forked from tinkoff-ai/CORL
-
Notifications
You must be signed in to change notification settings - Fork 20
/
rebrac.py
760 lines (650 loc) · 22.6 KB
/
rebrac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
# source: https://github.com/tinkoff-ai/ReBRAC
# https://arxiv.org/abs/2305.09836
import os
os.environ["TF_CUDNN_DETERMINISTIC"] = "1" # For reproducibility
import math
import uuid
from copy import deepcopy
from dataclasses import asdict, dataclass
from functools import partial
from typing import Any, Callable, Dict, Sequence, Tuple, Union
import chex
import d4rl # noqa
import flax.linen as nn
import gym
import jax
import jax.numpy as jnp
import numpy as np
import optax
import pyrallis
import wandb
from flax.core import FrozenDict
from flax.training.train_state import TrainState
from tqdm.auto import trange
default_kernel_init = nn.initializers.lecun_normal()
default_bias_init = nn.initializers.zeros
@dataclass
class Config:
# wandb params
project: str = "CORL"
group: str = "rebrac"
name: str = "rebrac"
# model params
actor_learning_rate: float = 1e-3
critic_learning_rate: float = 1e-3
hidden_dim: int = 256
actor_n_hiddens: int = 3
critic_n_hiddens: int = 3
gamma: float = 0.99
tau: float = 5e-3
actor_bc_coef: float = 1.0
critic_bc_coef: float = 1.0
actor_ln: bool = False
critic_ln: bool = True
policy_noise: float = 0.2
noise_clip: float = 0.5
policy_freq: int = 2
normalize_q: bool = True
# training params
dataset_name: str = "halfcheetah-medium-v2"
batch_size: int = 1024
num_epochs: int = 1000
num_updates_on_epoch: int = 1000
normalize_reward: bool = False
normalize_states: bool = False
# evaluation params
eval_episodes: int = 10
eval_every: int = 5
# general params
train_seed: int = 0
eval_seed: int = 42
def __post_init__(self):
self.name = f"{self.name}-{self.dataset_name}-{str(uuid.uuid4())[:8]}"
def pytorch_init(fan_in: float) -> Callable:
"""
Default init for PyTorch Linear layer weights and biases:
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
"""
bound = math.sqrt(1 / fan_in)
def _init(key: jax.random.PRNGKey, shape: Tuple, dtype: type) -> jax.Array:
return jax.random.uniform(
key, shape=shape, minval=-bound, maxval=bound, dtype=dtype
)
return _init
def uniform_init(bound: float) -> Callable:
def _init(key: jax.random.PRNGKey, shape: Tuple, dtype: type) -> jax.Array:
return jax.random.uniform(
key, shape=shape, minval=-bound, maxval=bound, dtype=dtype
)
return _init
def identity(x: Any) -> Any:
return x
class DetActor(nn.Module):
action_dim: int
hidden_dim: int = 256
layernorm: bool = True
n_hiddens: int = 3
@nn.compact
def __call__(self, state: jax.Array) -> jax.Array:
s_d, h_d = state.shape[-1], self.hidden_dim
# Initialization as in the EDAC paper
layers = [
nn.Dense(
self.hidden_dim,
kernel_init=pytorch_init(s_d),
bias_init=nn.initializers.constant(0.1),
),
nn.relu,
nn.LayerNorm() if self.layernorm else identity,
]
for _ in range(self.n_hiddens - 1):
layers += [
nn.Dense(
self.hidden_dim,
kernel_init=pytorch_init(h_d),
bias_init=nn.initializers.constant(0.1),
),
nn.relu,
nn.LayerNorm() if self.layernorm else identity,
]
layers += [
nn.Dense(
self.action_dim,
kernel_init=uniform_init(1e-3),
bias_init=uniform_init(1e-3),
),
nn.tanh,
]
net = nn.Sequential(layers)
actions = net(state)
return actions
class Critic(nn.Module):
hidden_dim: int = 256
layernorm: bool = True
n_hiddens: int = 3
@nn.compact
def __call__(self, state: jax.Array, action: jax.Array) -> jax.Array:
s_d, a_d, h_d = state.shape[-1], action.shape[-1], self.hidden_dim
# Initialization as in the EDAC paper
layers = [
nn.Dense(
self.hidden_dim,
kernel_init=pytorch_init(s_d + a_d),
bias_init=nn.initializers.constant(0.1),
),
nn.relu,
