-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmesti_build_channels.jl
481 lines (443 loc) · 23.2 KB
/
mesti_build_channels.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# Export composite data types
export Channels_one_sided
export Channels_two_sided
# Export a function mesti_build_channels()
export mesti_build_channels
abstract type Channels end
mutable struct Channels_two_sided <: Channels
# A composite data type to store the items on two sides, transverse functions, and wave vectors
# See also: mesti_build_channels
f_x_n::Function
f_y_n::Function
f_z_n::Function
df_z_n::Function
f_x_m::Function
f_y_m::Function
f_z_m::Function
df_z_m::Function
kxdx_all::Union{Vector{Float64},Nothing}
kydx_all::Vector{Float64}
low::Side
high::Side
Channels_two_sided()=new()
end
mutable struct Channels_one_sided <: Channels
# A composite data type to store the items on one side, transverse functions, and wave vectors
# See also: mesti_build_channels
f_x_n::Function
f_y_n::Function
f_z_n::Function
df_z_n::Function
f_x_m::Function
f_y_m::Function
f_z_m::Function
df_z_m::Function
kxdx_all::Union{Vector{Float64},Nothing}
kydx_all::Vector{Float64}
N_prop::Integer
kzdx_all::Vector{ComplexF64}
ind_prop::Vector{Int64}
kxdx_prop::Union{Vector{Float64},Nothing}
kydx_prop::Vector{Float64}
kzdx_prop::Vector{Float64}
sqrt_nu_prop::Vector{Float64}
ind_prop_conj::Vector{Int64}
Channels_one_sided()=new()
end
"""
MESTI_BUILD_CHANNELS Set up properties of channels in the homogeneous space.
MESTI_BUILD_CHANNELS(nx_Ex, nx_Ey, xBC, ny_Ex, ny_Ey, yBC, k0dx, epsilon_low, epsilon_high,
use_continuous_dispersion, n0, m0) returns a structure containing properties of the propagating
and evanescent channels in a homogeneous space in the transverse direction, boundary
condition xBC along x and yBC along y, background relative permittivity epsilon_low, epsilon_high,
and dimensionless frequency k0dx = (2*pi/vacuum_wavelength)*dx.
MESTI_BUILD_CHANNELS(syst) does the same but with the parameters extracted
from structure syst; see ''? mesti2s'' for the fields required for
structure "syst".
=== Input Arguments ===
nx_Ex (positive integer scalar; required in 3D):
Number of grid points in the x-direction for Ex.
nx_Ey (positive integer scalar; required in 3D):
Number of grid points in the x-direction for Ey.
xBC (string or scalar number; required in 3D):
Boundary condition in the x-direction.
When xBC is a character vector, available choices are (case-insensitive):
"periodic" - periodic BC on both sides
"PEC" - PEC on both sides
"PMC" - PMC on both sides
"PECPMC" - PEC on low side and PMC on high side
"PMCPEC" - PMC on low side and PEC on high side
When xBC is a scalar number, the Bloch periodic boundary condition is
used with p(m+ny) = p(m)*exp(1i*xBC); in other words, xBC = kx_B*nx_Ex*dx =
kx_B*nx_Ey*dx = kx_B*p where ky_B is the Bloch wave number and p = nx*dx is the
periodicity in x.
ny_Ex (positive integer scalar; required in 3D):
Number of grid points in the y-direction for Ex.
ny_Ey (positive integer scalar; required ):
Number of grid points in the y-direction for Ey.
yBC (string or scalar number; required):
Boundary condition in y-direction, analogous to xBC.
k0dx (numeric scalar, real or complex; required):
Dimensionless frequency, k0*dx = (2*pi/vacuum_wavelength)*dx.
epsilon_low (numeric scalar, real or complex; required):
Relative permittivity of the homogeneous space on the low.
epsilon_high (numeric scalar, real or complex, or nothing; optional):
Relative permittivity of the homogeneous space on the high. Only the
low side will be considered if epsilon_high is not given or is nothing.
