diff --git a/main_download_pretrained_models.py b/main_download_pretrained_models.py index f195390e..00edd940 100644 --- a/main_download_pretrained_models.py +++ b/main_download_pretrained_models.py @@ -25,7 +25,7 @@ python main_download_pretrained_models.py --models "DPSR" --model_dir "model_zoo" download SwinIR models: - python main_download_pretrained_models.py --models "SwinIR" --model_dir "model_zoo/swinir" + python main_download_pretrained_models.py --models "SwinIR" --model_dir "model_zoo" download other models: python main_download_pretrained_models.py --models "others" --model_dir "model_zoo" @@ -76,8 +76,21 @@ def download_pretrained_model(model_dir='model_zoo', model_name='dncnn3.pth'): 'USRNet': ['usrgan.pth', 'usrgan_tiny.pth', 'usrnet.pth', 'usrnet_tiny.pth'], 'DPIR': ['drunet_gray.pth', 'drunet_color.pth', 'drunet_deblocking_color.pth', 'drunet_deblocking_grayscale.pth'], 'BSRGAN': ['BSRGAN.pth', 'BSRNet.pth', 'BSRGANx2.pth'], - 'SwinIR': ['001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth', '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x2.pth', '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x3.pth', '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x4.pth', '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth', '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_PSNR.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise15.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise25.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise50.pth', '005_colorDN_DFWB_s128w8_SwinIR-M_noise15.pth', '005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth', '005_colorDN_DFWB_s128w8_SwinIR-M_noise50.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg10.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg20.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg30.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg40.pth'], - 'others': ['RRDB.pth', 'ESRGAN.pth', 'FSSR_DPED.pth', 'FSSR_JPEG.pth', 'RealSR_DPED.pth', 'RealSR_JPEG.pth'] + 'IRCNN': ['ircnn_color.pth', 'ircnn_gray.pth'], + 'SwinIR': ['001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth', + '001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth', '001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth', + '001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth', + '001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth', '001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth', + '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x2.pth', '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x3.pth', + '002_lightweightSR_DIV2K_s64w8_SwinIR-S_x4.pth', '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth', + '003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_PSNR.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise15.pth', + '004_grayDN_DFWB_s128w8_SwinIR-M_noise25.pth', '004_grayDN_DFWB_s128w8_SwinIR-M_noise50.pth', + '005_colorDN_DFWB_s128w8_SwinIR-M_noise15.pth', '005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth', + '005_colorDN_DFWB_s128w8_SwinIR-M_noise50.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg10.pth', + '006_CAR_DFWB_s126w7_SwinIR-M_jpeg20.pth', '006_CAR_DFWB_s126w7_SwinIR-M_jpeg30.pth', + '006_CAR_DFWB_s126w7_SwinIR-M_jpeg40.pth'], + 'others': ['msrresnet_x4_psnr.pth', 'msrresnet_x4_gan.pth', 'imdn_x4.pth', 'RRDB.pth', 'ESRGAN.pth', + 'FSSR_DPED.pth', 'FSSR_JPEG.pth', 'RealSR_DPED.pth', 'RealSR_JPEG.pth'] } method_zoo = list(method_model_zoo.keys()) @@ -91,11 +104,17 @@ def download_pretrained_model(model_dir='model_zoo', model_name='dncnn3.pth'): download_pretrained_model(args.model_dir, model_name) else: for method_model in args.models: - if method_model in method_zoo: + if method_model in method_zoo: # method, need for loop for model_name in method_model_zoo[method_model]: - download_pretrained_model(args.model_dir, model_name) - elif method_model in model_zoo: - download_pretrained_model(args.model_dir, method_model) + if 'SwinIR' in model_name: + download_pretrained_model(os.path.join(args.model_dir, 'swinir'), model_name) + else: + download_pretrained_model(args.model_dir, model_name) + elif method_model in model_zoo: # model, do not need for loop + if 'SwinIR' in model_name: + download_pretrained_model(os.path.join(args.model_dir, 'swinir'), method_model) + else: + download_pretrained_model(args.model_dir, method_model) else: print(f'Do not find {method_model} from the pre-trained model zoo!')