diff --git a/README.md b/README.md index 7ef7812d..84185aa5 100644 --- a/README.md +++ b/README.md @@ -23,10 +23,10 @@ pip install qlasskit For a quickstart, read the _quickstart_ and _examples_ notebooks from the documentation: [https://dakk.github.io/qlasskit](https://dakk.github.io/qlasskit). ```python -from qlasskit import qlassf, Qint4 +from qlasskit import qlassf, Qint @qlassf -def h(k: Qint4) -> bool: +def h(k: Qint[4]) -> bool: h = True for i in range(4): h = h and k[i] @@ -65,11 +65,11 @@ You can also use other functions inside a qlassf: ```python @qlassf -def equal_8(n: Qint4) -> bool: +def equal_8(n: Qint[4]) -> bool: return equal_8 == 8 @qlassfa(defs=[equal_8]) -def f(n: Qint4) -> bool: +def f(n: Qint[4]) -> bool: n = n+1 if equal_8(n) else n return n ``` @@ -78,13 +78,13 @@ Qlasskit supports complex data types, like tuples and fixed size lists: ```python @qlassf -def f(a: Tuple[Qint8, Qint8]) -> Tuple[bool, bool]: +def f(a: Tuple[Qint[8], Qint[8]]) -> Tuple[bool, bool]: return a[0] == 42, a[1] == 0 ``` ```python @qlassf -def search(alist: Qlist[Qint2, 4], to_search: Qint2): +def search(alist: Qlist[Qint[2], 4], to_search: Qint[2]): for x in alist: if x == to_search: return True diff --git a/docs/source/algorithms.ipynb b/docs/source/algorithms.ipynb index 1c599561..2bf8d7f1 100644 --- a/docs/source/algorithms.ipynb +++ b/docs/source/algorithms.ipynb @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -41,18 +41,18 @@ "4" ] }, - "execution_count": 19, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from typing import Tuple\n", - "from qlasskit import qlassf, Qint4\n", + "from qlasskit import qlassf, Qint, Qint4\n", "\n", "\n", "@qlassf\n", - "def test_tools(a: Qint4) -> Qint4:\n", + "def test_tools(a: Qint[4]) -> Qint[4]:\n", " return a + 1\n", "\n", "\n", @@ -68,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -77,7 +77,7 @@ "'0100'" ] }, - "execution_count": 18, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -133,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -141,7 +141,7 @@ "\n", "\n", "@qlassf\n", - "def f(a: Qint4) -> Qint4:\n", + "def f(a: Qint[4]) -> Qint[4]:\n", " return (a >> 3) + 1\n", "\n", "\n", @@ -167,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -175,7 +175,7 @@ "\n", "\n", "@qlassf\n", - "def f(b: Qint4) -> bool:\n", + "def f(b: Qint[4]) -> bool:\n", " return b < 16\n", "\n", "\n", diff --git a/docs/source/bqm.ipynb b/docs/source/bqm.ipynb index 7fa3566d..92893061 100644 --- a/docs/source/bqm.ipynb +++ b/docs/source/bqm.ipynb @@ -29,11 +29,11 @@ } ], "source": [ - "from qlasskit import qlassf, Qint4, Qint3, Parameter\n", + "from qlasskit import qlassf, Qint, Parameter\n", "\n", "\n", "@qlassf\n", - "def test_factor_generic(num: Parameter[Qint4], a: Qint3, b: Qint3) -> Qint4:\n", + "def test_factor_generic(num: Parameter[Qint[4]], a: Qint[3], b: Qint[3]) -> Qint[4]:\n", " return num - (a * b)\n", "\n", "\n", @@ -107,14 +107,33 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'a': 5, 'b': 3}\n" + "ename": "SolverFailureError", + "evalue": "Problem not accepted because user has insufficient remaining solver access time in project DEV.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mSolverFailureError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[3], line 5\u001b[0m\n\u001b[1;32m 3\u001b[0m sampler \u001b[38;5;241m=\u001b[39m EmbeddingComposite(DWaveSampler())\n\u001b[1;32m 4\u001b[0m sampleset \u001b[38;5;241m=\u001b[39m sampler\u001b[38;5;241m.\u001b[39msample(bqm, num_reads\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m)\n\u001b[0;32m----> 5\u001b[0m decoded_samples \u001b[38;5;241m=\u001b[39m \u001b[43mdecode_samples\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtest_factor\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msampleset\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m best_sample \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmin\u001b[39m(decoded_samples, key\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mlambda\u001b[39;00m x: x\u001b[38;5;241m.\u001b[39menergy)\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28mprint\u001b[39m(best_sample\u001b[38;5;241m.\u001b[39msample)\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/bqm.py:142\u001b[0m, in \u001b[0;36mdecode_samples\u001b[0;34m(qf, sampleset)\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Get dimod sampleset and return an high level decoded solution\"\"\"\u001b[39;00m\n\u001b[1;32m 141\u001b[0m model \u001b[38;5;241m=\u001b[39m qf\u001b[38;5;241m.\u001b[39mto_bqm(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpq_model\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 142\u001b[0m decoded \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode_sampleset\u001b[49m\u001b[43m(\u001b[49m\u001b[43msampleset\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 144\u001b[0m new_dec \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 145\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m el \u001b[38;5;129;01min\u001b[39;00m decoded:\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dimod/sampleset.py:1121\u001b[0m, in \u001b[0;36mSampleSet.record\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1105\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[1;32m 1106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrecord\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 1107\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\":obj:`numpy.recarray` containing the samples, energies, number of occurences, and other sample data.\u001b[39;00m\n\u001b[1;32m 1108\u001b[0m \n\u001b[1;32m 1109\u001b[0m \u001b[38;5;124;03m Examples:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1119\u001b[0m \n\u001b[1;32m 1120\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1121\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1122\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_record\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dimod/sampleset.py:1485\u001b[0m, in \u001b[0;36mSampleSet.resolve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[38;5;66;03m# if it doesn't have the attribute then it is already resolved\u001b[39;00m\n\u001b[1;32m 1484\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_future\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[0;32m-> 1485\u001b[0m samples \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_result_hook\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_future\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1486\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m(samples\u001b[38;5;241m.\u001b[39mrecord, samples\u001b[38;5;241m.\u001b[39mvariables, samples\u001b[38;5;241m.\u001b[39minfo, samples\u001b[38;5;241m.\u001b[39mvartype)\n\u001b[1;32m 1487\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_future\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/system/composites/embedding.py:284\u001b[0m, in \u001b[0;36mEmbeddingComposite.sample..async_unembed\u001b[0;34m(response)\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21masync_unembed\u001b[39m(response):\n\u001b[1;32m 280\u001b[0m \u001b[38;5;66;03m# unembed the sampleset aysnchronously.\u001b[39;00m\n\u001b[1;32m 282\u001b[0m warninghandler\u001b[38;5;241m.\u001b[39mchain_break(response, embedding)\n\u001b[0;32m--> 284\u001b[0m sampleset \u001b[38;5;241m=\u001b[39m \u001b[43munembed_sampleset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43membedding\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msource_bqm\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbqm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 285\u001b[0m \u001b[43m \u001b[49m\u001b[43mchain_break_method\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchain_break_method\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 286\u001b[0m \u001b[43m \u001b[49m\u001b[43mchain_break_fraction\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchain_break_fraction\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 287\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_embedding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_embedding\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 289\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m return_embedding:\n\u001b[1;32m 290\u001b[0m sampleset\u001b[38;5;241m.\u001b[39minfo[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124membedding_context\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mupdate(\n\u001b[1;32m 291\u001b[0m embedding_parameters\u001b[38;5;241m=\u001b[39membedding_parameters,\n\u001b[1;32m 292\u001b[0m chain_strength\u001b[38;5;241m=\u001b[39membedding\u001b[38;5;241m.\u001b[39mchain_strength)\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/embedding/transforms.py:606\u001b[0m, in \u001b[0;36munembed_sampleset\u001b[0;34m(target_sampleset, embedding, source_bqm, chain_break_method, chain_break_fraction, return_embedding)\u001b[0m\n\u001b[1;32m 603\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n\u001b[1;32m 604\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgiven bqm does not match the embedding\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 606\u001b[0m record \u001b[38;5;241m=\u001b[39m \u001b[43mtarget_sampleset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecord\u001b[49m\n\u001b[1;32m 608\u001b[0m unembedded, idxs \u001b[38;5;241m=\u001b[39m chain_break_method(target_sampleset, chains)\n\u001b[1;32m 610\u001b[0m reserved \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msample\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124menergy\u001b[39m\u001b[38;5;124m'\u001b[39m}\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dimod/sampleset.py:1121\u001b[0m, in \u001b[0;36mSampleSet.record\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1105\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[1;32m 1106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrecord\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 1107\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\":obj:`numpy.recarray` containing the samples, energies, number of occurences, and other sample data.