-
Notifications
You must be signed in to change notification settings - Fork 26
/
ops.py
61 lines (51 loc) · 2.83 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import tensorflow as tf
def lrelu(x, leak=0.01):
return tf.maximum(x, leak*x)
def batch_norm(input, phase_train):
return tf.contrib.layers.batch_norm(input, decay=0.99, updates_collections=None, epsilon=1e-5, scale=True, is_training=phase_train)
def instance_norm(input, phase_train):
return tf.contrib.layers.instance_norm(input)
def linear(input_, output_size, scope, add_reg=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope):
matrix = tf.get_variable("Matrix", [shape[1], output_size], initializer=tf.contrib.layers.xavier_initializer())#tf.random_normal_initializer(stddev=0.02)
bias = tf.get_variable("bias", [output_size], initializer=tf.zeros_initializer())
if add_reg:
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, matrix)
print("linear","in",shape,"out",(shape[0],output_size))
return tf.matmul(input_, matrix) + bias
def conv2d(input_, shape, strides, scope, padding="SAME", add_reg=False):
with tf.variable_scope(scope):
matrix = tf.get_variable('Matrix', shape, initializer=tf.contrib.layers.xavier_initializer())#tf.truncated_normal_initializer(stddev=0.02)
bias = tf.get_variable('bias', [shape[-1]], initializer=tf.zeros_initializer())
if add_reg:
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, matrix)
conv = tf.nn.conv2d(input_, matrix, strides=strides, padding=padding)
conv = tf.nn.bias_add(conv, bias)
print("conv2d","in",input_.shape,"out",conv.shape)
return conv
def conv2d_nobias(input_, shape, strides, scope, padding="SAME", add_reg=False):
with tf.variable_scope(scope):
matrix = tf.get_variable('Matrix', shape, initializer=tf.contrib.layers.xavier_initializer())#tf.truncated_normal_initializer(stddev=0.02)
if add_reg:
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, matrix)
conv = tf.nn.conv2d(input_, matrix, strides=strides, padding=padding)
print("conv2d","in",input_.shape,"out",conv.shape)
return conv
def conv3d(input_, shape, strides, scope, padding="SAME"):
with tf.variable_scope(scope):
matrix = tf.get_variable("Matrix", shape, initializer=tf.contrib.layers.xavier_initializer())
bias = tf.get_variable("bias", [shape[-1]], initializer=tf.zeros_initializer())
conv = tf.nn.conv3d(input_, matrix, strides=strides, padding=padding)
conv = tf.nn.bias_add(conv, bias)
print("conv3d","in",input_.shape,"out",conv.shape)
return conv
def deconv3d(input_, shape, out_shape, strides, scope, padding="SAME"):
with tf.variable_scope(scope):
matrix = tf.get_variable("Matrix", shape, initializer=tf.contrib.layers.xavier_initializer())
bias = tf.get_variable("bias", [shape[-2]], initializer=tf.zeros_initializer())
conv = tf.nn.conv3d_transpose(input_, matrix, out_shape, strides=strides, padding=padding)
conv = tf.nn.bias_add(conv, bias)
print("deconv3d","in",input_.shape,"out",conv.shape)
return conv