padding-top:.25rem!important}.pr-md-1,.px-md-1{padding-right:.25rem!important}.pb-md-1,.py-md-1{padding-bottom:.25rem!important}.pl-md-1,.px-md-1{padding-left:.25rem!important}.p-md-2{padding:.5rem!important}.pt-md-2,.py-md-2{padding-top:.5rem!important}.pr-md-2,.px-md-2{padding-right:.5rem!important}.pb-md-2,.py-md-2{padding-bottom:.5rem!important}.pl-md-2,.px-md-2{padding-left:.5rem!important}.p-md-3{padding:1rem!important}.pt-md-3,.py-md-3{padding-top:1rem!important}.pr-md-3,.px-md-3{padding-right:1rem!important}.pb-md-3,.py-md-3{padding-bottom:1rem!important}.pl-md-3,.px-md-3{padding-left:1rem!important}.p-md-4{padding:1.5rem!important}.pt-md-4,.py-md-4{padding-top:1.5rem!important}.pr-md-4,.px-md-4{padding-right:1.5rem!important}.pb-md-4,.py-md-4{padding-bottom:1.5rem!important}.pl-md-4,.px-md-4{padding-left:1.5rem!important}.p-md-5{padding:3rem!important}.pt-md-5,.py-md-5{padding-top:3rem!important}.pr-md-5,.px-md-5{padding-right:3rem!important}.pb-md-5,.py-md-5{padding-bottom:3rem!important}.pl-md-5,.px-md-5{padding-left:3rem!important}.m-md-n1{margin:-.25rem!important}.mt-md-n1,.my-md-n1{margin-top:-.25rem!important}.mr-md-n1,.mx-md-n1{margin-right:-.25rem!important}.mb-md-n1,.my-md-n1{margin-bottom:-.25rem!important}.ml-md-n1,.mx-md-n1{margin-left:-.25rem!important}.m-md-n2{margin:-.5rem!important}.mt-md-n2,.my-md-n2{margin-top:-.5rem!important}.mr-md-n2,.mx-md-n2{margin-right:-.5rem!important}.mb-md-n2,.my-md-n2{margin-bottom:-.5rem!important}.ml-md-n2,.mx-md-n2{margin-left:-.5rem!important}.m-md-n3{margin:-1rem!important}.mt-md-n3,.my-md-n3{margin-top:-1rem!important}.mr-md-n3,.mx-md-n3{margin-right:-1rem!important}.mb-md-n3,.my-md-n3{margin-bottom:-1rem!important}.ml-md-n3,.mx-md-n3{margin-left:-1rem!important}.m-md-n4{margin:-1.5rem!important}.mt-md-n4,.my-md-n4{margin-top:-1.5rem!important}.mr-md-n4,.mx-md-n4{margin-right:-1.5rem!important}.mb-md-n4,.my-md-n4{margin-bottom:-1.5rem!important}.ml-md-n4,.mx-md-n4{margin-left:-1.5rem!important}.m-md-n5{margin:-3rem!important}.mt-md-n5,.my-md-n5{margin-top:-3rem!important}.mr-md-n5,.mx-md-n5{margin-right:-3rem!important}.mb-md-n5,.my-md-n5{margin-bottom:-3rem!important}.ml-md-n5,.mx-md-n5{margin-left:-3rem!important}.m-md-auto{margin:auto!important}.mt-md-auto,.my-md-auto{margin-top:auto!important}.mr-md-auto,.mx-md-auto{margin-right:auto!important}.mb-md-auto,.my-md-auto{margin-bottom:auto!important}.ml-md-auto,.mx-md-auto{margin-left:auto!important}}@media(min-width:992px){.m-lg-0{margin:0!important}.mt-lg-0,.my-lg-0{margin-top:0!important}.mr-lg-0,.mx-lg-0{margin-right:0!important}.mb-lg-0,.my-lg-0{margin-bottom:0!important}.ml-lg-0,.mx-lg-0{margin-left:0!important}.m-lg-1{margin:.25rem!important}.mt-lg-1,.my-lg-1{margin-top:.25rem!important}.mr-lg-1,.mx-lg-1{margin-right:.25rem!important}.mb-lg-1,.my-lg-1{margin-bottom:.25rem!important}.ml-lg-1,.mx-lg-1{margin-left:.25rem!important}.m-lg-2{margin:.5rem!important}.mt-lg-2,.my-lg-2{margin-top:.5rem!important}.mr-lg-2,.mx-lg-2{margin-right:.5rem!important}.mb-lg-2,.my-lg-2{margin-bottom:.5rem!important}.ml-lg-2,.mx-lg-2{margin-left:.5rem!important}.m-lg-3{margin:1rem!important}.mt-lg-3,.my-lg-3{margin-top:1rem!important}.mr-lg-3,.mx-lg-3{margin-right:1rem!important}.mb-lg-3,.my-lg-3{margin-bottom:1rem!important}.ml-lg-3,.mx-lg-3{margin-left:1rem!important}.m-lg-4{margin:1.5rem!important}.mt-lg-4,.my-lg-4{margin-top:1.5rem!important}.mr-lg-4,.mx-lg-4{margin-right:1.5rem!important}.mb-lg-4,.my-lg-4{margin-bottom:1.5rem!important}.ml-lg-4,.mx-lg-4{margin-left:1.5rem!important}.m-lg-5{margin:3rem!important}.mt-lg-5,.my-lg-5{margin-top:3rem!important}.mr-lg-5,.mx-lg-5{margin-right:3rem!important}.mb-lg-5,.my-lg-5{margin-bottom:3rem!important}.ml-lg-5,.mx-lg-5{margin-left:3rem!important}.p-lg-0{padding:0!important}.pt-lg-0,.py-lg-0{padding-top:0!important}.pr-lg-0,.px-lg-0{padding-right:0!important}.pb-lg-0,.py-lg-0{padding-bottom:0!important}.pl-lg-0,.px-lg-0{padding-left:0!important}.p-lg-1{padding:.25rem!important}.pt-lg-1,.py-lg-1{padding-top:.25rem!important}.pr-lg-1,.px-lg-1{padding-right:.25rem!important}.pb-lg-1,.py-lg-1{padding-bottom:.25rem!important}.pl-lg-1,.px-lg-1{padding-left:.25rem!important}.p-lg-2{padding:.5rem!important}.pt-lg-2,.py-lg-2{padding-top:.5rem!important}.pr-lg-2,.px-lg-2{padding-right:.5rem!important}.pb-lg-2,.py-lg-2{padding-bottom:.5rem!important}.pl-lg-2,.px-lg-2{padding-left:.5rem!important}.p-lg-3{padding:1rem!important}.pt-lg-3,.py-lg-3{padding-top:1rem!important}.pr-lg-3,.px-lg-3{padding-right:1rem!important}.pb-lg-3,.py-lg-3{padding-bottom:1rem!important}.pl-lg-3,.px-lg-3{padding-left:1rem!important}.p-lg-4{padding:1.5rem!important}.pt-lg-4,.py-lg-4{padding-top:1.5rem!important}.pr-lg-4,.px-lg-4{padding-right:1.5rem!important}.pb-lg-4,.py-lg-4{padding-bottom:1.5rem!important}.pl-lg-4,.px-lg-4{padding-left:1.5rem!important}.p-lg-5{padding:3rem!important}.pt-lg-5,.py-lg-5{padding-top:3rem!important}.pr-lg-5,.px-lg-5{padding-right:3rem!important}.pb-lg-5,.py-lg-5{padding-bottom:3rem!important}.pl-lg-5,.px-lg-5{padding-left:3rem!important}.m-lg-n1{margin:-.25rem!important}.mt-lg-n1,.my-lg-n1{margin-top:-.25rem!important}.mr-lg-n1,.mx-lg-n1{margin-right:-.25rem!important}.mb-lg-n1,.my-lg-n1{margin-bottom:-.25rem!important}.ml-lg-n1,.mx-lg-n1{margin-left:-.25rem!important}.m-lg-n2{margin:-.5rem!important}.mt-lg-n2,.my-lg-n2{margin-top:-.5rem!important}.mr-lg-n2,.mx-lg-n2{margin-right:-.5rem!important}.mb-lg-n2,.my-lg-n2{margin-bottom:-.5rem!important}.ml-lg-n2,.mx-lg-n2{margin-left:-.5rem!important}.m-lg-n3{margin:-1rem!important}.mt-lg-n3,.my-lg-n3{margin-top:-1rem!important}.mr-lg-n3,.mx-lg-n3{margin-right:-1rem!important}.mb-lg-n3,.my-lg-n3{margin-bottom:-1rem!important}.ml-lg-n3,.mx-lg-n3{margin-left:-1rem!important}.m-lg-n4{margin:-1.5rem!important}.mt-lg-n4,.my-lg-n4{margin-top:-1.5rem!important}.mr-lg-n4,.mx-lg-n4{margin-right:-1.5rem!important}.mb-lg-n4,.my-lg-n4{margin-bottom:-1.5rem!important}.ml-lg-n4,.mx-lg-n4{margin-left:-1.5rem!important}.m-lg-n5{margin:-3rem!important}.mt-lg-n5,.my-lg-n5{margin-top:-3rem!important}.mr-lg-n5,.mx-lg-n5{margin-right:-3rem!important}.mb-lg-n5,.my-lg-n5{margin-bottom:-3rem!important}.ml-lg-n5,.mx-lg-n5{margin-left:-3rem!important}.m-lg-auto{margin:auto!important}.mt-lg-auto,.my-lg-auto{margin-top:auto!important}.mr-lg-auto,.mx-lg-auto{margin-right:auto!important}.mb-lg-auto,.my-lg-auto{margin-bottom:auto!important}.ml-lg-auto,.mx-lg-auto{margin-left:auto!important}}@media(min-width:1200px){.m-xl-0{margin:0!important}.mt-xl-0,.my-xl-0{margin-top:0!important}.mr-xl-0,.mx-xl-0{margin-right:0!important}.mb-xl-0,.my-xl-0{margin-bottom:0!important}.ml-xl-0,.mx-xl-0{margin-left:0!important}.m-xl-1{margin:.25rem!important}.mt-xl-1,.my-xl-1{margin-top:.25rem!important}.mr-xl-1,.mx-xl-1{margin-right:.25rem!important}.mb-xl-1,.my-xl-1{margin-bottom:.25rem!important}.ml-xl-1,.mx-xl-1{margin-left:.25rem!important}.m-xl-2{margin:.5rem!important}.mt-xl-2,.my-xl-2{margin-top:.5rem!important}.mr-xl-2,.mx-xl-2{margin-right:.5rem!important}.mb-xl-2,.my-xl-2{margin-bottom:.5rem!important}.ml-xl-2,.mx-xl-2{margin-left:.5rem!important}.m-xl-3{margin:1rem!important}.mt-xl-3,.my-xl-3{margin-top:1rem!important}.mr-xl-3,.mx-xl-3{margin-right:1rem!important}.mb-xl-3,.my-xl-3{margin-bottom:1rem!important}.ml-xl-3,.mx-xl-3{margin-left:1rem!important}.m-xl-4{margin:1.5rem!important}.mt-xl-4,.my-xl-4{margin-top:1.5rem!important}.mr-xl-4,.mx-xl-4{margin-right:1.5rem!important}.mb-xl-4,.my-xl-4{margin-bottom:1.5rem!important}.ml-xl-4,.mx-xl-4{margin-left:1.5rem!important}.m-xl-5{margin:3rem!important}.mt-xl-5,.my-xl-5{margin-top:3rem!important}.mr-xl-5,.mx-xl-5{margin-right:3rem!important}.mb-xl-5,.my-xl-5{margin-bottom:3rem!important}.ml-xl-5,.mx-xl-5{margin-left:3rem!important}.p-xl-0{padding:0!important}.pt-xl-0,.py-xl-0{padding-top:0!important}.pr-xl-0,.px-xl-0{padding-right:0!important}.pb-xl-0,.py-xl-0{padding-bottom:0!important}.pl-xl-0,.px-xl-0{padding-left:0!important}.p-xl-1{padding:.25rem!important}.pt-xl-1,.py-xl-1{padding-top:.25rem!important}.pr-xl-1,.px-xl-1{padding-right:.25rem!important}.pb-xl-1,.py-xl-1{padding-bottom:.25rem!important}.pl-xl-1,.px-xl-1{padding-left:.25rem!important}.p-xl-2{padding:.5rem!important}.pt-xl-2,.py-xl-2{padding-top:.5rem!important}.pr-xl-2,.px-xl-2{padding-right:.5rem!important}.pb-xl-2,.py-xl-2{padding-bottom:.5rem!important}.pl-xl-2,.px-xl-2{padding-left:.5rem!important}.p-xl-3{padding:1rem!important}.pt-xl-3,.py-xl-3{padding-top:1rem!important}.pr-xl-3,.px-xl-3{padding-right:1rem!important}.pb-xl-3,.py-xl-3{padding-bottom:1rem!important}.pl-xl-3,.px-xl-3{padding-left:1rem!important}.p-xl-4{padding:1.5rem!important}.pt-xl-4,.py-xl-4{padding-top:1.5rem!important}.pr-xl-4,.px-xl-4{padding-right:1.5rem!important}.pb-xl-4,.py-xl-4{padding-bottom:1.5rem!important}.pl-xl-4,.px-xl-4{padding-left:1.5rem!important}.p-xl-5{padding:3rem!important}.pt-xl-5,.py-xl-5{padding-top:3rem!important}.pr-xl-5,.px-xl-5{padding-right:3rem!important}.pb-xl-5,.py-xl-5{padding-bottom:3rem!important}.pl-xl-5,.px-xl-5{padding-left:3rem!important}.m-xl-n1{margin:-.25rem!important}.mt-xl-n1,.my-xl-n1{margin-top:-.25rem!important}.mr-xl-n1,.mx-xl-n1{margin-right:-.25rem!important}.mb-xl-n1,.my-xl-n1{margin-bottom:-.25rem!important}.ml-xl-n1,.mx-xl-n1{margin-left:-.25rem!important}.m-xl-n2{margin:-.5rem!important}.mt-xl-n2,.my-xl-n2{margin-top:-.5rem!important}.mr-xl-n2,.mx-xl-n2{margin-right:-.5rem!important}.mb-xl-n2,.my-xl-n2{margin-bottom:-.5rem!important}.ml-xl-n2,.mx-xl-n2{margin-left:-.5rem!important}.m-xl-n3{margin:-1rem!important}.mt-xl-n3,.my-xl-n3{margin-top:-1rem!important}.mr-xl-n3,.mx-xl-n3{margin-right:-1rem!important}.mb-xl-n3,.my-xl-n3{margin-bottom:-1rem!important}.ml-xl-n3,.mx-xl-n3{margin-left:-1rem!important}.m-xl-n4{margin:-1.5rem!important}.mt-xl-n4,.my-xl-n4{margin-top:-1.5rem!important}.mr-xl-n4,.mx-xl-n4{margin-right:-1.5rem!important}.mb-xl-n4,.my-xl-n4{margin-bottom:-1.5rem!important}.ml-xl-n4,.mx-xl-n4{margin-left:-1.5rem!important}.m-xl-n5{margin:-3rem!important}.mt-xl-n5,.my-xl-n5{margin-top:-3rem!important}.mr-xl-n5,.mx-xl-n5{margin-right:-3rem!important}.mb-xl-n5,.my-xl-n5{margin-bottom:-3rem!important}.ml-xl-n5,.mx-xl-n5{margin-left:-3rem!important}.m-xl-auto{margin:auto!important}.mt-xl-auto,.my-xl-auto{margin-top:auto!important}.mr-xl-auto,.mx-xl-auto{margin-right:auto!important}.mb-xl-auto,.my-xl-auto{margin-bottom:auto!important}.ml-xl-auto,.mx-xl-auto{margin-left:auto!important}}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;pointer-events:auto;content:"";background-color:transparent}.text-monospace{font-family:SFMono-Regular,Menlo,Monaco,Consolas,liberation mono,courier new,monospace!important}.text-justify{text-align:justify!important}.text-wrap{white-space:normal!important}.text-nowrap{white-space:nowrap!important}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.text-left{text-align:left!important}.text-right{text-align:right!important}.text-center{text-align:center!important}@media(min-width:576px){.text-sm-left{text-align:left!important}.text-sm-right{text-align:right!important}.text-sm-center{text-align:center!important}}@media(min-width:768px){.text-md-left{text-align:left!important}.text-md-right{text-align:right!important}.text-md-center{text-align:center!important}}@media(min-width:992px){.text-lg-left{text-align:left!important}.text-lg-right{text-align:right!important}.text-lg-center{text-align:center!important}}@media(min-width:1200px){.text-xl-left{text-align:left!important}.text-xl-right{text-align:right!important}.text-xl-center{text-align:center!important}}.text-lowercase{text-transform:lowercase!important}.text-uppercase{text-transform:uppercase!important}.text-capitalize{text-transform:capitalize!important}.font-weight-light{font-weight:300!important}.font-weight-lighter{font-weight:lighter!important}.font-weight-normal{font-weight:400!important}.font-weight-bold{font-weight:700!important}.font-weight-bolder{font-weight:bolder!important}.font-italic{font-style:italic!important}.text-white{color:#fff!important}.text-primary{color:#0072bd!important}a.text-primary:hover,a.text-primary:focus{color:#004471!important}.text-secondary{color:#6c757d!important}a.text-secondary:hover,a.text-secondary:focus{color:#494f54!important}.text-success{color:#28a745!important}a.text-success:hover,a.text-success:focus{color:#19692c!important}.text-info{color:#17a2b8!important}a.text-info:hover,a.text-info:focus{color:#0f6674!important}.text-warning{color:#ffc107!important}a.text-warning:hover,a.text-warning:focus{color:#ba8b00!important}.text-danger{color:#dc3545!important}a.text-danger:hover,a.text-danger:focus{color:#a71d2a!important}.text-light{color:#f8f9fa!important}a.text-light:hover,a.text-light:focus{color:#cbd3da!important}.text-dark{color:#343a40!important}a.text-dark:hover,a.text-dark:focus{color:#121416!important}.text-body{color:#212529!important}.text-muted{color:rgba(0,0,0,.54)!important}.text-black-50{color:rgba(0,0,0,.5)!important}.text-white-50{color:rgba(255,255,255,.5)!important}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.text-decoration-none{text-decoration:none!important}.text-break{word-break:break-word!important;word-wrap:break-word!important}.text-reset{color:inherit!important}.visible{visibility:visible!important}.invisible{visibility:hidden!important}@media print{*,*::before,*::after{text-shadow:none!important;box-shadow:none!important}a:not(.btn){text-decoration:underline}abbr[title]::after{content:" (" attr(title)")"}pre{white-space:pre-wrap!important}pre,blockquote{border:1px solid #adb5bd;page-break-inside:avoid}tr,img{page-break-inside:avoid}p,h2,h3{orphans:3;widows:3}h2,h3{page-break-after:avoid}@page{size:a3}body{min-width:992px!important}.container{min-width:992px!important}.navbar{display:none}.badge{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered th,.table-bordered td{border:1px solid #dee2e6!important}.table-dark{color:inherit}.table-dark th,.table-dark td,.table-dark thead th,.table-dark tbody+tbody{border-color:#dee2e6}.table .thead-dark th{color:inherit;border-color:#dee2e6}}html{font-family:roboto,sans-serif;font-size:13.86px;color:rgba(0,0,0,.8);line-height:1.65;scroll-padding-top:70px}@media(max-width:991.98px){html{scroll-padding-top:50px}}@media screen and (min-width:58em){html{font-size:18px}}body{font-family:inherit;font-size:1rem;line-height:inherit;color:inherit;background-color:#fff;padding-top:0;counter-reset:captions;overflow-x:hidden;margin-top:70px}@media(max-width:991.98px){body{margin-top:50px}}body.no-navbar{margin-top:0!important;scroll-padding-top:0!important}.page-wrapper{min-height:calc(100vh - 70px);display:grid;grid-template-rows:auto 1fr auto;grid-template-columns:100%}@media(max-width:991.98px){.page-wrapper{min-height:calc(100vh - 50px)}}.page-wrapper.no-navbar{min-height:100vh}.page-header,.page-footer{flex-shrink:0}.page-body{flex-grow:1}.max-width-640{max-width:640px}.margin-auto{margin-left:auto;margin-right:auto}.center-text{text-align:center}p{margin-top:0;margin-bottom:1rem}p:last-child{margin-bottom:0}ul,ol,dl{margin-top:0;margin-bottom:1rem}li>p{margin-bottom:0}ul.task-list{list-style:none}ul.task-list li input[type=checkbox]{margin-right:.5rem}.emoji-list ul{list-style-type:none}.navbar-light{font-family:roboto,sans-serif;font-weight:400;line-height:1.25;text-rendering:optimizelegibility}h1,h2,h3,h4,h5,h6{font-family:montserrat,sans-serif;font-weight:400;margin-top:1rem;margin-bottom:.5rem;line-height:1.25;color:#313131;text-rendering:optimizelegibility;overflow-wrap:break-word;word-wrap:break-word;word-break:break-word;-webkit-hyphens:manual;-ms-hyphens:manual;hyphens:manual}h1{font-size:2.25rem}h2{margin-top:1rem;font-size:1.5rem}h3{font-weight:700;margin-top:1.5rem;font-size:1.25rem}h4,h5,h6{font-weight:700;margin-top:1rem;font-size:1rem}a,h3.article-title a:hover{color:#0072bd;text-decoration:none;transition:color .6s ease}a:hover,a:focus{color:#0072bd}.dark a,.dark h3.article-title a:hover{color:#ff506e}.dark a:not(.btn):hover,.dark a:not(.btn):focus{color:#69005f}pre,code{font-family:roboto mono,monospace}pre{margin:0 0 1rem;border-color:#f8f8f8;font-size:.7rem;border-radius:4px;padding:5px}pre code{white-space:pre;overflow-x:auto}div.highlight,pre{position:relative}.btn-copy-code{display:none;position:absolute;top:4px;right:4px;user-select:none}div.highlight:hover .btn-copy-code,pre:hover .btn-copy-code{display:block}hr{border:0;height:1px;background:#333;background-image:linear-gradient(to right,#ccc,#333,#ccc)}blockquote{padding:.5rem 1rem;margin:.8rem 0;color:#7a7a7a;border-left:.25rem solid #e5e5e5}blockquote p:last-child{margin-bottom:0}@media(min-width:30em){blockquote{padding-right:5rem;padding-left:1.25rem}}mark,.mark{color:inherit}.space-below{margin-bottom:50px}@media screen and (max-width:768px){.space-below{margin-bottom:10px}}.universal-wrapper{margin:0 auto;padding-right:1rem;padding-left:1rem;padding-top:.1rem;width:100%}@media only screen and (min-width:1001px){.universal-wrapper{width:1000px}}small,.small{font-size:.75em}.responsive-wrap iframe{max-width:100%}.btn{padding:.5rem;font-size:.8rem;line-height:.9;border-radius:.3rem}.btn-links .btn{padding:5px .5rem;line-height:1}.btn.btn-sm,.btn-group-sm>.btn{padding:5px .4rem;font-size:14px;border-radius:.2rem}.btn-page-header{margin:8px 8px 8px 0}.btn-toolbar .btn{font-size:.9rem;padding:10px 14px 9px;border:none}.btn-toolbar .btn:first-child{border-radius:6px 0 0 6px}.btn-toolbar .btn:last-child{border-radius:0 6px 6px 0}.btn-toolbar .btn.btn-primary:hover,.btn-toolbar .btn.btn-primary:focus{background-color:#0091f0!important}.btn-toolbar .btn.btn-primary:active,.btn-toolbar .btn.btn-primary.active{background-color:#00538a!important}.btn-primary:not(:disabled):not(.disabled).active:focus,.btn-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #0091f0}.article-style aside p,div.alert>div{position:relative;display:block;font-size:1rem;margin-left:2rem;margin-top:0;margin-bottom:0}div.alert div>*{margin-bottom:.5rem}div.alert div>:last-child{margin-bottom:0}.article-style aside p::before,div.alert>div:first-child::before{position:absolute;top:-.5rem;left:-2rem;font-size:1.5rem;color:#1976d2;font-family:'font awesome 5 free';font-weight:900;content:'\f05a';width:1.5rem;text-align:center}div.alert-warning>div:first-child::before{font-family:'font awesome 5 free';font-weight:900;color:#ff3860;content:'\f071'}.article-style aside a,div.alert a{color:currentcolor;text-decoration:none;border-bottom:solid 1px}.article-style aside,.alert-note{color:#12537e;background-color:#f6fbfe;border-color:#1976d2}.alert-warning{color:#cd0930;background-color:#fff5f7;border-color:#ff3860}.article-container{max-width:760px;padding:0 20px;margin:0 auto}.page-subtitle{font-size:1.15rem;color:rgba(0,0,0,.54);margin-bottom:1rem}.dark .page-subtitle{color:rgba(255,255,255,.54)}.article-header{position:relative;clear:both}.article-banner{width:100%;height:260px;object-fit:cover}@media(min-width:992px){.article-banner{height:310px}}.featured-image-wrapper{position:relative;padding-left:0;padding-right:0}.featured-image{position:relative;width:100%;display:block;margin:0 auto}.article-header-caption{position:absolute;bottom:0;right:0;margin:0 auto;padding:2px 5px;color:#fff;font-size:.7em;background:#000;text-align:right;z-index:5;opacity:.65;border-radius:5px 0 0}@media(min-width:64em){.article-header-caption{padding:5px 10px}}.article-header-caption a{color:#fff;text-decoration:none}.article-title{font-size:1.75rem}.article-title a{color:#151515;transition:color .6s ease}.dark .text-muted{color:rgba(255,255,255,.54)!important}.article-style{overflow:hidden;overflow-wrap:break-word;word-wrap:break-word;word-break:break-word}.article-style a{text-decoration:inherit}.article-style img,.article-style video{margin-left:auto;margin-right:auto;margin-top:2rem;margin-bottom:2rem;padding:0}.article-style td img,.article-style td video{margin-top:0;margin-bottom:0}.article-style figure{margin-top:2rem;margin-bottom:2rem}.article-style figure img{margin-top:0;margin-bottom:0}.dark .article-style a{text-decoration:inherit}.article-metadata{margin-bottom:15px;overflow:hidden;font-size:14px;letter-spacing:.03em;color:rgba(0,0,0,.54)}.article-metadata a{color:rgba(0,0,0,.54)}.article-metadata a:hover{color:#0072bd}.article-metadata .author-notes{cursor:help;padding-left:3px}.article-metadata .author-highlighted{font-weight:700}article .article-metadata{margin-bottom:20px}.dark .article-metadata{color:rgba(255,255,255,.54)}.stream-meta.article-metadata{margin-bottom:5px}.article-categories{white-space:nowrap}.middot-divider{padding-right:.45em;padding-left:.45em;font-size:15px}.middot-divider::after{content:'\00B7'}caption{text-align:center}.dark caption{color:rgba(255,255,255,.8)}.content-widget-hr{margin-top:1.2rem;padding-top:1.2rem;border-top:1px solid rgba(0,0,0,5%)}.dark .content-widget-hr{border-top:1px solid rgba(255,255,255,5%)}.article-tags{margin-top:1.2rem}#comments{padding-top:1rem}.article-widget{padding-top:1.2rem}.article-widget h3{margin-top:0}.dark .article-metadata a{color:rgba(255,255,255,.54)}.svg-icon{display:inline-flex;align-self:center;height:.9em;width:.9em}.svg-icon.svg-baseline{bottom:.1em;line-height:1;position:relative}.task-list input[type=checkbox]:checked{appearance:initial;width:1em;height:1em;border:none;background:initial;position:relative}.task-list input[type=checkbox]:not(:checked){width:.9em;height:.9em}.task-list input[type=checkbox]:checked::after{content:'✅'}img,video{height:auto;max-width:100%;display:block}audio{width:100%;margin-bottom:20px}video{width:100%;height:auto;max-height:400px}.img-responsive{margin:0 auto}.img-hover-zoom{overflow:hidden}.img-hover-zoom img{transition:transform .3s ease-in-out}.img-hover-zoom:hover img{transform:scale(1.1)}figure img{height:auto;max-width:100%}figure figcaption{margin-top:.75em;margin-bottom:1.65rem;line-height:1.4;font-size:.76rem;text-align:center}figure figcaption.numbered::before{font-weight:700;text-transform:uppercase;content:attr(data-pre)counter(captions)attr(data-post)}figure figcaption.numbered{counter-increment:captions}.dark .img-light,body:not(.dark) .img-dark{filter:invert(1)}svg{fill:currentColor}.medium-zoom-overlay,.medium-zoom-image--opened{z-index:1031}.gallery{margin:.5em -4px 1.5em;font-size:0}.gallery img{min-height:48px;min-width:48px}a[data-fancybox]{text-decoration:none;cursor:zoom-in}.gallery a[data-fancybox] img{height:250px;width:auto;max-width:inherit;display:inherit;margin:0;padding:4px;box-shadow:none;vertical-align:inherit}.fancybox-caption{font-size:1rem;line-height:1.5rem;text-align:center}table{overflow-x:scroll;margin-bottom:1rem;font-size:.8rem;overflow-wrap:normal;word-wrap:normal;word-break:normal}.dark .table{color:#fff}.badge-light{border:none;color:rgba(0,0,0,.68);background:rgba(0,0,0,5%);font-weight:400;border-radius:3px;padding:5px 10px;margin-right:8px;margin-bottom:8px}.article-tags>.badge-light:last-child{margin-right:0}.badge-light[href]:focus,.badge-light[href]:hover{background:rgba(0,0,0,.1)}a.badge:focus,a.badge:hover{color:rgba(0,0,0,.68)}.tag-cloud a{display:inline-block;position:relative;margin:8px 10px;word-wrap:break-word;transition-duration:.2s;transition-property:transform;transition-timing-function:ease-out}.tag-cloud a:active,.tag-cloud a:focus,.tag-cloud a:hover{color:#00538a;transform:scale(1.2)}.dark .tag-cloud a:active,.dark .tag-cloud a:focus,.dark .tag-cloud a:hover{color:#0091f0}.author-card .avatar{width:60px;height:60px}.author-card .card-title{margin-top:0;margin-bottom:15px;font-weight:600;color:rgba(0,0,0,.84)}.author-card .card-title a{color:rgba(0,0,0,.84)}.dark .author-card .card-title,.dark .author-card .card-title a{color:rgba(255,255,255,.84)}.author-card p{margin-bottom:5px}.author-card .card-subtitle{font-weight:300;font-size:.8rem;color:rgba(0,0,0,.54);margin-bottom:7px}.dark .author-card .card-subtitle{color:rgba(255,255,255,.54)}.author-card .card-text{color:rgba(0,0,0,.76);font-size:.8rem;margin-bottom:4px}.dark .author-card .card-text{color:rgba(255,255,255,.76)}.breadcrumb{font-size:14px;padding:0;background-color:transparent;border-radius:0;margin-bottom:0}.breadcrumb-item.active{color:rgba(0,0,0,.54)}.dark .breadcrumb-item.active{color:rgba(255,255,255,.54)}.card-simple{background:#fff;box-shadow:0 1px 4px rgba(0,0,0,4%);border:1px solid rgba(0,0,0,9%);border-radius:3px;margin-top:20px;padding:15px 20px}.card-simple:first-of-type{margin-top:0}.card-simple p.read-more{margin:0}.dark .card-simple{background:#282a36;box-shadow:0 1px 4px rgba(0,0,0,4%);border:1px solid #44475a}a.summary-link{color:unset;text-decoration:none}.card{margin-bottom:1.5rem;overflow:hidden;text-overflow:ellipsis;background:#fff;box-shadow:0 2px 4px rgba(0,0,0,.2);transition:all .2s ease-out}.card .card-image{display:block;position:relative;min-height:100px}.card .section-subheading{font-size:.9rem;font-weight:700;line-height:1.5;text-transform:uppercase}.card .section-subheading a{color:#000;border-bottom:solid 1px transparent}.card .section-subheading a:hover{color:#000;border-bottom:solid 1px #000;text-decoration:none}.card .card-text{padding:.75rem 1rem}.card .card-text p{color:rgba(0,0,0,.54);font-size:.75rem}.dark .card-text p{color:#f8f8f2}.card p:last-child{margin-bottom:0}.card .card-image.hover-overlay::before{display:block;position:absolute;left:0;top:0;width:100%;height:100%;background:#fff;content:' ';opacity:0;transition:all .2s ease-out}.card .card-image.hover-overlay::after{display:block;position:absolute;left:0;top:50%;width:100%;transform:translate(0,-50%);opacity:0;transition:all .2s ease-out;font-family:'font awesome 5 free';font-weight:900;content:'\f0c1';text-align:center;font-size:3rem;color:#666}.card:hover{box-shadow:0 8px 16px rgba(0,0,0,.2)}.card:hover .card-image.hover-overlay::before{opacity:.8}.card:hover .card-image.hover-overlay::after{opacity:.6}.modal-content{background:#fff}.dark .modal-content{background:#23252f}.modal-title{margin:0}.modal-content pre{margin:0}.modal-header{border:0;color:rgba(0,0,0,.8)}.modal-footer{border:0}#modal-error{color:red}.headroom{will-change:transform;transition:transform 200ms linear}.headroom--pinned{transform:translateY(0%)}.headroom--unpinned{transform:translateY(-100%)}.header--fixed{position:fixed;z-index:10;right:0;left:0;top:0}.dropdown-menu{background-color:#fff!important;color:#34495e!important;z-index:1032}.navbar{height:70px;background:#fff;box-shadow:0 .125rem .25rem rgba(0,0,0,.11);font-size:13.86px;padding:0 1rem}.navbar .nav-item{position:relative}@media(max-width:991.98px){.navbar{height:50px}.navbar .navbar-nav-scroll{width:100%;overflow:hidden}.navbar .navbar-nav-scroll .navbar-nav{overflow-x:auto;white-space:nowrap;-webkit-overflow-scrolling:touch}}.navbar .navbar-nav{display:flex}.navbar .navbar-nav .nav-link{color:rgba(52,73,94,.85)}.navbar .navbar-nav .nav-link.active,.navbar .navbar-nav .nav-link:hover,.navbar .navbar-nav .nav-link:focus{color:#34495e}.navbar .navbar-nav .nav-link.active{font-weight:700!important;color:#0072bd!important}.navbar .dropdown-menu{font-size:13.86px}.navbar .dropdown-item.active,.navbar .dropdown-item-active{font-weight:700;color:#0072bd!important}.dark .navbar{background:#282a36;box-shadow:0 .125rem .25rem rgba(255,255,255,.11)}.dark .navbar .navbar-nav .nav-link{color:rgba(255,255,255,.85)}.dark .navbar .navbar-nav .nav-link.active,.dark .navbar .navbar-nav .nav-link:hover,.dark .navbar .navbar-nav .nav-link:focus{color:#69005f}.dark .navbar .navbar-nav .nav-link.active{font-weight:700!important;color:#69005f!important}.dark .navbar .dropdown-item.active,.dark .navbar .dropdown-item-active{color:#69005f!important}.navbar-toggler{border:0!important;position:relative;z-index:1030}.dark .navbar-toggler{color:#fff}.navbar-toggler:focus,.navbar-toggler:active{outline:none!important;box-shadow:none!important}@media(max-width:991.98px){.i18n-dropdown .nav-link::after{content:none}}.i18n-dropdown .dropdown-menu,.theme-dropdown .dropdown-menu{position:absolute;right:0;left:auto}.navbar-brand{padding-top:5px;padding-bottom:5px;font-weight:700;position:relative;z-index:1030}.dark .navbar-brand{color:#fff}.navbar-brand img{width:auto;height:-moz-available;height:-webkit-fill-available;height:-webkit-stretch;height:stretch;max-height:60px;max-width:fit-content}#navbar-main .main-menu-item ul li .nav-link{color:#34495e}.dark #navbar-main .main-menu-item ul li .nav-link{color:#fff}@media(max-width:991.98px){.navbar-brand-mobile-wrapper{position:absolute;left:0;right:0}.navbar-brand{margin:0 auto}.navbar-brand img{max-height:40px}.navbar-toggler{border-color:transparent}#navbar-main .main-menu-item{text-align:left!important;padding-left:0}.navbar-collapse{z-index:1031!important;position:absolute;left:0;top:50px;width:100%;background-color:#fff;text-align:center!important}.dark .navbar-collapse{background-color:#282a36}#navbar-main .main-menu-item .nav-item{padding:10px 15px!important}#navbar-main .main-menu-item .nav-item .nav-link{padding:5px 15px!important}}ul.nav-icons{list-style-type:none;font-size:18px;padding:.5rem 0;margin:0}ul.nav-icons li{display:inline;padding-right:1rem}ul.nav-icons li:last-of-type{padding-right:0}ul.nav-icons li.nav-item a.nav-link{padding:0}.dark .dropdown-menu{background-color:#282a36!important;color:#fff!important}.dropdown-item{background-color:#fff!important;color:#34495e!important}.dark .dropdown-item{background-color:#282a36!important;color:#fff!important}.post-nav{margin-top:1rem;font-size:.8rem}.post-nav-item{hyphens:auto;word-wrap:break-word;padding:11px 0 12px;width:100%}.post-nav-item a{color:#2b2b2b;line-height:1.7;text-transform:none}.post-nav-item .meta-nav{color:#767676;font-weight:900;line-height:2;text-transform:uppercase}.dark .post-nav-item a{color:#ddd}.share-box{margin-top:.7rem}ul.share{display:flex;align-items:center;justify-content:center;flex-direction:row;flex-wrap:wrap;list-style:none;margin:0;padding:0}ul.share li{display:inline-flex;margin-right:8px}ul.share li:last-of-type{margin-right:0}ul.share li i{display:block;width:30px;height:30px;line-height:30px;font-size:22px;text-align:center;transition:all 150ms ease-in-out}ul.share li a{text-decoration:none!important;color:rgba(0,0,0,.84)}.dark ul.share li a{color:rgba(255,255,255,.84)}ul.share li:hover i{transform:scale(1.2)}.cta-group{--button-group-margin:0.75em;display:flex;flex-wrap:wrap;list-style:none;align-items:center;justify-content:left;margin-left:calc(-1 * var(--button-group-margin));margin-right:calc(-1 * var(--button-group-margin));padding:0}.cta-group-center{justify-content:center}.cta-group li{margin-bottom:1em;margin-left:var(--button-group-margin);margin-right:var(--button-group-margin)}details{margin-bottom:1rem}summary:focus{outline:none}details p{margin-left:.3rem;padding-left:.5rem;border-left:1px solid rgba(0,0,0,.8)}.dark details p{border-left:1px solid rgba(255,255,255,.8)}.docs-article-container{max-width:760px}.docs .body-footer{border-top:1px solid #e8e8e8;margin-top:30px;padding-top:10px;font-size:14px;color:#707070}.docs-content{order:1;position:relative}.docs-content>h2[id],.docs-content>h3[id],.docs-content>h4[id]{pointer-events:none}.docs-content>ol li,.docs-content>ul li{margin-bottom:.25rem}.docs-search{position:relative;padding:1rem 15px;margin-right:-15px;margin-left:-15px;border-bottom:1px solid rgba(0,0,0,5%)}@media(max-width:767.98px){.docs-search{padding:.8rem 15px}}.docs-search .form-control:focus{border-color:#0072bd;box-shadow:0 0 0 3px #0091f0}.docs-sidebar{order:0;border-bottom:1px solid rgba(0,0,0,.1)}@media(min-width:768px){.docs-sidebar{border-right:1px solid rgba(0,0,0,.1)}@supports(position:-webkit-sticky) or (position:sticky){.docs-sidebar{position:-webkit-sticky;position:sticky;top:50px;z-index:10;height:calc(100vh - 50px)}.no-navbar .docs-sidebar{top:0;height:100vh}}}@media(min-width:1200px){.docs-sidebar{border-right:1px solid rgba(0,0,0,.1)}@supports(position:-webkit-sticky) or (position:sticky){.docs-sidebar{position:-webkit-sticky;position:sticky;top:70px;z-index:10;height:calc(100vh - 70px)}.no-navbar .docs-sidebar{top:0;height:100vh}}}@media(min-width:1200px){.docs-sidebar{flex:0 1 320px}}@media print{.docs-sidebar{display:none}}.docs-sidebar .nav>li>a{display:block;padding:.25rem 1.5rem;font-size:.8rem;color:rgba(0,0,0,.65)}.docs-sidebar .nav>li>a:hover{color:rgba(0,0,0,.85);text-decoration:none;background-color:transparent}.docs-sidebar .docs-toc-item.active a,.docs-sidebar .docs-toc-item a.active,.docs-sidebar .nav>.active:hover>a,.docs-sidebar .nav>.active>a{font-weight:700;color:#0072bd;background-color:transparent}.docs-toggle{line-height:1.5;font-size:1.2rem;color:#0072bd;background-color:transparent}.docs-links{padding-top:1rem;padding-bottom:1rem;margin-right:-15px;margin-left:-15px}@media(min-width:768px){@supports(position:-webkit-sticky) or (position:sticky){.docs-links{max-height:calc(100vh - 5rem - 70px);overflow-y:auto}}}@media(min-width:768px){.docs-links{display:block!important}}.docs-toc{order:2;padding-top:1.5rem;padding-bottom:1.5rem;font-size:.875rem}@supports(position:-webkit-sticky) or (position:sticky){.docs-toc{position:-webkit-sticky;position:sticky;top:70px;height:calc(100vh - 70px);overflow-y:auto}}.docs-toc-link{display:block;padding:.25rem 1.5rem;font-weight:700;color:rgba(0,0,0,.65)}.docs-toc-link:hover{color:rgba(0,0,0,.85);text-decoration:none}.docs-toc-item.active{margin-bottom:1rem}.docs-toc-item.active:not(:first-child){margin-top:1rem}.docs-toc-item.active>.docs-toc-link{color:rgba(0,0,0,.85)}.docs-toc-item.active>.docs-toc-link:hover{background-color:transparent}.docs-sidenav{display:block}.docs-toc-title{color:#b5b5b5;font-size:.875rem;font-weight:600;padding-left:calc(1.5rem + 1px)}#TableOfContents{padding-left:0;border-left:1px solid #eee}#TableOfContents ul,ul.toc-top{padding-left:0}#TableOfContents ul ul{padding-left:.8rem}#TableOfContents li{display:block;margin-bottom:8px}#TableOfContents li a,.toc-top li a{display:block;padding:0 1.5rem;color:rgba(0,0,0,.65);line-height:1.75;font-size:16px}.dark #TableOfContents li a,.dark .toc-top li a{color:rgba(255,255,255,.65)}#TableOfContents li a:hover,.toc-top li a:hover{color:#0072bd;text-decoration:none}#TableOfContents li a.active{color:#0072bd;font-weight:700}.anchorjs-link{font-weight:400;color:#00538a;transition:color .16s linear}.anchorjs-link:hover{color:#0072bd;text-decoration:none}footer{margin:4rem 0 0;width:100%}footer p{font-size:.75rem;text-align:center}@media(max-width:767.98px){footer p{font-size:12px}}footer .powered-by{font-size:.67rem}@media(max-width:767.98px){footer .powered-by{font-size:12px}}.site-footer{color:rgba(0,0,0,.54)}.dark .site-footer,.dark .docs .body-footer{color:rgba(255,255,255,.54)}.footer-license-icons{display:flex;flex-direction:row;flex-wrap:wrap;justify-content:center;list-style:none;height:auto;width:auto;text-decoration:none}.footer-license-icons i{display:inline-flex;margin-right:8px;height:22px;vertical-align:text-bottom}.view-list-item{margin-bottom:1rem}.pub-icon{color:rgba(0,0,0,.54);font-size:.81em;padding-right:6px}.view-list-item .article-metadata{margin-bottom:0}.pub-list-item .pub-abstract{font-size:1rem}.pub-list-item .btn-links{padding-top:10px}.media.stream-item:not(:last-child){margin-bottom:2rem}.card-simple .article-title,.media.stream-item .article-title{font-size:1.2rem}.card-simple .article-style,.media.stream-item .article-style{margin-top:2px;font-size:.8rem}.media.stream-item .stream-meta{margin-top:12px}.media.stream-item img{max-width:150px;height:auto;object-fit:cover}@media screen and (max-width:768px){.media.stream-item img{max-width:80px}}.stream-meta.article-metadata .article-metadata{margin-bottom:0}.pub-banner{max-width:100%;height:auto;margin-left:auto;margin-right:auto}.pub-row-heading{font-weight:700}#container-publications{display:block;position:relative;overflow:hidden}.li-cite-author{font-size:1em;color:inherit}.li-cite-author a{color:inherit}.dark .li-cite-author a{color:#f8f8f2}html[dir=rtl] body{text-align:right}.search-modal{transform:scale(0);-webkit-transform:scale(0);background-color:#fff;bottom:0;left:0;right:0;top:0;overflow:scroll;position:fixed;visibility:hidden;z-index:-99}.dark .search-modal{background-color:#23252f}.search-modal>.container{padding-top:70px}@media screen and (max-width:1200px){.search-modal>.container{padding-top:50px}}.search-header{position:-webkit-sticky;position:sticky;top:0;background-color:#fff;padding-top:2rem;padding-bottom:1rem}@media(max-width:991.98px){.search-header{padding-top:0}}.dark .search-header{background-color:#23252f}.search-header h1{margin:0;line-height:1}.col-search-close{text-align:right}.search-header .col-search-close i{font-size:2rem;line-height:1}#search-box{position:relative;margin-bottom:.5rem}#search-box::before{font-family:'font awesome 5 free';font-weight:900;content:'\f002';font-size:1rem;opacity:.5;line-height:1rem;position:absolute;left:.7rem;top:.6rem;overflow-x:hidden}.ais-Hits-item,.ais-InfiniteHits-item{background:unset;box-shadow:unset;padding:unset}.ais-SearchBox-form::before{all:unset;height:1rem;left:1rem;margin-top:-.5rem;position:absolute;top:50%;width:1rem;font-family:'font awesome 5 free';font-weight:900;content:'\f002';font-size:100%;opacity:.7;line-height:1}.dark #search-query{background-color:#23252f}#search-box #search-query{border:1px solid #dedede;border-radius:1rem;padding:1rem 1rem 1rem 2rem;width:250px;line-height:1rem;height:1rem;font-size:.8rem}.form-control:focus{border-color:#0072bd;box-shadow:0 0 0 .2rem #0091f0}.search-hit em{font-style:normal;background-color:#ffe0b2;color:#e65100;border-bottom:1px solid #e65100}.search-hit-type{margin-bottom:0!important;text-transform:capitalize}.search-hit-description{font-size:.7rem}#search-hits button[disabled]{display:none}.sidebar-search{place-self:center start;display:flex;align-items:center}.sidebar-search:hover{color:rgba(0,0,0,.8);box-shadow:inset 0 0 0 1px rgba(0,0,0,.1)}.dark .sidebar-search:hover{color:rgba(255,255,255,.8);box-shadow:inset 0 0 0 1px rgba(255,255,255,.9)}.sidebar-search-text{flex-grow:1;text-align:left;overflow:hidden;font-size:.8rem}.sidebar-search-shortcut{font-family:Arial,helvetica neue,Helvetica,sans-serif;box-shadow:0 1px 1px rgba(12,13,14,.15),inset 0 1px #fff;flex-shrink:0;padding:1px 12px;margin:0 0 0 10px;color:rgba(0,0,0,.6);font-size:1.2rem;letter-spacing:1px;background:#e4e6e8;border-radius:5px;border:1px solid #9fa6ad;line-height:1.2}#search-common-queries ul{margin-left:0;padding-left:1.6em}#search-common-queries li{line-height:1}#search-common-queries li a{color:inherit}.dark #search-common-queries li a{color:#f8f8f2}.dark .ais-search-box--input{background-color:#23252f}.searching{overflow:hidden}.searching .search-modal{transform:scale(1);-webkit-transform:scale(1);visibility:visible;z-index:1031}.searching #search-box #search-query{width:100%}.home-section{background:#fff;position:relative;padding:110px 0;z-index:0}.home-section.fullscreen,.fullscreen{min-height:calc(100vh - 70px)}@media(max-width:991.98px){.home-section.fullscreen,.fullscreen{min-height:calc(100vh - 50px)}}.no-navbar .home-section.fullscreen,.no-navbar .fullscreen{min-height:100vh}.home-section.light,.home-section.light h1{color:#000}.home-section.light a{color:#0072bd}.home-section.dark a{color:#ff506e}.home-section.dark,.home-section.dark h1,.home-section.dark h2,.home-section.dark h3,.home-section.dark a:not(.btn){color:#fff}.home-section.dark a:not(.btn):not(.hero-cta-alt){text-decoration:underline}.home-section.dark .alert a,.home-section.dark .article-style aside a,.article-style .home-section.dark aside a{color:inherit!important;text-decoration:inherit!important}.home-section-bg{position:absolute;top:0;left:0;height:100%;width:100%;z-index:-1}.home-section-bg.bg-image{background-position:50%;background-repeat:no-repeat;background-size:cover}.bg-video{position:absolute;top:0;max-height:initial}.bg-video.flip{transform:rotateY(180deg)}.parallax{background-attachment:fixed}@media(max-width:991.98px){.parallax{background-attachment:scroll}}.home-section:first-of-type{padding-top:50px}.home-section:nth-of-type(even){background:#f7f7f7}.dark .home-section{background:#272935}.dark .home-section:nth-of-type(even){background:#23252f}@media screen and (max-width:768px){.home-section{padding:60px 0}.home-section:first-of-type{padding-top:40px}}.section-heading h1{margin:0 0 10px}.section-subheading{font-size:1.25rem;font-family:montserrat,sans-serif;font-weight:700;margin-top:1rem;margin-bottom:.5rem}.section-heading p{font-weight:400;font-size:1.1rem;color:rgba(0,0,0,.54)}.dark .section-heading p{color:#9e9e9e}.see-all{margin-top:2rem;text-transform:uppercase}.dark .alert pre,.dark .article-style aside pre,.article-style .dark aside pre,.dark .alert code,.dark .article-style aside code,.article-style .dark aside code{color:initial;background-color:initial}.home-section.wg-slider{padding:0;animation:none;animation-delay:unset}.carousel-inner .wg-hero{animation:none;clear:none}.talk-metadata{color:#4b4f56;font-size:.8rem}.card.course{margin-bottom:1rem}.card.course:last-of-type{margin-bottom:0}.course .card-subtitle a{border-bottom:solid 1px transparent}.course .card-subtitle a:hover{border-bottom:solid 1px;text-decoration:none}#profile{text-align:center;padding:30px 10px;position:relative}.avatar{width:270px;height:270px;margin:0 auto;object-fit:cover}@media(max-width:767.98px){.wg-about .avatar{width:200px;height:200px}}.avatar-circle{border-radius:50%}.avatar-square{border-radius:3px}.portrait-title h2{font-size:1.75em;font-weight:300;color:#000;margin:20px 0 10px}.portrait-title h3{font-size:1rem;font-weight:300;color:rgba(0,0,0,.54);margin:0 0 10px}ul.network-icon{display:inline-flex;flex-direction:row;flex-wrap:wrap;justify-content:center;list-style:none;padding:0;margin:0}#profile .network-icon{margin-top:30px}.network-icon li{margin-right:10px}.network-icon li:last-of-type{margin-right:0}.network-icon li:hover{transform:scale(1.2)}.big-icon{font-size:2rem}ul.ul-interests li{font-size:.9rem}ul.ul-edu{list-style:none}ul.ul-edu li{position:relative;padding:0 15px 4px 3px}ul.ul-edu li .description p{margin:0}ul.ul-edu li .description p.course{font-size:.9rem}ul.ul-edu li .description p.institution{font-size:.75rem;color:rgba(0,0,0,.6)}.avatar-wrapper{position:relative;width:150px;height:150px;margin-left:auto;margin-right:auto}.avatar-wrapper .avatar-emoji{position:absolute;width:40px;height:40px;line-height:40px;border-radius:100%;bottom:0;right:0;text-align:center;font-size:20px;background-color:#fff;color:#000;box-shadow:0 10px 20px rgba(0,0,0,4%),0 2px 6px rgba(0,0,0,4%),0 0 1px rgba(0,0,0,4%)}.dark .avatar-emoji{background-color:#000;box-shadow:0 10px 20px rgba(0,0,0,4%),0 2px 6px rgba(0,0,0,4%),0 0 1px rgba(255,255,255,.96)}.wg-contact .fa-ul{margin-left:3.14285714rem}.wg-contact .fa-li{position:absolute;left:-3.14285714rem;width:2rem;top:.14285714em;text-align:center}.wg-contact li{padding-top:.8rem;margin-bottom:.3rem}.wg-contact li:last-of-type{margin-bottom:0}#map{height:350px;width:100%}#map a{color:initial}.exp-title{text-transform:none!important}.exp-company{font-weight:400!important;text-transform:none!important}.exp-meta{font-size:.8rem}.experience .card-text,.experience .card-text p{color:#000!important;font-size:.75rem!important}.dark .experience .text-muted{color:rgba(255,255,255,.8)!important}.dark .experience .card-text,.dark .experience .card-text p{color:#f8f8f2!important}.card .card-text p+ul{margin-top:-1rem;margin-bottom:0}.experience .m-2 .border,.experience .col.border-right{border-color:#0072bd!important}.experience .m-2 .border.exp-fill{background-color:#0072bd!important}.featurette{font-size:.8rem;line-height:1.5;color:#555;text-align:center}.featurette .section-subheading{margin-top:0;margin-bottom:5px;font-weight:400;color:#333}.dark .featurette,.dark .featurette .section-subheading{color:#fff}.featurette-icon{display:block;width:100%;color:#0072bd;font-size:3rem;text-align:center}.wg-hero{padding:3em 0}.hero-title{font-size:2.7rem;margin-top:0;line-height:1}.hero-lead{max-width:768px;font-size:1.35rem}.wg-hero.dark .hero-title,.wg-hero.dark .hero-lead,.wg-hero.dark .hero-cta-alt,.wg-hero.dark .hero-note>*{color:#fff}.wg-hero.light a.btn{color:#fff}.wg-hero.dark a:not(.wg-hero .btn){color:#fff}.wg-hero .hero-lead a{text-decoration:underline}.wg-hero .cta-btns{margin-bottom:16px}.wg-hero .btn{padding:.6em 2.1em}.wg-hero.dark .btn{color:#00538a}a.hero-cta-alt{display:inline-block;position:relative;transition-duration:.2s;transition-property:transform;transition-timing-function:ease-out;font-size:1.1rem}a.hero-cta-alt:active,a.hero-cta-alt:focus,a.hero-cta-alt:hover{transform:scale(1.1)}.wg-hero .btn-lg,.wg-hero .btn-group-lg>.btn{font-size:1.1rem}.wg-hero .hero-note{font-size:.8rem}.hero-media{display:flex;align-items:center;justify-content:center;height:100%;text-align:center}.people-widget{font-size:.8rem;text-align:center}.people-widget .portrait-title h2{font-size:1rem}.people-widget .portrait-title h3{font-size:.7rem}.people-widget .avatar{width:80%;max-width:150px;height:auto}@media(min-width:576px){.people-widget .col-sm-auto{width:30%}}@media(min-width:992px){.people-widget .col-sm-auto{width:20%}}.project-widget-simple li{margin-bottom:1rem}.project-widget-simple li:last-of-type{margin-bottom:0}.project-widget-simple .project-title{margin-bottom:6px}.project-widget-simple .project-summary{font-size:.9rem;margin-bottom:.4rem}.projects-container{display:block;position:relative;overflow:hidden}.project-toolbar{margin-bottom:2rem}.project-card{position:relative;width:calc( 33.3% - 13.3px)}@media screen and (max-width:1199px){.project-card{width:calc( 50% - 10px)}}@media screen and (max-width:768px){.project-card{width:100%}}.project-item{margin-bottom:1.5rem}.project-card.project-item{margin:0 0 20px}.project-card .card{margin:0}.project-showcase .project-item{margin-bottom:3rem}.project-item:last-of-type{margin-bottom:0}.isotope-item{z-index:2}.isotope-item:hover{z-index:3}.dark .article-title a{color:#fff}.dark .pagination li>a,.pagination li>span{background-color:#282a36;border:1px solid #ddd}body.dark,.dark .docs-toc-link,.dark .modal button.close,.dark input{color:#f8f8f2;background:#23252f}.dark .form-control{color:#f8f8f2;background-color:#44475a}.dark .form-control::placeholder{color:#fff;opacity:1}.dark .form-control:focus{background-color:#44475a;border-color:#0072bd;box-shadow:0 0 0 .2rem #00538a}.dark h1,.dark h2,.dark h3,.dark h4,.dark h5,.dark h6{color:#fff}.dark pre{border-color:#44475a}.dark mark,.dark .mark{background:rgba(233,231,245,.2)}.dark #MathJax_Zoom{background-color:#44475a!important}.dark table table{background-color:#282a36}.dark table>tbody>tr:nth-child(odd)>td,.dark table>tbody>tr:nth-child(odd)>th{background-color:#323440}.dark table>tbody>tr:hover>td,.dark table>tbody>tr:hover>th{background-color:#3c3e4a}.dark .portrait-title h2{color:#fff}.dark .portrait-title h3{color:rgba(255,255,255,.54)}.dark ul.ul-edu li .description p.institution{color:rgba(255,255,255,.6)}.dark .pub-icon{color:rgba(255,255,255,.54)}.dark .talk-metadata{color:rgba(255,255,255,.54)}.dark .card{background:#343a40}.dark .card .section-subheading a{color:#0072bd;border-bottom:solid 1px transparent}.dark .card .card-image.hover-overlay::before{background:#666}.dark .card .card-image.hover-overlay::after{color:#fff}.dark select{background:#282a36;color:#f8f8f2}.dark .badge-light{color:rgba(255,255,255,.68);background:rgba(255,255,255,.2)}.dark .badge-light[href]:focus,.dark .badge-light[href]:hover{background:rgba(255,255,255,.3)}.dark a.badge:focus,.dark a.badge:hover{color:rgba(255,255,255,.68)}.dark .btn-primary,.dark .btn.btn-primary.active{color:initial}.dark .docs-sidebar .nav>li:not(.active)>a{color:#f8f8f2;background:#23252f}div.mermaid{width:100%;text-align:center;margin-bottom:1rem}div.chart{max-width:100%;margin-left:auto;margin-right:auto;margin-bottom:1rem;overflow-x:auto}.universal-wrapper h1{text-align:center}.cta-group{justify-content:center}@font-face{font-family:montserrat;font-style:normal;font-weight:100;src:url(/fonts/montserrat-v25-latin-100.eot);src:local(""),url(/fonts/montserrat-v25-latin-100.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-100.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-100.woff)format("woff"),url(/fonts/montserrat-v25-latin-100.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-100.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:200;src:url(/fonts/montserrat-v25-latin-200.eot);src:local(""),url(/fonts/montserrat-v25-latin-200.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-200.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-200.woff)format("woff"),url(/fonts/montserrat-v25-latin-200.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-200.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:300;src:url(/fonts/montserrat-v25-latin-300.eot);src:local(""),url(/fonts/montserrat-v25-latin-300.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-300.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-300.woff)format("woff"),url(/fonts/montserrat-v25-latin-300.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-300.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:400;src:url(/fonts/montserrat-v25-latin-regular.eot);src:local(""),url(/fonts/montserrat-v25-latin-regular.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-regular.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-regular.woff)format("woff"),url(/fonts/montserrat-v25-latin-regular.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-regular.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:500;src:url(/fonts/montserrat-v25-latin-500.eot);src:local(""),url(/fonts/montserrat-v25-latin-500.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-500.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-500.woff)format("woff"),url(/fonts/montserrat-v25-latin-500.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-500.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:600;src:url(/fonts/montserrat-v25-latin-600.eot);src:local(""),url(/fonts/montserrat-v25-latin-600.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-600.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-600.woff)format("woff"),url(/fonts/montserrat-v25-latin-600.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-600.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:700;src:url(/fonts/montserrat-v25-latin-700.eot);src:local(""),url(/fonts/montserrat-v25-latin-700.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-700.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-700.woff)format("woff"),url(/fonts/montserrat-v25-latin-700.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-700.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:800;src:url(/fonts/montserrat-v25-latin-800.eot);src:local(""),url(/fonts/montserrat-v25-latin-800.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-800.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-800.woff)format("woff"),url(/fonts/montserrat-v25-latin-800.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-800.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:normal;font-weight:900;src:url(/fonts/montserrat-v25-latin-900.eot);src:local(""),url(/fonts/montserrat-v25-latin-900.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-900.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-900.woff)format("woff"),url(/fonts/montserrat-v25-latin-900.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-900.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:100;src:url(/fonts/montserrat-v25-latin-100italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-100italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-100italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-100italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-100italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-100italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:200;src:url(/fonts/montserrat-v25-latin-200italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-200italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-200italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-200italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-200italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-200italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:300;src:url(/fonts/montserrat-v25-latin-300italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-300italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-300italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-300italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-300italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-300italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:400;src:url(/fonts/montserrat-v25-latin-italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:500;src:url(/fonts/montserrat-v25-latin-500italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-500italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-500italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-500italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-500italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-500italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:600;src:url(/fonts/montserrat-v25-latin-600italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-600italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-600italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-600italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-600italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-600italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:700;src:url(/fonts/montserrat-v25-latin-700italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-700italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-700italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-700italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-700italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-700italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:800;src:url(/fonts/montserrat-v25-latin-800italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-800italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-800italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-800italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-800italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-800italic.svg#Montserrat)format("svg")}@font-face{font-family:montserrat;font-style:italic;font-weight:900;src:url(/fonts/montserrat-v25-latin-900italic.eot);src:local(""),url(/fonts/montserrat-v25-latin-900italic.eot?#iefix)format("embedded-opentype"),url(/fonts/montserrat-v25-latin-900italic.woff2)format("woff2"),url(/fonts/montserrat-v25-latin-900italic.woff)format("woff"),url(/fonts/montserrat-v25-latin-900italic.ttf)format("truetype"),url(/fonts/montserrat-v25-latin-900italic.svg#Montserrat)format("svg")} \ No newline at end of file diff --git a/en/js/wowchemy.min.d14f720598b8ad98ae8105a0a502bab6.js b/en/js/wowchemy.min.d14f720598b8ad98ae8105a0a502bab6.js new file mode 100644 index 0000000..d659619 --- /dev/null +++ b/en/js/wowchemy.min.d14f720598b8ad98ae8105a0a502bab6.js @@ -0,0 +1,6 @@ +/*! Wowchemy v5.5.0 | https://wowchemy.com/ */ +/*! Copyright 2016-present George Cushen (https://georgecushen.com/) */ +/*! License: https://github.com/wowchemy/wowchemy-hugo-themes/blob/main/LICENSE.md */ + +; +(()=>{(()=>{var t,s,a,r,l,m,f,b,j,y,k,e=Object.assign||function(s){for(var e,n,t=1;t1&&arguments[1]!==void 0?arguments[1]:{},h=window.Promise||function(t){function e(){}t(e,e)},M=function(t){var e=t.target;if(e===l){r();return}if(a.indexOf(e)===-1)return;f({target:e})},S=function(){if(c||!t.original)return;var e=window.pageYOffset||document.documentElement.scrollTop||document.body.scrollTop||0;Math.abs(p-e)>s.scrollOffset&&setTimeout(r,150)},A=function(t){var e=t.key||t.keyCode;(e==="Escape"||e==="Esc"||e===27)&&r()},k=function(){var c,t=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},r=t;return t.background&&(l.style.background=t.background),t.container&&t.container instanceof Object&&(r.container=e({},s.container,t.container)),t.template&&(c=i(t.template)?t.template:document.querySelector(t.template),r.template=c),s=e({},s,r),a.forEach(function(e){e.dispatchEvent(n("medium-zoom:update",{detail:{zoom:o}}))}),o},E=function(){var t=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{};return C(e({},s,t))},m=function(){for(var t,n=arguments.length,s=Array(n),e=0;e0?s.reduce(function(e,t){return[].concat(e,_(t))},[]):a,i.forEach(function(e){e.classList.remove("medium-zoom-image"),e.dispatchEvent(n("medium-zoom:detach",{detail:{zoom:o}}))}),a=a.filter(function(e){return i.indexOf(e)===-1}),o},b=function(e,t){var n=arguments.length>2&&arguments[2]!==void 0?arguments[2]:{};return a.forEach(function(s){s.addEventListener("medium-zoom:"+e,t,n)}),u.push({type:"medium-zoom:"+e,listener:t,options:n}),o},v=function(e,t){var n=arguments.length>2&&arguments[2]!==void 0?arguments[2]:{};return a.forEach(function(s){s.removeEventListener("medium-zoom:"+e,t,n)}),u=u.filter(function(n){return n.type!=="medium-zoom:"+e||n.listener.toString()!==t.toString()}),o},g=function(){var m=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},d=m.target,u=function(){if(n={width:document.documentElement.clientWidth,height:document.documentElement.clientHeight,left:0,top:0,right:0,bottom:0},o=void 0,a=void 0,s.container)if(s.container instanceof Object)n=e({},n,s.container),o=n.width-n.left-n.right-s.margin*2,a=n.height-n.top-n.bottom-s.margin*2;else{var n,C=i(s.container)?s.container:document.querySelector(s.container),c=C.getBoundingClientRect(),_=c.width,y=c.height,v=c.left,g=c.top;n=e({},n,{width:_,height:y,left:v,top:g})}var o=o||n.width-s.margin*2,a=a||n.height-s.margin*2,r=t.zoomedHd||t.original,p=O(r)?o:r.naturalWidth||o,f=O(r)?a:r.naturalHeight||a,l=r.getBoundingClientRect(),b=l.top,j=l.left,h=l.width,u=l.height,w=Math.min(p,o)/h,x=Math.min(f,a)/u,d=Math.min(w,x),E=(-j+(o-h)/2+s.margin+n.left)/d,k=(-b+(a-u)/2+s.margin+n.top)/d,m="scale("+d+") translate3d("+E+"px, "+k+"px, 0)";t.zoomed.style.transform=m,t.zoomedHd&&(t.zoomedHd.style.transform=m)};return new h(function(e){if(d&&a.indexOf(d)===-1){e(o);return}var h,m,f,g,v=function s(){c=!1,t.zoomed.removeEventListener("transitionend",s),t.original.dispatchEvent(n("medium-zoom:opened",{detail:{zoom:o}})),e(o)};if(t.zoomed){e(o);return}if(d)t.original=d;else if(a.length>0)m=a,t.original=m[0];else{e(o);return}t.original.dispatchEvent(n("medium-zoom:open",{detail:{zoom:o}})),p=window.pageYOffset||document.documentElement.scrollTop||document.body.scrollTop||0,c=!0,t.zoomed=N(t.original),document.body.appendChild(l),s.template&&(f=i(s.template)?s.template:document.querySelector(s.template),t.template=document.createElement("div"),t.template.appendChild(f.content.cloneNode(!0)),document.body.appendChild(t.template)),document.body.appendChild(t.zoomed),window.requestAnimationFrame(function(){document.body.classList.add("medium-zoom--opened")}),t.original.classList.add("medium-zoom-image--hidden"),t.zoomed.classList.add("medium-zoom-image--opened"),t.zoomed.addEventListener("click",r),t.zoomed.addEventListener("transitionend",v),t.original.getAttribute("data-zoom-src")?(t.zoomedHd=t.zoomed.cloneNode(),t.zoomedHd.removeAttribute("srcset"),t.zoomedHd.removeAttribute("sizes"),t.zoomedHd.src=t.zoomed.getAttribute("data-zoom-src"),t.zoomedHd.onerror=function(){clearInterval(h),console.warn("Unable to reach the zoom image target "+t.zoomedHd.src),t.zoomedHd=null,u()},h=setInterval(function(){t.zoomedHd.complete&&(clearInterval(h),t.zoomedHd.classList.add("medium-zoom-image--opened"),t.zoomedHd.addEventListener("click",r),document.body.appendChild(t.zoomedHd),u())},10)):t.original.hasAttribute("srcset")?(t.zoomedHd=t.zoomed.cloneNode(),t.zoomedHd.removeAttribute("sizes"),t.zoomedHd.removeAttribute("loading"),g=t.zoomedHd.addEventListener("load",function(){t.zoomedHd.removeEventListener("load",g),t.zoomedHd.classList.add("medium-zoom-image--opened"),t.zoomedHd.addEventListener("click",r),document.body.appendChild(t.zoomedHd),u()})):u()})},r=function(){return new h(function(e){if(c||!t.original){e(o);return}var s=function s(){t.original.classList.remove("medium-zoom-image--hidden"),document.body.removeChild(t.zoomed),t.zoomedHd&&document.body.removeChild(t.zoomedHd),document.body.removeChild(l),t.zoomed.classList.remove("medium-zoom-image--opened"),t.template&&document.body.removeChild(t.template),c=!1,t.zoomed.removeEventListener("transitionend",s),t.original.dispatchEvent(n("medium-zoom:closed",{detail:{zoom:o}})),t.original=null,t.zoomed=null,t.zoomedHd=null,t.template=null,e(o)};c=!0,document.body.classList.remove("medium-zoom--opened"),t.zoomed.style.transform="",t.zoomedHd&&(t.zoomedHd.style.transform=""),t.template&&(t.template.style.transition="opacity 150ms",t.template.style.opacity=0),t.original.dispatchEvent(n("medium-zoom:close",{detail:{zoom:o}})),t.zoomed.addEventListener("transitionend",s)})},f=function(){var e=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},n=e.target;return t.original?r():g({target:n})},j=function(){return s},y=function(){return a},w=function(){return t.original},a=[],u=[],c=!1,p=0,s=F,t={original:null,zoomed:null,zoomedHd:null,template:null};return Object.prototype.toString.call(d)==="[object Object]"?s=d:(d||typeof d=="string")&&m(d),s=e({margin:0,background:"#fff",scrollOffset:40,container:null,template:null},s),l=L(s.background),document.addEventListener("click",M),document.addEventListener("keyup",A),document.addEventListener("scroll",S),window.addEventListener("resize",r),o={open:g,close:r,toggle:f,update:k,clone:E,attach:m,detach:x,on:b,off:v,getOptions:j,getImages:y,getZoomedImage:w},o};function P(n,s){s===void 0&&(s={});var e,t,o=s.insertAt;if(!n||typeof document=="undefined")return;t=document.head||document.getElementsByTagName("head")[0],e=document.createElement("style"),e.type="text/css",o==="top"?t.firstChild?t.insertBefore(e,t.firstChild):t.appendChild(e):t.appendChild(e),e.styleSheet?e.styleSheet.cssText=n:e.appendChild(document.createTextNode(n))}j=".medium-zoom-overlay{position:fixed;top:0;right:0;bottom:0;left:0;opacity:0;transition:opacity .3s;will-change:opacity}.medium-zoom--opened .medium-zoom-overlay{cursor:pointer;cursor:zoom-out;opacity:1}.medium-zoom-image{cursor:pointer;cursor:zoom-in;transition:transform .3s cubic-bezier(.2,0,.2,1)!important}.medium-zoom-image--hidden{visibility:hidden}.medium-zoom-image--opened{position:relative;cursor:pointer;cursor:zoom-out;will-change:transform}",P(j),b=C,m="production",s={copied:"Copied",copy:"Copy"},f=!0;function v(e,s){const t=e.getBoundingClientRect(),o={height:e.clientHeight,width:e.clientWidth},n=s.getBoundingClientRect(),i=n.top>=t.top&&n.bottom<=t.top+o.height;i||(e.scrollTop=n.top+e.scrollTop-t.top)}function h(){let e=document.getElementById("navbar-main"),t=e?e.getBoundingClientRect().height:0;return console.debug("Navbar height: "+t),t}function u(e,t=0){if(e=typeof e=="undefined"||typeof e=="object"?decodeURIComponent(window.location.hash):e,$(e).length){e="#"+$.escapeSelector(e.substring(1));let n=Math.ceil($(e).offset().top-h());$("body").addClass("scrolling"),$("html, body").animate({scrollTop:n},t,function(){$("body").removeClass("scrolling")})}else console.debug("Cannot scroll to target `#"+e+"`. ID not found!")}function E(){let e=$("body"),t=e.data("bs.scrollspy");t&&(t._config.offset=h(),e.data("bs.scrollspy",t),e.scrollspy("refresh"))}$("#navbar-main li.nav-item a.nav-link, .js-scroll").on("click",function(t){let e=this.hash;if(this.pathname===window.location.pathname&&e&&$(e).length&&$(".js-widget-page").length>0){t.preventDefault();let n=Math.ceil($(e).offset().top-h());$("html, body").animate({scrollTop:n},800)}}),$(document).on("click",".navbar-collapse.show",function(e){let t=$(e.target).is("a")?$(e.target):$(e.target).parent();t.is("a")&&t.attr("class")!="dropdown-toggle"&&$(this).collapse("hide")}),$("body").on("mouseenter mouseleave",".dropdown",function(n){var e=$(n.target).closest(".dropdown"),t=$(".dropdown-menu",e);e.addClass("show"),t.addClass("show"),setTimeout(function(){e[e.is(":hover")?"addClass":"removeClass"]("show"),t[e.is(":hover")?"addClass":"removeClass"]("show")},300)}),$(window).resize(function(){clearTimeout(y),y=setTimeout(E,200)}),window.addEventListener("hashchange",u);function M(e,t){m==="production"&&$.getJSON("https://api.github.com/repos/"+t+"/tags").done(function(t){let n=t[0];$(e).append(" "+n.name)}).fail(function(s,e,t){let n=e+", "+t;console.log("Request Failed: "+n)})}function w(e,s=600){e.style.display="",e.style.opacity="0";let n=+new Date,t=function(){e.style.opacity=(+e.style.opacity+(new Date-n)/s).toString(),n=+new Date,+e.style.opacity<1&&(window.requestAnimationFrame&&requestAnimationFrame(t)||setTimeout(t,16))};t()}t=document.body;function x(){return parseInt(localStorage.getItem("wcTheme")||2)}function g(){return Boolean(window.wc.darkLightEnabled)}function A(){if(!g())return console.debug("User theming disabled."),{isDarkTheme:window.wc.isSiteThemeDark,themeMode:window.wc.isSiteThemeDark?1:0};console.debug("User theming enabled.");let e,n=x();switch(console.debug(`User's theme variation: ${n}`),n){case 0:e=!1;break;case 1:e=!0;break;default:window.matchMedia("(prefers-color-scheme: dark)").matches?e=!0:window.matchMedia("(prefers-color-scheme: light)").matches?e=!1:e=window.wc.isSiteThemeDark;break}return e&&!t.classList.contains("dark")?(console.debug("Applying Wowchemy dark theme"),document.body.classList.add("dark")):!e&&t.classList.contains("dark")&&(console.debug("Applying Wowchemy light theme"),document.body.classList.remove("dark")),{isDarkTheme:e,themeMode:n}}function p(t){if(!g()){console.debug("Cannot change theme - user theming disabled.");return}let e;switch(t){case 0:localStorage.setItem("wcTheme","0"),e=!1,console.debug("User changed theme variation to Light.");break;case 1:localStorage.setItem("wcTheme","1"),e=!0,console.debug("User changed theme variation to Dark.");break;default:localStorage.setItem("wcTheme","2"),window.matchMedia("(prefers-color-scheme: dark)").matches?e=!0:window.matchMedia("(prefers-color-scheme: light)").matches?e=!1:e=window.wc.isSiteThemeDark,console.debug("User changed theme variation to Auto.");break}c(e,t)}function S(s){let e=document.querySelector(".js-set-theme-light"),t=document.querySelector(".js-set-theme-dark"),n=document.querySelector(".js-set-theme-auto");if(e===null)return;switch(s){case 0:e.classList.add("dropdown-item-active"),t.classList.remove("dropdown-item-active"),n.classList.remove("dropdown-item-active");break;case 1:e.classList.remove("dropdown-item-active"),t.classList.add("dropdown-item-active"),n.classList.remove("dropdown-item-active");break;default:e.classList.remove("dropdown-item-active"),t.classList.remove("dropdown-item-active"),n.classList.add("dropdown-item-active");break}}function c(e,r=2,n=!1){const s=document.querySelector("link[title=hl-light]"),o=document.querySelector("link[title=hl-dark]"),i=s!==null||o!==null,a=document.querySelector("script[title=mermaid]")!==null;S(r);const c=new CustomEvent("wcThemeChange",{detail:{isDarkTheme:()=>e}});if(document.dispatchEvent(c),!n&&(e===!1&&!t.classList.contains("dark")||e===!0&&t.classList.contains("dark")))return;e===!1?(n||(Object.assign(document.body.style,{opacity:0,visibility:"visible"}),w(document.body,600)),t.classList.remove("dark"),i&&(console.debug("Setting HLJS theme to light"),s&&(s.disabled=!1),o&&(o.disabled=!0)),a&&(console.debug("Initializing Mermaid with light theme"),n?window.mermaid.initialize({startOnLoad:!0,theme:"default",securityLevel:"loose"}):location.reload())):e===!0&&(n||(Object.assign(document.body.style,{opacity:0,visibility:"visible"}),w(document.body,600)),t.classList.add("dark"),i&&(console.debug("Setting HLJS theme to dark"),s&&(s.disabled=!0),o&&(o.disabled=!1)),a&&(console.debug("Initializing Mermaid with dark theme"),n?window.mermaid.initialize({startOnLoad:!0,theme:"dark",securityLevel:"loose"}):location.reload()))}function F(n){if(!g())return;const s=n.matches;console.debug(`OS dark mode preference changed to ${s?"\u{1F312} on":"\u2600\uFE0F off"}.`);let t=x(),e;t===2&&(window.matchMedia("(prefers-color-scheme: dark)").matches?e=!0:window.matchMedia("(prefers-color-scheme: light)").matches?e=!1:e=window.wc.isSiteThemeDark,c(e,t))}console.debug(`Environment: ${m}`);function T(){if(window.history.replaceState){let e=window.location.protocol+"//"+window.location.host+window.location.pathname+window.location.hash;window.history.replaceState({path:e},"",e)}}function d(){if($("body").hasClass("searching"))$("[id=search-query]").blur(),$("body").removeClass("searching compensate-for-scrollbar"),T(),$("#fancybox-style-noscroll").remove();else{!$("#fancybox-style-noscroll").length&&document.body.scrollHeight>window.innerHeight&&($("head").append('"),$("body").addClass("compensate-for-scrollbar")),$("body").addClass("searching"),$(".search-results").css({opacity:0,visibility:"visible"}).animate({opacity:1},200);let e=document.querySelector(".ais-SearchBox-input");e?e.focus():$("#search-query").focus()}}function z(){$("#TableOfContents").addClass("nav flex-column"),$("#TableOfContents li").addClass("nav-item"),$("#TableOfContents li a").addClass("nav-link"),$("input[type='checkbox'][disabled]").parents("ul").addClass("task-list"),$("table").addClass(".table")}function D(e){return Array.prototype.filter.call(e.parentNode.children,function(t){return t!==e})}document.addEventListener("DOMContentLoaded",function(){z();let{isDarkTheme:s,themeMode:o}=A();c(s,o,!0);let t=document.querySelector(".docs-links .active"),n=document.querySelector(".docs-links");t&&n&&v(n,t);let e=".js-github-release";$(e).length>0&&M(e,$(e).data("repo"))}),$(window).on("load",function(){E();let t=document.querySelectorAll(".projects-container"),n=t.length;window.location.hash&&n===0&&u(decodeURIComponent(window.location.hash),0);let s=document.querySelector(".docs-toc .nav-link.active"),o=document.querySelector(".docs-toc");s&&o&&v(o,s);let e={};document.body.classList.contains("dark")?e.background="rgba(0,0,0,0.9)":e.background="rgba(255,255,255,0.9)",b("[data-zoomable]",e);let i=0;t.forEach(function(e,r){console.debug(`Loading Isotope instance ${r}`);let o,t=e.closest("section"),n="";t.querySelector(".isotope").classList.contains("js-layout-row")?n="fitRows":n="masonry";let i=t.querySelector(".default-project-filter"),s="*";i!==null&&(s=i.textContent),console.debug(`Default Isotope filter: ${s}`),imagesLoaded(e,function(){o=new Isotope(e,{itemSelector:".isotope-item",layoutMode:n,masonry:{gutter:20},filter:s});let i=t.querySelectorAll(".project-filters a");i.forEach(e=>e.addEventListener("click",n=>{n.preventDefault();let t=e.getAttribute("data-filter");console.debug(`Updating Isotope filter to ${t}`),o.arrange({filter:t}),e.classList.remove("active"),e.classList.add("active");let s=D(e);s.forEach(e=>{e.classList.remove("active"),e.classList.remove("all")})})),a()})});function a(){i++,i===n&&(console.debug(`All Portfolio Isotope instances loaded.`),window.location.hash&&u(decodeURIComponent(window.location.hash),0))}document.addEventListener("keyup",e=>{if(e.code==="Escape"){const e=document.body;e.classList.contains("searching")&&d()}if(e.key==="/"){let t=document.hasFocus()&&document.activeElement!==document.body&&document.activeElement!==document.documentElement&&document.activeElement||null,n=t instanceof HTMLInputElement||t instanceof HTMLTextAreaElement;f&&!n&&(e.preventDefault(),d())}}),f&&$(".js-search").click(function(e){e.preventDefault(),d()}),$('[data-toggle="tooltip"]').tooltip()}),a=document.querySelector(".js-set-theme-light"),r=document.querySelector(".js-set-theme-dark"),l=document.querySelector(".js-set-theme-auto"),a&&r&&l&&(a.addEventListener("click",e=>{e.preventDefault(),p(0)}),r.addEventListener("click",e=>{e.preventDefault(),p(1)}),l.addEventListener("click",e=>{e.preventDefault(),p(2)})),k=window.matchMedia("(prefers-color-scheme: dark)"),k.addEventListener("change",e=>{F(e)}),document.querySelectorAll("pre > code").forEach(t=>{const n=t.parentNode.parentNode,e=document.createElement("button");let i=["btn","btn-primary","btn-copy-code"];e.classList.add(...i),e.innerHTML=s.copy;function o(){e.innerHTML=s.copied,setTimeout(()=>{e.innerHTML=s.copy},2e3)}e.addEventListener("click",()=>{if(console.debug("Code block copy click. Is secure context for Clipboard API? "+window.isSecureContext),"clipboard"in navigator){navigator.clipboard.writeText(t.textContent),o();return}console.debug("Falling back to legacy clipboard copy");const e=document.createRange();e.selectNodeContents(t);const n=window.getSelection();n.removeAllRanges(),n.addRange(e);try{document.execCommand("copy"),o()}catch(e){console.error(e)}n.removeRange(e)}),n.classList.contains("highlight")?n.appendChild(e):t.parentNode.parentNode.parentNode.parentNode.parentNode.nodeName=="TABLE"?t.parentNode.parentNode.parentNode.parentNode.parentNode.appendChild(e):t.parentNode.appendChild(e)})})(),(()=>{var o={authors:"Authors",event:"Events",post:"Posts",project:"Projects",publication:"Publications",slides:"Slides"},i={no_results:"No results found",placeholder:"Search...",results:"results found"},n={indexURI:"/index.json",minLength:1,threshold:.3},s={shouldSort:!0,includeMatches:!0,tokenize:!0,threshold:n.threshold,location:0,distance:100,maxPatternLength:32,minMatchCharLength:n.minLength,keys:[{name:"title",weight:.99},{name:"summary",weight:.6},{name:"authors",weight:.5},{name:"content",weight:.2},{name:"tags",weight:.5},{name:"categories",weight:.5}]},e=60;function a(e){return decodeURIComponent((location.search.split(e+"=")[1]||"").split("&")[0]).replace(/\+/g," ")}function r(e){history.replaceState&&window.history.replaceState({path:e},"",e)}function t(t,n){let e=$("#search-query").val();if(e.length<1&&($("#search-hits").empty(),$("#search-common-queries").show()),!t&&e.length0?($("#search-hits").append('

