forked from tgvoskuilen/MatlabTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUCDemo.m
executable file
·181 lines (153 loc) · 5.53 KB
/
UCDemo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
% Copyright (c) 2014, Tyler Voskuilen
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the
% distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
% IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
% THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
% PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
% EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
% PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
% LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%------------------------------------------------------------------------------
% Test the various functions of the UC class (not comprehensive!)
clear all
close all
clc
% This script tests all the overloaded functions and methods in UC
% Giving a name to a UC is not required, but is recommended. The name
% will be carried through calculations so you can see its effect on later
% UC objects.
fprintf('Testing variable construction\n');
x = UC([10 12 -12],[1 3 4],'x'); %vector values, vector errors
y = UC([1 2 3 4]', 2, 'y'); %vector values, scalar error
z = UC(15, 10, 'z'); %scalar value, scalar error
s = 4.5; %a normal scalar (not a UC)
fprintf('Testing basic math and vector operations\n');
a = y(1)*(z+15);
c = x + z;
d = x - z;
e = x * z;
f = x / z;
g = x .^ z;
h = z .^ x;
j = x ^ 2;
xpy = x + z;
xps = x + s;
fprintf('Testing self-correlation accuracy (should all be 50 +/- 30)\n');
a = UC(100,1,'a');
b = UC(10,4,'b');
c = UC(95,2,'c');
% These should be the same if correlations are handled properly
p1 = b*(a-c) %#ok<NOPTS>
p2 = a*b - c*b %#ok<NOPTS>
i1 = a*b;
i2 = c*b;
p3 = i1-i2 %#ok<NOPTS>
% Slightly more complicated self-correlation test
fprintf('Testing self-correlation accuracy (dnudd should be -0.3183)\n');
d = UC(1,0.8,'d');
n1 = UC(1,0.1,'n1');
n2 = UC(-1,0.1,'n2');
x1 = atan(n1/d)/pi + 0.5;
x2 = atan(n2/d)/pi + 0.5;
nu = x1 - x2;
nu.Inputs
nu.dydx %dnu/dd should be -1/pi (-0.3183)
fprintf('Testing duplicate name treatment (should not have 0 error)\n');
a1 = UC(10,9,'a');
a2 = UC(10,1,'a');
d = a1 - a2 %#ok<NOPTS>
fprintf('Testing error propogation through several operations\n');
v1 = sqrt(x + z);
v2 = exp(z);
v3 = (v1 * v2)^2;
fprintf(' v1(1) = %s\n',v1(1).Name)
fprintf(' v2 = %s\n',v2.Name)
fprintf(' v3(1) = %s\n',v3(1).Name)
% Test various overloaded functions
fprintf('Testing overloaded functions\n')
ex=exp(x);
sx=sin(x);
sy=sin(y);
cx=cos(x);
cy=cos(y);
sqrx=sqrt(abs(x));
sqry=sqrt(y);
maxx=max(x);
maxy=max(y);
minx=min(x);
miny=min(y);
sumx=sum(x);
sumy=sum(y);
meanx=mean(x);
meany=mean(y);
% Make a linear projection using UC vectors
% x and y are some vectors with random uncertainty, and we want to find
% the slope m and intercept b of y = m*x+b to project y to a give
% projection point 'xp'
fprintf('Testing linear projection and polyfit\n')
x = UC(0:1:10, rand(1,11), 'x');
y = UC(3.*[x.Value] + 2 + 3.*rand(1,11), 3.*[x.Err] + 5.*rand(1,11), 'y');
xp = 12; %This can be a normal number, or a UC value
%xp = UC(12,2,'xp'); also works
yp = linear_projection(x,y,xp);
p = polyfit(x,y,1); %this calls the special 'polyfit' in the @UC folder
% NOTE: yp above is the same value as p(1)*xp + p(2) but not the same
% uncertainty. The linear projection routine assumes the point sets are
% self correlated when doing the projection, while p(1)*xp+p(2) does not.
% Therefore, the uncertainty using linear_projection is typically lower.
fprintf(' Slope (%s) = %f +/- %f\n',p(1).Name,p(1).Value,p(1).Err);
fprintf(' Intercept (%s) = %f +/- %f\n',p(2).Name,p(2).Value,p(2).Err);
fprintf('Testing plotting\n')
% Plot the UC vectors
figure;
hold all
hD = plot(x,y);
hP = plot(xp,yp);
set(hD,'MarkerFaceColor',[0.5 0.5 0.5]);
set(hP,'Marker','s','MarkerSize',9,'MarkerFaceColor','r');
set(gca,'Box','on')
xlabel('x')
ylabel('y')
% An example using correlated uncertainties
% P1 and P2 are from the same instrument, so they are highly correlated
% with Rc = 0.99
%
% How do we find delta_P at time 'td'?
%
fprintf('Testing uncertainty correlation\n');
eP = 2;
t1 = 0:0.05:10;
t2 = 12:0.05:22;
P1 = UC(10 + 0.5*randn(size(t1)), eP, 'PT_01');
P2 = UC(8 + 0.5*randn(size(t2)), eP, 'PT_01');
td = 11;
[Pi,mi,bi] = linear_projection(t1,P1,td);
[Pf,mf,bf] = linear_projection(t2,P2,td);
dP = Pi - Pf;
figure;
hold all
plot(t1,P1);
plot(t2,P2);
plot([0 td+1],mi.Value.*[0 td+1]+bi.Value,'--r','LineWidth',1.5);
plot([td-1 22],mf.Value.*[td-1 22]+bf.Value,'--r','LineWidth',1.5);
hi = plot(td,Pi);
hf = plot(td,Pf);
set([hi hf],'MarkerFaceColor','r');
xlim([0 22])
axis equal