-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_objects.cc
587 lines (524 loc) · 21.1 KB
/
detect_objects.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/**
* @file detect_objects.cc
* @author Grace Jin
* @brief This file contains the main function for the tinyScrubCam project. It
* implements the detection of objects from the camera feed and saves the images
* to the filesystem. The images are saved with the detected object labels. A
* HTTP server is also implemented to serve the images and a webpage to view the
* images. The user can also delete all images in the directory.
* @version 3.1
* @date 2024-03-22
* @copyright Copyright (c) 2024
*/
// include the necessary header files
#include <cstring>
#include <vector>
#include <string>
#include <cstdio>
#include <ctime>
#include "libs/base/filesystem.h"
#include "libs/base/gpio.h"
#include "libs/base/led.h"
#include "libs/camera/camera.h"
#include "libs/rpc/rpc_http_server.h"
#include "libs/tensorflow/detection.h"
#include "libs/tensorflow/utils.h"
#include "libs/tpu/edgetpu_manager.h"
#include "libs/tpu/edgetpu_op.h"
#include "third_party/freertos_kernel/include/FreeRTOS.h"
#include "third_party/freertos_kernel/include/task.h"
#include "third_party/mjson/src/mjson.h"
#include "third_party/tflite-micro/tensorflow/lite/micro/micro_error_reporter.h"
#include "third_party/tflite-micro/tensorflow/lite/micro/micro_interpreter.h"
#include "third_party/tflite-micro/tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "libs/base/http_server.h"
#include "libs/libjpeg/jpeg.h"
#include "libs/base/strings.h"
#include "libs/base/utils.h"
// Create the label dictionary for the detected objects
// Note: A lot of labels are missing from the coco17 dataset and are replaced
// with "No_matching_result"
// (Check research/object_detection/data/mscoco_label_map.pbtxt)
const char* labels[] = {
"person", "bicycle", "car", "motorcycle", "airplane",
"bus", "train", "truck", "boat", "traffic_light",
"fire_hydrant", "No_matching_result", "stop_sign", "parking_meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
"bear", "zebra", "giraffe", "No_matching_result", "backpack", "umbrella",
"No_matching_result", "No_matching_result", "handbag",
"tie", "suitcase", "frisbee", "skis", "snowboard", "sports_ball",
"kite", "baseball_glove", "skateboard", "surfboard", "tennis_racket",
"bottle", "No_matching_result", "wine_glass", "cup", "fork", "knife", "spoon", "bowl", "banana",
"apple", "sandwich", "orange", "broccoli", "carrot", "hot_dog", "pizza",
"donut", "cake", "chair", "couch", "potted_plant", "bed", "No_matching_result", "dining_table",
"No_matching_result", "No_matching_result", "toilet", "No_matching_result", "tv", "laptop", "mouse", "remote", "keyboard", "cell_phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "No_matching_result", "book", "clock",
"clock", "vase", "scissors", "teddy_bear", "hair_drier", "toothbrush" // Last label
};
// Use the namespace coralmicro to define the functions make API calls
namespace coralmicro {
namespace {
// Define the path to the model file
constexpr char kModelPath[] =
"/models/tf2_ssd_mobilenet_v2_coco17_ptq_edgetpu.tflite";
// An area of memory to use for input, output, and intermediate arrays.
