-
Notifications
You must be signed in to change notification settings - Fork 15
/
train_pointcutmix_r.py
329 lines (269 loc) · 14.1 KB
/
train_pointcutmix_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from __future__ import print_function
import argparse
import os
import csv
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from data_utils.data_util import PointcloudScaleAndTranslate
from data_utils.ModelNetDataLoader import ModelNetDataLoader
from models.pointnet import PointNetCls, feature_transform_regularizer
from models.pointnet2 import PointNet2ClsMsg
from models.dgcnn import DGCNN
from models.pointcnn import PointCNNCls
from utils import progress_bar, log_row
import sys
sys.path.append("./emd/")
import emd_module as emd
def gen_train_log(args):
if not os.path.isdir('logs_train'):
os.mkdir('logs_train')
logname = ('logs_train/%s_%s_%s.csv' % (args.data, args.model, args.name))
if os.path.exists(logname):
with open(logname, 'a') as logfile:
log_row(logname, [''])
log_row(logname, [''])
with open(logname, 'a') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
logwriter.writerow(['model type', 'data set', 'seed', 'train batch size',
'number of points in one batch', 'number of epochs', 'optimizer',
'learning rate', 'resume checkpoint path',
'feature transform', 'lambda for feature transform regularizer', 'data augment'])
logwriter.writerow([args.model, args.data, args.seed, args.batch_size, args.num_points,
args.epochs, args.optimizer, args.lr, args.resume,
args.feature_transform, args.lambda_ft, args.augment])
logwriter.writerow(['Note', args.note])
logwriter.writerow([''])
def save_ckpt(args, epoch, model, optimizer, acc_list):
if not os.path.isdir('checkpoints'):
os.mkdir('checkpoints')
if not os.path.isdir('checkpoints/%s_%s_%s' % (args.data, args.model, args.name)):
os.mkdir('checkpoints/%s_%s_%s' % (args.data, args.model, args.name))
if acc_list[-1] > max(acc_list[:-1]):
print('=====> Saving checkpoint...')
print('the best test acc is', acc_list[-1])
state = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'args': args,
'acc_list': acc_list,
}
torch.save(state, 'checkpoints/%s_%s_%s/best.pth' % (args.data, args.model, args.name))
print('Successfully save checkpoint at epoch %d' % epoch)
def cal_loss(pred, gold, smoothing=True):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
gold = gold.contiguous().view(-1)
if smoothing:
eps = 0.2
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
loss = -(one_hot * log_prb).sum(dim=1).mean()
else:
loss = F.cross_entropy(pred, gold, reduction='mean')
return loss
def test(model, test_loader, criterion):
model.eval()
correct = 0
total = 0
for j, data in enumerate(test_loader, 0):
points, label = data
points, label = points.to(device), label.to(device)[:, 0]
if args.model == 'rscnn_rcutmix':
fps_idx = pointnet2_utils.furthest_point_sample(points, args.num_points) # (B, npoint)
points = pointnet2_utils.gather_operation(points.transpose(1, 2).contiguous(), fps_idx).transpose(1,
2).contiguous() # (B, N, 3)
points = points.transpose(2, 1) # to be shape batch_size*3*N
pred, trans_feat = model(points)
loss = criterion(pred, label.long())
pred_choice = pred.data.max(1)[1]
correct += pred_choice.eq(label.data).cpu().sum()
total += label.size(0)
progress_bar(j, len(test_loader), 'Test Loss: %.3f | Test Acc: %.3f%% (%d/%d)'
% (loss.item() / (j + 1), 100. * correct.item() / total, correct, total))
return loss.item() / (j + 1), 100. * correct.item() / total
if __name__ == '__main__':
########################################
## Set hypeparameters
########################################
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='pointnet', help='choose model type')
parser.add_argument('--data', type=str, default='modelnet40', help='choose data set')
parser.add_argument('--seed', type=int, default=0, help='manual random seed')
parser.add_argument('--batch_size', type=int, default=16, help='input batch size')
parser.add_argument('--num_points', type=int, default=1024, help='input batch size')
parser.add_argument('--epochs', type=int, default=300, help='number of epochs to train for')
parser.add_argument('--optimizer', type=str, default='Adam', help='optimizer for training')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate in training')
parser.add_argument('--resume', type=str, default='/', help='resume path')
parser.add_argument('--feature_transform', type=int, default=1, help="use feature transform")
parser.add_argument('--lambda_ft', type=float, default=0.001, help="lambda for feature transform")
parser.add_argument('--augment', type=int, default=1, help='data argment to increase robustness')
parser.add_argument('--name', type=str, default='train', help='name of the experiment')
parser.add_argument('--note', type=str, default='', help='notation of the experiment')
parser.add_argument('--normal', action='store_true', default=False,
help='Whether to use normal information [default: False]')
parser.add_argument('--beta', default=1, type=float, help='hyperparameter beta')
parser.add_argument('--cutmix_prob', default=0.5, type=float, help='cutmix probability')
args = parser.parse_args()
args.feature_transform, args.augment = bool(args.feature_transform), bool(args.augment)
### Set random seed
args.seed = args.seed if args.seed > 0 else random.randint(1, 10000)
# dataset path
DATA_PATH = '/home/zjl/data/modelnet40_normal_resampled/'
########################################
## Intiate model
########################################
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_classes = 40
if args.model == 'pointnet_rcutmix':
model = PointNetCls(num_classes, args.feature_transform)
model = model.to(device)
elif args.model == 'pointnet2_rcutmix':
model = PointNet2ClsMsg(num_classes)
model = model.to(device)
model = nn.DataParallel(model)
elif args.model == 'dgcnn_rcutmix':
model = DGCNN(num_classes)
model = model.to(device)
model = nn.DataParallel(model)
elif args.model == 'rscnn_rcutmix':
from models.rscnn import RSCNN ## use torch 0.4.1.post2
import models.rscnn_utils.pointnet2_utils as pointnet2_utils
import models.rscnn_utils.pytorch_utils as pt_utils
model = RSCNN(num_classes)
model = model.to(device)
model = nn.DataParallel(model)
if len(args.resume) > 1:
print('=====> Loading from checkpoint...')