nn.LayerNorm() if self.layernorm else identity,
]
for _ in range(self.n_hiddens - 1):
layers += [
nn.Dense(
self.hidden_dim,
kernel_init=pytorch_init(h_d),
bias_init=nn.initializers.constant(0.1),
),
nn.relu,
nn.LayerNorm() if self.layernorm else identity,
]
layers += [
nn.Dense(1, kernel_init=uniform_init(3e-3), bias_init=uniform_init(3e-3))
]
network = nn.Sequential(layers)
state_action = jnp.hstack([state, action])
out = network(state_action).squeeze(-1)
return out
class EnsembleCritic(nn.Module):
hidden_dim: int = 256
num_critics: int = 10
layernorm: bool = True
n_hiddens: int = 3
@nn.compact
def __call__(self, state: jax.Array, action: jax.Array) -> jax.Array:
ensemble = nn.vmap(
target=Critic,
in_axes=None,
out_axes=0,
variable_axes={"params": 0},
split_rngs={"params": True},
axis_size=self.num_critics,
)
q_values = ensemble(self.hidden_dim, self.layernorm, self.n_hiddens)(
state, action
)
return q_values
def qlearning_dataset(
env: gym.Env,
dataset: Dict = None,
terminate_on_end: bool = False,
**kwargs,
) -> Dict:
if dataset is None:
dataset = env.get_dataset(**kwargs)
N = dataset["rewards"].shape[0]
obs_ = []
next_obs_ = []
action_ = []
next_action_ = []
reward_ = []
done_ = []
# The newer version of the dataset adds an explicit
# timeouts field. Keep old method for backwards compatability.
use_timeouts = "timeouts" in dataset
episode_step = 0
for i in range(N - 1):
obs = dataset["observations"][i].astype(np.float32)
new_obs = dataset["observations"][i + 1].astype(np.float32)
action = dataset["actions"][i].astype(np.float32)
new_action = dataset["actions"][i + 1].astype(np.float32)
reward = dataset["rewards"][i].astype(np.float32)
done_bool = bool(dataset["terminals"][i])
if use_timeouts:
final_timestep = dataset["timeouts"][i]
else:
final_timestep = episode_step == env._max_episode_steps - 1
if (not terminate_on_end) and final_timestep:
# Skip this transition
episode_step = 0
continue
if done_bool or final_timestep:
episode_step = 0
obs_.append(obs)
next_obs_.append(new_obs)
action_.append(action)
next_action_.append(new_action)
reward_.append(reward)
done_.append(done_bool)
episode_step += 1
return {
"observations": np.array(obs_),
"actions": np.array(action_),
"next_observations": np.array(next_obs_),
"next_actions": np.array(next_action_),
"rewards": np.array(reward_),
"terminals": np.array(done_),
}
def compute_mean_std(states: jax.Array, eps: float) -> Tuple[jax.Array, jax.Array]:
mean = states.mean(0)
std = states.std(0) + eps
return mean, std
def normalize_states(states: jax.Array, mean: jax.Array, std: jax.Array) -> jax.Array:
return (states - mean) / std
@chex.dataclass
class ReplayBuffer:
data: Dict[str, jax.Array] = None
mean: float = 0
std: float = 1
def create_from_d4rl(
self,
dataset_name: str,
normalize_reward: bool = False,
is_normalize: bool = False,
):
d4rl_data = qlearning_dataset(gym.make(dataset_name))
buffer = {
"states": jnp.asarray(d4rl_data["observations"], dtype=jnp.float32),
"actions": jnp.asarray(d4rl_data["actions"], dtype=jnp.float32),
"rewards": jnp.asarray(d4rl_data["rewards"], dtype=jnp.float32),
"next_states": jnp.asarray(
d4rl_data["next_observations"], dtype=jnp.float32
),
"next_actions": jnp.asarray(d4rl_data["next_actions"], dtype=jnp.float32),
"dones": jnp.asarray(d4rl_data["terminals"], dtype=jnp.float32),
}
if is_normalize:
self.mean, self.std = compute_mean_std(buffer["states"], eps=1e-3)
buffer["states"] = normalize_states(buffer["states"], self.mean, self.std)
buffer["next_states"] = normalize_states(
buffer["next_states"], self.mean, self.std
)
if normalize_reward:
buffer["rewards"] = ReplayBuffer.normalize_reward(
dataset_name, buffer["rewards"]
)
self.data = buffer
@property
def size(self) -> int:
