-
Notifications
You must be signed in to change notification settings - Fork 0
/
detection_mobilenet_oak.py
102 lines (85 loc) · 3.61 KB
/
detection_mobilenet_oak.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from utils.oak_backend import OakModel
from utils.dataset import Dataset, download_dataset
from utils.object_detection_helpers import mAP, iou, nms
import depthai as dai
import cv2
import numpy as np
import blobconverter
import argparse
from shutil import rmtree
parser = argparse.ArgumentParser()
parser.add_argument('-nn', '--model_name', type=str, default='ssd_mobilenet_v2_coco', help="Name of the model in the zoo")
parser.add_argument('-s', '--input_shape', type=int, nargs='+', help="List of ints", required=True)
parser.add_argument('-z', '--zoo_type', type=str, default='intel', help="Zoo type")
parser.add_argument('-d', '--dataset', type=str, default=None, help="Dataset type")
parser.add_argument('-i', '--image_dir', type=str, help="Path to image directory for local dataset")
parser.add_argument('-l', '--label_dir', type=str, help="Path to label directory for local dataset")
parser.add_argument('-sh', '--shaves', type=int, default=6, help="Number of shaves to use for blob")
parser.add_argument('-ss', '--sample_size', type=int, default=None, help="Number of shaves to use for blob")
parser.add_argument('-se', '--seed', type=int, default=None, help="Number of shaves to use for blob")
parser.add_argument('-ns', '--no_save', action="store_true", help="Do not save a dataset downloaded online locally")
args = parser.parse_args()
# download dataset
if args.dataset:
print("Downloading dataset...")
image_dir, label_dir = download_dataset(args.dataset)
else:
image_dir = args.image_dir
label_dir = args.label_dir
# create model
print("Creating model...")
model = OakModel(str(blobconverter.from_zoo(name=args.model_name, zoo_type=args.zoo_type, shaves=args.shaves)), 2, dai.OpenVINO.VERSION_2021_4)
# create dataset
print("Creating dataset...")
dataset = Dataset(
nn_type='detection',
image_dir=image_dir,
label_dir=label_dir,
sample_size=args.sample_size,
seed=args.seed
)
# the alternate_coco flag here denotes that the 91 class encoding is used instead of the 80 class encoding for COCO
dataset.read_detection(alternate_coco=True)
class_confs = [[] for _ in range(int(dataset.max_class))]
class_hits = [[] for _ in range(int(dataset.max_class))]
# evaluate model on the dataset
print("Evaluating... this may take some time...\n")
for i, image_path in enumerate(dataset.image_paths):
# read image
img = cv2.imread(image_path)
# do the necessary preprocessing
img = cv2.resize(img, (args.input_shape[1], args.input_shape[2]))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# inference
output = model.infer(img)
stop_idx = np.where(output == -1)[0][0]
output = output[:stop_idx]
div7 = int(len(output) / 7)
output = output.reshape(div7, 7)
output = np.delete(output, [0], axis=1)
output = nms(output)
# loop through the predicted boxes
for k in range(dataset.y[i].shape[0]):
y = dataset.y[i][k, :]
found = False
for j in range(output.shape[0]):
yhat = output[j, :]
# if the labels match
if yhat[0] == y[0]:
if iou(yhat[-4:], y[-4:]) > 0.5:
# hit!
class_confs[int(y[0])-1].append(yhat[1])
class_hits[int(y[0])-1].append(1)
found = True
if found == False:
# miss!
class_confs[int(y[0])-1].append(0.0)
class_hits[int(y[0])-1].append(0)
map = mAP(class_confs, class_hits)
print("--- Results ---")
print(f"mAP: {map[0]}")
# delete local data
if args.dataset and args.no_save:
# remove the parent directory
rm_path = image_dir.split('/images')[0]
rmtree(rm_path)