constexpr int kTensorArenaSize = 8 * 1024 * 1024;
STATIC_TENSOR_ARENA_IN_SDRAM(tensor_arena, kTensorArenaSize);
bool DetectFromCamera(tflite::MicroInterpreter* interpreter, int model_width,
int model_height,
std::vector<tensorflow::Object>* results,
std::vector<uint8>* image) {
CHECK(results != nullptr);
CHECK(image != nullptr);
auto* input_tensor = interpreter->input_tensor(0);
// Set the format of the camera frame
CameraFrameFormat fmt{CameraFormat::kRgb, CameraFilterMethod::kBilinear,
CameraRotation::k270, model_width,
model_height, false,
image->data()};
// Trigger the camera to capture a frame
CameraTask::GetSingleton()->Trigger();
// Get the frame from the camera
if (!CameraTask::GetSingleton()->GetFrame({fmt})) return false;
// Compress the frame to JPEG format
std::memcpy(tflite::GetTensorData<uint8_t>(input_tensor), image->data(),
image->size());
if (interpreter->Invoke() != kTfLiteOk) return false;
// Get the detection results
*results = tensorflow::GetDetectionResults(interpreter, 0.6f, 1);
return true;
}
void DetectRpc(struct jsonrpc_request* r) {
printf("Function DetectRpc is called!");
auto* interpreter =
static_cast<tflite::MicroInterpreter*>(r->ctx->response_cb_data);
auto* input_tensor = interpreter->input_tensor(0);
int model_height = input_tensor->dims->data[1];
int model_width = input_tensor->dims->data[2];
std::vector<uint8> image(model_height * model_width *
CameraFormatBpp(CameraFormat::kRgb));
std::vector<tensorflow::Object> results;
if (DetectFromCamera(interpreter, model_width, model_height, &results,
&image)) {
if (!results.empty()) {
const auto& result = results[0];
jsonrpc_return_success(
r,
"{%Q: %d, %Q: %d, %Q: %V, %Q: {%Q: %d, %Q: %g, %Q: %g, %Q: %g, "
"%Q: %g, %Q: %g}}",
"width", model_width, "height", model_height, "base64_data",
image.size(), image.data(), "detection", "id", result.id, "score",
result.score, "xmin", result.bbox.xmin, "xmax", result.bbox.xmax,
"ymin", result.bbox.ymin, "ymax", result.bbox.ymax);
return;
} else {
printf("No detection!\r\n");
}
jsonrpc_return_success(r, "{%Q: %d, %Q: %d, %Q: %V, %Q: None}", "width",
model_width, "height", model_height, "base64_data",
image.size(), image.data(), "detection");
return;
}
jsonrpc_return_error(r, -1, "Failed to detect image from camera.", nullptr);
}
/// @brief Function to convert a vector of image file paths to a JSON string
/// @param imageFiles A vector of image file paths
/// @return std::string A JSON string containing the image file paths
std::string ConvertToJson(const std::vector<std::string>& imageFiles) {
std::string json = "[";
for (size_t i = 0; i < imageFiles.size(); ++i) {
json += "\"" + imageFiles[i] + "\"";
if (i < imageFiles.size() - 1) {
json += ", ";
}
}
json += "]";
return json;
}
/// @brief Function to serve the list of image files in the /dir directory
/// @return HttpServer::Content A JSON response containing the list of image files
HttpServer::Content ServeImageList() {
std::vector<std::string> imageFiles;
lfs_dir_t dir;
lfs_info info;
printf("Opening /dir to list images...\r\n");
// Open the directory
if (lfs_dir_open(Lfs(), &dir, "/dir") >= 0) {
printf("Directory /dir opened successfully.\r\n");
// Read directory entries
while (lfs_dir_read(Lfs(), &dir, &info) > 0) {
// Check if the entry is a file
if (info.type == LFS_TYPE_REG) {
std::string fileName = info.name;
printf("Found image file: %s\r\n", fileName.c_str());
imageFiles.push_back(fileName);
}
}
// Close the directory
lfs_dir_close(Lfs(), &dir);
printf("Directory /dir closed.\r\n");
} else {
printf("Failed to open directory /dir.\r\n");
}
printf("Generating JSON response...\r\n");
std::string jsonResponse = ConvertToJson(imageFiles);
printf("JSON Response: %s\r\n", jsonResponse.c_str());
std::vector<uint8_t> responseData(jsonResponse.begin(), jsonResponse.end());
// only for debugging purpose
std::string responseStr(responseData.begin(), responseData.end());
printf("responseData as string: %s\r\n", responseStr.c_str());
return responseData;
}
/// @brief Function to serve an image file from the /dir directory
/// @param uri The URI of the image file
/// @return HttpServer::Content The image file data
HttpServer::Content ServeImage(const char* uri) {
std::string filePath = uri; // convert URI to file path in /dir/
std::vector<uint8_t> imageData;
if (LfsReadFile(filePath.c_str(), &imageData)){
return imageData;
}
return {};
}
/// @brief Function to delete all images in the /dir directory
/// @return HttpServer::Content A JSON response indicating the status of the deletion
HttpServer::Content DeleteAllImagesInDir() {
lfs_dir_t dir;
lfs_info info;