'+e.length+" "+i.results+"

"),l(t,e)):$("#search-hits").append('
'+i.no_results+"
")}function l(t,n){$.each(n,function(l,n){let i=n.item.section,a="",r="",c=[];["publication","event"].includes(i)?a=n.item.summary:a=n.item.content,s.tokenize?c.push(t):$.each(n.matches,function(n,t){if(t.key=="content"){let n=t.indices[0][0]-e>0?t.indices[0][0]-e:0,s=t.indices[0][1]+e + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Example Event | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Example Event

+ + + + + + + + + + + + + + +
+ + +
+
+ + Image credit: Unsplash +
+
+ + + +
+ + +

Abstract

+

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellusac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum. Sed ac faucibus dolor, scelerisque sollicitudin nisi. Cras purus urna, suscipit quis sapien eu, pulvinar tempor diam.

+ + +
+
+
+
+
Date
+
+ Jun 1, 2030 1:00 PM — 3:00 PM +
+
+
+
+
+
+ + +
+
+
+ +
+
+
+
+ + + +
+
+
+
+
Location
+
Wowchemy HQ
+ +
+
450 Serra Mall, Stanford, CA 94305
+ +
+
+
+
+
+ + +
+ +
+

Slides can be added in a few ways:

+
    +
  • Create slides using Wowchemy’s Slides feature and link using slides parameter in the front matter of the talk file
  • +
  • Upload an existing slide deck to static/ and link using url_slides parameter in the front matter of the talk file
  • +
  • Embed your slides (e.g. Google Slides) or presentation video on this page using shortcodes.
  • +
+

Further event details, including page elements such as image galleries, can be added to the body of this page.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/event/index.html b/event/index.html new file mode 100644 index 0000000..2d96748 --- /dev/null +++ b/event/index.html @@ -0,0 +1,1095 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Recent & Upcoming Events | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Recent & Upcoming Events

+ + + + +
+ + + +
+
+
+ + + + +
+
+

2030

+
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Example Event +
+ + + +
+ An example event. +
+
+ + + + + + +
+
+ + + + + Example Event + + +
+
+ + + +
+
+ + +
+
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/event/index.xml b/event/index.xml new file mode 100644 index 0000000..fe84510 --- /dev/null +++ b/event/index.xml @@ -0,0 +1,31 @@ + + + + Recent & Upcoming Events | Computational Imaging and AI in Medicine + https://compai-lab.io/event/ + + Recent & Upcoming Events + Wowchemy (https://wowchemy.com)en-usSat, 01 Jun 2030 13:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Recent & Upcoming Events + https://compai-lab.io/event/ + + + + Example Event + https://compai-lab.io/event/example/ + Sat, 01 Jun 2030 13:00:00 +0000 + https://compai-lab.io/event/example/ + <p>Slides can be added in a few ways:</p> +<ul> +<li><strong>Create</strong> slides using Wowchemy&rsquo;s <a href="https://wowchemy.com/docs/managing-content/#create-slides" target="_blank" rel="noopener"><em>Slides</em></a> feature and link using <code>slides</code> parameter in the front matter of the talk file</li> +<li><strong>Upload</strong> an existing slide deck to <code>static/</code> and link using <code>url_slides</code> parameter in the front matter of the talk file</li> +<li><strong>Embed</strong> your slides (e.g. Google Slides) or presentation video on this page using <a href="https://wowchemy.com/docs/writing-markdown-latex/" target="_blank" rel="noopener">shortcodes</a>.</li> +</ul> +<p>Further event details, including page elements such as image galleries, can be added to the body of this page.</p> + + + + + diff --git a/files/.DS_Store b/files/.DS_Store new file mode 100644 index 0000000..0d04c1e Binary files /dev/null and b/files/.DS_Store differ diff --git a/files/MSc_Segmentation.pdf b/files/MSc_Segmentation.pdf new file mode 100644 index 0000000..6103e91 Binary files /dev/null and b/files/MSc_Segmentation.pdf differ diff --git a/files/MSc_Surface.pdf b/files/MSc_Surface.pdf new file mode 100644 index 0000000..f53ba24 Binary files /dev/null and b/files/MSc_Surface.pdf differ diff --git a/files/MSc_Thesis_UAD.pdf b/files/MSc_Thesis_UAD.pdf new file mode 100644 index 0000000..6a6c1ea Binary files /dev/null and b/files/MSc_Thesis_UAD.pdf differ diff --git a/files/MSc_Thesis_mri_fit.pdf b/files/MSc_Thesis_mri_fit.pdf new file mode 100644 index 0000000..3edd68c Binary files /dev/null and b/files/MSc_Thesis_mri_fit.pdf differ diff --git a/files/MSc_cardiac_diffusion.pdf b/files/MSc_cardiac_diffusion.pdf new file mode 100644 index 0000000..9aa088c Binary files /dev/null and b/files/MSc_cardiac_diffusion.pdf differ diff --git a/files/MSc_manifold_anna.pdf b/files/MSc_manifold_anna.pdf new file mode 100644 index 0000000..f419b66 Binary files /dev/null and b/files/MSc_manifold_anna.pdf differ diff --git a/files/MSc_tracking.pdf b/files/MSc_tracking.pdf new file mode 100644 index 0000000..519d60b Binary files /dev/null and b/files/MSc_tracking.pdf differ diff --git a/files/Manifold_seminar.pdf b/files/Manifold_seminar.pdf new file mode 100644 index 0000000..4721e8b Binary files /dev/null and b/files/Manifold_seminar.pdf differ diff --git a/files/Msc-functionalmaps.pdf b/files/Msc-functionalmaps.pdf new file mode 100644 index 0000000..5f3eb4b Binary files /dev/null and b/files/Msc-functionalmaps.pdf differ diff --git a/files/Msc_Dark_field.pdf b/files/Msc_Dark_field.pdf new file mode 100644 index 0000000..77540f5 Binary files /dev/null and b/files/Msc_Dark_field.pdf differ diff --git a/files/UAD_seminar.pdf b/files/UAD_seminar.pdf new file mode 100644 index 0000000..ad1de4c Binary files /dev/null and b/files/UAD_seminar.pdf differ diff --git a/files/VLM_seminar.pdf b/files/VLM_seminar.pdf new file mode 100644 index 0000000..09562ee Binary files /dev/null and b/files/VLM_seminar.pdf differ diff --git a/files/slides_domain_adaptation_seminar.pdf b/files/slides_domain_adaptation_seminar.pdf new file mode 100644 index 0000000..e5958be Binary files /dev/null and b/files/slides_domain_adaptation_seminar.pdf differ diff --git a/files/xmorph.pdf b/files/xmorph.pdf new file mode 100644 index 0000000..ab3d612 Binary files /dev/null and b/files/xmorph.pdf differ diff --git a/fonts/montserrat-v25-latin-100.eot b/fonts/montserrat-v25-latin-100.eot new file mode 100644 index 0000000..0303cda Binary files /dev/null and b/fonts/montserrat-v25-latin-100.eot differ diff --git a/fonts/montserrat-v25-latin-100.svg b/fonts/montserrat-v25-latin-100.svg new file mode 100644 index 0000000..b007eeb --- /dev/null +++ b/fonts/montserrat-v25-latin-100.svg @@ -0,0 +1,325 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-100.ttf b/fonts/montserrat-v25-latin-100.ttf new file mode 100644 index 0000000..ee522b2 Binary files /dev/null and b/fonts/montserrat-v25-latin-100.ttf differ diff --git a/fonts/montserrat-v25-latin-100.woff b/fonts/montserrat-v25-latin-100.woff new file mode 100644 index 0000000..583e483 Binary files /dev/null and b/fonts/montserrat-v25-latin-100.woff differ diff --git a/fonts/montserrat-v25-latin-100.woff2 b/fonts/montserrat-v25-latin-100.woff2 new file mode 100644 index 0000000..94871cd Binary files /dev/null and b/fonts/montserrat-v25-latin-100.woff2 differ diff --git a/fonts/montserrat-v25-latin-100italic.eot b/fonts/montserrat-v25-latin-100italic.eot new file mode 100644 index 0000000..8f8450b Binary files /dev/null and b/fonts/montserrat-v25-latin-100italic.eot differ diff --git a/fonts/montserrat-v25-latin-100italic.svg b/fonts/montserrat-v25-latin-100italic.svg new file mode 100644 index 0000000..8ab9b58 --- /dev/null +++ b/fonts/montserrat-v25-latin-100italic.svg @@ -0,0 +1,328 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-100italic.ttf b/fonts/montserrat-v25-latin-100italic.ttf new file mode 100644 index 0000000..701d626 Binary files /dev/null and b/fonts/montserrat-v25-latin-100italic.ttf differ diff --git a/fonts/montserrat-v25-latin-100italic.woff b/fonts/montserrat-v25-latin-100italic.woff new file mode 100644 index 0000000..defa47e Binary files /dev/null and b/fonts/montserrat-v25-latin-100italic.woff differ diff --git a/fonts/montserrat-v25-latin-100italic.woff2 b/fonts/montserrat-v25-latin-100italic.woff2 new file mode 100644 index 0000000..a64b579 Binary files /dev/null and b/fonts/montserrat-v25-latin-100italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-200.eot b/fonts/montserrat-v25-latin-200.eot new file mode 100644 index 0000000..2cc9feb Binary files /dev/null and b/fonts/montserrat-v25-latin-200.eot differ diff --git a/fonts/montserrat-v25-latin-200.svg b/fonts/montserrat-v25-latin-200.svg new file mode 100644 index 0000000..4b1a28c --- /dev/null +++ b/fonts/montserrat-v25-latin-200.svg @@ -0,0 +1,326 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-200.ttf b/fonts/montserrat-v25-latin-200.ttf new file mode 100644 index 0000000..6a68563 Binary files /dev/null and b/fonts/montserrat-v25-latin-200.ttf differ diff --git a/fonts/montserrat-v25-latin-200.woff b/fonts/montserrat-v25-latin-200.woff new file mode 100644 index 0000000..d4ebfcc Binary files /dev/null and b/fonts/montserrat-v25-latin-200.woff differ diff --git a/fonts/montserrat-v25-latin-200.woff2 b/fonts/montserrat-v25-latin-200.woff2 new file mode 100644 index 0000000..1e310eb Binary files /dev/null and b/fonts/montserrat-v25-latin-200.woff2 differ diff --git a/fonts/montserrat-v25-latin-200italic.eot b/fonts/montserrat-v25-latin-200italic.eot new file mode 100644 index 0000000..4e89ff7 Binary files /dev/null and b/fonts/montserrat-v25-latin-200italic.eot differ diff --git a/fonts/montserrat-v25-latin-200italic.svg b/fonts/montserrat-v25-latin-200italic.svg new file mode 100644 index 0000000..00c72fe --- /dev/null +++ b/fonts/montserrat-v25-latin-200italic.svg @@ -0,0 +1,328 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-200italic.ttf b/fonts/montserrat-v25-latin-200italic.ttf new file mode 100644 index 0000000..1e91df1 Binary files /dev/null and b/fonts/montserrat-v25-latin-200italic.ttf differ diff --git a/fonts/montserrat-v25-latin-200italic.woff b/fonts/montserrat-v25-latin-200italic.woff new file mode 100644 index 0000000..3e438eb Binary files /dev/null and b/fonts/montserrat-v25-latin-200italic.woff differ diff --git a/fonts/montserrat-v25-latin-200italic.woff2 b/fonts/montserrat-v25-latin-200italic.woff2 new file mode 100644 index 0000000..1666f5e Binary files /dev/null and b/fonts/montserrat-v25-latin-200italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-300.eot b/fonts/montserrat-v25-latin-300.eot new file mode 100644 index 0000000..c46ff85 Binary files /dev/null and b/fonts/montserrat-v25-latin-300.eot differ diff --git a/fonts/montserrat-v25-latin-300.svg b/fonts/montserrat-v25-latin-300.svg new file mode 100644 index 0000000..7fdec45 --- /dev/null +++ b/fonts/montserrat-v25-latin-300.svg @@ -0,0 +1,326 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-300.ttf b/fonts/montserrat-v25-latin-300.ttf new file mode 100644 index 0000000..57df26a Binary files /dev/null and b/fonts/montserrat-v25-latin-300.ttf differ diff --git a/fonts/montserrat-v25-latin-300.woff b/fonts/montserrat-v25-latin-300.woff new file mode 100644 index 0000000..700c9ec Binary files /dev/null and b/fonts/montserrat-v25-latin-300.woff differ diff --git a/fonts/montserrat-v25-latin-300.woff2 b/fonts/montserrat-v25-latin-300.woff2 new file mode 100644 index 0000000..a0d3d1f Binary files /dev/null and b/fonts/montserrat-v25-latin-300.woff2 differ diff --git a/fonts/montserrat-v25-latin-300italic.eot b/fonts/montserrat-v25-latin-300italic.eot new file mode 100644 index 0000000..b1b9106 Binary files /dev/null and b/fonts/montserrat-v25-latin-300italic.eot differ diff --git a/fonts/montserrat-v25-latin-300italic.svg b/fonts/montserrat-v25-latin-300italic.svg new file mode 100644 index 0000000..a9813e1 --- /dev/null +++ b/fonts/montserrat-v25-latin-300italic.svg @@ -0,0 +1,329 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-300italic.ttf b/fonts/montserrat-v25-latin-300italic.ttf new file mode 100644 index 0000000..47ec75d Binary files /dev/null and b/fonts/montserrat-v25-latin-300italic.ttf differ diff --git a/fonts/montserrat-v25-latin-300italic.woff b/fonts/montserrat-v25-latin-300italic.woff new file mode 100644 index 0000000..3670b1d Binary files /dev/null and b/fonts/montserrat-v25-latin-300italic.woff differ diff --git a/fonts/montserrat-v25-latin-300italic.woff2 b/fonts/montserrat-v25-latin-300italic.woff2 new file mode 100644 index 0000000..ae4c4f5 Binary files /dev/null and b/fonts/montserrat-v25-latin-300italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-500.eot b/fonts/montserrat-v25-latin-500.eot new file mode 100644 index 0000000..199cbc6 Binary files /dev/null and b/fonts/montserrat-v25-latin-500.eot differ diff --git a/fonts/montserrat-v25-latin-500.svg b/fonts/montserrat-v25-latin-500.svg new file mode 100644 index 0000000..590ffa5 --- /dev/null +++ b/fonts/montserrat-v25-latin-500.svg @@ -0,0 +1,328 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-500.ttf b/fonts/montserrat-v25-latin-500.ttf new file mode 100644 index 0000000..1fd9999 Binary files /dev/null and b/fonts/montserrat-v25-latin-500.ttf differ diff --git a/fonts/montserrat-v25-latin-500.woff b/fonts/montserrat-v25-latin-500.woff new file mode 100644 index 0000000..54b1bb3 Binary files /dev/null and b/fonts/montserrat-v25-latin-500.woff differ diff --git a/fonts/montserrat-v25-latin-500.woff2 b/fonts/montserrat-v25-latin-500.woff2 new file mode 100644 index 0000000..1dfcab6 Binary files /dev/null and b/fonts/montserrat-v25-latin-500.woff2 differ diff --git a/fonts/montserrat-v25-latin-500italic.eot b/fonts/montserrat-v25-latin-500italic.eot new file mode 100644 index 0000000..5353ca0 Binary files /dev/null and b/fonts/montserrat-v25-latin-500italic.eot differ diff --git a/fonts/montserrat-v25-latin-500italic.svg b/fonts/montserrat-v25-latin-500italic.svg new file mode 100644 index 0000000..0a99375 --- /dev/null +++ b/fonts/montserrat-v25-latin-500italic.svg @@ -0,0 +1,331 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-500italic.ttf b/fonts/montserrat-v25-latin-500italic.ttf new file mode 100644 index 0000000..a5293f5 Binary files /dev/null and b/fonts/montserrat-v25-latin-500italic.ttf differ diff --git a/fonts/montserrat-v25-latin-500italic.woff b/fonts/montserrat-v25-latin-500italic.woff new file mode 100644 index 0000000..85549be Binary files /dev/null and b/fonts/montserrat-v25-latin-500italic.woff differ diff --git a/fonts/montserrat-v25-latin-500italic.woff2 b/fonts/montserrat-v25-latin-500italic.woff2 new file mode 100644 index 0000000..f457dd3 Binary files /dev/null and b/fonts/montserrat-v25-latin-500italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-600.eot b/fonts/montserrat-v25-latin-600.eot new file mode 100644 index 0000000..8f66ec1 Binary files /dev/null and b/fonts/montserrat-v25-latin-600.eot differ diff --git a/fonts/montserrat-v25-latin-600.svg b/fonts/montserrat-v25-latin-600.svg new file mode 100644 index 0000000..a6983f6 --- /dev/null +++ b/fonts/montserrat-v25-latin-600.svg @@ -0,0 +1,329 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-600.ttf b/fonts/montserrat-v25-latin-600.ttf new file mode 100644 index 0000000..cdf748c Binary files /dev/null and b/fonts/montserrat-v25-latin-600.ttf differ diff --git a/fonts/montserrat-v25-latin-600.woff b/fonts/montserrat-v25-latin-600.woff new file mode 100644 index 0000000..7ae1f84 Binary files /dev/null and b/fonts/montserrat-v25-latin-600.woff differ diff --git a/fonts/montserrat-v25-latin-600.woff2 b/fonts/montserrat-v25-latin-600.woff2 new file mode 100644 index 0000000..7d9b42d Binary files /dev/null and b/fonts/montserrat-v25-latin-600.woff2 differ diff --git a/fonts/montserrat-v25-latin-600italic.eot b/fonts/montserrat-v25-latin-600italic.eot new file mode 100644 index 0000000..fba6a7a Binary files /dev/null and b/fonts/montserrat-v25-latin-600italic.eot differ diff --git a/fonts/montserrat-v25-latin-600italic.svg b/fonts/montserrat-v25-latin-600italic.svg new file mode 100644 index 0000000..f82183a --- /dev/null +++ b/fonts/montserrat-v25-latin-600italic.svg @@ -0,0 +1,334 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-600italic.ttf b/fonts/montserrat-v25-latin-600italic.ttf new file mode 100644 index 0000000..29fa252 Binary files /dev/null and b/fonts/montserrat-v25-latin-600italic.ttf differ diff --git a/fonts/montserrat-v25-latin-600italic.woff b/fonts/montserrat-v25-latin-600italic.woff new file mode 100644 index 0000000..b9d628b Binary files /dev/null and b/fonts/montserrat-v25-latin-600italic.woff differ diff --git a/fonts/montserrat-v25-latin-600italic.woff2 b/fonts/montserrat-v25-latin-600italic.woff2 new file mode 100644 index 0000000..8409de1 Binary files /dev/null and b/fonts/montserrat-v25-latin-600italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-700.eot b/fonts/montserrat-v25-latin-700.eot new file mode 100644 index 0000000..d366328 Binary files /dev/null and b/fonts/montserrat-v25-latin-700.eot differ diff --git a/fonts/montserrat-v25-latin-700.svg b/fonts/montserrat-v25-latin-700.svg new file mode 100644 index 0000000..8bcf5f3 --- /dev/null +++ b/fonts/montserrat-v25-latin-700.svg @@ -0,0 +1,329 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-700.ttf b/fonts/montserrat-v25-latin-700.ttf new file mode 100644 index 0000000..6d20b7e Binary files /dev/null and b/fonts/montserrat-v25-latin-700.ttf differ diff --git a/fonts/montserrat-v25-latin-700.woff b/fonts/montserrat-v25-latin-700.woff new file mode 100644 index 0000000..b68baf1 Binary files /dev/null and b/fonts/montserrat-v25-latin-700.woff differ diff --git a/fonts/montserrat-v25-latin-700.woff2 b/fonts/montserrat-v25-latin-700.woff2 new file mode 100644 index 0000000..a7e1118 Binary files /dev/null and b/fonts/montserrat-v25-latin-700.woff2 differ diff --git a/fonts/montserrat-v25-latin-700italic.eot b/fonts/montserrat-v25-latin-700italic.eot new file mode 100644 index 0000000..17315f2 Binary files /dev/null and b/fonts/montserrat-v25-latin-700italic.eot differ diff --git a/fonts/montserrat-v25-latin-700italic.svg b/fonts/montserrat-v25-latin-700italic.svg new file mode 100644 index 0000000..d2a7dca --- /dev/null +++ b/fonts/montserrat-v25-latin-700italic.svg @@ -0,0 +1,332 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-700italic.ttf b/fonts/montserrat-v25-latin-700italic.ttf new file mode 100644 index 0000000..faf60d2 Binary files /dev/null and b/fonts/montserrat-v25-latin-700italic.ttf differ diff --git a/fonts/montserrat-v25-latin-700italic.woff b/fonts/montserrat-v25-latin-700italic.woff new file mode 100644 index 0000000..1b8b8a5 Binary files /dev/null and b/fonts/montserrat-v25-latin-700italic.woff differ diff --git a/fonts/montserrat-v25-latin-700italic.woff2 b/fonts/montserrat-v25-latin-700italic.woff2 new file mode 100644 index 0000000..c441b80 Binary files /dev/null and b/fonts/montserrat-v25-latin-700italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-800.eot b/fonts/montserrat-v25-latin-800.eot new file mode 100644 index 0000000..3c02f80 Binary files /dev/null and b/fonts/montserrat-v25-latin-800.eot differ diff --git a/fonts/montserrat-v25-latin-800.svg b/fonts/montserrat-v25-latin-800.svg new file mode 100644 index 0000000..8982a96 --- /dev/null +++ b/fonts/montserrat-v25-latin-800.svg @@ -0,0 +1,329 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-800.ttf b/fonts/montserrat-v25-latin-800.ttf new file mode 100644 index 0000000..edda871 Binary files /dev/null and b/fonts/montserrat-v25-latin-800.ttf differ diff --git a/fonts/montserrat-v25-latin-800.woff b/fonts/montserrat-v25-latin-800.woff new file mode 100644 index 0000000..641d28f Binary files /dev/null and b/fonts/montserrat-v25-latin-800.woff differ diff --git a/fonts/montserrat-v25-latin-800.woff2 b/fonts/montserrat-v25-latin-800.woff2 new file mode 100644 index 0000000..1ce621e Binary files /dev/null and b/fonts/montserrat-v25-latin-800.woff2 differ diff --git a/fonts/montserrat-v25-latin-800italic.eot b/fonts/montserrat-v25-latin-800italic.eot new file mode 100644 index 0000000..997bdb9 Binary files /dev/null and b/fonts/montserrat-v25-latin-800italic.eot differ diff --git a/fonts/montserrat-v25-latin-800italic.svg b/fonts/montserrat-v25-latin-800italic.svg new file mode 100644 index 0000000..f875a6a --- /dev/null +++ b/fonts/montserrat-v25-latin-800italic.svg @@ -0,0 +1,332 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-800italic.ttf b/fonts/montserrat-v25-latin-800italic.ttf new file mode 100644 index 0000000..27f9cae Binary files /dev/null and b/fonts/montserrat-v25-latin-800italic.ttf differ diff --git a/fonts/montserrat-v25-latin-800italic.woff b/fonts/montserrat-v25-latin-800italic.woff new file mode 100644 index 0000000..8916d18 Binary files /dev/null and b/fonts/montserrat-v25-latin-800italic.woff differ diff --git a/fonts/montserrat-v25-latin-800italic.woff2 b/fonts/montserrat-v25-latin-800italic.woff2 new file mode 100644 index 0000000..89a224b Binary files /dev/null and b/fonts/montserrat-v25-latin-800italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-900.eot b/fonts/montserrat-v25-latin-900.eot new file mode 100644 index 0000000..a4ab149 Binary files /dev/null and b/fonts/montserrat-v25-latin-900.eot differ diff --git a/fonts/montserrat-v25-latin-900.svg b/fonts/montserrat-v25-latin-900.svg new file mode 100644 index 0000000..1ec110f --- /dev/null +++ b/fonts/montserrat-v25-latin-900.svg @@ -0,0 +1,329 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-900.ttf b/fonts/montserrat-v25-latin-900.ttf new file mode 100644 index 0000000..88ebe7a Binary files /dev/null and b/fonts/montserrat-v25-latin-900.ttf differ diff --git a/fonts/montserrat-v25-latin-900.woff b/fonts/montserrat-v25-latin-900.woff new file mode 100644 index 0000000..19d4814 Binary files /dev/null and b/fonts/montserrat-v25-latin-900.woff differ diff --git a/fonts/montserrat-v25-latin-900.woff2 b/fonts/montserrat-v25-latin-900.woff2 new file mode 100644 index 0000000..e73b95a Binary files /dev/null and b/fonts/montserrat-v25-latin-900.woff2 differ diff --git a/fonts/montserrat-v25-latin-900italic.eot b/fonts/montserrat-v25-latin-900italic.eot new file mode 100644 index 0000000..a4ed5f6 Binary files /dev/null and b/fonts/montserrat-v25-latin-900italic.eot differ diff --git a/fonts/montserrat-v25-latin-900italic.svg b/fonts/montserrat-v25-latin-900italic.svg new file mode 100644 index 0000000..b8674b8 --- /dev/null +++ b/fonts/montserrat-v25-latin-900italic.svg @@ -0,0 +1,332 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-900italic.ttf b/fonts/montserrat-v25-latin-900italic.ttf new file mode 100644 index 0000000..e6db8bd Binary files /dev/null and b/fonts/montserrat-v25-latin-900italic.ttf differ diff --git a/fonts/montserrat-v25-latin-900italic.woff b/fonts/montserrat-v25-latin-900italic.woff new file mode 100644 index 0000000..6dd5e13 Binary files /dev/null and b/fonts/montserrat-v25-latin-900italic.woff differ diff --git a/fonts/montserrat-v25-latin-900italic.woff2 b/fonts/montserrat-v25-latin-900italic.woff2 new file mode 100644 index 0000000..dfbcc60 Binary files /dev/null and b/fonts/montserrat-v25-latin-900italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-italic.eot b/fonts/montserrat-v25-latin-italic.eot new file mode 100644 index 0000000..08d1379 Binary files /dev/null and b/fonts/montserrat-v25-latin-italic.eot differ diff --git a/fonts/montserrat-v25-latin-italic.svg b/fonts/montserrat-v25-latin-italic.svg new file mode 100644 index 0000000..a32fddc --- /dev/null +++ b/fonts/montserrat-v25-latin-italic.svg @@ -0,0 +1,330 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-italic.ttf b/fonts/montserrat-v25-latin-italic.ttf new file mode 100644 index 0000000..a8a10db Binary files /dev/null and b/fonts/montserrat-v25-latin-italic.ttf differ diff --git a/fonts/montserrat-v25-latin-italic.woff b/fonts/montserrat-v25-latin-italic.woff new file mode 100644 index 0000000..9dcfbd4 Binary files /dev/null and b/fonts/montserrat-v25-latin-italic.woff differ diff --git a/fonts/montserrat-v25-latin-italic.woff2 b/fonts/montserrat-v25-latin-italic.woff2 new file mode 100644 index 0000000..9ce7f91 Binary files /dev/null and b/fonts/montserrat-v25-latin-italic.woff2 differ diff --git a/fonts/montserrat-v25-latin-regular.eot b/fonts/montserrat-v25-latin-regular.eot new file mode 100644 index 0000000..83fb958 Binary files /dev/null and b/fonts/montserrat-v25-latin-regular.eot differ diff --git a/fonts/montserrat-v25-latin-regular.svg b/fonts/montserrat-v25-latin-regular.svg new file mode 100644 index 0000000..b0675d7 --- /dev/null +++ b/fonts/montserrat-v25-latin-regular.svg @@ -0,0 +1,327 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fonts/montserrat-v25-latin-regular.ttf b/fonts/montserrat-v25-latin-regular.ttf new file mode 100644 index 0000000..f0f0acd Binary files /dev/null and b/fonts/montserrat-v25-latin-regular.ttf differ diff --git a/fonts/montserrat-v25-latin-regular.woff b/fonts/montserrat-v25-latin-regular.woff new file mode 100644 index 0000000..ac8d615 Binary files /dev/null and b/fonts/montserrat-v25-latin-regular.woff differ diff --git a/fonts/montserrat-v25-latin-regular.woff2 b/fonts/montserrat-v25-latin-regular.woff2 new file mode 100644 index 0000000..e04ffc2 Binary files /dev/null and b/fonts/montserrat-v25-latin-regular.woff2 differ diff --git a/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/cite.bib b/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/cite.bib new file mode 100644 index 0000000..0465075 --- /dev/null +++ b/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/cite.bib @@ -0,0 +1,16 @@ +@article{028b6ad81dea4ce39a182f7df77f2ee5, + abstract = {Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.}, + author = {Schnabel, Julia A. and Heinrich, Mattias P. and Papież, Bartłomiej W. and Brady, Sir J. Michael}, + doi = {10.1016/j.media.2016.06.031}, + issn = {1361-8415}, + journal = {Medical Image Analysis}, + keywords = {Demons, Discrete optimization, Registration uncertainty, Sliding motion, Supervoxels, Multi-modality}, + language = {English}, + month = {October}, + pages = {145--148}, + publisher = {Elsevier}, + title = {Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling}, + volume = {33}, + year = {2016} +} + diff --git a/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/index.html b/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/index.html new file mode 100644 index 0000000..34abe7f --- /dev/null +++ b/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/index.html @@ -0,0 +1,1340 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/8867900/cite.bib b/fpublications/8867900/cite.bib new file mode 100644 index 0000000..9a7fdbf --- /dev/null +++ b/fpublications/8867900/cite.bib @@ -0,0 +1,11 @@ +@article{8867900, + author = {Rueckert, Daniel and Schnabel, Julia A.}, + doi = {10.1109/JPROC.2019.2943836}, + journal = {Proceedings of the IEEE}, + number = {1}, + pages = {110-124}, + title = {Model-Based and Data-Driven Strategies in Medical Image Computing}, + volume = {108}, + year = {2020} +} + diff --git a/fpublications/8867900/index.html b/fpublications/8867900/index.html new file mode 100644 index 0000000..5c1e18a --- /dev/null +++ b/fpublications/8867900/index.html @@ -0,0 +1,1310 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Model-Based and Data-Driven Strategies in Medical Image Computing | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Model-Based and Data-Driven Strategies in Medical Image Computing

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/clough-2019-topological/cite.bib b/fpublications/clough-2019-topological/cite.bib new file mode 100644 index 0000000..3519495 --- /dev/null +++ b/fpublications/clough-2019-topological/cite.bib @@ -0,0 +1,7 @@ +@article{clough2019topological, + author = {Clough, James R and Byrne, Nicholas and Oksuz, Ilkay and Zimmer, Veronika A and Schnabel, Julia A and King, Andrew P}, + journal = {arXiv preprint arXiv:1910.01877}, + title = {A topological loss function for deep-learning based image segmentation using persistent homology}, + year = {2019} +} + diff --git a/fpublications/clough-2019-topological/index.html b/fpublications/clough-2019-topological/index.html new file mode 100644 index 0000000..32fe4e5 --- /dev/null +++ b/fpublications/clough-2019-topological/index.html @@ -0,0 +1,1403 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + A topological loss function for deep-learning based image segmentation using persistent homology | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

A topological loss function for deep-learning based image segmentation using persistent homology

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Veronika Zimmer + + +
+
Veronika Zimmer
+
Principal Investigator
+

My research focuses on image analysis and machine learning with a particular interest in robust and generalizable methods for multimodal registration and segmentation in medical imaging.

+ + +
+
+ + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/heinrich-2012-mind/cite.bib b/fpublications/heinrich-2012-mind/cite.bib new file mode 100644 index 0000000..5a0d566 --- /dev/null +++ b/fpublications/heinrich-2012-mind/cite.bib @@ -0,0 +1,11 @@ +@article{heinrich2012mind, + author = {Heinrich, Mattias P and Jenkinson, Mark and Bhushan, Manav and Matin, Tahreema and Gleeson, Fergus V and Brady, Michael and Schnabel, Julia A}, + journal = {Medical image analysis}, + number = {7}, + pages = {1423--1435}, + publisher = {Elsevier}, + title = {MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration}, + volume = {16}, + year = {2012} +} + diff --git a/fpublications/heinrich-2012-mind/index.html b/fpublications/heinrich-2012-mind/index.html new file mode 100644 index 0000000..2b0f6b9 --- /dev/null +++ b/fpublications/heinrich-2012-mind/index.html @@ -0,0 +1,1341 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/index.html b/fpublications/index.html new file mode 100644 index 0000000..323bdfe --- /dev/null +++ b/fpublications/index.html @@ -0,0 +1,2079 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Fpublications | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Fpublications

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Model-Based and Data-Driven Strategies in Medical Image Computing +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ A topological loss function for deep-learning based image segmentation using persistent homology +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations +
+ + + + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/index.xml b/fpublications/index.xml new file mode 100644 index 0000000..edd59eb --- /dev/null +++ b/fpublications/index.xml @@ -0,0 +1,80 @@ + + + + Fpublications | Computational Imaging and AI in Medicine + https://compai-lab.io/fpublications/ + + Fpublications + Wowchemy (https://wowchemy.com)en-usTue, 01 Dec 2020 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Fpublications + https://compai-lab.io/fpublications/ + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Model-Based and Data-Driven Strategies in Medical Image Computing + https://compai-lab.io/fpublications/8867900/ + Wed, 01 Jan 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/8867900/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + Wed, 01 Jan 2003 00:00:00 +0000 + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/fpublications/oksuz-2019136/cite.bib b/fpublications/oksuz-2019136/cite.bib new file mode 100644 index 0000000..4711e55 --- /dev/null +++ b/fpublications/oksuz-2019136/cite.bib @@ -0,0 +1,14 @@ +@article{OKSUZ2019136, + abstract = {Good quality of medical images is a prerequisite for the success of subsequent image analysis pipelines. Quality assessment of medical images is therefore an essential activity and for large population studies such as the UK Biobank (UKBB), manual identification of artefacts such as those caused by unanticipated motion is tedious and time-consuming. Therefore, there is an urgent need for automatic image quality assessment techniques. In this paper, we propose a method to automatically detect the presence of motion-related artefacts in cardiac magnetic resonance (CMR) cine images. We compare two deep learning architectures to classify poor quality CMR images: 1) 3D spatio-temporal Convolutional Neural Networks (3D-CNN), 2) Long-term Recurrent Convolutional Network (LRCN). Though in real clinical setup motion artefacts are common, high-quality imaging of UKBB, which comprises cross-sectional population data of volunteers who do not necessarily have health problems creates a highly imbalanced classification problem. Due to the high number of good quality images compared to the relatively low number of images with motion artefacts, we propose a novel data augmentation scheme based on synthetic artefact creation in k-space. We also investigate a learning approach using a predetermined curriculum based on synthetic artefact severity. We evaluate our pipeline on a subset of the UK Biobank data set consisting of 3510 CMR images. The LRCN architecture outperformed the 3D-CNN architecture and was able to detect 2D+time short axis images with motion artefacts in less than 1ms with high recall. We compare our approach to a range of state-of-the-art quality assessment methods. The novel data augmentation and curriculum learning approaches both improved classification performance achieving overall area under the ROC curve of 0.89.}, + author = {Ilkay Oksuz and Bram Ruijsink and Esther Puyol-Antón and James R. Clough and Gastao Cruz and Aurelien Bustin and Claudia Prieto and Rene Botnar and Daniel Rueckert and schnabel and Andrew P. King}, + doi = {https://doi.org/10.1016/j.media.2019.04.009}, + issn = {1361-8415}, + journal = {Medical Image Analysis}, + keywords = {Cardiac MR motion artefacts, Image quality assessment, Artifact, Convolutional neural networks, LSTM}, + pages = {136-147}, + title = {Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning}, + url = {https://www.sciencedirect.com/science/article/pii/S1361841518306765}, + volume = {55}, + year = {2019} +} + diff --git a/fpublications/oksuz-2019136/index.html b/fpublications/oksuz-2019136/index.html new file mode 100644 index 0000000..4614de7 --- /dev/null +++ b/fpublications/oksuz-2019136/index.html @@ -0,0 +1,1393 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/page/1/index.html b/fpublications/page/1/index.html new file mode 100644 index 0000000..9d91b54 --- /dev/null +++ b/fpublications/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/fpublications/ + + + + + + diff --git a/fpublications/pmid-32746141/cite.bib b/fpublications/pmid-32746141/cite.bib new file mode 100644 index 0000000..4ecfd42 --- /dev/null +++ b/fpublications/pmid-32746141/cite.bib @@ -0,0 +1,15 @@ +@article{PMID:32746141, + abstract = {Segmenting anatomical structures in medical images has been successfully addressed with deep learning methods for a range of applications. However, this success is heavily dependent on the quality of the image that is being segmented. A commonly neglected point in the medical image analysis community is the vast amount of clinical images that have severe image artefacts due to organ motion, movement of the patient and/or image acquisition related issues. In this paper, we discuss the implications of image motion artefacts on cardiac MR segmentation and compare a variety of approaches for jointly correcting for artefacts and segmenting the cardiac cavity. The method is based on our recently developed joint artefact detection and reconstruction method, which reconstructs high quality MR images from k-space using a joint loss function and essentially converts the artefact correction task to an under-sampled image reconstruction task by enforcing a data consistency term. In this paper, we propose to use a segmentation network coupled with this in an end-to-end framework. Our training optimises three different tasks: 1) image artefact detection, 2) artefact correction and 3) image segmentation. We train the reconstruction network to automatically correct for motion-related artefacts using synthetically corrupted cardiac MR k-space data and uncorrected reconstructed images. Using a test set of 500 2D+time cine MR acquisitions from the UK Biobank data set, we achieve demonstrably good image quality and high segmentation accuracy in the presence of synthetic motion artefacts. We showcase better performance compared to various image correction architectures.}, + author = {Oksuz, Ilkay and Clough, James R and Ruijsink, Bram and Anton, Esther Puyol and Bustin, Aurelien and Cruz, Gastao and Prieto, Claudia and King, Andrew P and Schnabel, Julia A}, + doi = {10.1109/tmi.2020.3008930}, + issn = {0278-0062}, + journal = {IEEE transactions on medical imaging}, + month = {December}, + number = {12}, + pages = {4001—4010}, + title = {Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation}, + url = {https://doi.org/10.1109/TMI.2020.3008930}, + volume = {39}, + year = {2020} +} + diff --git a/fpublications/pmid-32746141/index.html b/fpublications/pmid-32746141/index.html new file mode 100644 index 0000000..2fd6f40 --- /dev/null +++ b/fpublications/pmid-32746141/index.html @@ -0,0 +1,1365 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/rueckert-2003-automatic/cite.bib b/fpublications/rueckert-2003-automatic/cite.bib new file mode 100644 index 0000000..3275faf --- /dev/null +++ b/fpublications/rueckert-2003-automatic/cite.bib @@ -0,0 +1,11 @@ +@article{rueckert2003automatic, + author = {Rueckert, Daniel and Frangi, Alejandro F and Schnabel, Julia A}, + journal = {IEEE transactions on medical imaging}, + number = {8}, + pages = {1014--1025}, + publisher = {IEEE}, + title = {Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration}, + volume = {22}, + year = {2003} +} + diff --git a/fpublications/rueckert-2003-automatic/index.html b/fpublications/rueckert-2003-automatic/index.html new file mode 100644 index 0000000..92bf18a --- /dev/null +++ b/fpublications/rueckert-2003-automatic/index.html @@ -0,0 +1,1313 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/fpublications/schnabel-2001-generic/cite.bib b/fpublications/schnabel-2001-generic/cite.bib new file mode 100644 index 0000000..1bcf0b6 --- /dev/null +++ b/fpublications/schnabel-2001-generic/cite.bib @@ -0,0 +1,9 @@ +@inproceedings{schnabel2001generic, + author = {Schnabel, Julia A and Rueckert, Daniel and Quist, Marcel and Blackall, Jane M and Castellano-Smith, Andy D and Hartkens, Thomas and Penney, Graeme P and Hall, Walter A and Liu, Haiying and Truwit, Charles L and others}, + booktitle = {International Conference on Medical Image Computing and Computer-Assisted Intervention}, + organization = {Springer}, + pages = {573--581}, + title = {A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations}, + year = {2001} +} + diff --git a/fpublications/schnabel-2001-generic/index.html b/fpublications/schnabel-2001-generic/index.html new file mode 100644 index 0000000..4546596 --- /dev/null +++ b/fpublications/schnabel-2001-generic/index.html @@ -0,0 +1,1369 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/images/autoddpm_teaser.gif b/images/autoddpm_teaser.gif new file mode 100644 index 0000000..efd2a94 Binary files /dev/null and b/images/autoddpm_teaser.gif differ diff --git a/images/feddis.png b/images/feddis.png new file mode 100644 index 0000000..a44d28d Binary files /dev/null and b/images/feddis.png differ diff --git a/images/method.gif b/images/method.gif new file mode 100644 index 0000000..12875a5 Binary files /dev/null and b/images/method.gif differ diff --git a/images/morphaeus.gif b/images/morphaeus.gif new file mode 100644 index 0000000..b2ccc37 Binary files /dev/null and b/images/morphaeus.gif differ diff --git a/images/noise_paradox.gif b/images/noise_paradox.gif new file mode 100644 index 0000000..57a0610 Binary files /dev/null and b/images/noise_paradox.gif differ diff --git a/images/phanes.gif b/images/phanes.gif new file mode 100644 index 0000000..b0eeee3 Binary files /dev/null and b/images/phanes.gif differ diff --git a/images/ra.png b/images/ra.png new file mode 100644 index 0000000..36b10b6 Binary files /dev/null and b/images/ra.png differ diff --git a/images/vlm_teaser.gif b/images/vlm_teaser.gif new file mode 100644 index 0000000..1e9001d Binary files /dev/null and b/images/vlm_teaser.gif differ diff --git a/index.html b/index.html new file mode 100644 index 0000000..2b57a10 --- /dev/null +++ b/index.html @@ -0,0 +1,5069 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + + + + + + + +
+
+ + + +

About us

+ + + +

+

The Institute for Computational Imaging and AI in Medicine (CompAI) at TUM and the Institute of Machine Learning in Biomedical Imaging (IML) at Helmholtz Center Munich focus on research to leverage machine learning for the grand challenges in biomedical imaging in areas of unmet clinical need. Novel and affordable solutions should empower clinics to make more accurate, fast and reliable decisions for early detection, treatment planning and improved patient outcome. We are looking for team members, please contact us.