use_continuous_dispersion (logical scalar; optional, defaults to false):
Whether to use the dispersion equation of the continuous wave equation
when building the input/output channels. Defaults to false, in which case
the finite-difference dispersion is used.
n0 (real numeric scalar, optional, defaults to 0):
Center of the 1D transverse mode profile along x-direction with periodic or Bloch periodic
boundary condition (nx = nx_Ex = nx_Ey), f_{n,a} = exp(i*kx(a)*dx*(n-n0))/sqrt(nx_Ex),
where kx(a) = kx_B + a*(2*pi/nx*dx).
m0 (real numeric scalar, optional, defaults to 0):
Center of the 1D transverse mode profile along x-direction with periodic or Bloch periodic
boundary condition, analogous to n0.
=== Output Arguments ===
channels (scalar structure):
channels.kxdx_all (1-by-nx_Ex+delta_(xBC,"Dirichlet") real row vector):
Dimensionless transverse wave number kx*dx for all nx channels,
including both propagating and evanescent ones. They are real-valued
and are ordered from small to large.
channels.kydx_all (1-by-ny_Ey+delta_(yBC,"Dirichlet") real row vector):
Dimensionless transverse wave number ky*dx for all ny channels,
including both propagating and evanescent ones. They are real-valued
and are ordered from small to large.
channels.f_x_n (function):
A 1D transverse function along x-direction for Ex
channels.f_y_n (function):
A 1D transverse function along x-direction for Ey
channels.f_z_n (function):
A 1D transverse function along x-direction for Ez
channels.df_z_n (function):
A derivative of 1D transverse function along x-direction for Ez
channels.f_x_m (function):
A 1D transverse function along y-direction for Ex
channels.f_y_m (function):
A 1D transverse function along y-direction for Ey
channels.f_z_m (function):
A 1D transverse function along y-direction for Ez
channels.df_z_m (function):
A derivative of 1D transverse function along y-direction for Ez
channels.low (scalar structure):
When epsilon_low and epsilon_high are both given (i.e., epsilon_high is given
and is not nothing), the properties specific to the low and high sides
are returned in channels.low and channels.high; channels.low and channels.high
are both scalar structures, and their fields are described below.
When only epsilon_low = epsilon_bg is given; there will be no
channels.low and channels.high; instead, the fields that would have been
assigned to channels.low will be assigned to channels directly. For
example, channels.low.N_prop will be channels.N_prop instead.
channels.low.N_prop (integer scalar):
Number of propagating channels.
channels.low.kzdx_all (1-by-nx_Ex+delta_(xBC,"Dirichlet")*ny_Ey+delta_(yBC,"Dirichlet") complex row vector):
Dimensionless longitudinal wave number kz*dx for all channels,
including both propagating and evanescent ones. Due to the
discretization, kzdx is equivalent to kzdx + 2*pi. Whenever kzdx is a
solution, -kzdx is also a solution. Here, we choose the sign of kzdx
such that:
When k0dx is real, we have
- Propagating channels: 0 < Re(kzdx) < pi, Im(kzdx) = 0.
- Evanescent channels: Im(kzdx) >= 0, mod(Re(kzdx),pi) = 0.
When k0dx is complex, we analytically continue the above choice onto
the complex-frequency plane. Specifically, we pick the kzdx that is
continuously connected to one with real k0dx through a vertical line
in the complex-(k0dx^2) plane.
channels.low.ind_prop (1-by-N_prop integer row vector):
Indices of the N_prop propagating channels among all channels.low.kzdx_all.
channels.low.kxdx_prop (1-by-N_prop real row vector):
Dimensionless longitudinal wave number kx*dx for the N_prop propagating
channels, equal to channels.kxdx_all(channels.low.ind_prop).
channels.low.kydx_prop (1-by-N_prop real row vector):
Dimensionless transverse wave number ky*dx for the N_prop propagating
channels, equal to channels.kydx_all(channels.low.ind_prop).
