forked from Jermmy/pytorch-quantization-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
94 lines (77 loc) · 2.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from model import *
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import os
import os.path as osp
def train(model, device, train_loader, optimizer, epoch):
model.train()
lossLayer = torch.nn.CrossEntropyLoss()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = lossLayer(output, target)
loss.backward()
optimizer.step()
if batch_idx % 50 == 0:
print('Train Epoch: {} [{}/{}]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset), loss.item()
))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
lossLayer = torch.nn.CrossEntropyLoss(reduction='sum')
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += lossLayer(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {:.0f}%\n'.format(
test_loss, 100. * correct / len(test_loader.dataset)
))
if __name__ == "__main__":
batch_size = 64
test_batch_size = 64
seed = 1
epochs = 15
lr = 0.01
momentum = 0.5
save_model = True
using_bn = True
torch.manual_seed(seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True, num_workers=1, pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=test_batch_size, shuffle=True, num_workers=1, pin_memory=True
)
if using_bn:
model = NetBN().to(device)
else:
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
if save_model:
if not osp.exists('ckpt'):
os.makedirs('ckpt')
if using_bn:
torch.save(model.state_dict(), 'ckpt/mnist_cnnbn.pt')
else:
torch.save(model.state_dict(), 'ckpt/mnist_cnn.pt')