+
+ + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + About us
+ + + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + + + + + + + + + + + + +
+ +
+

Meet the Team

+ +
+ + + + + + + + +
+

Chair

+
+ + + + + + + + + +
+ + + + + + + + Avatar + + +
+

Julia A. Schnabel

+

Technical University Munich

Helmholtz Center Munich

King's College London

+

Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging

+ + +

Biomedical Imaging, Artificial Intelligence in Medicine

+
+
+ + + + + +
+

Team Support

+
+ + + + + + + + + +
+ + + + + + + + Avatar + + +
+

Sandra Mayer

+

Helmholtz Center Munich

+

Administrative Assistant

+ + +

Project Management and Administration, Team Management and Support, Communication and Relations

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Sabine Franke

+

Technical University Munich

+

Administrative Assistant

+ + +

Project Management and Administration, Team Management and Support, Communication and Relations

+
+
+ + + + + +
+

Principal Investigators

+
+ + + + + + + + + +
+ + + + + + + + Avatar + + +
+

Georgios Kaissis

+

Helmholtz Center Munich

+

Principal Investigator

+ + +

Reliable artificial intelligence, Medical image computing, Probabilistic methods

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Lina Felsner

+

Technical University of Munich

Helmholtz Center Munich

+

Principal Investigator

+ + +

Medical Image Computing, Inverse Problems, Machine Learning

+
+
+ + + + + +
+

Senior Researchers

+
+ + + + + + + + + +
+ + + + + + + + Avatar + + +
+

Cosmin I. Bercea

+

Technical University of Munich

TUM School of Medicine and Health

+

Research Scientist

+ + +

Vision & Multimodal Learning, Generative AI, Foundation Models, Anomaly Detection

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Emily Chan

+

Helmholtz Center Munich

King's College London

+

Research Scientist

+ + +

Medical image computing, Transfer learning, Multi-modal learning

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Laura Daza

+

Helmholtz Center Munich

+

Research Scientist

+ + +

Medical image segmentation, Multi-modal Learning, Foundation models

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Maxime Di Folco

+

Helmholtz Center Munich

+

Research Scientist

+ + +

Representation learning, Cardiac imaging

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Daniel M. Lang

+

Helmholtz Center Munich

+

Research Scientist

+ + +

Self-supervised Learning, Transfer Learning, Survival Analysis

+
+
+ + + + + +
+

Researchers

+
+ + + + + + + + + +
+ + + + + + + + Avatar + + +
+

Sameer Ambekar

+

Technical University of Munich

Helmholtz Center Munich

+

Doctoral Researcher

+ + +

Domain Generalization, Meta Learning, Variational Inference

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Hannah Eichhorn

+

Helmholtz Center Munich

Technical University Munich

+

Doctoral Researcher

+ + +

Brain Magnetic Resonance Imaging, Image reconstruction & Motion Correction, Deep learning

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Stefan Fischer

+

Technical University of Munich

MRI TUM Munich

+

Doctoral Researcher

+ + +

Segmentation, Radiooncology, Transfer Learning/Curriculum Learning

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Marta Hasny

+

Technical University of Munich

Helmholtz Center Munich

+

Doctoral Researcher

+ + +

Foundation Models, Generative AI, Cardiology

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Johannes Kiechle

+

Technical University of Munich

MRI TUM Munich

+

Doctoral Researcher

+ + +

Shape Analysis, Representation Learning, Magnetic Resonance Imaging

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Ha Young Kim

+

GE HealthCare

Technical University of Munich

+

Doctoral Researcher

+ + +

Magnetic Resonance Imaging, Alzheimer’s disease

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Fryderyk Kögl

+

Technical University of Munich

MRI TUM Munich

+

Doctoral Researcher

+ + +

Deep Learning-Based Image Registration, Data Curation & Visualisation, Neuronavigation

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Jun Li

+

Technical University of Munich

Munich Center for Machine Learning (MCML)

+

Doctoral Researcher

+ + +

Vision and Language, Multi-Modal Learning, Cross-Modality Generation

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Natascha Niessen

+

Technical University of Munich

GE Healthcare

+

Doctoral Researcher

+ + +

MRI reconstruction, Early Alzheimer’s Disease prediction

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Anna Reithmeir

+

Technical University of Munich

Munich Center for Machine Learning (MCML)

+

Doctoral Researcher

+ + +

Image Registration, Physics-Inspired Regularization, Manifold-Valued Data

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Anneliese Riess

+

Technical University of Munich

Helmholtz Center Munich

+

Doctoral Researcher

+ + +

Mathematical Foundations of Privacy Preserving AI, Probability Theory

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Veronika Spieker

+

Technical University Munich

Helmholtz Center Munich

+

Doctoral Researcher

+ + +

MRI Reconstruction, Motion Detection & Correction, Neural Implicit Representations

+
+
+ + + + + + + + + + + +
+

Visiting Researchers

+
+ + + + + + + + + +
+ + + + + + + + Avatar + + +
+

Richard Osuala

+

BCN-AIM Lab, University of Barcelona

Helmholtz Center Munich

+

Doctoral Researcher (Visiting)

+ + +

Generative AI, Image Synthesis, Medical Image Analysis

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Chun Kit Wong

+

Section for Visual Computing, Technical University of Denmark

Pioneer Centre for Artificial Intelligence

+

Doctoral Researcher (Visiting)

+ + +

Medical Image Analysis

+
+
+ + + + + + + + + + + +
+

Alumni

+
+ + + + + + + + + +
+ + + + + + + + Avatar + + +
+

Simona Bottani

+

Helmholtz Center Munich

+

Research Scientist

+ + +

Deep learning, Big data sets, Brain imaging

+
+
+ + + + + + + +
+ + + + + + + + Avatar + + +
+

Veronika Zimmer

+

Technical University Munich

+

Principal Investigator

+ + +

Medical Image Computing, Ultrasound Image Analysis, Fetal Image Analysis

+
+
+ + +
+ + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+

News

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + Paper Accepted at MELBA Journal + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + Paper accepted at ISBI 2024 + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+

Publications

+

Featured

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+ + + + + + + (2020). + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation. + IEEE transactions on medical imaging. + +

+ + + + + + + + + + + + + + + + PDF + + + + + + Cite + + + + + + + + + + + + + + + + DOI + + + +

+ + + +
+ + + + + +
+ + + + + + + (2020). + Model-Based and Data-Driven Strategies in Medical Image Computing. + Proceedings of the IEEE. + +

+ + + + + + + + + + + + + + + + Cite + + + + + + + + + + + + + + + + DOI + + + +

+ + + +
+ + + + + +
+ + + + + + + (2019). + A topological loss function for deep-learning based image segmentation using persistent homology. + arXiv preprint arXiv:1910.01877. + +

+ + + + + + + + + + + + + + + + Cite + + + + + + + + + + + + + + + +

+ + + +
+ + + + + + + + + + + +
+ + + + + + + (2016). + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling. + Medical Image Analysis. + +

+ + + + + + + + + + + + + + + + Cite + + + + + + + + + + + + + + + + DOI + + + +

+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+

Teaching

+ +
+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + * + + + +
+
+
+
+ + + + + + + All + + + + + WS 24/25 + + + + + SS 24 + + + + + WS 23/24 + + + + + SS 23 + + + + + WS 22/23 + + + + + SS 22 + + + + + WS 21/22 + +
+
+
+
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + +
+ + + +
+ + + + + + + + + + + + + + + + +
+ + + +
+ + + + + + + + + + + + + + + + +
+ + + +
+ + + + + + + + + + + + + + + + +
+ + + +
+ + + + + + + + + + + + + + + + +
+ + + +
+ + + + + + + + + + + + + + + + +
+ + + +
+ + + + + + + + + + + + + + + + +
+ + +
+
+ + + +
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+

Open Positions

+

If you are interested in our projects please contact us and attach a motivation letter, transcript of academic records and CV.

+
+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + * + + + +
+
+
+
+ + + + + + + All + + + + + Bachelor Thesis + + + + + Master Thesis + + + + + PhD + + + + + Post-doc + + + + + + + + + + Other + + + + + + +
+
+
+
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ Latent Functional Maps for Medical Imaging +
+ + + +
+

Master Thesis.

+
+
+ + + + +
+ +
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) +
+ + + +
+

Master Thesis. I’m interested

+
+ + + + + +
+ +
+ + +
+
+ + + +
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+

Contact us

+

+ iml-logo +
Institute of Machine Learning in Biomedical Imaging, Helmholtz Center Munich
+
+ + Ingolstädter Landstr. 1, 85764 Neuherberg
+ iml.office@helmholtz-munich.de
+ Tel. +49 89 3187-49207

+
+
+ compai-logo +
Computational Imaging and AI in Medicine, Technical University of Munich
+
+ + Lichtenbergstr. 2a, 85748 Garching
+ sabine.franke@tum.de
+ Tel. +49 (0)89 / 289-17256
+
+
+

