Skip to content

Latest commit

 

History

History
124 lines (116 loc) · 3.22 KB

README.md

File metadata and controls

124 lines (116 loc) · 3.22 KB

LinAlgML

Desc:

  • Work on book examples to learn foundations of Machine Learning via Jupyter Notebooks.

Worked Examples:

  • C4, Intro to Numpy Arrays
    • C4S1, Numpy N-D Array
    • C4S2 Functions to Arrays
    • C4S3, Combining Arrays
  • C5, Index, Slice, and Reshape Numpy Arrays
    • C5S1, Python List to Arrays
    • C5S2, Array Indexing
    • C5S3, Array Slicing
    • C5S4, Array Reshaping
  • C6 Broadcasting Numpy
  • C7, Vectors and Vector Arithmetic
    • C7S2, Vector Arithmetic
    • C7S4, Vector Dot Product
    • C7S5, Vector Scalar Multiplication
  • C8, Vector Norms
    • C8S2, Vector L1 Norm
    • C8S3, Vector L2 Norm
    • C8S4, Vector MAX Norm
  • C9, Matrices and Matrix Arithmetic
    • C9S2, Define a Matric
    • C9S3, Matrix Arithmetic
    • C9S4, Matrix Multiplication and Division
    • C9S4, Matrix and Matrix Dot Product
    • C9S6, Matrix and Vector Dot Product
    • C9S7, Matrix-Scalar Multiplication
  • C10, Types of Matrices
    • C10S2, Square Matrix
    • C10S3, Symmetric Matrix
    • C10S4, Triangular Matrix
    • C10S5, Diagonal Matrix
    • C10S6, Identity Matrix
    • C10S7, Orthogonal Matrix
  • C11, Matrix Operations
    • C11S2, Transpose
    • C11S3, Inverse
    • C11S4, Trace
    • C11S5, Determinant
    • C11S6, Rank
  • C12, Sparse Matrices
    • C12S2, Sparse Matrix
    • C12S3, Problems with Sparsity (No example)
      • Space Complexity
      • Time Complexity
    • C12S4, Sparse Matricies in ML (No example)
      • Data
      • Data Preperation
    • C12S5, Working with Sparse Matricies (No example)
      • Dictionary of Keys
      • List of Lists
      • Coordinate List
      • Compressed Sparse Row (CSR)
      • Compressed Sparse Column (CSC)
    • C12S6, Sparse Matricies in Python
  • C13, Tensors and Tensor Arithmetic
    • C13S3, Tensors in Python
    • C13S4, Tensor Arithmetic
      • C13S41, Tensor Addition
      • C13S42, Tensor Subtraction
      • C13S43, Tensor Hadmarard Product
      • C13S44, Tensor Division
      • C13S45, Tensor Product
  • C14, Matrix Decompositions
    • C14S3, LU Decomposition
    • C14S4, QR Decomposition
    • C14S5, Cholesky Decomposition
  • C15, Eigendecomposition
    • C15S2, Eigendecomposition of a Matrix (No example)
    • C15S3, Eigenvectors and Eigenvalues
    • C15S4, Calculation of Eigendecomposition
    • C15S5, Confirgm Eigenvector and Eigenvalue
    • C15S6, Reconstruct Matrix
  • C16, Singular Value Decomposition
    • TODO
  • C17, Intro to Multivariate Statistics
  • C18, Principal Component Analysis
  • C19, Linear Regression

Cheatsheet

Setup Development Environment

  1. Install Git https://git-scm.com/downloads

  2. Go into terminal and make dir (assuming current dir home), cd into it

mkdir JupyterProjects
cd JupyterProjects
  1. Pull repo
git clone https://github.com/csalinasonline/LinAlgML.git
  1. Download Anaconda https://www.anaconda.com/

  2. Create a Conda env

conda create -n "blah..." python=3.6
  1. Activate env
conda activate "blah..."
  1. Pip install requirements
pip install -r requirements.txt
  1. Go into Notebooks
cd LinAlgML
cd Notebooks
  1. Try it out!