channels.low.kzdx_prop (1-by-N_prop real row vector):
Dimensionless transverse wave number kz*dx for the N_prop propagating
channels, equal to channels.low.kzdx_all(channels.low.ind_prop).
channels.low.sqrt_nu_prop (1-by-N_prop row vector):
Square root of the normalized longitudinal group velocity of the
propagating channels, sqrt_nu_prop = sqrt(sin(kzdx)). The longitudinal
group velocity is v_g = (sin(kzdx)/k0dx)*(c/epsilon_low).
channels.low.ind_prop_conj (1-by-N_prop integer row vector; optional):
A permutation vector that switches one propagating channel with one
having a complex-conjugated transverse profile. It only works for 2D now.
channels.high (scalar structure; optional):
Structure containing properties specific to the high side,
similar to channels.high; only provided when epsilon_high is given.
"""
function mesti_build_channels(nx_Ex::Union{Int,Nothing}, nx_Ey::Union{Int,Nothing}, xBC::Union{String,Real,Complex,Nothing}, ny_Ex::Int, ny_Ey::Union{Int,Nothing}, yBC::Union{String,Real,Complex}, k0dx::Union{Real,Complex}, epsilon_low::Union{Real,Complex}, epsilon_high::Union{Real,Complex, Nothing}=nothing, use_continuous_dispersion::Bool=false, n0::Union{Real,Nothing}=0, m0::Union{Real}=0)
# Check whehter 2D TM case or not
if nx_Ex == nothing && nx_Ey == nothing && ny_Ex != nothing && ny_Ey == nothing
# 2D TM case
use_2D_TM = true
if xBC != nothing
@warn "Only yBC is required for 2D TM fields Ex(y,z). xBC will be ignored."
end
if n0 != nothing
@warn "Only m0 is required for 2D TM fields Ex(y,z). n0 will be ignored."
end
else
# 3D case
use_2D_TM = false
end
# Check input parameters
if nx_Ex != nothing && ~(nx_Ex > 0)
throw(ArgumentError("Input argument nx_Ex must be a positive integer scalar if given."))
elseif nx_Ey != nothing && ~(nx_Ey > 0)
throw(ArgumentError("Input argument nx_Ey must be a positive integer scalar if given."))
elseif ~(ny_Ex > 0 )
throw(ArgumentError("Input argument ny_Ex must be a positive integer scalar."))
elseif ny_Ey != nothing && ~(ny_Ey > 0)
throw(ArgumentError("Input argument ny_Ey must be a positive integer scalar if given."))
end
if isa(epsilon_high, Nothing)
two_sided = false
else
two_sided = true
end
# Convert BC to take care of lowercase or uppercase
if ~use_2D_TM
xBC = convert_BC(xBC, "x")
end
yBC = convert_BC(yBC, "y")
if ~use_2D_TM
# Check number of grid points with the boundary conditions
check_BC_and_grid(xBC, nx_Ex, nx_Ey, "x")
check_BC_and_grid(yBC, ny_Ex, ny_Ey, "y")
end
# Convert PEC/PMC to Dirichlet/Neumann based on component and direction
# BC_j_k means boundary condition for Ej (j = x, y, z) component along k-direction (k = x, y)
if ~use_2D_TM
BC_x_x = convert_BC_to_transverse(xBC, "x", "x")
BC_y_x = convert_BC_to_transverse(xBC, "y", "x")
BC_y_y = convert_BC_to_transverse(yBC, "y", "y")
BC_z_x = convert_BC_to_transverse(xBC, "z", "x")
BC_z_y = convert_BC_to_transverse(yBC, "z", "y")
end
# This line also applies to 2D TM case
BC_x_y = convert_BC_to_transverse(yBC, "x", "y")
# These are used only for periodic and Bloch periodic boundary conditions; otherwise they stay nothing
kLambda_x = nothing # kx_B*Lambda_x
kLambda_y = nothing # ky_B*Lambda_y
ind_zero_kx = nothing
ind_zero_ky = nothing
# Handle periodic and Bloch periodic boundary conditions
if ~use_2D_TM
if isa(xBC, Number)
kLambda_x = xBC
xBC = "Bloch"
# kLambda_x must be real for f_x_n(kxdx_x) and f_y_n(kxdx_y) to be unitary
if ~isa(kLambda_x, Real)
@warn("kx_B*Lambda_x = $(real(kLambda_x)) + 1im*$(imag(kLambda_x)) is a complex number; must be real for a complete orthonormal transverse basis.")