+
+ + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ + + + +
+ + +
+
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/index.json b/index.json new file mode 100644 index 0000000..4e92455 --- /dev/null +++ b/index.json @@ -0,0 +1,72 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + [{"authors":null,"categories":null,"content":"Cosmin Bercea is a postdoctoral researcher at the Computational Imaging and AI in Medicine chair (Prof. Schnabel), TUM School of Computation, Information, and Technology, and at the AI for Image-Guided Diagnosis and Therapy chair (Prof. Wiestler), TUM School of Medicine and Health. His current research focuses on vision and multimodal learning for medical image analysis.\nHis research background encompasses machine learning for medical image analysis and computer vision for autonomous driving. During his doctoral studies at the Technical University of Munich, he focused on machine learning and image understanding, with a specific emphasis on creating robust algorithms capable of identifying a wide array of unknown anomalies in medical images. He earned his B.Sc. and M.Sc. degrees in Computer Science from FAU University in Erlangen, Germany, where he specialized in pattern recognition and medical image analysis.\n","date":1721865600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1721865600,"objectID":"1a5f197a0ae6843b5eca188c8e7eddb7","permalink":"https://compai-lab.io/author/cosmin-i.-bercea/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/cosmin-i.-bercea/","section":"authors","summary":"Cosmin Bercea is a postdoctoral researcher at the Computational Imaging and AI in Medicine chair (Prof. Schnabel), TUM School of Computation, Information, and Technology, and at the AI for Image-Guided Diagnosis and Therapy chair (Prof.","tags":null,"title":"Cosmin I. Bercea","type":"authors"},{"authors":null,"categories":null,"content":"Sameer Ambekar is a Ph.D. Student at the Technical University of Munich (TUM). He received his Masters in Artificial Intelligence (MSc AI) from the University of Amsterdam (UvA), Netherlands. For his Master’s thesis (48 ECTS), he worked on ‘Test-Time Adaptation for Domain Generalization by generating models and labels through Variational meta-learning’ at the AIM Lab, UvA. Prior to his master’s, he worked as a Research Assistant (RA) at IIT Delhi (IITD) to address Unsupervised Domain Adaptation through methods such as Variational generative latent search. He is interested in solving problems in unsupervised learning through methods such as meta-learning and variational inference alongside learning efficient and transferable features.\n Open Theses and Projects: Looking for Bachelor / Master Thesis for Summer semester 2025. Please reach out via email or website - https://ambekarsameer.com if you are interested in working on Test-time adaptation, Domain Generalization, Meta Learning or related topics. ","date":1720137600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1720137600,"objectID":"1da190d086e25ec10dadfa3caf051b57","permalink":"https://compai-lab.io/author/sameer-ambekar/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/sameer-ambekar/","section":"authors","summary":"Sameer Ambekar is a Ph.D. Student at the Technical University of Munich (TUM). He received his Masters in Artificial Intelligence (MSc AI) from the University of Amsterdam (UvA), Netherlands. For his Master’s thesis (48 ECTS), he worked on ‘Test-Time Adaptation for Domain Generalization by generating models and labels through Variational meta-learning’ at the AIM Lab, UvA.","tags":null,"title":"Sameer Ambekar","type":"authors"},{"authors":null,"categories":null,"content":"Emily Chan is a postdoctoral researcher at the Institute of Machine Learning for Biomedical Imaging at Helmholtz Munich. She received her PhD in 2022 from King’s College London, where she worked on utilising classical machine learning and deep learning techniques with limited and imbalanced data for MR liver imaging, in collaboration with Perspectum. She is particularly interested in the automation of various clinically-relevant tasks in radiology, with her research at the IML focusing on deep learning for the early diagnosis and prognosis of Alzheimer’s disease.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"56687b7fcbaceb3c4ed6d5b35f5c4e2a","permalink":"https://compai-lab.io/author/emily-chan/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/emily-chan/","section":"authors","summary":"Emily Chan is a postdoctoral researcher at the Institute of Machine Learning for Biomedical Imaging at Helmholtz Munich. She received her PhD in 2022 from King’s College London, where she worked on utilising classical machine learning and deep learning techniques with limited and imbalanced data for MR liver imaging, in collaboration with Perspectum.","tags":null,"title":"Emily Chan","type":"authors"},{"authors":null,"categories":null,"content":"Georgios Kaissis is a principal investigator at the Institute of Biomedical Machine Learning (IML) at the Helmholtz Center Munich, a senior research scientist at the Institute of Artificial Intelligence and Informatics in Medicine and specialist diagnostic radiologist at the Institute for Radiology at TUM, a postdoctoral researcher at the Department of Computing at Imperial College London and leads the Healthcare Unit at OpenMined. His research concentrates on biomedical image analysis with a focus on next-generation privacy-preserving machine learning methods as well as probabilistic methods for the design and deployment of robust, secure, fair and transparent machine learning algorithms to medical imaging workflows.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"215e356043d31829796b4b4b033d3054","permalink":"https://compai-lab.io/author/georgios-kaissis/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/georgios-kaissis/","section":"authors","summary":"Georgios Kaissis is a principal investigator at the Institute of Biomedical Machine Learning (IML) at the Helmholtz Center Munich, a senior research scientist at the Institute of Artificial Intelligence and Informatics in Medicine and specialist diagnostic radiologist at the Institute for Radiology at TUM, a postdoctoral researcher at the Department of Computing at Imperial College London and leads the Healthcare Unit at OpenMined.","tags":null,"title":"Georgios Kaissis","type":"authors"},{"authors":null,"categories":null,"content":"Laura Daza is a postdoctoral researcher at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich. She received her Ph.D. at the Research and Formation in Artificial Intelligence (CINFONIA) at Universidad de los Andes advised by Pablo Arbeláez and did an internship with Professor René Vidal at Johns Hopkins University. Her areas of interest are Computer Vision, Machine Learning and Deep Learning, as well as their application to biomedical problems. During her Ph.D., her research was focused on the analysis of adversarial robustness of medical image analysis methods and natural image and video classification methods. She also worked on early lung cancer diagnosis leveraging multimodal data, pharmaceutical discovery, and automatic bone age assesment in children.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"d0f4c18adf64929bd668ba8bd9e21346","permalink":"https://compai-lab.io/author/laura-daza/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/laura-daza/","section":"authors","summary":"Laura Daza is a postdoctoral researcher at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich. She received her Ph.D. at the Research and Formation in Artificial Intelligence (CINFONIA) at Universidad de los Andes advised by Pablo Arbeláez and did an internship with Professor René Vidal at Johns Hopkins University.","tags":null,"title":"Laura Daza","type":"authors"},{"authors":null,"categories":null,"content":"Sandra Mayer supports the Lab for Computational Imaging and AI in Medicine as a member of the administrative staff at the Helmholtz Campus in Neuherberg.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"c7e1fe3fbec405988b58cc78bff18671","permalink":"https://compai-lab.io/author/sandra-mayer/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/sandra-mayer/","section":"authors","summary":"Sandra Mayer supports the Lab for Computational Imaging and AI in Medicine as a member of the administrative staff at the Helmholtz Campus in Neuherberg.","tags":null,"title":"Sandra Mayer","type":"authors"},{"authors":null,"categories":null,"content":"Simona Bottani is a PostDoctoral Fellow at the IML where she works on deep learning applied to big research medical imaging cohort. She received her PhD in computer science from Sorbonne University in April 2022. She worked at the ARAMIS Lab and her thesis focused on the application of deep learning models for neuroimaging studies using a large scale clinical data warehouse of the Paris Great Area Hospitals (AP-HP). From 2017 to 2018 she worked as research engineer in the ARAMIS Lab. She received a Master Degree in 2016 and a Bachelor degree in 2014 in Biomedical engineering from Politecnico di Torino.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"e574d46ca998273d26d337b8256da4a3","permalink":"https://compai-lab.io/author/simona-bottani/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/simona-bottani/","section":"authors","summary":"Simona Bottani is a PostDoctoral Fellow at the IML where she works on deep learning applied to big research medical imaging cohort. She received her PhD in computer science from Sorbonne University in April 2022.","tags":null,"title":"Simona Bottani","type":"authors"},{"authors":null,"categories":null,"content":"Maxime Di Folco is a PostDoctoral researcher at the Institute of Machine Learning for Biomedical Imaging at Helmholtz Center Munich. His research interest is the study of the cardiac function via machine learning methods, in particular representation learning methods, that aim to acquire low dimensional representation of high dimensional data, with a strong focus on cardiac remodelling (adaptation of the heart to its environment or a disease), notably the study of the deformation and shape aspects.\n","date":1723507200,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1723507200,"objectID":"f7695d783c3739ededca3e573e80f73a","permalink":"https://compai-lab.io/author/maxime-di-folco/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/maxime-di-folco/","section":"authors","summary":"Maxime Di Folco is a PostDoctoral researcher at the Institute of Machine Learning for Biomedical Imaging at Helmholtz Center Munich. His research interest is the study of the cardiac function via machine learning methods, in particular representation learning methods, that aim to acquire low dimensional representation of high dimensional data, with a strong focus on cardiac remodelling (adaptation of the heart to its environment or a disease), notably the study of the deformation and shape aspects.","tags":null,"title":"Maxime Di Folco","type":"authors"},{"authors":null,"categories":null,"content":"Lina Felsner is a postdoctoral researcher at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her B.Sc. and M.Sc. in Medical Imaging from FAU Erlangen-Nürnberg with a specialization in Mediacl Image and Data Processing. During her Ph.D at the Pattern Recognition Lab at FAU Lina worked on Advanced 3-D Reconstruction of Talbot Lau Data. From 2022 to 2023 Lina was a postdoctoral Research Assistant at the King’s College London working on the motion corrected reconstruction of cardiovascular MR data. Her research interests lie at the intersection of Medical Image Computing, Inverse Problems, and Machine Learning, where she explores novel algorithms and methodologies to enhance medical imaging techniques and diagnostic accuracy.\n","date":1720137600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1720137600,"objectID":"e729628c82b6441ab4c1eefdd23fb1c7","permalink":"https://compai-lab.io/author/lina-felsner/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/lina-felsner/","section":"authors","summary":"Lina Felsner is a postdoctoral researcher at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her B.Sc. and M.Sc. in Medical Imaging from FAU Erlangen-Nürnberg with a specialization in Mediacl Image and Data Processing.","tags":null,"title":"Lina Felsner","type":"authors"},{"authors":null,"categories":null,"content":"Veronika A. Zimmer is a principal investigator at the Institute of Computer Sciences at TUM and a visiting researcher at the School of Biomedical Engineering \u0026amp; Imaging Sciences at King’s College London. She received her PhD in Information and Communication Technologies from the Universitat Pompeu Fabra, Barcelona, Spain, in 2017. Her research focuses on image analysis and machine learning with a particular interest in robust and generalizable methods for multimodal registration and segmentation in medical imaging.\n","date":1668988800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1668988800,"objectID":"158e43a2a799d5339b037ca70e05c114","permalink":"https://compai-lab.io/author/veronika-zimmer/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/veronika-zimmer/","section":"authors","summary":"Veronika A. Zimmer is a principal investigator at the Institute of Computer Sciences at TUM and a visiting researcher at the School of Biomedical Engineering \u0026 Imaging Sciences at King’s College London.","tags":null,"title":"Veronika Zimmer","type":"authors"},{"authors":null,"categories":null,"content":"Sabine Franke supports the Lab for Computational Imaging and AI in Medicine as a member of the administrative staff at the TU campus in Garching. She graduated in 2014 from the University of Graz, Austria, with a degree in conference interpreting for German, English and Spanish. Before joining the team at the TU Munich, she spent several years working as a translator and interpreter in Germany as well as in the Netherlands, adding Dutch to her working languages.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"4a830eefc644326eef396fe2fbc34028","permalink":"https://compai-lab.io/author/sabine-franke/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/sabine-franke/","section":"authors","summary":"Sabine Franke supports the Lab for Computational Imaging and AI in Medicine as a member of the administrative staff at the TU campus in Garching. She graduated in 2014 from the University of Graz, Austria, with a degree in conference interpreting for German, English and Spanish.","tags":null,"title":"Sabine Franke","type":"authors"},{"authors":null,"categories":null,"content":"Daniel Lang will be a postdoc at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. His research interest focuses on the application of deep learning models for problem settings in the field of medical imaging with a special focus on cancer management. He is particularly interested in topics like transfer and selfsupervised learning, out of distribution problems and domain adaptation, and survival analysis.\n","date":1721865600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1721865600,"objectID":"56a7ac3a8e494744517e46962a75d3a1","permalink":"https://compai-lab.io/author/daniel-m.-lang/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/daniel-m.-lang/","section":"authors","summary":"Daniel Lang will be a postdoc at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. His research interest focuses on the application of deep learning models for problem settings in the field of medical imaging with a special focus on cancer management.","tags":null,"title":"Daniel M. Lang","type":"authors"},{"authors":null,"categories":null,"content":"Hannah Eichhorn is a PhD student at the Institute of Machine Learning in Biomedical Imaging (IML), Helmholtz Munich. She received her B.Sc. in Physics from Heidelberg University and her M.Sc. in Bio- and Medical Physics from University of Copenhagen. In her Master’s thesis at the Neurobiology Research Unit, Copenhagen University Hospital, she worked on prospective motion correction for brain magnetic resonance imaging (MRI). Her doctoral research focuses on deep-learning based reconstruction and motion correction of multi-parametric brain MRI, in collaboration with the Neuroscientific MR-Physics research group at Klinikum rechts der Isar (TUM).\n","date":1720137600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1720137600,"objectID":"53fd79ba9ff7f449cf98e3e77a65136a","permalink":"https://compai-lab.io/author/hannah-eichhorn/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/hannah-eichhorn/","section":"authors","summary":"Hannah Eichhorn is a PhD student at the Institute of Machine Learning in Biomedical Imaging (IML), Helmholtz Munich. She received her B.Sc. in Physics from Heidelberg University and her M.Sc. in Bio- and Medical Physics from University of Copenhagen.","tags":null,"title":"Hannah Eichhorn","type":"authors"},{"authors":null,"categories":null,"content":"Stefan Fischer is a Ph.D. Student at the Technical University of Munich (TUM). He received his B.Sc. and M.Sc. from FAU in Erlangen, Germany with a focus on medical image analysis. In his Master’s thesis at the Radiooncology department of the university hospital Erlangen, he build a generative approach for brain metastasis for data augmentation in MR Imaging. His research interest lies in deep learning based segmentation, transfer learning and curriculum learning.\n","date":1720137600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1720137600,"objectID":"0dd4daba56f8a163ca9cb4738bf3f8cf","permalink":"https://compai-lab.io/author/stefan-fischer/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/stefan-fischer/","section":"authors","summary":"Stefan Fischer is a Ph.D. Student at the Technical University of Munich (TUM). He received his B.Sc. and M.Sc. from FAU in Erlangen, Germany with a focus on medical image analysis.","tags":null,"title":"Stefan Fischer","type":"authors"},{"authors":null,"categories":null,"content":"Marta Hasny is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and the Technical University of Munich (TUM). She received her B.Sc. in Computer Science from Pace University and completed her M.Sc. in Biomedical Computing at TUM. For her master’s thesis at Harvard Medical School, she worked on improving the visualization of myocardial scar in late gadolinium enhancement cardiac MR using diffusion models. Her research interests include generative AI, foundation models, and their applications in cardiology.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"01505f705e18f22d55e6ae9659ce16b1","permalink":"https://compai-lab.io/author/marta-hasny/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/marta-hasny/","section":"authors","summary":"Marta Hasny is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and the Technical University of Munich (TUM). She received her B.","tags":null,"title":"Marta Hasny","type":"authors"},{"authors":null,"categories":null,"content":"Johannes Kiechle is a Ph.D. Student at the Technical University of Munich. He received his B.Eng. from Munich University of Applied Sciences and M.Sc. from Technical University of Munich. In his Master’s thesis, he investigated the shape change of the human hippocampus in the course of ageing within a population of healthy individuals using graph neural networks. For his PhD project, he works in collaboration with the department of Radiation Oncology at the University Hospital rechts der Isar. Therein the focus is on the development and validation of histology-specific AI-based decision support systems for soft-tissue-sarcoma patients.\n","date":1718323200,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1718323200,"objectID":"0a33e07e827b03a8f60c960b3beac217","permalink":"https://compai-lab.io/author/johannes-kiechle/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/johannes-kiechle/","section":"authors","summary":"Johannes Kiechle is a Ph.D. Student at the Technical University of Munich. He received his B.Eng. from Munich University of Applied Sciences and M.Sc. from Technical University of Munich. In his Master’s thesis, he investigated the shape change of the human hippocampus in the course of ageing within a population of healthy individuals using graph neural networks.","tags":null,"title":"Johannes Kiechle","type":"authors"},{"authors":null,"categories":null,"content":"Ha Young Kim is a PhD student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her M.Sc. in Biomedical Computing from TU Munich with a focus on magnetic resonance image reconstruction and postprocessing. In her Master’s thesis at GE HealthCare, she demonstrated the feasibility of using deep learning reconstruction for quantitative transient-state imaging on prostate imaging. Her research interests lie in the analysis and development magnetic resonance imaging in combination with machine learning algorithms.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"9ce11e2951f5d7c4d0b618ee41a16f79","permalink":"https://compai-lab.io/author/ha-young-kim/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/ha-young-kim/","section":"authors","summary":"Ha Young Kim is a PhD student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her M.Sc. in Biomedical Computing from TU Munich with a focus on magnetic resonance image reconstruction and postprocessing.","tags":null,"title":"Ha Young Kim","type":"authors"},{"authors":null,"categories":null,"content":"Fryderyk Kögl is a PhD student at the Chair of Computational Imaging and AI in Medicine at the Technical University Munich (TUM). He received his B.Sc. in Engineering Science and M.Sc. in Biomedical Computing from TUM. In his Master’s thesis at the Harvard Medical School he curated the largest public dataset for pre- to post-MR/iMR/US registration, developed a 3D Slicer extension for data curation, developed a low-cost and tool-free neuronavigation method and worked on deep learning patch-based registration. His research interests lie in deep Learning-based image registration, data curation \u0026amp; visualisation and neuronavigation.\n","date":1721865600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1721865600,"objectID":"9a61fc7961f0d1c4b9fe3d35d103cbbf","permalink":"https://compai-lab.io/author/fryderyk-kogl/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/fryderyk-kogl/","section":"authors","summary":"Fryderyk Kögl is a PhD student at the Chair of Computational Imaging and AI in Medicine at the Technical University Munich (TUM). He received his B.Sc. in Engineering Science and M.","tags":null,"title":"Fryderyk Kögl","type":"authors"},{"authors":null,"categories":null,"content":"Jun Li is a Ph.D. Student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her M.E. in Computer Technology from the University of Chinese Academy of Sciences, China. In her Master’s thesis, she developed a novel framework that combines supervised and unsupervised learning for ultrasound report generation. Her research interests lie in Vision and Language, Multi-Modal Learning, and Cross-Modality Generation.\n","date":1721865600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1721865600,"objectID":"a3945b0cc375cd0742d99649c0c5f929","permalink":"https://compai-lab.io/author/jun-li/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/jun-li/","section":"authors","summary":"Jun Li is a Ph.D. Student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her M.E. in Computer Technology from the University of Chinese Academy of Sciences, China.","tags":null,"title":"Jun Li","type":"authors"},{"authors":null,"categories":null,"content":"Richard Osuala is a Ph.D. student at the University of Barcelona (BCN-AIM Lab) and visiting researcher at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and Technical University of Munich (TUM). After working for 4 years as data scientist and AI solution architect in industry, his research focuses on generative AI to solve medical imaging problems. His work is part of the European projects EuCanImage (H2020) and RadioVal (Horizon Europe) investigating and creating machine learning solutions for medical image analysis with the goal of enhancing cancer diagnosis and treatment.\n","date":1720137600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1720137600,"objectID":"cd733108e38d362e8ad7fa04d9f11bb8","permalink":"https://compai-lab.io/author/richard-osuala/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/richard-osuala/","section":"authors","summary":"Richard Osuala is a Ph.D. student at the University of Barcelona (BCN-AIM Lab) and visiting researcher at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and Technical University of Munich (TUM).","tags":null,"title":"Richard Osuala","type":"authors"},{"authors":null,"categories":null,"content":"Natascha Niessen pursues her PhD project in a joint collaboration between GE Healthcare and the Chair of Computational Imaging and AI in Medicine at TU Munich, as well as the department of psychiatry at LMU. As part of her French-German double-degree she received her Engineering Diploma (M.Sc.) from CentraleSupélec and her M.Sc. in Electrical Engineering from TU Munich with a focus on medical imaging and machine learning. In her Master‘s thesis at Stanford University, she developed a novel approach for validating multi- compartment fitting algorithms for brain magnetic resonance imaging (MRI). Her research interests lie in the development of Deep Learning-enabled MRI reconstruction and early Alzheimer’s Disease prediction as part of the european PREDICTOM project.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"78853944e36213de090ec5edb433214d","permalink":"https://compai-lab.io/author/natascha-niessen/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/natascha-niessen/","section":"authors","summary":"Natascha Niessen pursues her PhD project in a joint collaboration between GE Healthcare and the Chair of Computational Imaging and AI in Medicine at TU Munich, as well as the department of psychiatry at LMU.","tags":null,"title":"Natascha Niessen","type":"authors"},{"authors":null,"categories":null,"content":"Anna Reithmeir is a PhD student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her B.Sc. and M.Sc. in Informatics from TU Munich with a focus on computer vision and high performance computing. In her Master’s thesis at the Munich Institute for Robotics and Machine Intelligence (MIRMI), she developed a novel algorithm for human-robot manipulability domain adaptation. Her current research interests lie in data-driven models for image registration, physics-inspired regularization, and Riemannian manifolds.\n","date":1721865600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1721865600,"objectID":"7f82a87a09ad8ec738b3f2f205bbd5d4","permalink":"https://compai-lab.io/author/anna-reithmeir/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/anna-reithmeir/","section":"authors","summary":"Anna Reithmeir is a PhD student at the Chair of Computational Imaging and AI in Medicine at TU Munich. She received her B.Sc. and M.Sc. in Informatics from TU Munich with a focus on computer vision and high performance computing.","tags":null,"title":"Anna Reithmeir","type":"authors"},{"authors":null,"categories":null,"content":"Chun Kit Wong is a Ph.D. student at the Technical University of Denmark (SONAI project group), working on translating AI to fetal ultrasound clinic. Prior to this he studied liver diseases with histology images in the industry. Even earlier than that he was with an academic lab in Singapore, where he worked on MRI image analysis and sequence programming, in addition to providing research computing support to the lab.\n","date":-62135596800,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":-62135596800,"objectID":"13b5ff03f3b94abf1fc4aa913db1948c","permalink":"https://compai-lab.io/author/chun-kit-wong/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/chun-kit-wong/","section":"authors","summary":"Chun Kit Wong is a Ph.D. student at the Technical University of Denmark (SONAI project group), working on translating AI to fetal ultrasound clinic. Prior to this he studied liver diseases with histology images in the industry.","tags":null,"title":"Chun Kit Wong","type":"authors"},{"authors":null,"categories":null,"content":"Anneliese Riess is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and Technical University Munich (TUM). She received her B.Sc. and M.Sc. in Mathematics at TUM and devoted a substantial part of her studies to the field of probability theory. In her Master’s thesis she investigated Majority Voting Processes, a class of interacting particle systems. The main focus of the thesis was the equilibrium behaviour of such stochastic models. Prior to her PhD, she worked on two different projects at the university in her final year of her Master’s degree. In the first project, she worked on creating a model that describes the behaviour of DNA methylation. The second project involved modelling and analysing the propagation of underground water. Her research interests lie in the mathematical foundations of privacy-preserving artificial intelligence.\n","date":1720137600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1720137600,"objectID":"27ee63b9158a8e603cca45e3f15c2184","permalink":"https://compai-lab.io/author/anneliese-riess/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/anneliese-riess/","section":"authors","summary":"Anneliese Riess is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Center Munich and Technical University Munich (TUM). She received her B.Sc. and M.","tags":null,"title":"Anneliese Riess","type":"authors"},{"authors":null,"categories":null,"content":"Veronika Spieker is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Munich and Technical University of Munich (TUM). After completing her B.Sc. in engineering at TU Darmstadt and Virginia Tech, she pursued her interest in the medical domain with a M.Sc. in Medical Technologies at TUM. For her PhD project, she works on Physics-Based AI for Motion Correction in Abdominal MRI in collaboration with the Body Magnetic Resonance Group at the Klinikum rechts der Isar. Her research interests include concepts such as neural implicit representations and it’s application to MR reconstruction and motion estimation.\n","date":1720137600,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1720137600,"objectID":"07e3d72feca02657047b62f64818eee0","permalink":"https://compai-lab.io/author/veronika-spieker/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/veronika-spieker/","section":"authors","summary":"Veronika Spieker is a PhD student at the Institute of Machine Learning for Biomedical Imaging (IML) at Helmholtz Munich and Technical University of Munich (TUM). After completing her B.Sc. in engineering at TU Darmstadt and Virginia Tech, she pursued her interest in the medical domain with a M.","tags":null,"title":"Veronika Spieker","type":"authors"},{"authors":null,"categories":null,"content":"Julia A. Schnabel is Professor of Computational Imaging and AI in Medicine at Technical University of Munich (TUM Liesel Beckmann Distinguished Professorship) and Director of a new Institute of Machine Learning in Biomedical Imaging at Helmholtz Center Munich (Helmholtz Distinguished Professorship), with secondary appointment as Chair in Computational Imaging at King’s College London. She graduated in Computer Science (equiv. MSc) from Technical University of Berlin, Berlin, Germany, and was awarded the PhD in Computer Science from University College London, UK. In 2007, she joined the University of Oxford, UK as Associate Professor in Engineering Science (Medical Imaging), where she became Full Professor of Engineering Science by Recognition of Distinction in 2014. She joined King’s College London as a new Chair in 2015, and in 2021 joined TUM and Helmholtz Munich for her current positions. Her research interests include machine/deep learning, nonlinear motion modeling, as well as multimodality and quantitative imaging, for cancer imaging, cardiac imaging, neuroimaging and perinatal imaging. Dr. Schnabel has been elected Fellow of IEEE (2021), Fellow of ELLIS (2019), and Fellow of the MICCAI Society (2018). She is an Associate Editor of the IEEE Transactions on Medical Imaging on whose steering board she serves since 2021, the IEEE Transactions of Biomedical Engineering, on the Editorial Board of Medical Image Analysis and Executive/Founding Editor of MELBA. She currently serves as elected Technical Representative on IEEE EMBS AdCom, as voting member of the IEEE EMBS Technical Committee on Biomedical Imaging and Image Processing (BIIP), as Executive Secretary to the MICCAI board, and as member of ELLIS Health and ELLIS Munich.\n","date":1715299200,"expirydate":-62135596800,"kind":"term","lang":"en","lastmod":1715299200,"objectID":"1e0f1c9788b3f556def3696f7482620c","permalink":"https://compai-lab.io/author/julia-a.-schnabel/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/author/julia-a.-schnabel/","section":"authors","summary":"Julia A. Schnabel is Professor of Computational Imaging and AI in Medicine at Technical University of Munich (TUM Liesel Beckmann Distinguished Professorship) and Director of a new Institute of Machine Learning in Biomedical Imaging at Helmholtz Center Munich (Helmholtz Distinguished Professorship), with secondary appointment as Chair in Computational Imaging at King’s College London.","tags":null,"title":"Julia A. Schnabel","type":"authors"},{"authors":[],"categories":null,"content":"Slides can be added in a few ways:\n Create slides using Wowchemy’s Slides feature and link using slides parameter in the front matter of the talk file Upload an existing slide deck to static/ and link using url_slides parameter in the front matter of the talk file Embed your slides (e.g. Google Slides) or presentation video on this page using shortcodes. Further event details, including page elements such as image galleries, can be added to the body of this page.\n","date":1906549200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1906549200,"objectID":"a8edef490afe42206247b6ac05657af0","permalink":"https://compai-lab.io/event/example/","publishdate":"2017-01-01T00:00:00Z","relpermalink":"/event/example/","section":"event","summary":"An example event.","tags":[],"title":"Example Event","type":"event"},{"authors":["Maxime Di Folco"],"categories":null,"content":"Abstract:\nNeural Networks (NNs) learn to represent high-dimensional data as elements of lower-dimensional latent spaces. Modeling the relationships between these representational spaces is an ongoing challenge. Successfully addressing this challenge could enable the reuse of representations in downstream tasks, reducing the need to retrain similar models multiple times. Recently, Fumero et al. leveraged the internal geometry of representations and proposed applying latent functional maps to align representations across distinct models, demonstrating its relevance for comparing representations. However, these kinds of approaches have not yet been explored in the context of medical imaging datasets, where aligning multimodal representa- tions could significantly enhance the effectiveness of models in medical applications. This project aims to use latent functional maps to align multimodal medical representations (e.g., text and vision). The first part of the thesis will involve a literature review on representation similarity. This will be followed by experimenting with the latent functional maps approach on a toy dataset of medical images and later applying it to real medical imaging tasks.\n","date":1723507200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1723507200,"objectID":"90b4bdc17d0b871c84962df5694779e8","permalink":"https://compai-lab.io/vacancies/msc_functionalmaps/","publishdate":"2024-08-13T00:00:00Z","relpermalink":"/vacancies/msc_functionalmaps/","section":"vacancies","summary":"Master Thesis.","tags":["master"],"title":"Latent Functional Maps for Medical Imaging","type":"vacancies"},{"authors":["Cosmin I. Bercea","Jun Li"],"categories":null,"content":" Time: Wednesday 14-16.\nLocation: - Garching (in-person): FMI, 5610.01.11 https://nav.tum.de/room/5610.01.011\n some invited talks on Zoom: https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09 Vision-language models (VLMs) in medical imaging leverage the integration of visual data and textual information to enhance representation learning. These models can be pre-trained to improve representations, enabling a wide range of downstream applications. This seminar will explore foundational concepts, current methodologies, and recent advancements in applying vision-language models to diverse tasks in medical imaging, such as:\n Synthetic image synthesis Anomaly detection Clinical report generation Visual-question answering Classification Segmentation Please register via the TUM matching system: https://matching.in.tum.de or write an e-mail to cosmin.bercea@tum.de\nCheck the intro slides here: ","date":1721865600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1721865600,"objectID":"6757e50e072af635a687b017b87aae27","permalink":"https://compai-lab.io/teaching/vlm_seminar/","publishdate":"2024-07-25T00:00:00Z","relpermalink":"/teaching/vlm_seminar/","section":"teaching","summary":"Winter semester 2024. TUM Informatics. Master Seminar.","tags":["ws24"],"title":"AI for Vision-Language Models in Medical Imaging (IN2107)","type":"teaching"},{"authors":["Anna Reithmeir","Fryderyk Kögl"],"categories":null,"content":"Time: Wednesday 10-12 a.m.\nLocation: Garching (in-person)\nImage registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:\n Learning and non-learning based image registration Optimization techniques Image registration for multi-modal data Multi-resolution and regularization strategies Linear and non-linear deformations Supervised and unsupervised learning Clinical applications Requirements:\n Background in image processing and machine learning Interest in medical image analysis Goal and organization:\nThe participating students will learn the fundamental concepts of image registration. They will acquire the skills to analyze critically state-of-the-art research work and to define own research questions. Basic concepts will be introduced with an overview of different research topics. The participants will select a research paper (suggestions given by the lecturers) and independently work on it with a final oral presentation and a written report. Presentations of members of international research groups will provide the students with insights into state-of-the-art research in the field.\nPlease register via the TUM matching system: https://matching.in.tum.de or write an email to anna.reithmeir@tum.de.\nThe seminar will take place Wednesdays from 10 a.m. to 12.a.m. in Garching.\n","date":1721865600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1721865600,"objectID":"a783b7a59ed512774297091f3c94af00","permalink":"https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/","publishdate":"2024-07-25T00:00:00Z","relpermalink":"/old_stuff/teaching/registration_seminar_ws24/","section":"old_stuff","summary":"Winter semester 2024. TUM Informatics. Master Seminar.","tags":["ws24"],"title":"Master Seminar - Medical Image Registration (IN2107, IN4462)","type":"old_stuff"},{"authors":["Daniel M. Lang"],"categories":null,"content":"Abstract:\nEven though various learning-based computer vision methods have been developed for pixel tracking, motion estimation in video data depicts a challenging task. Part of the problem arises from the 3D-to-2D projection process that can lead to out-of-plane motion, which impedes long-range pixel trajectory estimation. In the medical domain, video data, i.e. fast magnetic resonance imaging (MRI) sequences, can be used for guidance during treatment. Specifically, in radiation therapy, contouring algorithms are used for tracking of the target volume supposed to receive the main radiation dose during treatment. Delineation can, for example, be performed with a U-Net architecture. However, such an approach only allows for identification of larger structures, while irregular movement can be subtle and localized. Landmark detection models are able to identify such localized regions between different representations of the same object. Furthermore, they are faster than semantic segmentation models, and therefore, allow for computer aided intervention during treatment. In this thesis, different state-of-the-art landmark and pixel tracking algorithms will be tested and further enhanced to identify movement on temporal imaging data of the lungs, i.e. 4D CT. Furthermore, ability of such landmarks to identify movement differing from a normal state, i.e. allowing for identification of anomalies, will be studied.\n","date":1721865600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1721865600,"objectID":"4df7786cf33b927f02d2e0c11da54bec","permalink":"https://compai-lab.io/old_stuff/teaching/msc_tracking/","publishdate":"2024-07-25T00:00:00Z","relpermalink":"/old_stuff/teaching/msc_tracking/","section":"old_stuff","summary":"Master Thesis.","tags":["master"],"title":"Temporal Landmark Tracking on Medical Imaging","type":"old_stuff"},{"authors":["Sameer Ambekar","Cosmin I. Bercea","Maxime Di Folco","Lina Felsner","Fryderyk Kögl","Daniel M. Lang","Jun Li","Richard Osuala","Anna Reithmeir","Anneliese Riess"],"categories":null,"content":" Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]\nSameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. https://arxiv.org/abs/2410.03306\n MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI\nMalek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea\n(https://arxiv.org/pdf/2407.15270)\n Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders\nMehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea\n(https://arxiv.org/pdf/2407.03863)\n On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models\nDeniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco\n(https://arxiv.org/abs/2407.16405)\n Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?\nJohannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel\n(http://arxiv.org/abs/2407.17219)\n General Vision Encoder Features as Guidance in Medical Image Registration\nFryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer\n(https://arxiv.org/abs/2407.13311)\n Language Models Meet Anomaly Detection for Better Interpretability and Generalizability\nJun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea\n(https://arxiv.org/pdf/2404.07622v2)\n A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer\nInês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin\n(https://arxiv.org/abs/2407.17114)\n Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound\nHanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea\n(https://arxiv.org/pdf/2407.15119)\n Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data\nRichard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir\n(https://arxiv.org/abs/2407.12669)\n Complex-valued Federated Learning with Differential Privacy and MRI Applications\nAnneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis ([link will be available soon])\n ","date":1720137600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1720137600,"objectID":"0c23de36658fd3faddd1dd09b41f07ad","permalink":"https://compai-lab.io/post/miccai_workshops_24/","publishdate":"2024-07-05T00:00:00Z","relpermalink":"/post/miccai_workshops_24/","section":"post","summary":"Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]\nSameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. https://arxiv.org/abs/2410.03306\n MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI","tags":null,"title":"Eleven papers accepted at MICCAI Workshops 2024","type":"post"},{"authors":["Cosmin I. Bercea","Anna Reithmeir","Hannah Eichhorn","Veronika Spieker","Richard Osuala","Maxime Di Folco","Stefan Fischer"],"categories":null,"content":" Diffusion Models with Implicit Guidance for Medical Anomaly Detection\nCosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel\n(https://arxiv.org/abs/2403.08464)\n Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI\nHannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel\n(https://arxiv.org/abs/2403.08298)\n Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks\nStefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel\n Interpretable Representation Learning of Cardiac MRI via Attribute Regularization\nMaxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel\n(https://arxiv.org/abs/2406.08282)\n Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models\nRichard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir\n(https://arxiv.org/abs/2403.13890)\n Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration\nAnna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer\n Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation\nVeronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel\n(https://arxiv.org/abs/2404.08350)\n ","date":1720137600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1720137600,"objectID":"b9c26a5a89f2bcee712adc652e863a6d","permalink":"https://compai-lab.io/post/miccai_24/","publishdate":"2024-07-05T00:00:00Z","relpermalink":"/post/miccai_24/","section":"post","summary":"Diffusion Models with Implicit Guidance for Medical Anomaly Detection\nCosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel\n(https://arxiv.org/abs/2403.08464)\n Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI","tags":null,"title":"Seven papers accepted at MICCAI 2024","type":"post"},{"authors":["Stefan Fischer","Johannes Kiechle","Daniel M. Lang"],"categories":null,"content":"Stefan M. Fischer’s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.\nTherefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal. The journal submission “Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge” is now available at MELBA.\nThe paper is available here.\n","date":1718323200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1718323200,"objectID":"57f03682f3333bd5067ebd63faf63ae8","permalink":"https://compai-lab.io/post/fischer_melba_24/","publishdate":"2024-06-14T00:00:00Z","relpermalink":"/post/fischer_melba_24/","section":"post","summary":"Stefan M. Fischer’s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.\nTherefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal.","tags":null,"title":"Paper Accepted at MELBA Journal","type":"post"},{"authors":["Hannah Eichhorn"],"categories":null,"content":"Hannah Eichhorn has been elected as Trainee Representative of the ISMRM Motion Detection \u0026amp; Correction Study Group. She started her term at the ISMRM Annual Meeting in Singapore in the beginning of May.\nThe Study Group’s mission is to investigate how various forms of motion can affect MR data, how motion can be detected, how to deal best with motion-corrupted data, and what can be done to prevent MR data from getting corrupted by motion.\n","date":1716422400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1716422400,"objectID":"1541697da02a7932e10e891e3b2b44a0","permalink":"https://compai-lab.io/post/eichhorn_study_group_5_24/","publishdate":"2024-05-23T00:00:00Z","relpermalink":"/post/eichhorn_study_group_5_24/","section":"post","summary":"Hannah Eichhorn has been elected as Trainee Representative of the ISMRM Motion Detection \u0026 Correction Study Group. She started her term at the ISMRM Annual Meeting in Singapore in the beginning of May.","tags":null,"title":"Hannah Eichhorn elected as ISMRM Study Group Trainee Representative","type":"post"},{"authors":["Julia A. Schnabel"],"categories":null,"content":"The Alfred Breit Prize 2024 of the Radiological Society was awarded to Prof. Julia Schnabel, Professor at the Technical University of Munich and Director at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. The prize honors outstanding work in the research of radio-oncology.\nMore information here and here.\n","date":1715299200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1715299200,"objectID":"580c186f663be912d18931632bc998c0","permalink":"https://compai-lab.io/post/schnabel_alfred_breit_preis_24/","publishdate":"2024-05-10T00:00:00Z","relpermalink":"/post/schnabel_alfred_breit_preis_24/","section":"post","summary":"The Alfred Breit Prize 2024 of the Radiological Society was awarded to Prof. Julia Schnabel, Professor at the Technical University of Munich and Director at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich.","tags":null,"title":"German Radiological Society Awards the Alfred Breit Prize to Prof. Julia Schnabel","type":"post"},{"authors":["Anna Reithmeir"],"categories":null,"content":"Anna Reithmeir’s paper ‘Learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks’ was accepted at SPIE Medical Imaging 2024 which was held 18-22 Feb. 2024 in San Diego, US.\nThe paper is among the finalists for the best student paper award.\n","date":1710892800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1710892800,"objectID":"d0b246f450372ee4221dab7aa28f914c","permalink":"https://compai-lab.io/post/reithmeir_spie_24/","publishdate":"2024-03-20T00:00:00Z","relpermalink":"/post/reithmeir_spie_24/","section":"post","summary":"Anna Reithmeir’s paper ‘Learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks’ was accepted at SPIE Medical Imaging 2024 which was held 18-22 Feb. 2024 in San Diego, US.\nThe paper is among the finalists for the best student paper award.","tags":null,"title":"Paper accepted at SPIE Medical Imaging 2024 and Finalist of Best Student Paper Award","type":"post"},{"authors":["Johannes Kiechle"],"categories":null,"content":"Johannes Kiechle’s paper has been accepted to be presented at International Symposium on Biomedical Imaging 2024 Annual Meeting in Athens.\nJohannes Kiechle will present his work “Unifying Local and Global Shape Descriptors to Grade Soft-Tissue Sarcomas using Graph Convolutional Networks”.\n","date":1710460800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1710460800,"objectID":"2eb85c42856d122059d4364f549ac0f9","permalink":"https://compai-lab.io/post/kiechle_isbi_24/","publishdate":"2024-03-15T00:00:00Z","relpermalink":"/post/kiechle_isbi_24/","section":"post","summary":"Johannes Kiechle’s paper has been accepted to be presented at International Symposium on Biomedical Imaging 2024 Annual Meeting in Athens.\nJohannes Kiechle will present his work “Unifying Local and Global Shape Descriptors to Grade Soft-Tissue Sarcomas using Graph Convolutional Networks”.","tags":null,"title":"Paper accepted at ISBI 2024","type":"post"},{"authors":null,"categories":null,"content":"Course details\nTransfer learning enables the effective utilization of knowledge gained from one task or domain to enhance performance in another, while domain adaptation focuses on adapting models trained on a particular domain to perform well in related but different domains. This seminar looks at the concepts of transfer learning and domain adaptation in general and with the application in medical imaging. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed.\nKey topics to be covered include:\n Introduction to transfer learning and domain adaptation Implications in the context of medical imaging Examples of transfer learning and domain adaptation in medical imaging State-of-the-art methods Clinical applications Requirements:\n Background in image processing and machine learning/deep learning Interest in medical image analysis Interest in research Please register via the TUM matching system: https://matching.in.tum.de\nCheck the intro slides here: ","date":1710460800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1710460800,"objectID":"e818923d2066008177b7b1499402f548","permalink":"https://compai-lab.io/teaching/domain_adaptation_seminar/","publishdate":"2024-03-15T00:00:00Z","relpermalink":"/teaching/domain_adaptation_seminar/","section":"teaching","summary":"Summer semester 2024. TUM Informatics. Seminar.","tags":["ss24"],"title":"Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107)","type":"teaching"},{"authors":["Johannes Kiechle"],"categories":null,"content":"Johannes Kiechle’s abstract has been accepted to be presented as an oral at The European SocieTy for Radiotherapy and Oncology (ESTRO) 2024 Annual Meeting in Glasgow.\nJohannes Kiechle will present his work “Investigating the role of morphology in deep learning-based liposarcoma grading” on Monday, 06 May 2024.\n","date":1710374400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1710374400,"objectID":"663639f6a2cd78d682f1eb51f788229e","permalink":"https://compai-lab.io/post/kiechle_estro_24/","publishdate":"2024-03-14T00:00:00Z","relpermalink":"/post/kiechle_estro_24/","section":"post","summary":"Johannes Kiechle’s abstract has been accepted to be presented as an oral at The European SocieTy for Radiotherapy and Oncology (ESTRO) 2024 Annual Meeting in Glasgow.\nJohannes Kiechle will present his work “Investigating the role of morphology in deep learning-based liposarcoma grading” on Monday, 06 May 2024.","tags":null,"title":"Abstract accepted at ESTRO 2024 (oral talk)","type":"post"},{"authors":["Hannah Eichhorn","Veronika Spieker"],"categories":null,"content":"Veronika Spieker’s and Hannah Eichhorn’s abstracts have been accepted to be presented as orals at the 2024 ISMRM \u0026amp; ISMRT Annual Meeting.\nHannah Eichhorn will present her work “PHIMO: Physics-Informed Motion Correction of GRE MRI for T2 Quantification*” on Tuesday, 07 May 2024 at 8:15 am SGT. Check this GitHub repository for more information.\nVeronika Spieker will present her work “DE-NIK: Leveraging Dual-Echo Data for Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit k-Space Representations” on Monday, 06 May 2024 at 8:15 am SGT. Check this GitHub repository for more information.\n","date":1706745600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1706745600,"objectID":"83844ca2fc30ca519b0cd3ac5ca443dc","permalink":"https://compai-lab.io/post/spieker_eichhorn_ismrm24/","publishdate":"2024-02-01T00:00:00Z","relpermalink":"/post/spieker_eichhorn_ismrm24/","section":"post","summary":"Veronika Spieker’s and Hannah Eichhorn’s abstracts have been accepted to be presented as orals at the 2024 ISMRM \u0026 ISMRT Annual Meeting.\nHannah Eichhorn will present her work “PHIMO: Physics-Informed Motion Correction of GRE MRI for T2 Quantification*” on Tuesday, 07 May 2024 at 8:15 am SGT.","tags":null,"title":"Two abstracts accepted at 2024 ISMRM \u0026 ISMRT Annual Meeting (oral talks)","type":"post"},{"authors":["Veronika Spieker","Hannah Eichhorn"],"categories":null,"content":"Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review by Veronika Spieker and Hannah Eichhorn et al. has been accepted for publication at IEEE Transactions on Medical Imaging.\n Motion remains a major challenge in MRI and various deep learning solutions have been proposed – but what are common challenges and potentials? Check out this review, which identifies differences and synergies of recent methods and bridges the gap between AI and MR physics.\n","date":1698192000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1698192000,"objectID":"1a2d9a9d1a4a2f793c01f725af470a0f","permalink":"https://compai-lab.io/post/spieker_eichhorn_tmi/","publishdate":"2023-10-25T00:00:00Z","relpermalink":"/post/spieker_eichhorn_tmi/","section":"post","summary":"Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review by Veronika Spieker and Hannah Eichhorn et al. has been accepted for publication at IEEE Transactions on Medical Imaging.\n","tags":null,"title":"Review paper accepted at IEEE Transactions on Medical Imaging","type":"post"},{"authors":["Veronika Spieker","Hannah Eichhorn","Kerstin Hammernik","Daniel Rueckert","Christine Preibisch","Dimitrios C. Karampinos","Julia A. Schnabel"],"categories":null,"content":"","date":1697155200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1697155200,"objectID":"418f5e56e8368b75a4c8427055496058","permalink":"https://compai-lab.io/publication/spiekereichhorn-2023-review/","publishdate":"2023-10-13T00:00:00Z","relpermalink":"/publication/spiekereichhorn-2023-review/","section":"publication","summary":"Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.","tags":["motion correction","motion compensation","magnetic resonance imaging","deep learning"],"title":"Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review","type":"publication"},{"authors":["Hannah Eichhorn","Veronika Spieker","Cosmin I. Bercea","Daniel M. Lang","Maxime Di Folco"],"categories":null,"content":"Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.\nInterested to hear more about our work? Then join us at the following workshops:\n Veronika Spieker will be at the DGM4 workshop to talk about Neural Implicit Representations for Abdominal MR Reconstruction on October 8, at 10:25.\n Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the SASHIMI workshop on October 8, at 14:40. Check out the preprint for more information!\n Maxime Di Folco presents at the STACOM workshop on October 12, at 11:15 the work of Josh Stein on “Sparse annotation strategies for segmentation of short axis cardiac MRI” (preprint).\n Cosmin Bercea will talk about Bias in Unsupervised Anomaly Detection at the FAIMI workshop on October 12, at 2:50 PDT.\n Daniel Lang will talk about Anomaly Detection in Non-Contrast Enhanced Breast MRI at the CaPTion workshop on October 12.\n ","date":1694649600,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1694649600,"objectID":"884cf9b1cab38ee1cc29cecd68271fe5","permalink":"https://compai-lab.io/post/iml_miccai_workshops/","publishdate":"2023-09-14T00:00:00Z","relpermalink":"/post/iml_miccai_workshops/","section":"post","summary":"Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.\nInterested to hear more about our work? Then join us at the following workshops:\n","tags":null,"title":"Five papers accepted at MICCAI 2023 workshops","type":"post"},{"authors":["Julia A. Schnabel"],"categories":null,"content":"Interview with Prof. Julia Schnabel by Süddeutsche Zeitung about artificial intelligence in clinical practice. Available online here\n","date":1692748800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1692748800,"objectID":"256e2d5644726692baa59dfd2705e581","permalink":"https://compai-lab.io/post/schnabel_sueddeutsche_23/","publishdate":"2023-08-23T00:00:00Z","relpermalink":"/post/schnabel_sueddeutsche_23/","section":"post","summary":"Interview with Prof. Julia Schnabel by Süddeutsche Zeitung about artificial intelligence in clinical practice. Available online here","tags":null,"title":"Süddeutsche Zeitung Interview with Prof. Julia Schnabel","type":"post"},{"authors":null,"categories":null,"content":"Course details\nConsidering the manifold of medical imaging data, i.e. the underlying topological space, facilitates the analysis, interpretation, and visualization of the data. This seminar focuses on machine and deep learning methods that either learn the manifold from high-dimensional data or use manifold-valued data as input. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed. This includes, but is not limited to:\n Introduction to manifolds Difference between learning on and of a manifold Examples of manifold-valued data in medical imaging State-of-the-art methods for manifold-valued data Clinical applications Please register to: https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx\nCheck the intro slides here: ","date":1689724800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1689724800,"objectID":"608933ad4ec501fd658046c4f7f567c3","permalink":"https://compai-lab.io/teaching/manifold_seminar/","publishdate":"2023-07-19T00:00:00Z","relpermalink":"/teaching/manifold_seminar/","section":"teaching","summary":"Winter semester 2023. TUM Informatics. Master Seminar.","tags":["ws23"],"title":"Learning of and on manifolds in medical imaging (IN2107)","type":"teaching"},{"authors":["Cosmin I. Bercea"],"categories":null,"content":" Anomaly detection aims to identify patterns that do not conform to the expected normal distribution. Despite its importance for clinical applications, the detection of outliers is still a very challenging task due to the rarity, unknownness, diversity, and heterogeneity of anomalies. Basic problem formulations to recent advances in the field will be discussed.\nThis includes, but is not limited to:\n Reconstruction-based anomaly segmentation Probabilistic models, i.e., anomaly likelihood estimation Generative models Self-supervised-, contrastive methods Unsupervised methods Clinical Applications Please register via the TUM matching system: https://matching.in.tum.de\nCheck the intro slides here: ","date":1689724800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1689724800,"objectID":"ab09053a2a206bcd7410b9140648bd24","permalink":"https://compai-lab.io/teaching/anomaly_seminar/","publishdate":"2023-07-19T00:00:00Z","relpermalink":"/teaching/anomaly_seminar/","section":"teaching","summary":"Winter semester 2023. TUM Informatics. Master Seminar.","tags":["ws23"],"title":"Unsupervised Anomaly Detection in Medical Imaging","type":"teaching"},{"authors":["Cosmin I. Bercea"],"categories":null,"content":"“What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection and Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection by Cosmin I. Bercea et al. have been accepted for publication at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.\n Curios what auto-encoders actually learn? Check out this project page to find out more. How can we reverse anomalies in medical images? Check out the project here. ","date":1685059200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1685059200,"objectID":"a0049566b02e8586cbfe27077c921162","permalink":"https://compai-lab.io/post/bercea_miccai/","publishdate":"2023-05-26T00:00:00Z","relpermalink":"/post/bercea_miccai/","section":"post","summary":"“What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection and Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection by Cosmin I. Bercea et al. have been accepted for publication at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.\n","tags":null,"title":"Two papers accepted at MICCAI 2023","type":"post"},{"authors":["Cosmin I. Bercea"],"categories":null,"content":"We are delighted to announce that our research on developing automatic diffusion models for anomaly detection has been accepted and will be published in the proceedings of the 3rd workshop for Interpretable Machine Learning in Healthcare, held at the International Conference on Machine Learning 2023. Congratulations to our dedicated student Michael for his outstanding contribution to this achievement!\nCurious about how to solve the noise paradox illustrated below? Check out our project page.\n ","date":1684972800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1684972800,"objectID":"34b7cbc76b0e5cbc25a6459ba0d80ec5","permalink":"https://compai-lab.io/post/bercea_icml/","publishdate":"2023-05-25T00:00:00Z","relpermalink":"/post/bercea_icml/","section":"post","summary":"We are delighted to announce that our research on developing automatic diffusion models for anomaly detection has been accepted and will be published in the proceedings of the 3rd workshop for Interpretable Machine Learning in Healthcare, held at the International Conference on Machine Learning 2023. Congratulations to our dedicated student Michael for his outstanding contribution to this achievement!\n","tags":null,"title":" Paper accepted at ICML IMLH 2023","type":"post"},{"authors":["Cosmin I. Bercea"],"categories":null,"content":"“Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening” by Cosmin I. Bercea et al. has been accepted for publication at Medical Imaging with Deep Learning, Nashville, 2023. Cosmin Bercea will present his work on Monday, 10 July 2023 at 9:15 pm CEST.\n Moving beyond hyperintensity thresholding: This paper analyzes the challenges and outlines opportunities for advancing the field of unsupervised anomaly detection. Our proposed method RA outperformed SOTA methods on T1w brain MRIs, detecting more global anomalies (AUROC increased from 73.1 to 89.4) and local pathologies (detection rate increased from 52.6% to 86.0%).\nWant to know more? Check the project site.\n","date":1682640000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1682640000,"objectID":"3666dc044c1666623a60e6d9f049d1c6","permalink":"https://compai-lab.io/post/bercea_midl/","publishdate":"2023-04-28T00:00:00Z","relpermalink":"/post/bercea_midl/","section":"post","summary":"“Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening” by Cosmin I. Bercea et al. has been accepted for publication at Medical Imaging with Deep Learning, Nashville, 2023. Cosmin Bercea will present his work on Monday, 10 July 2023 at 9:15 pm CEST.\n","tags":null,"title":"Paper accepted at MIDL 2023 (oral talk)","type":"post"},{"authors":["Hannah Eichhorn","Veronika Spieker"],"categories":null,"content":"Veronika Spieker’s and Hannah Eichhorn’s abstracts have been accepted to be presented as digital posters at the 2023 ISMRM \u0026amp; ISMRT Annual Meeting.\nVeronika Spieker will present her work on “Patient-specific respiratory liver motion analysis for individual motion-resolved reconstruction” on Monday, 05 June 2023 at 1:45 pm EDT.\nHannah Eichhorn will present her work on “Investigating the Impact of Motion and Associated B0 Changes on Oxygenation Sensitive MRI through Realistic Simulations” on Tuesday, 06 June 2023 at 4:45 pm EDT. Check this GitHub repository for more information.\n","date":1682380800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1682380800,"objectID":"6779a3ca2f781bb0731d6a43569954cf","permalink":"https://compai-lab.io/post/spieker_eichhorn_ismrm/","publishdate":"2023-04-25T00:00:00Z","relpermalink":"/post/spieker_eichhorn_ismrm/","section":"post","summary":"Veronika Spieker’s and Hannah Eichhorn’s abstracts have been accepted to be presented as digital posters at the 2023 ISMRM \u0026 ISMRT Annual Meeting.\nVeronika Spieker will present her work on “Patient-specific respiratory liver motion analysis for individual motion-resolved reconstruction” on Monday, 05 June 2023 at 1:45 pm EDT.","tags":null,"title":"Abstracts accepted at 2023 ISMRM \u0026 ISMRT Annual Meeting","type":"post"},{"authors":["Veronika Zimmer"],"categories":null,"content":"Abstract:\nIn recent years, unsupervised and semi-supervised learning from populations of surfaces and curves has received a lot of attention. Such data representations are analyzed according to their shapes which open a broad range of applications in machine learning, robotics, statistics and engineering. In particular, studying the shape of surfaces have become an important tool in biology and medical imaging. The extraction of appropriate data representations, such as triangulated surfaces, is crucial for the subsequent analysis. These surfaces are for example obtained from binary segmentations or 3D point clouds. Using standard methods, such surfaces are often not very accurate and require several post-processing steps, such as smoothing and simplifications. Deep learning based methods are of great interest in various fields such as medical imaging, com- puter vision, applied mathematics and are successfully used in the field of image segmentation. Gener- ally, a specific formulation requires a particular attention to representations, loss functions, probability models, optimization techniques, etc. This choice is very crucial due to the underlying geometry on the space of representations and constraints. we aim to develop a new set of automatic methods that can compute a triangulation and a normal field from a 3D dataset (binary image and/or 3D point cloud). The goal of this project is to understand the-state-of-the-art methods (e.g., [?]) and to propose solutions in the context of constructing a mesh from 3D images/point sets. We are interested in learn- ing from a dataset of smooth surfaces and their corresponding 3D datasets to make the triangulation or resampling accurate. The application will be the extraction of a smooth surfaces from μ-CT and CT data of the cochlea and inner ear, whose shapes can then be analyzed subsequently for population studies. To summarize, the key steps are : (i) Literature review and getting familiar with some state-of- the-art methods in the medical context; (ii) Implementing and testing the code before validation on real data; (iii) Optimizing the code and comparing with baseline methods. If successful, the method would be applied to analyze and classify surfaces.\n","date":1668988800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1668988800,"objectID":"bf9da21574765eff2ab550ec54c26376","permalink":"https://compai-lab.io/vacancies/msc_surface/","publishdate":"2022-11-21T00:00:00Z","relpermalink":"/vacancies/msc_surface/","section":"vacancies","summary":"Master Thesis. [I'm interested](mailto:veronika.zimmer@tum.de?Subject=Master%20Thesis%20IML%20(Zimmer))","tags":["master"],"title":"Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x)","type":"vacancies"},{"authors":["Cosmin I. Bercea"],"categories":null,"content":"Federated disentangled representation learning for unsupervised brain anomaly detection by Cosmin I. Bercea et al. has been published at Nature Machine Intelligence.\n In this work, a federated algorithm was trained on more than 1,500 MR scans of healthy study participants from four institutions while maintaining data privacy with the goal to detect diseases such as multiple sclerosis, vascular disease, and various forms of brain tumors that the algorithm had never seen before.\nCheck the project site for more information.\n","date":1659398400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1659398400,"objectID":"8ea70f12485b23c24b24494b5219e7ae","permalink":"https://compai-lab.io/post/bercea_nature/","publishdate":"2022-08-02T00:00:00Z","relpermalink":"/post/bercea_nature/","section":"post","summary":"Federated disentangled representation learning for unsupervised brain anomaly detection by Cosmin I. Bercea et al. has been published at Nature Machine Intelligence.\n","tags":null,"title":"New publication at Nature Machine Intelligence","type":"post"},{"authors":["Cosmin I. Bercea","Daniel Rueckert","Julia A. Schnabel"],"categories":null,"content":" Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software. ","date":1654646400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1654646400,"objectID":"b7524a66848d63f0c0b893828fe0f4e4","permalink":"https://compai-lab.io/publication/bercea-2022-we/","publishdate":"2022-06-08T00:00:00Z","relpermalink":"/publication/bercea-2022-we/","section":"publication","summary":"Even though auto-encoders (AEs) have the desirable property of learning compact representations without labels and have been widely applied to out-of-distribution (OoD) detection, they are generally still poorly understood and are used incorrectly in detecting outliers where the normal and abnormal distributions are strongly overlapping. In general, the learned manifold is assumed to contain key information that is only important for describing samples within the training distribution, and that the reconstruction of outliers leads to high residual errors. However, recent work suggests that AEs are likely to be even better at reconstructing some types of OoD samples. In this work, we challenge this assumption and investigate what auto-encoders actually learn when they are posed to solve two different tasks. First, we propose two metrics based on the Fréchet inception distance (FID) and confidence scores of a trained classifier to assess whether AEs can learn the training distribution and reliably recognize samples from other domains. Second, we investigate whether AEs are able to synthesize normal images from samples with abnormal regions, on a more challenging lung pathology detection task. We have found that state-of-the-art (SOTA) AEs are either unable to constrain the latent manifold and allow reconstruction of abnormal patterns, or they are failing to accurately restore the inputs from their latent distribution, resulting in blurred or misaligned reconstructions. We propose novel deformable auto-encoders (MorphAEus) to learn perceptually aware global image priors and locally adapt their morphometry based on estimated dense deformation fields. We demonstrate superior performance over unsupervised methods in detecting OoD and pathology.","tags":["unsupervised outlier detection"],"title":"What do we learn? Debunking the Myth of Unsupervised Outlier Detection","type":"publication"},{"authors":null,"categories":null,"content":"The MedtecLIVE Talent Award 2022 is given to bachelor’s and master’s theses that relate to an innovation, improvement, or new application in medical technology along with its entire value chain.\nAfter a first screening of her thesis abstract, Veronika was invited to the live finale in Stuttgart to present her thesis in an 8-minute pitch. The extensiveness of her work, her drive to clinical translation as well as visual and interactive presentation convinced the jury to award her the first prize.\nAs part of her M.Sc. in Medical Technologies at TUM, Veronika conducted her master thesis at the Munich Institute of Robotics and Machine Intelligence (MIRMI) and published her results in Sensors (www.mdpi.com/1424-8220/21/21/7404).\nWe are happy, that she is now pursuing her PhD at our lab at Helmholtz Munich!\nMore information on the finale can be found here:\n https://medizin-und-technik.industrie.de/medizintechnik-studium/talent-award-zur-medtec-live-with-t4m-jetzt-ist-der-nachwuchs-dran/\n https://www.mirmi.tum.de/mirmi/news/article/veronika-spieker-is-honored-with-the-1st-place-medteclive-talent-award-2022/\n ","date":1653868800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1653868800,"objectID":"804d7686387465b4cb1338cbeaa88ada","permalink":"https://compai-lab.io/post/spieker_award/","publishdate":"2022-05-30T00:00:00Z","relpermalink":"/post/spieker_award/","section":"post","summary":"The MedtecLIVE Talent Award 2022 is given to bachelor’s and master’s theses that relate to an innovation, improvement, or new application in medical technology along with its entire value chain.\n","tags":null,"title":"Veronika Spieker wins the 1st place MedtecLIVE Talent Award 2022","type":"post"},{"authors":["Inês P Machado","Esther Puyol-Antón","Kerstin Hammernik","Gastao Cruz","Devran Ugurlu","Ihsane Olakorede","Ilkay Oksuz","Bram Ruijsink","Miguel Castelo-Branco","Alistair A Young"," others"],"categories":null,"content":"","date":1640995200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1640995200,"objectID":"dc15a7fe4ba93cce4a725c3e01ab178d","permalink":"https://compai-lab.io/publication/machado-2022-deep/","publishdate":"2022-06-24T10:30:12.832986Z","relpermalink":"/publication/machado-2022-deep/","section":"publication","summary":"","tags":null,"title":"A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis","type":"publication"},{"authors":["Lei Li","Veronika Zimmer","Julia A. Schnabel","Xiahai Zhuang"],"categories":null,"content":"","date":1640995200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1640995200,"objectID":"09f078aabca6169ef899b5428d19ba16","permalink":"https://compai-lab.io/publication/li-2022-atrialjsqnet/","publishdate":"2022-06-24T10:30:12.833818Z","relpermalink":"/publication/li-2022-atrialjsqnet/","section":"publication","summary":"","tags":null,"title":"AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information","type":"publication"},{"authors":["Laura Dal Toso","Zacharias Chalampalakis","Irène Buvat","Claude Comtat","Gary Cook","Vicky Goh","Julia A. Schnabel","Paul K Marsden"],"categories":null,"content":"","date":1640995200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1640995200,"objectID":"085ad5afaa9651a98e95664343f4dd6b","permalink":"https://compai-lab.io/publication/dal-2022-improved/","publishdate":"2022-06-24T10:30:12.833404Z","relpermalink":"/publication/dal-2022-improved/","section":"publication","summary":"","tags":null,"title":"Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning","type":"publication"},{"authors":null,"categories":null,"content":"Course details\nImage registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:\n Learning and non-learning based image registration Optimization techniques Image registration for multi-modal data Multi-resolution and regularization strategies Linear and non-linear deformations Supervised and unsupervised learning Clinical applications ","date":1640995200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1640995200,"objectID":"e6865756e572cd0f07494f11177e0ada","permalink":"https://compai-lab.io/teaching/master_seminar/","publishdate":"2022-01-01T00:00:00Z","relpermalink":"/teaching/master_seminar/","section":"teaching","summary":"Summer semester 2022. TUM Informatics. Master Seminar. [Details](https://campus.tum.de/tumonline/pl/ui/$ctx/wbLv.wbShowLVDetail?pStpSpNr=950627128)","tags":["ss22"],"title":"Medical Image Registation I (IN2107)","type":"teaching"},{"authors":null,"categories":null,"content":" Course Details Basic Information At the end of the module students should be able to recall the important topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own deep learning projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.\n Introduction: Clinical motivation, clinical data, clinical workflows ML for medical imaging• Data curation for medical applications Domain shift in medical applications: Adversarial learning and Transfer learning Self-supervised learning and unsupervised learning Learning from sparse and noisy data ML for unstructured and multi-modal clinical data NLP for clinical data• Bayesian approaches to deep learning and uncertainty Interpretability and explainability Federated learning, privacy-preserving ML and ethics ML for time-to-event modeling, survival models ML for differential diagnosis and stratification• Clinical applications in pathology/radiology/omics ","date":1633046400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1633046400,"objectID":"c60a51356750103a419f30fff1615555","permalink":"https://compai-lab.io/teaching/aim_lecture/","publishdate":"2021-10-01T00:00:00Z","relpermalink":"/teaching/aim_lecture/","section":"teaching","summary":"Winter 2021. TUM Informatics. Lecture. [Details](https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950596772).","tags":["ws21"],"title":"Artificial Intelligence in Medicine (IN2403)","type":"teaching"},{"authors":null,"categories":null,"content":" Course Details\n Basic Information\n Content\n Introduction and examples of advanced prediction and classification problems in medicine; ML for prognostic and diagnostic tasks; risk scores, time-to-event modeling, survival models, differential diagnosis \u0026amp; population stratification, geometric deep learning: point clouds \u0026amp; meshes, mesh-based segmentation, shape analysis, trustworthy AI in medicine: bias and fairness, generalizability, AI for affordable healthcare, clinical deployment and evaluation, data harmonization, causal inference, transformers, reinforcement learning in medicine, ML for neuro: structural neuroimaging, functional neuroimaging, diffusion imaging, ML for CVD: EEG analysis\n Learning Outcome At the end of the module students should be able to recall advanced topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own AI projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.\n Preconditions IN2403 Artificial Intelligence in Medicine\n","date":1633046400,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1633046400,"objectID":"c042b31d695ddbac90198f6d0212a9dd","permalink":"https://compai-lab.io/teaching/aim_lecture_2/","publishdate":"2021-10-01T00:00:00Z","relpermalink":"/teaching/aim_lecture_2/","section":"teaching","summary":"Summer 2022. TUM Informatics. Lecture. [Details](https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950636169\u0026pSpracheNr=2).","tags":["ss22"],"title":"Artificial Intelligence in Medicine II (IN2408)","type":"teaching"},{"authors":["Ilkay Oksuz","James R Clough","Bram Ruijsink","Esther Puyol Anton","Aurelien Bustin","Gastao Cruz","Claudia Prieto","Andrew P King","Julia A. Schnabel"],"categories":null,"content":"","date":1606780800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1606780800,"objectID":"d19aaabcf1d984f2c0743565f7342a9c","permalink":"https://compai-lab.io/fpublications/pmid-32746141/","publishdate":"2022-06-24T10:22:32.001007Z","relpermalink":"/fpublications/pmid-32746141/","section":"fpublications","summary":"Segmenting anatomical structures in medical images has been successfully addressed with deep learning methods for a range of applications. However, this success is heavily dependent on the quality of the image that is being segmented. A commonly neglected point in the medical image analysis community is the vast amount of clinical images that have severe image artefacts due to organ motion, movement of the patient and/or image acquisition related issues. In this paper, we discuss the implications of image motion artefacts on cardiac MR segmentation and compare a variety of approaches for jointly correcting for artefacts and segmenting the cardiac cavity. The method is based on our recently developed joint artefact detection and reconstruction method, which reconstructs high quality MR images from k-space using a joint loss function and essentially converts the artefact correction task to an under-sampled image reconstruction task by enforcing a data consistency term. In this paper, we propose to use a segmentation network coupled with this in an end-to-end framework. Our training optimises three different tasks: 1) image artefact detection, 2) artefact correction and 3) image segmentation. We train the reconstruction network to automatically correct for motion-related artefacts using synthetically corrupted cardiac MR k-space data and uncorrected reconstructed images. Using a test set of 500 2D+time cine MR acquisitions from the UK Biobank data set, we achieve demonstrably good image quality and high segmentation accuracy in the presence of synthetic motion artefacts. We showcase better performance compared to various image correction architectures.","tags":null,"title":"Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation","type":"fpublications"},{"authors":["Daniel Rueckert","Julia A. Schnabel"],"categories":null,"content":"","date":1577836800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1577836800,"objectID":"491b67809305ab0438c04df9f7074076","permalink":"https://compai-lab.io/fpublications/8867900/","publishdate":"2022-06-24T10:22:32.000407Z","relpermalink":"/fpublications/8867900/","section":"fpublications","summary":"","tags":null,"title":"Model-Based and Data-Driven Strategies in Medical Image Computing","type":"fpublications"},{"authors":["James R Clough","Nicholas Byrne","Ilkay Oksuz","Veronika Zimmer","Julia A. Schnabel","Andrew P King"],"categories":null,"content":"","date":1546300800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1546300800,"objectID":"f443e0153a2d6f19fde7565cf2a49af0","permalink":"https://compai-lab.io/fpublications/clough-2019-topological/","publishdate":"2022-06-24T10:22:31.99995Z","relpermalink":"/fpublications/clough-2019-topological/","section":"fpublications","summary":"","tags":null,"title":"A topological loss function for deep-learning based image segmentation using persistent homology","type":"fpublications"},{"authors":["Ilkay Oksuz","Bram Ruijsink","Esther Puyol-Antón","James R. Clough","Gastao Cruz","Aurelien Bustin","Claudia Prieto","Rene Botnar","Daniel Rueckert","Julia A. Schnabel","Andrew P. King"],"categories":null,"content":"","date":1546300800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1546300800,"objectID":"1c41bee1f64cb40ddac9eea7848901e6","permalink":"https://compai-lab.io/fpublications/oksuz-2019136/","publishdate":"2022-06-24T10:22:32.001616Z","relpermalink":"/fpublications/oksuz-2019136/","section":"fpublications","summary":"Good quality of medical images is a prerequisite for the success of subsequent image analysis pipelines. Quality assessment of medical images is therefore an essential activity and for large population studies such as the UK Biobank (UKBB), manual identification of artefacts such as those caused by unanticipated motion is tedious and time-consuming. Therefore, there is an urgent need for automatic image quality assessment techniques. In this paper, we propose a method to automatically detect the presence of motion-related artefacts in cardiac magnetic resonance (CMR) cine images. We compare two deep learning architectures to classify poor quality CMR images: 1) 3D spatio-temporal Convolutional Neural Networks (3D-CNN), 2) Long-term Recurrent Convolutional Network (LRCN). Though in real clinical setup motion artefacts are common, high-quality imaging of UKBB, which comprises cross-sectional population data of volunteers who do not necessarily have health problems creates a highly imbalanced classification problem. Due to the high number of good quality images compared to the relatively low number of images with motion artefacts, we propose a novel data augmentation scheme based on synthetic artefact creation in k-space. We also investigate a learning approach using a predetermined curriculum based on synthetic artefact severity. We evaluate our pipeline on a subset of the UK Biobank data set consisting of 3510 CMR images. The LRCN architecture outperformed the 3D-CNN architecture and was able to detect 2D+time short axis images with motion artefacts in less than 1ms with high recall. We compare our approach to a range of state-of-the-art quality assessment methods. The novel data augmentation and curriculum learning approaches both improved classification performance achieving overall area under the ROC curve of 0.89.","tags":["Cardiac MR motion artefacts","Image quality assessment","Artifact","Convolutional neural networks","LSTM"],"title":"Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning","type":"fpublications"},{"authors":["Julia A. Schnabel","Mattias P. Heinrich","Bartłomiej W. Papież","Sir J. Michael Brady"],"categories":null,"content":"","date":1475280000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1475280000,"objectID":"80a82987809cd05557e3ff7d4f5bdb23","permalink":"https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/","publishdate":"2022-06-24T10:22:32.002102Z","relpermalink":"/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/","section":"fpublications","summary":"Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.","tags":["Demons","Discrete optimization","Registration uncertainty","Sliding motion","Supervoxels","Multi-modality"],"title":"Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling","type":"fpublications"},{"authors":["Mattias P Heinrich","Mark Jenkinson","Manav Bhushan","Tahreema Matin","Fergus V Gleeson","Michael Brady","Julia A. Schnabel"],"categories":null,"content":"","date":1325376000,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1325376000,"objectID":"c285d6052f6a1404711a98600f07ff83","permalink":"https://compai-lab.io/fpublications/heinrich-2012-mind/","publishdate":"2022-06-24T10:22:31.99789Z","relpermalink":"/fpublications/heinrich-2012-mind/","section":"fpublications","summary":"","tags":null,"title":"MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration","type":"fpublications"},{"authors":["Daniel Rueckert","Alejandro F Frangi","Julia A. Schnabel"],"categories":null,"content":"","date":1041379200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":1041379200,"objectID":"bcc52780246602a229b208580b80bea5","permalink":"https://compai-lab.io/fpublications/rueckert-2003-automatic/","publishdate":"2022-06-24T10:04:06.366031Z","relpermalink":"/fpublications/rueckert-2003-automatic/","section":"fpublications","summary":"","tags":null,"title":"Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration","type":"fpublications"},{"authors":["Julia A. Schnabel","Daniel Rueckert","Marcel Quist","Jane M Blackall","Andy D Castellano-Smith","Thomas Hartkens","Graeme P Penney","Walter A Hall","Haiying Liu","Charles L Truwit"," others"],"categories":null,"content":"","date":978307200,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":978307200,"objectID":"8deac30695c3cd5d32ac51b194bcdf89","permalink":"https://compai-lab.io/fpublications/schnabel-2001-generic/","publishdate":"2022-06-24T10:22:31.999409Z","relpermalink":"/fpublications/schnabel-2001-generic/","section":"fpublications","summary":"","tags":null,"title":"A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations","type":"fpublications"},{"authors":null,"categories":null,"content":"","date":-62135596800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":-62135596800,"objectID":"6d99026b9e19e4fa43d5aadf147c7176","permalink":"https://compai-lab.io/contact/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/contact/","section":"","summary":"","tags":null,"title":"","type":"widget_page"},{"authors":null,"categories":null,"content":"","date":-62135596800,"expirydate":-62135596800,"kind":"page","lang":"en","lastmod":-62135596800,"objectID":"b0d61e5cbb7472bf320bf0ef2aaeb977","permalink":"https://compai-lab.io/tour/","publishdate":"0001-01-01T00:00:00Z","relpermalink":"/tour/","section":"","summary":"","tags":null,"title":"Tour","type":"widget_page"}] \ No newline at end of file diff --git a/index.xml b/index.xml new file mode 100644 index 0000000..19dc35b --- /dev/null +++ b/index.xml @@ -0,0 +1,955 @@ + + + + Computational Imaging and AI in Medicine + https://compai-lab.io/ + + Computational Imaging and AI in Medicine + Wowchemy (https://wowchemy.com)en-usSat, 01 Jun 2030 13:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Computational Imaging and AI in Medicine + https://compai-lab.io/ + + + + Example Event + https://compai-lab.io/event/example/ + Sat, 01 Jun 2030 13:00:00 +0000 + https://compai-lab.io/event/example/ + <p>Slides can be added in a few ways:</p> +<ul> +<li><strong>Create</strong> slides using Wowchemy&rsquo;s <a href="https://wowchemy.com/docs/managing-content/#create-slides" target="_blank" rel="noopener"><em>Slides</em></a> feature and link using <code>slides</code> parameter in the front matter of the talk file</li> +<li><strong>Upload</strong> an existing slide deck to <code>static/</code> and link using <code>url_slides</code> parameter in the front matter of the talk file</li> +<li><strong>Embed</strong> your slides (e.g. Google Slides) or presentation video on this page using <a href="https://wowchemy.com/docs/writing-markdown-latex/" target="_blank" rel="noopener">shortcodes</a>.</li> +</ul> +<p>Further event details, including page elements such as image galleries, can be added to the body of this page.</p> + + + + + Latent Functional Maps for Medical Imaging + https://compai-lab.io/vacancies/msc_functionalmaps/ + Tue, 13 Aug 2024 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_functionalmaps/ + <p>Abstract:</p> +<p>Neural Networks (NNs) learn to represent high-dimensional data as elements of lower-dimensional latent spaces. Modeling the relationships between these representational spaces is an ongoing challenge. Successfully addressing this challenge could enable the reuse of representations in downstream tasks, reducing the need to retrain similar models multiple times. Recently, Fumero et al. leveraged the internal geometry of representations and proposed applying latent functional maps to align representations across distinct models, demonstrating its relevance for comparing representations. However, these kinds of approaches have not yet been explored in the context of medical imaging datasets, where aligning multimodal representa- +tions could significantly enhance the effectiveness of models in medical applications. This project aims to use latent functional maps to align multimodal medical representations (e.g., text and vision). The first part of the thesis will involve a literature review on representation similarity. This will be followed by experimenting with the latent functional maps approach on a toy dataset of medical images and later applying it to real medical imaging tasks.</p> + + + + + AI for Vision-Language Models in Medical Imaging (IN2107) + https://compai-lab.io/teaching/vlm_seminar/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/teaching/vlm_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/vlm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p><strong>Time</strong>: Wednesday 14-16.</p> +<p><strong>Location</strong>: - Garching (in-person): FMI, 5610.01.11 <a href="https://nav.tum.de/room/5610.01.011" target="_blank" rel="noopener">https://nav.tum.de/room/5610.01.011</a></p> +<ul> +<li>some invited talks on Zoom: <a href="https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09" target="_blank" rel="noopener">https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09</a></li> +</ul> +<p>Vision-language models (VLMs) in medical imaging leverage the integration of visual data and textual information to enhance representation learning. These models can be pre-trained to improve representations, enabling a wide range of downstream applications. This seminar will explore foundational concepts, current methodologies, and recent advancements in applying vision-language models to diverse tasks in medical imaging, such as:</p> +<ul> +<li>Synthetic image synthesis</li> +<li>Anomaly detection</li> +<li>Clinical report generation</li> +<li>Visual-question answering</li> +<li>Classification</li> +<li>Segmentation</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an e-mail to <a href="mailto:cosmin.bercea@tum.de">cosmin.bercea@tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/VLM_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/VLM_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Master Seminar - Medical Image Registration (IN2107, IN4462) + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + <p><strong>Time</strong>: Wednesday 10-12 a.m.</p> +<p><strong>Location</strong>: Garching (in-person)</p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning</li> +<li>Interest in medical image analysis</li> +</ul> +<p>Goal and organization:</p> +<p>The participating students will learn the fundamental concepts of image registration. They will acquire the skills to analyze critically state-of-the-art research work and to define own research questions. Basic concepts will be introduced with an overview of different research topics. +The participants will select a research paper (suggestions given by the lecturers) and independently work on it with a final oral presentation and a written report. +Presentations of members of international research groups will provide the students with insights into state-of-the-art research in the field.</p> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an email to <a href="mailto:anna.reithmeir@tum.de">anna.reithmeir@tum.de</a>.</p> +<p>The seminar will take place Wednesdays from 10 a.m. to 12.a.m. in Garching.</p> + + + + + Temporal Landmark Tracking on Medical Imaging + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + <p>Abstract:</p> +<p>Even though various learning-based computer vision methods have been developed for pixel tracking, motion estimation in video data depicts a challenging task. Part of the problem arises from the 3D-to-2D projection process that can lead to out-of-plane motion, which impedes long-range pixel trajectory estimation. In the medical domain, video data, i.e. fast magnetic resonance imaging (MRI) sequences, can be used for guidance during treatment. Specifically, in radiation therapy, contouring algorithms are used for tracking of the target volume supposed to receive the main radiation dose during treatment. Delineation can, for example, be performed with a U-Net architecture. However, such an approach only allows for identification of larger structures, while irregular movement can be subtle and localized. Landmark detection models are able to identify such localized regions between different representations of the same object. Furthermore, they are faster than semantic segmentation models, and therefore, allow for computer aided intervention during treatment. In this thesis, different state-of-the-art landmark and pixel tracking algorithms will be tested and further enhanced to identify movement on temporal imaging data of the lungs, i.e. 4D CT. Furthermore, ability of such landmarks to identify movement differing from a normal state, i.e. allowing for identification of anomalies, will be studied.</p> + + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Paper Accepted at MELBA Journal + https://compai-lab.io/post/fischer_melba_24/ + Fri, 14 Jun 2024 00:00:00 +0000 + https://compai-lab.io/post/fischer_melba_24/ + <p>Stefan M. Fischer&rsquo;s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.<br> +Therefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal. +The journal submission &ldquo;<em>Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge</em>&rdquo; is now available at MELBA.<br> +The paper is available <a href="https://www.melba-journal.org/papers/2024:008.html" target="_blank" rel="noopener">here</a>.</p> + + + + + Hannah Eichhorn elected as ISMRM Study Group Trainee Representative + https://compai-lab.io/post/eichhorn_study_group_5_24/ + Thu, 23 May 2024 00:00:00 +0000 + https://compai-lab.io/post/eichhorn_study_group_5_24/ + <p>Hannah Eichhorn has been elected as Trainee Representative of the ISMRM Motion Detection &amp; Correction Study Group. She started her term at the ISMRM Annual Meeting in Singapore in the beginning of May.</p> +<p>The Study Group&rsquo;s mission is to investigate how various forms of motion can affect MR data, how motion can be detected, how to deal best with motion-corrupted data, and what can be done to prevent MR data from getting corrupted by motion.</p> + + + + + German Radiological Society Awards the Alfred Breit Prize to Prof. Julia Schnabel + https://compai-lab.io/post/schnabel_alfred_breit_preis_24/ + Fri, 10 May 2024 00:00:00 +0000 + https://compai-lab.io/post/schnabel_alfred_breit_preis_24/ + <p>The Alfred Breit Prize 2024 of the Radiological Society was awarded to Prof. Julia Schnabel, Professor at the Technical University of Munich and Director at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. The prize honors outstanding work in the research of radio-oncology.</p> +<p>More information <a href="https://www.drg.de/de-DE/10884/zweifache-ehrung-drg-verleiht-alfred-breit-preis-an-prof-dr-julia-schnabel-aus-muenchen-und-prof-dr-norbert-hosten-aus-greifswald/" target="_blank" rel="noopener">here</a> and <a href="https://www.helmholtz-munich.de/newsroom/news/artikel/deutsche-roentgengesellschaft-verleiht-alfred-breit-preis-an-prof-julia-schnabel" target="_blank" rel="noopener">here</a>.</p> + + + + + Paper accepted at SPIE Medical Imaging 2024 and Finalist of Best Student Paper Award + https://compai-lab.io/post/reithmeir_spie_24/ + Wed, 20 Mar 2024 00:00:00 +0000 + https://compai-lab.io/post/reithmeir_spie_24/ + <p>Anna Reithmeir&rsquo;s paper &lsquo;Learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks&rsquo; was accepted at SPIE Medical Imaging 2024 which was held 18-22 Feb. 2024 in San Diego, US.</p> +<p>The paper is among the finalists for the best student paper award.</p> + + + + + Paper accepted at ISBI 2024 + https://compai-lab.io/post/kiechle_isbi_24/ + Fri, 15 Mar 2024 00:00:00 +0000 + https://compai-lab.io/post/kiechle_isbi_24/ + <p>Johannes Kiechle&rsquo;s paper has been accepted to be presented at International Symposium on Biomedical Imaging 2024 Annual Meeting in Athens.</p> +<p>Johannes Kiechle will present his work &ldquo;<em>Unifying Local and Global Shape Descriptors to Grade Soft-Tissue Sarcomas using Graph Convolutional Networks</em>&rdquo;.</p> + + + + + Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107) + https://compai-lab.io/teaching/domain_adaptation_seminar/ + Fri, 15 Mar 2024 00:00:00 +0000 + https://compai-lab.io/teaching/domain_adaptation_seminar/ + <p><a href="https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950769202?$scrollTo=toc_overview" target="_blank" rel="noopener">Course details</a></p> +<p>Transfer learning enables the effective utilization of knowledge gained from one task or domain to enhance performance in another, while domain adaptation focuses on adapting models trained on a particular domain to perform well in related but different domains. +This seminar looks at the concepts of transfer learning and domain adaptation in general and with the application in medical imaging. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed.</p> +<p>Key topics to be covered include:</p> +<ul> +<li>Introduction to transfer learning and domain adaptation</li> +<li>Implications in the context of medical imaging</li> +<li>Examples of transfer learning and domain adaptation in medical imaging</li> +<li>State-of-the-art methods</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning/deep learning</li> +<li>Interest in medical image analysis</li> +<li>Interest in research</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/slides_domain_adaptation_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/slides_domain_adaptation_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Abstract accepted at ESTRO 2024 (oral talk) + https://compai-lab.io/post/kiechle_estro_24/ + Thu, 14 Mar 2024 00:00:00 +0000 + https://compai-lab.io/post/kiechle_estro_24/ + <p>Johannes Kiechle&rsquo;s abstract has been accepted to be presented as an oral at The European SocieTy for Radiotherapy and Oncology (ESTRO) 2024 Annual Meeting in Glasgow.</p> +<p>Johannes Kiechle will present his work &ldquo;<em>Investigating the role of morphology in deep learning-based liposarcoma grading</em>&rdquo; on Monday, 06 May 2024.</p> + + + + + Two abstracts accepted at 2024 ISMRM & ISMRT Annual Meeting (oral talks) + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + Thu, 01 Feb 2024 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as orals at the 2024 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Hannah Eichhorn will present her work &ldquo;<em>PHIMO: Physics-Informed Motion Correction of GRE MRI for T2</em> Quantification*&rdquo; on Tuesday, 07 May 2024 at 8:15 am SGT. Check <a href="https://github.com/HannahEichhorn/PHIMO" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> +<p>Veronika Spieker will present her work &ldquo;<em>DE-NIK: Leveraging Dual-Echo Data for Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit k-Space Representations</em>&rdquo; on Monday, 06 May 2024 at 8:15 am SGT. Check <a href="https://github.com/vjspi/DE-NIK" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + Review paper accepted at IEEE Transactions on Medical Imaging + https://compai-lab.io/post/spieker_eichhorn_tmi/ + Wed, 25 Oct 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_tmi/ + <p><em>Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review</em> by Veronika Spieker and Hannah Eichhorn et al. has been accepted for publication at IEEE Transactions on Medical Imaging.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img alt="img" srcset=" + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp 400w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_59a22aa363f30bc9c49ab63c04f6c200.webp 760w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_1200x1200_fit_q75_h2_lanczos_3.webp 1200w" + src="https://compai-lab.io/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp" + width="760" + height="713" + loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Motion remains a major challenge in MRI and various deep learning solutions have been proposed – but what are common challenges and potentials? Check out <a href="https://ieeexplore.ieee.org/document/10285512" target="_blank" rel="noopener">this review</a>, which identifies differences and synergies of recent methods and bridges the gap between AI and MR physics.