-
Notifications
You must be signed in to change notification settings - Fork 26
/
utils.py
367 lines (324 loc) · 11.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import numpy as np
import math
#.ply format -- X,Y,Z, normalX,normalY,normalZ
def parse_ply_planes(shape_name, num_of_points=2048):
file = open(shape_name,'r')
lines = file.readlines()
vertices = np.zeros([num_of_points,7], np.float32)
assert lines[9].strip() == "end_header"
for i in range(num_of_points):
line = lines[i+10].split()
vertices[i,0] = float(line[0]) #X
vertices[i,1] = float(line[1]) #Y
vertices[i,2] = float(line[2]) #Z
vertices[i,3] = float(line[3]) #normalX
vertices[i,4] = float(line[4]) #normalY
vertices[i,5] = float(line[5]) #normalZ
tmp = vertices[i,0]*vertices[i,3] + vertices[i,1]*vertices[i,4] + vertices[i,2]*vertices[i,5]
vertices[i,6] = -tmp #d for plane ax+by+cz+d = 0
return vertices
def parse_ply_list_to_planes(ref_txt_name, data_dir, data_txt_name):
#open file & read points
ref_file = open(ref_txt_name, 'r')
ref_names = [line.strip() for line in ref_file]
ref_file.close()
data_file = open(data_txt_name, 'r')
data_names = [line.strip() for line in data_file]
data_file.close()
num_shapes = len(ref_names)
ref_points = np.zeros([num_shapes,2048,7], np.float32)
idx = np.zeros([num_shapes], np.int32)
for i in range(num_shapes):
shape_name = data_dir+"/"+ref_names[i]+".ply"
shape_idx = data_names.index(ref_names[i])
shape_planes = parse_ply_planes(shape_name)
ref_points[i,:,:] = shape_planes
idx[i] = shape_idx
return ref_points, idx, ref_names
def write_ply_point(name, vertices):
fout = open(name, 'w')
fout.write("ply\n")
fout.write("format ascii 1.0\n")
fout.write("element vertex "+str(len(vertices))+"\n")
fout.write("property float x\n")
fout.write("property float y\n")
fout.write("property float z\n")
fout.write("end_header\n")
for ii in range(len(vertices)):
fout.write(str(vertices[ii,0])+" "+str(vertices[ii,1])+" "+str(vertices[ii,2])+"\n")
fout.close()
def write_ply_point_normal(name, vertices, normals=None):
fout = open(name, 'w')
fout.write("ply\n")
fout.write("format ascii 1.0\n")
fout.write("element vertex "+str(len(vertices))+"\n")
fout.write("property float x\n")
fout.write("property float y\n")
fout.write("property float z\n")
fout.write("property float nx\n")
fout.write("property float ny\n")
fout.write("property float nz\n")
fout.write("end_header\n")
if normals is None:
for ii in range(len(vertices)):
fout.write(str(vertices[ii,0])+" "+str(vertices[ii,1])+" "+str(vertices[ii,2])+" "+str(vertices[ii,3])+" "+str(vertices[ii,4])+" "+str(vertices[ii,5])+"\n")
else:
for ii in range(len(vertices)):
fout.write(str(vertices[ii,0])+" "+str(vertices[ii,1])+" "+str(vertices[ii,2])+" "+str(normals[ii,0])+" "+str(normals[ii,1])+" "+str(normals[ii,2])+"\n")
fout.close()
def write_ply_triangle(name, vertices, triangles):
fout = open(name, 'w')
fout.write("ply\n")
fout.write("format ascii 1.0\n")
fout.write("element vertex "+str(len(vertices))+"\n")
fout.write("property float x\n")
fout.write("property float y\n")
fout.write("property float z\n")
fout.write("element face "+str(len(triangles))+"\n")
fout.write("property list uchar int vertex_index\n")
fout.write("end_header\n")
for ii in range(len(vertices)):
fout.write(str(vertices[ii,0])+" "+str(vertices[ii,1])+" "+str(vertices[ii,2])+"\n")
for ii in range(len(triangles)):
fout.write("3 "+str(triangles[ii,0])+" "+str(triangles[ii,1])+" "+str(triangles[ii,2])+"\n")
fout.close()
def write_ply_polygon(name, vertices, polygons):
fout = open(name, 'w')
fout.write("ply\n")
fout.write("format ascii 1.0\n")
fout.write("element vertex "+str(len(vertices))+"\n")
fout.write("property float x\n")
fout.write("property float y\n")
fout.write("property float z\n")
fout.write("element face "+str(len(polygons))+"\n")
fout.write("property list uchar int vertex_index\n")
fout.write("end_header\n")
for ii in range(len(vertices)):
fout.write(str(vertices[ii][0])+" "+str(vertices[ii][1])+" "+str(vertices[ii][2])+"\n")
for ii in range(len(polygons)):
fout.write(str(len(polygons[ii])))
for jj in range(len(polygons[ii])):
fout.write(" "+str(polygons[ii][jj]))
fout.write("\n")
fout.close()
def write_obj_triangle(name, vertices, triangles):
fout = open(name, 'w')
for ii in range(len(vertices)):
fout.write("v "+str(vertices[ii,0])+" "+str(vertices[ii,1])+" "+str(vertices[ii,2])+"\n")
for ii in range(len(triangles)):
fout.write("f "+str(triangles[ii,0]+1)+" "+str(triangles[ii,1]+1)+" "+str(triangles[ii,2]+1)+"\n")
fout.close()
def write_obj_polygon(name, vertices, polygons):
fout = open(name, 'w')
for ii in range(len(vertices)):
fout.write("v "+str(vertices[ii][0])+" "+str(vertices[ii][1])+" "+str(vertices[ii][2])+"\n")
for ii in range(len(polygons)):
fout.write("f")
for jj in range(len(polygons[ii])):
fout.write(" "+str(polygons[ii][jj]+1))
fout.write("\n")
fout.close()
#designed to take 64^3 voxels!