end
elseif lowercase(xBC) == "bloch"
throw(ArgumentError("To use Bloch periodic boundary condition in mesti_build_channels(), set the input argument xBC to kx_B*Lambda_x where kx_B is the Bloch wave number and Lambda_x is the periodicity along x-direction."))
elseif xBC == "periodic"
kLambda_x = 0
xBC = "Bloch"
end
end
if isa(yBC, Number)
kLambda_y = yBC
yBC = "Bloch"
# kLambda_y must be real for f_x_m(kydx_x) and f_y_m(kydx_y) to be unitary
if ~isa(kLambda_y, Real)
@warn("ky_B*Lambda_y = $(real(kLambda_y)) + 1im*$(imag(kLambda_y)) is a complex number; must be real for a complete orthonormal transverse basis.")
end
elseif lowercase(yBC) == "bloch"
throw(ArgumentError("To use Bloch periodic boundary condition in mesti_build_channels(), set the input argument yBC to ky_B*Lambda_y where ky_B is the Bloch wave number and Lambda_y is the periodicity along y-direction."))
elseif yBC == "periodic"
kLambda_y = 0
yBC = "Bloch"
end
# p = [p(1), ..., p(nx)].'
# For periodic and Bloch periodic boundary, we order channels.kxdx_all (channels.kydx_all) such that it increases monotonically from negative to positive
# For other boundary conditions, kx >= 0 (ky >= 0), and we order channels.kxdx_all (channels.kydx_all) such that it increases monotonically from smallest to largest
if two_sided
channels = Channels_two_sided()
else
channels = Channels_one_sided()
end
if ~use_2D_TM
(channels.f_x_n, channels.kxdx_all) = mesti_build_transverse_function(nx_Ex, BC_x_x, n0, true)
(channels.f_x_m, _) = mesti_build_transverse_function(ny_Ex, BC_x_y, n0)
(channels.f_y_n, _) = mesti_build_transverse_function(nx_Ey, BC_y_x, n0)
(channels.f_y_m, channels.kydx_all) = mesti_build_transverse_function(ny_Ey, BC_y_y, m0, true)
channels.f_z_n = channels.f_y_n # f_z_n and f_y_n are same transverse function
channels.f_z_m = channels.f_x_m # f_z_m and f_x_m are same transverse function
channels.df_z_n = mesti_build_transverse_function_derivative(nx_Ey, BC_z_x, n0, 1)
channels.df_z_m = mesti_build_transverse_function_derivative(ny_Ex, BC_z_y, m0, 1)
else
(channels.f_x_m, channels.kydx_all) = mesti_build_transverse_function(ny_Ex, BC_x_y, m0)
channels.kxdx_all = nothing
end
if ~use_2D_TM && xBC == "Bloch"
if mod(nx_Ex,2) == 1
ind_zero_kx = Int(round((nx_Ex+1)/2))
else
ind_zero_kx = Int(round(nx_Ex/2))
end
end
if yBC == "Bloch"
if mod(ny_Ex,2) == 1
ind_zero_ky = Int(round((ny_Ex+1)/2))
else
ind_zero_ky = Int(round(ny_Ex/2))
end
end
# Properties for the homogeneous space on the low (kzdx, sqrt_nu_prop, number of propagating channels, etc; depends on epsilon_low/high)
side = mesti_setup_longitudinal(k0dx, epsilon_low, channels.kxdx_all, channels.kydx_all, kLambda_x, kLambda_y, ind_zero_kx, ind_zero_ky, use_continuous_dispersion)
if two_sided
channels.low = side
# Homogeneous space on the high
if epsilon_high == epsilon_low
channels.high = side
elseif ~isnan(epsilon_high)
channels.high = mesti_setup_longitudinal(k0dx, epsilon_high, channels.kxdx_all, channels.kydx_all, kLambda_x, kLambda_y, ind_zero_kx, ind_zero_ky, use_continuous_dispersion)
end
else
# Add the fields of "side" to "channels"
for fnames in fieldnames(typeof(side))
setfield!(channels, fnames, getfield(side, fnames))
end
end
return channels
end
"""
MESTI_BUILD_CHANNELS(syst) does the same but with the parameters extracted
from structure syst; see '? mesti2s' for the fields required for
structure 'syst'.