</p> + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + Five papers accepted at MICCAI 2023 workshops + https://compai-lab.io/post/iml_miccai_workshops/ + Thu, 14 Sep 2023 00:00:00 +0000 + https://compai-lab.io/post/iml_miccai_workshops/ + <p>Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p>Interested to hear more about our work? Then join us at the following workshops:</p> +<ul> +<li> +<p>Veronika Spieker will be at the <a href="https://dgm4miccai.github.io/" target="_blank" rel="noopener">DGM4</a> workshop to talk about <a href="https://arxiv.org/abs/2308.08830" target="_blank" rel="noopener">Neural Implicit Representations for Abdominal MR Reconstruction</a> on October 8, at 10:25.</p> +</li> +<li> +<p>Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the <a href="https://2023.sashimi-workshop.org/program/" target="_blank" rel="noopener">SASHIMI</a> workshop on October 8, at 14:40. Check out the <a href="https://arxiv.org/abs/2303.10987" target="_blank" rel="noopener">preprint</a> for more information!</p> +</li> +<li> +<p>Maxime Di Folco presents at the <a href="https://stacom.github.io/stacom2023/" target="_blank" rel="noopener">STACOM</a> workshop on October 12, at 11:15 the work of Josh Stein on &ldquo;Sparse annotation strategies for segmentation of short axis cardiac MRI&rdquo; (<a href="https://arxiv.org/abs/2307.12619" target="_blank" rel="noopener">preprint</a>).</p> +</li> +<li> +<p>Cosmin Bercea will talk about <a href="https://arxiv.org/pdf/2308.13861.pdf" target="_blank" rel="noopener">Bias in Unsupervised Anomaly Detection</a> at the <a href="https://faimi-workshop.github.io/2023-miccai/" target="_blank" rel="noopener">FAIMI</a> workshop on October 12, at 2:50 PDT.</p> +</li> +<li> +<p>Daniel Lang will talk about <a href="https://arxiv.org/abs/2303.05861" target="_blank" rel="noopener">Anomaly Detection in Non-Contrast Enhanced Breast MRI</a> at the <a href="https://caption-workshop.github.io/miccai2023/#Workshop%20sessions" target="_blank" rel="noopener">CaPTion</a> workshop on October 12.</p> +</li> +</ul> + + + + Süddeutsche Zeitung Interview with Prof. Julia Schnabel + https://compai-lab.io/post/schnabel_sueddeutsche_23/ + Wed, 23 Aug 2023 00:00:00 +0000 + https://compai-lab.io/post/schnabel_sueddeutsche_23/ + <p>Interview with Prof. Julia Schnabel by Süddeutsche Zeitung about artificial intelligence in clinical practice. Available online <a href="https://www.sueddeutsche.de/kultur/kuenstliche-intelligenz-medizin-gesundheitsversorgung-1.6074505?reduced=true" target="_blank" rel="noopener">here</a></p> + + + + + Learning of and on manifolds in medical imaging (IN2107) + https://compai-lab.io/teaching/manifold_seminar/ + Wed, 19 Jul 2023 00:00:00 +0000 + https://compai-lab.io/teaching/manifold_seminar/ + <p><a href="https://campus.tum.de/tumonline/wblv.wbShowLvDetail?pStpSpNr=950706204" target="_blank" rel="noopener">Course details</a></p> +<p>Considering the manifold of medical imaging data, i.e. the underlying topological space, facilitates the analysis, interpretation, and visualization of the data. This seminar focuses on machine and deep learning methods that either learn the manifold from high-dimensional data or use manifold-valued data as input. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed. This includes, but is not +limited to:</p> +<ul> +<li>Introduction to manifolds</li> +<li>Difference between learning on and of a manifold</li> +<li>Examples of manifold-valued data in medical imaging</li> +<li>State-of-the-art methods for manifold-valued data</li> +<li>Clinical applications</li> +</ul> +<p>Please register to: <a href="https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx" target="_blank" rel="noopener">https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/Manifold_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/Manifold_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Unsupervised Anomaly Detection in Medical Imaging + https://compai-lab.io/teaching/anomaly_seminar/ + Wed, 19 Jul 2023 00:00:00 +0000 + https://compai-lab.io/teaching/anomaly_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/autoddpm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Anomaly detection aims to identify patterns that do not conform to the expected normal distribution. Despite its importance for clinical applications, the detection of outliers is still a very challenging task due to the rarity, unknownness, diversity, and heterogeneity of anomalies. Basic problem formulations to recent advances in the field will be discussed.</p> +<p>This includes, but is not limited to:</p> +<ul> +<li>Reconstruction-based anomaly segmentation</li> +<li>Probabilistic models, i.e., anomaly likelihood estimation</li> +<li>Generative models</li> +<li>Self-supervised-, contrastive methods</li> +<li>Unsupervised methods</li> +<li>Clinical Applications</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/UAD_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/UAD_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Two papers accepted at MICCAI 2023 + https://compai-lab.io/post/bercea_miccai/ + Fri, 26 May 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_miccai/ + <p>&ldquo;<em>What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection</em> and <em>Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection</em> by Cosmin I. Bercea et al. have been accepted for publication at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/morphaeus.gif" alt="MorphAEus" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<ul> +<li>Curios what auto-encoders actually learn? Check out <a href="https://ci.bercea.net/project/morphaeus/" target="_blank" rel="noopener">this</a> project page to find out more.</li> +</ul> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/phanes.gif" alt="PHANES" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<ul> +<li>How can we reverse anomalies in medical images? Check out the project <a href="https://ci.bercea.net/project/phanes/" target="_blank" rel="noopener">here</a>.</li> +</ul> + + + + Paper accepted at ICML IMLH 2023 + https://compai-lab.io/post/bercea_icml/ + Thu, 25 May 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_icml/ + <p>We are delighted to announce that our research on developing automatic diffusion models for anomaly detection has been accepted and will be published in the proceedings of the 3rd workshop for Interpretable Machine Learning in Healthcare, held at the International Conference on Machine Learning 2023. Congratulations to our dedicated student Michael for his outstanding contribution to this achievement!</p> +<p>Curious about how to solve the noise paradox illustrated below? Check out our <a href="https://ci.bercea.net/project/autoddpm/" target="_blank" rel="noopener">project page</a>.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/noise_paradox.gif" alt="AutoDDPM" loading="lazy" data-zoomable /></div> + </div></figure> +</p> + + + + Paper accepted at MIDL 2023 (oral talk) + https://compai-lab.io/post/bercea_midl/ + Fri, 28 Apr 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_midl/ + <p>&ldquo;<em>Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening</em>&rdquo; by Cosmin I. Bercea et al. has been accepted for publication at Medical Imaging with Deep Learning, Nashville, 2023. Cosmin Bercea will present his work on Monday, 10 July 2023 at 9:15 pm CEST.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/ra.png" alt="RA" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Moving beyond hyperintensity thresholding: This paper analyzes the challenges and outlines opportunities for advancing the field of unsupervised anomaly detection. Our proposed method RA outperformed SOTA methods on T1w brain MRIs, detecting more global anomalies (AUROC increased from 73.1 to 89.4) and local pathologies (detection rate increased from 52.6% to 86.0%).</p> +<p>Want to know more? Check the <a href="https://ci.bercea.net/project/ra/" target="_blank" rel="noopener">project site</a>.</p> + + + + Abstracts accepted at 2023 ISMRM & ISMRT Annual Meeting + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + Tue, 25 Apr 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as digital posters at the 2023 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Veronika Spieker will present her work on &ldquo;<em>Patient-specific respiratory liver motion analysis for individual motion-resolved reconstruction</em>&rdquo; on Monday, 05 June 2023 at 1:45 pm EDT.</p> +<p>Hannah Eichhorn will present her work on &ldquo;<em>Investigating the Impact of Motion and Associated B0 Changes on Oxygenation Sensitive MRI through Realistic Simulations</em>&rdquo; on Tuesday, 06 June 2023 at 4:45 pm EDT. Check <a href="https://github.com/HannahEichhorn/T2starRealisticMotionSimulation" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) + https://compai-lab.io/vacancies/msc_surface/ + Mon, 21 Nov 2022 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_surface/ + <p>Abstract:</p> +<p>In recent years, unsupervised and semi-supervised learning from populations of surfaces and curves has received a lot of attention. Such data representations are analyzed according to their shapes which open a broad range of applications in machine learning, robotics, statistics and engineering. In particular, studying the shape of surfaces have become an important tool in biology and medical imaging. The extraction of appropriate data representations, such as triangulated surfaces, is crucial for the subsequent analysis. These surfaces are for example obtained from binary segmentations or 3D point clouds. Using standard methods, such surfaces are often not very accurate and require several post-processing steps, such as smoothing and simplifications. +Deep learning based methods are of great interest in various fields such as medical imaging, com- puter vision, applied mathematics and are successfully used in the field of image segmentation. Gener- ally, a specific formulation requires a particular attention to representations, loss functions, probability models, optimization techniques, etc. This choice is very crucial due to the underlying geometry on the space of representations and constraints. we aim to develop a new set of automatic methods that can compute a triangulation and a normal field from a 3D dataset (binary image and/or 3D point cloud). +The goal of this project is to understand the-state-of-the-art methods (e.g., [?]) and to propose solutions in the context of constructing a mesh from 3D images/point sets. We are interested in learn- ing from a dataset of smooth surfaces and their corresponding 3D datasets to make the triangulation or resampling accurate. The application will be the extraction of a smooth surfaces from μ-CT and CT data of the cochlea and inner ear, whose shapes can then be analyzed subsequently for population studies. +To summarize, the key steps are : (i) Literature review and getting familiar with some state-of- the-art methods in the medical context; (ii) Implementing and testing the code before validation on real data; (iii) Optimizing the code and comparing with baseline methods. If successful, the method would be applied to analyze and classify surfaces.</p> + + + + + New publication at Nature Machine Intelligence + https://compai-lab.io/post/bercea_nature/ + Tue, 02 Aug 2022 00:00:00 +0000 + https://compai-lab.io/post/bercea_nature/ + <p><em>Federated disentangled representation learning for unsupervised brain anomaly detection</em> by Cosmin I. Bercea et al. has been published at Nature Machine Intelligence.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/feddis.png" alt="Feddis" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>In this work, a federated algorithm was trained on more than 1,500 MR scans of healthy study participants from four institutions while maintaining data privacy with the goal to detect diseases such as multiple sclerosis, vascular disease, and various forms of brain tumors that the algorithm had never seen before.</p> +<p>Check the <a href="https://ci.bercea.net/project/feddis/" target="_blank" rel="noopener">project site</a> for more information.</p> + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection + https://compai-lab.io/publication/bercea-2022-we/ + Wed, 08 Jun 2022 00:00:00 +0000 + https://compai-lab.io/publication/bercea-2022-we/ + <div class="alert alert-note"> + <div> + Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software. + </div> +</div> + + + + + Veronika Spieker wins the 1st place MedtecLIVE Talent Award 2022 + https://compai-lab.io/post/spieker_award/ + Mon, 30 May 2022 00:00:00 +0000 + https://compai-lab.io/post/spieker_award/ + <p>The MedtecLIVE Talent Award 2022 is given to bachelor&rsquo;s and master&rsquo;s theses that relate to an innovation, improvement, or new application in medical technology along with its entire value chain.</p> +<p>After a first screening of her thesis abstract, Veronika was invited to the live finale in Stuttgart to present her thesis in an 8-minute pitch. The extensiveness of her work, her drive to clinical translation as well as visual and interactive presentation convinced the jury to award her the first prize.</p> +<p>As part of her M.Sc. in Medical Technologies at TUM, Veronika conducted her master thesis at the Munich Institute of Robotics and Machine Intelligence (MIRMI) and published her results in Sensors (<a href="https://www.mdpi.com/1424-8220/21/21/7404%29" target="_blank" rel="noopener">www.mdpi.com/1424-8220/21/21/7404)</a>.</p> +<p>We are happy, that she is now pursuing her PhD at our lab at Helmholtz Munich!</p> +<p>More information on the finale can be found here:</p> +<ul> +<li> +<p><a href="https://medizin-und-technik.industrie.de/medizintechnik-studium/talent-award-zur-medtec-live-with-t4m-jetzt-ist-der-nachwuchs-dran/" target="_blank" rel="noopener">https://medizin-und-technik.industrie.de/medizintechnik-studium/talent-award-zur-medtec-live-with-t4m-jetzt-ist-der-nachwuchs-dran/</a></p> +</li> +<li> +<p><a href="https://www.mirmi.tum.de/mirmi/news/article/veronika-spieker-is-honored-with-the-1st-place-medteclive-talent-award-2022/" target="_blank" rel="noopener">https://www.mirmi.tum.de/mirmi/news/article/veronika-spieker-is-honored-with-the-1st-place-medteclive-talent-award-2022/</a></p> +</li> +</ul> + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + Medical Image Registation I (IN2107) + https://compai-lab.io/teaching/master_seminar/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/teaching/master_seminar/ + <p><a href="https://campus.tum.de/tumonline/pl/ui/$ctx/wbLv.wbShowLVDetail?pStpSpNr=950627128" target="_blank" rel="noopener">Course details</a></p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> + + + + + Artificial Intelligence in Medicine (IN2403) + https://compai-lab.io/teaching/aim_lecture/ + Fri, 01 Oct 2021 00:00:00 +0000 + https://compai-lab.io/teaching/aim_lecture/ + <ul> +<li><a href="https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950596772" target="_blank" rel="noopener">Course Details</a></li> +<li><a href="https://www.ph.tum.de/academics/org/cc/mh/IN2403/" target="_blank" rel="noopener">Basic Information</a></li> +</ul> +<p>At the end of the module students should be able to recall the important topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own deep learning projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.</p> +<ul> +<li>Introduction: Clinical motivation, clinical data, clinical workflows</li> +<li>ML for medical imaging• Data curation for medical applications</li> +<li>Domain shift in medical applications: Adversarial learning and Transfer learning</li> +<li>Self-supervised learning and unsupervised learning</li> +<li>Learning from sparse and noisy data</li> +<li>ML for unstructured and multi-modal clinical data</li> +<li>NLP for clinical data• Bayesian approaches to deep learning and uncertainty</li> +<li>Interpretability and explainability</li> +<li>Federated learning, privacy-preserving ML and ethics</li> +<li>ML for time-to-event modeling, survival models</li> +<li>ML for differential diagnosis and stratification• Clinical applications in pathology/radiology/omics</li> +</ul> + + + + + Artificial Intelligence in Medicine II (IN2408) + https://compai-lab.io/teaching/aim_lecture_2/ + Fri, 01 Oct 2021 00:00:00 +0000 + https://compai-lab.io/teaching/aim_lecture_2/ + <ul> +<li> +<p><a href="https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950636169&amp;pSpracheNr=2" target="_blank" rel="noopener">Course Details</a></p> +</li> +<li> +<p><a href="https://www.ph.tum.de/academics/org/cc/course/950636169/" target="_blank" rel="noopener">Basic Information</a></p> +</li> +<li> +<p>Content</p> +</li> +</ul> +<p>Introduction and examples of advanced prediction and classification problems in medicine; ML for prognostic and diagnostic tasks; risk scores, time-to-event modeling, survival models, differential diagnosis &amp; population stratification, geometric deep learning: point clouds &amp; meshes, mesh-based segmentation, shape analysis, trustworthy AI in medicine: bias and fairness, generalizability, AI for affordable healthcare, clinical deployment and evaluation, data harmonization, causal inference, transformers, reinforcement learning in medicine, ML for neuro: structural neuroimaging, functional neuroimaging, diffusion imaging, ML for CVD: EEG analysis</p> +<ul> +<li>Learning Outcome</li> +</ul> +<p>At the end of the module students should be able to recall advanced topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own AI projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.</p> +<ul> +<li>Preconditions</li> +</ul> +<p>IN2403 Artificial Intelligence in Medicine</p> + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Model-Based and Data-Driven Strategies in Medical Image Computing + https://compai-lab.io/fpublications/8867900/ + Wed, 01 Jan 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/8867900/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + Wed, 01 Jan 2003 00:00:00 +0000 + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + + https://compai-lab.io/admin/config.yml + Mon, 01 Jan 0001 00:00:00 +0000 + https://compai-lab.io/admin/config.yml + + + + + + https://compai-lab.io/contact/ + Mon, 01 Jan 0001 00:00:00 +0000 + https://compai-lab.io/contact/ + + + + + Tour + https://compai-lab.io/tour/ + Mon, 01 Jan 0001 00:00:00 +0000 + https://compai-lab.io/tour/ + + + + + diff --git a/js/vendor-bundle.min.53d67dc2cb1ebceb89d5e2aba2f86112.js b/js/vendor-bundle.min.53d67dc2cb1ebceb89d5e2aba2f86112.js new file mode 100644 index 0000000..7a10623 --- /dev/null +++ b/js/vendor-bundle.min.53d67dc2cb1ebceb89d5e2aba2f86112.js @@ -0,0 +1 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(s,tk){"use strict";var e,c,h,v,O,C,S,F,N,R,K,Z,J,g=[],to=Object.getPrototypeOf,b=g.slice,tt=g.flat?function(e){return g.flat.call(e)}:function(e){return g.concat.apply([],e)},ep=g.push,$=g.indexOf,Y={},eV=Y.toString,Q=Y.hasOwnProperty,eO=Q.toString,tE=eO.call(Object),i={},n=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},T=function(e){return null!=e&&e===e.window},o=s.document,tC={type:!0,src:!0,nonce:!0,noModule:!0},e3,e0,eR,eI,eW,eU,ta,ec,ey,ef,eK,e$,eY,tu,tn,ts,tr,e1,et,eG,tc,en,e5,ti,eA;function e7(a,e,s){var t,i,n=(s=s||o).createElement("script");if(n.text=a,e)for(t in tC)(i=e[t]||e.getAttribute&&e.getAttribute(t))&&n.setAttribute(t,i);s.head.appendChild(n).parentNode.removeChild(n)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?Y[eV.call(e)]||"object":typeof e}e3="3.6.0",e=function(t,n){return new e.fn.init(t,n)};function e2(e){var t=!!e&&"length"in e&&e.length,s=w(e);return!n(e)&&!T(e)&&("array"===s||0===t||"number"==typeof t&&0+~]|"+t+")"+t+"*"),e6=new RegExp(t+"|>"),ef=new RegExp(I),e8=new RegExp("^"+w+"$"),D={ID:new RegExp("^#("+w+")"),CLASS:new RegExp("^\\.("+w+")"),TAG:new RegExp("^("+w+"|[*])"),ATTR:new RegExp("^"+er),PSEUDO:new RegExp("^"+I),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+t+"*(even|odd|(([+-]|)(\\d*)n|)"+t+"*(?:([+-]|)"+t+"*(\\d+)|))"+t+"*\\)|)","i"),bool:new RegExp("^(?:"+$+")$","i"),needsContext:new RegExp("^"+t+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+t+"*((?:-\\d)?\\d*)"+t+"*\\)|)(?=[^-]|$)","i")},eh=/HTML$/i,el=/^(?:input|select|textarea|button)$/i,e2=/^h\d$/i,C=/^[^{]+\{\s*\[native \w/,e3=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,W=/[+~]/,m=new RegExp("\\\\[\\da-fA-F]{1,6}"+t+"?|\\\\([^\\r\\n\\f])","g"),h=function(t,n){var e="0x"+t.slice(1)-65536;return n||(e<0?String.fromCharCode(e+65536):String.fromCharCode(e>>10|55296,1023&e|56320))},es=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,J=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},ei=function(){p()},e5=S(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{g.apply(b=en.call(u.childNodes),u.childNodes),b[u.childNodes.length].nodeType}catch(e){g={apply:b.length?function(e,t){ep.apply(e,en.call(t))}:function(e,n){for(var t=e.length,s=0;e[t++]=n[s++];);e.length=t-1}}}function s(s,e,t,j){var r,l,d,m,f,v,b,h=e&&e.ownerDocument,u=e?e.nodeType:9;if(t=t||[],"string"!=typeof s||!s||1!==u&&9!==u&&11!==u)return t;if(!j&&(p(e),e=e||n,c)){if(11!==u&&(m=e3.exec(s)))if(l=m[1]){if(9===u){{if(!(d=e.getElementById(l)))return t;if(d.id===l)return t.push(d),t}}else if(h&&(d=h.getElementById(l))&&k(e,d)&&d.id===l)return t.push(d),t}else{if(m[2])return g.apply(t,e.getElementsByTagName(s)),t;if((l=m[3])&&o.getElementsByClassName&&e.getElementsByClassName)return g.apply(t,e.getElementsByClassName(l)),t}if(o.qsa&&!A[s+" "]&&(!a||!a.test(s))&&(1!==u||"object"!==e.nodeName.toLowerCase())){if(b=s,h=e,1===u&&(e6.test(s)||ee.test(s))){for((h=W.test(s)&&P(e.parentNode)||e)===e&&o.scope||((r=e.getAttribute("id"))?r=r.replace(es,J):e.setAttribute("id",r=i)),v=(f=E(s)).length;v--;)f[v]=(r?"#"+r:":scope")+" "+M(f[v]);b=f.join(",")}try{return g.apply(t,h.querySelectorAll(b)),t}catch(e){A(s,!0)}finally{r===i&&e.removeAttribute("id")}}}return Q(s.replace(T,"$1"),e,t,j)}function F(){var t=[];return function n(s,o){return t.push(s+" ")>e.cacheLength&&delete n[t.shift()],n[s+" "]=o}}function d(e){return e[i]=!0,e}function l(t){var e=n.createElement("fieldset");try{return!!t(e)}catch(e){return!1}finally{e.parentNode&&e.parentNode.removeChild(e),e=null}}function V(s,o){for(var t=s.split("|"),n=t.length;n--;)e.attrHandle[t[n]]=o}function Z(t,n){var e=n&&t,s=e&&1===t.nodeType&&1===n.nodeType&&t.sourceIndex-n.sourceIndex;if(s)return s;if(e)for(;e=e.nextSibling;)if(e===n)return-1;return t?1:-1}function e4(e){return function(t){return"input"===t.nodeName.toLowerCase()&&t.type===e}}function e0(e){return function(t){var n=t.nodeName.toLowerCase();return("input"===n||"button"===n)&&t.type===e}}function ec(e){return function(t){return"form"in t?t.parentNode&&!1===t.disabled?"label"in t?"label"in t.parentNode?t.parentNode.disabled===e:t.disabled===e:t.isDisabled===e||t.isDisabled!==!e&&e5(t)===e:t.disabled===e:"label"in t&&t.disabled===e}}function _(e){return d(function(t){return t=+t,d(function(n,a){for(var s,o=e([],n.length,t),i=o.length;i--;)n[s=o[i]]&&(n[s]=!(a[s]=n[s]))})})}function P(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(x in o=s.support={},et=s.isXML=function(e){var n=e&&e.namespaceURI,t=e&&(e.ownerDocument||e).documentElement;return!eh.test(n||t&&t.nodeName||"HTML")},p=s.setDocument=function(f){var s,p,d=f?f.ownerDocument||f:u;return d!=n&&9===d.nodeType&&d.documentElement&&(r=(n=d).documentElement,c=!et(n),u!=n&&(s=n.defaultView)&&s.top!==s&&(s.addEventListener?s.addEventListener("unload",ei,!1):s.attachEvent&&s.attachEvent("onunload",ei)),o.scope=l(function(e){return r.appendChild(e).appendChild(n.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),o.attributes=l(function(e){return e.className="i",!e.getAttribute("className")}),o.getElementsByTagName=l(function(e){return e.appendChild(n.createComment("")),!e.getElementsByTagName("*").length}),o.getElementsByClassName=C.test(n.getElementsByClassName),o.getById=l(function(e){return r.appendChild(e).id=i,!n.getElementsByName||!n.getElementsByName(i).length}),o.getById?(e.filter.ID=function(e){var t=e.replace(m,h);return function(e){return e.getAttribute("id")===t}},e.find.ID=function(n,e){if("undefined"!=typeof e.getElementById&&c){var t=e.getElementById(n);return t?[t]:[]}}):(e.filter.ID=function(e){var t=e.replace(m,h);return function(e){var n="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return n&&n.value===t}},e.find.ID=function(t,s){if("undefined"!=typeof s.getElementById&&c){var n,o,i,e=s.getElementById(t);if(e){if((n=e.getAttributeNode("id"))&&n.value===t)return[e];for(i=s.getElementsByName(t),o=0;e=i[o++];)if((n=e.getAttributeNode("id"))&&n.value===t)return[e]}return[]}}),e.find.TAG=o.getElementsByTagName?function(t,e){return"undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t):o.qsa?e.querySelectorAll(t):void 0}:function(t,o){var e,n=[],i=0,s=o.getElementsByTagName(t);if("*"===t){for(;e=s[i++];)1===e.nodeType&&n.push(e);return n}return s},e.find.CLASS=o.getElementsByClassName&&function(t,e){if("undefined"!=typeof e.getElementsByClassName&&c)return e.getElementsByClassName(t)},j=[],a=[],(o.qsa=C.test(n.querySelectorAll))&&(l(function(e){var s;r.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&a.push("[*^$]="+t+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||a.push("\\["+t+"*(?:value|"+$+")"),e.querySelectorAll("[id~="+i+"-]").length||a.push("~="),(s=n.createElement("input")).setAttribute("name",""),e.appendChild(s),e.querySelectorAll("[name='']").length||a.push("\\["+t+"*name"+t+"*="+t+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||a.push(":checked"),e.querySelectorAll("a#"+i+"+*").length||a.push(".#.+[+~]"),e.querySelectorAll("\\ "),a.push("[\\r\\n\\f]")}),l(function(e){e.innerHTML="";var s=n.createElement("input");s.setAttribute("type","hidden"),e.appendChild(s).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&a.push("name"+t+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&a.push(":enabled",":disabled"),r.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&a.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),a.push(",.*:")})),(o.matchesSelector=C.test(R=r.matches||r.webkitMatchesSelector||r.mozMatchesSelector||r.oMatchesSelector||r.msMatchesSelector))&&l(function(e){o.disconnectedMatch=R.call(e,"*"),R.call(e,"[s!='']:x"),j.push("!=",I)}),a=a.length&&new RegExp(a.join("|")),j=j.length&&new RegExp(j.join("|")),p=C.test(r.compareDocumentPosition),k=p||C.test(r.contains)?function(e,n){var s=9===e.nodeType?e.documentElement:e,t=n&&n.parentNode;return e===t||!(!t||1!==t.nodeType||!(s.contains?s.contains(t):e.compareDocumentPosition&&16&e.compareDocumentPosition(t)))}:function(t,e){if(e)for(;e=e.parentNode;)if(e===t)return!0;return!1},H=p?function(e,t){if(e===t)return O=!0,0;var s=!e.compareDocumentPosition-!t.compareDocumentPosition;return s||(1&(s=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!o.sortDetached&&t.compareDocumentPosition(e)===s?e==n||e.ownerDocument==u&&k(u,e)?-1:t==n||t.ownerDocument==u&&k(u,t)?1:v?y(v,e)-y(v,t):0:4&s?-1:1)}:function(s,o){if(s===o)return O=!0,0;var e,t=0,r=s.parentNode,c=o.parentNode,i=[s],a=[o];if(!r||!c)return s==n?-1:o==n?1:r?-1:c?1:v?y(v,s)-y(v,o):0;if(r===c)return Z(s,o);for(e=s;e=e.parentNode;)i.unshift(e);for(e=o;e=e.parentNode;)a.unshift(e);for(;i[t]===a[t];)t++;return t?Z(i[t],a[t]):i[t]==u?-1:a[t]==u?1:0}),n},s.matches=function(e,t){return s(e,null,null,t)},s.matchesSelector=function(t,e){if(p(t),o.matchesSelector&&c&&!A[e+" "]&&(!j||!j.test(e))&&(!a||!a.test(e)))try{var i=R.call(t,e);if(i||o.disconnectedMatch||t.document&&11!==t.document.nodeType)return i}catch(t){A(e,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(m,h),e[3]=(e[3]||e[4]||e[5]||"").replace(m,h),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||s.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&s.error(e[0]),e},PSEUDO:function(e){var n,t=!e[6]&&e[2];return D.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":t&&ef.test(t)&&(n=E(t,!0))&&(n=t.indexOf(")",t.length-n)-t.length)&&(e[0]=e[0].slice(0,n),e[2]=t.slice(0,n)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(m,h).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var n=eo[e+" "];return n||(n=new RegExp("(^|"+t+")"+e+"("+t+"|$)"))&&eo(e,function(e){return n.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,t,e){return function(i){var o=s.attr(i,n);return null==o?"!="===t:!t||(o+="","="===t?o===e:"!="===t?o!==e:"^="===t?e&&0===o.indexOf(e):"*="===t?e&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function ea(s,t,o){return n(t)?e.grep(s,function(e,n){return!!t.call(e,n,e)!==o}):t.nodeType?e.grep(s,function(e){return e===t!==o}):"string"!=typeof t?e.grep(s,function(e){return-1<$.call(t,e)!==o}):e.filter(t,s,o)}e.filter=function(t,n,o){var s=n[0];return o&&(t=":not("+t+")"),1===n.length&&1===s.nodeType?e.find.matchesSelector(s,t)?[s]:[]:e.find.matches(t,e.grep(n,function(e){return 1===e.nodeType}))},e.fn.extend({find:function(s){var t,n,o=this.length,i=this;if("string"!=typeof s)return this.pushStack(e(s).filter(function(){for(t=0;t)[^>]*|#([\w-]+))$/,(e.fn.init=function(s,t,a){var i,r;if(!s)return this;if(a=a||eR,"string"==typeof s){if(!(i="<"===s[0]&&">"===s[s.length-1]&&3<=s.length?[null,s,null]:eI.exec(s))||!i[1]&&t)return!t||t.jquery?(t||a).find(s):this.constructor(t).find(s);if(i[1]){if(t=t instanceof e?t[0]:t,e.merge(this,e.parseHTML(i[1],t&&t.nodeType?t.ownerDocument||t:o,!0)),e0.test(i[1])&&e.isPlainObject(t))for(i in t)n(this[i])?this[i](t[i]):this.attr(i,t[i]);return this}return(r=o.getElementById(i[2]))&&(this[0]=r,this.length=1),this}return s.nodeType?(this[0]=s,this.length=1,this):n(s)?void 0!==a.ready?a.ready(s):s(e):e.makeArray(s,this)}).prototype=e.fn,eR=e(o),eW=/^(?:parents|prev(?:Until|All))/,eU={children:!0,contents:!0,next:!0,prev:!0};function eQ(e,t){for(;(e=e[t])&&1!==e.nodeType;);return e}e.fn.extend({has:function(n){var t=e(n,this),s=t.length;return this.filter(function(){for(var n=0;n\x20\t\r\n\f]*)/i,e_=/^$|^module$|\/(?:java|ecma)script/i,E=o.createDocumentFragment().appendChild(o.createElement("div"));(q=o.createElement("input")).setAttribute("type","radio"),q.setAttribute("checked","checked"),q.setAttribute("name","t"),E.appendChild(q),i.checkClone=E.cloneNode(!0).cloneNode(!0).lastChild.checked,E.innerHTML="",i.noCloneChecked=!!E.cloneNode(!0).lastChild.defaultValue,E.innerHTML="",i.option=!!E.lastChild,c={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function r(t,n){var s;return s="undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(n||"*"):"undefined"!=typeof t.querySelectorAll?t.querySelectorAll(n||"*"):[],void 0===n||n&&l(t,n)?e.merge([t],s):s}function eh(n,s){for(var e=0,o=n.length;e",""]),ey=/<|&#?\w+;/;function e9(u,d,g,p,f){for(var t,n,i,l,h,m,o=d.createDocumentFragment(),a=[],s=0,v=u.length;s\s*$/g;function ej(t,n){return l(t,"table")&&l(11!==n.nodeType?n:n.firstChild,"tr")&&e(t).children("tbody")[0]||t}function t7(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function t5(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function ew(n,s){var o,i,r,c,l,d;if(1===s.nodeType){if(t.hasData(n)&&(r=t.get(n).events))for(i in t.remove(s,"handle events"),r)for(o=0,c=r[i].length;o").attr(t.scriptAttrs||{}).prop({charset:t.scriptCharset,src:t.url}).on("load error",n=function(e){s.remove(),n=null,e&&i("error"===e.type?404:200,e.type)}),o.head.appendChild(s[0])},abort:function(){n&&n()}}}),en=[],Z=/(=)\?(?=&|$)|\?\?/,e.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var t=en.pop()||e.expando+"_"+te.guid++;return this[t]=!0,t}}),e.ajaxPrefilter("json jsonp",function(t,c,l){var o,i,a,r=!1!==t.jsonp&&(Z.test(t.url)?"url":"string"==typeof t.data&&0===(t.contentType||"").indexOf("application/x-www-form-urlencoded")&&Z.test(t.data)&&"data");if(r||"jsonp"===t.dataTypes[0])return o=t.jsonpCallback=n(t.jsonpCallback)?t.jsonpCallback():t.jsonpCallback,r?t[r]=t[r].replace(Z,"$1"+o):!1!==t.jsonp&&(t.url+=(eo.test(t.url)?"&":"?")+t.jsonp+"="+o),t.converters["script json"]=function(){return a||e.error(o+" was not called"),a[0]},t.dataTypes[0]="json",i=s[o],s[o]=function(){a=arguments},l.always(function(){void 0===i?e(s).removeProp(o):s[o]=i,t[o]&&(t.jsonpCallback=c.jsonpCallback,en.push(o)),a&&n(i)&&i(a[0]),a=i=void 0}),"script"}),i.createHTMLDocument=((tc=o.implementation.createHTMLDocument("").body).innerHTML="
",2===tc.childNodes.length),e.parseHTML=function(a,t,r){return"string"!=typeof a?[]:("boolean"==typeof t&&(r=t,t=!1),t||(i.createHTMLDocument?((c=(t=o.implementation.createHTMLDocument("")).createElement("base")).href=o.location.href,t.head.appendChild(c)):t=o),n=!r&&[],(s=e0.exec(a))?[t.createElement(s[1])]:(s=e9([a],t,n),n&&n.length&&e(n).remove(),e.merge([],s.childNodes)));var n,s,c},e.fn.load=function(s,t,o){var i,c,l,a=this,r=s.indexOf(" ");return-1").append(e.parseHTML(t)).find(i):t)}).always(o&&function(e,t){a.each(function(){o.apply(this,l||[e.responseText,t,e])})}),this},e.expr.pseudos.animated=function(t){return e.grep(e.timers,function(e){return t===e.elem}).length},e.offset={setOffset:function(s,t,m){var i,a,c,l,u,h,r=e.css(s,"position"),d=e(s),o={};"static"===r&&(s.style.position="relative"),i=d.offset(),u=e.css(s,"top"),a=e.css(s,"left"),("absolute"===r||"fixed"===r)&&-1<(u+a).indexOf("auto")?(l=(h=d.position()).top,c=h.left):(l=parseFloat(u)||0,c=parseFloat(a)||0),n(t)&&(t=t.call(s,m,e.extend({},i))),null!=t.top&&(o.top=t.top-i.top+l),null!=t.left&&(o.left=t.left-i.left+c),"using"in t?t.using.call(s,o):d.css(o)}},e.fn.extend({offset:function(o){if(arguments.length)return void 0===o?this:this.each(function(t){e.offset.setOffset(this,o,t)});var n,s,t=this[0];return t?t.getClientRects().length?(n=t.getBoundingClientRect(),s=t.ownerDocument.defaultView,{top:n.top+s.pageYOffset,left:n.left+s.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var t,s,o,n=this[0],i={top:0,left:0};if("fixed"===e.css(n,"position"))s=n.getBoundingClientRect();else{for(s=this.offset(),o=n.ownerDocument,t=n.offsetParent||o.documentElement;t&&(t===o.body||t===o.documentElement)&&"static"===e.css(t,"position");)t=t.parentNode;t&&t!==n&&1===t.nodeType&&((i=e(t).offset()).top+=e.css(t,"borderTopWidth",!0),i.left+=e.css(t,"borderLeftWidth",!0))}return{top:s.top-i.top-e.css(n,"marginTop",!0),left:s.left-i.left-e.css(n,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){for(var t=this.offsetParent;t&&"static"===e.css(t,"position");)t=t.offsetParent;return t||_})}}),e.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,n){var s="pageYOffset"===n;e.fn[t]=function(e){return f(this,function(t,i,o){var e;if(T(t)?e=t:9===t.nodeType&&(e=t.defaultView),void 0===o)return e?e[n]:t[i];e?e.scrollTo(s?e.pageXOffset:o,s?o:e.pageYOffset):t[i]=o},t,e,arguments.length)}}),e.each(["top","left"],function(n,t){e.cssHooks[t]=eM(i.pixelPosition,function(s,n){if(n)return n=I(s,t),e4.test(n)?e(s).position()[t]+"px":n})}),e.each({Height:"height",Width:"width"},function(t,n){e.each({padding:"inner"+t,content:n,"":"outer"+t},function(s,o){e.fn[o]=function(i,c){var a=arguments.length&&(s||"boolean"!=typeof i),r=s||(!0===i||!0===c?"margin":"border");return f(this,function(n,i,a){var s;return T(n)?0===o.indexOf("outer")?n["inner"+t]:n.document.documentElement["client"+t]:9===n.nodeType?(s=n.documentElement,Math.max(n.body["scroll"+t],s["scroll"+t],n.body["offset"+t],s["offset"+t],s["client"+t])):void 0===a?e.css(n,i,r):e.style(n,i,a,r)},n,a?i:void 0,a)}})}),e.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(n,t){e.fn[t]=function(e){return this.on(t,e)}}),e.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,s){return this.on(t,e,n,s)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),e.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(n,t){e.fn[t]=function(e,n){return 0=4)throw new Error("Bootstrap's JavaScript requires at least jQuery v1.9.1 but less than v4.0.0")}},t.jQueryDetection(),e.default.fn.emulateTransitionEnd=function(s){var o=this,n=!1;return e.default(this).one(t.TRANSITION_END,function(){n=!0}),setTimeout(function(){n||t.triggerTransitionEnd(o)},s),this},e.default.event.special[t.TRANSITION_END]={bindType:F,delegateType:F,handle:function(t){if(e.default(t.target).is(this))return t.handleObj.handler.apply(this,arguments)}};var em="bs.alert",ne=e.default.fn.alert,b=function(){function n(e){this._element=e}var s=n.prototype;return s.close=function(t){var e=this._element;t&&(e=this._getRootElement(t)),this._triggerCloseEvent(e).isDefaultPrevented()||this._removeElement(e)},s.dispose=function(){e.default.removeData(this._element,em),this._element=null},s._getRootElement=function(s){var o=t.getSelectorFromElement(s),n=!1;return o&&(n=document.querySelector(o)),n||(n=e.default(s).closest(".alert")[0]),n},s._triggerCloseEvent=function(n){var t=e.default.Event("close.bs.alert");return e.default(n).trigger(t),t},s._removeElement=function(n){var s,o=this;e.default(n).removeClass("show"),e.default(n).hasClass("fade")?(s=t.getTransitionDurationFromElement(n),e.default(n).one(t.TRANSITION_END,function(e){return o._destroyElement(n,e)}).emulateTransitionEnd(s)):this._destroyElement(n)},s._destroyElement=function(t){e.default(t).detach().trigger("closed.bs.alert").remove()},n._jQueryInterface=function(t){return this.each(function(){var o=e.default(this),s=o.data(em);s||(s=new n(this),o.data(em,s)),"close"===t&&s[t](this)})},n._handleDismiss=function(e){return function(t){t&&t.preventDefault(),e.close(this)}},i(n,null,[{key:"VERSION",get:function(){return"4.6.1"}}]),n}();e.default(document).on("click.bs.alert.data-api",'[data-dismiss="alert"]',b._handleDismiss(new b)),e.default.fn.alert=b._jQueryInterface,e.default.fn.alert.Constructor=b,e.default.fn.alert.noConflict=function(){return e.default.fn.alert=ne,b._jQueryInterface};var er="bs.button",tJ=e.default.fn.button,r="active",t0='[data-toggle^="button"]',e7='input:not([type="hidden"])',t4=".btn",D=function(){function t(e){this._element=e,this.shouldAvoidTriggerChange=!1}var n=t.prototype;return n.toggle=function(){var t,s,n=!0,o=!0,i=e.default(this._element).closest('[data-toggle="buttons"]')[0];i&&(t=this._element.querySelector(e7),t&&("radio"===t.type&&(t.checked&&this._element.classList.contains(r)?n=!1:(s=i.querySelector(".active"),s&&e.default(s).removeClass(r))),n&&("checkbox"!==t.type&&"radio"!==t.type||(t.checked=!this._element.classList.contains(r)),this.shouldAvoidTriggerChange||e.default(t).trigger("change")),t.focus(),o=!1)),this._element.hasAttribute("disabled")||this._element.classList.contains("disabled")||(o&&this._element.setAttribute("aria-pressed",!this._element.classList.contains(r)),n&&e.default(this._element).toggleClass(r))},n.dispose=function(){e.default.removeData(this._element,er),this._element=null},t._jQueryInterface=function(n,s){return this.each(function(){var i=e.default(this),o=i.data(er);o||(o=new t(this),i.data(er,o)),o.shouldAvoidTriggerChange=s,"toggle"===n&&o[n]()})},i(t,null,[{key:"VERSION",get:function(){return"4.6.1"}}]),t}();e.default(document).on("click.bs.button.data-api",t0,function(s){var n,t=s.target,o=t;if(e.default(t).hasClass("btn")||(t=e.default(t).closest(t4)[0]),!t||t.hasAttribute("disabled")||t.classList.contains("disabled"))s.preventDefault();else{if(n=t.querySelector(e7),n&&(n.hasAttribute("disabled")||n.classList.contains("disabled")))return void s.preventDefault();"INPUT"!==o.tagName&&"LABEL"===t.tagName||D._jQueryInterface.call(e.default(t),"toggle","INPUT"===o.tagName)}}).on("focus.bs.button.data-api blur.bs.button.data-api",t0,function(t){var n=e.default(t.target).closest(t4)[0];e.default(n).toggleClass("focus",/^focus(in)?$/.test(t.type))}),e.default(window).on("load.bs.button.data-api",function(){for(var t,n,s,o,a,e=[].slice.call(document.querySelectorAll('[data-toggle="buttons"] .btn')),i=0,c=e.length;i0,this._pointerEvent=Boolean(window.PointerEvent||window.MSPointerEvent),this._addEventListeners()}var s=o.prototype;return s.next=function(){this._isSliding||this._slide(X)},s.nextWhenVisible=function(){var t=e.default(this._element);!document.hidden&&t.is(":visible")&&"hidden"!==t.css("visibility")&&this.next()},s.prev=function(){this._isSliding||this._slide(Q)},s.pause=function(e){e||(this._isPaused=!0),this._element.querySelector(".carousel-item-next, .carousel-item-prev")&&(t.triggerTransitionEnd(this._element),this.cycle(!0)),clearInterval(this._interval),this._interval=null},s.cycle=function(e){e||(this._isPaused=!1),this._interval&&(clearInterval(this._interval),this._interval=null),this._config.interval&&!this._isPaused&&(this._updateInterval(),this._interval=setInterval((document.visibilityState?this.nextWhenVisible:this.next).bind(this),this._config.interval))},s.to=function(t){var n,s,o=this;if(this._activeElement=this._element.querySelector(ee),n=this._getItemIndex(this._activeElement),!(t>this._items.length-1||t<0))if(this._isSliding)e.default(this._element).one(tr,function(){return o.to(t)});else{if(n===t)return this.pause(),void this.cycle();s=t>n?X:Q,this._slide(s,this._items[t])}},s.dispose=function(){e.default(this._element).off(".bs.carousel"),e.default.removeData(this._element,en),this._items=null,this._config=null,this._element=null,this._interval=null,this._isPaused=null,this._isSliding=null,this._activeElement=null,this._indicatorsElement=null},s._getConfig=function(e){return e=n({},eb,e),t.typeCheckConfig(C,e,tX),e},s._handleSwipe=function(){var e,t=Math.abs(this.touchDeltaX);t<=40||(e=t/this.touchDeltaX,this.touchDeltaX=0,e>0&&this.prev(),e<0&&this.next())},s._addEventListeners=function(){var t=this;this._config.keyboard&&e.default(this._element).on("keydown.bs.carousel",function(e){return t._keydown(e)}),"hover"===this._config.pause&&e.default(this._element).on("mouseenter.bs.carousel",function(e){return t.pause(e)}).on("mouseleave.bs.carousel",function(e){return t.cycle(e)}),this._config.touch&&this._addTouchEventListeners()},s._addTouchEventListeners=function(){if(t=this,this._touchSupported){var t,n=function(e){t._pointerEvent&&to[e.originalEvent.pointerType.toUpperCase()]?t.touchStartX=e.originalEvent.clientX:t._pointerEvent||(t.touchStartX=e.originalEvent.touches[0].clientX)},s=function(e){t._pointerEvent&&to[e.originalEvent.pointerType.toUpperCase()]&&(t.touchDeltaX=e.originalEvent.clientX-t.touchStartX),t._handleSwipe(),"hover"===t._config.pause&&(t.pause(),t.touchTimeout&&clearTimeout(t.touchTimeout),t.touchTimeout=setTimeout(function(e){return t.cycle(e)},500+t._config.interval))};e.default(this._element.querySelectorAll(".carousel-item img")).on("dragstart.bs.carousel",function(e){return e.preventDefault()}),this._pointerEvent?(e.default(this._element).on("pointerdown.bs.carousel",function(e){return n(e)}),e.default(this._element).on("pointerup.bs.carousel",function(e){return s(e)}),this._element.classList.add("pointer-event")):(e.default(this._element).on("touchstart.bs.carousel",function(e){return n(e)}),e.default(this._element).on("touchmove.bs.carousel",function(e){return function(e){t.touchDeltaX=e.originalEvent.touches&&e.originalEvent.touches.length>1?0:e.originalEvent.touches[0].clientX-t.touchStartX}(e)}),e.default(this._element).on("touchend.bs.carousel",function(e){return s(e)}))}},s._keydown=function(e){if(!/input|textarea/i.test(e.target.tagName))switch(e.which){case 37:e.preventDefault(),this.prev();break;case 39:e.preventDefault(),this.next()}},s._getItemIndex=function(e){return this._items=e&&e.parentNode?[].slice.call(e.parentNode.querySelectorAll(".carousel-item")):[],this._items.indexOf(e)},s._getItemByDirection=function(e,s){var n,o=e===X,i=e===Q,t=this._getItemIndex(s),a=this._items.length-1;return(i&&0===t||o&&t===a)&&!this._config.wrap?s:(n=(t+(e===Q?-1:1))%this._items.length,-1===n?this._items[this._items.length-1]:this._items[n])},s._triggerSlideEvent=function(t,s){var o=this._getItemIndex(t),i=this._getItemIndex(this._element.querySelector(ee)),n=e.default.Event("slide.bs.carousel",{relatedTarget:t,direction:s,from:i,to:o});return e.default(this._element).trigger(n),n},s._setActiveIndicatorElement=function(n){if(this._indicatorsElement){var t,s=[].slice.call(this._indicatorsElement.querySelectorAll(".active"));e.default(s).removeClass(O),t=this._indicatorsElement.children[this._getItemIndex(n)],t&&e.default(t).addClass(O)}},s._updateInterval=function(){var e,t=this._activeElement||this._element.querySelector(ee);t&&(e=parseInt(t.getAttribute("data-interval"),10),e?(this._config.defaultInterval=this._config.defaultInterval||this._config.interval,this._config.interval=e):this._config.interval=this._config.defaultInterval||this._config.interval)},s._slide=function(c,f){var o,i,a,r,u,d=this,s=this._element.querySelector(ee),m=this._getItemIndex(s),n=f||s&&this._getItemByDirection(c,s),h=this._getItemIndex(n),l=Boolean(this._interval);c===X?(o="carousel-item-left",i="carousel-item-next",a="left"):(o="carousel-item-right",i="carousel-item-prev",a="right"),n&&e.default(n).hasClass(O)?this._isSliding=!1:!this._triggerSlideEvent(n,a).isDefaultPrevented()&&s&&n&&(this._isSliding=!0,l&&this.pause(),this._setActiveIndicatorElement(n),this._activeElement=n,r=e.default.Event(tr,{relatedTarget:n,direction:a,from:m,to:h}),e.default(this._element).hasClass("slide")?(e.default(n).addClass(i),t.reflow(n),e.default(s).addClass(o),e.default(n).addClass(o),u=t.getTransitionDurationFromElement(s),e.default(s).one(t.TRANSITION_END,function(){e.default(n).removeClass(o+" "+i).addClass(O),e.default(s).removeClass("active "+i+" "+o),d._isSliding=!1,setTimeout(function(){return e.default(d._element).trigger(r)},0)}).emulateTransitionEnd(u)):(e.default(s).removeClass(O),e.default(n).addClass(O),this._isSliding=!1,e.default(this._element).trigger(r)),l&&this.cycle())},o._jQueryInterface=function(t){return this.each(function(){var a,s=e.default(this).data(en),i=n({},eb,e.default(this).data());if("object"==typeof t&&(i=n({},i,t)),a="string"==typeof t?t:i.slide,s||(s=new o(this,i),e.default(this).data(en,s)),"number"==typeof t)s.to(t);else if("string"==typeof a){if("undefined"==typeof s[a])throw new TypeError('No method named "'+a+'"');s[a]()}else i.interval&&i.ride&&(s.pause(),s.cycle())})},o._dataApiClickHandler=function(c){if(i=t.getSelectorFromElement(this),i&&(s=e.default(i)[0],s&&e.default(s).hasClass("carousel"))){var s,i,r=n({},e.default(s).data(),e.default(this).data()),a=this.getAttribute("data-slide-to");a&&(r.interval=!1),o._jQueryInterface.call(e.default(s),r),a&&e.default(s).data(en).to(a),c.preventDefault()}},i(o,null,[{key:"VERSION",get:function(){return"4.6.1"}},{key:"Default",get:function(){return eb}}]),o}();e.default(document).on("click.bs.carousel.data-api","[data-slide], [data-slide-to]",f._dataApiClickHandler),e.default(window).on("load.bs.carousel.data-api",function(){for(var n,s=[].slice.call(document.querySelectorAll('[data-ride="carousel"]')),t=0,o=s.length;t0&&(this._selector=s,this._triggerArray.push(i))}this._parent=this._config.parent?this._getParent():null,this._config.parent||this._addAriaAndCollapsedClass(this._element,this._triggerArray),this._config.toggle&&this.toggle()}var s=o.prototype;return s.toggle=function(){e.default(this._element).hasClass(N)?this.hide():this.show()},s.show=function(){if(s=this,!(this._isTransitioning||e.default(this._element).hasClass(N)||(this._parent&&0===(n=[].slice.call(this._parent.querySelectorAll(".show, .collapsing")).filter(function(e){return"string"==typeof s._config.parent?e.getAttribute("data-parent")===s._config.parent:e.classList.contains(e5)})).length&&(n=null),n&&(a=e.default(n).not(this._selector).data(y))&&a._isTransitioning))&&(r=e.default.Event("show.bs.collapse"),e.default(this._element).trigger(r),!r.isDefaultPrevented())){n&&(o._jQueryInterface.call(e.default(n).not(this._selector),"hide"),a||e.default(n).data(y,null)),i=this._getDimension(),e.default(this._element).removeClass(e5).addClass(V),this._element.style[i]=0,this._triggerArray.length&&e.default(this._triggerArray).removeClass(eg).attr("aria-expanded",!0),this.setTransitioning(!0);var n,s,i,a,r,c="scroll"+(i[0].toUpperCase()+i.slice(1)),l=t.getTransitionDurationFromElement(this._element);e.default(this._element).one(t.TRANSITION_END,function(){e.default(s._element).removeClass(V).addClass("collapse show"),s._element.style[i]="",s.setTransitioning(!1),e.default(s._element).trigger("shown.bs.collapse")}).emulateTransitionEnd(l),this._element.style[i]=this._element[c]+"px"}},s.hide=function(){if(o=this,!this._isTransitioning&&e.default(this._element).hasClass(N)&&(i=e.default.Event("hide.bs.collapse"),e.default(this._element).trigger(i),!i.isDefaultPrevented())){if(n=this._getDimension(),this._element.style[n]=this._element.getBoundingClientRect()[n]+"px",t.reflow(this._element),e.default(this._element).addClass(V).removeClass("collapse show"),a=this._triggerArray.length,a>0)for(s=0;s=0)return 1;return 0}(),tK=L&&window.Promise?function(t){var e=!1;return function(){e||(e=!0,window.Promise.resolve().then(function(){e=!1,t()}))}}:function(t){var e=!1;return function(){e||(e=!0,setTimeout(function(){e=!1,t()},tq))}};function eX(e){return e&&"[object Function]"==={}.toString.call(e)}function m(e,t){if(1!==e.nodeType)return[];var n=e.ownerDocument.defaultView.getComputedStyle(e,null);return t?n[t]:n}function ew(e){return"HTML"===e.nodeName?e:e.parentNode||e.host}function T(e){if(!e)return document.body;switch(e.nodeName){case"HTML":case"BODY":return e.ownerDocument.body;case"#document":return e.body}var t=m(e),n=t.overflow,s=t.overflowX,o=t.overflowY;return/(auto|scroll|overlay)/.test(n+o+s)?e:T(ew(e))}function eG(e){return e&&e.referenceNode?e.referenceNode:e}ec=L&&!!window.MSInputMethodContext&&!!document.documentMode,eO=L&&/MSIE 10/.test(navigator.userAgent);function v(e){return 11===e?ec:10===e?eO:ec||eO}function g(t){if(!t)return document.documentElement;for(var n,s=v(10)?document.body:null,e=t.offsetParent||null;e===s&&t.nextElementSibling;)e=(t=t.nextElementSibling).offsetParent;return n=e&&e.nodeName,n&&"BODY"!==n&&"HTML"!==n?-1!==["TH","TD","TABLE"].indexOf(e.nodeName)&&"static"===m(e,"position")?g(e):e:t?t.ownerDocument.documentElement:document.documentElement}function el(e){return null!==e.parentNode?el(e.parentNode):e}function es(e,t){if(!(e&&e.nodeType&&t&&t.nodeType))return document.documentElement;var n,s,i,r,c=e.compareDocumentPosition(t)&Node.DOCUMENT_POSITION_FOLLOWING,l=c?e:t,a=c?t:e,o=document.createRange();return o.setStart(l,0),o.setEnd(a,0),n=o.commonAncestorContainer,e!==n&&t!==n||l.contains(a)?"BODY"===(r=(i=n).nodeName)||"HTML"!==r&&g(i.firstElementChild)!==i?g(n):n:(s=el(e),s.host?es(s.host,t):es(e,el(t).host))}function p(e){var s,o,i=arguments.length>1&&void 0!==arguments[1]?arguments[1]:"top",t="top"===i?"scrollTop":"scrollLeft",n=e.nodeName;return"BODY"===n||"HTML"===n?(s=e.ownerDocument.documentElement,o=e.ownerDocument.scrollingElement||s,o[t]):e[t]}function tU(e,n){var i=arguments.length>2&&void 0!==arguments[2]&&arguments[2],s=p(n,"top"),o=p(n,"left"),t=i?-1:1;return e.top+=s*t,e.bottom+=s*t,e.left+=o*t,e.right+=o*t,e}function eK(e,n){var t="x"===n?"Left":"Top",s="Left"===t?"Right":"Bottom";return parseFloat(e["border"+t+"Width"])+parseFloat(e["border"+s+"Width"])}function eV(e,n,t,s){return Math.max(n["offset"+e],n["scroll"+e],t["client"+e],t["offset"+e],t["scroll"+e],v(10)?parseInt(t["offset"+e])+parseInt(s["margin"+("Height"===e?"Top":"Left")])+parseInt(s["margin"+("Height"===e?"Bottom":"Right")]):0)}function eI(t){var n=t.body,e=t.documentElement,s=v(10)&&getComputedStyle(e);return{height:eV("Height",n,e,s),width:eV("Width",n,e,s)}}var tW=function(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")},tV=function(){function e(s,n){for(var e,t=0;t2&&void 0!==arguments[2]&&arguments[2],h=v(10),u="HTML"===n.nodeName,i=e0(p),t=e0(n),r=T(p),o=m(n),d=parseFloat(o.borderTopWidth),c=parseFloat(o.borderLeftWidth);return f&&u&&(t.top=Math.max(t.top,0),t.left=Math.max(t.left,0)),e=l({top:i.top-t.top-d,left:i.left-t.left-c,width:i.width,height:i.height}),(e.marginTop=0,e.marginLeft=0,!h&&u)&&(s=parseFloat(o.marginTop),a=parseFloat(o.marginLeft),e.top-=d-s,e.bottom-=d-s,e.left-=c-a,e.right-=c-a,e.marginTop=s,e.marginLeft=a),(h&&!f?n.contains(r):n===r&&"BODY"!==r.nodeName)&&(e=tU(e,n)),e}function tC(n){var s=arguments.length>1&&void 0!==arguments[1]&&arguments[1],e=n.ownerDocument.documentElement,t=e2(n,e),o=Math.max(e.clientWidth,window.innerWidth||0),i=Math.max(e.clientHeight,window.innerHeight||0),a=s?0:p(e),r=s?0:p(e,"left"),c={top:a-t.top+t.marginTop,left:r-t.left+t.marginLeft,width:o,height:i};return l(c)}function eH(e){var t,n=e.nodeName;return"BODY"!==n&&"HTML"!==n&&("fixed"===m(e,"position")||(t=ew(e),!!t&&eH(t)))}function eP(t){if(!t||!t.parentElement||v())return document.documentElement;for(var e=t.parentElement;e&&"none"===m(e,"transform");)e=e.parentElement;return e||document.documentElement}function e8(o,l,t,a){var n,s,i,r=arguments.length>4&&void 0!==arguments[4]&&arguments[4],e={top:0,left:0},c=r?eP(o):es(o,eG(l));if("viewport"===a)e=tC(c,r);else if(s=void 0,"scrollParent"===a?"BODY"===(s=T(ew(l))).nodeName&&(s=o.ownerDocument.documentElement):s="window"===a?o.ownerDocument.documentElement:a,n=e2(s,c,r),"HTML"!==s.nodeName||eH(c))e=n;else{var d=eI(o.ownerDocument),u=d.height,h=d.width;e.top+=n.top-n.marginTop,e.bottom=u+n.top,e.left+=n.left-n.marginLeft,e.right=h+n.left}return i="number"==typeof(t=t||0),e.left+=i?t:t.left||0,e.top+=i?t:t.top||0,e.right-=i?t:t.right||0,e.bottom-=i?t:t.bottom||0,e}function tB(e){return e.width*e.height}function eR(s,t,n,u,d){if(r=arguments.length>5&&void 0!==arguments[5]?arguments[5]:0,-1===s.indexOf("auto"))return s;var r,e=e8(n,u,r,d),i={top:{width:e.width,height:t.top-e.top},right:{width:e.right-t.right,height:e.height},bottom:{width:e.width,height:e.bottom-t.bottom},left:{width:t.left-e.left,height:e.height}},c=Object.keys(i).map(function(e){return o({key:e},i[e],{area:tB(i[e])})}).sort(function(e,t){return t.area-e.area}),a=c.filter(function(e){var t=e.width,s=e.height;return t>=n.clientWidth&&s>=n.clientHeight}),h=a.length>0?a[0].key:c[0].key,l=s.split("-")[1];return h+(l?"-"+l:"")}function eL(o,e,t){var n=arguments.length>3&&void 0!==arguments[3]?arguments[3]:null,s=n?eP(e):es(e,eG(t));return e2(t,s,n)}function eN(e){var t=e.ownerDocument.defaultView.getComputedStyle(e),n=parseFloat(t.marginTop||0)+parseFloat(t.marginBottom||0),s=parseFloat(t.marginLeft||0)+parseFloat(t.marginRight||0);return{width:e.offsetWidth+s,height:e.offsetHeight+n}}function W(e){var t={left:"right",right:"left",bottom:"top",top:"bottom"};return e.replace(/left|right|bottom|top/g,function(e){return t[e]})}function eT(c,e,t){t=t.split("-")[0];var n=eN(c),i={width:n.width,height:n.height},s=-1!==["right","left"].indexOf(t),a=s?"top":"left",o=s?"left":"top",r=s?"height":"width",l=s?"width":"height";return i[a]=e[a]+e[r]/2-n[r]/2,i[o]=t===o?e[o]-n[l]:e[W(o)],i}function S(e,t){return Array.prototype.find?e.find(t):e.filter(t)[0]}function eF(t,e,n){return(void 0===n?t:t.slice(0,function(e,s,t){if(Array.prototype.findIndex)return e.findIndex(function(e){return e.name===t});var n=S(e,function(e){return e.name===t});return e.indexOf(n)}(t,0,n))).forEach(function(t){t.function&&console.warn("`modifier.function` is deprecated, use `modifier.fn`!");var n=t.function||t.fn;t.enabled&&eX(n)&&(e.offsets.popper=l(e.offsets.popper),e.offsets.reference=l(e.offsets.reference),e=n(e,t))}),e}function tH(){if(!this.state.isDestroyed){var e={instance:this,styles:{},arrowStyles:{},attributes:{},flipped:!1,offsets:{}};e.offsets.reference=eL(this.state,this.popper,this.reference,this.options.positionFixed),e.placement=eR(this.options.placement,e.offsets.reference,this.popper,this.reference,this.options.modifiers.flip.boundariesElement,this.options.modifiers.flip.padding),e.originalPlacement=e.placement,e.positionFixed=this.options.positionFixed,e.offsets.popper=eT(this.popper,e.offsets.reference,e.placement),e.offsets.popper.position=this.options.positionFixed?"fixed":"absolute",e=eF(this.modifiers,e),this.state.isCreated?this.options.onUpdate(e):(this.state.isCreated=!0,this.options.onCreate(e))}}function eA(e,t){return e.some(function(e){var n=e.name;return e.enabled&&n===t})}function ey(e){for(var n,s,o=[!1,"ms","Webkit","Moz","O"],i=e.charAt(0).toUpperCase()+e.slice(1),t=0;t1&&void 0!==arguments[1]&&arguments[1],e=U.indexOf(n),t=U.slice(e+1).concat(U.slice(0,e));return s?t.reverse():t}eD={placement:"bottom",positionFixed:!1,eventsEnabled:!0,removeOnDestroy:!1,onCreate:function(){},onUpdate:function(){},modifiers:{shift:{order:100,enabled:!0,fn:function(e){var s=e.placement,d=s.split("-")[0],i=s.split("-")[1];if(i){var a=e.offsets,n=a.reference,r=a.popper,c=-1!==["bottom","top"].indexOf(d),t=c?"left":"top",l=c?"width":"height",u={start:j({},t,n[t]),end:j({},t,n[t]+n[l]-r[l])};e.offsets.popper=o({},r,u[i])}return e}},offset:{order:200,enabled:!0,fn:function(s,a){var t,o=a.offset,r=s.placement,i=s.offsets,e=i.popper,c=i.reference,n=r.split("-")[0];return t=e_(+o)?[+o,0]:function(a,r,c,d){var n,s,o=[0,0],i=-1!==["right","left"].indexOf(d),e=a.split(/(\+|-)/).map(function(e){return e.trim()}),t=e.indexOf(S(e,function(e){return-1!==e.search(/,|\s/)}));return e[t]&&-1===e[t].indexOf(",")&&console.warn("Offsets separated by white space(s) are deprecated, use a comma (,) instead."),s=/\s*,\s*|\s+/,n=-1!==t?[e.slice(0,t).concat([e[t].split(s)[0]]),[e[t].split(s)[1]].concat(e.slice(t+1))]:[e],n=n.map(function(t,n){var s=(1===n?!i:i)?"height":"width",e=!1;return t.reduce(function(t,n){return""===t[t.length-1]&&-1!==["+","-"].indexOf(n)?(t[t.length-1]=n,e=!0,t):e?(t[t.length-1]+=n,e=!1,t):t.concat(n)},[]).map(function(e){return function(s,o,i,a){var n=s.match(/((?:-|\+)?\d*\.?\d*)(.*)/),t=+n[1],e=n[2];return t?0===e.indexOf("%")?l("%p"===e?i:a)[o]/100*t:"vh"===e||"vw"===e?("vh"===e?Math.max(document.documentElement.clientHeight,window.innerHeight||0):Math.max(document.documentElement.clientWidth,window.innerWidth||0))/100*t:t:s}(e,s,r,c)})}),n.forEach(function(e,t){e.forEach(function(n,s){e_(n)&&(o[t]+=n*("-"===e[s-1]?-1:1))})}),o}(o,e,c,n),"left"===n?(e.top+=t[0],e.left-=t[1]):"right"===n?(e.top+=t[0],e.left+=t[1]):"top"===n?(e.left+=t[0],e.top-=t[1]):"bottom"===n&&(e.left+=t[0],e.top+=t[1]),s.popper=e,s},offset:0},preventOverflow:{order:300,enabled:!0,fn:function(t,s){a=s.boundariesElement||g(t.instance.popper),t.instance.reference===a&&(a=g(a));var i,a,r=ey("transform"),n=t.instance.popper.style,c=n.top,l=n.left,d=n[r];n.top="",n.left="",n[r]="",i=e8(t.instance.popper,t.instance.reference,s.padding,a,t.positionFixed),n.top=c,n.left=l,n[r]=d,s.boundaries=i;var u=s.priority,e=t.offsets.popper,h={primary:function(t){var n=e[t];return e[t]i[t]&&!s.escapeWithReference&&(o=Math.min(e[n],i[t]-("right"===t?e.width:e.height))),j({},n,o)}};return u.forEach(function(t){var n=-1!==["left","top"].indexOf(t)?"primary":"secondary";e=o({},e,h[n](t))}),t.offsets.popper=e,t},priority:["left","right","top","bottom"],padding:5,boundariesElement:"scrollParent"},keepTogether:{order:400,enabled:!0,fn:function(e){var r=e.offsets,a=r.popper,n=r.reference,c=e.placement.split("-")[0],s=Math.floor,i=-1!==["top","bottom"].indexOf(c),o=i?"right":"bottom",t=i?"left":"top",l=i?"width":"height";return a[o]s(n[o])&&(e.offsets.popper[t]=s(n[o])),e}},arrow:{order:500,enabled:!0,fn:function(e,v){if(!eM(e.instance.modifiers,"arrow","keepTogether"))return e;if(n=v.element,"string"==typeof n){if(!(n=e.instance.popper.querySelector(n)))return e}else if(!e.instance.popper.contains(n))return console.warn("WARNING: `arrow.element` must be child of its popper element!"),e;var n,c,w=e.placement.split("-")[0],f=e.offsets,i=f.popper,o=f.reference,a=-1!==["left","right"].indexOf(w),d=a?"height":"width",u=a?"Top":"Left",t=u.toLowerCase(),g=a?"left":"top",r=a?"bottom":"right",s=eN(n)[d];o[r]-si[r]&&(e.offsets.popper[t]+=o[t]+s-i[r]),e.offsets.popper=l(e.offsets.popper);var b=o[t]+o[d]/2-s/2,p=m(e.instance.popper),y=parseFloat(p["margin"+u]),_=parseFloat(p["border"+u+"Width"]),h=b-e.offsets.popper[t]-y-_;return h=Math.max(Math.min(i[d]-s,h),0),e.arrowElement=n,e.offsets.arrow=(j(c={},t,Math.round(h)),j(c,g,""),c),e},element:"[x-arrow]"},flip:{order:600,enabled:!0,fn:function(e,i){if(eA(e.instance.modifiers,"inner"))return e;if(e.flipped&&e.placement===e.originalPlacement)return e;var a=e8(e.instance.popper,e.instance.reference,i.padding,i.boundariesElement,e.positionFixed),t=e.placement.split("-")[0],r=W(t),n=e.placement.split("-")[1]||"",s=[];switch(i.behavior){case"flip":s=[t,r];break;case"clockwise":s=ez(t);break;case"counterclockwise":s=ez(t,!0);break;default:s=i.behavior}return s.forEach(function(w,j){if(t!==w||s.length===j+1)return e;t=e.placement.split("-")[0],r=W(t);var d=e.offsets.popper,u=e.offsets.reference,c=Math.floor,v="left"===t&&c(d.right)>c(u.left)||"right"===t&&c(d.left)c(u.top)||"bottom"===t&&c(d.top)c(a.right),h=c(d.top)c(a.bottom),b="left"===t&&f||"right"===t&&p||"top"===t&&h||"bottom"===t&&m,l=-1!==["top","bottom"].indexOf(t),y=!!i.flipVariations&&(l&&"start"===n&&f||l&&"end"===n&&p||!l&&"start"===n&&h||!l&&"end"===n&&m),_=!!i.flipVariationsByContent&&(l&&"start"===n&&p||l&&"end"===n&&f||!l&&"start"===n&&m||!l&&"end"===n&&h),g=y||_;(v||b||g)&&(e.flipped=!0,(v||b)&&(t=s[j+1]),g&&(n=function(e){return"end"===e?"start":"start"===e?"end":e}(n)),e.placement=t+(n?"-"+n:""),e.offsets.popper=o({},e.offsets.popper,eT(e.instance.popper,e.offsets.reference,e.placement)),e=eF(e.instance.modifiers,e,"flip"))}),e},behavior:"flip",padding:5,boundariesElement:"viewport",flipVariations:!1,flipVariationsByContent:!1},inner:{order:700,enabled:!1,fn:function(e){var s=e.placement,t=s.split("-")[0],o=e.offsets,n=o.popper,a=o.reference,i=-1!==["left","right"].indexOf(t),r=-1===["top","left"].indexOf(t);return n[i?"left":"top"]=a[t]-(r?n[i?"width":"height"]:0),e.placement=W(s),e.offsets.popper=l(n),e}},hide:{order:800,enabled:!0,fn:function(e){if(!eM(e.instance.modifiers,"hide","preventOverflow"))return e;var t=e.offsets.reference,n=S(e.instance.modifiers,function(e){return"preventOverflow"===e.name}).boundaries;if(t.bottomn.right||t.top>n.bottom||t.right2&&void 0!==arguments[2]?arguments[2]:{};tW(this,e),this.scheduleUpdate=function(){return requestAnimationFrame(t.update)},this.update=tK(this.update.bind(this)),this.options=o({},e.Defaults,i),this.state={isDestroyed:!1,isCreated:!1,scrollParents:[]},this.reference=n&&n.jquery?n[0]:n,this.popper=s&&s.jquery?s[0]:s,this.options.modifiers={},Object.keys(o({},e.Defaults.modifiers,i.modifiers)).forEach(function(n){t.options.modifiers[n]=o({},e.Defaults.modifiers[n]||{},i.modifiers?i.modifiers[n]:{})}),this.modifiers=Object.keys(this.options.modifiers).map(function(e){return o({name:e},t.options.modifiers[e])}).sort(function(e,t){return e.order-t.order}),this.modifiers.forEach(function(e){e.enabled&&eX(e.onLoad)&&e.onLoad(t.reference,t.popper,t.options,e,t.state)}),this.update(),a=this.options.eventsEnabled,a&&this.enableEventListeners(),this.state.eventsEnabled=a}return tV(e,[{key:"update",value:function(){return tH.call(this)}},{key:"destroy",value:function(){return tP.call(this)}},{key:"enableEventListeners",value:function(){return tL.call(this)}},{key:"disableEventListeners",value:function(){return tN.call(this)}}]),e}(),P.Utils=("undefined"!=typeof window?window:global).PopperUtils,P.placements=e9,P.Defaults=eD;var e,t,F,P,U,ec,eO,tp,e9,eD,ei=P,w="dropdown",$="bs.dropdown",tD=e.default.fn[w],tz=new RegExp("38|40|27"),Z="disabled",a="show",e$="dropdown-menu-right",eW="hide.bs.dropdown",eU="hidden.bs.dropdown",ea="click.bs.dropdown.data-api",eq="keydown.bs.dropdown.data-api",eo='[data-toggle="dropdown"]',eu=".dropdown-menu",tT={offset:0,flip:!0,boundary:"scrollParent",reference:"toggle",display:"dynamic",popperConfig:null},tE={offset:"(number|string|function)",flip:"boolean",boundary:"(string|element)",reference:"(string|element)",display:"string",popperConfig:"(null|object)"},c=function(){function s(e,t){this._element=e,this._popper=null,this._config=this._getConfig(t),this._menu=this._getMenuElement(),this._inNavbar=this._detectNavbar(),this._addEventListeners()}var o=s.prototype;return o.toggle=function(){if(!this._element.disabled&&!e.default(this._element).hasClass(Z)){var t=e.default(this._menu).hasClass(a);s._clearMenus(),t||this.show(!0)}},o.show=function(i){if(void 0===i&&(i=!1),!(this._element.disabled||e.default(this._element).hasClass(Z)||e.default(this._menu).hasClass(a))){var o,r={relatedTarget:this._element},c=e.default.Event("show.bs.dropdown",r),n=s._getParentFromElement(this._element);if(e.default(n).trigger(c),!c.isDefaultPrevented()){if(!this._inNavbar&&i){if("undefined"==typeof ei)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");o=this._element,"parent"===this._config.reference?o=n:t.isElement(this._config.reference)&&(o=this._config.reference,"undefined"!=typeof this._config.reference.jquery&&(o=this._config.reference[0])),"scrollParent"!==this._config.boundary&&e.default(n).addClass("position-static"),this._popper=new ei(o,this._menu,this._getPopperConfig())}"ontouchstart"in document.documentElement&&0===e.default(n).closest(".navbar-nav").length&&e.default(document.body).children().on("mouseover",null,e.default.noop),this._element.focus(),this._element.setAttribute("aria-expanded",!0),e.default(this._menu).toggleClass(a),e.default(n).toggleClass(a).trigger(e.default.Event("shown.bs.dropdown",r))}}},o.hide=function(){if(!this._element.disabled&&!e.default(this._element).hasClass(Z)&&e.default(this._menu).hasClass(a)){var t={relatedTarget:this._element},n=e.default.Event(eW,t),o=s._getParentFromElement(this._element);e.default(o).trigger(n),n.isDefaultPrevented()||(this._popper&&this._popper.destroy(),e.default(this._menu).toggleClass(a),e.default(o).toggleClass(a).trigger(e.default.Event(eU,t)))}},o.dispose=function(){e.default.removeData(this._element,$),e.default(this._element).off(".bs.dropdown"),this._element=null,this._menu=null,null!==this._popper&&(this._popper.destroy(),this._popper=null)},o.update=function(){this._inNavbar=this._detectNavbar(),null!==this._popper&&this._popper.scheduleUpdate()},o._addEventListeners=function(){var t=this;e.default(this._element).on("click.bs.dropdown",function(e){e.preventDefault(),e.stopPropagation(),t.toggle()})},o._getConfig=function(s){return s=n({},this.constructor.Default,e.default(this._element).data(),s),t.typeCheckConfig(w,s,this.constructor.DefaultType),s},o._getMenuElement=function(){if(!this._menu){var e=s._getParentFromElement(this._element);e&&(this._menu=e.querySelector(eu))}return this._menu},o._getPlacement=function(){var n=e.default(this._element.parentNode),t="bottom-start";return n.hasClass("dropup")?t=e.default(this._menu).hasClass(e$)?"top-end":"top-start":n.hasClass("dropright")?t="right-start":n.hasClass("dropleft")?t="left-start":e.default(this._menu).hasClass(e$)&&(t="bottom-end"),t},o._detectNavbar=function(){return e.default(this._element).closest(".navbar").length>0},o._getOffset=function(){var t=this,e={};return"function"==typeof this._config.offset?e.fn=function(e){return e.offsets=n({},e.offsets,t._config.offset(e.offsets,t._element)),e}:e.offset=this._config.offset,e},o._getPopperConfig=function(){var e={placement:this._getPlacement(),modifiers:{offset:this._getOffset(),flip:{enabled:this._config.flip},preventOverflow:{boundariesElement:this._config.boundary}}};return"static"===this._config.display&&(e.modifiers.applyStyle={enabled:!1}),n({},e,this._config.popperConfig)},s._jQueryInterface=function(t){return this.each(function(){var n=e.default(this).data($);if(n||(n=new s(this,"object"==typeof t?t:null),e.default(this).data($,n)),"string"==typeof t){if("undefined"==typeof n[t])throw new TypeError('No method named "'+t+'"');n[t]()}})},s._clearMenus=function(t){if(!t||3!==t.which&&("keyup"!==t.type||9===t.which))for(var l,d,o=[].slice.call(document.querySelectorAll(eo)),n=0,u=o.length;n0&&n--,40===t.which&&ndocument.documentElement.clientHeight,s||(this._element.style.overflowY="hidden"),this._element.classList.add(eB),o=t.getTransitionDurationFromElement(this._dialog),e.default(this._element).off(t.TRANSITION_END),e.default(this._element).one(t.TRANSITION_END,function(){n._element.classList.remove(eB),s||e.default(n._element).one(t.TRANSITION_END,function(){n._element.style.overflowY=""}).emulateTransitionEnd(n._element,o)}).emulateTransitionEnd(o),this._element.focus())},s._showElement=function(c){var s,o,r,n=this,i=e.default(this._element).hasClass(_),a=this._dialog?this._dialog.querySelector(".modal-body"):null;this._element.parentNode&&this._element.parentNode.nodeType===Node.ELEMENT_NODE||document.body.appendChild(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),e.default(this._dialog).hasClass("modal-dialog-scrollable")&&a?a.scrollTop=0:this._element.scrollTop=0,i&&t.reflow(this._element),e.default(this._element).addClass(B),this._config.focus&&this._enforceFocus(),r=e.default.Event("shown.bs.modal",{relatedTarget:c}),s=function(){n._config.focus&&n._element.focus(),n._isTransitioning=!1,e.default(n._element).trigger(r)},i?(o=t.getTransitionDurationFromElement(this._dialog),e.default(this._dialog).one(t.TRANSITION_END,s).emulateTransitionEnd(o)):s()},s._enforceFocus=function(){var t=this;e.default(document).off(G).on(G,function(n){document!==n.target&&t._element!==n.target&&0===e.default(t._element).has(n.target).length&&t._element.focus()})},s._setEscapeEvent=function(){var t=this;this._isShown?e.default(this._element).on(td,function(e){t._config.keyboard&&27===e.which?(e.preventDefault(),t.hide()):t._config.keyboard||27!==e.which||t._triggerBackdropTransition()}):this._isShown||e.default(this._element).off(td)},s._setResizeEvent=function(){var t=this;this._isShown?e.default(window).on(tc,function(e){return t.handleUpdate(e)}):e.default(window).off(tc)},s._hideModal=function(){var t=this;this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._showBackdrop(function(){e.default(document.body).removeClass(tt),t._resetAdjustments(),t._resetScrollbar(),e.default(t._element).trigger(ti)})},s._removeBackdrop=function(){this._backdrop&&(e.default(this._backdrop).remove(),this._backdrop=null)},s._showBackdrop=function(n){var i,a,r,s=this,o=e.default(this._element).hasClass(_)?_:"";if(this._isShown&&this._config.backdrop){if(this._backdrop=document.createElement("div"),this._backdrop.className="modal-backdrop",o&&this._backdrop.classList.add(o),e.default(this._backdrop).appendTo(document.body),e.default(this._element).on(ep,function(e){s._ignoreBackdropClick?s._ignoreBackdropClick=!1:e.target===e.currentTarget&&("static"===s._config.backdrop?s._triggerBackdropTransition():s.hide())}),o&&t.reflow(this._backdrop),e.default(this._backdrop).addClass(B),!n)return;if(!o)return void n();a=t.getTransitionDurationFromElement(this._backdrop),e.default(this._backdrop).one(t.TRANSITION_END,n).emulateTransitionEnd(a)}else!this._isShown&&this._backdrop?(e.default(this._backdrop).removeClass(B),i=function(){s._removeBackdrop(),n&&n()},e.default(this._element).hasClass(_)?(r=t.getTransitionDurationFromElement(this._backdrop),e.default(this._backdrop).one(t.TRANSITION_END,i).emulateTransitionEnd(r)):i()):n&&n()},s._adjustDialog=function(){var e=this._element.scrollHeight>document.documentElement.clientHeight;!this._isBodyOverflowing&&e&&(this._element.style.paddingLeft=this._scrollbarWidth+"px"),this._isBodyOverflowing&&!e&&(this._element.style.paddingRight=this._scrollbarWidth+"px")},s._resetAdjustments=function(){this._element.style.paddingLeft="",this._element.style.paddingRight=""},s._checkScrollbar=function(){var e=document.body.getBoundingClientRect();this._isBodyOverflowing=Math.round(e.left+e.right)
',trigger:"hover focus",title:"",delay:0,html:!1,selector:!1,placement:"top",offset:0,container:!1,fallbackPlacement:"flip",boundary:"scrollParent",customClass:"",sanitize:!0,sanitizeFn:null,whiteList:{"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},popperConfig:null},tO={animation:"boolean",template:"string",title:"(string|element|function)",trigger:"string",delay:"(number|object)",html:"boolean",selector:"(string|boolean)",placement:"(string|function)",offset:"(number|string|function)",container:"(string|element|boolean)",fallbackPlacement:"(string|array)",boundary:"(string|element)",customClass:"(string|function)",sanitize:"boolean",sanitizeFn:"(null|function)",whiteList:"object",popperConfig:"(null|object)"},tx={HIDE:"hide.bs.tooltip",HIDDEN:"hidden.bs.tooltip",SHOW:"show.bs.tooltip",SHOWN:"shown.bs.tooltip",INSERTED:"inserted.bs.tooltip",CLICK:"click.bs.tooltip",FOCUSIN:"focusin.bs.tooltip",FOCUSOUT:"focusout.bs.tooltip",MOUSEENTER:"mouseenter.bs.tooltip",MOUSELEAVE:"mouseleave.bs.tooltip"},d=function(){function o(e,t){if("undefined"==typeof ei)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");this._isEnabled=!0,this._timeout=0,this._hoverState="",this._activeTrigger={},this._popper=null,this.element=e,this.config=this._getConfig(t),this.tip=null,this._setListeners()}var s=o.prototype;return s.enable=function(){this._isEnabled=!0},s.disable=function(){this._isEnabled=!1},s.toggleEnabled=function(){this._isEnabled=!this._isEnabled},s.toggle=function(n){if(this._isEnabled)if(n){var s=this.constructor.DATA_KEY,t=e.default(n.currentTarget).data(s);t||(t=new this.constructor(n.currentTarget,this._getDelegateConfig()),e.default(n.currentTarget).data(s,t)),t._activeTrigger.click=!t._activeTrigger.click,t._isWithActiveTrigger()?t._enter(null,t):t._leave(null,t)}else{if(e.default(this.getTipElement()).hasClass(J))return void this._leave(null,this);this._enter(null,this)}},s.dispose=function(){clearTimeout(this._timeout),e.default.removeData(this.element,this.constructor.DATA_KEY),e.default(this.element).off(this.constructor.EVENT_KEY),e.default(this.element).closest(".modal").off("hide.bs.modal",this._hideModalHandler),this.tip&&e.default(this.tip).remove(),this._isEnabled=null,this._timeout=null,this._hoverState=null,this._activeTrigger=null,this._popper&&this._popper.destroy(),this._popper=null,this.element=null,this.config=null,this.tip=null},s.show=function(){if(n=this,"none"===e.default(this.element).css("display"))throw new Error("Please use show on visible elements");if(o=e.default.Event(this.constructor.Event.SHOW),this.isWithContent()&&this._isEnabled){e.default(this.element).trigger(o);var n,s,o,i,a,r,l,d,u,c=t.findShadowRoot(this.element),h=e.default.contains(null!==c?c:this.element.ownerDocument.documentElement,this.element);if(o.isDefaultPrevented()||!h)return;s=this.getTipElement(),a=t.getUID(this.constructor.NAME),s.setAttribute("id",a),this.element.setAttribute("aria-describedby",a),this.setContent(),this.config.animation&&e.default(s).addClass(K),l="function"==typeof this.config.placement?this.config.placement.call(this,s,this.element):this.config.placement,r=this._getAttachment(l),this.addAttachmentClass(r),d=this._getContainer(),e.default(s).data(this.constructor.DATA_KEY,this),e.default.contains(this.element.ownerDocument.documentElement,this.tip)||e.default(s).appendTo(d),e.default(this.element).trigger(this.constructor.Event.INSERTED),this._popper=new ei(this.element,s,this._getPopperConfig(r)),e.default(s).addClass(J),e.default(s).addClass(this.config.customClass),"ontouchstart"in document.documentElement&&e.default(document.body).children().on("mouseover",null,e.default.noop),i=function(){n.config.animation&&n._fixTransition();var t=n._hoverState;n._hoverState=null,e.default(n.element).trigger(n.constructor.Event.SHOWN),t===e6&&n._leave(null,n)},e.default(this.tip).hasClass(K)?(u=t.getTransitionDurationFromElement(this.tip),e.default(this.tip).one(t.TRANSITION_END,i).emulateTransitionEnd(u)):i()}},s.hide=function(o){var r,n=this,s=this.getTipElement(),i=e.default.Event(this.constructor.Event.HIDE),a=function(){n._hoverState!==E&&s.parentNode&&s.parentNode.removeChild(s),n._cleanTipClass(),n.element.removeAttribute("aria-describedby"),e.default(n.element).trigger(n.constructor.Event.HIDDEN),null!==n._popper&&n._popper.destroy(),o&&o()};e.default(this.element).trigger(i),!i.isDefaultPrevented()&&(e.default(s).removeClass(J),"ontouchstart"in document.documentElement&&e.default(document.body).children().off("mouseover",null,e.default.noop),this._activeTrigger.click=!1,this._activeTrigger.focus=!1,this._activeTrigger.hover=!1,e.default(this.tip).hasClass(K)?(r=t.getTransitionDurationFromElement(s),e.default(s).one(t.TRANSITION_END,a).emulateTransitionEnd(r)):a(),this._hoverState="")},s.update=function(){null!==this._popper&&this._popper.scheduleUpdate()},s.isWithContent=function(){return Boolean(this.getTitle())},s.addAttachmentClass=function(t){e.default(this.getTipElement()).addClass("bs-tooltip-"+t)},s.getTipElement=function(){return this.tip=this.tip||e.default(this.config.template)[0],this.tip},s.setContent=function(){var t=this.getTipElement();this.setElementContent(e.default(t.querySelectorAll(".tooltip-inner")),this.getTitle()),e.default(t).removeClass("fade show")},s.setElementContent=function(n,t){"object"!=typeof t||!t.nodeType&&!t.jquery?this.config.html?(this.config.sanitize&&(t=t8(t,this.config.whiteList,this.config.sanitizeFn)),n.html(t)):n.text(t):this.config.html?e.default(t).parent().is(n)||n.empty().append(t):n.text(e.default(t).text())},s.getTitle=function(){var e=this.element.getAttribute("data-original-title");return e||(e="function"==typeof this.config.title?this.config.title.call(this.element):this.config.title),e},s._getPopperConfig=function(t){var e=this;return n({},{placement:t,modifiers:{offset:this._getOffset(),flip:{behavior:this.config.fallbackPlacement},arrow:{element:".arrow"},preventOverflow:{boundariesElement:this.config.boundary}},onCreate:function(t){t.originalPlacement!==t.placement&&e._handlePopperPlacementChange(t)},onUpdate:function(t){return e._handlePopperPlacementChange(t)}},this.config.popperConfig)},s._getOffset=function(){var t=this,e={};return"function"==typeof this.config.offset?e.fn=function(e){return e.offsets=n({},e.offsets,t.config.offset(e.offsets,t.element)),e}:e.offset=this.config.offset,e},s._getContainer=function(){return!1===this.config.container?document.body:t.isElement(this.config.container)?e.default(this.config.container):e.default(document).find(this.config.container)},s._getAttachment=function(e){return t_[e.toUpperCase()]},s._setListeners=function(){var t=this;this.config.trigger.split(" ").forEach(function(n){if("click"===n)e.default(t.element).on(t.constructor.Event.CLICK,t.config.selector,function(e){return t.toggle(e)});else if("manual"!==n){var s=n===et?t.constructor.Event.MOUSEENTER:t.constructor.Event.FOCUSIN,o=n===et?t.constructor.Event.MOUSELEAVE:t.constructor.Event.FOCUSOUT;e.default(t.element).on(s,t.config.selector,function(e){return t._enter(e)}).on(o,t.config.selector,function(e){return t._leave(e)})}}),this._hideModalHandler=function(){t.element&&t.hide()},e.default(this.element).closest(".modal").on("hide.bs.modal",this._hideModalHandler),this.config.selector?this.config=n({},this.config,{trigger:"manual",selector:""}):this._fixTitle()},s._fixTitle=function(){var e=typeof this.element.getAttribute("data-original-title");(this.element.getAttribute("title")||"string"!==e)&&(this.element.setAttribute("data-original-title",this.element.getAttribute("title")||""),this.element.setAttribute("title",""))},s._enter=function(n,t){var s=this.constructor.DATA_KEY;(t=t||e.default(n.currentTarget).data(s))||(t=new this.constructor(n.currentTarget,this._getDelegateConfig()),e.default(n.currentTarget).data(s,t)),n&&(t._activeTrigger["focusin"===n.type?te:et]=!0),e.default(t.getTipElement()).hasClass(J)||t._hoverState===E?t._hoverState=E:(clearTimeout(t._timeout),t._hoverState=E,t.config.delay&&t.config.delay.show?t._timeout=setTimeout(function(){t._hoverState===E&&t.show()},t.config.delay.show):t.show())},s._leave=function(n,t){var s=this.constructor.DATA_KEY;(t=t||e.default(n.currentTarget).data(s))||(t=new this.constructor(n.currentTarget,this._getDelegateConfig()),e.default(n.currentTarget).data(s,t)),n&&(t._activeTrigger["focusout"===n.type?te:et]=!1),t._isWithActiveTrigger()||(clearTimeout(t._timeout),t._hoverState=e6,t.config.delay&&t.config.delay.hide?t._timeout=setTimeout(function(){t._hoverState===e6&&t.hide()},t.config.delay.hide):t.hide())},s._isWithActiveTrigger=function(){for(var e in this._activeTrigger)if(this._activeTrigger[e])return!0;return!1},s._getConfig=function(s){var o=e.default(this.element).data();return Object.keys(o).forEach(function(e){-1!==t5.indexOf(e)&&delete o[e]}),"number"==typeof(s=n({},this.constructor.Default,o,"object"==typeof s&&s?s:{})).delay&&(s.delay={show:s.delay,hide:s.delay}),"number"==typeof s.title&&(s.title=s.title.toString()),"number"==typeof s.content&&(s.content=s.content.toString()),t.typeCheckConfig(tf,s,this.constructor.DefaultType),s.sanitize&&(s.template=t8(s.template,s.whiteList,s.sanitizeFn)),s},s._getDelegateConfig=function(){var e,t={};if(this.config)for(e in this.config)this.constructor.Default[e]!==this.config[e]&&(t[e]=this.config[e]);return t},s._cleanTipClass=function(){var n=e.default(this.getTipElement()),t=n.attr("class").match(tg);null!==t&&t.length&&n.removeClass(t.join(""))},s._handlePopperPlacementChange=function(e){this.tip=e.instance.popper,this._cleanTipClass(),this.addAttachmentClass(this._getAttachment(e.placement))},s._fixTransition=function(){var t=this.getTipElement(),n=this.config.animation;null===t.getAttribute("x-placement")&&(e.default(t).removeClass(K),this.config.animation=!1,this.hide(),this.show(),this.config.animation=n)},o._jQueryInterface=function(t){return this.each(function(){var s=e.default(this),n=s.data(ex),i="object"==typeof t&&t;if((n||!/dispose|hide/.test(t))&&(n||(n=new o(this,i),s.data(ex,n)),"string"==typeof t)){if("undefined"==typeof n[t])throw new TypeError('No method named "'+t+'"');n[t]()}})},i(o,null,[{key:"VERSION",get:function(){return"4.6.1"}},{key:"Default",get:function(){return tw}},{key:"NAME",get:function(){return tf}},{key:"DATA_KEY",get:function(){return ex}},{key:"Event",get:function(){return tx}},{key:"EVENT_KEY",get:function(){return".bs.tooltip"}},{key:"DefaultType",get:function(){return tO}}]),o}();e.default.fn.tooltip=d._jQueryInterface,e.default.fn.tooltip.Constructor=d,e.default.fn.tooltip.noConflict=function(){return e.default.fn.tooltip=t7,d._jQueryInterface};var e3="bs.popover",tk=e.default.fn.popover,tA=new RegExp("(^|\\s)bs-popover\\S+","g"),tS=n({},d.Default,{placement:"right",trigger:"click",content:"",template:''}),tM=n({},d.DefaultType,{content:"(string|element|function)"}),tF={HIDE:"hide.bs.popover",HIDDEN:"hidden.bs.popover",SHOW:"show.bs.popover",SHOWN:"shown.bs.popover",INSERTED:"inserted.bs.popover",CLICK:"click.bs.popover",FOCUSIN:"focusin.bs.popover",FOCUSOUT:"focusout.bs.popover",MOUSEENTER:"mouseenter.bs.popover",MOUSELEAVE:"mouseleave.bs.popover"},q=function(a){function t(){return a.apply(this,arguments)||this}o=a,(s=t).prototype=Object.create(o.prototype),s.prototype.constructor=s,e4(s,o);var s,o,n=t.prototype;return n.isWithContent=function(){return this.getTitle()||this._getContent()},n.addAttachmentClass=function(t){e.default(this.getTipElement()).addClass("bs-popover-"+t)},n.getTipElement=function(){return this.tip=this.tip||e.default(this.config.template)[0],this.tip},n.setContent=function(){var t,n=e.default(this.getTipElement());this.setElementContent(n.find(".popover-header"),this.getTitle()),t=this._getContent(),"function"==typeof t&&(t=t.call(this.element)),this.setElementContent(n.find(".popover-body"),t),n.removeClass("fade show")},n._getContent=function(){return this.element.getAttribute("data-content")||this.config.content},n._cleanTipClass=function(){var n=e.default(this.getTipElement()),t=n.attr("class").match(tA);null!==t&&t.length>0&&n.removeClass(t.join(""))},t._jQueryInterface=function(n){return this.each(function(){var s=e.default(this).data(e3),o="object"==typeof n?n:null;if((s||!/dispose|hide/.test(n))&&(s||(s=new t(this,o),e.default(this).data(e3,s)),"string"==typeof n)){if("undefined"==typeof s[n])throw new TypeError('No method named "'+n+'"');s[n]()}})},i(t,null,[{key:"VERSION",get:function(){return"4.6.1"}},{key:"Default",get:function(){return tS}},{key:"NAME",get:function(){return"popover"}},{key:"DATA_KEY",get:function(){return e3}},{key:"Event",get:function(){return tF}},{key:"EVENT_KEY",get:function(){return".bs.popover"}},{key:"DefaultType",get:function(){return tM}}]),t}(d);e.default.fn.popover=q._jQueryInterface,e.default.fn.popover.Constructor=q,e.default.fn.popover.noConflict=function(){return e.default.fn.popover=tk,q._jQueryInterface};var h="scrollspy",eh="bs.scrollspy",no=e.default.fn[h],u="active",eC="position",ek=".nav, .list-group",eS={offset:10,method:"auto",target:""},tI={offset:"number",method:"string",target:"(string|element)"},H=function(){function o(t,n){var s=this;this._element=t,this._scrollElement="BODY"===t.tagName?window:t,this._config=this._getConfig(n),this._selector=this._config.target+" .nav-link,"+this._config.target+" .list-group-item,"+this._config.target+" .dropdown-item",this._offsets=[],this._targets=[],this._activeTarget=null,this._scrollHeight=0,e.default(this._scrollElement).on("scroll.bs.scrollspy",function(e){return s._process(e)}),this.refresh(),this._process()}var s=o.prototype;return s.refresh=function(){var n=this,o=this._scrollElement===this._scrollElement.window?"offset":eC,s="auto"===this._config.method?o:this._config.method,i=s===eC?this._getScrollTop():0;this._offsets=[],this._targets=[],this._scrollHeight=this._getScrollHeight(),[].slice.call(document.querySelectorAll(this._selector)).map(function(r){var n,a,o=t.getSelectorFromElement(r);return(o&&(n=document.querySelector(o)),n)&&(a=n.getBoundingClientRect(),a.width||a.height)?[e.default(n)[s]().top+i,o]:null}).filter(function(e){return e}).sort(function(e,t){return e[0]-t[0]}).forEach(function(e){n._offsets.push(e[0]),n._targets.push(e[1])})},s.dispose=function(){e.default.removeData(this._element,eh),e.default(this._scrollElement).off(".bs.scrollspy"),this._element=null,this._scrollElement=null,this._config=null,this._selector=null,this._offsets=null,this._targets=null,this._activeTarget=null,this._scrollHeight=null},s._getConfig=function(s){if("string"!=typeof(s=n({},eS,"object"==typeof s&&s?s:{})).target&&t.isElement(s.target)){var o=e.default(s.target).attr("id");o||(o=t.getUID(h),e.default(s.target).attr("id",o)),s.target="#"+o}return t.typeCheckConfig(h,s,tI),s},s._getScrollTop=function(){return this._scrollElement===window?this._scrollElement.pageYOffset:this._scrollElement.scrollTop},s._getScrollHeight=function(){return this._scrollElement.scrollHeight||Math.max(document.body.scrollHeight,document.documentElement.scrollHeight)},s._getOffsetHeight=function(){return this._scrollElement===window?window.innerHeight:this._scrollElement.getBoundingClientRect().height},s._process=function(){var e,n,t=this._getScrollTop()+this._config.offset,s=this._getScrollHeight(),o=this._config.offset+s-this._getOffsetHeight();if(this._scrollHeight!==s&&this.refresh(),t>=o)n=this._targets[this._targets.length-1],this._activeTarget!==n&&this._activate(n);else{if(this._activeTarget&&t0)return this._activeTarget=null,void this._clear();for(e=this._offsets.length;e--;)this._activeTarget!==this._targets[e]&&t>=this._offsets[e]&&("undefined"==typeof this._offsets[e+1]||t li > .active",k=function(){function n(e){this._element=e}var s=n.prototype;return s.show=function(){if(i=this,!(this._element.parentNode&&this._element.parentNode.nodeType===Node.ELEMENT_NODE&&e.default(this._element).hasClass(z)||e.default(this._element).hasClass("disabled"))){var n,o,i,a,r,c,d,s=e.default(this._element).closest(".nav, .list-group")[0],l=t.getSelectorFromElement(this._element);s&&(d="UL"===s.nodeName||"OL"===s.nodeName?eJ:eZ,n=(n=e.default.makeArray(e.default(s).find(d)))[n.length-1]),a=e.default.Event("hide.bs.tab",{relatedTarget:this._element}),r=e.default.Event("show.bs.tab",{relatedTarget:n}),(n&&e.default(n).trigger(a),e.default(this._element).trigger(r),!r.isDefaultPrevented()&&!a.isDefaultPrevented())&&(l&&(o=document.querySelector(l)),this._activate(this._element,s),c=function(){var t=e.default.Event("hidden.bs.tab",{relatedTarget:i._element}),s=e.default.Event("shown.bs.tab",{relatedTarget:n});e.default(n).trigger(t),e.default(i._element).trigger(s)},o?this._activate(o,o.parentNode,c):c())}},s.dispose=function(){e.default.removeData(this._element,ed),this._element=null},s._activate=function(l,s,i){var a,r=this,n=(!s||"UL"!==s.nodeName&&"OL"!==s.nodeName?e.default(s).children(eZ):e.default(s).find(eJ))[0],c=i&&n&&e.default(n).hasClass(eY),o=function(){return r._transitionComplete(l,n,i)};n&&c?(a=t.getTransitionDurationFromElement(n),e.default(n).removeClass(eQ).one(t.TRANSITION_END,o).emulateTransitionEnd(a)):o()},s._transitionComplete=function(n,o,a){if(o){e.default(o).removeClass(z);var s,i,c,r=e.default(o.parentNode).find("> .dropdown-menu .active")[0];r&&e.default(r).removeClass(z),"tab"===o.getAttribute("role")&&o.setAttribute("aria-selected",!1)}e.default(n).addClass(z),"tab"===n.getAttribute("role")&&n.setAttribute("aria-selected",!0),t.reflow(n),n.classList.contains(eY)&&n.classList.add(eQ),s=n.parentNode,(s&&"LI"===s.nodeName&&(s=s.parentNode),s&&e.default(s).hasClass("dropdown-menu"))&&(i=e.default(n).closest(".dropdown")[0],i&&(c=[].slice.call(i.querySelectorAll(".dropdown-toggle")),e.default(c).addClass(z)),n.setAttribute("aria-expanded",!0)),a&&a()},n._jQueryInterface=function(t){return this.each(function(){var o=e.default(this),s=o.data(ed);if(s||(s=new n(this),o.data(ed,s)),"string"==typeof t){if("undefined"==typeof s[t])throw new TypeError('No method named "'+t+'"');s[t]()}})},i(n,null,[{key:"VERSION",get:function(){return"4.6.1"}}]),n}();e.default(document).on("click.bs.tab.data-api",'[data-toggle="tab"], [data-toggle="pill"], [data-toggle="list"]',function(t){t.preventDefault(),k._jQueryInterface.call(e.default(this),"show")}),e.default.fn.tab=k._jQueryInterface,e.default.fn.tab.Constructor=k,e.default.fn.tab.noConflict=function(){return e.default.fn.tab=t$,k._jQueryInterface};var ev="bs.toast",tQ=e.default.fn.toast,tl="hide",R="show",t6="showing",th="click.dismiss.bs.toast",tm={animation:!0,autohide:!0,delay:500},ns={animation:"boolean",autohide:"boolean",delay:"number"},Y=function(){function o(e,t){this._element=e,this._config=this._getConfig(t),this._timeout=null,this._setListeners()}var s=o.prototype;return s.show=function(){var s,i,n=this,o=e.default.Event("show.bs.toast");e.default(this._element).trigger(o),!o.isDefaultPrevented()&&(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),s=function(){n._element.classList.remove(t6),n._element.classList.add(R),e.default(n._element).trigger("shown.bs.toast"),n._config.autohide&&(n._timeout=setTimeout(function(){n.hide()},n._config.delay))},this._element.classList.remove(tl),t.reflow(this._element),this._element.classList.add(t6),this._config.animation?(i=t.getTransitionDurationFromElement(this._element),e.default(this._element).one(t.TRANSITION_END,s).emulateTransitionEnd(i)):s())},s.hide=function(){if(this._element.classList.contains(R)){var t=e.default.Event("hide.bs.toast");e.default(this._element).trigger(t),t.isDefaultPrevented()||this._close()}},s.dispose=function(){this._clearTimeout(),this._element.classList.contains(R)&&this._element.classList.remove(R),e.default(this._element).off(th),e.default.removeData(this._element,ev),this._element=null,this._config=null},s._getConfig=function(s){return s=n({},tm,e.default(this._element).data(),"object"==typeof s&&s?s:{}),t.typeCheckConfig("toast",s,this.constructor.DefaultType),s},s._setListeners=function(){var t=this;e.default(this._element).on(th,'[data-dismiss="toast"]',function(){return t.hide()})},s._close=function(){var o,n=this,s=function(){n._element.classList.add(tl),e.default(n._element).trigger("hidden.bs.toast")};this._element.classList.remove(R),this._config.animation?(o=t.getTransitionDurationFromElement(this._element),e.default(this._element).one(t.TRANSITION_END,s).emulateTransitionEnd(o)):s()},s._clearTimeout=function(){clearTimeout(this._timeout),this._timeout=null},o._jQueryInterface=function(t){return this.each(function(){var s=e.default(this),n=s.data(ev);if(n||(n=new o(this,"object"==typeof t&&t),s.data(ev,n)),"string"==typeof t){if("undefined"==typeof n[t])throw new TypeError('No method named "'+t+'"');n[t](this)}})},i(o,null,[{key:"VERSION",get:function(){return"4.6.1"}},{key:"DefaultType",get:function(){return ns}},{key:"Default",get:function(){return tm}}]),o}();e.default.fn.toast=Y._jQueryInterface,e.default.fn.toast.Constructor=Y,e.default.fn.toast.noConflict=function(){return e.default.fn.toast=tQ,Y._jQueryInterface},s.Alert=b,s.Button=D,s.Carousel=f,s.Collapse=A,s.Dropdown=c,s.Modal=M,s.Popover=q,s.Scrollspy=H,s.Tab=k,s.Toast=Y,s.Tooltip=d,s.Util=t,Object.defineProperty(s,"__esModule",{value:!0})});let mouseoverTimer,lastTouchTimestamp;const prefetches=new Set,prefetchElement=document.createElement("link"),isSupported=prefetchElement.relList&&prefetchElement.relList.supports&&prefetchElement.relList.supports("prefetch")&&window.IntersectionObserver&&"isIntersecting"in IntersectionObserverEntry.prototype,allowQueryString="instantAllowQueryString"in document.body.dataset,allowExternalLinks="instantAllowExternalLinks"in document.body.dataset,useWhitelist="instantWhitelist"in document.body.dataset,mousedownShortcut="instantMousedownShortcut"in document.body.dataset,DELAY_TO_NOT_BE_CONSIDERED_A_TOUCH_INITIATED_ACTION=1111;let delayOnHover=65,useMousedown=!1,useMousedownOnly=!1,useViewport=!1;if("instantIntensity"in document.body.dataset){const e=document.body.dataset.instantIntensity;if(e.substr(0,"mousedown".length)=="mousedown")useMousedown=!0,e=="mousedown-only"&&(useMousedownOnly=!0);else if(e.substr(0,"viewport".length)=="viewport")navigator.connection&&(navigator.connection.saveData||navigator.connection.effectiveType&&navigator.connection.effectiveType.includes("2g"))||(e=="viewport"?document.documentElement.clientWidth*document.documentElement.clientHeight<45e4&&(useViewport=!0):e=="viewport-all"&&(useViewport=!0));else{const t=parseInt(e);isNaN(t)||(delayOnHover=t)}}if(isSupported){const e={capture:!0,passive:!0};if(useMousedownOnly||document.addEventListener("touchstart",touchstartListener,e),useMousedown?mousedownShortcut||document.addEventListener("mousedown",mousedownListener,e):document.addEventListener("mouseover",mouseoverListener,e),mousedownShortcut&&document.addEventListener("mousedown",mousedownShortcutListener,e),useViewport){let e;window.requestIdleCallback?e=e=>{requestIdleCallback(e,{timeout:1500})}:e=e=>{e()},e(()=>{const e=new IntersectionObserver(t=>{t.forEach(t=>{if(t.isIntersecting){const n=t.target;e.unobserve(n),preload(n.href)}})});document.querySelectorAll("a").forEach(t=>{isPreloadable(t)&&e.observe(t)})})}}function touchstartListener(t){lastTouchTimestamp=performance.now();const e=t.target.closest("a");if(!isPreloadable(e))return;preload(e.href)}function mouseoverListener(t){if(performance.now()-lastTouchTimestamp{preload(e.href),mouseoverTimer=void 0},delayOnHover)}function mousedownListener(t){const e=t.target.closest("a");if(!isPreloadable(e))return;preload(e.href)}function mouseoutListener(e){if(e.relatedTarget&&e.target.closest("a")==e.relatedTarget.closest("a"))return;mouseoverTimer&&(clearTimeout(mouseoverTimer),mouseoverTimer=void 0)}function mousedownShortcutListener(e){if(performance.now()-lastTouchTimestamp1||e.metaKey||e.ctrlKey)return;if(!t)return;t.addEventListener("click",function(e){if(e.detail==1337)return;e.preventDefault()},{capture:!0,passive:!1,once:!0});const n=new MouseEvent("click",{view:window,bubbles:!0,cancelable:!1,detail:1337});t.dispatchEvent(n)}function isPreloadable(e){if(!e||!e.href)return;if(useWhitelist&&!("instant"in e.dataset))return;if(!allowExternalLinks&&e.origin!=location.origin&&!("instant"in e.dataset))return;if(!["http:","https:"].includes(e.protocol))return;if(e.protocol=="http:"&&location.protocol=="https:")return;if(!allowQueryString&&e.search&&!("instant"in e.dataset))return;if(e.hash&&e.pathname+e.search==location.pathname+location.search)return;if("noInstant"in e.dataset)return;return!0}function preload(e){if(prefetches.has(e))return;const t=document.createElement("link");t.rel="prefetch",t.href=e,document.head.appendChild(t),prefetches.add(e)} \ No newline at end of file diff --git a/js/wowchemy-headroom.c251366b4128fd5e6b046d4c97a62a51.js b/js/wowchemy-headroom.c251366b4128fd5e6b046d4c97a62a51.js new file mode 100644 index 0000000..a3b69c0 --- /dev/null +++ b/js/wowchemy-headroom.c251366b4128fd5e6b046d4c97a62a51.js @@ -0,0 +1,6 @@ +var B=Object.create;var T=Object.defineProperty;var E=Object.getOwnPropertyDescriptor;var L=Object.getOwnPropertyNames;var z=Object.getPrototypeOf,M=Object.prototype.hasOwnProperty;var Y=(n,o)=>()=>(o||n((o={exports:{}}).exports,o),o.exports);var j=(n,o,l,u)=>{if(o&&typeof o=="object"||typeof o=="function")for(let s of L(o))!M.call(n,s)&&s!==l&&T(n,s,{get:()=>o[s],enumerable:!(u=E(o,s))||u.enumerable});return n};var x=(n,o,l)=>(l=n!=null?B(z(n)):{},j(o||!n||!n.__esModule?T(l,"default",{value:n,enumerable:!0}):l,n));var O=Y((C,v)=>{(function(n,o){typeof C=="object"&&typeof v<"u"?v.exports=o():typeof define=="function"&&define.amd?define(o):(n=n||self).Headroom=o()})(C,function(){"use strict";function n(){return typeof window<"u"}function o(t){return function(e){return e&&e.document&&function(d){return d.nodeType===9}(e.document)}(t)?function(e){var d=e.document,a=d.body,c=d.documentElement;return{scrollHeight:function(){return Math.max(a.scrollHeight,c.scrollHeight,a.offsetHeight,c.offsetHeight,a.clientHeight,c.clientHeight)},height:function(){return e.innerHeight||c.clientHeight||a.clientHeight},scrollY:function(){return e.pageYOffset!==void 0?e.pageYOffset:(c||a.parentNode||a).scrollTop}}}(t):function(e){return{scrollHeight:function(){return Math.max(e.scrollHeight,e.offsetHeight,e.clientHeight)},height:function(){return Math.max(e.offsetHeight,e.clientHeight)},scrollY:function(){return e.scrollTop}}}(t)}function l(t,e,d){var a,c=function(){var r=!1;try{var h={get passive(){r=!0}};window.addEventListener("test",h,h),window.removeEventListener("test",h,h)}catch{r=!1}return r}(),p=!1,f=o(t),m=f.scrollY(),i={};function b(){var r=Math.round(f.scrollY()),h=f.height(),g=f.scrollHeight();i.scrollY=r,i.lastScrollY=m,i.direction=me.tolerance[i.direction],d(i),m=r,p=!1}function H(){p||(p=!0,a=requestAnimationFrame(b))}var y=!!c&&{passive:!0,capture:!1};return t.addEventListener("scroll",H,y),b(),{destroy:function(){cancelAnimationFrame(a),t.removeEventListener("scroll",H,y)}}}function u(t){return t===Object(t)?t:{down:t,up:t}}function s(t,e){e=e||{},Object.assign(this,s.options,e),this.classes=Object.assign({},s.options.classes,e.classes),this.elem=t,this.tolerance=u(this.tolerance),this.offset=u(this.offset),this.initialised=!1,this.frozen=!1}return s.prototype={constructor:s,init:function(){return s.cutsTheMustard&&!this.initialised&&(this.addClass("initial"),this.initialised=!0,setTimeout(function(t){t.scrollTracker=l(t.scroller,{offset:t.offset,tolerance:t.tolerance},t.update.bind(t))},100,this)),this},destroy:function(){this.initialised=!1,Object.keys(this.classes).forEach(this.removeClass,this),this.scrollTracker.destroy()},unpin:function(){!this.hasClass("pinned")&&this.hasClass("unpinned")||(this.addClass("unpinned"),this.removeClass("pinned"),this.onUnpin&&this.onUnpin.call(this))},pin:function(){this.hasClass("unpinned")&&(this.addClass("pinned"),this.removeClass("unpinned"),this.onPin&&this.onPin.call(this))},freeze:function(){this.frozen=!0,this.addClass("frozen")},unfreeze:function(){this.frozen=!1,this.removeClass("frozen")},top:function(){this.hasClass("top")||(this.addClass("top"),this.removeClass("notTop"),this.onTop&&this.onTop.call(this))},notTop:function(){this.hasClass("notTop")||(this.addClass("notTop"),this.removeClass("top"),this.onNotTop&&this.onNotTop.call(this))},bottom:function(){this.hasClass("bottom")||(this.addClass("bottom"),this.removeClass("notBottom"),this.onBottom&&this.onBottom.call(this))},notBottom:function(){this.hasClass("notBottom")||(this.addClass("notBottom"),this.removeClass("bottom"),this.onNotBottom&&this.onNotBottom.call(this))},shouldUnpin:function(t){return t.direction==="down"&&!t.top&&t.toleranceExceeded},shouldPin:function(t){return t.direction==="up"&&t.toleranceExceeded||t.top},addClass:function(t){this.elem.classList.add.apply(this.elem.classList,this.classes[t].split(" "))},removeClass:function(t){this.elem.classList.remove.apply(this.elem.classList,this.classes[t].split(" "))},hasClass:function(t){return this.classes[t].split(" ").every(function(e){return this.classList.contains(e)},this.elem)},update:function(t){t.isOutOfBounds||this.frozen!==!0&&(t.top?this.top():this.notTop(),t.bottom?this.bottom():this.notBottom(),this.shouldUnpin(t)?this.unpin():this.shouldPin(t)&&this.pin())}},s.options={tolerance:{up:0,down:0},offset:0,scroller:n()?window:null,classes:{frozen:"headroom--frozen",pinned:"headroom--pinned",unpinned:"headroom--unpinned",top:"headroom--top",notTop:"headroom--not-top",bottom:"headroom--bottom",notBottom:"headroom--not-bottom",initial:"headroom"}},s.cutsTheMustard=!!(n()&&function(){}.bind&&"classList"in document.documentElement&&Object.assign&&Object.keys&&requestAnimationFrame),s})});var w=x(O());document.addEventListener("DOMContentLoaded",function(){let n=JSON.parse(document.getElementById("page-data").textContent);console.debug(`Use headroom on this page? ${n.use_headroom}`);let o=document.querySelector("header");o&&n.use_headroom===!0&&new w.default(o).init()}); +/*! + * headroom.js v0.12.0 - Give your page some headroom. Hide your header until you need it + * Copyright (c) 2020 Nick Williams - http://wicky.nillia.ms/headroom.js + * License: MIT + */ diff --git a/js/wowchemy-init.min.50da4d2b3e630006e1919a5ab5424b19.js b/js/wowchemy-init.min.50da4d2b3e630006e1919a5ab5424b19.js new file mode 100644 index 0000000..c3624ce --- /dev/null +++ b/js/wowchemy-init.min.50da4d2b3e630006e1919a5ab5424b19.js @@ -0,0 +1,6 @@ +/*! Wowchemy v5.5.0 | https://wowchemy.com/ */ +/*! Copyright 2016-present George Cushen (https://georgecushen.com/) */ +/*! License: https://github.com/wowchemy/wowchemy-hugo-themes/blob/main/LICENSE.md */ + +; +(()=>{(()=>{var t,n,e=document.body;function s(){return parseInt(localStorage.getItem("wcTheme")||2)}function o(){return Boolean(window.wc.darkLightEnabled)}function i(){if(!o())return console.debug("User theming disabled."),{isDarkTheme:window.wc.isSiteThemeDark,themeMode:window.wc.isSiteThemeDark?1:0};console.debug("User theming enabled.");let t,n=s();switch(console.debug(`User's theme variation: ${n}`),n){case 0:t=!1;break;case 1:t=!0;break;default:window.matchMedia("(prefers-color-scheme: dark)").matches?t=!0:window.matchMedia("(prefers-color-scheme: light)").matches?t=!1:t=window.wc.isSiteThemeDark;break}return t&&!e.classList.contains("dark")?(console.debug("Applying Wowchemy dark theme"),document.body.classList.add("dark")):!t&&e.classList.contains("dark")&&(console.debug("Applying Wowchemy light theme"),document.body.classList.remove("dark")),{isDarkTheme:t,themeMode:n}}t="iml",n=!1,window.wc={darkLightEnabled:t,isSiteThemeDark:n},window.netlifyIdentity&&window.netlifyIdentity.on("init",e=>{e||window.netlifyIdentity.on("login",()=>{document.location.href="/admin/"})}),i(),window.PlotlyConfig={MathJaxConfig:"local"}})()})() \ No newline at end of file diff --git a/js/wowchemy-map.a26e9d2f7238ba5b868384f1c5bc6477.js b/js/wowchemy-map.a26e9d2f7238ba5b868384f1c5bc6477.js new file mode 100644 index 0000000..7b627ec --- /dev/null +++ b/js/wowchemy-map.a26e9d2f7238ba5b868384f1c5bc6477.js @@ -0,0 +1 @@ +function m(){if($("#map").length){let n=$("#map-provider").val(),e=$("#map-lat").val(),t=$("#map-lng").val(),o=parseInt($("#map-zoom").val()),p=$("#map-dir").val(),l=$("#map-api-key").val();if(n==="google")new GMaps({div:"#map",lat:e,lng:t,zoom:o,zoomControl:!0,zoomControlOpt:{style:"SMALL",position:"TOP_LEFT"},streetViewControl:!1,mapTypeControl:!1,gestureHandling:"cooperative"}).addMarker({lat:e,lng:t,click:function(){let r="https://www.google.com/maps/place/"+encodeURIComponent(p)+"/@"+e+","+t+"/";window.open(r,"_blank")},title:p});else{let a=new L.map("map").setView([e,t],o);n==="mapbox"&&l.length?L.tileLayer("https://api.mapbox.com/styles/v1/{id}/tiles/{z}/{x}/{y}?access_token={accessToken}",{attribution:'Map data © OpenStreetMap contributors, CC-BY-SA, Imagery \xA9 Mapbox',tileSize:512,maxZoom:18,zoomOffset:-1,id:"mapbox/streets-v11",accessToken:l}).addTo(a):L.tileLayer("https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",{maxZoom:19,attribution:'© OpenStreetMap'}).addTo(a);let r=L.marker([e,t]).addTo(a),i=e+","+t+"#map="+o+"/"+e+"/"+t+"&layers=N";r.bindPopup(p+'