# WARN: It will use len of the dataclass, i.e. number of fields.
return self.data["states"].shape[0]
def sample_batch(
self, key: jax.random.PRNGKey, batch_size: int
) -> Dict[str, jax.Array]:
indices = jax.random.randint(
key, shape=(batch_size,), minval=0, maxval=self.size
)
batch = jax.tree_map(lambda arr: arr[indices], self.data)
return batch
def get_moments(self, modality: str) -> Tuple[jax.Array, jax.Array]:
mean = self.data[modality].mean(0)
std = self.data[modality].std(0)
return mean, std
@staticmethod
def normalize_reward(dataset_name: str, rewards: jax.Array) -> jax.Array:
if "antmaze" in dataset_name:
return rewards * 100.0 # like in LAPO
else:
raise NotImplementedError(
"Reward normalization is implemented only for AntMaze yet!"
)
@chex.dataclass(frozen=True)
class Metrics:
accumulators: Dict[str, Tuple[jax.Array, jax.Array]]
@staticmethod
def create(metrics: Sequence[str]) -> "Metrics":
init_metrics = {key: (jnp.array([0.0]), jnp.array([0.0])) for key in metrics}
return Metrics(accumulators=init_metrics)
def update(self, updates: Dict[str, jax.Array]) -> "Metrics":
new_accumulators = deepcopy(self.accumulators)
for key, value in updates.items():
acc, steps = new_accumulators[key]
new_accumulators[key] = (acc + value, steps + 1)
return self.replace(accumulators=new_accumulators)
def compute(self) -> Dict[str, np.ndarray]:
# cumulative_value / total_steps
return {k: np.array(v[0] / v[1]) for k, v in self.accumulators.items()}
def normalize(
arr: jax.Array, mean: jax.Array, std: jax.Array, eps: float = 1e-8
) -> jax.Array:
return (arr - mean) / (std + eps)
def make_env(env_name: str, seed: int) -> gym.Env:
env = gym.make(env_name)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
def wrap_env(
env: gym.Env,
state_mean: Union[np.ndarray, float] = 0.0,
state_std: Union[np.ndarray, float] = 1.0,
reward_scale: float = 1.0,
) -> gym.Env:
# PEP 8: E731 do not assign a lambda expression, use a def
def normalize_state(state: np.ndarray) -> np.ndarray:
return (
state - state_mean
) / state_std # epsilon should be already added in std.
def scale_reward(reward: float) -> float:
# Please be careful, here reward is multiplied by scale!
return reward_scale * reward
env = gym.wrappers.TransformObservation(env, normalize_state)
if reward_scale != 1.0:
env = gym.wrappers.TransformReward(env, scale_reward)
return env
def evaluate(
env: gym.Env,
params: jax.Array,
action_fn: Callable,
num_episodes: int,
seed: int,
) -> np.ndarray:
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
returns = []
for _ in trange(num_episodes, desc="Eval", leave=False):
obs, done = env.reset(), False
total_reward = 0.0
while not done:
action = np.asarray(jax.device_get(action_fn(params, obs)))
obs, reward, done, _ = env.step(action)
total_reward += reward
returns.append(total_reward)
return np.array(returns)
class CriticTrainState(TrainState):
target_params: FrozenDict
class ActorTrainState(TrainState):
target_params: FrozenDict
def update_actor(
key: jax.random.PRNGKey,
actor: TrainState,
critic: TrainState,
batch: Dict[str, jax.Array],
beta: float,
tau: float,
normalize_q: bool,
metrics: Metrics,
) -> Tuple[jax.random.PRNGKey, TrainState, TrainState, Metrics]:
key, random_action_key = jax.random.split(key, 2)
def actor_loss_fn(params: jax.Array) -> Tuple[jax.Array, Metrics]:
actions = actor.apply_fn(params, batch["states"])
bc_penalty = ((actions - batch["actions"]) ** 2).sum(-1)
q_values = critic.apply_fn(critic.params, batch["states"], actions).min(0)
lmbda = 1
if normalize_q:
lmbda = jax.lax.stop_gradient(1 / jax.numpy.abs(q_values).mean())
loss = (beta * bc_penalty - lmbda * q_values).mean()
# logging stuff
random_actions = jax.random.uniform(
random_action_key, shape=batch["actions"].shape, minval=-1.0, maxval=1.0
)
new_metrics = metrics.update(
{
"actor_loss": loss,
"bc_mse_policy": bc_penalty.mean(),