printf("Opening /dir to delete images... \r\n");
// JSON response messages to indicate success or failure
std::string success_response = "{\"status\":\"success\", \"message\":\"All images have been successfully deleted.\"}";
std::string fail_response = "{\"status\":\"error\", \"message\":\"Images failed to be successfully deleted.\"}";
// Open the directory
if (lfs_dir_open(Lfs(), &dir, "/dir") >= 0) {
printf("Directory /dir opened successfully! \r\n");
// Read directory entries
while (lfs_dir_read(Lfs(), &dir, &info) > 0) {
// Check if the entry is a file and delete it
if (info.type == LFS_TYPE_REG) {
char filePath[256];
snprintf(filePath, sizeof(filePath), "/dir/%s", info.name);
if (lfs_remove(Lfs(), filePath) == LFS_ERR_OK) {
printf("Deleted file: %s\r\n", filePath);
} else {
printf("Failed to delete file %s\r\n", filePath);
std::vector<uint8_t> fail_responseData(fail_response.begin(), fail_response.end());
return fail_responseData;
}
}
}
// Close the directory
lfs_dir_close(Lfs(), &dir);
printf("Directory /dir closed after deletion process. \r\n");
std::vector<uint8_t> success_responseData(success_response.begin(), success_response.end());
return success_responseData;
} else { // Failed to open directory
printf("Failed to open directory /dir\r\n");
std::vector<uint8_t> fail_responseData(fail_response.begin(), fail_response.end());
return fail_responseData;
}
}
constexpr char kIndexFileName[] = "/Image_view.html";
constexpr char kCameraStreamUrlPrefix[] = "/dir/image.jpg";
/// @brief Function to handle HTTP requests for different URIs
/// @param uri The URI of the HTTP request
/// @return HttpServer::Content The response data for the HTTP request
HttpServer::Content UriHandler(const char* uri) {
printf("Received HTTP request for URI: %s\r\n", uri);
if (StrEndsWith(uri, "index.shtml") || StrEndsWith(uri, "Image_view.html")) {
printf("Requesting the index page....\r\n");
// Serve the HTML page for displaying the saved image
return std::string(kIndexFileName);
} else if (StrEndsWith(uri, "/image-list")) {
return ServeImageList();
} else if (StrStartsWith(uri, "/dir/")){
return ServeImage(uri);
} else if (StrEndsWith(uri, "/delete-all-images")) {
return DeleteAllImagesInDir();
}else {
printf("URI not recognitzed.\r\n");
}
return {};
}
/// @brief Function to print the contents of a directory
/// @param dir Pointer to the directory object
/// @param path The path of the directory
/// @param num_tabs The number of tabs to print before the file or directory name
void PrintDirectory(lfs_dir_t* dir, const char* path, int num_tabs) {
constexpr int kMaxDepth = 3;
if (num_tabs > kMaxDepth) {
return;
}
// Read the directory entries
lfs_info info;
while (lfs_dir_read(Lfs(), dir, &info) > 0) {
if (info.name[0] == '.') {// Skip hidden files
continue;
}
for (int i = 0; i < num_tabs; ++i) {// Print tabs for indentation
printf("\t");
}
printf("%s", info.name);
// Check if the entry is a directory
if (info.type == LFS_TYPE_DIR) {
char subpath[LFS_NAME_MAX];
printf("/\r\n");
lfs_dir_t subdir;
snprintf(subpath, LFS_NAME_MAX, "%s/%s", path, info.name);
CHECK(lfs_dir_open(Lfs(), &subdir, subpath) >= 0);
PrintDirectory(&subdir, subpath, num_tabs + 1);
CHECK(lfs_dir_close(Lfs(), &subdir) >= 0);
} else {
printf("\t\t%ld\r\n", info.size);
}
}
}
/// @brief Function to print the contents of the filesystem
void PrintFilesystemContents() {
lfs_dir_t root;
CHECK(lfs_dir_open(Lfs(), &root, "/") >= 0);
printf("Printing filesystem:\r\n");
PrintDirectory(&root, "", 0);
printf("Finished printing filesystem.\r\n");
CHECK(lfs_dir_close(Lfs(), &root) >= 0);
}
/// @brief Function to make a directory in the filesystem
/// @param path The path of the directory to create
/// @return bool True if the directory was created successfully, false otherwise
bool Mkdir(const char* path) {
int ret = lfs_mkdir(Lfs(), path);
if (ret == LFS_ERR_EXIST) {
printf("Error dir exists");
return false;
}
return (ret == LFS_ERR_OK);
}
/// @brief Function to write data to a file in the filesystem
/// @param path The path of the file to write to
/// @param data The data to write to the file
bool WriteToFile(const char* path, const uint8_t* data, size_t size) {
lfs_file_t file;
// Open the file with write access. Create the file if it doesn't exist
if (lfs_file_open(Lfs(), &file, path, LFS_O_WRONLY | LFS_O_CREAT) < 0) {
// Handle error in opening file
return false;
}
// Write data to the file
if (static_cast<size_t>(lfs_file_write(Lfs(), &file, data, size)) != size) {
// Handle error in writing data
lfs_file_close(Lfs(), &file);
return false;
}
// Close the file
if (lfs_file_close(Lfs(), &file) < 0) {
// Handle error in closing file