Routing via OpenStreetMap

')}}}document.addEventListener("DOMContentLoaded",function(){m()}); diff --git a/js/wowchemy-publication.68f8d7090562ca65fc6d3cb3f8f2d2cb.js b/js/wowchemy-publication.68f8d7090562ca65fc6d3cb3f8f2d2cb.js new file mode 100644 index 0000000..6808ccb --- /dev/null +++ b/js/wowchemy-publication.68f8d7090562ca65fc6d3cb3f8f2d2cb.js @@ -0,0 +1 @@ +var a={},c,r,l=$("#container-publications");if(l.length){l.isotope({itemSelector:".isotope-item",percentPosition:!0,masonry:{columnWidth:".grid-sizer"},filter:function(){let t=$(this),i=c?t.text().match(c):!0,o=r?t.is(r):!0;return i&&o}});let e=$(".filter-search").keyup(p(function(){c=new RegExp(e.val(),"gi"),l.isotope()}));$(".pub-filters").on("change",function(){let i=$(this)[0].getAttribute("data-filter-group");if(a[i]=this.value,r=f(a),l.isotope(),i==="pubtype"){let o=$(this).val();o.substr(0,9)===".pubtype-"?window.location.hash=o.substr(9):window.location.hash=""}})}function p(e,t){let i;return t=t||100,function(){clearTimeout(i);let u=arguments,n=this;function s(){e.apply(n,u)}i=setTimeout(s,t)}}function f(e){let t="";for(let i in e)t+=e[i];return t}function d(){if(!l.length)return;let e=window.location.hash.replace("#",""),t="*";e!=""&&!isNaN(e)&&(t=".pubtype-"+e);let i="pubtype";a[i]=t,r=f(a),l.isotope(),$(".pubtype-select").val(t)}document.addEventListener("DOMContentLoaded",function(){$(".pub-filters-select")&&d(),$(".js-cite-modal").click(function(e){e.preventDefault();let t=$(this).attr("data-filename"),i=$("#modal");i.find(".modal-body code").load(t,function(o,u,n){if(u=="error"){let s="Error: ";$("#modal-error").html(s+n.status+" "+n.statusText)}else $(".js-download-cite").attr("href",t)}),i.modal("show")}),$(".js-copy-cite").click(function(e){e.preventDefault();let t=document.querySelector("#modal .modal-body code").innerHTML;navigator.clipboard.writeText(t).then(function(){console.debug("Citation copied!")}).catch(function(){console.error("Citation copy failed!")})})}); diff --git a/manifest.webmanifest b/manifest.webmanifest new file mode 100644 index 0000000..e636645 --- /dev/null +++ b/manifest.webmanifest @@ -0,0 +1,18 @@ +{ + "name": "Computational Imaging and AI in Medicine", + "short_name": "Computational Imaging and AI in Medicine", + "lang": "en-us", + "theme_color": "#0072BD", + "background_color": "#0072BD", + "icons": [{ + "src": "/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_192x192_fill_lanczos_center_3.png", + "sizes": "192x192", + "type": "image/png" + }, { + "src": "/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png", + "sizes": "512x512", + "type": "image/png" + }], + "display": "standalone", + "start_url": "/?utm_source=web_app_manifest" +} diff --git a/media/coders.jpg b/media/coders.jpg new file mode 100644 index 0000000..e77faf9 Binary files /dev/null and b/media/coders.jpg differ diff --git a/media/contact.jpg b/media/contact.jpg new file mode 100644 index 0000000..a7720ec Binary files /dev/null and b/media/contact.jpg differ diff --git a/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_180x180_fill_lanczos_center_3.png b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_180x180_fill_lanczos_center_3.png new file mode 100644 index 0000000..8320c8b Binary files /dev/null and b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_180x180_fill_lanczos_center_3.png differ diff --git a/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_192x192_fill_lanczos_center_3.png b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_192x192_fill_lanczos_center_3.png new file mode 100644 index 0000000..32fe3db Binary files /dev/null and b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_192x192_fill_lanczos_center_3.png differ diff --git a/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_32x32_fill_lanczos_center_3.png b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_32x32_fill_lanczos_center_3.png new file mode 100644 index 0000000..b35e21a Binary files /dev/null and b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_32x32_fill_lanczos_center_3.png differ diff --git a/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png new file mode 100644 index 0000000..e7029b2 Binary files /dev/null and b/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png differ diff --git a/media/iml_compai.mp4 b/media/iml_compai.mp4 new file mode 100644 index 0000000..e157c29 Binary files /dev/null and b/media/iml_compai.mp4 differ diff --git a/media/welcome.jpg b/media/welcome.jpg new file mode 100644 index 0000000..2fd0d42 Binary files /dev/null and b/media/welcome.jpg differ diff --git a/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_1200x0_resize_q75_lanczos.jpg b/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_1200x0_resize_q75_lanczos.jpg new file mode 100644 index 0000000..697bd83 Binary files /dev/null and b/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_1200x0_resize_q75_lanczos.jpg differ diff --git a/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_400x0_resize_q75_lanczos.jpg b/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_400x0_resize_q75_lanczos.jpg new file mode 100644 index 0000000..f72b2ab Binary files /dev/null and b/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_400x0_resize_q75_lanczos.jpg differ diff --git a/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_800x0_resize_q75_lanczos.jpg b/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_800x0_resize_q75_lanczos.jpg new file mode 100644 index 0000000..2b171d0 Binary files /dev/null and b/media/welcome_huea7e0f5f1eddf4ab7ce9dce31928477d_3686352_800x0_resize_q75_lanczos.jpg differ diff --git a/old_stuff/index.html b/old_stuff/index.html new file mode 100644 index 0000000..f33d565 --- /dev/null +++ b/old_stuff/index.html @@ -0,0 +1,1202 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Old_stuffs | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Old_stuffs

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Master Seminar - Medical Image Registration (IN2107, IN4462) +
+ + + +
+ Winter semester 2024. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Temporal Landmark Tracking on Medical Imaging +
+ + + +
+ Master Thesis. +
+
+ + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/old_stuff/index.xml b/old_stuff/index.xml new file mode 100644 index 0000000..306a068 --- /dev/null +++ b/old_stuff/index.xml @@ -0,0 +1,57 @@ + + + + Old_stuffs | Computational Imaging and AI in Medicine + https://compai-lab.io/old_stuff/ + + Old_stuffs + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Old_stuffs + https://compai-lab.io/old_stuff/ + + + + Master Seminar - Medical Image Registration (IN2107, IN4462) + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + <p><strong>Time</strong>: Wednesday 10-12 a.m.</p> +<p><strong>Location</strong>: Garching (in-person)</p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning</li> +<li>Interest in medical image analysis</li> +</ul> +<p>Goal and organization:</p> +<p>The participating students will learn the fundamental concepts of image registration. They will acquire the skills to analyze critically state-of-the-art research work and to define own research questions. Basic concepts will be introduced with an overview of different research topics. +The participants will select a research paper (suggestions given by the lecturers) and independently work on it with a final oral presentation and a written report. +Presentations of members of international research groups will provide the students with insights into state-of-the-art research in the field.</p> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an email to <a href="mailto:anna.reithmeir@tum.de">anna.reithmeir@tum.de</a>.</p> +<p>The seminar will take place Wednesdays from 10 a.m. to 12.a.m. in Garching.</p> + + + + + Temporal Landmark Tracking on Medical Imaging + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + <p>Abstract:</p> +<p>Even though various learning-based computer vision methods have been developed for pixel tracking, motion estimation in video data depicts a challenging task. Part of the problem arises from the 3D-to-2D projection process that can lead to out-of-plane motion, which impedes long-range pixel trajectory estimation. In the medical domain, video data, i.e. fast magnetic resonance imaging (MRI) sequences, can be used for guidance during treatment. Specifically, in radiation therapy, contouring algorithms are used for tracking of the target volume supposed to receive the main radiation dose during treatment. Delineation can, for example, be performed with a U-Net architecture. However, such an approach only allows for identification of larger structures, while irregular movement can be subtle and localized. Landmark detection models are able to identify such localized regions between different representations of the same object. Furthermore, they are faster than semantic segmentation models, and therefore, allow for computer aided intervention during treatment. In this thesis, different state-of-the-art landmark and pixel tracking algorithms will be tested and further enhanced to identify movement on temporal imaging data of the lungs, i.e. 4D CT. Furthermore, ability of such landmarks to identify movement differing from a normal state, i.e. allowing for identification of anomalies, will be studied.</p> + + + + + diff --git a/old_stuff/page/1/index.html b/old_stuff/page/1/index.html new file mode 100644 index 0000000..008fb7e --- /dev/null +++ b/old_stuff/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/old_stuff/ + + + + + + diff --git a/old_stuff/teaching/msc_tracking/index.html b/old_stuff/teaching/msc_tracking/index.html new file mode 100644 index 0000000..227f40c --- /dev/null +++ b/old_stuff/teaching/msc_tracking/index.html @@ -0,0 +1,1321 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Temporal Landmark Tracking on Medical Imaging | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Temporal Landmark Tracking on Medical Imaging

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Abstract:

+

Even though various learning-based computer vision methods have been developed for pixel tracking, motion estimation in video data depicts a challenging task. Part of the problem arises from the 3D-to-2D projection process that can lead to out-of-plane motion, which impedes long-range pixel trajectory estimation. In the medical domain, video data, i.e. fast magnetic resonance imaging (MRI) sequences, can be used for guidance during treatment. Specifically, in radiation therapy, contouring algorithms are used for tracking of the target volume supposed to receive the main radiation dose during treatment. Delineation can, for example, be performed with a U-Net architecture. However, such an approach only allows for identification of larger structures, while irregular movement can be subtle and localized. Landmark detection models are able to identify such localized regions between different representations of the same object. Furthermore, they are faster than semantic segmentation models, and therefore, allow for computer aided intervention during treatment. In this thesis, different state-of-the-art landmark and pixel tracking algorithms will be tested and further enhanced to identify movement on temporal imaging data of the lungs, i.e. 4D CT. Furthermore, ability of such landmarks to identify movement differing from a normal state, i.e. allowing for identification of anomalies, will be studied.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Daniel M. Lang + + +
+
Daniel M. Lang
+
Research Scientist
+

My research focuses on the application of deep learning models for problem settings in cancer imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/old_stuff/teaching/registration_seminar_ws24/index.html b/old_stuff/teaching/registration_seminar_ws24/index.html new file mode 100644 index 0000000..955d1ce --- /dev/null +++ b/old_stuff/teaching/registration_seminar_ws24/index.html @@ -0,0 +1,1417 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Master Seminar - Medical Image Registration (IN2107, IN4462) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Master Seminar - Medical Image Registration (IN2107, IN4462)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Time: Wednesday 10-12 a.m.

+

Location: Garching (in-person)

+

Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:

+
    +
  • Learning and non-learning based image registration
  • +
  • Optimization techniques
  • +
  • Image registration for multi-modal data
  • +
  • Multi-resolution and regularization strategies
  • +
  • Linear and non-linear deformations
  • +
  • Supervised and unsupervised learning
  • +
  • Clinical applications
  • +
+

Requirements:

+
    +
  • Background in image processing and machine learning
  • +
  • Interest in medical image analysis
  • +
+

Goal and organization:

+

The participating students will learn the fundamental concepts of image registration. They will acquire the skills to analyze critically state-of-the-art research work and to define own research questions. Basic concepts will be introduced with an overview of different research topics. +The participants will select a research paper (suggestions given by the lecturers) and independently work on it with a final oral presentation and a written report. +Presentations of members of international research groups will provide the students with insights into state-of-the-art research in the field.

+

Please register via the TUM matching system: https://matching.in.tum.de or write an email to anna.reithmeir@tum.de.

+

The seminar will take place Wednesdays from 10 a.m. to 12.a.m. in Garching.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Anna Reithmeir + + +
+
Anna Reithmeir
+
Doctoral Researcher
+

My research interests include machine learning for image registration.

+ + +
+
+ + + + + + + + + + + + +
+ + + Fryderyk Kögl + + +
+
Fryderyk Kögl
+
Doctoral Researcher
+

My research interests include deep learning for image registration and visualisation.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/bercea_icml/index.html b/post/bercea_icml/index.html new file mode 100644 index 0000000..891a54e --- /dev/null +++ b/post/bercea_icml/index.html @@ -0,0 +1,1348 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Paper accepted at ICML IMLH 2023 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Paper accepted at ICML IMLH 2023

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

We are delighted to announce that our research on developing automatic diffusion models for anomaly detection has been accepted and will be published in the proceedings of the 3rd workshop for Interpretable Machine Learning in Healthcare, held at the International Conference on Machine Learning 2023. Congratulations to our dedicated student Michael for his outstanding contribution to this achievement!

+

Curious about how to solve the noise paradox illustrated below? Check out our project page.

+

+ + + + + + + + + + + + + + + +

+
+
AutoDDPM
+
+

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/bercea_miccai/index.html b/post/bercea_miccai/index.html new file mode 100644 index 0000000..54ab6af --- /dev/null +++ b/post/bercea_miccai/index.html @@ -0,0 +1,1374 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Two papers accepted at MICCAI 2023 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Two papers accepted at MICCAI 2023

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection and Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection by Cosmin I. Bercea et al. have been accepted for publication at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.

+

+ + + + + + + + + + + + + + + +

+
+
MorphAEus
+
+

+
    +
  • Curios what auto-encoders actually learn? Check out this project page to find out more.
  • +
+

+ + + + + + + + + + + + + + + +

+
+
PHANES
+
+

+
    +
  • How can we reverse anomalies in medical images? Check out the project here.
  • +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/bercea_midl/index.html b/post/bercea_midl/index.html new file mode 100644 index 0000000..008820e --- /dev/null +++ b/post/bercea_midl/index.html @@ -0,0 +1,1349 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Paper accepted at MIDL 2023 (oral talk) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Paper accepted at MIDL 2023 (oral talk)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening” by Cosmin I. Bercea et al. has been accepted for publication at Medical Imaging with Deep Learning, Nashville, 2023. Cosmin Bercea will present his work on Monday, 10 July 2023 at 9:15 pm CEST.

+

+ + + + + + + + + + + + + + + +

+
+
RA
+
+

+

Moving beyond hyperintensity thresholding: This paper analyzes the challenges and outlines opportunities for advancing the field of unsupervised anomaly detection. Our proposed method RA outperformed SOTA methods on T1w brain MRIs, detecting more global anomalies (AUROC increased from 73.1 to 89.4) and local pathologies (detection rate increased from 52.6% to 86.0%).

+

Want to know more? Check the project site.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/bercea_midl/ra.png b/post/bercea_midl/ra.png new file mode 100644 index 0000000..36b10b6 Binary files /dev/null and b/post/bercea_midl/ra.png differ diff --git a/post/bercea_nature/feddis.png b/post/bercea_nature/feddis.png new file mode 100644 index 0000000..a44d28d Binary files /dev/null and b/post/bercea_nature/feddis.png differ diff --git a/post/bercea_nature/index.html b/post/bercea_nature/index.html new file mode 100644 index 0000000..e53ec0c --- /dev/null +++ b/post/bercea_nature/index.html @@ -0,0 +1,1349 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + New publication at Nature Machine Intelligence | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

New publication at Nature Machine Intelligence

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Federated disentangled representation learning for unsupervised brain anomaly detection by Cosmin I. Bercea et al. has been published at Nature Machine Intelligence.

+

+ + + + + + + + + + + + + + + +

+
+
Feddis
+
+

+

In this work, a federated algorithm was trained on more than 1,500 MR scans of healthy study participants from four institutions while maintaining data privacy with the goal to detect diseases such as multiple sclerosis, vascular disease, and various forms of brain tumors that the algorithm had never seen before.

+

Check the project site for more information.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/eichhorn_study_group_5_24/index.html b/post/eichhorn_study_group_5_24/index.html new file mode 100644 index 0000000..5199adb --- /dev/null +++ b/post/eichhorn_study_group_5_24/index.html @@ -0,0 +1,1328 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Hannah Eichhorn elected as ISMRM Study Group Trainee Representative | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Hannah Eichhorn elected as ISMRM Study Group Trainee Representative

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Hannah Eichhorn has been elected as Trainee Representative of the ISMRM Motion Detection & Correction Study Group. She started her term at the ISMRM Annual Meeting in Singapore in the beginning of May.

+

The Study Group’s mission is to investigate how various forms of motion can affect MR data, how motion can be detected, how to deal best with motion-corrupted data, and what can be done to prevent MR data from getting corrupted by motion.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Hannah Eichhorn + + +
+
Hannah Eichhorn
+
Doctoral Researcher
+

Hannah Eichhorn’s research focuses on deep learning-based reconstruction of multi-parametric brain MRI.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/fischer_melba_24/index.html b/post/fischer_melba_24/index.html new file mode 100644 index 0000000..e59e2aa --- /dev/null +++ b/post/fischer_melba_24/index.html @@ -0,0 +1,1435 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Paper Accepted at MELBA Journal | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Paper Accepted at MELBA Journal

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Stefan M. Fischer’s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.
+Therefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal. +The journal submission “Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge” is now available at MELBA.
+The paper is available here.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Stefan Fischer + + +
+
Stefan Fischer
+
Doctoral Researcher
+

My research interests include Radiooncology and Interpretable Machine Learning.

+ + +
+
+ + + + + + + + + + + + +
+ + + Johannes Kiechle + + +
+
Johannes Kiechle
+
Doctoral Researcher
+

My research interests include shape analysis, representation learning, radioonkology.

+ + +
+
+ + + + + + + + + + + + +
+ + + Daniel M. Lang + + +
+
Daniel M. Lang
+
Research Scientist
+

My research focuses on the application of deep learning models for problem settings in cancer imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/iml_miccai_workshops/index.html b/post/iml_miccai_workshops/index.html new file mode 100644 index 0000000..c48ca47 --- /dev/null +++ b/post/iml_miccai_workshops/index.html @@ -0,0 +1,1703 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Five papers accepted at MICCAI 2023 workshops | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Five papers accepted at MICCAI 2023 workshops

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.

+

Interested to hear more about our work? Then join us at the following workshops:

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Hannah Eichhorn + + +
+
Hannah Eichhorn
+
Doctoral Researcher
+

Hannah Eichhorn’s research focuses on deep learning-based reconstruction of multi-parametric brain MRI.

+ + +
+
+ + + + + + + + + + + + +
+ + + Veronika Spieker + + +
+
Veronika Spieker
+
Doctoral Researcher
+

Veronika Spieker’s interests include AI-based methods for MR reconstrution and motion correction.

+ + +
+
+ + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + +
+ + + Daniel M. Lang + + +
+
Daniel M. Lang
+
Research Scientist
+

My research focuses on the application of deep learning models for problem settings in cancer imaging.