\u001b[39;00m\n\u001b[1;32m 1108\u001b[0m \n\u001b[1;32m 1109\u001b[0m \u001b[38;5;124;03m Examples:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1119\u001b[0m \n\u001b[1;32m 1120\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1121\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1122\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_record\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dimod/sampleset.py:1485\u001b[0m, in \u001b[0;36mSampleSet.resolve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[38;5;66;03m# if it doesn't have the attribute then it is already resolved\u001b[39;00m\n\u001b[1;32m 1484\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_future\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[0;32m-> 1485\u001b[0m samples \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_result_hook\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_future\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1486\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m(samples\u001b[38;5;241m.\u001b[39mrecord, samples\u001b[38;5;241m.\u001b[39mvariables, samples\u001b[38;5;241m.\u001b[39minfo, samples\u001b[38;5;241m.\u001b[39mvartype)\n\u001b[1;32m 1487\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_future\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/system/samplers/dwave_sampler.py:452\u001b[0m, in \u001b[0;36mDWaveSampler.sample.._hook\u001b[0;34m(computation)\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (SolverError, InvalidAPIResponseError) \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 451\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfailover:\n\u001b[0;32m--> 452\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[1;32m 453\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(exc, SolverAuthenticationError):\n\u001b[1;32m 454\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/system/samplers/dwave_sampler.py:439\u001b[0m, in \u001b[0;36mDWaveSampler.sample.._hook\u001b[0;34m(computation)\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m sampleset\n\u001b[1;32m 438\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 439\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mresolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcomputation\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 441\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ProblemUploadError, RequestTimeout, PollingTimeout) \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 442\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfailover:\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/system/samplers/dwave_sampler.py:429\u001b[0m, in \u001b[0;36mDWaveSampler.sample.._hook..resolve\u001b[0;34m(computation)\u001b[0m\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mresolve\u001b[39m(computation):\n\u001b[1;32m 428\u001b[0m sampleset \u001b[38;5;241m=\u001b[39m computation\u001b[38;5;241m.\u001b[39msampleset\n\u001b[0;32m--> 429\u001b[0m \u001b[43msampleset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 431\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m warninghandler \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 432\u001b[0m warninghandler\u001b[38;5;241m.\u001b[39mtoo_few_samples(sampleset)\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dimod/sampleset.py:1485\u001b[0m, in \u001b[0;36mSampleSet.resolve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[38;5;66;03m# if it doesn't have the attribute then it is already resolved\u001b[39;00m\n\u001b[1;32m 1484\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_future\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[0;32m-> 1485\u001b[0m samples \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_result_hook\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_future\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1486\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m(samples\u001b[38;5;241m.\u001b[39mrecord, samples\u001b[38;5;241m.\u001b[39mvariables, samples\u001b[38;5;241m.\u001b[39minfo, samples\u001b[38;5;241m.\u001b[39mvartype)\n\u001b[1;32m 1487\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_future\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/cloud/computation.py:823\u001b[0m, in \u001b[0;36mFuture.sampleset..\u001b[0;34m(f)\u001b[0m\n\u001b[1;32m 818\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m:\n\u001b[1;32m 819\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCan\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt construct SampleSet without dimod. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 820\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-install the library with \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbqm\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m support.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 822\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampleset \u001b[38;5;241m=\u001b[39m sampleset \u001b[38;5;241m=\u001b[39m dimod\u001b[38;5;241m.\u001b[39mSampleSet\u001b[38;5;241m.\u001b[39mfrom_future(\n\u001b[0;32m--> 823\u001b[0m \u001b[38;5;28mself\u001b[39m, \u001b[38;5;28;01mlambda\u001b[39;00m f: \u001b[43mf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwait_sampleset\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 825\u001b[0m \u001b[38;5;66;03m# propagate id to sampleset as well\u001b[39;00m\n\u001b[1;32m 826\u001b[0m \u001b[38;5;66;03m# note: this requires dimod>=0.8.21 (before that version SampleSet\u001b[39;00m\n\u001b[1;32m 827\u001b[0m \u001b[38;5;66;03m# had slots set which prevented dynamic addition of attributes).\u001b[39;00m\n\u001b[1;32m 828\u001b[0m sampleset\u001b[38;5;241m.\u001b[39mwait_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mwait_id\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/cloud/computation.py:755\u001b[0m, in \u001b[0;36mFuture.wait_sampleset\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 752\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Blocking sampleset getter.\"\"\"\u001b[39;00m\n\u001b[1;32m 754\u001b[0m \u001b[38;5;66;03m# blocking result get\u001b[39;00m\n\u001b[0;32m--> 755\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_load_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 757\u001b[0m \u001b[38;5;66;03m# common problem info: id/label\u001b[39;00m\n\u001b[1;32m 758\u001b[0m problem_info \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mdict\u001b[39m(problem_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mid)\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/cloud/computation.py:893\u001b[0m, in \u001b[0;36mFuture._load_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 891\u001b[0m \u001b[38;5;66;03m# Check for other error conditions\u001b[39;00m\n\u001b[1;32m 892\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 893\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[1;32m 895\u001b[0m \u001b[38;5;66;03m# If someone else took care of this while we were waiting\u001b[39;00m\n\u001b[1;32m 896\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_result \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/dwave/cloud/client/base.py:1309\u001b[0m, in \u001b[0;36mClient._handle_problem_status\u001b[0;34m(self, message, future)\u001b[0m\n\u001b[1;32m 1307\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124merror_code\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01min\u001b[39;00m message \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124merror_msg\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01min\u001b[39;00m message:\n\u001b[1;32m 1308\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mError response received: \u001b[39m\u001b[38;5;132;01m%r\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, message)\n\u001b[0;32m-> 1309\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m SolverFailureError(message[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124merror_msg\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 1311\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstatus\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m message:\n\u001b[1;32m 1312\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidAPIResponseError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstatus\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m missing in problem description response\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mSolverFailureError\u001b[0m: Problem not accepted because user has insufficient remaining solver access time in project DEV." ] } ], diff --git a/docs/source/example_bqm_polynomial.ipynb b/docs/source/example_bqm_polynomial.ipynb index 21ddad40..6f403bb5 100644 --- a/docs/source/example_bqm_polynomial.ipynb +++ b/docs/source/example_bqm_polynomial.ipynb @@ -38,14 +38,14 @@ } ], "source": [ - "from qlasskit import qlassf, qlassfa, Qmatrix, Qint2, Qint3, Qint4, Qfixed\n", - "from qlasskit.types.qfixed import Qfixed2_4\n", + "from qlasskit import qlassf, Qfixed\n", "\n", "\n", "@qlassf\n", "def poly(x: Qfixed[3, 3], y: Qfixed[3, 3]) -> Qfixed[3, 3]:\n", " return x * 3 - y * 2 + 1\n", "\n", + "\n", "poly.expressions" ] }, @@ -70,14 +70,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'x': 7.875, 'y': 3.375} DecodedSample(-640.0, {'x': 7.875, 'y': 3.375})\n" + "{'x': 7.875, 'y': 7.375}\n" ] } ], diff --git a/docs/source/example_bqm_tsp.ipynb b/docs/source/example_bqm_tsp.ipynb index 501816f6..03775873 100644 --- a/docs/source/example_bqm_tsp.ipynb +++ b/docs/source/example_bqm_tsp.