"""
function mesti_build_channels(syst::Syst)
# Check whehter 2D TM case or not
if ndims(syst.epsilon_xx) == 2
# 2D TM case
use_2D_TM = true
if ((isdefined(syst, :epsilon_yy) && syst.epsilon_yy != nothing) || (isdefined(syst, :epsilon_zz) && syst.epsilon_zz != nothing))
@warn "Only syst.epsilon_xx is required for 2D TM fields Ex(y,z). Other components will be ignored."
end
else
# 3D case
use_2D_TM = false
end
if ~use_2D_TM
(nx_Ex, ny_Ex, _) = size(syst.epsilon_xx)
(nx_Ey, ny_Ey, _) = size(syst.epsilon_yy)
else
(ny_Ex, _) = size(syst.epsilon_xx)
end
if ~isdefined(syst, :epsilon_low); throw(ArgumentError("Input argument syst must have field \"epsilon_low\".")); end
epsilon_low = syst.epsilon_low
if ~isdefined(syst, :wavelength); throw(ArgumentError("Input argument syst must have field \"wavelength\".")); end
if ~isdefined(syst, :dx); throw(ArgumentError("Input argument syst must have field \"dx\".")); end
if ~(syst.dx > 0); throw(ArgumentError("syst.dx must be a positive scalar.")); end
k0dx = (2*pi/syst.wavelength)*(syst.dx)
# Check boundary condition in x
if ~use_2D_TM
if isdefined(syst, :kx_B)
if isdefined(syst, :xBC) && lowercase(syst.xBC) != "bloch"
throw(ArgumentError("When syst.kx_B is given, syst.xBC must be \"Bloch\" if specified."))
end
syst.xBC = "Bloch"
# mesti_build_channels() uses kx_B*periodicity as the input arguments xBC for Bloch BC
xBC = (syst.kx_B)*(nx_Ex*syst.dx) # dimensionless
else
# Defaults to Dirichlet boundary condition unless syst.kx_B is given
if ~isdefined(syst, :xBC)
throw(ArgumentError("Input argument syst must have non-empty field \"xBC\" when syst.kx_B is not given."))
elseif ~(lowercase(syst.xBC) in ["bloch", "periodic", "pec", "pmc", "pecpmc", "pmcpec"])
throw(ArgumentError("syst.xBC = \"$(syst.xBC)\" is not a supported option; type ''? mesti2s'' for supported options."))
elseif lowercase(syst.xBC) == "bloch"
throw(ArgumentError("syst.xBC = \"Bloch\" but syst.kx_B is not given."))
end
xBC = syst.xBC
end
end
# Check boundary condition in y
if isdefined(syst, :ky_B)
if isdefined(syst, :yBC) && lowercase(syst.yBC) != "bloch"
throw(ArgumentError("When syst.ky_B is given, syst.yBC must be \"Bloch\" if specified."))
