-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsyn_test.py
89 lines (74 loc) · 3.2 KB
/
syn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import torch
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
from tqdm import tqdm
from util.util import calc_psnr as calc_psnr
import time
import numpy as np
from collections import OrderedDict as odict
from copy import deepcopy
from util.process import get_raw2rgb
from util.util import mu_tonemap
import cv2
if __name__ == '__main__':
opt = TestOptions().parse()
if not isinstance(opt.load_iter, list):
load_iters = [opt.load_iter]
else:
load_iters = deepcopy(opt.load_iter)
if not isinstance(opt.dataset_name, list):
dataset_names = [opt.dataset_name]
else:
dataset_names = deepcopy(opt.dataset_name)
datasets = odict()
for dataset_name in dataset_names:
dataset = create_dataset(dataset_name, 'test', opt)
datasets[dataset_name] = tqdm(dataset)
for load_iter in load_iters:
opt.load_iter = load_iter
model = create_model(opt)
model.setup(opt)
model.eval()
for dataset_name in dataset_names:
opt.dataset_name = dataset_name
tqdm_val = datasets[dataset_name]
dataset_test = tqdm_val.iterable
dataset_size_test = len(dataset_test)
print('='*80)
print(dataset_name + ' dataset')
tqdm_val.reset()
time_val = 0
for i, data in enumerate(tqdm_val):
torch.cuda.empty_cache()
model.set_input(data)
torch.cuda.synchronize()
time_val_start = time.time()
model.test()
torch.cuda.synchronize()
time_val += time.time() - time_val_start
res = model.get_current_visuals()
if opt.save_imgs:
# path for saving images
file_name = data['fname'][0].split('-')
folder_dir = './ckpt/%s/output_syn_vispng_%03d/%s' % (opt.name, load_iter, file_name[0])
os.makedirs(folder_dir, exist_ok=True)
save_dir_vispng = '%s/%s.png' % (folder_dir, file_name[1])
raw_img = res['data_out'][0].permute(1, 2, 0) / 16
img = get_raw2rgb(raw_img, data['meta'], demosaic='net', lineRGB=True)
img = torch.clamp(mu_tonemap(img, mu=5e3)*65535, 0, 65535)
img = img.cpu().numpy()[..., ::-1]
# pad surrounding pixels with 0 values
if dataset_name == 'syn':
img = np.pad(img, ((10,10), (10,10), (0,0)), 'constant', constant_values=((0,0), (0,0), (0,0)))
elif dataset_name == 'synplus':
img = np.pad(img, ((16,16), (16,16), (0,0)), 'constant', constant_values=((0,0), (0,0), (0,0)))
else:
raise ValueError
cv2.imwrite(save_dir_vispng, img.astype(np.uint16))
print('dataset: %s, Time: %.3f s, AVG Time: %.3f ms \n'
% (dataset_name, time_val, time_val/dataset_size_test*1000))
for dataset in datasets:
datasets[dataset].close()