checkpoint = torch.load('checkpoints/%s.pth' % args.resume)
args = checkpoint['args']
torch.manual_seed(args.seed)
print("Random Seed: ", args.seed)
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
elif args.optimizer == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999))
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
START_EPOCH = checkpoint['epoch'] + 1
acc_list = checkpoint['acc_list']
print('Successfully resumed!')
else:
print('=====> Building new model...')
torch.manual_seed(args.seed)
print("Random Seed: ", args.seed)
if args.model == 'dgcnn_rcutmix':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr * 100, momentum=0.9, weight_decay=1e-4)
scheduler_c = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 250, eta_min=1e-3)
else:
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.lr,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=1e-4
)
scheduler_c = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
START_EPOCH = 0
acc_list = [0]
print('Successfully built!')
########################################
## Load data
########################################
print('======> Loading data')
TRAIN_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_points, split='train',
normal_channel=args.normal)
TEST_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_points, split='test',
normal_channel=args.normal)
train_loader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True,
num_workers=4, drop_last=True)
test_loader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False,
num_workers=4, drop_last=False)
PointcloudScaleAndTranslate = PointcloudScaleAndTranslate()
print('======> Successfully loaded!')
gen_train_log(args)
logname = ('logs_train/%s_%s_%s.csv' % (args.data, args.model, args.name))
########################################
## Train
########################################
if args.model == 'dgcnn_rcutmix':
criterion = cal_loss
else:
criterion = F.cross_entropy # nn.CrossEntropyLoss()
if args.resume == '/':
log_row(logname, ['Epoch', 'Train Loss', 'Train Acc', 'Test Loss', 'Test Acc', 'learning Rate'])
for epoch in range(START_EPOCH, args.epochs):
print('\nEpoch: %d' % epoch)
scheduler_c.step(epoch)
model.train()
correct = 0
total = 0
for i, data in enumerate(train_loader, 0):
points, label = data
points, label = points.to(device), label.to(device)[:, 0]
points = PointcloudScaleAndTranslate(points)
target = label
if args.model == 'rscnn_rcutmix':
fps_idx = pointnet2_utils.furthest_point_sample(points, args.num_points) # (B, npoint)
fps_idx = fps_idx[:, np.random.choice(args.num_points, args.num_points, False)]
points = pointnet2_utils.gather_operation(points.transpose(1, 2).contiguous(), fps_idx).transpose(1, 2).contiguous() # (B, N, 3)
# cutmix
optimizer.zero_grad()
r = np.random.rand(1)
if args.beta > 0 and r < args.cutmix_prob:
lam = np.random.beta(args.beta, args.beta)
B = points.size()[0]
rand_index = torch.randperm(B).cuda()
target_a = target
target_b = target[rand_index]
point_a = torch.zeros(B, 1024, 3)
point_b = torch.zeros(B, 1024, 3)
point_c = torch.zeros(B, 1024, 3)
point_a = points
point_b = points[rand_index]
point_c = points[rand_index]
point_a, point_b, point_c = point_a.to(device), point_b.to(device), point_c.to(device)
remd = emd.emdModule()
remd = remd.cuda()
dis, ind = remd(point_a, point_b, 0.005, 300)
for ass in range(B):
point_c[ass, :, :] = point_c[ass, ind[ass].long(), :]
int_lam = int(args.num_points * lam)
int_lam = max(1, int_lam)
gamma = np.random.choice(args.num_points, int_lam, replace=False, p=None)
for i2 in range(B):
points[i2, gamma, :] = point_c[i2, gamma, :]
# adjust lambda to exactly match point ratio
lam = int_lam * 1.0 / args.num_points
points = points.transpose(2, 1)
pred, trans_feat = model(points)
loss = criterion(pred, target_a.long()) * (1. - lam) + criterion(pred, target_b.long()) * lam
else:
points = points.transpose(2, 1)
pred, trans_feat = model(points)
loss = criterion(pred, target.long())
if args.feature_transform and args.model == 'pointnet_rcutmix':
loss += feature_transform_regularizer(trans_feat) * args.lambda_ft
loss.backward()
optimizer.step()
pred_choice = pred.data.max(1)[1]
correct += pred_choice.eq(label.data).cpu().sum()
total += label.size(0)
progress_bar(i, len(train_loader), 'Train Loss: %.3f | Train Acc: %.3f%% (%d/%d)'
% (loss.item() / (i + 1), 100. * correct.item() / total, correct, total))
train_loss, train_acc = loss.item() / (i + 1), 100. * correct.item() / total
### Test in batch
test_loss, test_acc = test(model, test_loader, criterion)
acc_list.append(test_acc)
print('the best test acc is', max(acc_list))
### Keep tracing
log_row(logname, [epoch, train_loss, train_acc, test_loss, test_acc,
optimizer.param_groups[0]['lr'], max(acc_list), np.argmax(acc_list) - 1])
save_ckpt(args, epoch, model, optimizer, acc_list)