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -12,23 +12,23 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mException\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[2], line 14\u001b[0m\n\u001b[1;32m 11\u001b[0m dst_sum \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m dst_matrix[oim][oi]\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dst_sum\n\u001b[0;32m---> 14\u001b[0m tsp_f \u001b[38;5;241m=\u001b[39m \u001b[43mtsp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbind\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdst_matrix\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m tsp_f\u001b[38;5;241m.\u001b[39mexpressions\n\u001b[1;32m 16\u001b[0m \u001b[38;5;66;03m# bqm = tsp_f.to_bqm()\u001b[39;00m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/qlassfun.py:105\u001b[0m, in \u001b[0;36mUnboundQlassf.bind\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moriginal_f is not available in python notebooks!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 103\u001b[0m original_f \u001b[38;5;241m=\u001b[39m orig\n\u001b[0;32m--> 105\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_translate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfun_ast\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moriginal_f\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/qlassfun.py:285\u001b[0m, in \u001b[0;36mQlassF.from_function.._do_translate\u001b[0;34m(fun_ast, original_f)\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_do_translate\u001b[39m(fun_ast, original_f\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m--> 285\u001b[0m fun \u001b[38;5;241m=\u001b[39m \u001b[43mast2ast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfun_ast\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 286\u001b[0m fun_name, args, fun_ret, exps \u001b[38;5;241m=\u001b[39m translate_ast(fun, types, defs)\n\u001b[1;32m 288\u001b[0m exps \u001b[38;5;241m=\u001b[39m bool_optimizer\u001b[38;5;241m.\u001b[39mapply(exps)\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/ast2ast.py:495\u001b[0m, in \u001b[0;36mast2ast\u001b[0;34m(a_tree)\u001b[0m\n\u001b[1;32m 492\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m sys\u001b[38;5;241m.\u001b[39mversion_info \u001b[38;5;241m<\u001b[39m (\u001b[38;5;241m3\u001b[39m, \u001b[38;5;241m9\u001b[39m):\n\u001b[1;32m 493\u001b[0m a_tree \u001b[38;5;241m=\u001b[39m IndexReplacer()\u001b[38;5;241m.\u001b[39mvisit(a_tree)\n\u001b[0;32m--> 495\u001b[0m a_tree \u001b[38;5;241m=\u001b[39m \u001b[43mASTRewriter\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma_tree\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 496\u001b[0m \u001b[38;5;66;03m# print(ast.dump(a_tree))\u001b[39;00m\n\u001b[1;32m 497\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m a_tree\n", + "Cell \u001b[0;32mIn[1], line 16\u001b[0m\n\u001b[1;32m 12\u001b[0m dst_sum \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m dst_matrix[oim][oi]\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dst_sum\n\u001b[0;32m---> 16\u001b[0m tsp_f \u001b[38;5;241m=\u001b[39m \u001b[43mtsp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbind\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdst_matrix\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 17\u001b[0m tsp_f\u001b[38;5;241m.\u001b[39mexpressions\n\u001b[1;32m 18\u001b[0m \u001b[38;5;66;03m# bqm = tsp_f.to_bqm()\u001b[39;00m\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/qlassfun.py:110\u001b[0m, in \u001b[0;36mUnboundQlassf.bind\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moriginal_f is not available in python notebooks!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 108\u001b[0m original_f \u001b[38;5;241m=\u001b[39m orig\n\u001b[0;32m--> 110\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_do_translate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfun_ast\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moriginal_f\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/qlassfun.py:294\u001b[0m, in \u001b[0;36mQlassF.from_function.._do_translate\u001b[0;34m(fun_ast, original_f)\u001b[0m\n\u001b[1;32m 293\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_do_translate\u001b[39m(fun_ast, original_f):\n\u001b[0;32m--> 294\u001b[0m fun \u001b[38;5;241m=\u001b[39m \u001b[43mast2ast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfun_ast\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 295\u001b[0m fun_name, args, fun_ret, exps \u001b[38;5;241m=\u001b[39m translate_ast(fun, types, defs)\n\u001b[1;32m 297\u001b[0m exps \u001b[38;5;241m=\u001b[39m bool_optimizer\u001b[38;5;241m.\u001b[39mapply(exps)\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/ast2ast.py:546\u001b[0m, in \u001b[0;36mast2ast\u001b[0;34m(a_tree)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m sys\u001b[38;5;241m.\u001b[39mversion_info \u001b[38;5;241m<\u001b[39m (\u001b[38;5;241m3\u001b[39m, \u001b[38;5;241m9\u001b[39m):\n\u001b[1;32m 544\u001b[0m a_tree \u001b[38;5;241m=\u001b[39m IndexReplacer()\u001b[38;5;241m.\u001b[39mvisit(a_tree)\n\u001b[0;32m--> 546\u001b[0m a_tree \u001b[38;5;241m=\u001b[39m \u001b[43mASTRewriter\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\u001b[43ma_tree\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 547\u001b[0m \u001b[38;5;66;03m# print(ast.dump(a_tree))\u001b[39;00m\n\u001b[1;32m 548\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m a_tree\n", "File \u001b[0;32m~/.pyenv/versions/3.10.13/lib/python3.10/ast.py:418\u001b[0m, in \u001b[0;36mNodeVisitor.visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 416\u001b[0m method \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvisit_\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m node\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\n\u001b[1;32m 417\u001b[0m visitor \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, method, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgeneric_visit)\n\u001b[0;32m--> 418\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mvisitor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/ast2ast.py:253\u001b[0m, in \u001b[0;36mASTRewriter.visit_FunctionDef\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 250\u001b[0m node\u001b[38;5;241m.\u001b[39mreturns \u001b[38;5;241m=\u001b[39m _replace_types_annotations(node\u001b[38;5;241m.\u001b[39mreturns)\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mret \u001b[38;5;241m=\u001b[39m node\u001b[38;5;241m.\u001b[39mreturns\n\u001b[0;32m--> 253\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgeneric_visit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/ast2ast.py:282\u001b[0m, in \u001b[0;36mASTRewriter.visit_FunctionDef\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 279\u001b[0m node\u001b[38;5;241m.\u001b[39mreturns \u001b[38;5;241m=\u001b[39m _replace_types_annotations(node\u001b[38;5;241m.\u001b[39mreturns)\n\u001b[1;32m 280\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mret \u001b[38;5;241m=\u001b[39m node\u001b[38;5;241m.\u001b[39mreturns\n\u001b[0;32m--> 282\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgeneric_visit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.pyenv/versions/3.10.13/lib/python3.10/ast.py:494\u001b[0m, in \u001b[0;36mNodeTransformer.generic_visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 492\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m value \u001b[38;5;129;01min\u001b[39;00m old_value:\n\u001b[1;32m 493\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(value, AST):\n\u001b[0;32m--> 494\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 495\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m value \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 496\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n", "File \u001b[0;32m~/.pyenv/versions/3.10.13/lib/python3.10/ast.py:418\u001b[0m, in \u001b[0;36mNodeVisitor.visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 416\u001b[0m method \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvisit_\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m node\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\n\u001b[1;32m 417\u001b[0m visitor \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, method, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgeneric_visit)\n\u001b[0;32m--> 418\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mvisitor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/ast2ast.py:400\u001b[0m, in \u001b[0;36mASTRewriter.visit_For\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 394\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([tar_assign]))\n\u001b[1;32m 396\u001b[0m new_body \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 397\u001b[0m NameValReplacer(node\u001b[38;5;241m.