return false;
}
return true;
}
/// @brief Function to capture a frame from the camera and compress it to JPEG
/// format
/// @return std::vector<uint8_t> The JPEG data of the captured frame
std::vector<uint8_t> CaptureFrameJPEG () {
std::vector<uint8_t> buf(CameraTask::kWidth * CameraTask::kHeight *
CameraFormatBpp(CameraFormat::kRgb));
auto fmt = CameraFrameFormat{
CameraFormat::kRgb, CameraFilterMethod::kBilinear,
CameraRotation::k270, CameraTask::kWidth,
CameraTask::kHeight,
/*preserve_ratio=*/false, buf.data(),
/*while_balance=*/true
};
// Get a frame from the camera
CameraTask::GetSingleton()-> Trigger();
if (!CameraTask::GetSingleton()->GetFrame({fmt})) {
printf("Unable to get frame from camera\r\n");
return {};
}
// Compress the frame to JPEG format
std::vector<uint8_t> jpeg;
JpegCompressRgb(buf.data(), fmt.width, fmt.height, /*quality=*/75, &jpeg);
// [end-snippet:jpeg]
return jpeg;
}
/// @brief Function to get the next available image index for a given base
/// @param baseFilename The base filename for the images
/// @return int The next available image index
int GetNextImageIndex(const std::string& baseFilename) {
lfs_dir_t dir;
lfs_info info;
int maxIndex = 0;
char pattern[100];
std::snprintf(pattern, sizeof(pattern), "%s_%%d.jpg", baseFilename.c_str());
if (lfs_dir_open(Lfs(), &dir, "/dir") >= 0) {
while (lfs_dir_read(Lfs(), &dir, &info) > 0) {
if (info.type == LFS_TYPE_REG) {
// Extract the index from the filename and update maxIndex
int index;
if (sscanf(info.name, pattern, &index) == 1) {
if (index > maxIndex) {
maxIndex = index;
}
}
}
}
lfs_dir_close(Lfs(), &dir);
}
return maxIndex + 1; // Return the next available index
}
/// @brief Function to record an image to the filesystem
/// @param baseFilename The base filename for the images
/// @return bool True if the image was saved successfully, false otherwise
bool Record(const std::string& baseFilename) {
lfs_info fileInfo;
// Get the next available image index for naming the image file
int index = GetNextImageIndex(baseFilename);
char filePath[100];
std::snprintf(filePath, sizeof(filePath), "/dir/%s_%d.jpg", baseFilename.c_str(), index);
// Check if the image file already exists
if (lfs_stat(Lfs(), filePath, &fileInfo) < 0) {
printf("Image file does not exist. Capturing and saving a new image.\r\n");
std::vector<uint8_t> jpegData = CaptureFrameJPEG();
if (jpegData.empty()) {
printf("Failed to capture an image.\r\n");
return false;
}
// Save the image to the filesystem
if (!WriteToFile(filePath, jpegData.data(), jpegData.size())) {
printf("Failed to save the image.\r\n");
return false;
}
printf("Image saved successfully!\r\n");
} else {
printf("Image file already exists. Skipping image capture.\r\n");
}
PrintFilesystemContents();
return true;
}
/// @brief Function to establish a server to detect objects from the camera feed
/// @param interpreter The TensorFlow Lite interpreter
void DetectConsole(tflite::MicroInterpreter* interpreter) {
printf("DetectConsole runs!\r\n");
// Get the input tensor
auto* input_tensor = interpreter->input_tensor(0);
int model_height = input_tensor->dims->data[1];
int model_width = input_tensor->dims->data[2];
std::vector<uint8> image(model_height * model_width *
CameraFormatBpp(CameraFormat::kRgb));
std::vector<tensorflow::Object> results;
// Detect objects from the camera feed
if (DetectFromCamera(interpreter, model_width, model_height, &results,
&image)) {
std::string namePrediction = "";
for (const auto& object : results) {
int id = object.id; // Accessing the ID of the detected object
float score = object.score; // Accessing the score
// Accessing the bounding box coordinates
float xmin = object.bbox.xmin;
float xmax = object.bbox.xmax;
float ymin = object.bbox.ymin;
float ymax = object.bbox.ymax;
// Now you can use the id, score, and bounding box as needed
// For example, printing them:
printf("Detected object ID: %d, Label: %s, Score: %f, BBox: [%f, %f, %f, %f]\r\n",
id, labels[id], score, xmin, ymin, xmax, ymax);
if (!namePrediction.empty()) {
namePrediction += "_";
}
namePrediction += labels[id];
}
// If no objects are detected, print a message
if (results.size() == 0) {
printf("No result detected!\r\n");
} else{ // If objects are detected, record the image
Record(namePrediction);
// Turn on the speaker for 10 seconds
coralmicro::GpioSet(coralmicro::Gpio::kAA, true);
vTaskDelay(pdMS_TO_TICKS(10000));
coralmicro::GpioSet(coralmicro::Gpio::kAA, false);
}
} else {
printf("Failed to detect image from camera.\r\n");
}
}
[[noreturn]] void Main() {
printf("Detection Camera Example!\r\n");
// Turn on Status LED to show the board is on.