"bc_mse_random": ((random_actions - batch["actions"]) ** 2)
.sum(-1)
.mean(),
"action_mse": ((actions - batch["actions"]) ** 2).mean(),
}
)
return loss, new_metrics
grads, new_metrics = jax.grad(actor_loss_fn, has_aux=True)(actor.params)
new_actor = actor.apply_gradients(grads=grads)
new_actor = new_actor.replace(
target_params=optax.incremental_update(actor.params, actor.target_params, tau)
)
new_critic = critic.replace(
target_params=optax.incremental_update(critic.params, critic.target_params, tau)
)
return key, new_actor, new_critic, new_metrics
def update_critic(
key: jax.random.PRNGKey,
actor: TrainState,
critic: CriticTrainState,
batch: Dict[str, jax.Array],
gamma: float,
beta: float,
tau: float,
policy_noise: float,
noise_clip: float,
metrics: Metrics,
) -> Tuple[jax.random.PRNGKey, TrainState, Metrics]:
key, actions_key = jax.random.split(key)
next_actions = actor.apply_fn(actor.target_params, batch["next_states"])
noise = jax.numpy.clip(
(jax.random.normal(actions_key, next_actions.shape) * policy_noise),
-noise_clip,
noise_clip,
)
next_actions = jax.numpy.clip(next_actions + noise, -1, 1)
bc_penalty = ((next_actions - batch["next_actions"]) ** 2).sum(-1)
next_q = critic.apply_fn(
critic.target_params, batch["next_states"], next_actions
).min(0)
next_q = next_q - beta * bc_penalty
target_q = batch["rewards"] + (1 - batch["dones"]) * gamma * next_q
def critic_loss_fn(critic_params: jax.Array) -> Tuple[jax.Array, jax.Array]:
# [N, batch_size] - [1, batch_size]
q = critic.apply_fn(critic_params, batch["states"], batch["actions"])
q_min = q.min(0).mean()
loss = ((q - target_q[None, ...]) ** 2).mean(1).sum(0)
return loss, q_min
(loss, q_min), grads = jax.value_and_grad(critic_loss_fn, has_aux=True)(
critic.params
)
new_critic = critic.apply_gradients(grads=grads)
new_metrics = metrics.update(
{
"critic_loss": loss,
"q_min": q_min,
}
)
return key, new_critic, new_metrics
def update_td3(
key: jax.random.PRNGKey,
actor: TrainState,
critic: CriticTrainState,
batch: Dict[str, Any],
metrics: Metrics,
gamma: float,
actor_bc_coef: float,
critic_bc_coef: float,
tau: float,
policy_noise: float,
noise_clip: float,
normalize_q: bool,
) -> Tuple[jax.random.PRNGKey, TrainState, TrainState, Metrics]:
key, new_critic, new_metrics = update_critic(
key,
actor,
critic,
batch,
gamma,
critic_bc_coef,
tau,
policy_noise,
noise_clip,
metrics,
)
key, new_actor, new_critic, new_metrics = update_actor(
key, actor, new_critic, batch, actor_bc_coef, tau, normalize_q, new_metrics
)
return key, new_actor, new_critic, new_metrics
def update_td3_no_targets(
key: jax.random.PRNGKey,
actor: TrainState,
critic: CriticTrainState,
batch: Dict[str, Any],
gamma: float,
metrics: Metrics,
actor_bc_coef: float,
critic_bc_coef: float,
tau: float,
policy_noise: float,
noise_clip: float,
) -> Tuple[jax.random.PRNGKey, TrainState, TrainState, Metrics]:
key, new_critic, new_metrics = update_critic(
key,
actor,
critic,
batch,
gamma,
critic_bc_coef,
tau,
policy_noise,
noise_clip,
metrics,
)
return key, actor, new_critic, new_metrics
def action_fn(actor: TrainState) -> Callable:
@jax.jit
def _action_fn(obs: jax.Array) -> jax.Array:
action = actor.apply_fn(actor.params, obs)
return action
return _action_fn
@pyrallis.wrap()
def train(config: Config):
dict_config = asdict(config)
dict_config["mlc_job_name"] = os.environ.get("PLATFORM_JOB_NAME")
wandb.init(
config=dict_config,
project=config.project,
group=config.group,
name=config.name,
id=str(uuid.uuid4()),
)
wandb.mark_preempting()
buffer = ReplayBuffer()
buffer.create_from_d4rl(
config.dataset_name, config.normalize_reward, config.normalize_states
)
key = jax.random.PRNGKey(seed=config.train_seed)
key, actor_key, critic_key = jax.random.split(key, 3)
eval_env = make_env(config.dataset_name, seed=config.eval_seed)
eval_env = wrap_env(eval_env, buffer.mean, buffer.std)
init_state = buffer.data["states"][0][None, ...]