def sample_points_polygon_vox64(vertices, polygons, voxel_model_64, num_of_points):
#convert polygons to triangles
triangles = []
for ii in range(len(polygons)):
for jj in range(len(polygons[ii])-2):
triangles.append( [polygons[ii][0], polygons[ii][jj+1], polygons[ii][jj+2]] )
triangles = np.array(triangles, np.int32)
vertices = np.array(vertices, np.float32)
small_step = 1.0/64
epsilon = 1e-6
triangle_area_list = np.zeros([len(triangles)],np.float32)
triangle_normal_list = np.zeros([len(triangles),3],np.float32)
for i in range(len(triangles)):
#area = |u x v|/2 = |u||v|sin(uv)/2
a,b,c = vertices[triangles[i,1]]-vertices[triangles[i,0]]
x,y,z = vertices[triangles[i,2]]-vertices[triangles[i,0]]
ti = b*z-c*y
tj = c*x-a*z
tk = a*y-b*x
area2 = math.sqrt(ti*ti+tj*tj+tk*tk)
if area2<epsilon:
triangle_area_list[i] = 0
triangle_normal_list[i,0] = 0
triangle_normal_list[i,1] = 0
triangle_normal_list[i,2] = 0
else:
triangle_area_list[i] = area2
triangle_normal_list[i,0] = ti/area2
triangle_normal_list[i,1] = tj/area2
triangle_normal_list[i,2] = tk/area2
triangle_area_sum = np.sum(triangle_area_list)
sample_prob_list = (num_of_points/triangle_area_sum)*triangle_area_list
triangle_index_list = np.arange(len(triangles))
point_normal_list = np.zeros([num_of_points,6],np.float32)
count = 0
watchdog = 0
while(count<num_of_points):
np.random.shuffle(triangle_index_list)
watchdog += 1
if watchdog>100:
print("infinite loop here!")
return point_normal_list
for i in range(len(triangle_index_list)):
if count>=num_of_points: break
dxb = triangle_index_list[i]
prob = sample_prob_list[dxb]
prob_i = int(prob)
prob_f = prob-prob_i
if np.random.random()<prob_f:
prob_i += 1
normal_direction = triangle_normal_list[dxb]
u = vertices[triangles[dxb,1]]-vertices[triangles[dxb,0]]
v = vertices[triangles[dxb,2]]-vertices[triangles[dxb,0]]
base = vertices[triangles[dxb,0]]
for j in range(prob_i):
#sample a point here:
u_x = np.random.random()
v_y = np.random.random()
if u_x+v_y>=1:
u_x = 1-u_x
v_y = 1-v_y
ppp = u*u_x+v*v_y+base
#verify normal
pppn1 = (ppp+normal_direction*small_step+0.5)*64
px1 = int(pppn1[0])
py1 = int(pppn1[1])
pz1 = int(pppn1[2])
ppx = int((ppp[0]+0.5)*64)
ppy = int((ppp[1]+0.5)*64)
ppz = int((ppp[2]+0.5)*64)
if ppx<0 or ppx>=64 or ppy<0 or ppy>=64 or ppz<0 or ppz>=64:
continue
if voxel_model_64[ppx,ppy,ppz]>1e-3 or px1<0 or px1>=64 or py1<0 or py1>=64 or pz1<0 or pz1>=64 or voxel_model_64[px1,py1,pz1]>1e-3:
#valid
point_normal_list[count,:3] = ppp
point_normal_list[count,3:] = normal_direction
count += 1
if count>=num_of_points: break
return point_normal_list
def sample_points_polygon(vertices, polygons, num_of_points):
#convert polygons to triangles
triangles = []
for ii in range(len(polygons)):
for jj in range(len(polygons[ii])-2):
triangles.append( [polygons[ii][0], polygons[ii][jj+1], polygons[ii][jj+2]] )
triangles = np.array(triangles, np.int32)
vertices = np.array(vertices, np.float32)
small_step = 1.0/64
epsilon = 1e-6
triangle_area_list = np.zeros([len(triangles)],np.float32)
triangle_normal_list = np.zeros([len(triangles),3],np.float32)
for i in range(len(triangles)):
#area = |u x v|/2 = |u||v|sin(uv)/2
a,b,c = vertices[triangles[i,1]]-vertices[triangles[i,0]]
x,y,z = vertices[triangles[i,2]]-vertices[triangles[i,0]]