LedSet(Led::kStatus, true);
// Load the model
std::vector<uint8_t> model;
if (!LfsReadFile(kModelPath, &model)) {
printf("ERROR: Failed to load %s\r\n", kModelPath);
vTaskSuspend(nullptr);
}
// Initialize the Edge TPU
auto tpu_context = EdgeTpuManager::GetSingleton()->OpenDevice();
if (!tpu_context) {
printf("ERROR: Failed to get EdgeTpu context\r\n");
vTaskSuspend(nullptr);
}
// Register custom op
tflite::MicroErrorReporter error_reporter;
tflite::MicroMutableOpResolver<3> resolver;
resolver.AddDequantize();
resolver.AddDetectionPostprocess();
resolver.AddCustom(kCustomOp, RegisterCustomOp());
// Create an interpreter
tflite::MicroInterpreter interpreter(tflite::GetModel(model.data()), resolver,
tensor_arena, kTensorArenaSize,
&error_reporter);
if (interpreter.AllocateTensors() != kTfLiteOk) {
printf("ERROR: AllocateTensors() failed\r\n");
vTaskSuspend(nullptr);
}
if (interpreter.inputs().size() != 1) {
printf("ERROR: Model must have only one input tensor\r\n");
vTaskSuspend(nullptr);
}
// Starting Camera.
CameraTask::GetSingleton()->SetPower(true);
CameraTask::GetSingleton()->Enable(CameraMode::kTrigger);
printf("Initializing detection server...\r\n");
jsonrpc_init(nullptr, &interpreter);
jsonrpc_export("detect_from_camera", DetectRpc);
UseHttpServer(new JsonRpcHttpServer);
printf("Detection server ready!\r\n");
// create the /dir directory for images
printf("Checking if '/dir' directory exists. \r\n");
if (!LfsDirExists("/dir")) {
printf("'/dir' directory doesn't exist. Creating directory. \r\n");
if (!Mkdir("/dir")) {
printf("Failed to create '/dir' directory.\r\n");
} else {
printf("'/dir' directory created successfully.\r\n");
}
}
// host on the specific usb_ip
std::string usb_ip;
if (GetUsbIpAddress(&usb_ip)) {
printf("Serving on http://%s\r\n", usb_ip.c_str());
}
// Start an HTTP server on USB
HttpServer http_server;
http_server.AddUriHandler(UriHandler);
UseHttpServer(&http_server);
// Initialize kAA (pin A1) as output to the amplifier
GpioSetMode(coralmicro::Gpio::kAA, coralmicro::GpioMode::kOutput);
coralmicro::GpioSet(coralmicro::Gpio::kAA, false);
// Initialize kScl6 (pin D0) as input
GpioSetMode(Gpio::kScl6, GpioMode::kInput);
// Configure interrupt for kScl6 to trigger on rising edge
GpioConfigureInterrupt(
Gpio::kScl6, GpioInterruptMode::kIntModeRising,
[handle = xTaskGetCurrentTaskHandle()]() {xTaskResumeFromISR(handle);});
while (true) {
vTaskSuspend(nullptr);
DetectConsole(&interpreter);
}
}
} // namespace
} // namespace coralmicro
extern "C" void app_main(void* param) {
(void)param;
coralmicro::Main();
}