init_action = buffer.data["actions"][0][None, ...]
actor_module = DetActor(
action_dim=init_action.shape[-1],
hidden_dim=config.hidden_dim,
layernorm=config.actor_ln,
n_hiddens=config.actor_n_hiddens,
)
actor = ActorTrainState.create(
apply_fn=actor_module.apply,
params=actor_module.init(actor_key, init_state),
target_params=actor_module.init(actor_key, init_state),
tx=optax.adam(learning_rate=config.actor_learning_rate),
)
critic_module = EnsembleCritic(
hidden_dim=config.hidden_dim,
num_critics=2,
layernorm=config.critic_ln,
n_hiddens=config.critic_n_hiddens,
)
critic = CriticTrainState.create(
apply_fn=critic_module.apply,
params=critic_module.init(critic_key, init_state, init_action),
target_params=critic_module.init(critic_key, init_state, init_action),
tx=optax.adam(learning_rate=config.critic_learning_rate),
)
update_td3_partial = partial(
update_td3,
gamma=config.gamma,
actor_bc_coef=config.actor_bc_coef,
critic_bc_coef=config.critic_bc_coef,
tau=config.tau,
policy_noise=config.policy_noise,
noise_clip=config.noise_clip,
normalize_q=config.normalize_q,
)
update_td3_no_targets_partial = partial(
update_td3_no_targets,
gamma=config.gamma,
actor_bc_coef=config.actor_bc_coef,
critic_bc_coef=config.critic_bc_coef,
tau=config.tau,
policy_noise=config.policy_noise,
noise_clip=config.noise_clip,
)
def td3_loop_update_step(i: int, carry: TrainState):
key, batch_key = jax.random.split(carry["key"])
batch = carry["buffer"].sample_batch(batch_key, batch_size=config.batch_size)
full_update = partial(
update_td3_partial,
key=key,
actor=carry["actor"],
critic=carry["critic"],
batch=batch,
metrics=carry["metrics"],
)
update = partial(
update_td3_no_targets_partial,
key=key,
actor=carry["actor"],
critic=carry["critic"],
batch=batch,
metrics=carry["metrics"],
)
key, new_actor, new_critic, new_metrics = jax.lax.cond(
update_carry["delayed_updates"][i], full_update, update
)
carry.update(key=key, actor=new_actor, critic=new_critic, metrics=new_metrics)
return carry
# metrics
bc_metrics_to_log = [
"critic_loss",
"q_min",
"actor_loss",
"batch_entropy",
"bc_mse_policy",
"bc_mse_random",
"action_mse",
]
# shared carry for update loops
update_carry = {
"key": key,
"actor": actor,
"critic": critic,
"buffer": buffer,
"delayed_updates": jax.numpy.equal(
jax.numpy.arange(config.num_updates_on_epoch) % config.policy_freq, 0
).astype(int),
}
@jax.jit
def actor_action_fn(params: jax.Array, obs: jax.Array):
return actor.apply_fn(params, obs)
for epoch in trange(config.num_epochs, desc="ReBRAC Epochs"):
# metrics for accumulation during epoch and logging to wandb
# we need to reset them every epoch
update_carry["metrics"] = Metrics.create(bc_metrics_to_log)
update_carry = jax.lax.fori_loop(
lower=0,
upper=config.num_updates_on_epoch,
body_fun=td3_loop_update_step,
init_val=update_carry,
)
# log mean over epoch for each metric
mean_metrics = update_carry["metrics"].compute()
wandb.log(
{"epoch": epoch, **{f"ReBRAC/{k}": v for k, v in mean_metrics.items()}}
)
if epoch % config.eval_every == 0 or epoch == config.num_epochs - 1:
eval_returns = evaluate(
eval_env,
update_carry["actor"].params,
actor_action_fn,
config.eval_episodes,
seed=config.eval_seed,
)
normalized_score = eval_env.get_normalized_score(eval_returns) * 100.0
wandb.log(
{
"epoch": epoch,
"eval/return_mean": np.mean(eval_returns),
"eval/return_std": np.std(eval_returns),
"eval/normalized_score_mean": np.mean(normalized_score),
"eval/normalized_score_std": np.std(normalized_score),
}
)
if __name__ == "__main__":
train()