\u001b[39mtarget\u001b[38;5;241m.\u001b[39mid, _val)\u001b[38;5;241m.\u001b[39mvisit(copy\u001b[38;5;241m.\u001b[39mdeepcopy(b))\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m node\u001b[38;5;241m.\u001b[39mbody\n\u001b[1;32m 399\u001b[0m ]\n\u001b[0;32m--> 400\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisit(copy\u001b[38;5;241m.\u001b[39mdeepcopy(b)) \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m new_body]))\n\u001b[1;32m 402\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m rolls\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/ast2ast.py:400\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 394\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([tar_assign]))\n\u001b[1;32m 396\u001b[0m new_body \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 397\u001b[0m NameValReplacer(node\u001b[38;5;241m.\u001b[39mtarget\u001b[38;5;241m.\u001b[39mid, _val)\u001b[38;5;241m.\u001b[39mvisit(copy\u001b[38;5;241m.\u001b[39mdeepcopy(b))\n\u001b[1;32m 398\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m node\u001b[38;5;241m.\u001b[39mbody\n\u001b[1;32m 399\u001b[0m ]\n\u001b[0;32m--> 400\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdeepcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m new_body]))\n\u001b[1;32m 402\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m rolls\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/ast2ast.py:433\u001b[0m, in \u001b[0;36mASTRewriter.visit_For\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 427\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([tar_assign]))\n\u001b[1;32m 429\u001b[0m new_body \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 430\u001b[0m NameValReplacer(node\u001b[38;5;241m.\u001b[39mtarget\u001b[38;5;241m.\u001b[39mid, _val)\u001b[38;5;241m.\u001b[39mvisit(copy\u001b[38;5;241m.\u001b[39mdeepcopy(b))\n\u001b[1;32m 431\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m node\u001b[38;5;241m.\u001b[39mbody\n\u001b[1;32m 432\u001b[0m ]\n\u001b[0;32m--> 433\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisit(copy\u001b[38;5;241m.\u001b[39mdeepcopy(b)) \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m new_body]))\n\u001b[1;32m 435\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m rolls\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/ast2ast.py:433\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 427\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([tar_assign]))\n\u001b[1;32m 429\u001b[0m new_body \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 430\u001b[0m NameValReplacer(node\u001b[38;5;241m.\u001b[39mtarget\u001b[38;5;241m.\u001b[39mid, _val)\u001b[38;5;241m.\u001b[39mvisit(copy\u001b[38;5;241m.\u001b[39mdeepcopy(b))\n\u001b[1;32m 431\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m node\u001b[38;5;241m.\u001b[39mbody\n\u001b[1;32m 432\u001b[0m ]\n\u001b[0;32m--> 433\u001b[0m rolls\u001b[38;5;241m.\u001b[39mextend(flatten([\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdeepcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m new_body]))\n\u001b[1;32m 435\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m rolls\n", "File \u001b[0;32m~/.pyenv/versions/3.10.13/lib/python3.10/ast.py:418\u001b[0m, in \u001b[0;36mNodeVisitor.visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 416\u001b[0m method \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvisit_\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m node\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\n\u001b[1;32m 417\u001b[0m visitor \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, method, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgeneric_visit)\n\u001b[0;32m--> 418\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mvisitor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/ast2ast.py:328\u001b[0m, in \u001b[0;36mASTRewriter.visit_AugAssign\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;66;03m# Reassigning an already present variable (use a temp variable)\u001b[39;00m\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# if node.target.id in self.env:\u001b[39;00m\n\u001b[1;32m 323\u001b[0m new_targ \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mName(\u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnode\u001b[38;5;241m.\u001b[39mtarget\u001b[38;5;241m.\u001b[39mid\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, ctx\u001b[38;5;241m=\u001b[39mast\u001b[38;5;241m.\u001b[39mLoad())\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\n\u001b[1;32m 326\u001b[0m ast\u001b[38;5;241m.\u001b[39mAssign(\n\u001b[1;32m 327\u001b[0m targets\u001b[38;5;241m=\u001b[39m[new_targ],\n\u001b[0;32m--> 328\u001b[0m value\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 329\u001b[0m \u001b[43m \u001b[49m\u001b[43mast\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBinOp\u001b[49m\u001b[43m(\u001b[49m\u001b[43mleft\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtarget\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mright\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 330\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 331\u001b[0m ),\n\u001b[1;32m 332\u001b[0m ast\u001b[38;5;241m.\u001b[39mAssign(\n\u001b[1;32m 333\u001b[0m targets\u001b[38;5;241m=\u001b[39m[node\u001b[38;5;241m.\u001b[39mtarget],\n\u001b[1;32m 334\u001b[0m value\u001b[38;5;241m=\u001b[39mnew_targ,\n\u001b[1;32m 335\u001b[0m ),\n\u001b[1;32m 336\u001b[0m ]\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/ast2ast.py:359\u001b[0m, in \u001b[0;36mASTRewriter.visit_AugAssign\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[38;5;66;03m# Reassigning an already present variable (use a temp variable)\u001b[39;00m\n\u001b[1;32m 353\u001b[0m \u001b[38;5;66;03m# if node.target.id in self.env:\u001b[39;00m\n\u001b[1;32m 354\u001b[0m new_targ \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mName(\u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnode\u001b[38;5;241m.\u001b[39mtarget\u001b[38;5;241m.\u001b[39mid\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, ctx\u001b[38;5;241m=\u001b[39mast\u001b[38;5;241m.\u001b[39mLoad())\n\u001b[1;32m 356\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\n\u001b[1;32m 357\u001b[0m ast\u001b[38;5;241m.\u001b[39mAssign(\n\u001b[1;32m 358\u001b[0m targets\u001b[38;5;241m=\u001b[39m[new_targ],\n\u001b[0;32m--> 359\u001b[0m value\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 360\u001b[0m \u001b[43m \u001b[49m\u001b[43mast\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBinOp\u001b[49m\u001b[43m(\u001b[49m\u001b[43mleft\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtarget\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mright\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 361\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 362\u001b[0m ),\n\u001b[1;32m 363\u001b[0m ast\u001b[38;5;241m.\u001b[39mAssign(\n\u001b[1;32m 364\u001b[0m targets\u001b[38;5;241m=\u001b[39m[node\u001b[38;5;241m.\u001b[39mtarget],\n\u001b[1;32m 365\u001b[0m value\u001b[38;5;241m=\u001b[39mnew_targ,\n\u001b[1;32m 366\u001b[0m ),\n\u001b[1;32m 367\u001b[0m ]\n", "File \u001b[0;32m~/.pyenv/versions/3.10.13/lib/python3.10/ast.py:418\u001b[0m, in \u001b[0;36mNodeVisitor.visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 416\u001b[0m method \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvisit_\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m node\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\n\u001b[1;32m 417\u001b[0m visitor \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, method, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgeneric_visit)\n\u001b[0;32m--> 418\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mvisitor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/ast2ast.py:118\u001b[0m, in \u001b[0;36mASTRewriter.generic_visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgeneric_visit\u001b[39m(\u001b[38;5;28mself\u001b[39m, node):\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgeneric_visit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/ast2ast.py:143\u001b[0m, in \u001b[0;36mASTRewriter.generic_visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgeneric_visit\u001b[39m(\u001b[38;5;28mself\u001b[39m, node):\n\u001b[0;32m--> 143\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgeneric_visit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/.pyenv/versions/3.10.13/lib/python3.10/ast.py:503\u001b[0m, in \u001b[0;36mNodeTransformer.generic_visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 501\u001b[0m old_value[:] \u001b[38;5;241m=\u001b[39m new_values\n\u001b[1;32m 502\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(old_value, AST):\n\u001b[0;32m--> 503\u001b[0m new_node \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvisit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mold_value\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 504\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_node \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 505\u001b[0m \u001b[38;5;28mdelattr\u001b[39m(node, field)\n", "File \u001b[0;32m~/.pyenv/versions/3.10.13/lib/python3.10/ast.py:418\u001b[0m, in \u001b[0;36mNodeVisitor.visit\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 416\u001b[0m method \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvisit_\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m node\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\n\u001b[1;32m 417\u001b[0m visitor \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, method, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgeneric_visit)\n\u001b[0;32m--> 418\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mvisitor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.15-py3.10.egg/qlasskit/ast2ast.py:139\u001b[0m, in \u001b[0;36mASTRewriter.visit_Subscript\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 136\u001b[0m tup \u001b[38;5;241m=\u001b[39m node\u001b[38;5;241m.