-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
229 lines (185 loc) · 7.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import ipdb; import os; import sys
sys.path.append("my_models/")
import numpy as np; import spacy
import torch; from torchtext import data,datasets; import torch.nn as nn; import torch.optim as optim
from models import RNN; import custom_lstm; from grad_cam import *; from my_dataloader import *; from my_utils import *
import random; import time; import argparse; import copy; import math; import params; from tqdm import tqdm
global logf
def myprint(s):
global logf
if args.log :
print(s)
logf.write(str(s) +'\n')
logf.flush()
return
parser = params.parse_args()
args = parser.parse_args()
args = add_config(args) if args.config_file != None else args
assert(args.mode == "train" or args.mode == "resume")
set_all_seeds_to(args.seed)
MAX_VOCAB_SIZE = 25000 if (args.cap_vocab) else 100000
print (MAX_VOCAB_SIZE)
device = torch.device('cuda:{0}'.format(args.gpu_id) if torch.cuda.is_available() else 'cpu')
if args.pool == 'last1' or args.pool == 'max1' or args.pool == 'mean1':
custom_lstm.forget_bias = args.forget_bias
args.model_path = get_model_path(args)
model_dir = "../models/" + args.task + '/' + args.pool + '/' + args.model_path if args.seed == 1234 else f"../models_{str(args.seed)}/" + args.task + '/' + args.pool + '/' + args.model_path
print(model_dir)
model_name = model_dir + '/best.pt'
if args.mode == "resume":
print("Resume")
model_name = model_dir + '/best_resume.pt'
if not os.path.exists(model_dir):
os.makedirs(model_dir)
logf, train_acc_f, valid_acc_f, test_acc_f, ratios_f = get_all_logs(args,model_dir)
TEXT, LABEL, train_iterator, valid_iterator, test_iterator = get_data(args, MAX_VOCAB_SIZE, device)
myprint('Data Loading done!')
vocab_size = len(TEXT.vocab)
pad_idx = TEXT.vocab.stoi[TEXT.pad_token]
output_dim = len(LABEL.vocab)
model = RNN(vocab_size = vocab_size,
embedding_dim = args.embed_dim,
hidden_dim = args.hidden_dim,
output_dim = output_dim,
bidirectional = args.bidirectional,
pad_idx = pad_idx,
gpu_id = args.gpu_id,
pool = args.pool,
percent = None,
pos_vec = "none",
pos_wiki= "none",
dc = args.drop_connect, customlstm=args.customlstm, num_layers = args.num_layers)
if args.glove and args.use_embedding:
pretrained_embeddings = TEXT.vocab.vectors
myprint(pretrained_embeddings.shape)
model.embedding.weight.data.copy_(pretrained_embeddings)
if args.freeze_embedding:
model.embedding.weight.requires_grad = False
model = model.to(device)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
myprint(f'The model has {count_parameters(model):,} trainable parameters')
if args.optimizer == "SGD":
print("Using SGD")
optimizer = optim.SGD(model.parameters(), weight_decay=args.weight_decay,
lr = args.lr, momentum = args.momentum, nesterov = args.nesterov)
else:
print("Using Adam")
optimizer = optim.Adam(model.parameters(), weight_decay=args.weight_decay, lr = args.lr, amsgrad=args.amsgrad)
criterion = nn.CrossEntropyLoss().to(device)
accuracy = categorical_accuracy
if args.task == "MIMIC-D":
accuracy = f1_score
def iter_func(iterator):
if args.log:
return tqdm(iterator)
else:
return iterator
def train(model, iterator, optimizer, criterion, epoch, valid_iterator):
global sum_norm, num_points, all_gradients, all_activations
epoch_loss = 0
epoch_acc = 0
model.train()
n = 0
sum_norm = 0
num_points = 20
all_gradients, all_activations = [], []
copy_train_iterator = copy.copy(train_iterator)
for batch in iter_func(iterator):
optimizer.zero_grad()
text, text_lengths = batch.text
predictions = model(text, text_lengths, gradients=args.gradients, use_embedding = args.use_embedding)[0].squeeze(1)
loss = criterion(predictions, batch.label)
acc = accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
if args.gradients:
gradients_compute(model, args, all_gradients)
if n%3 == 0 and args.ratios:
first_ratio, sum_ratio = compute_ratios(all_gradients)
valid_iterator.batch_size, copy_train_iterator.batch_size = 512, 512
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
train_loss, train_acc = evaluate(model, copy_train_iterator, criterion)
ratios_f.write(f'{train_acc*100}\t{valid_acc*100}\t{first_ratio}\t{sum_ratio}\n')
ratios_f.flush()
if args.gradients:
free_stored_grads(model)
epoch_loss += loss.item()
epoch_acc += acc.item()
n+=1
if args.gradients and args.initial and n == 1000:
write_gradients('initial_gradients.txt', args, all_gradients, model_dir)
sys.exit(1)
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model, iterator, criterion):
epoch_loss = 0
epoch_acc = 0
model.eval()
n=0
with torch.no_grad():
for i,batch in enumerate(iterator):
text, text_lengths = batch.text
predictions = model(text, text_lengths, use_embedding = args.use_embedding)[0].squeeze(1)
loss = criterion(predictions, batch.label)
acc = accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
n+=1
return epoch_loss / n, epoch_acc / n
funct = train
funce = evaluate
epoch_initial = 0
if args.mode == "resume":
checkpoint = torch.load(model_dir + '/final.pt', map_location = device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch_initial = checkpoint['epoch']
best_valid_acc = 0
final_valid_loss = 0
patience_max = 20
patience = 0
if (args.gradients == True):
patience_max = 100
for epoch in range(epoch_initial, args.epochs+epoch_initial):
start_time = time.time()
train_loss, train_acc = funct(model, train_iterator, optimizer, criterion, epoch , valid_iterator)
valid_loss, valid_acc = funce(model, valid_iterator, criterion)
if valid_acc < best_valid_acc:
patience +=1
else:
patience = 0
final_valid_loss = valid_loss
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': valid_loss,
}, model_name)
myprint(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
myprint(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
myprint(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
train_acc_f.write(str(train_acc*100)+'\n')
valid_acc_f.write(str(valid_acc*100)+'\n')
train_acc_f.flush()
valid_acc_f.flush()
if patience == patience_max:
break
torch.save({
'epoch' : args.epochs,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': final_valid_loss,
}, model_dir + '/final.pt')
ratios_f.close() if args.gradients else None
train_acc_f.close()
valid_acc_f.close()
checkpoint = torch.load(model_name, map_location = device)
model.load_state_dict(checkpoint['model_state_dict'])
test_loss, test_acc = evaluate(model, test_iterator, criterion)
myprint(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
test_acc_f.write(str(test_acc*100)+'\n')
test_acc_f.flush()
test_acc_f.close()