+ + +
+
+ + + + + + + + + + + + +
+ + + Maxime Di Folco + + +
+
Maxime Di Folco
+
Research Scientist
+

My research interest is the study of the cardiac function via machine learning methods, in particular representation learning methods that aim to acquire low dimensional representation of high dimensional data. I have a strong interest in cardiac remodelling (adaptation of the heart to its environment or a disease), notably the study of the deformation and shape aspects.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/index.html b/post/index.html new file mode 100644 index 0000000..14ce1ac --- /dev/null +++ b/post/index.html @@ -0,0 +1,2024 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Posts | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Posts

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/index.xml b/post/index.xml new file mode 100644 index 0000000..1e8d985 --- /dev/null +++ b/post/index.xml @@ -0,0 +1,448 @@ + + + + Posts | Computational Imaging and AI in Medicine + https://compai-lab.io/post/ + + Posts + Wowchemy (https://wowchemy.com)en-usFri, 05 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Posts + https://compai-lab.io/post/ + + + + Eleven papers accepted at MICCAI Workshops 2024 + https://compai-lab.io/post/miccai_workshops_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_workshops_24/ + <ul> +<li> +<p><strong>Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]</strong><br> +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea. <br> +<a href="https://arxiv.org/abs/2410.03306" target="_blank" rel="noopener">https://arxiv.org/abs/2410.03306</a><br/><br/></p> +</li> +<li> +<p><strong>MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI</strong><br> +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15270" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15270</a>)<br/><br/></p> +</li> +<li> +<p><strong>Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders</strong><br> +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.03863" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.03863</a>)<br/><br/></p> +</li> +<li> +<p><strong>On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models</strong><br> +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco<br> +(<a href="https://arxiv.org/abs/2407.16405" target="_blank" rel="noopener">https://arxiv.org/abs/2407.16405</a>)<br/><br/></p> +</li> +<li> +<p><strong>Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?</strong><br> +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel<br> +(<a href="http://arxiv.org/abs/2407.17219" target="_blank" rel="noopener">http://arxiv.org/abs/2407.17219</a>)<br/><br/></p> +</li> +<li> +<p><strong>General Vision Encoder Features as Guidance in Medical Image Registration</strong><br> +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer<br> +(<a href="https://arxiv.org/abs/2407.13311" target="_blank" rel="noopener">https://arxiv.org/abs/2407.13311</a>)<br/><br/></p> +</li> +<li> +<p><strong>Language Models Meet Anomaly Detection for Better Interpretability and Generalizability</strong><br> +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2404.07622v2" target="_blank" rel="noopener">https://arxiv.org/pdf/2404.07622v2</a>)<br/><br/></p> +</li> +<li> +<p><strong>A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer</strong><br> +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin<br> +(<a href="https://arxiv.org/abs/2407.17114" target="_blank" rel="noopener">https://arxiv.org/abs/2407.17114</a>)<br/><br/></p> +</li> +<li> +<p><strong>Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound</strong><br> +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea<br> +(<a href="https://arxiv.org/pdf/2407.15119" target="_blank" rel="noopener">https://arxiv.org/pdf/2407.15119</a>)<br/><br/></p> +</li> +<li> +<p><strong>Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data</strong><br> +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2407.12669" target="_blank" rel="noopener">https://arxiv.org/abs/2407.12669</a>)<br/><br/></p> +</li> +<li> +<p><strong>Complex-valued Federated Learning with Differential Privacy and MRI Applications</strong><br> +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis <br> +([link will be available soon])<br/><br/></p> +</li> +</ul> + + + + + Seven papers accepted at MICCAI 2024 + https://compai-lab.io/post/miccai_24/ + Fri, 05 Jul 2024 00:00:00 +0000 + https://compai-lab.io/post/miccai_24/ + <ul> +<li> +<p><strong>Diffusion Models with Implicit Guidance for Medical Anomaly Detection</strong><br> +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08464" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08464</a>)<br/><br/></p> +</li> +<li> +<p><strong>Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI</strong><br> +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2403.08298" target="_blank" rel="noopener">https://arxiv.org/abs/2403.08298</a>)<br/><br/></p> +</li> +<li> +<p><strong>Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks</strong><br> +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel<br/><br/></p> +</li> +<li> +<p><strong>Interpretable Representation Learning of Cardiac MRI via Attribute Regularization</strong><br> +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2406.08282" target="_blank" rel="noopener">https://arxiv.org/abs/2406.08282</a>)<br/><br/></p> +</li> +<li> +<p><strong>Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models</strong><br> +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir<br> +(<a href="https://arxiv.org/abs/2403.13890" target="_blank" rel="noopener">https://arxiv.org/abs/2403.13890</a>)<br/><br/></p> +</li> +<li> +<p><strong>Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration</strong><br> +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer<br/><br/></p> +</li> +<li> +<p><strong>Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation</strong><br> +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel<br> +(<a href="https://arxiv.org/abs/2404.08350" target="_blank" rel="noopener">https://arxiv.org/abs/2404.08350</a>)<br/><br/></p> +</li> +</ul> + + + + + Paper Accepted at MELBA Journal + https://compai-lab.io/post/fischer_melba_24/ + Fri, 14 Jun 2024 00:00:00 +0000 + https://compai-lab.io/post/fischer_melba_24/ + <p>Stefan M. Fischer&rsquo;s submission to the MICCAI2023 Lymph Node Quantification Challenge won the 3rd price.<br> +Therefore, the challenge team was invited for a presentation at MICCAI 2023 and to a Special Issue Submission at the MELBA Journal. +The journal submission &ldquo;<em>Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge</em>&rdquo; is now available at MELBA.<br> +The paper is available <a href="https://www.melba-journal.org/papers/2024:008.html" target="_blank" rel="noopener">here</a>.</p> + + + + + Hannah Eichhorn elected as ISMRM Study Group Trainee Representative + https://compai-lab.io/post/eichhorn_study_group_5_24/ + Thu, 23 May 2024 00:00:00 +0000 + https://compai-lab.io/post/eichhorn_study_group_5_24/ + <p>Hannah Eichhorn has been elected as Trainee Representative of the ISMRM Motion Detection &amp; Correction Study Group. She started her term at the ISMRM Annual Meeting in Singapore in the beginning of May.</p> +<p>The Study Group&rsquo;s mission is to investigate how various forms of motion can affect MR data, how motion can be detected, how to deal best with motion-corrupted data, and what can be done to prevent MR data from getting corrupted by motion.</p> + + + + + German Radiological Society Awards the Alfred Breit Prize to Prof. Julia Schnabel + https://compai-lab.io/post/schnabel_alfred_breit_preis_24/ + Fri, 10 May 2024 00:00:00 +0000 + https://compai-lab.io/post/schnabel_alfred_breit_preis_24/ + <p>The Alfred Breit Prize 2024 of the Radiological Society was awarded to Prof. Julia Schnabel, Professor at the Technical University of Munich and Director at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. The prize honors outstanding work in the research of radio-oncology.</p> +<p>More information <a href="https://www.drg.de/de-DE/10884/zweifache-ehrung-drg-verleiht-alfred-breit-preis-an-prof-dr-julia-schnabel-aus-muenchen-und-prof-dr-norbert-hosten-aus-greifswald/" target="_blank" rel="noopener">here</a> and <a href="https://www.helmholtz-munich.de/newsroom/news/artikel/deutsche-roentgengesellschaft-verleiht-alfred-breit-preis-an-prof-julia-schnabel" target="_blank" rel="noopener">here</a>.</p> + + + + + Paper accepted at SPIE Medical Imaging 2024 and Finalist of Best Student Paper Award + https://compai-lab.io/post/reithmeir_spie_24/ + Wed, 20 Mar 2024 00:00:00 +0000 + https://compai-lab.io/post/reithmeir_spie_24/ + <p>Anna Reithmeir&rsquo;s paper &lsquo;Learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks&rsquo; was accepted at SPIE Medical Imaging 2024 which was held 18-22 Feb. 2024 in San Diego, US.</p> +<p>The paper is among the finalists for the best student paper award.</p> + + + + + Paper accepted at ISBI 2024 + https://compai-lab.io/post/kiechle_isbi_24/ + Fri, 15 Mar 2024 00:00:00 +0000 + https://compai-lab.io/post/kiechle_isbi_24/ + <p>Johannes Kiechle&rsquo;s paper has been accepted to be presented at International Symposium on Biomedical Imaging 2024 Annual Meeting in Athens.</p> +<p>Johannes Kiechle will present his work &ldquo;<em>Unifying Local and Global Shape Descriptors to Grade Soft-Tissue Sarcomas using Graph Convolutional Networks</em>&rdquo;.</p> + + + + + Abstract accepted at ESTRO 2024 (oral talk) + https://compai-lab.io/post/kiechle_estro_24/ + Thu, 14 Mar 2024 00:00:00 +0000 + https://compai-lab.io/post/kiechle_estro_24/ + <p>Johannes Kiechle&rsquo;s abstract has been accepted to be presented as an oral at The European SocieTy for Radiotherapy and Oncology (ESTRO) 2024 Annual Meeting in Glasgow.</p> +<p>Johannes Kiechle will present his work &ldquo;<em>Investigating the role of morphology in deep learning-based liposarcoma grading</em>&rdquo; on Monday, 06 May 2024.</p> + + + + + Two abstracts accepted at 2024 ISMRM & ISMRT Annual Meeting (oral talks) + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + Thu, 01 Feb 2024 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm24/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as orals at the 2024 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Hannah Eichhorn will present her work &ldquo;<em>PHIMO: Physics-Informed Motion Correction of GRE MRI for T2</em> Quantification*&rdquo; on Tuesday, 07 May 2024 at 8:15 am SGT. Check <a href="https://github.com/HannahEichhorn/PHIMO" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> +<p>Veronika Spieker will present her work &ldquo;<em>DE-NIK: Leveraging Dual-Echo Data for Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit k-Space Representations</em>&rdquo; on Monday, 06 May 2024 at 8:15 am SGT. Check <a href="https://github.com/vjspi/DE-NIK" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + Review paper accepted at IEEE Transactions on Medical Imaging + https://compai-lab.io/post/spieker_eichhorn_tmi/ + Wed, 25 Oct 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_tmi/ + <p><em>Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review</em> by Veronika Spieker and Hannah Eichhorn et al. has been accepted for publication at IEEE Transactions on Medical Imaging.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img alt="img" srcset=" + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp 400w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_59a22aa363f30bc9c49ab63c04f6c200.webp 760w, + /post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_1200x1200_fit_q75_h2_lanczos_3.webp 1200w" + src="https://compai-lab.io/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp" + width="760" + height="713" + loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Motion remains a major challenge in MRI and various deep learning solutions have been proposed – but what are common challenges and potentials? Check out <a href="https://ieeexplore.ieee.org/document/10285512" target="_blank" rel="noopener">this review</a>, which identifies differences and synergies of recent methods and bridges the gap between AI and MR physics.</p> + + + + Five papers accepted at MICCAI 2023 workshops + https://compai-lab.io/post/iml_miccai_workshops/ + Thu, 14 Sep 2023 00:00:00 +0000 + https://compai-lab.io/post/iml_miccai_workshops/ + <p>Five papers have been accepted for publication at workshops associated with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p>Interested to hear more about our work? Then join us at the following workshops:</p> +<ul> +<li> +<p>Veronika Spieker will be at the <a href="https://dgm4miccai.github.io/" target="_blank" rel="noopener">DGM4</a> workshop to talk about <a href="https://arxiv.org/abs/2308.08830" target="_blank" rel="noopener">Neural Implicit Representations for Abdominal MR Reconstruction</a> on October 8, at 10:25.</p> +</li> +<li> +<p>Hannah Eichhorn presents her work on physics-aware motion simulation for T2*-weighted MRI at the <a href="https://2023.sashimi-workshop.org/program/" target="_blank" rel="noopener">SASHIMI</a> workshop on October 8, at 14:40. Check out the <a href="https://arxiv.org/abs/2303.10987" target="_blank" rel="noopener">preprint</a> for more information!</p> +</li> +<li> +<p>Maxime Di Folco presents at the <a href="https://stacom.github.io/stacom2023/" target="_blank" rel="noopener">STACOM</a> workshop on October 12, at 11:15 the work of Josh Stein on &ldquo;Sparse annotation strategies for segmentation of short axis cardiac MRI&rdquo; (<a href="https://arxiv.org/abs/2307.12619" target="_blank" rel="noopener">preprint</a>).</p> +</li> +<li> +<p>Cosmin Bercea will talk about <a href="https://arxiv.org/pdf/2308.13861.pdf" target="_blank" rel="noopener">Bias in Unsupervised Anomaly Detection</a> at the <a href="https://faimi-workshop.github.io/2023-miccai/" target="_blank" rel="noopener">FAIMI</a> workshop on October 12, at 2:50 PDT.</p> +</li> +<li> +<p>Daniel Lang will talk about <a href="https://arxiv.org/abs/2303.05861" target="_blank" rel="noopener">Anomaly Detection in Non-Contrast Enhanced Breast MRI</a> at the <a href="https://caption-workshop.github.io/miccai2023/#Workshop%20sessions" target="_blank" rel="noopener">CaPTion</a> workshop on October 12.</p> +</li> +</ul> + + + + Süddeutsche Zeitung Interview with Prof. Julia Schnabel + https://compai-lab.io/post/schnabel_sueddeutsche_23/ + Wed, 23 Aug 2023 00:00:00 +0000 + https://compai-lab.io/post/schnabel_sueddeutsche_23/ + <p>Interview with Prof. Julia Schnabel by Süddeutsche Zeitung about artificial intelligence in clinical practice. Available online <a href="https://www.sueddeutsche.de/kultur/kuenstliche-intelligenz-medizin-gesundheitsversorgung-1.6074505?reduced=true" target="_blank" rel="noopener">here</a></p> + + + + + Two papers accepted at MICCAI 2023 + https://compai-lab.io/post/bercea_miccai/ + Fri, 26 May 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_miccai/ + <p>&ldquo;<em>What Do AEs Learn? Challenging Common Assumptions in Unsupervised Anomaly Detection</em> and <em>Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection</em> by Cosmin I. Bercea et al. have been accepted for publication at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023, which will be held from October 8th to 12th 2023 in Vancouver, Canada.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/morphaeus.gif" alt="MorphAEus" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<ul> +<li>Curios what auto-encoders actually learn? Check out <a href="https://ci.bercea.net/project/morphaeus/" target="_blank" rel="noopener">this</a> project page to find out more.</li> +</ul> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/phanes.gif" alt="PHANES" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<ul> +<li>How can we reverse anomalies in medical images? Check out the project <a href="https://ci.bercea.net/project/phanes/" target="_blank" rel="noopener">here</a>.</li> +</ul> + + + + Paper accepted at ICML IMLH 2023 + https://compai-lab.io/post/bercea_icml/ + Thu, 25 May 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_icml/ + <p>We are delighted to announce that our research on developing automatic diffusion models for anomaly detection has been accepted and will be published in the proceedings of the 3rd workshop for Interpretable Machine Learning in Healthcare, held at the International Conference on Machine Learning 2023. Congratulations to our dedicated student Michael for his outstanding contribution to this achievement!</p> +<p>Curious about how to solve the noise paradox illustrated below? Check out our <a href="https://ci.bercea.net/project/autoddpm/" target="_blank" rel="noopener">project page</a>.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/noise_paradox.gif" alt="AutoDDPM" loading="lazy" data-zoomable /></div> + </div></figure> +</p> + + + + Paper accepted at MIDL 2023 (oral talk) + https://compai-lab.io/post/bercea_midl/ + Fri, 28 Apr 2023 00:00:00 +0000 + https://compai-lab.io/post/bercea_midl/ + <p>&ldquo;<em>Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening</em>&rdquo; by Cosmin I. Bercea et al. has been accepted for publication at Medical Imaging with Deep Learning, Nashville, 2023. Cosmin Bercea will present his work on Monday, 10 July 2023 at 9:15 pm CEST.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/ra.png" alt="RA" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Moving beyond hyperintensity thresholding: This paper analyzes the challenges and outlines opportunities for advancing the field of unsupervised anomaly detection. Our proposed method RA outperformed SOTA methods on T1w brain MRIs, detecting more global anomalies (AUROC increased from 73.1 to 89.4) and local pathologies (detection rate increased from 52.6% to 86.0%).</p> +<p>Want to know more? Check the <a href="https://ci.bercea.net/project/ra/" target="_blank" rel="noopener">project site</a>.</p> + + + + Abstracts accepted at 2023 ISMRM & ISMRT Annual Meeting + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + Tue, 25 Apr 2023 00:00:00 +0000 + https://compai-lab.io/post/spieker_eichhorn_ismrm/ + <p>Veronika Spieker&rsquo;s and Hannah Eichhorn&rsquo;s abstracts have been accepted to be presented as digital posters at the 2023 ISMRM &amp; ISMRT Annual Meeting.</p> +<p>Veronika Spieker will present her work on &ldquo;<em>Patient-specific respiratory liver motion analysis for individual motion-resolved reconstruction</em>&rdquo; on Monday, 05 June 2023 at 1:45 pm EDT.</p> +<p>Hannah Eichhorn will present her work on &ldquo;<em>Investigating the Impact of Motion and Associated B0 Changes on Oxygenation Sensitive MRI through Realistic Simulations</em>&rdquo; on Tuesday, 06 June 2023 at 4:45 pm EDT. Check <a href="https://github.com/HannahEichhorn/T2starRealisticMotionSimulation" target="_blank" rel="noopener">this GitHub repository</a> for more information.</p> + + + + + New publication at Nature Machine Intelligence + https://compai-lab.io/post/bercea_nature/ + Tue, 02 Aug 2022 00:00:00 +0000 + https://compai-lab.io/post/bercea_nature/ + <p><em>Federated disentangled representation learning for unsupervised brain anomaly detection</em> by Cosmin I. Bercea et al. has been published at Nature Machine Intelligence.</p> +<p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/feddis.png" alt="Feddis" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>In this work, a federated algorithm was trained on more than 1,500 MR scans of healthy study participants from four institutions while maintaining data privacy with the goal to detect diseases such as multiple sclerosis, vascular disease, and various forms of brain tumors that the algorithm had never seen before.</p> +<p>Check the <a href="https://ci.bercea.net/project/feddis/" target="_blank" rel="noopener">project site</a> for more information.</p> + + + + Veronika Spieker wins the 1st place MedtecLIVE Talent Award 2022 + https://compai-lab.io/post/spieker_award/ + Mon, 30 May 2022 00:00:00 +0000 + https://compai-lab.io/post/spieker_award/ + <p>The MedtecLIVE Talent Award 2022 is given to bachelor&rsquo;s and master&rsquo;s theses that relate to an innovation, improvement, or new application in medical technology along with its entire value chain.</p> +<p>After a first screening of her thesis abstract, Veronika was invited to the live finale in Stuttgart to present her thesis in an 8-minute pitch. The extensiveness of her work, her drive to clinical translation as well as visual and interactive presentation convinced the jury to award her the first prize.</p> +<p>As part of her M.Sc. in Medical Technologies at TUM, Veronika conducted her master thesis at the Munich Institute of Robotics and Machine Intelligence (MIRMI) and published her results in Sensors (<a href="https://www.mdpi.com/1424-8220/21/21/7404%29" target="_blank" rel="noopener">www.mdpi.com/1424-8220/21/21/7404)</a>.</p> +<p>We are happy, that she is now pursuing her PhD at our lab at Helmholtz Munich!</p> +<p>More information on the finale can be found here:</p> +<ul> +<li> +<p><a href="https://medizin-und-technik.industrie.de/medizintechnik-studium/talent-award-zur-medtec-live-with-t4m-jetzt-ist-der-nachwuchs-dran/" target="_blank" rel="noopener">https://medizin-und-technik.industrie.de/medizintechnik-studium/talent-award-zur-medtec-live-with-t4m-jetzt-ist-der-nachwuchs-dran/</a></p> +</li> +<li> +<p><a href="https://www.mirmi.tum.de/mirmi/news/article/veronika-spieker-is-honored-with-the-1st-place-medteclive-talent-award-2022/" target="_blank" rel="noopener">https://www.mirmi.tum.de/mirmi/news/article/veronika-spieker-is-honored-with-the-1st-place-medteclive-talent-award-2022/</a></p> +</li> +</ul> + + + + diff --git a/post/kiechle_estro_24/index.html b/post/kiechle_estro_24/index.html new file mode 100644 index 0000000..6a69903 --- /dev/null +++ b/post/kiechle_estro_24/index.html @@ -0,0 +1,1244 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Abstract accepted at ESTRO 2024 (oral talk) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Abstract accepted at ESTRO 2024 (oral talk)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Johannes Kiechle’s abstract has been accepted to be presented as an oral at The European SocieTy for Radiotherapy and Oncology (ESTRO) 2024 Annual Meeting in Glasgow.

+

Johannes Kiechle will present his work “Investigating the role of morphology in deep learning-based liposarcoma grading” on Monday, 06 May 2024.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/kiechle_isbi_24/index.html b/post/kiechle_isbi_24/index.html new file mode 100644 index 0000000..58c7642 --- /dev/null +++ b/post/kiechle_isbi_24/index.html @@ -0,0 +1,1244 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Paper accepted at ISBI 2024 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Paper accepted at ISBI 2024

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Johannes Kiechle’s paper has been accepted to be presented at International Symposium on Biomedical Imaging 2024 Annual Meeting in Athens.

+

Johannes Kiechle will present his work “Unifying Local and Global Shape Descriptors to Grade Soft-Tissue Sarcomas using Graph Convolutional Networks”.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/miccai_24/index.html b/post/miccai_24/index.html new file mode 100644 index 0000000..1034683 --- /dev/null +++ b/post/miccai_24/index.html @@ -0,0 +1,1876 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Seven papers accepted at MICCAI 2024 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Seven papers accepted at MICCAI 2024

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+
    +
  • +

    Diffusion Models with Implicit Guidance for Medical Anomaly Detection
    +Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Julia A. Schnabel
    +(https://arxiv.org/abs/2403.08464)

    +
  • +
  • +

    Physics-Informed Deep Learning for Motion-Corrected Reconstruction of Quantitative Brain MRI
    +Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Kilian Weiss, Christine Preibisch, and Julia A. Schnabel
    +(https://arxiv.org/abs/2403.08298)

    +
  • +
  • +

    Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks
    +Stefan M. Fischer, Lina Felsner, Daniel M. Lang, Richard Osuala, Johannes Kiechle, Jan C. Peeken, Julia A. Schnabel

    +
  • +
  • +

    Interpretable Representation Learning of Cardiac MRI via Attribute Regularization
    +Maxime Di Folco, Cosmin I. Bercea, Emily Chan, Julia A. Schnabel
    +(https://arxiv.org/abs/2406.08282)

    +
  • +
  • +

    Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models
    +Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia Schnabel, and Karim Lekadir
    +(https://arxiv.org/abs/2403.13890)

    +
  • +
  • +

    Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration
    +Anna Reithmeir, Lina Felsner, Rickmer Braren, Julia A. Schnabel, Veronika A. Zimmer

    +
  • +
  • +

    Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation
    +Veronika Spieker, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rückert, Francisco Sahli Costabal, Kerstin Hammernik, Claudia Prieto, Dimitrios C. Karampinos, Julia A. Schnabel
    +(https://arxiv.org/abs/2404.08350)

    +
  • +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + +
+ + + Anna Reithmeir + + +
+
Anna Reithmeir
+
Doctoral Researcher
+

My research interests include machine learning for image registration.

+ + +
+
+ + + + + + + + + + + + +
+ + + Hannah Eichhorn + + +
+
Hannah Eichhorn
+
Doctoral Researcher
+

Hannah Eichhorn’s research focuses on deep learning-based reconstruction of multi-parametric brain MRI.

+ + +
+
+ + + + + + + + + + + + +
+ + + Veronika Spieker + + +
+
Veronika Spieker
+
Doctoral Researcher
+

Veronika Spieker’s interests include AI-based methods for MR reconstrution and motion correction.

+ + +
+
+ + + + + + + + + + + + +
+ + + Richard Osuala + + +
+
Richard Osuala
+
Doctoral Researcher (Visiting)
+

My research interests include medical image synthesis and generative models in cancer imaging.

+ + +
+
+ + + + + + + + + + + + +
+ + + Maxime Di Folco + + +
+
Maxime Di Folco
+
Research Scientist
+

My research interest is the study of the cardiac function via machine learning methods, in particular representation learning methods that aim to acquire low dimensional representation of high dimensional data. I have a strong interest in cardiac remodelling (adaptation of the heart to its environment or a disease), notably the study of the deformation and shape aspects.

+ + +
+
+ + + + + + + + + + + + +
+ + + Stefan Fischer + + +
+
Stefan Fischer
+
Doctoral Researcher
+

My research interests include Radiooncology and Interpretable Machine Learning.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/miccai_workshops_24/index.html b/post/miccai_workshops_24/index.html new file mode 100644 index 0000000..bcda392 --- /dev/null +++ b/post/miccai_workshops_24/index.html @@ -0,0 +1,2126 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Eleven papers accepted at MICCAI Workshops 2024 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Eleven papers accepted at MICCAI Workshops 2024

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+
    +
  • +

    Selective Test-Time Adaptation using Neural Implicit Representations for Unsupervised Anomaly Detection [Best Paper Award]
    +Sameer Ambekar, Julia Schnabel, and Cosmin I. Bercea.
    +https://arxiv.org/abs/2410.03306

    +
  • +
  • +

    MedEdit: Counterfactual Diffusion-based Image Editing on Brain MRI
    +Malek Ben Alaya, Daniel M. Lang, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea
    +(https://arxiv.org/pdf/2407.15270)

    +
  • +
  • +

    Unsupervised Analysis of Alzheimer’s Disease Signatures using 3D Deformable Autoencoders
    +Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, and Cosmin I. Bercea
    +(https://arxiv.org/pdf/2407.03863)

    +
  • +
  • +

    On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models
    +Deniz Daum; Richard Osuala; Anneliese Riess; Georgios Kaissis; Julia A. Schnabel; Maxime Di Folco
    +(https://arxiv.org/abs/2407.16405)

    +
  • +
  • +

    Graph Neural Networks: A suitable alternative to MLPs in latent 3D medical image classification?
    +Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel
    +(http://arxiv.org/abs/2407.17219)

    +
  • +
  • +

    General Vision Encoder Features as Guidance in Medical Image Registration
    +Fryderyk Kögl, Anna Reithmeir, Vasiliki Sideri-Lampretsa, Ines Machado, Rickmer Braren, Daniel Rückert, Julia A Schnabel, Veronika A Zimmer
    +(https://arxiv.org/abs/2407.13311)

    +
  • +
  • +

    Language Models Meet Anomaly Detection for Better Interpretability and Generalizability
    +Jun Li, Su Hwan Kim, Philip Müller, Lina Felsner, Daniel Rueckert, Benedikt Wiestler, Julia A.Schnabel, and Cosmin I. Bercea
    +(https://arxiv.org/pdf/2404.07622v2)

    +
  • +
  • +

    A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer
    +Inês P. Machado, Anna Reithmeir, Fryderyk Kogl, Leonardo Rundo, Gabriel Funingana, Marika Reinius, Gift Mungmeeprued, Zeyu Gao, Cathal McCague, Eric Kerfoot, Ramona Woitek, Evis Sala, Yangming Ou, James Brenton, Julia Schnabel, Mireia Crispin
    +(https://arxiv.org/abs/2407.17114)

    +
  • +
  • +

    Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain Ultrasound
    +Hanna Mykula, Lisa Gasser, Silvia Lobmaier, Julia A. Schnabel, Veronika Zimmer, and Cosmin I. Bercea
    +(https://arxiv.org/pdf/2407.15119)

    +
  • +
  • +

    Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data
    +Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia A. Schnabel, Karim Lekadir
    +(https://arxiv.org/abs/2407.12669)

    +
  • +
  • +

    Complex-valued Federated Learning with Differential Privacy and MRI Applications
    +Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis
    +([link will be available soon])

    +
  • +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Sameer Ambekar + + +
+
Sameer Ambekar
+
Doctoral Researcher
+

My research interests include Domain Generalization, Meta learning, Variational Inference

+ + +
+
+ + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + +
+ + + Maxime Di Folco + + +
+
Maxime Di Folco
+
Research Scientist
+

My research interest is the study of the cardiac function via machine learning methods, in particular representation learning methods that aim to acquire low dimensional representation of high dimensional data. I have a strong interest in cardiac remodelling (adaptation of the heart to its environment or a disease), notably the study of the deformation and shape aspects.

+ + +
+
+ + + + + + + + + + + + +
+ + + Lina Felsner + + +
+
Lina Felsner
+
Principal Investigator
+

My research interests include machine learning for image registration.

+ + +
+
+ + + + + + + + + + + + +
+ + + Fryderyk Kögl + + +
+
Fryderyk Kögl
+
Doctoral Researcher
+

My research interests include deep learning for image registration and visualisation.

+ + +
+
+ + + + + + + + + + + + +
+ + + Daniel M. Lang + + +
+
Daniel M. Lang
+
Research Scientist
+

My research focuses on the application of deep learning models for problem settings in cancer imaging.

+ + +
+
+ + + + + + + + + + + + +
+ + + Jun Li + + +
+
Jun Li
+
Doctoral Researcher
+

My research interests include Vision and Language, Multi-Modal Learning, and Cross-Modality Generation.

+ + +
+
+ + + + + + + + + + + + +
+ + + Richard Osuala + + +
+
Richard Osuala
+
Doctoral Researcher (Visiting)
+

My research interests include medical image synthesis and generative models in cancer imaging.

+ + +
+
+ + + + + + + + + + + + +
+ + + Anna Reithmeir + + +
+
Anna Reithmeir
+
Doctoral Researcher
+

My research interests include machine learning for image registration.

+ + +
+
+ + + + + + + + + + + + +
+ + + Anneliese Riess + + +
+
Anneliese Riess
+
Doctoral Researcher
+

My research interests include mathematical foundations of privacy preserving artificial intelligence.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/page/1/index.html b/post/page/1/index.html new file mode 100644 index 0000000..3bf2fbc --- /dev/null +++ b/post/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/post/ + + + + + + diff --git a/post/page/2/index.html b/post/page/2/index.html new file mode 100644 index 0000000..2cc8b3b --- /dev/null +++ b/post/page/2/index.html @@ -0,0 +1,1798 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Posts | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Posts

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Süddeutsche Zeitung Interview with Prof. Julia Schnabel +
+ + + +
+ Interview with Prof. Julia Schnabel by Süddeutsche Zeitung about artificial intelligence in clinical practice. Available online here +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ New publication at Nature Machine Intelligence +
+ + + +
+

Federated disentangled representation learning for unsupervised brain anomaly detection by Cosmin I. Bercea et al. has been published at Nature Machine Intelligence.

+
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/reithmeir_spie_24/index.html b/post/reithmeir_spie_24/index.html new file mode 100644 index 0000000..6fca152 --- /dev/null +++ b/post/reithmeir_spie_24/index.html @@ -0,0 +1,1347 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Paper accepted at SPIE Medical Imaging 2024 and Finalist of Best Student Paper Award | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Paper accepted at SPIE Medical Imaging 2024 and Finalist of Best Student Paper Award

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Anna Reithmeir’s paper ‘Learning Physics-Inspired Regularization for Medical Image Registration with Hypernetworks’ was accepted at SPIE Medical Imaging 2024 which was held 18-22 Feb. 2024 in San Diego, US.

+

The paper is among the finalists for the best student paper award.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Anna Reithmeir + + +
+
Anna Reithmeir
+
Doctoral Researcher
+

My research interests include machine learning for image registration.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/schnabel_alfred_breit_preis_24/index.html b/post/schnabel_alfred_breit_preis_24/index.html new file mode 100644 index 0000000..7a5cea1 --- /dev/null +++ b/post/schnabel_alfred_breit_preis_24/index.html @@ -0,0 +1,1311 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + German Radiological Society Awards the Alfred Breit Prize to Prof. Julia Schnabel | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

German Radiological Society Awards the Alfred Breit Prize to Prof. Julia Schnabel

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

The Alfred Breit Prize 2024 of the Radiological Society was awarded to Prof. Julia Schnabel, Professor at the Technical University of Munich and Director at the Institute of Machine Learning in Biomedical Imaging at Helmholtz Munich. The prize honors outstanding work in the research of radio-oncology.

+

More information here and here.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/schnabel_sueddeutsche_23/index.html b/post/schnabel_sueddeutsche_23/index.html new file mode 100644 index 0000000..e6692c4 --- /dev/null +++ b/post/schnabel_sueddeutsche_23/index.html @@ -0,0 +1,1310 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Süddeutsche Zeitung Interview with Prof. Julia Schnabel | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Süddeutsche Zeitung Interview with Prof. Julia Schnabel

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Interview with Prof. Julia Schnabel by Süddeutsche Zeitung about artificial intelligence in clinical practice. Available online here

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/spieker_award/index.html b/post/spieker_award/index.html new file mode 100644 index 0000000..16237f1 --- /dev/null +++ b/post/spieker_award/index.html @@ -0,0 +1,1309 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Veronika Spieker wins the 1st place MedtecLIVE Talent Award 2022 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Veronika Spieker wins the 1st place MedtecLIVE Talent Award 2022

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

The MedtecLIVE Talent Award 2022 is given to bachelor’s and master’s theses that relate to an innovation, improvement, or new application in medical technology along with its entire value chain.

+

After a first screening of her thesis abstract, Veronika was invited to the live finale in Stuttgart to present her thesis in an 8-minute pitch. The extensiveness of her work, her drive to clinical translation as well as visual and interactive presentation convinced the jury to award her the first prize.

+

As part of her M.Sc. in Medical Technologies at TUM, Veronika conducted her master thesis at the Munich Institute of Robotics and Machine Intelligence (MIRMI) and published her results in Sensors (www.mdpi.com/1424-8220/21/21/7404).

+

We are happy, that she is now pursuing her PhD at our lab at Helmholtz Munich!

+

More information on the finale can be found here:

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/spieker_eichhorn_ismrm/index.html b/post/spieker_eichhorn_ismrm/index.html new file mode 100644 index 0000000..da15e47 --- /dev/null +++ b/post/spieker_eichhorn_ismrm/index.html @@ -0,0 +1,1424 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Abstracts accepted at 2023 ISMRM & ISMRT Annual Meeting | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Abstracts accepted at 2023 ISMRM & ISMRT Annual Meeting

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Veronika Spieker’s and Hannah Eichhorn’s abstracts have been accepted to be presented as digital posters at the 2023 ISMRM & ISMRT Annual Meeting.

+

Veronika Spieker will present her work on “Patient-specific respiratory liver motion analysis for individual motion-resolved reconstruction” on Monday, 05 June 2023 at 1:45 pm EDT.

+

Hannah Eichhorn will present her work on “Investigating the Impact of Motion and Associated B0 Changes on Oxygenation Sensitive MRI through Realistic Simulations” on Tuesday, 06 June 2023 at 4:45 pm EDT. Check this GitHub repository for more information.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Hannah Eichhorn + + +
+
Hannah Eichhorn
+
Doctoral Researcher
+

Hannah Eichhorn’s research focuses on deep learning-based reconstruction of multi-parametric brain MRI.

+ + +
+
+ + + + + + + + + + + + +
+ + + Veronika Spieker + + +
+
Veronika Spieker
+
Doctoral Researcher
+

Veronika Spieker’s interests include AI-based methods for MR reconstrution and motion correction.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/spieker_eichhorn_ismrm24/index.html b/post/spieker_eichhorn_ismrm24/index.html new file mode 100644 index 0000000..94989b2 --- /dev/null +++ b/post/spieker_eichhorn_ismrm24/index.html @@ -0,0 +1,1424 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Two abstracts accepted at 2024 ISMRM & ISMRT Annual Meeting (oral talks) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Two abstracts accepted at 2024 ISMRM & ISMRT Annual Meeting (oral talks)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Veronika Spieker’s and Hannah Eichhorn’s abstracts have been accepted to be presented as orals at the 2024 ISMRM & ISMRT Annual Meeting.

+

Hannah Eichhorn will present her work “PHIMO: Physics-Informed Motion Correction of GRE MRI for T2 Quantification*” on Tuesday, 07 May 2024 at 8:15 am SGT. Check this GitHub repository for more information.

+

Veronika Spieker will present her work “DE-NIK: Leveraging Dual-Echo Data for Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit k-Space Representations” on Monday, 06 May 2024 at 8:15 am SGT. Check this GitHub repository for more information.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Hannah Eichhorn + + +
+
Hannah Eichhorn
+
Doctoral Researcher
+

Hannah Eichhorn’s research focuses on deep learning-based reconstruction of multi-parametric brain MRI.

+ + +
+
+ + + + + + + + + + + + +
+ + + Veronika Spieker + + +
+
Veronika Spieker
+
Doctoral Researcher
+

Veronika Spieker’s interests include AI-based methods for MR reconstrution and motion correction.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/post/spieker_eichhorn_tmi/img.png b/post/spieker_eichhorn_tmi/img.png new file mode 100644 index 0000000..d5f7c46 Binary files /dev/null and b/post/spieker_eichhorn_tmi/img.png differ diff --git a/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_1200x1200_fit_q75_h2_lanczos_3.webp b/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_1200x1200_fit_q75_h2_lanczos_3.webp new file mode 100644 index 0000000..0c99b45 Binary files /dev/null and b/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_1200x1200_fit_q75_h2_lanczos_3.webp differ diff --git a/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_59a22aa363f30bc9c49ab63c04f6c200.webp b/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_59a22aa363f30bc9c49ab63c04f6c200.webp new file mode 100644 index 0000000..1dbcb77 Binary files /dev/null and b/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_59a22aa363f30bc9c49ab63c04f6c200.webp differ diff --git a/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp b/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp new file mode 100644 index 0000000..5571ec9 Binary files /dev/null and b/post/spieker_eichhorn_tmi/img_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_e1ff7f723fc5ed308be173642a5f92f5.webp differ diff --git a/post/spieker_eichhorn_tmi/index.html b/post/spieker_eichhorn_tmi/index.html new file mode 100644 index 0000000..4e9b76f --- /dev/null +++ b/post/spieker_eichhorn_tmi/index.html @@ -0,0 +1,1448 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Review paper accepted at IEEE Transactions on Medical Imaging | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Review paper accepted at IEEE Transactions on Medical Imaging

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review by Veronika Spieker and Hannah Eichhorn et al. has been accepted for publication at IEEE Transactions on Medical Imaging.

+

+ + + + + + + + + + + + + + + +

+
+
img
+
+

+

Motion remains a major challenge in MRI and various deep learning solutions have been proposed – but what are common challenges and potentials? Check out this review, which identifies differences and synergies of recent methods and bridges the gap between AI and MR physics.

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Veronika Spieker + + +
+
Veronika Spieker
+
Doctoral Researcher
+

Veronika Spieker’s interests include AI-based methods for MR reconstrution and motion correction.

+ + +
+
+ + + + + + + + + + + + +
+ + + Hannah Eichhorn + + +
+
Hannah Eichhorn
+
Doctoral Researcher
+

Hannah Eichhorn’s research focuses on deep learning-based reconstruction of multi-parametric brain MRI.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication-type/1/index.html b/publication-type/1/index.html new file mode 100644 index 0000000..5ec1994 --- /dev/null +++ b/publication-type/1/index.html @@ -0,0 +1,1145 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 1 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

1

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations +
+ + + + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication-type/1/index.xml b/publication-type/1/index.xml new file mode 100644 index 0000000..d00b98d --- /dev/null +++ b/publication-type/1/index.xml @@ -0,0 +1,24 @@ + + + + 1 | Computational Imaging and AI in Medicine + https://compai-lab.io/publication-type/1/ + + 1 + Wowchemy (https://wowchemy.com)en-usMon, 01 Jan 2001 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + 1 + https://compai-lab.io/publication-type/1/ + + + + A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations + https://compai-lab.io/fpublications/schnabel-2001-generic/ + Mon, 01 Jan 2001 00:00:00 +0000 + https://compai-lab.io/fpublications/schnabel-2001-generic/ + + + + + diff --git a/publication-type/1/page/1/index.html b/publication-type/1/page/1/index.html new file mode 100644 index 0000000..2dd11b3 --- /dev/null +++ b/publication-type/1/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/publication-type/1/ + + + + + + diff --git a/publication-type/2/index.html b/publication-type/2/index.html new file mode 100644 index 0000000..098c101 --- /dev/null +++ b/publication-type/2/index.html @@ -0,0 +1,2232 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

2

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Model-Based and Data-Driven Strategies in Medical Image Computing +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ A topological loss function for deep-learning based image segmentation using persistent homology +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication-type/2/index.xml b/publication-type/2/index.xml new file mode 100644 index 0000000..eec4175 --- /dev/null +++ b/publication-type/2/index.xml @@ -0,0 +1,104 @@ + + + + 2 | Computational Imaging and AI in Medicine + https://compai-lab.io/publication-type/2/ + + 2 + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + 2 + https://compai-lab.io/publication-type/2/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation + https://compai-lab.io/fpublications/pmid-32746141/ + Tue, 01 Dec 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/pmid-32746141/ + + + + + Model-Based and Data-Driven Strategies in Medical Image Computing + https://compai-lab.io/fpublications/8867900/ + Wed, 01 Jan 2020 00:00:00 +0000 + https://compai-lab.io/fpublications/8867900/ + + + + + A topological loss function for deep-learning based image segmentation using persistent homology + https://compai-lab.io/fpublications/clough-2019-topological/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/clough-2019-topological/ + + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration + https://compai-lab.io/fpublications/heinrich-2012-mind/ + Sun, 01 Jan 2012 00:00:00 +0000 + https://compai-lab.io/fpublications/heinrich-2012-mind/ + + + + + Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + Wed, 01 Jan 2003 00:00:00 +0000 + https://compai-lab.io/fpublications/rueckert-2003-automatic/ + + + + + diff --git a/publication-type/2/page/1/index.html b/publication-type/2/page/1/index.html new file mode 100644 index 0000000..3d2f2fe --- /dev/null +++ b/publication-type/2/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/publication-type/2/ + + + + + + diff --git a/publication-type/2/page/2/index.html b/publication-type/2/page/2/index.html new file mode 100644 index 0000000..c7cfa2a --- /dev/null +++ b/publication-type/2/page/2/index.html @@ -0,0 +1,1146 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 2 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

2

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration +
+ + + + + + + + + +
+
+ + +
+
+ + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication-type/3/index.html b/publication-type/3/index.html new file mode 100644 index 0000000..0405410 --- /dev/null +++ b/publication-type/3/index.html @@ -0,0 +1,1137 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

3

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication-type/3/index.xml b/publication-type/3/index.xml new file mode 100644 index 0000000..48853cb --- /dev/null +++ b/publication-type/3/index.xml @@ -0,0 +1,29 @@ + + + + 3 | Computational Imaging and AI in Medicine + https://compai-lab.io/publication-type/3/ + + 3 + Wowchemy (https://wowchemy.com)en-usWed, 08 Jun 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + 3 + https://compai-lab.io/publication-type/3/ + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection + https://compai-lab.io/publication/bercea-2022-we/ + Wed, 08 Jun 2022 00:00:00 +0000 + https://compai-lab.io/publication/bercea-2022-we/ + <div class="alert alert-note"> + <div> + Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software. + </div> +</div> + + + + + diff --git a/publication-type/3/page/1/index.html b/publication-type/3/page/1/index.html new file mode 100644 index 0000000..a8e8d08 --- /dev/null +++ b/publication-type/3/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/publication-type/3/ + + + + + + diff --git a/publication/bercea-2022-we/cite.bib b/publication/bercea-2022-we/cite.bib new file mode 100644 index 0000000..6605048 --- /dev/null +++ b/publication/bercea-2022-we/cite.bib @@ -0,0 +1,6 @@ +@article{bercea2022we, + title={What do we learn? Debunking the Myth of Unsupervised Outlier Detection}, + author={Bercea, Cosmin I and Rueckert, Daniel and Schnabel, Julia A}, + journal={arXiv preprint arXiv:2206.03698}, + year={2022} +} diff --git a/publication/bercea-2022-we/featured.gif b/publication/bercea-2022-we/featured.gif new file mode 100644 index 0000000..470d24d Binary files /dev/null and b/publication/bercea-2022-we/featured.gif differ diff --git a/publication/bercea-2022-we/featured_huaa7d3d54dfcb74f9c7f868ac36c5e317_5236638_150x0_resize_q75_h2_lanczos.webp b/publication/bercea-2022-we/featured_huaa7d3d54dfcb74f9c7f868ac36c5e317_5236638_150x0_resize_q75_h2_lanczos.webp new file mode 100644 index 0000000..cc603fc Binary files /dev/null and b/publication/bercea-2022-we/featured_huaa7d3d54dfcb74f9c7f868ac36c5e317_5236638_150x0_resize_q75_h2_lanczos.webp differ diff --git a/publication/bercea-2022-we/featured_huaa7d3d54dfcb74f9c7f868ac36c5e317_5236638_720x2500_fit_q75_h2_lanczos.webp b/publication/bercea-2022-we/featured_huaa7d3d54dfcb74f9c7f868ac36c5e317_5236638_720x2500_fit_q75_h2_lanczos.webp new file mode 100644 index 0000000..ee08e49 Binary files /dev/null and b/publication/bercea-2022-we/featured_huaa7d3d54dfcb74f9c7f868ac36c5e317_5236638_720x2500_fit_q75_h2_lanczos.webp differ diff --git a/publication/bercea-2022-we/index.html b/publication/bercea-2022-we/index.html new file mode 100644 index 0000000..8727d89 --- /dev/null +++ b/publication/bercea-2022-we/index.html @@ -0,0 +1,1535 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

What do we learn? Debunking the Myth of Unsupervised Outlier Detection

+ + + + + + + + + + + + + + + + +
+ + +
+
+ + Teaser +
+
+ + + +
+ + +

Abstract

+

Even though auto-encoders (AEs) have the desirable property of learning compact representations without labels and have been widely applied to out-of-distribution (OoD) detection, they are generally still poorly understood and are used incorrectly in detecting outliers where the normal and abnormal distributions are strongly overlapping. In general, the learned manifold is assumed to contain key information that is only important for describing samples within the training distribution, and that the reconstruction of outliers leads to high residual errors. However, recent work suggests that AEs are likely to be even better at reconstructing some types of OoD samples. In this work, we challenge this assumption and investigate what auto-encoders actually learn when they are posed to solve two different tasks. First, we propose two metrics based on the Fréchet inception distance (FID) and confidence scores of a trained classifier to assess whether AEs can learn the training distribution and reliably recognize samples from other domains. Second, we investigate whether AEs are able to synthesize normal images from samples with abnormal regions, on a more challenging lung pathology detection task. We have found that state-of-the-art (SOTA) AEs are either unable to constrain the latent manifold and allow reconstruction of abnormal patterns, or they are failing to accurately restore the inputs from their latent distribution, resulting in blurred or misaligned reconstructions. We propose novel deformable auto-encoders (MorphAEus) to learn perceptually aware global image priors and locally adapt their morphometry based on estimated dense deformation fields. We demonstrate superior performance over unsupervised methods in detecting OoD and pathology.

+ + + + +
+
+
+
+
Type
+ +
+
+
+
+
+ + + +
+
+
+
+
Publication
+
In arxiv
+
+
+
+
+
+ + +
+ +
+
+ Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software. +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication/dal-2022-improved/cite.bib b/publication/dal-2022-improved/cite.bib new file mode 100644 index 0000000..f6732fa --- /dev/null +++ b/publication/dal-2022-improved/cite.bib @@ -0,0 +1,11 @@ +@article{dal2022improved, + author = {Dal Toso, Laura and Chalampalakis, Zacharias and Buvat, Irène and Comtat, Claude and Cook, Gary and Goh, Vicky and Schnabel, Julia A and Marsden, Paul K}, + journal = {Physics in Medicine & Biology}, + number = {9}, + pages = {095013}, + publisher = {IOP Publishing}, + title = {Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning}, + volume = {67}, + year = {2022} +} + diff --git a/publication/dal-2022-improved/index.html b/publication/dal-2022-improved/index.html new file mode 100644 index 0000000..6a7cfab --- /dev/null +++ b/publication/dal-2022-improved/index.html @@ -0,0 +1,1433 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ + + + + +
+
+
+
+
Type
+ +
+
+
+
+
+ + + +
+
+
+
+
Publication
+
Physics in Medicine & Biology
+
+
+
+
+
+ + +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication/index.html b/publication/index.html new file mode 100644 index 0000000..30d2f0b --- /dev/null +++ b/publication/index.html @@ -0,0 +1,1646 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Publications | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Publications

+ + + + +
+ + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ +
+
+ +
+
+ +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+ + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication/index.xml b/publication/index.xml new file mode 100644 index 0000000..a2679d4 --- /dev/null +++ b/publication/index.xml @@ -0,0 +1,61 @@ + + + + Publications | Computational Imaging and AI in Medicine + https://compai-lab.io/publication/ + + Publications + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Publications + https://compai-lab.io/publication/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection + https://compai-lab.io/publication/bercea-2022-we/ + Wed, 08 Jun 2022 00:00:00 +0000 + https://compai-lab.io/publication/bercea-2022-we/ + <div class="alert alert-note"> + <div> + Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software. + </div> +</div> + + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis + https://compai-lab.io/publication/machado-2022-deep/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/machado-2022-deep/ + + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/li-2022-atrialjsqnet/ + + + + + Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning + https://compai-lab.io/publication/dal-2022-improved/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/publication/dal-2022-improved/ + + + + + diff --git a/publication/li-2022-atrialjsqnet/cite.bib b/publication/li-2022-atrialjsqnet/cite.bib new file mode 100644 index 0000000..61858df --- /dev/null +++ b/publication/li-2022-atrialjsqnet/cite.bib @@ -0,0 +1,10 @@ +@article{li2022atrialjsqnet, + author = {Li, Lei and Zimmer, Veronika A and Schnabel, Julia A and Zhuang, Xiahai}, + journal = {Medical Image Analysis}, + pages = {102303}, + publisher = {Elsevier}, + title = {AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information}, + volume = {76}, + year = {2022} +} + diff --git a/publication/li-2022-atrialjsqnet/index.html b/publication/li-2022-atrialjsqnet/index.html new file mode 100644 index 0000000..d2e1d88 --- /dev/null +++ b/publication/li-2022-atrialjsqnet/index.html @@ -0,0 +1,1474 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+

AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ + + + + +
+
+
+
+
Type
+ +
+
+
+
+
+ + + +
+
+
+
+
Publication
+
Medical Image Analysis
+
+
+
+
+
+ + +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Veronika Zimmer + + +
+
Veronika Zimmer
+
Principal Investigator
+

My research focuses on image analysis and machine learning with a particular interest in robust and generalizable methods for multimodal registration and segmentation in medical imaging.

+ + +
+
+ + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication/machado-2022-deep/cite.bib b/publication/machado-2022-deep/cite.bib new file mode 100644 index 0000000..4e55d36 --- /dev/null +++ b/publication/machado-2022-deep/cite.bib @@ -0,0 +1,7 @@ +@article{machado2022deep, + author = {Machado, Inês P and Puyol-Antón, Esther and Hammernik, Kerstin and Cruz, Gastao and Ugurlu, Devran and Olakorede, Ihsane and Oksuz, Ilkay and Ruijsink, Bram and Castelo-Branco, Miguel and Young, Alistair A and others}, + journal = {arXiv preprint arXiv:2205.01673}, + title = {A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis}, + year = {2022} +} + diff --git a/publication/machado-2022-deep/index.html b/publication/machado-2022-deep/index.html new file mode 100644 index 0000000..232577a --- /dev/null +++ b/publication/machado-2022-deep/index.html @@ -0,0 +1,1385 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + +
+

A Deep Learning-based Integrated Framework for Quality-aware Undersampled Cine Cardiac MRI Reconstruction and Analysis

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ + + + + +
+
+
+
+
Type
+ +
+
+
+
+
+ + + +
+
+
+
+
Publication
+
arXiv preprint arXiv:2205.01673
+
+
+
+
+
+ + +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication/spiekereichhorn-2023-review/cite.bib b/publication/spiekereichhorn-2023-review/cite.bib new file mode 100644 index 0000000..e37789b --- /dev/null +++ b/publication/spiekereichhorn-2023-review/cite.bib @@ -0,0 +1,6 @@ +@ARTICLE{spieker2023, + author={Spieker, Veronika and Eichhorn, Hannah and Hammernik, Kerstin and Rueckert, Daniel and Preibisch, Christine and Karampinos, Dimitrios C. and Schnabel, Julia A.}, + journal={IEEE Transactions on Medical Imaging}, + title={Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review}, + year={2023}, + doi={10.1109/TMI.2023.3323215}} diff --git a/publication/spiekereichhorn-2023-review/featured.png b/publication/spiekereichhorn-2023-review/featured.png new file mode 100644 index 0000000..d5f7c46 Binary files /dev/null and b/publication/spiekereichhorn-2023-review/featured.png differ diff --git a/publication/spiekereichhorn-2023-review/featured_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_150x0_resize_q75_h2_lanczos_3.webp b/publication/spiekereichhorn-2023-review/featured_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_150x0_resize_q75_h2_lanczos_3.webp new file mode 100644 index 0000000..c0491a2 Binary files /dev/null and b/publication/spiekereichhorn-2023-review/featured_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_150x0_resize_q75_h2_lanczos_3.webp differ diff --git a/publication/spiekereichhorn-2023-review/featured_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_720x2500_fit_q75_h2_lanczos_3.webp b/publication/spiekereichhorn-2023-review/featured_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_720x2500_fit_q75_h2_lanczos_3.webp new file mode 100644 index 0000000..b32d36d Binary files /dev/null and b/publication/spiekereichhorn-2023-review/featured_hu97b0dcc97f3d04d523dba4b92347ab90_2209044_720x2500_fit_q75_h2_lanczos_3.webp differ diff --git a/publication/spiekereichhorn-2023-review/index.html b/publication/spiekereichhorn-2023-review/index.html new file mode 100644 index 0000000..edef77f --- /dev/null +++ b/publication/spiekereichhorn-2023-review/index.html @@ -0,0 +1,1640 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review

+ + + + + + + + + + + + + + + + +
+ + +
+
+ + Teaser +
+
+ + + +
+ + +

Abstract

+

Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.

+ + + + +
+
+
+
+
Type
+ +
+
+
+
+
+ + + +
+
+
+
+
Publication
+
IEEE Transactions on Medical Imaging ( Early Access )
+
+
+
+
+
+ + +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Veronika Spieker + + +
+
Veronika Spieker
+
Doctoral Researcher
+

Veronika Spieker’s interests include AI-based methods for MR reconstrution and motion correction.

+ + +
+
+ + + + + + + + + + + + +
+ + + Hannah Eichhorn + + +
+
Hannah Eichhorn
+
Doctoral Researcher
+

Hannah Eichhorn’s research focuses on deep learning-based reconstruction of multi-parametric brain MRI.

+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication_types/index.html b/publication_types/index.html new file mode 100644 index 0000000..ced8135 --- /dev/null +++ b/publication_types/index.html @@ -0,0 +1,1236 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Publication_types | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Publication_types

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ 2 +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ 3 +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ 1 +
+ + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/publication_types/index.xml b/publication_types/index.xml new file mode 100644 index 0000000..ed61367 --- /dev/null +++ b/publication_types/index.xml @@ -0,0 +1,16 @@ + + + + Publication_types | Computational Imaging and AI in Medicine + https://compai-lab.io/publication_types/ + + Publication_types + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Publication_types + https://compai-lab.io/publication_types/ + + + + diff --git a/publication_types/page/1/index.html b/publication_types/page/1/index.html new file mode 100644 index 0000000..22b56e8 --- /dev/null +++ b/publication_types/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/publication_types/ + + + + + + diff --git a/robots.txt b/robots.txt new file mode 100644 index 0000000..92ae07e --- /dev/null +++ b/robots.txt @@ -0,0 +1,3 @@ +User-agent: * + +Sitemap: https://compai-lab.io/sitemap.xml diff --git a/sitemap.xml b/sitemap.xml new file mode 100644 index 0000000..866a2a7 --- /dev/null +++ b/sitemap.xml @@ -0,0 +1,321 @@ + + + + + + https://compai-lab.io/author/cosmin-i.-bercea/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/author/sameer-ambekar/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/author/emily-chan/weekly + + https://compai-lab.io/author/georgios-kaissis/weekly + + https://compai-lab.io/author/laura-daza/weekly + + https://compai-lab.io/author/sandra-mayer/weekly + + https://compai-lab.io/author/simona-bottani/weekly + + https://compai-lab.io/author/maxime-di-folco/2024-08-13T00:00:00+00:00weekly + + https://compai-lab.io/author/lina-felsner/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/author/veronika-zimmer/2022-11-21T00:00:00+00:00weekly + + https://compai-lab.io/author/sabine-franke/weekly + + https://compai-lab.io/author/daniel-m.-lang/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/author/hannah-eichhorn/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/author/stefan-fischer/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/author/marta-hasny/weekly + + https://compai-lab.io/author/johannes-kiechle/2024-06-14T00:00:00+00:00weekly + + https://compai-lab.io/author/ha-young-kim/weekly + + https://compai-lab.io/author/fryderyk-kogl/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/author/jun-li/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/author/richard-osuala/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/author/natascha-niessen/weekly + + https://compai-lab.io/author/anna-reithmeir/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/author/chun-kit-wong/weekly + + https://compai-lab.io/author/anneliese-riess/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/author/veronika-spieker/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/2030-06-01T13:00:00+00:00weekly + + https://compai-lab.io/event/example/2030-06-01T13:00:00+00:00weekly + + https://compai-lab.io/event/2030-06-01T13:00:00+00:00weekly + + https://compai-lab.io/authors/2024-08-13T00:00:00+00:00weekly + + https://compai-lab.io/vacancies/msc_functionalmaps/2024-08-13T00:00:00+00:00weekly + + https://compai-lab.io/tag/master/2024-08-13T00:00:00+00:00weekly + + https://compai-lab.io/vacancies/2024-08-13T00:00:00+00:00weekly + + https://compai-lab.io/tags/2024-08-13T00:00:00+00:00weekly + + https://compai-lab.io/teaching/vlm_seminar/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/old_stuff/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/teaching/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/old_stuff/teaching/msc_tracking/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/tag/ws24/2024-07-25T00:00:00+00:00weekly + + https://compai-lab.io/post/miccai_workshops_24/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/post/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/post/miccai_24/2024-07-05T00:00:00+00:00weekly + + https://compai-lab.io/post/fischer_melba_24/2024-06-14T00:00:00+00:00weekly + + https://compai-lab.io/post/eichhorn_study_group_5_24/2024-05-23T00:00:00+00:00weekly + + https://compai-lab.io/post/schnabel_alfred_breit_preis_24/2024-05-10T00:00:00+00:00weekly + + https://compai-lab.io/author/julia-a.-schnabel/2024-05-10T00:00:00+00:00weekly + + https://compai-lab.io/post/reithmeir_spie_24/2024-03-20T00:00:00+00:00weekly + + https://compai-lab.io/author/johannes-kiechle/2024-03-15T00:00:00+00:00weekly + + https://compai-lab.io/post/kiechle_isbi_24/2024-03-15T00:00:00+00:00weekly + + https://compai-lab.io/tag/ss24/2024-03-15T00:00:00+00:00weekly + + https://compai-lab.io/teaching/domain_adaptation_seminar/2024-03-15T00:00:00+00:00weekly + + https://compai-lab.io/post/kiechle_estro_24/2024-03-14T00:00:00+00:00weekly + + https://compai-lab.io/post/spieker_eichhorn_ismrm24/2024-02-01T00:00:00+00:00weekly + + https://compai-lab.io/post/spieker_eichhorn_tmi/2023-10-25T00:00:00+00:00weekly + + https://compai-lab.io/publication-type/2/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/author/christine-preibisch/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/author/daniel-rueckert/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/tag/deep-learning/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/publication/spiekereichhorn-2023-review/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/author/dimitrios-c.-karampinos/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/author/kerstin-hammernik/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/tag/magnetic-resonance-imaging/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/tag/motion-compensation/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/tag/motion-correction/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/publication_types/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/publication/2023-10-13T00:00:00+00:00weekly + + https://compai-lab.io/post/iml_miccai_workshops/2023-09-14T00:00:00+00:00weekly + + https://compai-lab.io/post/schnabel_sueddeutsche_23/2023-08-23T00:00:00+00:00weekly + + https://compai-lab.io/teaching/manifold_seminar/2023-07-19T00:00:00+00:00weekly + + https://compai-lab.io/teaching/anomaly_seminar/2023-07-19T00:00:00+00:00weekly + + https://compai-lab.io/tag/ws23/2023-07-19T00:00:00+00:00weekly + + https://compai-lab.io/post/bercea_miccai/2023-05-26T00:00:00+00:00weekly + + https://compai-lab.io/post/bercea_icml/2023-05-25T00:00:00+00:00weekly + + https://compai-lab.io/post/bercea_midl/2023-04-28T00:00:00+00:00weekly + + https://compai-lab.io/post/spieker_eichhorn_ismrm/2023-04-25T00:00:00+00:00weekly + + https://compai-lab.io/vacancies/msc_surface/2022-11-21T00:00:00+00:00weekly + + https://compai-lab.io/post/bercea_nature/2022-08-02T00:00:00+00:00weekly + + https://compai-lab.io/publication-type/3/2022-06-08T00:00:00+00:00weekly + + https://compai-lab.io/tag/unsupervised-outlier-detection/2022-06-08T00:00:00+00:00weekly + + https://compai-lab.io/publication/bercea-2022-we/2022-06-08T00:00:00+00:00weekly + + https://compai-lab.io/post/spieker_award/2022-05-30T00:00:00+00:00weekly + + https://compai-lab.io/author/others/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/publication/machado-2022-deep/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/alistair-a-young/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/publication/li-2022-atrialjsqnet/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/bram-ruijsink/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/claude-comtat/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/devran-ugurlu/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/esther-puyol-anton/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/gary-cook/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/gastao-cruz/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/ihsane-olakorede/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/ilkay-oksuz/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/publication/dal-2022-improved/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/ines-p-machado/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/irene-buvat/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/laura-dal-toso/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/lei-li/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/teaching/master_seminar/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/miguel-castelo-branco/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/paul-k-marsden/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/ss22/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/vicky-goh/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/xiahai-zhuang/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/zacharias-chalampalakis/2022-01-01T00:00:00+00:00weekly + + https://compai-lab.io/teaching/aim_lecture/2021-10-01T00:00:00+00:00weekly + + https://compai-lab.io/teaching/aim_lecture_2/2021-10-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/ws21/2021-10-01T00:00:00+00:00weekly + + https://compai-lab.io/author/andrew-p-king/2020-12-01T00:00:00+00:00weekly + + https://compai-lab.io/author/aurelien-bustin/2020-12-01T00:00:00+00:00weekly + + https://compai-lab.io/author/claudia-prieto/2020-12-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/pmid-32746141/2020-12-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/2020-12-01T00:00:00+00:00weekly + + https://compai-lab.io/author/james-r-clough/2020-12-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/8867900/2020-01-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/clough-2019-topological/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/andrew-p.-king/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/artifact/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/oksuz-2019136/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/cardiac-mr-motion-artefacts/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/convolutional-neural-networks/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/image-quality-assessment/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/james-r.-clough/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/lstm/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/nicholas-byrne/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/rene-botnar/2019-01-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/author/bart%C5%82omiej-w.-papiez/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/demons/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/discrete-optimization/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/author/mattias-p.-heinrich/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/multi-modality/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/registration-uncertainty/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/author/sir-j.-michael-brady/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/sliding-motion/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/tag/supervoxels/2016-10-01T00:00:00+00:00weekly + + https://compai-lab.io/author/fergus-v-gleeson/2012-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/manav-bhushan/2012-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/mark-jenkinson/2012-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/mattias-p-heinrich/2012-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/michael-brady/2012-01-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/heinrich-2012-mind/2012-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/tahreema-matin/2012-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/alejandro-f-frangi/2003-01-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/rueckert-2003-automatic/2003-01-01T00:00:00+00:00weekly + + https://compai-lab.io/publication-type/1/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/fpublications/schnabel-2001-generic/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/andy-d-castellano-smith/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/charles-l-truwit/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/graeme-p-penney/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/haiying-liu/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/jane-m-blackall/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/marcel-quist/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/thomas-hartkens/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/author/walter-a-hall/2001-01-01T00:00:00+00:00weekly + + https://compai-lab.io/contact/weekly + + https://compai-lab.io/categories/weekly + + https://compai-lab.io/tour/weekly diff --git a/tag/artifact/index.html b/tag/artifact/index.html new file mode 100644 index 0000000..c2aad18 --- /dev/null +++ b/tag/artifact/index.html @@ -0,0 +1,1163 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Artifact | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Artifact

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/artifact/index.xml b/tag/artifact/index.xml new file mode 100644 index 0000000..6dcad9d --- /dev/null +++ b/tag/artifact/index.xml @@ -0,0 +1,24 @@ + + + + Artifact | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/artifact/ + + Artifact + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Artifact + https://compai-lab.io/tag/artifact/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/tag/artifact/page/1/index.html b/tag/artifact/page/1/index.html new file mode 100644 index 0000000..6eb736b --- /dev/null +++ b/tag/artifact/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/artifact/ + + + + + + diff --git a/tag/cardiac-mr-motion-artefacts/index.html b/tag/cardiac-mr-motion-artefacts/index.html new file mode 100644 index 0000000..9b136f2 --- /dev/null +++ b/tag/cardiac-mr-motion-artefacts/index.html @@ -0,0 +1,1163 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Cardiac MR motion artefacts | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Cardiac MR motion artefacts

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/cardiac-mr-motion-artefacts/index.xml b/tag/cardiac-mr-motion-artefacts/index.xml new file mode 100644 index 0000000..91488dc --- /dev/null +++ b/tag/cardiac-mr-motion-artefacts/index.xml @@ -0,0 +1,24 @@ + + + + Cardiac MR motion artefacts | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/cardiac-mr-motion-artefacts/ + + Cardiac MR motion artefacts + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Cardiac MR motion artefacts + https://compai-lab.io/tag/cardiac-mr-motion-artefacts/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/tag/cardiac-mr-motion-artefacts/page/1/index.html b/tag/cardiac-mr-motion-artefacts/page/1/index.html new file mode 100644 index 0000000..f1b4f70 --- /dev/null +++ b/tag/cardiac-mr-motion-artefacts/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/cardiac-mr-motion-artefacts/ + + + + + + diff --git a/tag/convolutional-neural-networks/index.html b/tag/convolutional-neural-networks/index.html new file mode 100644 index 0000000..2d34ba5 --- /dev/null +++ b/tag/convolutional-neural-networks/index.html @@ -0,0 +1,1163 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Convolutional neural networks | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Convolutional neural networks

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/convolutional-neural-networks/index.xml b/tag/convolutional-neural-networks/index.xml new file mode 100644 index 0000000..88cecd9 --- /dev/null +++ b/tag/convolutional-neural-networks/index.xml @@ -0,0 +1,24 @@ + + + + Convolutional neural networks | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/convolutional-neural-networks/ + + Convolutional neural networks + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Convolutional neural networks + https://compai-lab.io/tag/convolutional-neural-networks/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/tag/convolutional-neural-networks/page/1/index.html b/tag/convolutional-neural-networks/page/1/index.html new file mode 100644 index 0000000..47e7c6e --- /dev/null +++ b/tag/convolutional-neural-networks/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/convolutional-neural-networks/ + + + + + + diff --git a/tag/deep-learning/index.html b/tag/deep-learning/index.html new file mode 100644 index 0000000..a560b88 --- /dev/null +++ b/tag/deep-learning/index.html @@ -0,0 +1,1131 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + deep learning | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

deep learning

+ + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/deep-learning/index.xml b/tag/deep-learning/index.xml new file mode 100644 index 0000000..6883cc2 --- /dev/null +++ b/tag/deep-learning/index.xml @@ -0,0 +1,24 @@ + + + + deep learning | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/deep-learning/ + + deep learning + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + deep learning + https://compai-lab.io/tag/deep-learning/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + diff --git a/tag/deep-learning/page/1/index.html b/tag/deep-learning/page/1/index.html new file mode 100644 index 0000000..d49921b --- /dev/null +++ b/tag/deep-learning/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/deep-learning/ + + + + + + diff --git a/tag/demons/index.html b/tag/demons/index.html new file mode 100644 index 0000000..addff95 --- /dev/null +++ b/tag/demons/index.html @@ -0,0 +1,1150 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Demons | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Demons

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/demons/index.xml b/tag/demons/index.xml new file mode 100644 index 0000000..7dc05a2 --- /dev/null +++ b/tag/demons/index.xml @@ -0,0 +1,24 @@ + + + + Demons | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/demons/ + + Demons + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Demons + https://compai-lab.io/tag/demons/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/tag/demons/page/1/index.html b/tag/demons/page/1/index.html new file mode 100644 index 0000000..3ea1fd2 --- /dev/null +++ b/tag/demons/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/demons/ + + + + + + diff --git a/tag/discrete-optimization/index.html b/tag/discrete-optimization/index.html new file mode 100644 index 0000000..1895e1e --- /dev/null +++ b/tag/discrete-optimization/index.html @@ -0,0 +1,1150 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Discrete optimization | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Discrete optimization