\u001b[39mvalue\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(tup, ast\u001b[38;5;241m.\u001b[39mTuple):\n\u001b[0;32m--> 139\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m(\n\u001b[1;32m 140\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNot a tuple in ast2ast visit subscript with not constant _sval: \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m+\u001b[39m\n\u001b[1;32m 141\u001b[0m ast\u001b[38;5;241m.\u001b[39mdump(tup)\n\u001b[1;32m 142\u001b[0m )\n\u001b[1;32m 144\u001b[0m elts \u001b[38;5;241m=\u001b[39m tup\u001b[38;5;241m.\u001b[39melts\n\u001b[1;32m 146\u001b[0m ifex \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mIfExp(\n\u001b[1;32m 147\u001b[0m test\u001b[38;5;241m=\u001b[39mast\u001b[38;5;241m.\u001b[39mCompare(\n\u001b[1;32m 148\u001b[0m left\u001b[38;5;241m=\u001b[39m_sval, ops\u001b[38;5;241m=\u001b[39m[ast\u001b[38;5;241m.\u001b[39mEq()], comparators\u001b[38;5;241m=\u001b[39m[ast\u001b[38;5;241m.\u001b[39mConstant(value\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)]\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 151\u001b[0m orelse\u001b[38;5;241m=\u001b[39mast\u001b[38;5;241m.\u001b[39mConstant(value\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m),\n\u001b[1;32m 152\u001b[0m )\n", + "File \u001b[0;32m~/.pyenv/versions/3.10.13/envs/qlasskit_310-env/lib/python3.10/site-packages/qlasskit-0.1.18-py3.10.egg/qlasskit/ast2ast.py:165\u001b[0m, in \u001b[0;36mASTRewriter.visit_Subscript\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 162\u001b[0m tup \u001b[38;5;241m=\u001b[39m node\u001b[38;5;241m.\u001b[39mvalue\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(tup, ast\u001b[38;5;241m.\u001b[39mTuple):\n\u001b[0;32m--> 165\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m(\n\u001b[1;32m 166\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNot a tuple in ast2ast visit subscript with not constant _sval: \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 167\u001b[0m \u001b[38;5;241m+\u001b[39m ast\u001b[38;5;241m.\u001b[39mdump(tup)\n\u001b[1;32m 168\u001b[0m )\n\u001b[1;32m 170\u001b[0m elts \u001b[38;5;241m=\u001b[39m tup\u001b[38;5;241m.\u001b[39melts\n\u001b[1;32m 172\u001b[0m ifex \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mIfExp(\n\u001b[1;32m 173\u001b[0m test\u001b[38;5;241m=\u001b[39mast\u001b[38;5;241m.\u001b[39mCompare(\n\u001b[1;32m 174\u001b[0m left\u001b[38;5;241m=\u001b[39m_sval, ops\u001b[38;5;241m=\u001b[39m[ast\u001b[38;5;241m.\u001b[39mEq()], comparators\u001b[38;5;241m=\u001b[39m[ast\u001b[38;5;241m.\u001b[39mConstant(value\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)]\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 177\u001b[0m orelse\u001b[38;5;241m=\u001b[39mast\u001b[38;5;241m.\u001b[39mConstant(value\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m),\n\u001b[1;32m 178\u001b[0m )\n", "\u001b[0;31mException\u001b[0m: Not a tuple in ast2ast visit subscript with not constant _sval: Subscript(value=Name(id='dst_matrix', ctx=Load()), slice=Name(id='oim', ctx=Load()), ctx=Load())" ] } @@ -36,11 +36,13 @@ "source": [ "# Encode the TSP using qlasskit and parameters\n", "\n", - "from qlasskit import qlassf, Parameter, Qlist, Qmatrix, Qint2, Qint3, Qint4\n", + "from qlasskit import qlassf, Parameter, Qlist, Qmatrix, Qint\n", "\n", "\n", "@qlassf\n", - "def tsp(dst_matrix: Parameter[Qmatrix[Qint3, 3, 3]], order: Qlist[Qint2, 3]) -> Qint4:\n", + "def tsp(\n", + " dst_matrix: Parameter[Qmatrix[Qint[3], 3, 3]], order: Qlist[Qint[2], 3]\n", + ") -> Qint[4]:\n", " dst_sum = Qint4(0)\n", " for i in range(2):\n", " oim = order[i]\n", diff --git a/docs/source/example_deutsch_jozsa.ipynb b/docs/source/example_deutsch_jozsa.ipynb index cbb83460..1602089c 100644 --- a/docs/source/example_deutsch_jozsa.ipynb +++ b/docs/source/example_deutsch_jozsa.ipynb @@ -13,11 +13,11 @@ "metadata": {}, "outputs": [], "source": [ - "from qlasskit import qlassf, Qint4\n", + "from qlasskit import qlassf, Qint\n", "\n", "\n", "@qlassf\n", - "def f(a: Qint4) -> bool:\n", + "def f(a: Qint[4]) -> bool:\n", " return a > 7" ] }, diff --git a/docs/source/example_grover.ipynb b/docs/source/example_grover.ipynb index aa416ec2..c5c98542 100644 --- a/docs/source/example_grover.ipynb +++ b/docs/source/example_grover.ipynb @@ -16,7 +16,7 @@ "metadata": {}, "outputs": [], "source": [ - "from qlasskit import qlassf, Qlist, Qint2\n", + "from qlasskit import qlassf, Qlist\n", "\n", "\n", "@qlassf\n", @@ -118,7 +118,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAocAAAKOCAYAAADUG7MqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADb30lEQVR4nOzdd3gUVdsG8HvSQzqBEAIhtNBCF1AI0g1NkSK8AoogRcVGEUQR6U1BRUSUDirlVWkiQihJ6IQWmpTQA0logYQESH2+P/LNebMkoSS72cDev+vyumRmdp/z7JnMPjtz5owmIgIiIiIiIgBW5m4AERERERUeLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIixcbcDXjaZWRkIDo6Gi4uLtA0zdzNISIiomeciODOnTvw8fGBlZXxz/OxOMyn6Oho+Pr6mrsZREREZGGioqJQunRpo78vi8N8cnFxAZDZQa6urmZuDRERET3rEhIS4Ovrq2oQY2NxmE/6pWRXV1cWh0RERFRgTDWcjTekEBEREZHC4pCIiIgsWtmyZaFpWrb/3n//fbXN7t270aJFCzg5OcHV1RVNmjTBvXv31PqDBw/ipZdegru7Ozw9PTFgwAAkJiaaI518Y3FIREREFm3fvn2IiYlR/23atAkA0LVrVwCZhWGbNm0QFBSE8PBw7Nu3Dx988IG6Uzg6OhqtWrVCxYoVsXfvXmzYsAHHjx9H7969zZVSvmgiIuZuxNMsISEBbm5uiI+P55hDIiKiZ8CgQYOwbt06REZGQtM0vPDCC3jppZcwfvz4HLefM2cORo0ahZiYGFUwHj16FDVr1kRkZCQqVqxo1PaZuvbgmUMiIiKi/5eSkoJff/0Vb7/9NjRNw7Vr17B37154eXmhUaNGKFGiBJo2bYodO3ao1yQnJ8POzs5gzkFHR0cAMNjuacHikIiIiOj/rV69Grdv31aXhM+dOwcAGDNmDPr3748NGzagbt26aNmyJSIjIwEALVq0QGxsLL7++mukpKTg1q1bGDFiBAAgJibGLHnkB4tDIiIiov83f/58tG3bFj4+PgAyn4QGAO+88w769OmDOnXq4Ntvv0XlypWxYMECAEBAQAAWL16M6dOno0iRIvD29ka5cuVQokQJkzzBxNSevhYTERERmcDFixexefNm9OvXTy0rWbIkAKBatWoG21atWhWXLl1S/+7RowdiY2Nx5coV3Lx5E2PGjMH169dRvnz5gmm8EbE4JCIiIgKwcOFCeHl5oX379mpZ2bJl4ePjg1OnThlse/r0afj5+WV7jxIlSsDZ2RkrVqyAg4MDXnrpJZO329j4hBQiIiKyeBkZGVi4cCHeeust2Nj8rzzSNA3Dhg3D6NGjUatWLdSuXRuLFy/GyZMn8ccff6jtfvjhBzRq1AjOzs7YtGkThg0bhilTpsDd3d0M2eQPi0MiIiKyeJs3b8alS5fw9ttvZ1s3aNAg3L9/H4MHD0ZcXBxq1aqFTZs2oUKFCmqb8PBwjB49GomJiahSpQp+/vlnvPnmmwWZgtEUynkORQSrVq3CzJkzcfLkScTHx8PX1xfNmjXDp59+mu36fUJCAsaMGYM///wTsbGxKFmyJLp27YrRo0fD2dk52/tnZGRg1qxZmDNnDs6cOQNnZ2e0atUKEydOfOKxAZznkIiIiAqSqWuPQlkcDh06FN988w1KliyJV199Fa6urjh8+DCCg4Ph7OyMXbt2oXr16gCApKQkNG7cGBEREQgKCkKdOnVw6NAhBAcHo379+ti2bRscHBwM3r9///6YN28eAgIC0L59e0RHR+O///0vnJ2dsWfPHvj7+z92W1kcEhERUUEyee0hhUxMTIxYWVmJn5+f3L5922DdN998IwCkT58+atmXX34pAOTTTz812PbTTz8VADJp0iSD5Vu3bhUA0qRJE0lOTlbL169fLwAkKCjoidobHx8vACQ+Pv6JXkdERESUF6auPQrd3coXLlxARkYGAgMD4ebmZrDu5ZdfBgBcv34dQObl53nz5sHZ2RmjRo0y2HbUqFFwdnbGvHnzDJbPnTsXADB+/HjY2dmp5W3btkWzZs0QHBxscGs6ERERkSUpdMWhv78/7OzssHPnTiQkJBisW7duHQCgZcuWAIDIyEhER0cjMDAQTk5OBts6OTkhMDAQ586dQ1RUlFoeGhqq1j2odevWAICwsDCj5kRERET0tCh0dyt7enpiypQpGDp0KKpUqWIw5nDr1q0YOHAgPvjgAwBQj63JbYygv78/Nm7ciMjISPj6+iIpKQkxMTGoXr06rK2tc9w+6/vmJDk5GcnJyerfegGbmpqK1NRUAICVlRWsra2Rnp6uZlbPujwtLQ2SZaintbU1rKyscl2uv69Ov8U+LS3tsZbb2toiIyMD6enpapmmabCxscl1eW5tZ07MiTkxJ+bEnJiT+XMypUJXHALA4MGDUapUKfTr1w8//fSTWt64cWP06NFDdUh8fDwAZLv8rNMHaerbPen2OZk8eTLGjh2bbXlwcDCKFCkCAChTpgzq1KmDI0eOGFyirly5MqpUqYLw8HB1aRwAateuDT8/P2zbtg137txRyxs2bAgvLy8EBwcb7AjNmzeHo6Mj1q9fb9CGdu3a4d69ewgJCVHLbGxs0L59e9y4cQO7d+9Wy11cXNCiRQtERUUhIiJCLS9evDgaNWqEyMhIgwk/mRNzYk7MiTkxJ+ZUOHI6cOAATKlQ3q08btw4TJgwAePGjcMbb7wBd3d3REREYPDgwYiIiMCff/6JDh06YOnSpejZsydGjhyJCRMmZHufkSNHYtKkSVi5ciU6deqE6OholCpVCoGBgdixY0e27Tdt2oSgoCB89NFHmDFjRo5ty+nMoa+vL27cuKGKS0v9FcOcmBNzYk7MiTkxJ9PnFBcXB09PT5PdrVzozhxu3rwZo0ePxuDBgzFixAi1vHHjxvjrr79Qvnx5DB06FB06dFBnAHM706df8tW3e9Ltc2Jvbw97e/tsy21tbWFra2uwzNraOsfL11lnXn+c5Q++b16WW1lZ5fjw79yW59Z25sScnnQ5c2JOAHPKrY1Pupw5MScg97YbS6G7IeWff/4BkHka90He3t6oUqUKzpw5g8TExEeOEXxwTKKTkxNKliyJ8+fPG1TuuW1PREREZGkKXXGYkpICAAbjA7K6fv06rKysYGtrC39/f/j4+GDnzp1ISkoy2C4pKQk7d+5EuXLl4Ovrq5Y3bdpUrXvQxo0bAQBNmjQxVjpERERET5VCVxzqU8x888032S7//vTTT7h8+TIaNmwIe3t7aJqGfv36ITExEePHjzfYdvz48UhMTET//v0Nlg8YMABA5jyIeiEKZJ6xDA0NRVBQEPz8/EyRGhEREVGhV+huSElPT0eLFi2wbds2eHl5oUOHDnB3d8fBgwexdetWODo6IjQ0FA0aNACQeYYwMDAQhw8fRlBQEOrWrYuDBw+qx+eFhYXB0dHRIMaDj8+LiYnBihUr4OzsjN27d6NSpUqP3V4+Po+IiIgKkkU+Wzk5ORnffvst/vvf/+LUqVNISUlBiRIl0Lx5c3z++eeoWrWqwfbx8fEYM2YM/vzzT8TGxqJkyZLo2rUrRo8eDRcXl2zvn5GRgR9++AFz5szBmTNn4OzsjFatWmHixImoUKHCE7WVxSEREREVJIssDp8mLA6JiIioIJm69ih0Yw6JiIiIyHxYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREppn1yMxEREdFTpv93+Xv93EHGaIX58MwhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZFSqIvDVatW4aWXXoKnpyccHBxQrlw5dO/eHVFRUQbbJSQkYMiQIfDz84O9vT3Kli2LYcOGITExMcf3zcjIwMyZM1GjRg04OjqiePHi6N69O86dO1cQaREREREVWjbmbkBORATvvvsu5syZgwoVKuD111+Hi4sLoqOjERYWhosXL8LX1xcAkJSUhKZNmyIiIgJBQUHo3r07Dh06hGnTpiEsLAzbtm2Dg4ODwfu/8847mDdvHgICAvDRRx8hOjoa//3vfxEcHIw9e/bA39/fHGkTERERmV2hLA6///57zJkzBwMHDsT3338Pa2trg/VpaWnq/7/66itERETg008/xZQpU9TyESNGYOrUqfj222/x2WefqeUhISGYN28emjRpgk2bNsHOzg4A0KNHD7Rr1w4ffPABNm7caOIMiYiIiAonTUTE3I3I6t69eyhVqhQ8PDxw6tQp2NjkXr+KCEqXLo2EhATExsbCyclJrUtKSoK3tze8vLxw9uxZtbxHjx5YtmwZwsLC0KRJE4P3a968OUJDQ3Hx4kWUKVPmsdqbkJAANzc3xMfHw9XV9QmzJSIiosKm/3f5e/3cQcZoRe5MXXsUujGHwcHBuHXrFjp27Ij09HSsXLkSU6ZMwU8//YQzZ84YbBsZGYno6GgEBgYaFIYA4OTkhMDAQJw7d85gjGJoaKha96DWrVsDAMLCwkyQGREREVHhV+guKx84cAAAYG1tjZo1a+L06dNqnZWVFQYPHoxp06YByCwOAeQ6RtDf3x8bN25EZGQkfH19kZSUhJiYGFSvXj3bpeqs76O/b06Sk5ORnJys/p2QkAAASE1NRWpqqmqntbU10tPTkZGRYdB+a2trpKWlIesJW2tra1hZWeW6XH9fnX42Nevl9Yctt7W1RUZGBtLT09UyTdNgY2OT6/Lc2s6cmBNzYk7MiTk9+znZIj8KIidTKnTF4bVr1wAA33zzDerWrYvw8HBUrVoVhw4dwoABAzB9+nRUqFAB7733HuLj4wEAbm5uOb6XfqpV3+5Jt8/J5MmTMXbs2GzLg4ODUaRIEQBAmTJlUKdOHRw5cgSXLl1S21SuXBlVqlRBeHg4rl+/rpbXrl0bfn5+2LZtG+7cuaOWN2zYEF5eXggODjbYEZo3bw5HR0esX7/eoA3t2rXDvXv3EBISopbZ2Nigffv2uHHjBnbv3q2Wu7i4oEWLFoiKikJERIRaXrx4cTRq1AiRkZE4deqUWs6cmBNzYk7MiTlZSk5Ae+SHqXPST6SZSqEbczhgwADMnTsXjo6OOHPmDHx8fNS6Y8eOoVatWihXrhzOnDmDpUuXomfPnhg5ciQmTJiQ7b1GjhyJSZMmYeXKlejUqROio6NRqlQpBAYGYseOHdm237RpE4KCgvDRRx9hxowZObYvpzOHvr6+uHHjhiou+cuMOTEn5sScmBNzenpzGjgrf2cOf/7ItDnFxcXB09PTZGMOC92ZQ/2sXr169QwKQwCoXr06ypcvjzNnzuD27dtq29zO9OmXfPXtnnT7nNjb28Pe3j7bcltbW9jaGu5M1tbWOV6+zu0mm9yWP/i+eVluZWUFK6vsQ0xzW55b25kTc3rS5cyJOQHMKbc2Puly5mS+nJ6EuXIylkJ3Q0rlypUBAO7u7jmu15ffu3fvkWMEHxyT6OTkhJIlS+L8+fMGlXtu2xMRERFZmkJXHDZv3hwAcOLEiWzrUlNTcebMGTg5OaF48eLw9/eHj48Pdu7ciaSkJINtk5KSsHPnTpQrV05NmA0ATZs2VesepM9v+OAUN0RERESWotAVhxUqVEBQUBDOnDmDefPmGaybMmUKbt++jU6dOsHGxgaapqFfv35ITEzE+PHjDbYdP348EhMT0b9/f4PlAwYMAACMGjUKKSkpavk///yD0NBQBAUFwc/Pz0TZERERERVuhe6GFAA4e/YsGjVqhGvXrqF9+/aoUqUKDh06hK1bt8LPzw979uyBt7c3gMwzhIGBgTh8+DCCgoJQt25dHDx4EMHBwahfvz7CwsLg6Oho8P79+/dXj89r3749YmJisGLFCjg7O2P37t2oVKnSY7eVk2ATERE9WzgJdiFUoUIF7N+/H71798aBAwfw/fffIzIyEu+//z7Cw8NVYQhkjiMMCwvDoEGDcOLECUyfPh0nT57E0KFDsWXLlmyFIQD8/PPP6m7kGTNmYP369ejUqRPCw8OfqDAkIiIietYUyjOHTxOeOSQiInq28MwhEREREdH/Y3FIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKTkuTjctm0bLl269NBtoqKisG3btryGICIiIqIClufisHnz5li0aNFDt1myZAmaN2+e1xBEREREVMDyXByKyCO3ycjIgKZpeQ1BRERERAXMpGMOIyMj4ebmZsoQRERERGRENk+y8dtvv23w79WrV+PChQvZtktPT1fjDdu2bZuvBhIRERFRwXmi4jDrGENN0xAREYGIiIgct9U0DfXr18e3336bn/YRERERUQF6ouLw/PnzADLHG5YvXx6DBg3Cxx9/nG07a2treHh4wMnJyTitJCIiIqIC8UTFoZ+fn/r/hQsXok6dOgbLiIiIiOjp9kTFYVZvvfWWMdtBRERERIVAnotDXXh4OPbt24fbt28jPT0923pN0zBq1Kj8hiEiIiKiApDn4jAuLg4dO3bEzp07HzrnIYtDIiIioqdHnovDIUOGYMeOHWjWrBneeustlC5dGjY2+T4RSURERERmlOdqbt26dWjQoAG2bNnCp6AQERERPSPy/ISUe/fuoUmTJiwMiYiIiJ4heS4Oa9eunePTUYiIiIjo6ZXn4nD06NFYu3Yt9uzZY8z2EBEREZEZ5XnMYWxsLNq3b4+mTZuiZ8+eqFu3LlxdXXPctlevXnluIBEREREVHE0eNg/NQ1hZWUHTNINpbB4cfygi0DQtx/kPnxUJCQlwc3NDfHx8rsUxERERPT36f5e/188dZIxW5M7UtUeezxwuXLjQmO0gIiIiokKAj88jIiIiIiXPN6QQERER0bMnz2cOL1269NjblilTJq9hiIiIiKgA5bk4LFu27GNNgK1pGtLS0vIahoiIiIgKUJ6Lw169euVYHMbHx+Pw4cM4f/48mjZtirJly+anfURERERUgPJcHC5atCjXdSKC6dOn46uvvsL8+fPzGoKIiIiICphJbkjRNA2ffPIJAgICMGzYMFOEICIiIiITMOndyvXq1cPWrVtNGYKIiIiIjMikxeHZs2d5MwoRERHRUyTPYw5zk5GRgStXrmDRokVYs2YNWrZsaewQRERERGQieS4O9Wcr50ZE4OHhgenTp+c1BBEREREVsDxfVm7SpEmO/zVr1gydOnXC5MmTceLECdSoUSPfjZw6dSo0TYOmadizZ0+29QkJCRgyZAj8/Pxgb2+PsmXLYtiwYUhMTMzx/TIyMjBz5kzUqFEDjo6OKF68OLp3745z587lu61ERERET7M8nzkMDQ01YjNyd+zYMYwePRpOTk5ISkrKtj4pKQlNmzZFREQEgoKC0L17dxw6dAjTpk1DWFgYtm3bBgcHB4PXvPPOO5g3bx4CAgLw0UcfITo6Gv/9738RHByMPXv2wN/fv0ByIyIiIipsCvWzlVNTU/HWW2+hdu3a6NSpU47bfPXVV4iIiMCnn36KjRs3YsqUKdi4cSM+/fRT7Nu3D99++63B9iEhIZg3bx6aNGmCgwcPYurUqfjll1+wevVqxMXF4YMPPiiI1IiIiIgKJaMUhzt37sSsWbMwefJkzJo1Czt37jTG22LixIk4fvw4FixYAGtr62zrRQTz5s2Ds7MzRo0aZbBu1KhRcHZ2xrx58wyWz507FwAwfvx42NnZqeVt27ZFs2bNEBwc/ETPjSYiIiJ6luTrbuVdu3ahT58+OHPmDIDMYk2/ScXf3x8LFy5Ew4YN8/TeBw8exMSJEzFu3DhUq1Ytx20iIyMRHR2N1q1bw8nJyWCdk5MTAgMDsXHjRkRFRcHX1xdA5uVwfd2DWrdujdDQUISFheHNN9/MU7uJiIiInmZ5Lg6PHz+OoKAg3L17Fy+99BKaN2+OkiVLIjY2FiEhIQgODkbr1q2xZ8+eXIu73CQnJ6NXr16oXbs2hg8fnut2kZGRAJDrGEF/f39s3LgRkZGR8PX1RVJSEmJiYlC9evUcz0Tq76O/b25tS05OVv9OSEgAkHkJPDU1FUDmndzW1tZIT09HRkaG2lZfnpaWBhFRy62trWFlZZXrcv19dTY2md324BySuS23tbVFRkYG0tPT1TJN02BjY5Pr8tzazpyYE3NiTsyJOT37OdkiPwoiJ1PKc3E4btw4pKSkYP369WjTpo3Buk8//RQbNmxAhw4dMG7cOCxfvvyJ3vvLL79EZGQkDhw4kGMRp4uPjwcAuLm55bje1dXVYLsn3T4nkydPxtixY7MtDw4ORpEiRQAAZcqUQZ06dXDkyBGDS9SVK1dGlSpVEB4ejuvXr6vltWvXhp+fH7Zt24Y7d+6o5Q0bNoSXlxeCg4MNdoTmzZvD0dER69evN2hDu3btcO/ePYSEhKhlNjY2aN++PW7cuIHdu3er5S4uLmjRogWioqIQERGhlhcvXhyNGjVCZGQkTp06pZYzJ+bEnJgTc2JOlpIT0B75YeqcDhw4kK/2PYomWcvmJ1CiRAm0bNkSS5cuzXWbHj16YMuWLbh69epjv+/u3bvRuHFjjBkzxmAcYe/evbF48WLs3r0bL7zwAgBg6dKl6NmzJ0aOHIkJEyZke6+RI0di0qRJWLlyJTp16oTo6GiUKlUKgYGB2LFjR7btN23ahKCgIHz00UeYMWNGju3L6cyhr68vbty4oYpL/jJjTsyJOTEn5sScnt6cBs7K35nDnz8ybU5xcXHw9PREfHy8qj2MKc9nDuPj41GuXLmHblOuXLmHnoV7UFpaGt566y3UrFkTI0aMeOT2+hnA3GLol3z17Z50+5zY29vD3t4+23JbW1vY2hruTNbW1jme+dT/SB53+YPvm5flVlZWsLLKfv9RbstzaztzYk5Pupw5MSeAOeXWxiddzpzMl9OTMFdOxpLnd/fx8clxQuqs9u7dCx8fn8d+z8TERDXeL+udxFnpN7isWrVKjWXMbYzgg2MSnZycULJkSZw/fx7p6enZPvBHjWEkIiIietbluTjs0KEDZs6ciVGjRmHkyJEGE03fv38fkydPRkhICD766KPHfk97e3v07ds3x3Xbtm1DZGQkOnTogOLFi6Ns2bLw9/eHj48Pdu7ciaSkJIM7lpOSkrBz506UK1dO3akMAE2bNsXy5cuxc+dONGnSxCDGxo0bASDbciIiIiJLkecxhzdv3sTzzz+P8+fPw9PTEw0aNECJEiVw9epV7Nu3D9evX0f58uURHh6OokWL5ruhOY05BIDRo0dj3Lhx+PTTTzFlyhS1fMSIEZg6dSomTZqEzz77TC0PCQlBixYt0KRJE2zatEmdofznn3/Qrl07BAUFqSLxcSQkJMDNzc1k1/2JiIioYPX/Ln+vnzvIGK3InalrjzyfOfT09MSePXswfPhwLF++3ODOJAcHB/Tp0wdTp041SmH4MMOHD8eaNWswdepUHDp0CHXr1sXBgwcRHByM+vXrY9CgQQbbN2/eHP369cO8efNQt25dtG/fHjExMVixYgWKFi2KmTNnmrS9RERERIVZvp6QUqxYMSxYsADx8fE4fPgwtm/fjsOHDyM+Ph7z589HsWLFjNXOXDk5OSEsLAyDBg3CiRMnMH36dJw8eRJDhw7Fli1b4OjomO01P//8s7obecaMGVi/fj06deqE8PBwVKpUyeRtJiIiIiqsnviy8sSJE5GUlISxY8fmekdPSkoKxo4dCxcXl8e66/hpxsvKREREzxZLv6z8RGcON2/ejC+//BKenp4PvdXbzs4Onp6eGDlypMGEl0RERERUuD1RcbhkyRJ4eHjggw8+eOS277//PooWLYqFCxfmuXFEREREVLCeqDjctWsXWrVqleMk0A+yt7dHq1atsHPnzjw3joiIiIgK1hMVh9HR0Shfvvxjb1+uXDnExMQ8caOIiIiIyDyeqDjM6TmKD5OamprjY2KIiIiIqHB6osrNx8cHx44de+ztjx07hlKlSj1xo4iIiIjIPJ6oOHzxxRexdetWXLhw4ZHbXrhwAVu3buWj6IiIiIieIk9UHL7//vtITU3Fa6+9hhs3buS63c2bN9G1a1ekpaXhvffey3cjiYiIiKhgPNHj8+rWrYtBgwbhu+++Q7Vq1fDuu++iefPmKF26NADgypUr2LJlC+bMmYPr169jyJAhqFu3rkkaTkRERETG98TPVp4+fTocHBzw9ddfY+LEiZg4caLBehGBtbU1PvvsM0yYMMFoDSUiIiIi03vi4lDTNEyaNAl9+/bFwoULsWvXLsTGxgIAvL29ERgYiN69e6NChQpGbywRERERmdYTF4e6ChUq8MwgERER0TOGkxASERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUgpdcXjlyhV89913CAoKQpkyZWBnZwdvb2906dIFe/fuzfE1CQkJGDJkCPz8/GBvb4+yZcti2LBhSExMzHH7jIwMzJw5EzVq1ICjoyOKFy+O7t2749y5c6ZMjYiIiKjQK3TF4cyZMzF48GCcO3cOQUFBGDp0KBo3bow1a9agUaNGWLFihcH2SUlJaNq0Kb799ltUqVIFgwcPRuXKlTFt2jS0aNEC9+/fzxbjnXfewUcffQQRwUcffYQ2bdpg5cqVqF+/PiIjIwsqVSIiIqJCx8bcDXhQgwYNEBoaiqZNmxos3759O1q2bIn33nsPHTt2hL29PQDgq6++QkREBD799FNMmTJFbT9ixAhMnToV3377LT777DO1PCQkBPPmzUOTJk2wadMm2NnZAQB69OiBdu3a4YMPPsDGjRsLIFMiIiKiwkcTETF3Ix5X69atERwcjH379qFevXoQEZQuXRoJCQmIjY2Fk5OT2jYpKQne3t7w8vLC2bNn1fIePXpg2bJlCAsLQ5MmTQzev3nz5ggNDcXFixdRpkyZx2pTQkIC3NzcEB8fD1dXV+MkSkRERGbT/7v8vX7uIGO0Inemrj0K3WXlh7G1tQUA2NhknvCMjIxEdHQ0AgMDDQpDAHByckJgYCDOnTuHqKgotTw0NFSte1Dr1q0BAGFhYaZKgYiIiKhQK3SXlXNz6dIlbN68GSVLlkSNGjUAQI0P9Pf3z/E1/v7+2LhxIyIjI+Hr64ukpCTExMSgevXqsLa2znH7rO+bk+TkZCQnJ6t/JyQkAABSU1ORmpoKALCysoK1tTXS09ORkZGhttWXp6WlIesJW2tra1hZWeW6XH9fnV4cp6WlPdZyW1tbZGRkID09XS3TNA02Nja5Ls+t7cyJOTEn5sScmNOzn5Mt8qMgcjKlp6I4TE1NxZtvvonk5GRMnTpVFXbx8fEAADc3txxfp59q1bd70u1zMnnyZIwdOzbb8uDgYBQpUgQAUKZMGdSpUwdHjhzBpUuX1DaVK1dGlSpVEB4ejuvXr6vltWvXhp+fH7Zt24Y7d+6o5Q0bNoSXlxeCg4MNdoTmzZvD0dER69evN2hDu3btcO/ePYSEhKhlNjY2aN++PW7cuIHdu3er5S4uLmjRogWioqIQERGhlhcvXhyNGjVCZGQkTp06pZYzJ+bEnJgTc2JOlpIT0B75YeqcDhw4kK/2PUqhH3OYkZGBN998E0uXLkX//v0xZ84ctW7p0qXo2bMnRo4ciQkTJmR77ciRIzFp0iSsXLkSnTp1QnR0NEqVKoXAwEDs2LEj2/abNm1CUFAQPvroI8yYMSPH9uR05tDX1xc3btxQxSV/mTEn5sScmBNzYk5Pb04DZ+XvzOHPH5k2p7i4OHh6eppszGGhPnOYkZGBt99+G0uXLsUbb7yBn376yWC9fgYwtzN9+iVffbsn3T4n9vb26k7prGxtbdWYSJ21tXWOl6/1P5LHXf7g++ZluZWVFayssg8xzW15bm1nTszpSZczJ+YEMKfc2viky5mT+XJ6EubKyVgK7Q0pGRkZ6NOnDxYvXozu3btj0aJF2T7QR40RfHBMopOTE0qWLInz588bVO65bU9ERERkaQplcagXhkuWLMF//vMf/PLLL7neQOLj44OdO3ciKSnJYF1SUhJ27tyJcuXKwdfXVy1v2rSpWvcgfX7DB6e4ISIiIrIUha441C8lL1myBF27dsWvv/6aY2EIZF6r79evHxITEzF+/HiDdePHj0diYiL69+9vsHzAgAEAgFGjRiElJUUt/+effxAaGoqgoCD4+fkZOSsiIiKip0OhuyFlzJgxGDt2LJydnfHxxx/neF29Y8eOqF27NoDMM4SBgYE4fPgwgoKCULduXRw8eBDBwcGoX78+wsLC4OjoaPD6/v37Y968eQgICED79u0RExODFStWwNnZGbt370alSpUeu72cBJuIiOjZYumTYBe6G1IuXLgAAEhMTMTEiRNz3KZs2bKqOHRyckJYWBjGjBmDP//8EyEhIShZsiSGDh2K0aNHZysMAeDnn39GjRo1MGfOHMyYMQPOzs7o1KkTJk6ciAoVKpgqNSIiIqJCr9CdOXza8MwhERHRs8XSzxwWujGHRERERGQ+LA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyIiIiJSWBwSERERkcLikIiIiIgUFodEREREpLA4JCIiIiKFxSERERERKSwOiYiIiEhhcUhERERECotDIiIiIlJYHBIRERGRwuKQiIiIiBQWh0RERESksDgkIiIiIoXFIREREREpLA6JiIiISGFxSEREREQKi0MiIiIiUlgcEhEREZHC4pCIiIiIFBaHRERERKSwOCQiIiIihcUhERERESksDomIiIhIYXFIRERERAqLQyKiQmzy5MmoX78+XFxc4OXlhY4dO+LUqVMG27zzzjuoUKECHB0dUbx4cbz66qs4efJkgcTWiQjatm0LTdOwevXqfMcmIvNhcUhPhcf5kpozZw6aNWsGV1dXaJqG27dvP/WxCwNLz9/cwsLC8P7772PPnj3YtGkTUlNTERQUhKSkJLXNc889h4ULF+LEiRPYuHEjRARBQUFIT083eWzdd999B03T8hWPiAoHFof0VHicL6m7d++iTZs2+Pzzz5+Z2IWBpedvbhs2bEDv3r0REBCAWrVqYdGiRbh06RIOHDigthkwYACaNGmCsmXLom7dupgwYQKioqJw4cIFk8cGgIiICEyfPh0LFizIVzwqXLZt24ZXXnkFPj4+OZ4RTkxMxAcffIDSpUvD0dER1apVw08//VRg8a9evYrevXvDx8cHRYoUQZs2bRAZGWm0+JbMxtwNoMe3bds2fP311zhw4ABiYmKwatUqdOzYUa3P7Vf7V199hWHDhhVQK01jw4YNBv9etGgRvLy8cODAATRp0gQAMGjQIABAaGjoMxO7MLD0/Aub+Ph4AEDRokVzXJ+UlISFCxeiXLly8PX1NXnsu3fvokePHpg1axa8vb2NGo/MKykpCbVq1cLbb7+Nzp07Z1s/ZMgQbN26Fb/++ivKli2L4OBgDBw4ED4+PujQoYNJ44sIOnbsCFtbW6xZswaurq745ptv0KpVK/z7779wcnLKd3xLxjOHTxH9D2XWrFk5ro+JiTH4b8GCBdA0DV26dMl37Ef9guvduzc0TTP4r02bNvmOm5tHfUGakjljFwaWnr85ZWRkYNCgQQgMDET16tUN1v34449wdnaGs7Mz/vnnH2zatAl2dnYmjz148GA0atQIr776qtFiUSZzH3fbtm2LCRMmoFOnTjmu37VrF9566y00a9YMZcuWxYABA1CrVi2Eh4ebPH5kZCT27NmD2bNno379+qhcuTJmz56Ne/fuYdmyZUaJb8lYHD5FHvWH6u3tbfDfmjVr0Lx5c5QvXz7fsR9VmAJAmzZtDIpTU/2BPuwL0tTMFftRXxJjxoxBlSpV4OTkBA8PD7Rq1Qp79+41ejvMkf/Dck9NTcWnn36KGjVqwMnJCT4+PujVqxeio6MLJD5QcJ89ALz//vs4duwYli9fnm1dz549cejQIYSFhaFSpUro1q0b7t+/b9LYa9euxdatW/Hdd98ZLc6DzN3/5lSYjrs5adSoEdauXYsrV65ARBASEoLTp08jKCjI5LGTk5MBAA4ODmqZlZUV7O3tsWPHDpPHf9axOHxGXb16FX///Tf69u1rlPd7VGEKAPb29gbFqYeHh1FiP+hhX5CmZq7Yj/qSqFSpEn744QccPXoUO3bsQNmyZREUFITr168btR3myP9hud+9excHDx7EqFGjcPDgQaxcuRKnTp0yyiWtx4kPFNxn/8EHH2DdunUICQlB6dKls613c3ODv78/mjRpgj/++AMnT57EqlWrTBp769atOHv2LNzd3WFjYwMbm8yRSl26dEGzZs2MEtuc/f+oHwYrV65EUFAQPD09oWkaIiIijBJXV5iOuzmZOXMmqlWrhtKlS8POzg5t2rTBrFmz1HATU6pSpQrKlCmDzz77DLdu3UJKSgqmTp2Ky5cvIyYmxuTxn3Ucc/iMWrx4MVxcXHIcJ2IqoaGh8PLygoeHB1q0aIEJEybA09PTqDH0L6lt27bl+AVpSuaM3bZtW7Rt2zbX9T169DD49zfffIP58+fjyJEjaNmypVHaYK78H5a7m5sbNm3aZLDshx9+QIMGDXDp0iWUKVPGpPEB03/2IoIPP/wQq1atQmhoKMqVK/dYrxERdXbFVLFHjBiBfv36GSyrUaMGvv32W7zyyiv5iq0zZ/8/asxdUlISGjdujG7duqF///75ipVXBXHczc3MmTOxZ88erF27Fn5+fti2bRvef/99+Pj4oFWrViaNbWtri5UrV6Jv374oWrQorK2t0apVK7Rt2xYiYtLYloDF4TNqwYIF6Nmzp8Epd1Nq06YNOnfujHLlyuHs2bP4/PPP0bZtW+zevRvW1tb5fv+8fEEaizlj50VKSgrmzJkDNzc31KpVK9/v97TlHx8fD03T4O7uXuCxjf3ZA5lna5cuXYo1a9bAxcUFsbGxADILI0dHR5w7dw4rVqxAUFAQihcvjsuXL2PKlClwdHREu3btTBpbP1v1oDJlyphtPzFm/z/qh8Gbb74JAPm+KzyvTH3cfZh79+7h888/x6pVq9C+fXsAQM2aNREREYFp06aZvDgEMqdwioiIQHx8PFJSUlC8eHE8//zzqFevnsljP+tYHD6Dtm/fjlOnTmHFihUFFvP1119X/1+jRg3UrFkTFSpUQGhoqFHOnjzqSwoAYmNjERsbizNnzgAAjh49ChcXF5QpUyZfN0+YM/aTWLduHV5//XXcvXsXJUuWxKZNm1CsWLF8v+/Tkj8A3L9/H59++im6d+8OV1fXAotrqs8eAGbPng0A2S7TLly4EL1794aDgwO2b9+O7777Drdu3UKJEiXQpEkT7Nq1C15eXiaNXdiYq//NxdTH3YdJTU1FamoqrKwMR6dZW1sjIyPDpLEf5ObmBiDzJpX9+/dj/PjxBRr/WcTi8Bk0f/58PPfcc0Y7c5EX5cuXR7FixXDmzBmjHKQe50vqp59+wtixY9U6fdxLfr/IzBn7STRv3hwRERG4ceMG5s6di27dumHv3r0FUiAUhvxTU1PRrVs3iIhqc0Ex1WcP4JGXyHx8fLB+/fp8x8lLbGO9xhjM2f+FhbGPu4mJieoHHwCcP38eERERKFq0KMqUKYOmTZti2LBhcHR0hJ+fH8LCwrBkyRJ88803+Y79OPF///13FC9eHGXKlMHRo0fx8ccfo2PHjgVyQ8yzjsXhU+RRfygAkJCQgN9//x3Tp083VzMBAJcvX8bNmzdRsmRJo7zf43zhjBkzBmPGjDFKvMIS+0k4OTmhYsWKqFixIl544QX4+/tj/vz5+Oyzz/L1vk9D/nphcPHiRWzdurXAzxqZ6rOnx2Pu/i8sjH3c3b9/P5o3b67+PWTIEADAW2+9hUWLFmH58uX47LPP0LNnT8TFxcHPzw8TJ07Eu+++WyDxY2JiMGTIEFy9ehUlS5ZEr169MGrUKKPEtnQsDp8ij/pDAYDly5dDRNC9e3ejxn5YYVq0aFGMHTsWXbp0gbe3N86ePYvhw4ejYsWKaN26tVHbQY8vIyMj3zckPA30wiAyMhIhISEFNhj/YSzlsy8MCmP/G4u5j7vNmjV76I9Db29vLFy40Cix8hL/o48+wkcffWSy+JaMxeFT5FF/KEDmY7QGDBhg9NgPK0xnz56NI0eOYPHixbh9+zZ8fHwQFBSE8ePHw97e3uhtsUQP+5Lw9PTExIkT0aFDB5QsWRI3btzArFmzcOXKFXTt2tWMrTaOh+VesmRJvPbaazh48CDWrVuH9PR0NSayaNGiRpkE2pyfff/v8vf6uYOe7viA+fvfnHjcJXNhcUiP5VGF6caNG00W29xfUOaODzz8S+Knn37CyZMnsXjxYty4cQOenp6oX78+tm/fjoCAgHzHNnf+D8t9zJgxWLt2LQCgdu3aBq8LCQkxylx75vzsybz9/6ihPHFxcbh06ZKadPvUqVMAkOtd3E/KnMddsmwsDomeAo/6kli5cmUBtqZgPSp3U98AYcmffWFgzv5/1FCetWvXok+fPmq9fvfw6NGjzT4GOb/M/aPQ3PEtHYvDpwT/UIiICtajCtPevXsXyil9iPLLYovDffv2YfTo0di1axdSU1NRo0YNDBkyBN26dTN30wolFqdERAWLx10yF4ssDkNCQtC6dWs4ODjg9ddfh4uLC/7880/85z//QVRUFIYOHWruJhIplv4FYe788xP/af/sze1p7ntjxCcyF6tHb/JsSUtLQ//+/WFlZYVt27Zhzpw5mD59Og4fPoxKlSrh888/x8WLF83dTCIiIiKzsLjicOvWrTh79ix69OhhcHebm5sbPv/8c6SkpGDx4sXmayARERGRGVlccRgaGgoAOT5eR584NCwsrCCbRERERFRoWFxxGBkZCQDw9/fPts7b2xvOzs5qGyIiIiJLY3E3pMTHxwPIvIycE1dXV7VNTpKTkw0ei6VvGxcXh9TUVACAlZUVrK2tkZ6ejoyMDLWtvjwtLc1gegRra2tYWVnlujw1NRUp923zkO3/3L6dgfT0dPVvTdNgY2ODjIyclz/Y9vzGv3kz87PJmlNWNjaZu2JaWlq25Sn3tXzFjotLyzGnx+0nY+Wuyy1XW1vbHPsj5X7+/kxv3kzlvoe87XuZ8fO+/3Hf474HmGffA4CEBHDfe0r3vUf1U1xcHADTzfOpialnkC1kgoKCsGnTJkRGRqJixYrZ1pcqVQqJiYm5FohjxozB2LFjTd1MIiIiooeKiopC6dKljf6+FnfmUD9jmFvxl5CQAA8Pj1xf/9lnn6lZ8gEgIyMDcXFx8PT0hKbl71deXiUkJMDX1xdRUVFwdXW1qPiWnDvjc99jfMbnvm958YHMM4Z37tyBj4+PSd7f4opDfaxhZGQknnvuOYN1sbGxSExMRIMGDXJ9vb29fbaHmru7uxu9nXnh6upqth3V3PEtOXfG577H+IxvabEZP/fhccZgcTekNG3aFAAQHBycbZ3+EHN9GyIiIiJLY3HFYcuWLVG+fHksXboUERERanl8fDwmTZoEOzs79OrVy3wNJCIiIjIji7usbGNjg3nz5qF169Zo0qSJwePzLl68iGnTpqFs2bLmbuYTsbe3x+jRo7Nd7raE+JacO+Nz32N8xue+b3nxC4LF3a2sCw8Px+jRo7Fr1y6kpqaiRo0aGDJkCP7zn/+Yu2lEREREZmOxxSERERERZWdxYw6JiIiIKHcsDomIiIhIYXFIRERERAqLQyIiIiJSWBySUekPCBcRkz0Q/HFiWkr8rHGyPpy9oFhy7uaKn1NMc91XyP63zP631NzNGT9rnIL4zHm3MhldcnKymv9JRArkmdNZ42RkZMDKyspgHQCTtsPc8c3JknMvbMzxebP/Cw9L/rzNnbu54xubxU2CTcZ3+PBhnDhxAtu2bUNqaioSEhKQmJiIWrVqwcfHB+XKlYO/vz/8/f2N/oezcuVKxMbG4vz587hy5Qo8PT1hZWUFNzc3NGvWDC+++CJsbW3V9sYuVs0V/+TJk7h48SK2b98OW1tbXLlyBTY2NqhZsybc3d3h5+eHihUronjx4vmOlRtLzd1c8VNSUhAaGoq7d+/i6NGjuHPnDlxcXAAAXl5eeOmll1C+fHm1fUZGBjRNM9mXFfvf8vrfUnM3Z/wrV67g3LlziIiIgJ2dHc6ePYtixYqhUqVKKFKkCHx9fVG+fHnjT8gtRPnUqFEj0TRNKlSoIOXLlxcvLy9xdnaWIkWKiJWVlbi6ukr9+vVl7Nixsm/fPklPTxcRkYyMjHzFXb58uWiaJkWLFhVnZ2cpVaqU+Pj4iKZp6j83Nzfp27evHDp0yAiZFp74fn5+ommaeHt7i5ubmzg4OKiYtra24uvrKx06dJA5c+bI2bNnRUQkPT0935+5zpJzN1f8adOmiZWVldjY2Iitra24urqKk5OTwWderVo1+frrryUuLs4YqeaK/W+Z/W+puZsrflpamri4uIiVlZW4uLiItbV1tr+x2rVry7vvvitr166V69evi4io79j84GVlypfU1FSEhISgcePGuHbtGjw9PWFvb4/jx4/j2rVruHDhAsLDw7F582ZERUWhZs2aGD58OHr06JHv2FevXsX+/fvRuHFjWFtbIyoqCkWKFMH9+/exe/dubNq0CXv27MH58+cBAD179sTHH3+MevXqGeWXnbni37lzBxs2bEDDhg1x69YtlCxZEsnJyTh+/Dhu3ryJU6dOYffu3di5cyfS0tLQqlUrjBo1Cs8//3yec2Xu5o9/8OBBnDx5Ei1btkRiYiJu3rwJJycnxMbGIiwsDGFhYTh48CCSkpLg5OSEoUOHok+fPvDz80N6ejqsra2N8AlkYv9bXv9bcu7min/lyhWsX78ederUQWpqKkqWLInr16/j1KlTuH37Ng4fPozdu3fj33//RbFixdCtWzd88cUX8Pb2zle+AHjmkEwrPT1dkpKS5PDhwzJlyhSpUqWKaJomHTt2lFOnTolI/s8gPszly5dl1qxZUr16ddE0TRo2bCh79+41WbzCED85OVlu3LghW7Zskffee088PT1F0zQZPny4UX9ZPool5m7u+OHh4TJ06FBxc3MTTdOkR48eEhMTY7J4D8P+t6z+t+TczRU/ISFBLly4IL/88ou8/PLLYmNjI8WKFZO5c+fKvXv3RCTv368sDilfctvxclp+7949CQ0NlU6dOommadKlSxe5efOmSdqUlpaWbfns2bOlTJky4ubmJosWLTJ63IKKn9Nnm5GRkePyGzduyLJly+S5554TTdNkxIgReY77uG17lnM3Z/ysMbL+f3p6erbP/MaNGzJ48GBxdHSUKlWqSEhISK7tNyb2v+nim7v/mXvBx9df82DMB98rPT1dzp07J19//bWUKFFCnJ2dZfHixU8cLysWh2QS+s6b0x+PiMjcuXPFw8NDmjVrZrQCMWtM/Rdq1vhpaWnyzz//SKVKlaR48eKyYcMGo8QtDPGzHizS0tKy/UK/c+eODBo0SKytraV///6SmppqtNhZ41ty7uaKn/XvK2v8xMREmTNnjri6ukrdunXl3LlzRo2bFfvffPHN2f+WnLu54mctGNPS0rIViidOnJA2bdqIlZWVTJs2Lc9xWBxSgdL/eFJSUmTevHlibW0tgwYNyrGAfBJP8qvs2rVr0rp1a6lYsaKcP38+X3ELS/zcZGRkqM/89u3b8tlnn4mmafLjjz8aNcbjetZyL8zxdXv27JGKFStKs2bN5NatW0Z/f/Z/4YyvM3X/58SSczdX/Kx/hxcuXJCuXbuKk5OTbN68OU/vx6lsyKh27dqFdevWITU1FS4uLvD19UX79u3h5eUFAGoONFtbW/Tt2xdFixbF4cOH833L//Xr17Fjxw6EhITA3t4eQUFBaNCgAdzd3dU2aWlp0DQNxYsXx7hx4/Ddd9/h3r17+YpbGOLv27cP27dvh4jA0dERZcuWRYsWLeDg4GAw8N/NzQ2TJk2Ch4cH4uLi8h1XZ8m5myv+tWvXcOzYMYSEhKBkyZJo1qwZKleubDDwPS0tDTY2Nnj++ecxceJE/Prrr7h3755BvxgD+98y+99Sczdn/IiICBw/fhxpaWlwdHRExYoVUbduXQD/m19RRODn54dFixZhyJAh6kaaJ5bvcpUsmv5rJSkpSSZMmCC2traiaZoUK1ZMbG1txcbGRvbv3y8imWcLs15+Esk8FR8bG5un2Pp7bNy4UerVqyeapomjo6O6zb9r164PfX1KSkq+BkibK77+Gd66dUsmTJigYjo4OIi9vb14e3vLxYsXRUQMLuPoZ2eTkpIkOjr6ieNmZam5mzO+HnvTpk1Su3Zt0TRNrKys1Gc+evToh77+xo0bRhtzyP63vP5n7gUfX/8buXbtmowbN05cXV1F0zSxtrYWV1dXqV27tiQkJBhs++Dr8vr9yuKQ8kU/CMyaNUtsbW2lc+fOcvjwYTly5Ig0b95cXFxc1LYXL16UlStXSnJystHip6SkSEBAgHh7e8svv/wiFy9elJEjR4qmabJgwQIRybysMW/ePFWkihjvrjlzxNc/83Hjxomtra106dJFtm/fLiEhIVKpUiUpX7682vbMmTOya9euPMd6GEvM3Vzx9S+Wa9euib+/v3h7e8vixYtl9+7d0rt3b9E0TY3ju3btmixbtkwuX76sXmuKu0TZ/5bV/5aauznj64X1kCFDxMbGRjp37izr1q2TpUuXiouLiwQGBopI5t/U6dOn5fTp0/lJ1QCLQzKKKlWqSPPmzeXMmTMiIrJ7924pVaqUvPvuu2obfeLcPXv25Due/kezcOFCsbGxkZ9++kmtGz58uNjY2BgUoQEBATJ8+HCjDYg2d3wRkRIlSsjLL7+spokIDg4WNzc3GT9+vNpm8uTJUqxYMdUvxmDJuZsrvv7ZTZgwQZydneWXX34Rkcwvnz59+oiHh4fBtr6+vjJ79ux8x80J+9+y+9/Scjd3/Pv374uTk5P85z//UX9Xf/75p9ja2srChQvVdu+++67Ur19fbty4YZS4Vo++8EyUM/n/+dPPnDmDixcvolGjRqhQoQIAIDw8HNHR0XjnnXfU9jdv3kSJEiVw+/Ztg9fnhT52ce3atahWrRoaN24MIHNMxtq1a9GuXTvY2dkByBwjcv/+fdy4cQM2NsYZZmuu+PoD13fu3ImbN2+iVatWKFasGNLS0rB7924kJCSgb9++avvExEQ4OTkhISEhX3GzstTczRlf/+z++usv1K9fH02aNAEA7NixAxs2bMB//vMfte2ZM2dw9+5dxMTE5DtuTtj/ltf/lpy7ueLrn/natWuRkpKC9u3bw87ODklJSdi2bRuAzMnldffu3cO9e/eQmJiY79gAwOKQ8kwfABsVFQV7e3s4OTkBAC5duoTg4GCULVsWtWvXVtufPXsW6enpCAgIMErslJQUpKSk4P79+6hatSqAzC+oU6dO4d1331XbnjhxAqmpqeqmGP2P7mmMr38xX7x4EXZ2dihRogSAzM92w4YNaNCgAUqWLAkAuH//Pi5dugRra2tUqlQpzzEfZKm5mzt+XFwckpOTAQBlypQBkPnkhtjYWIPP/OTJk7C2tlbPtzXG/p4V+9/y+t+SczdXfP0zP3/+POzs7NSzm8+cOYMNGzagffv26tnlt27dwrVr12Bvbw8/P788xzSIb5R3IYtWs2ZN2NnZ4dChQwCAy5cvY9u2bejVq5fa5uzZs9i/fz98fX1RunRpiEi+7lAWEdjZ2aFatWqIjIxEdHQ0EhISsGXLFri5uaFt27Zq20OHDiEqKgqvvvpq3pMsZPFr1qyJtLQ0HD9+HABw6tQphIeHo1+/fmqbyMhIREREoGrVqnBycjLagdKSczdXfBFB0aJF4efnhzNnzgDIfITdxo0bUa5cOdSqVUttGxERgbi4OLRv3x4A8j0TQE5tYf9bZv9bYu7mjh8QEIC7d+/iwoULADL/pk6fPm1wVe7UqVP4999/8dxzzwEA0tPT8x2XYw4p39LT06VHjx5iZ2cnkyZNkk8++UQ0TZM7d+6obSZMmCB2dnYya9YsERGjjT8KCwsTTdOkW7dusmbNGildurTBOMdTp05JgwYNxN/f3yjxCkv827dvS7169cTLy0tWrFgh7733ntjY2BhsM2LECLG2tpaVK1eKiOR7LskHWWru5oy/cOFC0TRNvvzyS1mzZo24uroajPXat2+f1KhRQxo0aCAipn0iCvvf8vrfknM3V/zTp0+Ll5eXPPfcc7Jz507p0aOHFC1a1GCbDz/8UKysrGT37t0iYpwbLlkcklGcOXNGqlWrJpqmibOzs5QuXVr27NkjERERMmrUKHF0dJQWLVpIYmKiiBjvDyc5OVk++eQTsba2Fg8PD3WnZGxsrPz111/StGlTcXFxkXnz5omI8Qskc8YPDQ1Vz/F0d3eX2rVrS0xMjJw9e1bGjRsnDg4O0rp1a6PFe5Al5q7vt+aKf+PGDWnbtq1YWVmJr6+vaJomO3fulGvXrsmOHTukUaNG4uHhIX/88YeIGH9/z4r9b1n9b8m5myu+/pkvWLBANE0TFxcXcXd3l7Zt24qIyJUrV2T8+PHi4OAgr776ar7jZcXikPJN/5Vy4cIF6du3r3rgetb/2rVrJxERESJi/F90ycnJMn78eKlSpYqae6tYsWKiaZrY2dnJkiVL8v0Q8odJSUkp0PipqamSkpIiIiJbt26Vpk2bqs/Zzs5OHBwcRNM06dixo/rMTfXAe0vMXX8/c8W/evWqDBgwQEqWLClWVlbi6uoqZcqUEU3TxNbWVn755RejP6YsN+x/y+p/S85dJHOqmoKMn5qaKmlpaXLv3j358ccfpWzZsqJpmtjY2IiXl5cULVpUNE2T1157TY4cOSIixvvMNZF83DJKFkn+