-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathunitary_test.jl
69 lines (61 loc) · 3.17 KB
/
unitary_test.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# This code test the unitarity of scattering matrices S upon random permittivity profiles.
# We check S'*S ≈ I, an identity matrix.
# Specify parameters of the system
syst = Syst()
syst.xBC = "periodic"
syst.yBC = "periodic"
syst.dx = 1
syst.wavelength = 5
syst.epsilon_low = 1
syst.epsilon_high = 1
epsilon_max = 4
epsilon_min = 1
pml_npixels = 25
syst.zPML = [PML(pml_npixels)]
# Define the size of the scattering region (1 wavelength by 1 wavelength by 1 wavelength)
nx, ny, nz = 2, 5, 2
nx_Ex = nx; ny_Ex = ny; nz_Ex = nz -1
nx_Ey = nx; ny_Ey = ny; nz_Ey = nz -1
nx_Ez = nx; ny_Ez = ny; nz_Ez = nz
# Specify inputs and output
input = channel_type()
output = channel_type()
# Input from both sides with both s-polarization and p-polarization
input.side = "both"
input.polarization = "both"
# Output to both sides with both s-polarization and p-polarization
output.side = "both"
output.polarization = "both"
# Test the functionality in a test set
@testset "unitarity(diagonal ε): " begin
for i ∈ 1:3
# Random permittivity profiles, whose value is between 1 and 4
# The condition for the scattering region to be lossless is the permittivity tensor ε to be hermitian: adjoint(ε) = ε
syst.epsilon_xx = rand(nx_Ex,ny_Ex,nz_Ex)* (epsilon_max-epsilon_min) .+ epsilon_min
syst.epsilon_yy = rand(nx_Ey,ny_Ey,nz_Ey)* (epsilon_max-epsilon_min) .+ epsilon_min
syst.epsilon_zz = rand(nx_Ez,ny_Ez,nz_Ez)* (epsilon_max-epsilon_min) .+ epsilon_min
opts = Opts()
opts.verbal = false # Not print system information and timing to the standard output.
(S, _, _)= mesti2s(syst, input, output, opts)
@test maximum(abs.((S'*S) - I(size(S, 1)))) ≤ 1e-3 # Check the unitarity of the scattering matrix
end
end
@testset "unitarity(general ε): " begin
for i ∈ 1:3
# Random permittivity profiles, whose value is between 1 and 4
# The condition for the scattering region to be lossless is the permittivity tensor ε to be hermitian: adjoint(ε) = ε
syst.epsilon_xx = rand(nx_Ex,ny_Ex,nz_Ex)* (epsilon_max-epsilon_min) .+ epsilon_min
syst.epsilon_yy = rand(nx_Ey,ny_Ey,nz_Ey)* (epsilon_max-epsilon_min) .+ epsilon_min
syst.epsilon_zz = rand(nx_Ez,ny_Ez,nz_Ez)* (epsilon_max-epsilon_min) .+ epsilon_min
syst.epsilon_xy = rand(nx_Ez,ny_Ez,nz_Ex) * (epsilon_max-epsilon_min) .+ epsilon_min + 1im*(rand(nx_Ez,ny_Ez,nz_Ex) * (epsilon_max-epsilon_min) .+ epsilon_min)
syst.epsilon_yx = conj(syst.epsilon_xy)
syst.epsilon_yz = rand(nx_Ey,ny_Ex,nz_Ex) * (epsilon_max-epsilon_min) .+ epsilon_min + 1im*(rand(nx_Ez,ny_Ez,nz_Ex) * (epsilon_max-epsilon_min) .+ epsilon_min)
syst.epsilon_zy = conj(syst.epsilon_yz)
syst.epsilon_xz = rand(nx_Ey,ny_Ex,nz_Ey) * (epsilon_max-epsilon_min) .+ epsilon_min + 1im*(rand(nx_Ez,ny_Ez,nz_Ex) * (epsilon_max-epsilon_min) .+ epsilon_min)
syst.epsilon_zx = conj(syst.epsilon_xz)
opts = Opts()
opts.verbal = false # Not print system information and timing to the standard output.
(S, _, _)= mesti2s(syst, input, output, opts)
@test maximum(abs.((S'*S) - I(size(S, 1)))) ≤ 1e-3 # Check the unitarity of the scattering matrix
end
end