end
syst.yBC = "Bloch"
# mesti_build_channels() uses ky_B*periodicity as the input arguments yBC for Bloch BC
if ~use_2D_TM
yBC = (syst.ky_B)*(ny_Ey*syst.dx) # dimensionless
else
yBC = (syst.ky_B)*(ny_Ex*syst.dx) # dimensionless
end
else
# Defaults to Dirichlet boundary condition unless syst.ky_B is given
if ~isdefined(syst, :yBC)
throw(ArgumentError("Input argument syst must have non-empty field \"yBC\" when syst.ky_B is not given."))
elseif ~(lowercase(syst.yBC) in ["bloch", "periodic", "pec", "pmc", "pecpmc", "pmcpec"])
throw(ArgumentError("syst.yBC = \"$(syst.yBC)\" is not a supported option; type ''? mesti2s'' for supported options."))
elseif lowercase(syst.yBC) == "bloch"
throw(ArgumentError("syst.yBC = \"Bloch\" but syst.ky_B is not given."))
end
yBC = syst.yBC
end
if ~isdefined(syst, :epsilon_high)
epsilon_high = nothing
else
epsilon_high = syst.epsilon_high
end
use_continuous_dispersion = false
n0 = 0
m0 = 0
if ~use_2D_TM
channels = mesti_build_channels(nx_Ex, nx_Ey, xBC, ny_Ex, ny_Ey, yBC, k0dx, epsilon_low, epsilon_high, use_continuous_dispersion, n0, m0)
else
channels = mesti_build_channels(nothing, nothing, nothing, ny_Ex, nothing, yBC, k0dx, epsilon_low, epsilon_high, use_continuous_dispersion, nothing, m0)
end
return channels
end
"""
MESTI_BUILD_CHANNELS(ny_Ex, yBC, k0dx, epsilon_low, epsilon_high, use_continuous_dispersion, m0) set up
properties of channels in the homogeneous space for 2D TM fields and returns a structure containing
properties of the propagating and evanescent channels in a homogeneous space with ny pixels in the
transverse (y) direction, boundary condition yBC along y, background relative permittivity epsilon_low,
epsilon_high, and dimensionless frequency k0dx = (2*pi/vacuum_wavelength)*dx where dx is the discretization grid size.
"""
function mesti_build_channels(ny_Ex::Int, yBC::Union{String,Real,Complex}, k0dx::Union{Real,Complex}, epsilon_low::Union{Real,Complex}, epsilon_high::Union{Real,Complex, Nothing}=nothing, use_continuous_dispersion::Bool=false, m0::Union{Real}=0)
return mesti_build_channels(nothing, nothing, nothing, ny_Ex, nothing, yBC, k0dx, epsilon_low, epsilon_high, use_continuous_dispersion, nothing, m0)
end
"""
CONVERT_BC_TO_TRANSVERSE is a helper function to convert PEC, PMC, and etc. to Dirichlet, Neumann, and etc. according to the component and direction
"""
function convert_BC_to_transverse(BC::Union{String,Real,Complex},component::String,direction::String)
if isa(BC, Number)
return BC
elseif BC == "PEC"
if direction == component
return "Neumann"
else
return "Dirichlet"
end
elseif BC == "PMC"
if direction == component
return "Dirichlet"
else
return "Neumann"
end
elseif BC == "PECPMC"
if direction == component
return "NeumannDirichlet"
else
return "DirichletNeumann"
end
elseif BC == "PMCPEC"
if direction == component
return "DirichletNeumann"
else
return "NeumannDirichlet"
end
elseif BC == "periodic"
return "periodic"
elseif lowercase(BC) == "bloch"
throw(ArgumentError("To use Bloch periodic boundary condition in $(direction)-direction, set the input argument $(direction)BC to k$(direction)_B*p_$(direction) where k$(direction)_B is the Bloch wave number and p_$(direction) is the periodicity along $(direction)-direction."))
else
throw(ArgumentError("Input argument $(direction)BC = \"$(BC)\" is not a supported option."))
end
end