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/discrete-optimization/index.xml b/tag/discrete-optimization/index.xml new file mode 100644 index 0000000..7a30675 --- /dev/null +++ b/tag/discrete-optimization/index.xml @@ -0,0 +1,24 @@ + + + + Discrete optimization | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/discrete-optimization/ + + Discrete optimization + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Discrete optimization + https://compai-lab.io/tag/discrete-optimization/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/tag/discrete-optimization/page/1/index.html b/tag/discrete-optimization/page/1/index.html new file mode 100644 index 0000000..678df34 --- /dev/null +++ b/tag/discrete-optimization/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/discrete-optimization/ + + + + + + diff --git a/tag/image-quality-assessment/index.html b/tag/image-quality-assessment/index.html new file mode 100644 index 0000000..1428965 --- /dev/null +++ b/tag/image-quality-assessment/index.html @@ -0,0 +1,1163 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Image quality assessment | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Image quality assessment

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/image-quality-assessment/index.xml b/tag/image-quality-assessment/index.xml new file mode 100644 index 0000000..8fc456d --- /dev/null +++ b/tag/image-quality-assessment/index.xml @@ -0,0 +1,24 @@ + + + + Image quality assessment | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/image-quality-assessment/ + + Image quality assessment + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Image quality assessment + https://compai-lab.io/tag/image-quality-assessment/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/tag/image-quality-assessment/page/1/index.html b/tag/image-quality-assessment/page/1/index.html new file mode 100644 index 0000000..4b62d49 --- /dev/null +++ b/tag/image-quality-assessment/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/image-quality-assessment/ + + + + + + diff --git a/tag/lstm/index.html b/tag/lstm/index.html new file mode 100644 index 0000000..321338d --- /dev/null +++ b/tag/lstm/index.html @@ -0,0 +1,1163 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + LSTM | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

LSTM

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/lstm/index.xml b/tag/lstm/index.xml new file mode 100644 index 0000000..7510e86 --- /dev/null +++ b/tag/lstm/index.xml @@ -0,0 +1,24 @@ + + + + LSTM | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/lstm/ + + LSTM + Wowchemy (https://wowchemy.com)en-usTue, 01 Jan 2019 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + LSTM + https://compai-lab.io/tag/lstm/ + + + + Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning + https://compai-lab.io/fpublications/oksuz-2019136/ + Tue, 01 Jan 2019 00:00:00 +0000 + https://compai-lab.io/fpublications/oksuz-2019136/ + + + + + diff --git a/tag/lstm/page/1/index.html b/tag/lstm/page/1/index.html new file mode 100644 index 0000000..6599fa0 --- /dev/null +++ b/tag/lstm/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/lstm/ + + + + + + diff --git a/tag/magnetic-resonance-imaging/index.html b/tag/magnetic-resonance-imaging/index.html new file mode 100644 index 0000000..ae9680f --- /dev/null +++ b/tag/magnetic-resonance-imaging/index.html @@ -0,0 +1,1131 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + magnetic resonance imaging | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

magnetic resonance imaging

+ + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/magnetic-resonance-imaging/index.xml b/tag/magnetic-resonance-imaging/index.xml new file mode 100644 index 0000000..eea0608 --- /dev/null +++ b/tag/magnetic-resonance-imaging/index.xml @@ -0,0 +1,24 @@ + + + + magnetic resonance imaging | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/magnetic-resonance-imaging/ + + magnetic resonance imaging + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + magnetic resonance imaging + https://compai-lab.io/tag/magnetic-resonance-imaging/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + diff --git a/tag/magnetic-resonance-imaging/page/1/index.html b/tag/magnetic-resonance-imaging/page/1/index.html new file mode 100644 index 0000000..3d56eab --- /dev/null +++ b/tag/magnetic-resonance-imaging/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/magnetic-resonance-imaging/ + + + + + + diff --git a/tag/master/index.html b/tag/master/index.html new file mode 100644 index 0000000..3708823 --- /dev/null +++ b/tag/master/index.html @@ -0,0 +1,1299 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + master | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

master

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Latent Functional Maps for Medical Imaging +
+ + + +
+ Master Thesis. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Temporal Landmark Tracking on Medical Imaging +
+ + + +
+ Master Thesis. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) +
+ + + +
+ Master Thesis. I’m interested +
+ + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/master/index.xml b/tag/master/index.xml new file mode 100644 index 0000000..0276193 --- /dev/null +++ b/tag/master/index.xml @@ -0,0 +1,50 @@ + + + + master | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/master/ + + master + Wowchemy (https://wowchemy.com)en-usTue, 13 Aug 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + master + https://compai-lab.io/tag/master/ + + + + Latent Functional Maps for Medical Imaging + https://compai-lab.io/vacancies/msc_functionalmaps/ + Tue, 13 Aug 2024 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_functionalmaps/ + <p>Abstract:</p> +<p>Neural Networks (NNs) learn to represent high-dimensional data as elements of lower-dimensional latent spaces. Modeling the relationships between these representational spaces is an ongoing challenge. Successfully addressing this challenge could enable the reuse of representations in downstream tasks, reducing the need to retrain similar models multiple times. Recently, Fumero et al. leveraged the internal geometry of representations and proposed applying latent functional maps to align representations across distinct models, demonstrating its relevance for comparing representations. However, these kinds of approaches have not yet been explored in the context of medical imaging datasets, where aligning multimodal representa- +tions could significantly enhance the effectiveness of models in medical applications. This project aims to use latent functional maps to align multimodal medical representations (e.g., text and vision). The first part of the thesis will involve a literature review on representation similarity. This will be followed by experimenting with the latent functional maps approach on a toy dataset of medical images and later applying it to real medical imaging tasks.</p> + + + + + Temporal Landmark Tracking on Medical Imaging + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/msc_tracking/ + <p>Abstract:</p> +<p>Even though various learning-based computer vision methods have been developed for pixel tracking, motion estimation in video data depicts a challenging task. Part of the problem arises from the 3D-to-2D projection process that can lead to out-of-plane motion, which impedes long-range pixel trajectory estimation. In the medical domain, video data, i.e. fast magnetic resonance imaging (MRI) sequences, can be used for guidance during treatment. Specifically, in radiation therapy, contouring algorithms are used for tracking of the target volume supposed to receive the main radiation dose during treatment. Delineation can, for example, be performed with a U-Net architecture. However, such an approach only allows for identification of larger structures, while irregular movement can be subtle and localized. Landmark detection models are able to identify such localized regions between different representations of the same object. Furthermore, they are faster than semantic segmentation models, and therefore, allow for computer aided intervention during treatment. In this thesis, different state-of-the-art landmark and pixel tracking algorithms will be tested and further enhanced to identify movement on temporal imaging data of the lungs, i.e. 4D CT. Furthermore, ability of such landmarks to identify movement differing from a normal state, i.e. allowing for identification of anomalies, will be studied.</p> + + + + + Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) + https://compai-lab.io/vacancies/msc_surface/ + Mon, 21 Nov 2022 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_surface/ + <p>Abstract:</p> +<p>In recent years, unsupervised and semi-supervised learning from populations of surfaces and curves has received a lot of attention. Such data representations are analyzed according to their shapes which open a broad range of applications in machine learning, robotics, statistics and engineering. In particular, studying the shape of surfaces have become an important tool in biology and medical imaging. The extraction of appropriate data representations, such as triangulated surfaces, is crucial for the subsequent analysis. These surfaces are for example obtained from binary segmentations or 3D point clouds. Using standard methods, such surfaces are often not very accurate and require several post-processing steps, such as smoothing and simplifications. +Deep learning based methods are of great interest in various fields such as medical imaging, com- puter vision, applied mathematics and are successfully used in the field of image segmentation. Gener- ally, a specific formulation requires a particular attention to representations, loss functions, probability models, optimization techniques, etc. This choice is very crucial due to the underlying geometry on the space of representations and constraints. we aim to develop a new set of automatic methods that can compute a triangulation and a normal field from a 3D dataset (binary image and/or 3D point cloud). +The goal of this project is to understand the-state-of-the-art methods (e.g., [?]) and to propose solutions in the context of constructing a mesh from 3D images/point sets. We are interested in learn- ing from a dataset of smooth surfaces and their corresponding 3D datasets to make the triangulation or resampling accurate. The application will be the extraction of a smooth surfaces from μ-CT and CT data of the cochlea and inner ear, whose shapes can then be analyzed subsequently for population studies. +To summarize, the key steps are : (i) Literature review and getting familiar with some state-of- the-art methods in the medical context; (ii) Implementing and testing the code before validation on real data; (iii) Optimizing the code and comparing with baseline methods. If successful, the method would be applied to analyze and classify surfaces.</p> + + + + + diff --git a/tag/master/page/1/index.html b/tag/master/page/1/index.html new file mode 100644 index 0000000..39583bc --- /dev/null +++ b/tag/master/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/master/ + + + + + + diff --git a/tag/motion-compensation/index.html b/tag/motion-compensation/index.html new file mode 100644 index 0000000..5dd89c0 --- /dev/null +++ b/tag/motion-compensation/index.html @@ -0,0 +1,1131 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + motion compensation | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

motion compensation

+ + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/motion-compensation/index.xml b/tag/motion-compensation/index.xml new file mode 100644 index 0000000..173a2a9 --- /dev/null +++ b/tag/motion-compensation/index.xml @@ -0,0 +1,24 @@ + + + + motion compensation | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/motion-compensation/ + + motion compensation + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + motion compensation + https://compai-lab.io/tag/motion-compensation/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + diff --git a/tag/motion-compensation/page/1/index.html b/tag/motion-compensation/page/1/index.html new file mode 100644 index 0000000..6cda416 --- /dev/null +++ b/tag/motion-compensation/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/motion-compensation/ + + + + + + diff --git a/tag/motion-correction/index.html b/tag/motion-correction/index.html new file mode 100644 index 0000000..5623715 --- /dev/null +++ b/tag/motion-correction/index.html @@ -0,0 +1,1131 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + motion correction | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

motion correction

+ + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/motion-correction/index.xml b/tag/motion-correction/index.xml new file mode 100644 index 0000000..7773608 --- /dev/null +++ b/tag/motion-correction/index.xml @@ -0,0 +1,24 @@ + + + + motion correction | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/motion-correction/ + + motion correction + Wowchemy (https://wowchemy.com)en-usFri, 13 Oct 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + motion correction + https://compai-lab.io/tag/motion-correction/ + + + + Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + Fri, 13 Oct 2023 00:00:00 +0000 + https://compai-lab.io/publication/spiekereichhorn-2023-review/ + + + + + diff --git a/tag/motion-correction/page/1/index.html b/tag/motion-correction/page/1/index.html new file mode 100644 index 0000000..3c5cbbd --- /dev/null +++ b/tag/motion-correction/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/motion-correction/ + + + + + + diff --git a/tag/multi-modality/index.html b/tag/multi-modality/index.html new file mode 100644 index 0000000..1cf9082 --- /dev/null +++ b/tag/multi-modality/index.html @@ -0,0 +1,1150 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Multi-modality | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Multi-modality

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/multi-modality/index.xml b/tag/multi-modality/index.xml new file mode 100644 index 0000000..fcee040 --- /dev/null +++ b/tag/multi-modality/index.xml @@ -0,0 +1,24 @@ + + + + Multi-modality | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/multi-modality/ + + Multi-modality + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Multi-modality + https://compai-lab.io/tag/multi-modality/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/tag/multi-modality/page/1/index.html b/tag/multi-modality/page/1/index.html new file mode 100644 index 0000000..b9d4c98 --- /dev/null +++ b/tag/multi-modality/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/multi-modality/ + + + + + + diff --git a/tag/registration-uncertainty/index.html b/tag/registration-uncertainty/index.html new file mode 100644 index 0000000..1de52b8 --- /dev/null +++ b/tag/registration-uncertainty/index.html @@ -0,0 +1,1150 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Registration uncertainty | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Registration uncertainty

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/registration-uncertainty/index.xml b/tag/registration-uncertainty/index.xml new file mode 100644 index 0000000..653b495 --- /dev/null +++ b/tag/registration-uncertainty/index.xml @@ -0,0 +1,24 @@ + + + + Registration uncertainty | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/registration-uncertainty/ + + Registration uncertainty + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Registration uncertainty + https://compai-lab.io/tag/registration-uncertainty/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/tag/registration-uncertainty/page/1/index.html b/tag/registration-uncertainty/page/1/index.html new file mode 100644 index 0000000..e0872fa --- /dev/null +++ b/tag/registration-uncertainty/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/registration-uncertainty/ + + + + + + diff --git a/tag/sliding-motion/index.html b/tag/sliding-motion/index.html new file mode 100644 index 0000000..ba89dbb --- /dev/null +++ b/tag/sliding-motion/index.html @@ -0,0 +1,1150 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Sliding motion | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Sliding motion

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/sliding-motion/index.xml b/tag/sliding-motion/index.xml new file mode 100644 index 0000000..e199716 --- /dev/null +++ b/tag/sliding-motion/index.xml @@ -0,0 +1,24 @@ + + + + Sliding motion | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/sliding-motion/ + + Sliding motion + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Sliding motion + https://compai-lab.io/tag/sliding-motion/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/tag/sliding-motion/page/1/index.html b/tag/sliding-motion/page/1/index.html new file mode 100644 index 0000000..8e78287 --- /dev/null +++ b/tag/sliding-motion/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/sliding-motion/ + + + + + + diff --git a/tag/ss22/index.html b/tag/ss22/index.html new file mode 100644 index 0000000..2161b1d --- /dev/null +++ b/tag/ss22/index.html @@ -0,0 +1,1178 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ss22 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

ss22

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Medical Image Registation I (IN2107) +
+ + + +
+ Summer semester 2022. TUM Informatics. Master Seminar. Details +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Artificial Intelligence in Medicine II (IN2408) +
+ + + +
+ Summer 2022. TUM Informatics. Lecture. Details. +
+ + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/ss22/index.xml b/tag/ss22/index.xml new file mode 100644 index 0000000..dd7cdc6 --- /dev/null +++ b/tag/ss22/index.xml @@ -0,0 +1,63 @@ + + + + ss22 | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/ss22/ + + ss22 + Wowchemy (https://wowchemy.com)en-usSat, 01 Jan 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + ss22 + https://compai-lab.io/tag/ss22/ + + + + Medical Image Registation I (IN2107) + https://compai-lab.io/teaching/master_seminar/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/teaching/master_seminar/ + <p><a href="https://campus.tum.de/tumonline/pl/ui/$ctx/wbLv.wbShowLVDetail?pStpSpNr=950627128" target="_blank" rel="noopener">Course details</a></p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> + + + + + Artificial Intelligence in Medicine II (IN2408) + https://compai-lab.io/teaching/aim_lecture_2/ + Fri, 01 Oct 2021 00:00:00 +0000 + https://compai-lab.io/teaching/aim_lecture_2/ + <ul> +<li> +<p><a href="https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950636169&amp;pSpracheNr=2" target="_blank" rel="noopener">Course Details</a></p> +</li> +<li> +<p><a href="https://www.ph.tum.de/academics/org/cc/course/950636169/" target="_blank" rel="noopener">Basic Information</a></p> +</li> +<li> +<p>Content</p> +</li> +</ul> +<p>Introduction and examples of advanced prediction and classification problems in medicine; ML for prognostic and diagnostic tasks; risk scores, time-to-event modeling, survival models, differential diagnosis &amp; population stratification, geometric deep learning: point clouds &amp; meshes, mesh-based segmentation, shape analysis, trustworthy AI in medicine: bias and fairness, generalizability, AI for affordable healthcare, clinical deployment and evaluation, data harmonization, causal inference, transformers, reinforcement learning in medicine, ML for neuro: structural neuroimaging, functional neuroimaging, diffusion imaging, ML for CVD: EEG analysis</p> +<ul> +<li>Learning Outcome</li> +</ul> +<p>At the end of the module students should be able to recall advanced topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own AI projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.</p> +<ul> +<li>Preconditions</li> +</ul> +<p>IN2403 Artificial Intelligence in Medicine</p> + + + + + diff --git a/tag/ss22/page/1/index.html b/tag/ss22/page/1/index.html new file mode 100644 index 0000000..e4ebd0a --- /dev/null +++ b/tag/ss22/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/ss22/ + + + + + + diff --git a/tag/ss24/index.html b/tag/ss24/index.html new file mode 100644 index 0000000..3e21471 --- /dev/null +++ b/tag/ss24/index.html @@ -0,0 +1,1096 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ss24 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

ss24

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107) +
+ + + +
+ Summer semester 2024. TUM Informatics. Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/ss24/index.xml b/tag/ss24/index.xml new file mode 100644 index 0000000..7e4243b --- /dev/null +++ b/tag/ss24/index.xml @@ -0,0 +1,65 @@ + + + + ss24 | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/ss24/ + + ss24 + Wowchemy (https://wowchemy.com)en-usFri, 15 Mar 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + ss24 + https://compai-lab.io/tag/ss24/ + + + + Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107) + https://compai-lab.io/teaching/domain_adaptation_seminar/ + Fri, 15 Mar 2024 00:00:00 +0000 + https://compai-lab.io/teaching/domain_adaptation_seminar/ + <p><a href="https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950769202?$scrollTo=toc_overview" target="_blank" rel="noopener">Course details</a></p> +<p>Transfer learning enables the effective utilization of knowledge gained from one task or domain to enhance performance in another, while domain adaptation focuses on adapting models trained on a particular domain to perform well in related but different domains. +This seminar looks at the concepts of transfer learning and domain adaptation in general and with the application in medical imaging. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed.</p> +<p>Key topics to be covered include:</p> +<ul> +<li>Introduction to transfer learning and domain adaptation</li> +<li>Implications in the context of medical imaging</li> +<li>Examples of transfer learning and domain adaptation in medical imaging</li> +<li>State-of-the-art methods</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning/deep learning</li> +<li>Interest in medical image analysis</li> +<li>Interest in research</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/slides_domain_adaptation_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/slides_domain_adaptation_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + diff --git a/tag/ss24/page/1/index.html b/tag/ss24/page/1/index.html new file mode 100644 index 0000000..ed9fa39 --- /dev/null +++ b/tag/ss24/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/ss24/ + + + + + + diff --git a/tag/supervoxels/index.html b/tag/supervoxels/index.html new file mode 100644 index 0000000..aaf3aa7 --- /dev/null +++ b/tag/supervoxels/index.html @@ -0,0 +1,1150 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Supervoxels | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Supervoxels

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+ +
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/supervoxels/index.xml b/tag/supervoxels/index.xml new file mode 100644 index 0000000..9f73ed6 --- /dev/null +++ b/tag/supervoxels/index.xml @@ -0,0 +1,24 @@ + + + + Supervoxels | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/supervoxels/ + + Supervoxels + Wowchemy (https://wowchemy.com)en-usSat, 01 Oct 2016 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Supervoxels + https://compai-lab.io/tag/supervoxels/ + + + + Advances and Challenges in Deformable Image Registration: From Image Fusion to Complex Motion Modelling + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + Sat, 01 Oct 2016 00:00:00 +0000 + https://compai-lab.io/fpublications/028-b-6-ad-81-dea-4-ce-39-a-182-f-7-df-77-f-2-ee-5/ + + + + + diff --git a/tag/supervoxels/page/1/index.html b/tag/supervoxels/page/1/index.html new file mode 100644 index 0000000..51bf569 --- /dev/null +++ b/tag/supervoxels/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/supervoxels/ + + + + + + diff --git a/tag/unsupervised-outlier-detection/index.html b/tag/unsupervised-outlier-detection/index.html new file mode 100644 index 0000000..d2a856b --- /dev/null +++ b/tag/unsupervised-outlier-detection/index.html @@ -0,0 +1,1137 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + unsupervised outlier detection | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

unsupervised outlier detection

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/unsupervised-outlier-detection/index.xml b/tag/unsupervised-outlier-detection/index.xml new file mode 100644 index 0000000..c91c4c9 --- /dev/null +++ b/tag/unsupervised-outlier-detection/index.xml @@ -0,0 +1,29 @@ + + + + unsupervised outlier detection | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/unsupervised-outlier-detection/ + + unsupervised outlier detection + Wowchemy (https://wowchemy.com)en-usWed, 08 Jun 2022 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + unsupervised outlier detection + https://compai-lab.io/tag/unsupervised-outlier-detection/ + + + + What do we learn? Debunking the Myth of Unsupervised Outlier Detection + https://compai-lab.io/publication/bercea-2022-we/ + Wed, 08 Jun 2022 00:00:00 +0000 + https://compai-lab.io/publication/bercea-2022-we/ + <div class="alert alert-note"> + <div> + Click the <em>Cite</em> button above to demo the feature to enable visitors to import publication metadata into their reference management software. + </div> +</div> + + + + + diff --git a/tag/unsupervised-outlier-detection/page/1/index.html b/tag/unsupervised-outlier-detection/page/1/index.html new file mode 100644 index 0000000..bcc2ed7 --- /dev/null +++ b/tag/unsupervised-outlier-detection/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/unsupervised-outlier-detection/ + + + + + + diff --git a/tag/ws21/index.html b/tag/ws21/index.html new file mode 100644 index 0000000..33fbdef --- /dev/null +++ b/tag/ws21/index.html @@ -0,0 +1,1096 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ws21 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

ws21

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Artificial Intelligence in Medicine (IN2403) +
+ + + +
+ Winter 2021. TUM Informatics. Lecture. Details. +
+ + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/ws21/index.xml b/tag/ws21/index.xml new file mode 100644 index 0000000..64e68b4 --- /dev/null +++ b/tag/ws21/index.xml @@ -0,0 +1,42 @@ + + + + ws21 | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/ws21/ + + ws21 + Wowchemy (https://wowchemy.com)en-usFri, 01 Oct 2021 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + ws21 + https://compai-lab.io/tag/ws21/ + + + + Artificial Intelligence in Medicine (IN2403) + https://compai-lab.io/teaching/aim_lecture/ + Fri, 01 Oct 2021 00:00:00 +0000 + https://compai-lab.io/teaching/aim_lecture/ + <ul> +<li><a href="https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950596772" target="_blank" rel="noopener">Course Details</a></li> +<li><a href="https://www.ph.tum.de/academics/org/cc/mh/IN2403/" target="_blank" rel="noopener">Basic Information</a></li> +</ul> +<p>At the end of the module students should be able to recall the important topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own deep learning projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.</p> +<ul> +<li>Introduction: Clinical motivation, clinical data, clinical workflows</li> +<li>ML for medical imaging• Data curation for medical applications</li> +<li>Domain shift in medical applications: Adversarial learning and Transfer learning</li> +<li>Self-supervised learning and unsupervised learning</li> +<li>Learning from sparse and noisy data</li> +<li>ML for unstructured and multi-modal clinical data</li> +<li>NLP for clinical data• Bayesian approaches to deep learning and uncertainty</li> +<li>Interpretability and explainability</li> +<li>Federated learning, privacy-preserving ML and ethics</li> +<li>ML for time-to-event modeling, survival models</li> +<li>ML for differential diagnosis and stratification• Clinical applications in pathology/radiology/omics</li> +</ul> + + + + + diff --git a/tag/ws21/page/1/index.html b/tag/ws21/page/1/index.html new file mode 100644 index 0000000..02322b0 --- /dev/null +++ b/tag/ws21/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/ws21/ + + + + + + diff --git a/tag/ws23/index.html b/tag/ws23/index.html new file mode 100644 index 0000000..189a9d7 --- /dev/null +++ b/tag/ws23/index.html @@ -0,0 +1,1188 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ws23 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

ws23

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Learning of and on manifolds in medical imaging (IN2107) +
+ + + +
+ Winter semester 2023. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Unsupervised Anomaly Detection in Medical Imaging +
+ + + +
+ Winter semester 2023. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/ws23/index.xml b/tag/ws23/index.xml new file mode 100644 index 0000000..08aa9f4 --- /dev/null +++ b/tag/ws23/index.xml @@ -0,0 +1,121 @@ + + + + ws23 | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/ws23/ + + ws23 + Wowchemy (https://wowchemy.com)en-usWed, 19 Jul 2023 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + ws23 + https://compai-lab.io/tag/ws23/ + + + + Learning of and on manifolds in medical imaging (IN2107) + https://compai-lab.io/teaching/manifold_seminar/ + Wed, 19 Jul 2023 00:00:00 +0000 + https://compai-lab.io/teaching/manifold_seminar/ + <p><a href="https://campus.tum.de/tumonline/wblv.wbShowLvDetail?pStpSpNr=950706204" target="_blank" rel="noopener">Course details</a></p> +<p>Considering the manifold of medical imaging data, i.e. the underlying topological space, facilitates the analysis, interpretation, and visualization of the data. This seminar focuses on machine and deep learning methods that either learn the manifold from high-dimensional data or use manifold-valued data as input. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed. This includes, but is not +limited to:</p> +<ul> +<li>Introduction to manifolds</li> +<li>Difference between learning on and of a manifold</li> +<li>Examples of manifold-valued data in medical imaging</li> +<li>State-of-the-art methods for manifold-valued data</li> +<li>Clinical applications</li> +</ul> +<p>Please register to: <a href="https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx" target="_blank" rel="noopener">https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/Manifold_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/Manifold_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Unsupervised Anomaly Detection in Medical Imaging + https://compai-lab.io/teaching/anomaly_seminar/ + Wed, 19 Jul 2023 00:00:00 +0000 + https://compai-lab.io/teaching/anomaly_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/autoddpm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Anomaly detection aims to identify patterns that do not conform to the expected normal distribution. Despite its importance for clinical applications, the detection of outliers is still a very challenging task due to the rarity, unknownness, diversity, and heterogeneity of anomalies. Basic problem formulations to recent advances in the field will be discussed.</p> +<p>This includes, but is not limited to:</p> +<ul> +<li>Reconstruction-based anomaly segmentation</li> +<li>Probabilistic models, i.e., anomaly likelihood estimation</li> +<li>Generative models</li> +<li>Self-supervised-, contrastive methods</li> +<li>Unsupervised methods</li> +<li>Clinical Applications</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/UAD_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/UAD_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + diff --git a/tag/ws23/page/1/index.html b/tag/ws23/page/1/index.html new file mode 100644 index 0000000..92dabc2 --- /dev/null +++ b/tag/ws23/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/ws23/ + + + + + + diff --git a/tag/ws24/index.html b/tag/ws24/index.html new file mode 100644 index 0000000..64c3990 --- /dev/null +++ b/tag/ws24/index.html @@ -0,0 +1,1200 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ws24 | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

ws24

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ AI for Vision-Language Models in Medical Imaging (IN2107) +
+ + + +
+ Winter semester 2024. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Master Seminar - Medical Image Registration (IN2107, IN4462) +
+ + + +
+ Winter semester 2024. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tag/ws24/index.xml b/tag/ws24/index.xml new file mode 100644 index 0000000..b159d21 --- /dev/null +++ b/tag/ws24/index.xml @@ -0,0 +1,114 @@ + + + + ws24 | Computational Imaging and AI in Medicine + https://compai-lab.io/tag/ws24/ + + ws24 + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + ws24 + https://compai-lab.io/tag/ws24/ + + + + AI for Vision-Language Models in Medical Imaging (IN2107) + https://compai-lab.io/teaching/vlm_seminar/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/teaching/vlm_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/vlm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p><strong>Time</strong>: Wednesday 14-16.</p> +<p><strong>Location</strong>: - Garching (in-person): FMI, 5610.01.11 <a href="https://nav.tum.de/room/5610.01.011" target="_blank" rel="noopener">https://nav.tum.de/room/5610.01.011</a></p> +<ul> +<li>some invited talks on Zoom: <a href="https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09" target="_blank" rel="noopener">https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09</a></li> +</ul> +<p>Vision-language models (VLMs) in medical imaging leverage the integration of visual data and textual information to enhance representation learning. These models can be pre-trained to improve representations, enabling a wide range of downstream applications. This seminar will explore foundational concepts, current methodologies, and recent advancements in applying vision-language models to diverse tasks in medical imaging, such as:</p> +<ul> +<li>Synthetic image synthesis</li> +<li>Anomaly detection</li> +<li>Clinical report generation</li> +<li>Visual-question answering</li> +<li>Classification</li> +<li>Segmentation</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an e-mail to <a href="mailto:cosmin.bercea@tum.de">cosmin.bercea@tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/VLM_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/VLM_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Master Seminar - Medical Image Registration (IN2107, IN4462) + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/old_stuff/teaching/registration_seminar_ws24/ + <p><strong>Time</strong>: Wednesday 10-12 a.m.</p> +<p><strong>Location</strong>: Garching (in-person)</p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning</li> +<li>Interest in medical image analysis</li> +</ul> +<p>Goal and organization:</p> +<p>The participating students will learn the fundamental concepts of image registration. They will acquire the skills to analyze critically state-of-the-art research work and to define own research questions. Basic concepts will be introduced with an overview of different research topics. +The participants will select a research paper (suggestions given by the lecturers) and independently work on it with a final oral presentation and a written report. +Presentations of members of international research groups will provide the students with insights into state-of-the-art research in the field.</p> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an email to <a href="mailto:anna.reithmeir@tum.de">anna.reithmeir@tum.de</a>.</p> +<p>The seminar will take place Wednesdays from 10 a.m. to 12.a.m. in Garching.</p> + + + + + diff --git a/tag/ws24/page/1/index.html b/tag/ws24/page/1/index.html new file mode 100644 index 0000000..885d516 --- /dev/null +++ b/tag/ws24/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tag/ws24/ + + + + + + diff --git a/tags/index.html b/tags/index.html new file mode 100644 index 0000000..dc484ce --- /dev/null +++ b/tags/index.html @@ -0,0 +1,1763 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Tags | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Tags

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ master +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ ws24 +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ ss24 +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ deep learning +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ magnetic resonance imaging +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ motion compensation +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ motion correction +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ ws23 +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ unsupervised outlier detection +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ ss22 +
+ + + + + + + +
+
+ + +
+
+ + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tags/index.xml b/tags/index.xml new file mode 100644 index 0000000..3ea9021 --- /dev/null +++ b/tags/index.xml @@ -0,0 +1,16 @@ + + + + Tags | Computational Imaging and AI in Medicine + https://compai-lab.io/tags/ + + Tags + Wowchemy (https://wowchemy.com)en-usTue, 13 Aug 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Tags + https://compai-lab.io/tags/ + + + + diff --git a/tags/page/1/index.html b/tags/page/1/index.html new file mode 100644 index 0000000..213eed6 --- /dev/null +++ b/tags/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/tags/ + + + + + + diff --git a/tags/page/2/index.html b/tags/page/2/index.html new file mode 100644 index 0000000..9cb30b9 --- /dev/null +++ b/tags/page/2/index.html @@ -0,0 +1,1765 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Tags | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Tags

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ ws21 +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Artifact +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Cardiac MR motion artefacts +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Convolutional neural networks +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Image quality assessment +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ LSTM +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Demons +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Discrete optimization +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Multi-modality +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Registration uncertainty +
+ + + + + + + +
+
+ + +
+
+ + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tags/page/3/index.html b/tags/page/3/index.html new file mode 100644 index 0000000..a957115 --- /dev/null +++ b/tags/page/3/index.html @@ -0,0 +1,1171 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Tags | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Tags

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Sliding motion +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + +
+
+ +
+ Supervoxels +
+ + + + + + + +
+
+ + +
+
+ + + + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/aim_lecture/index.html b/teaching/aim_lecture/index.html new file mode 100644 index 0000000..ae4ad9c --- /dev/null +++ b/teaching/aim_lecture/index.html @@ -0,0 +1,1273 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Artificial Intelligence in Medicine (IN2403) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Artificial Intelligence in Medicine (IN2403)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +

At the end of the module students should be able to recall the important topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own deep learning projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.

+
    +
  • Introduction: Clinical motivation, clinical data, clinical workflows
  • +
  • ML for medical imaging• Data curation for medical applications
  • +
  • Domain shift in medical applications: Adversarial learning and Transfer learning
  • +
  • Self-supervised learning and unsupervised learning
  • +
  • Learning from sparse and noisy data
  • +
  • ML for unstructured and multi-modal clinical data
  • +
  • NLP for clinical data• Bayesian approaches to deep learning and uncertainty
  • +
  • Interpretability and explainability
  • +
  • Federated learning, privacy-preserving ML and ethics
  • +
  • ML for time-to-event modeling, survival models
  • +
  • ML for differential diagnosis and stratification• Clinical applications in pathology/radiology/omics
  • +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/aim_lecture_2/index.html b/teaching/aim_lecture_2/index.html new file mode 100644 index 0000000..6b54110 --- /dev/null +++ b/teaching/aim_lecture_2/index.html @@ -0,0 +1,1275 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Artificial Intelligence in Medicine II (IN2408) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Artificial Intelligence in Medicine II (IN2408)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+ +

Introduction and examples of advanced prediction and classification problems in medicine; ML for prognostic and diagnostic tasks; risk scores, time-to-event modeling, survival models, differential diagnosis & population stratification, geometric deep learning: point clouds & meshes, mesh-based segmentation, shape analysis, trustworthy AI in medicine: bias and fairness, generalizability, AI for affordable healthcare, clinical deployment and evaluation, data harmonization, causal inference, transformers, reinforcement learning in medicine, ML for neuro: structural neuroimaging, functional neuroimaging, diffusion imaging, ML for CVD: EEG analysis

+
    +
  • Learning Outcome
  • +
+

At the end of the module students should be able to recall advanced topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own AI projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.

+
    +
  • Preconditions
  • +
+

IN2403 Artificial Intelligence in Medicine

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/anomaly_seminar/index.html b/teaching/anomaly_seminar/index.html new file mode 100644 index 0000000..d482c1c --- /dev/null +++ b/teaching/anomaly_seminar/index.html @@ -0,0 +1,1339 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Unsupervised Anomaly Detection in Medical Imaging | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Unsupervised Anomaly Detection in Medical Imaging

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

+ + + + + + + + + + + + + + + +

+
+
Teaser
+
+

+

Anomaly detection aims to identify patterns that do not conform to the expected normal distribution. Despite its importance for clinical applications, the detection of outliers is still a very challenging task due to the rarity, unknownness, diversity, and heterogeneity of anomalies. Basic problem formulations to recent advances in the field will be discussed.

+

This includes, but is not limited to:

+
    +
  • Reconstruction-based anomaly segmentation
  • +
  • Probabilistic models, i.e., anomaly likelihood estimation
  • +
  • Generative models
  • +
  • Self-supervised-, contrastive methods
  • +
  • Unsupervised methods
  • +
  • Clinical Applications
  • +
+

Please register via the TUM matching system: https://matching.in.tum.de

+

Check the intro slides here: + + + + + + + + + + + + + + + +

+
+
Slides
+
+

+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/domain_adaptation_seminar/index.html b/teaching/domain_adaptation_seminar/index.html new file mode 100644 index 0000000..7205024 --- /dev/null +++ b/teaching/domain_adaptation_seminar/index.html @@ -0,0 +1,1296 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Course details

+

Transfer learning enables the effective utilization of knowledge gained from one task or domain to enhance performance in another, while domain adaptation focuses on adapting models trained on a particular domain to perform well in related but different domains. +This seminar looks at the concepts of transfer learning and domain adaptation in general and with the application in medical imaging. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed.

+

Key topics to be covered include:

+
    +
  • Introduction to transfer learning and domain adaptation
  • +
  • Implications in the context of medical imaging
  • +
  • Examples of transfer learning and domain adaptation in medical imaging
  • +
  • State-of-the-art methods
  • +
  • Clinical applications
  • +
+

Requirements:

+
    +
  • Background in image processing and machine learning/deep learning
  • +
  • Interest in medical image analysis
  • +
  • Interest in research
  • +
+

Please register via the TUM matching system: https://matching.in.tum.de

+

Check the intro slides here: + + + + + + + + + + + + + + + +

+
+
Slides
+
+

+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/domain_adaptation_seminar/slides_domain_adaptation_seminar.pdf b/teaching/domain_adaptation_seminar/slides_domain_adaptation_seminar.pdf new file mode 100644 index 0000000..e5958be Binary files /dev/null and b/teaching/domain_adaptation_seminar/slides_domain_adaptation_seminar.pdf differ diff --git a/teaching/index.html b/teaching/index.html new file mode 100644 index 0000000..78c7471 --- /dev/null +++ b/teaching/index.html @@ -0,0 +1,1609 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Open Positions | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Open Positions

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ AI for Vision-Language Models in Medical Imaging (IN2107) +
+ + + +
+ Winter semester 2024. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107) +
+ + + +
+ Summer semester 2024. TUM Informatics. Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Learning of and on manifolds in medical imaging (IN2107) +
+ + + +
+ Winter semester 2023. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Unsupervised Anomaly Detection in Medical Imaging +
+ + + +
+ Winter semester 2023. TUM Informatics. Master Seminar. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Medical Image Registation I (IN2107) +
+ + + +
+ Summer semester 2022. TUM Informatics. Master Seminar. Details +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Artificial Intelligence in Medicine (IN2403) +
+ + + +
+ Winter 2021. TUM Informatics. Lecture. Details. +
+ + + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+ +
+ Artificial Intelligence in Medicine II (IN2408) +
+ + + +
+ Summer 2022. TUM Informatics. Lecture. Details. +
+ + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/index.xml b/teaching/index.xml new file mode 100644 index 0000000..4031079 --- /dev/null +++ b/teaching/index.xml @@ -0,0 +1,310 @@ + + + + Open Positions | Computational Imaging and AI in Medicine + https://compai-lab.io/teaching/ + + Open Positions + Wowchemy (https://wowchemy.com)en-usThu, 25 Jul 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Open Positions + https://compai-lab.io/teaching/ + + + + AI for Vision-Language Models in Medical Imaging (IN2107) + https://compai-lab.io/teaching/vlm_seminar/ + Thu, 25 Jul 2024 00:00:00 +0000 + https://compai-lab.io/teaching/vlm_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/vlm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p><strong>Time</strong>: Wednesday 14-16.</p> +<p><strong>Location</strong>: - Garching (in-person): FMI, 5610.01.11 <a href="https://nav.tum.de/room/5610.01.011" target="_blank" rel="noopener">https://nav.tum.de/room/5610.01.011</a></p> +<ul> +<li>some invited talks on Zoom: <a href="https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09" target="_blank" rel="noopener">https://tum-conf.zoom-x.de/my/cibercea?pwd=WlMvanU1NUcveUtjVTJrWHAzWFp1dz09</a></li> +</ul> +<p>Vision-language models (VLMs) in medical imaging leverage the integration of visual data and textual information to enhance representation learning. These models can be pre-trained to improve representations, enabling a wide range of downstream applications. This seminar will explore foundational concepts, current methodologies, and recent advancements in applying vision-language models to diverse tasks in medical imaging, such as:</p> +<ul> +<li>Synthetic image synthesis</li> +<li>Anomaly detection</li> +<li>Clinical report generation</li> +<li>Visual-question answering</li> +<li>Classification</li> +<li>Segmentation</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a> or write an e-mail to <a href="mailto:cosmin.bercea@tum.de">cosmin.bercea@tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/VLM_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/VLM_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Transfer Learning and Domain Adaptation in Medical Imaging (IN0014, IN2107) + https://compai-lab.io/teaching/domain_adaptation_seminar/ + Fri, 15 Mar 2024 00:00:00 +0000 + https://compai-lab.io/teaching/domain_adaptation_seminar/ + <p><a href="https://campus.tum.de/tumonline/ee/ui/ca2/app/desktop/#/slc.tm.cp/student/courses/950769202?$scrollTo=toc_overview" target="_blank" rel="noopener">Course details</a></p> +<p>Transfer learning enables the effective utilization of knowledge gained from one task or domain to enhance performance in another, while domain adaptation focuses on adapting models trained on a particular domain to perform well in related but different domains. +This seminar looks at the concepts of transfer learning and domain adaptation in general and with the application in medical imaging. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed.</p> +<p>Key topics to be covered include:</p> +<ul> +<li>Introduction to transfer learning and domain adaptation</li> +<li>Implications in the context of medical imaging</li> +<li>Examples of transfer learning and domain adaptation in medical imaging</li> +<li>State-of-the-art methods</li> +<li>Clinical applications</li> +</ul> +<p>Requirements:</p> +<ul> +<li>Background in image processing and machine learning/deep learning</li> +<li>Interest in medical image analysis</li> +<li>Interest in research</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/slides_domain_adaptation_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/slides_domain_adaptation_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Learning of and on manifolds in medical imaging (IN2107) + https://compai-lab.io/teaching/manifold_seminar/ + Wed, 19 Jul 2023 00:00:00 +0000 + https://compai-lab.io/teaching/manifold_seminar/ + <p><a href="https://campus.tum.de/tumonline/wblv.wbShowLvDetail?pStpSpNr=950706204" target="_blank" rel="noopener">Course details</a></p> +<p>Considering the manifold of medical imaging data, i.e. the underlying topological space, facilitates the analysis, interpretation, and visualization of the data. This seminar focuses on machine and deep learning methods that either learn the manifold from high-dimensional data or use manifold-valued data as input. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed. This includes, but is not +limited to:</p> +<ul> +<li>Introduction to manifolds</li> +<li>Difference between learning on and of a manifold</li> +<li>Examples of manifold-valued data in medical imaging</li> +<li>State-of-the-art methods for manifold-valued data</li> +<li>Clinical applications</li> +</ul> +<p>Please register to: <a href="https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx" target="_blank" rel="noopener">https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/Manifold_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/Manifold_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Unsupervised Anomaly Detection in Medical Imaging + https://compai-lab.io/teaching/anomaly_seminar/ + Wed, 19 Jul 2023 00:00:00 +0000 + https://compai-lab.io/teaching/anomaly_seminar/ + <p> + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/images/autoddpm_teaser.gif" alt="Teaser" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<p>Anomaly detection aims to identify patterns that do not conform to the expected normal distribution. Despite its importance for clinical applications, the detection of outliers is still a very challenging task due to the rarity, unknownness, diversity, and heterogeneity of anomalies. Basic problem formulations to recent advances in the field will be discussed.</p> +<p>This includes, but is not limited to:</p> +<ul> +<li>Reconstruction-based anomaly segmentation</li> +<li>Probabilistic models, i.e., anomaly likelihood estimation</li> +<li>Generative models</li> +<li>Self-supervised-, contrastive methods</li> +<li>Unsupervised methods</li> +<li>Clinical Applications</li> +</ul> +<p>Please register via the TUM matching system: <a href="https://matching.in.tum.de" target="_blank" rel="noopener">https://matching.in.tum.de</a></p> +<p>Check the intro slides here: + + + + + + + + + + + + + + + +<figure > + <div class="d-flex justify-content-center"> + <div class="w-100" ><img src="https://compai-lab.io/files/UAD_seminar.pdf" alt="Slides" loading="lazy" data-zoomable /></div> + </div></figure> +</p> +<object data="/files/UAD_seminar.pdf" type="application/pdf" width="100%" height="400"> +</object> + + + + + Medical Image Registation I (IN2107) + https://compai-lab.io/teaching/master_seminar/ + Sat, 01 Jan 2022 00:00:00 +0000 + https://compai-lab.io/teaching/master_seminar/ + <p><a href="https://campus.tum.de/tumonline/pl/ui/$ctx/wbLv.wbShowLVDetail?pStpSpNr=950627128" target="_blank" rel="noopener">Course details</a></p> +<p>Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:</p> +<ul> +<li>Learning and non-learning based image registration</li> +<li>Optimization techniques</li> +<li>Image registration for multi-modal data</li> +<li>Multi-resolution and regularization strategies</li> +<li>Linear and non-linear deformations</li> +<li>Supervised and unsupervised learning</li> +<li>Clinical applications</li> +</ul> + + + + + Artificial Intelligence in Medicine (IN2403) + https://compai-lab.io/teaching/aim_lecture/ + Fri, 01 Oct 2021 00:00:00 +0000 + https://compai-lab.io/teaching/aim_lecture/ + <ul> +<li><a href="https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950596772" target="_blank" rel="noopener">Course Details</a></li> +<li><a href="https://www.ph.tum.de/academics/org/cc/mh/IN2403/" target="_blank" rel="noopener">Basic Information</a></li> +</ul> +<p>At the end of the module students should be able to recall the important topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own deep learning projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.</p> +<ul> +<li>Introduction: Clinical motivation, clinical data, clinical workflows</li> +<li>ML for medical imaging• Data curation for medical applications</li> +<li>Domain shift in medical applications: Adversarial learning and Transfer learning</li> +<li>Self-supervised learning and unsupervised learning</li> +<li>Learning from sparse and noisy data</li> +<li>ML for unstructured and multi-modal clinical data</li> +<li>NLP for clinical data• Bayesian approaches to deep learning and uncertainty</li> +<li>Interpretability and explainability</li> +<li>Federated learning, privacy-preserving ML and ethics</li> +<li>ML for time-to-event modeling, survival models</li> +<li>ML for differential diagnosis and stratification• Clinical applications in pathology/radiology/omics</li> +</ul> + + + + + Artificial Intelligence in Medicine II (IN2408) + https://compai-lab.io/teaching/aim_lecture_2/ + Fri, 01 Oct 2021 00:00:00 +0000 + https://compai-lab.io/teaching/aim_lecture_2/ + <ul> +<li> +<p><a href="https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950636169&amp;pSpracheNr=2" target="_blank" rel="noopener">Course Details</a></p> +</li> +<li> +<p><a href="https://www.ph.tum.de/academics/org/cc/course/950636169/" target="_blank" rel="noopener">Basic Information</a></p> +</li> +<li> +<p>Content</p> +</li> +</ul> +<p>Introduction and examples of advanced prediction and classification problems in medicine; ML for prognostic and diagnostic tasks; risk scores, time-to-event modeling, survival models, differential diagnosis &amp; population stratification, geometric deep learning: point clouds &amp; meshes, mesh-based segmentation, shape analysis, trustworthy AI in medicine: bias and fairness, generalizability, AI for affordable healthcare, clinical deployment and evaluation, data harmonization, causal inference, transformers, reinforcement learning in medicine, ML for neuro: structural neuroimaging, functional neuroimaging, diffusion imaging, ML for CVD: EEG analysis</p> +<ul> +<li>Learning Outcome</li> +</ul> +<p>At the end of the module students should be able to recall advanced topics in the area of artificial intelligence in medicine, understand the relations between the topics, apply their knowledge to own AI projects, analyse and evaluate social and ethical implications and develop own strategies to apply the learned concepts to their own work.</p> +<ul> +<li>Preconditions</li> +</ul> +<p>IN2403 Artificial Intelligence in Medicine</p> + + + + + diff --git a/teaching/manifold_seminar/index.html b/teaching/manifold_seminar/index.html new file mode 100644 index 0000000..d4e41bf --- /dev/null +++ b/teaching/manifold_seminar/index.html @@ -0,0 +1,1289 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Learning of and on manifolds in medical imaging (IN2107) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Learning of and on manifolds in medical imaging (IN2107)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Course details

+

Considering the manifold of medical imaging data, i.e. the underlying topological space, facilitates the analysis, interpretation, and visualization of the data. This seminar focuses on machine and deep learning methods that either learn the manifold from high-dimensional data or use manifold-valued data as input. Selected material of methods and applications from the field of medical imaging will be covered. Basic problem formulations to recent advances will be discussed. This includes, but is not +limited to:

+
    +
  • Introduction to manifolds
  • +
  • Difference between learning on and of a manifold
  • +
  • Examples of manifold-valued data in medical imaging
  • +
  • State-of-the-art methods for manifold-valued data
  • +
  • Clinical applications
  • +
+

Please register to: https://matching.in.tum.de/m/jz0zflh/q/6wi1lmq4yx

+

Check the intro slides here: + + + + + + + + + + + + + + + +

+
+
Slides
+
+

+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/master_seminar/index.html b/teaching/master_seminar/index.html new file mode 100644 index 0000000..f705e77 --- /dev/null +++ b/teaching/master_seminar/index.html @@ -0,0 +1,1266 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Medical Image Registation I (IN2107) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Medical Image Registation I (IN2107)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Course details

+

Image registration is the process of aligning two or more images, and crucial for many image analysis pipelines. This seminar will cover selected material of image registration for medical imaging. Basic problem formulations to recent advances in the field will be discussed. This includes, but is not limited to:

+
    +
  • Learning and non-learning based image registration
  • +
  • Optimization techniques
  • +
  • Image registration for multi-modal data
  • +
  • Multi-resolution and regularization strategies
  • +
  • Linear and non-linear deformations
  • +
  • Supervised and unsupervised learning
  • +
  • Clinical applications
  • +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Julia A. Schnabel + + +
+
Julia A. Schnabel
+
Professor for Computational Imaging and AI in Medicine, Director of the Institute of Machine Learning in Biomedical Imaging
+

My research interests include machine/deep learning, nonlinear motion modeling, as well as multimodal and quantitative imaging, for cancer-, cardiac-, neuro- and perinatal imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/teaching/page/1/index.html b/teaching/page/1/index.html new file mode 100644 index 0000000..ebcba86 --- /dev/null +++ b/teaching/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/teaching/ + + + + + + diff --git a/teaching/vlm_seminar/index.html b/teaching/vlm_seminar/index.html new file mode 100644 index 0000000..eba7c44 --- /dev/null +++ b/teaching/vlm_seminar/index.html @@ -0,0 +1,1419 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + AI for Vision-Language Models in Medical Imaging (IN2107) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

AI for Vision-Language Models in Medical Imaging (IN2107)

+ + + + + + + + + + + + + + + + +
+ + + +
+ +
+

+ + + + + + + + + + + + + + + +

+
+
Teaser
+
+

+

Time: Wednesday 14-16.

+

Location: - Garching (in-person): FMI, 5610.01.11 https://nav.tum.de/room/5610.01.011

+ +

Vision-language models (VLMs) in medical imaging leverage the integration of visual data and textual information to enhance representation learning. These models can be pre-trained to improve representations, enabling a wide range of downstream applications. This seminar will explore foundational concepts, current methodologies, and recent advancements in applying vision-language models to diverse tasks in medical imaging, such as:

+
    +
  • Synthetic image synthesis
  • +
  • Anomaly detection
  • +
  • Clinical report generation
  • +
  • Visual-question answering
  • +
  • Classification
  • +
  • Segmentation
  • +
+

Please register via the TUM matching system: https://matching.in.tum.de or write an e-mail to cosmin.bercea@tum.de

+

Check the intro slides here: + + + + + + + + + + + + + + + +

+
+
Slides
+
+

+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Cosmin I. Bercea + + +
+
Cosmin I. Bercea
+
Research Scientist
+

I am a postdoctoral researcher specializing in vision and multimodal learning for medical image analysis, with the current focus on developing vision-language models for generative downstream tasks.

+ + +
+
+ + + + + + + + + + + + +
+ + + Jun Li + + +
+
Jun Li
+
Doctoral Researcher
+

My research interests include Vision and Language, Multi-Modal Learning, and Cross-Modality Generation.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/tour/index.html b/tour/index.html new file mode 100644 index 0000000..5a98921 --- /dev/null +++ b/tour/index.html @@ -0,0 +1,1225 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Tour | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/uploads/.gitkeep b/uploads/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/vacancies/index.html b/vacancies/index.html new file mode 100644 index 0000000..5d12700 --- /dev/null +++ b/vacancies/index.html @@ -0,0 +1,1204 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Open Positions | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+

Open Positions

+ + + + +
+ + + +
+ + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Latent Functional Maps for Medical Imaging +
+ + + +
+ Master Thesis. +
+
+ + + + + + +
+
+ + +
+
+ + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+ Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) +
+ + + +
+ Master Thesis. I’m interested +
+ + + + + + + +
+
+ + +
+
+ + + + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/vacancies/index.xml b/vacancies/index.xml new file mode 100644 index 0000000..a95ec49 --- /dev/null +++ b/vacancies/index.xml @@ -0,0 +1,40 @@ + + + + Open Positions | Computational Imaging and AI in Medicine + https://compai-lab.io/vacancies/ + + Open Positions + Wowchemy (https://wowchemy.com)en-usTue, 13 Aug 2024 00:00:00 +0000 + + https://compai-lab.io/media/icon_hu790efcb2e4090d1e7a0ffec0a0776e8f_331139_512x512_fill_lanczos_center_3.png + Open Positions + https://compai-lab.io/vacancies/ + + + + Latent Functional Maps for Medical Imaging + https://compai-lab.io/vacancies/msc_functionalmaps/ + Tue, 13 Aug 2024 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_functionalmaps/ + <p>Abstract:</p> +<p>Neural Networks (NNs) learn to represent high-dimensional data as elements of lower-dimensional latent spaces. Modeling the relationships between these representational spaces is an ongoing challenge. Successfully addressing this challenge could enable the reuse of representations in downstream tasks, reducing the need to retrain similar models multiple times. Recently, Fumero et al. leveraged the internal geometry of representations and proposed applying latent functional maps to align representations across distinct models, demonstrating its relevance for comparing representations. However, these kinds of approaches have not yet been explored in the context of medical imaging datasets, where aligning multimodal representa- +tions could significantly enhance the effectiveness of models in medical applications. This project aims to use latent functional maps to align multimodal medical representations (e.g., text and vision). The first part of the thesis will involve a literature review on representation similarity. This will be followed by experimenting with the latent functional maps approach on a toy dataset of medical images and later applying it to real medical imaging tasks.</p> + + + + + Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) + https://compai-lab.io/vacancies/msc_surface/ + Mon, 21 Nov 2022 00:00:00 +0000 + https://compai-lab.io/vacancies/msc_surface/ + <p>Abstract:</p> +<p>In recent years, unsupervised and semi-supervised learning from populations of surfaces and curves has received a lot of attention. Such data representations are analyzed according to their shapes which open a broad range of applications in machine learning, robotics, statistics and engineering. In particular, studying the shape of surfaces have become an important tool in biology and medical imaging. The extraction of appropriate data representations, such as triangulated surfaces, is crucial for the subsequent analysis. These surfaces are for example obtained from binary segmentations or 3D point clouds. Using standard methods, such surfaces are often not very accurate and require several post-processing steps, such as smoothing and simplifications. +Deep learning based methods are of great interest in various fields such as medical imaging, com- puter vision, applied mathematics and are successfully used in the field of image segmentation. Gener- ally, a specific formulation requires a particular attention to representations, loss functions, probability models, optimization techniques, etc. This choice is very crucial due to the underlying geometry on the space of representations and constraints. we aim to develop a new set of automatic methods that can compute a triangulation and a normal field from a 3D dataset (binary image and/or 3D point cloud). +The goal of this project is to understand the-state-of-the-art methods (e.g., [?]) and to propose solutions in the context of constructing a mesh from 3D images/point sets. We are interested in learn- ing from a dataset of smooth surfaces and their corresponding 3D datasets to make the triangulation or resampling accurate. The application will be the extraction of a smooth surfaces from μ-CT and CT data of the cochlea and inner ear, whose shapes can then be analyzed subsequently for population studies. +To summarize, the key steps are : (i) Literature review and getting familiar with some state-of- the-art methods in the medical context; (ii) Implementing and testing the code before validation on real data; (iii) Optimizing the code and comparing with baseline methods. If successful, the method would be applied to analyze and classify surfaces.</p> + + + + + diff --git a/vacancies/msc_functionalmaps/index.html b/vacancies/msc_functionalmaps/index.html new file mode 100644 index 0000000..0965b68 --- /dev/null +++ b/vacancies/msc_functionalmaps/index.html @@ -0,0 +1,1307 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Latent Functional Maps for Medical Imaging | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Latent Functional Maps for Medical Imaging

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Abstract:

+

Neural Networks (NNs) learn to represent high-dimensional data as elements of lower-dimensional latent spaces. Modeling the relationships between these representational spaces is an ongoing challenge. Successfully addressing this challenge could enable the reuse of representations in downstream tasks, reducing the need to retrain similar models multiple times. Recently, Fumero et al. leveraged the internal geometry of representations and proposed applying latent functional maps to align representations across distinct models, demonstrating its relevance for comparing representations. However, these kinds of approaches have not yet been explored in the context of medical imaging datasets, where aligning multimodal representa- +tions could significantly enhance the effectiveness of models in medical applications. This project aims to use latent functional maps to align multimodal medical representations (e.g., text and vision). The first part of the thesis will involve a literature review on representation similarity. This will be followed by experimenting with the latent functional maps approach on a toy dataset of medical images and later applying it to real medical imaging tasks.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Maxime Di Folco + + +
+
Maxime Di Folco
+
Research Scientist
+

My research interest is the study of the cardiac function via machine learning methods, in particular representation learning methods that aim to acquire low dimensional representation of high dimensional data. I have a strong interest in cardiac remodelling (adaptation of the heart to its environment or a disease), notably the study of the deformation and shape aspects.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/vacancies/msc_surface/index.html b/vacancies/msc_surface/index.html new file mode 100644 index 0000000..c61b765 --- /dev/null +++ b/vacancies/msc_surface/index.html @@ -0,0 +1,1307 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x) | Computational Imaging and AI in Medicine + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + +
+ + + + + + + + + + + + + + + + + + + +
+

Deep Learning for Smooth Surface and Normal Fields Reconstruction (f/m/x)

+ + + + + + + + + + + + + + + + + + +
+ + + +
+ +
+

Abstract:

+

In recent years, unsupervised and semi-supervised learning from populations of surfaces and curves has received a lot of attention. Such data representations are analyzed according to their shapes which open a broad range of applications in machine learning, robotics, statistics and engineering. In particular, studying the shape of surfaces have become an important tool in biology and medical imaging. The extraction of appropriate data representations, such as triangulated surfaces, is crucial for the subsequent analysis. These surfaces are for example obtained from binary segmentations or 3D point clouds. Using standard methods, such surfaces are often not very accurate and require several post-processing steps, such as smoothing and simplifications. +Deep learning based methods are of great interest in various fields such as medical imaging, com- puter vision, applied mathematics and are successfully used in the field of image segmentation. Gener- ally, a specific formulation requires a particular attention to representations, loss functions, probability models, optimization techniques, etc. This choice is very crucial due to the underlying geometry on the space of representations and constraints. we aim to develop a new set of automatic methods that can compute a triangulation and a normal field from a 3D dataset (binary image and/or 3D point cloud). +The goal of this project is to understand the-state-of-the-art methods (e.g., [?]) and to propose solutions in the context of constructing a mesh from 3D images/point sets. We are interested in learn- ing from a dataset of smooth surfaces and their corresponding 3D datasets to make the triangulation or resampling accurate. The application will be the extraction of a smooth surfaces from μ-CT and CT data of the cochlea and inner ear, whose shapes can then be analyzed subsequently for population studies. +To summarize, the key steps are : (i) Literature review and getting familiar with some state-of- the-art methods in the medical context; (ii) Implementing and testing the code before validation on real data; (iii) Optimizing the code and comparing with baseline methods. If successful, the method would be applied to analyze and classify surfaces.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + Veronika Zimmer + + +
+
Veronika Zimmer
+
Principal Investigator
+

My research focuses on image analysis and machine learning with a particular interest in robust and generalizable methods for multimodal registration and segmentation in medical imaging.

+ + +
+
+ + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/vacancies/page/1/index.html b/vacancies/page/1/index.html new file mode 100644 index 0000000..e081bd7 --- /dev/null +++ b/vacancies/page/1/index.html @@ -0,0 +1,10 @@ + + + + https://compai-lab.io/vacancies/ + + + + + + diff --git a/webfonts/fa-brands-400.ttf b/webfonts/fa-brands-400.ttf new file mode 100644 index 0000000..227f022 Binary files /dev/null and b/webfonts/fa-brands-400.ttf differ diff --git a/webfonts/fa-brands-400.woff2 b/webfonts/fa-brands-400.woff2 new file mode 100644 index 0000000..73c5c12 Binary files /dev/null and b/webfonts/fa-brands-400.woff2 differ diff --git a/webfonts/fa-regular-400.ttf b/webfonts/fa-regular-400.ttf new file mode 100644 index 0000000..c8ed46d Binary files /dev/null and b/webfonts/fa-regular-400.ttf differ diff --git a/webfonts/fa-regular-400.woff2 b/webfonts/fa-regular-400.woff2 new file mode 100644 index 0000000..c9291c7 Binary files /dev/null and b/webfonts/fa-regular-400.woff2 differ diff --git a/webfonts/fa-solid-900.ttf b/webfonts/fa-solid-900.ttf new file mode 100644 index 0000000..99b35ad Binary files /dev/null and b/webfonts/fa-solid-900.ttf differ diff --git a/webfonts/fa-solid-900.woff2 b/webfonts/fa-solid-900.woff2 new file mode 100644 index 0000000..c7bd59c Binary files /dev/null and b/webfonts/fa-solid-900.woff2 differ diff --git a/webfonts/fa-v4compatibility.ttf b/webfonts/fa-v4compatibility.ttf new file mode 100644 index 0000000..be0afc2 Binary files /dev/null and b/webfonts/fa-v4compatibility.ttf differ diff --git a/webfonts/fa-v4compatibility.woff2 b/webfonts/fa-v4compatibility.woff2 new file mode 100644 index 0000000..37a9b8c Binary files /dev/null and b/webfonts/fa-v4compatibility.woff2 differ