ti = b*z-c*y
tj = c*x-a*z
tk = a*y-b*x
area2 = math.sqrt(ti*ti+tj*tj+tk*tk)
if area2<epsilon:
triangle_area_list[i] = 0
triangle_normal_list[i,0] = 0
triangle_normal_list[i,1] = 0
triangle_normal_list[i,2] = 0
else:
triangle_area_list[i] = area2
triangle_normal_list[i,0] = ti/area2
triangle_normal_list[i,1] = tj/area2
triangle_normal_list[i,2] = tk/area2
triangle_area_sum = np.sum(triangle_area_list)
sample_prob_list = (num_of_points/triangle_area_sum)*triangle_area_list
triangle_index_list = np.arange(len(triangles))
point_normal_list = np.zeros([num_of_points,6],np.float32)
count = 0
watchdog = 0
while(count<num_of_points):
np.random.shuffle(triangle_index_list)
watchdog += 1
if watchdog>100:
print("infinite loop here!")
return point_normal_list
for i in range(len(triangle_index_list)):
if count>=num_of_points: break
dxb = triangle_index_list[i]
prob = sample_prob_list[dxb]
prob_i = int(prob)
prob_f = prob-prob_i
if np.random.random()<prob_f:
prob_i += 1
normal_direction = triangle_normal_list[dxb]
u = vertices[triangles[dxb,1]]-vertices[triangles[dxb,0]]
v = vertices[triangles[dxb,2]]-vertices[triangles[dxb,0]]
base = vertices[triangles[dxb,0]]
for j in range(prob_i):
#sample a point here:
u_x = np.random.random()
v_y = np.random.random()
if u_x+v_y>=1:
u_x = 1-u_x
v_y = 1-v_y
point_normal_list[count,:3] = u*u_x+v*v_y+base
point_normal_list[count,3:] = normal_direction
count += 1
if count>=num_of_points: break
return point_normal_list
def sample_points(vertices, triangles, num_of_points):
epsilon = 1e-6
triangle_area_list = np.zeros([len(triangles)],np.float32)
triangle_normal_list = np.zeros([len(triangles),3],np.float32)
for i in range(len(triangles)):
#area = |u x v|/2 = |u||v|sin(uv)/2
a,b,c = vertices[triangles[i,1]]-vertices[triangles[i,0]]
x,y,z = vertices[triangles[i,2]]-vertices[triangles[i,0]]
ti = b*z-c*y
tj = c*x-a*z
tk = a*y-b*x
area2 = math.sqrt(ti*ti+tj*tj+tk*tk)
if area2<epsilon:
triangle_area_list[i] = 0
triangle_normal_list[i,0] = 0
triangle_normal_list[i,1] = 0
triangle_normal_list[i,2] = 0
else:
triangle_area_list[i] = area2
triangle_normal_list[i,0] = ti/area2
triangle_normal_list[i,1] = tj/area2
triangle_normal_list[i,2] = tk/area2
triangle_area_sum = np.sum(triangle_area_list)
sample_prob_list = (num_of_points/triangle_area_sum)*triangle_area_list
triangle_index_list = np.arange(len(triangles))
point_normal_list = np.zeros([num_of_points,6],np.float32)
count = 0
watchdog = 0
while(count<num_of_points):
np.random.shuffle(triangle_index_list)
watchdog += 1
if watchdog>100:
print("infinite loop here!")
exit(0)
for i in range(len(triangle_index_list)):
if count>=num_of_points: break
dxb = triangle_index_list[i]
prob = sample_prob_list[dxb]
prob_i = int(prob)
prob_f = prob-prob_i
if np.random.random()<prob_f:
prob_i += 1
normal_direction = triangle_normal_list[dxb]
u = vertices[triangles[dxb,1]]-vertices[triangles[dxb,0]]
v = vertices[triangles[dxb,2]]-vertices[triangles[dxb,0]]
base = vertices[triangles[dxb,0]]
for j in range(prob_i):
#sample a point here:
u_x = np.random.random()
v_y = np.random.random()
if u_x+v_y>=1:
u_x = 1-u_x
v_y = 1-v_y
point_normal_list[count,:3] = u*u_x+v*v_y+base
point_normal_list[count,3:] = normal_direction
count += 1
if count>=num_of_points: break
return point_normal_list