f7xgamoqrK2t1cBZIHOsw9GjR7Fr1y7s3bsXRYoUQbt27fDiiy8a9ckMt2/fzvZ++/fvx5YtWxAZGQlbW1sUL14cr7/+OqpVq2a0uFnju7q6GuR+8OBBBAcH48yZM7CxsYGXl5fR4mdkZBjEerAte/fuRWhoKMLDw1GqVCm89NJL6NixI1xcXPIdO6d4lpS7vr/n1I47d+5g165d2Lp1K/bt24fSpUub5LO/f/8+HBwc1L8TExOxZcsWbNmyBRcvXoS1tTXKli2LN998E3Xq1DFa3Jyw///nWe9/S85dd/fuXRQpUkT9OykpCVu3bsWmTZtw8eJFWFlZoVy5ckaLLw8Zj3/p0iVs2bIFGzduxJEjR1CtWjU0bdoU/fr1g6OjY75jP9gQoieinwGYPXu2NGzYUM1b+LBfLMY4a6C//44dO6RTp06ybNky+ffffyU+Pt5gO1P/aj579qwMGDBAPv74Y0lOTs6Wmyl/uXbs2FFGjhwpJ06cyLFtIqLmwjLmr3ZLzl33ww8/SNeuXdUzgXOKoZ8lM0Z8/bLU+vXr5eOPP5YtW7ZIVFRUtknkC+KZsex/y+5/S8tdj3/8+HEZOHCgTJs2Lce8bt++bZL4IiLdu3eXxYsXP/T7LSkpSURMc0WMxSE9kayzxZcrV06qVKkicXFxan1ycrIcOnRI1q1bpyZANfaB+quvvlKPbapRo4YMHTpU/vrrLzlz5oz6YzEF/YDx8ccfi4uLi8ydO9dg/YULF+TgwYNy8+ZNk8S/cOGCuoxjb28vLVq0kNmzZ0tMTIzBdunp6erSm7FYau76vnvixAkpVaqUVKlSxeDgnJGRISdOnJAdO3aog7ix9/e+ffuKpmlStGhRCQoKkm+++UZ27twpMTEx2WKZ6gYU9r/l9T9zF3nrrbfE3d1djSPURUVFSUxMjMl+DO3atUvt7z4+PvL222/Lxo0bs+WYlpZmsjawOKQnou+IU6ZMEQ8PD1mxYoVaFxcXJ/3795ciRYqIvb29NGrUSI4dO2b0NsTExMjWrVtlwoQJEhgYKI6OjlKkSBF58cUXZdKkSbJ161a5cuWKSQbjJycni7u7u/Tq1Us901JEZPHixVKzZk3RNE1KlSolM2bMkPT0dKMdsPT3OXXqlHz99dfSoEEDdfAoWrSovP7667J69Wq5f/++UeLlxBJz1/f3jz/+WEqVKiXr169X6y5fvizvvfeeeHp6SrFixeT111+Xa9euGb0NJ0+elN9//13eeecdqVChglhZWUnJkiWle/fusnDhQjl06JBJz2Do2P+W1f+Wmru+v125ckWKFCki7777rkEh+ssvv0iNGjXE2tpaGjZsKP/884/B64wVf+PGjfLee++pm180TZOqVavKZ599psZ0mhKLQ8qT6tWrS+vWrdWD1kVEhg4dKpqmSYsWLaRPnz6iaZq88sorJmvD/fv35dy5c/LXX3/J4MGDxd/fXzRNk4oVK8rrr78uX3/9tdEOHHqh+euvv4qTk5NBUXz27FlxcnISHx8f6dChg7i4uIi9vb0aIGwqe/fulU8++UT8/PzUwaNChQry1ltvyaFDh4wWx5Jz13l7e0v37t3VI8NERO3jjRs3lpYtW4qmafLpp58aPbbu9u3bEhERIfPmzZPXXntNPDw8xMbGRho2bCiDBg2SZcuWGfW55Tr2v2X3v6Xlru/vU6ZMEU9PT1X8iYgcOnRI7O3tpUSJEtKwYUPRNE3KlCljksJYl5iYKCtWrJDOnTurm340TZMXX3xRxo8fb7LYLA7piV26dEl8fHzknXfeUcv+/vtv9SsrKipKREReeuklCQgIkNjYWKPGz+nSRXx8vOzYsUPatm0rmqaJh4eHuLi4GC2m/mtuwIAB4uPjIwcPHhQRkYsXL8prr70m3t7esm7dOhHJfIa0jY2NeganMaWnp2c7I5qWlibz5s0TT09P8fLyEk3T5McffzRod35Yau766w8ePChubm4yZswY1Y5Vq1aJtbW1fPzxxxIbGysJCQni7+8vbdq0kbt37+Yr7oNteDCPjIwMiYmJkZUrV0qVKlUMiiNTYP9bXv9bcu669u3bS40aNeTs2bMiInLu3DkJCgoSPz8/2bhxo4iIjBo1SpycnCQkJMTo8dPS0rJ91126dEmGDh0q9vb26k7lrGd0jck4D5oli+Ps7Izz58/j/v37OHr0KEaNGgUvLy98+eWX6jFKpUqVwrlz53K90zCv9PeT/7/RXtM0uLq6IjAwEMuWLUPr1q0RFBSENm3aAMi8g9ra2jpfMfU79ry8vBATE4OiRYsCAH7++Wf8+eefmD17NoKCggAA7u7ucHBwwI0bN1Q7jfmUAj3/jIwMiAisra3Rt29fHDx4EMePH8f06dPx2muvGS2epeautzs9PR22trbqeam7d+/GF198gYCAAHz++efw8vJCamoqKlSogLi4OKPu71k/u4yMDGiaBk3T4O3tjU6dOqF8+fLo1asXunfvjkaNGgEA0tLSjPYMcb0N7H/L6n9Lzh3IvEPaw8MDe/fuVY+t+/HHH7Fp0yYsW7YMzZo1AwCUL18eGRkZuH79OgDj7e96vvrnmZ6eDisrK/j6+mL8+PH4999/ISJo2bKlwROJjMokJSc9U3IaP9SiRQvRNE1at24tZcuWFWdnZ1m4cKFaf/bsWWnSpIm88MILIpK/X/H62YLLly/L9evXczxzmPWsQsOGDWXUqFF5jpcTvf3//POPaJom3t7eEhQUJJqmSatWrQy2/f7778XBwUHCw8NV2/IjPT1d3SWYtT36++p5r1ixQurUqSN37twx6uBsS8v9wTbfv39fypQpI87OztKrVy+pUKGCODs7y5o1a9Q2R48elRo1akjnzp1zfI+8xL969WquN1jpeaelpYmfn5/B356xsf8tp/8tOXedvv/MmjVLNE2Thg0bSteuXUXTNHn55ZcNths3bpw4OTmp4VV53ff01yUnJxs8WUwk8zPRPxd9HOjkyZPVpNemugmNxSE9Ef0PMzY2Vt5++20pX768FC1aVFasWGEwIPznn38WJycnoz4uT3800YwZM+TIkSPZ/oj0dr3yyivSvHnzfMfLSVxcnHz22Wfi6ekpxYsXl759+8rhw4fV+gsXLkjLli2lfPny+Y6lf9bz588Xe3t76d+/v/z555/Z7gjVP9uff/5ZPD09ZdeuXfmOnRNLyz0jI0O1Y8+ePdKqVStxdXUVNzc3Wbp0qcFB+euvvxY7OztZtWqVQfvzo0qVKtK9e3dZuXKlXLp0KccxVWfPnpXAwEDp3bt3vuM9CvvfcvrfknPXnT9/Xrp16ybW1tbi4uIiffr0kePHj6v1x44dkwYNGkj9+vVFJH9FWtair3z58jJu3DjZs2dPrlNFjR8/Xnx8fNQlb1NgcUgPNWzYMPntt98MbjzRXb16VWJjY9U0Blnv8goICJCqVauqAi6/v27i4+OlW7du6qYTDw8P6dKli/zyyy8SGRkpN27cEJHMxwzZ2dnJyJEjRSTvB6p169bJ8uXLDe7KzComJkYOHDiQ7f1Hjx4tHh4e8u2334qIcYriH3/80WAgcs2aNWXYsGGydetWNW3HxYsXpW3btuLu7p7veJaae1pamowfP15CQkKy5Z6RkSHnz5+X8+fPy+XLl9Uykcw7KgMCAqROnTr5ip/VxYsXpX79+lK8eHHRNE0qV64sQ4cOla1bt6pxXiIiM2fOFCsrKzXOzhhfzOx/y+t/S859/fr16kx3Tg4dOiRhYWHZzogOHjxYPDw85NdffxUR4+zv77zzjtrXnZ2dpU2bNvL999/LyZMn1TanTp2SZs2aSbly5fId72FYHFKuwsPDRdM0cXR0lOeff15GjBghGzZsyHEuM/0P4+7duzJ58mTx9PRUc6EZ4zKD/svxyJEjMmvWLOnSpYuULFlSNE0TX19fad++vTz//PPi7OwsxYsXV8VsXmPXr19f3Yn24Ycfyo4dOx45f9rWrVvV46P0YtWYp/xDQ0Ole/fuYm9vrx6hVL16denSpYtUrVpVNE2TTz75RETyd6Cy1Nx///130TRNSpYsKR07dpQZM2bIoUOHcnw//Yvo7t278uGHH0rRokXlt99+M1iXF1k/s6SkJNm8ebOMGjVKGjVqJI6OjmJjYyP169eX3r17S1BQkDg7O0upUqWM9iNMhP1vif1vybnrj3ts2LChzJgxI9swhpza+eeff4qmadKjRw81+bexJCYmyuzZs6VevXqqUPT29pZWrVrJxx9/LDVq1BBN02TKlCkiYrqJ51kcUq7S0tJk06ZN8sEHH4i3t7domiZubm7SunVrmTx5suzcuTPb3WlJSUmyd+9e2bFjhyQmJoqIcb4kmjdvLt98843697Vr1yQkJEQmTZok7dq1kwoVKoijo6O0aNFC/vrrr3zF1e/IGz58uDz33HNibW0tmqZJjRo1ZMKECfLvv//m+trg4OCHrn9cWS+XDR06VC5duqTWpaWlybJly6RFixbi5OQk9vb2UqpUKRk7dqya1iCvRbEl537r1i356aefpE2bNmJjYyOapkn58uWlT58+snjxYomMjMz2mps3b8o///wjW7duVX8L+d3f79+/Ly+//LKsXr1aRDI/j8jISFmxYoV8+OGHUrduXfHw8FDTRumX84wxATH73zL731Jzv3v3rsycOVN69eql5hN0cHCQV155RZYtW6Z+6Dzo1q1bMn/+fHWZ2RiXlGfOnCkzZ85U35simZe2R40aJeXLl1eFopubm4wePTrbFTtjY3FIj+XWrVvyxx9/SKdOnaRIkSJq5vb//Oc/8vPPPxuMxTAW/Q8+ODhYrK2tZcaMGTluFx0dLRcuXJAbN24YfULU8+fPy9KlS6Vfv37qkraVlZU0a9ZM5s6dK9HR0UaN96AyZcpInTp11JnQB8/gxMXFyZ49e7I9KcIYLDn306dPy9SpU6VOnToq79q1a8vgwYNl7dq12aZnMuYjwxYuXCj29vayYMGCbNskJSXJqVOn5Pjx43Lq1CmTPjqN/W+Z/W+JuScnJ0t4eLhMmzZN2rVrpwpQfWzt5s2bjX6G8EG2trby0ksvqYL0wc/12LFjsmHDBrlw4YLJCsKsWBzSE7t06ZL8+OOP0rhxY/VrpkqVKvLuu+/KihUrjDZIVv8D+P7776Vy5cqyb98+Efnf3dOm+gPJejekLj09XV3S1ud20zRNXFxcpFu3brJmzRqjFaZ6XpcvX5YKFSrI559/nm2bnObAMlZsS809J2lpabJ3714ZPHiwmnDZyclJmjVrJuPGjZPQ0FCj5z5kyBB57rnn5PTp0yKS82wBpsL+zx7Lkvo/K0vIPafvkVu3bsnmzZtl5MiR0qhRIzWUwd/fX0aOHCkRERFGe/qWHvvQoUNSsmRJ+e677wzWp6enm/R55Q/D4pCeyIMH5aNHj8ro0aPVhKSOjo5SuXJlNRF2Xty8edNg3MeWLVvE0dFRvWdBfTGI5PxlmZiYKDt27JAJEyZIy5YtxdnZWeX+888/5zmOiGSbvqFbt24ybNgwERGTPhovtzZZau45uXPnjvz999/So0cPcXd3F03TpESJEtK6detcb954GD3vGzduGLx+wYIF4unpqcbZmqMw0OOy///H0vo/K0vIPafvlcuXL8vvv/8u77//vgQEBKjxrpUqVZKtW7fmK17W3FJSUqRhw4YyZ84cEZEc784u6P2AxSEZxf379yUsLEx69+4tdevWzdN76L/GhgwZIp07d5aUlBTZvXu3jBs3TmrVqiWTJk0y6gz8j0P/g8ztD/PatWuybt06GT58uJQpU0bWrl0rInkrYM+dOyelS5dWs+1//vnn8uKLL8rzzz9vcAkl67xXpmTJuWeVU7zY2FhZtGiRvPDCC/L888+LyJMfvPX37devn3z44YciIrJjxw6ZPn26BAQEqPFU5sL+/1/MB1lC/4tYVu56DrntXydOnJC5c+fKG2+8IUWKFJG9e/cavO5JYuzevVsaNWokkZGRkpKSItOmTZPatWvLa6+9ZrC9uc4ai7A4pCcQFRUlUVFRkpyc/NBf8vq6vB7E7e3t5c033xQRUZOPapomdnZ2MnHiRDl16tQj7540Bv2PMiUlRWJjY+Xff/99aHF64cKFPMXRP6cvvvhCbGxsZNeuXbJnzx51GUf7/2dUh4aG5vhaUxw8LDl33dWrV9W+/LDLSPrA8LxcakpMTBRN02To0KEiIlK7dm21v5cuXVoWL14ssbGxBf4Fwf637P635Nxv3rwpV65cyXX9/fv3JSIiIk/vrX9OvXr1EmdnZzl9+rQsX75cNE2TYsWKib29vQwfPjzb0KyczuKbGotDypW+M8bExMiIESOkXLly6jmWH374oaxZs0aioqKMcslHPwCsWbNGNE1Tc0eFhobK119/Ld26dVN3k1WuXFk++eQTCQkJyfWJKcaQmpoqW7dulZo1a4qvr6/4+flJq1atZPTo0Q+dFyuvSpcuLZ07d1YDvn/77Tfp0KGDOmBqmibt27eXmTNnqjE5pmKJuev74NWrV+WLL76QgIAAcXJykqZNm8rUqVNlz549EhcXZ5TxRvo+O2vWLHFwcFB32C9dulSGDRsmLVq0EFdXV7G3t5cWLVrIDz/8IMeOHTO4k9GU2P+W1f+WmnvWJ5OEhITICy+8IDVr1pTnnntOevToIfPmzcvXEKncODs7S//+/SU+Pl4SEhLk888/V5et9alr3nnnHaOO531SLA7pkbp06SKapknLli1l2LBh6he9pmlSq1YtGT16tISFhcnVq1fzNYWKiEhQUJDUqlXLYNJPkcyJUf/++28ZOXKkNGzYUBwcHMTW1lYaNmwoX331lezdu9doRaJ+AFy+fLl4e3tLiRIl5OOPP5Z69eqJlZWVmk6gXbt28t1338mpU6fyHEs/OOlnS/QnymSVkJAgc+bMkeeee0597j4+PtKrVy9ZuHChUe/as+TcRTLPlOlFyQsvvCBvvPGGiuvk5CQvv/yyzJ07V44dO5ansVY6fV+tWbOmNGvWzODM27179+Tw4cOycOFC9RQi/czC66+/LsuWLTPZkxHY/5bb/5aYu76/z507V7y8vKRYsWLSvXt3KVGihJrSp2LFijJgwABZuXJlvgo1fX9fuXKlaJqm5obM6tixYzJ48GA196KmaVK3bl0ZOXKkbNmypUDPHrI4pBzpfzQbN24UGxsbeffdd0Ukc2Cyra2tdO3aVfr166fmQXN2dhZ/f/88n24XyZxzysrKSvr27ZvrL9TU1FQ5ffq0rFixQgYOHKgmBK1WrVqe4+amZs2aUrFiRdmxY4eIiLz33ntSunRpGTRokFSrVk19URYvXlwGDRqUpxh6nv369ZOSJUuqzy8tLU1SU1OzfQ5nz56VL774Qp1F1TRNjdMyJkvLXY+1ePFisbW1lcGDB4uIyPHjx0XTNOnatau0a9fO4LJX69atH3r56VEuXLggmqY99Dngt2/flj179siMGTPk1VdfVRO/d+zYMc9xHwf733L635Jz15UtW1aqVaumZsRo27at+Pv7S9euXcXNzU3dgFO5cmX1RJYnpRd2bdq0kerVq8u5c+dEJLMoT0lJyXb5PDg4WLp06aK+YzVNy9ePsSfF4pBypB8wunbtKlWrVlWXkr7//nuxtbWVjRs3ikjmvFTe3t7Spk0bqVatWp5+Uep/NAsWLFDT4gwfPlzWrFkjV69ezfV1iYmJEhERId9++6388ccfIpL/2eL1thw+fFisra1l8uTJap2Tk5MMGDBARDLvYqtevboULVpUNO1/T2fI62UXDw8PsbGxkf79+8uOHTsMxnelp6dLSkpKtl+Nu3btkoEDB+YpXk6Yu0jjxo2lYcOGcuzYMRERGTFihHh4eKh2DRs2TNzc3OTFF1+UChUq5CvWhAkTRNM0ady4scyYMUP27NmT412KutjYWNmyZYsMGzZM1q1bJyLGfToC+98y+99Sc9f31w0bNoi1tbX88MMPIpI5f6amafLll1+KSOaZ7WLFiqn9XZ9uJi9n8ZKSklShOXXqVFUgZm3Tg+Ppk5OTZd68edK1a9cnjpcfLA4pG32nT0lJkYCAAHnjjTdU0VevXj1p2LChwU7dsmVL6dixoxqbkdc715577jlxcnIyeBpLy5YtZfz48bJt27aHjjkx1qBl/YAxceJEKVeunCqCV69eLZqmycKFC9W2mzZtkkaNGsndu3cfeWfnw9q8du1aNeGq/gsxICBAxowZI0eOHMnWPlPdjGOpuettuX79ujo7pn/x+Pn5ycsvv6x+pCQlJUnlypXl/fffV38Deb3U4+fnJ05OTurZweXKlZM33nhD5s2bl21YRVamurTE/re8/rfk3PX3GjhwoAQEBMju3btFROSHH34QW1tbWblypdp2xowZ0rFjR0lMTFSve5L9XX/N7NmzDW62srW1lXbt2smSJUuynQhJTU3NsQAuqBt0rED0ACurzN3iwoULAABvb2+4uLggJiYG586dQ82aNVGuXDm1feXKlZGYmAhXV1cAgKZpTxzv4sWLOHjwID755BNs2rQJP/74I1544QXs2bMHX375JV5//XW89dZb+OGHH3D48GGkp6cbvMeTxsyNtbU1AODWrVtISUlB5cqVAQB//fUXSpUqhWrVqqltnZ2dcfToUfz1118q/pO0Q0QAAD/88ANq1KiBJUuW4KeffkKbNm1w+fJljB07FrVq1ULTpk0xe/ZsXLp0CdbW1rC1tQUApKWlGSVnnaXmrrc7MjISdnZ28PX1hY2NDY4cOYKrV6+iTp068PLyQkZGBooUKQJ/f38kJyfD19cXwP/+Xp4k7z179uDSpUv48ssvERwcjOHDh8PJyQm//fYb3n33XXTr1g0ffPAB/vzzT1y5csXgPZ4k3pNg/1te/1ty7lZWVsjIyMCtW7dga2uLqlWrAgDWrVuHKlWqGOzvPj4+CA0Nxb///qvakJfvnNmzZyMwMBALFizAiBEjUK1aNfzzzz946623ULVqVfTp0wcbNmxAUlISbGxsYGNjAxFBamqqeg9jfdc9UoGUoPTUWL9+vZqMNjY2VmrVqqVOr+/YsUM8PT3VvFQimWMQ33jjDSlfvnye4um/qEaOHCnu7u4SFhYmIpm/muLi4tQ8h/Xr11djLypVqiR9+/aV3377Ld9jMPT458+fV4ON09PTZdGiRdKyZUvVlp49e4qXl5fBpbM///xTihYtKsuXLzd4ryeRmJgoVlZW6tKcSOYvw71798ro0aOlYcOGamC0k5OTvPbaa/Lnn3/KzZs385yzzpJzF8nM7cCBA+rfJ0+eFBcXF5k/f76IiPzxxx/i5OQk06dPV9vExsZKmzZt5IUXXshTTP0zfOutt6RMmTJy8OBBEckciH/p0iVZtWqV9O3bV42rc3JykhdffFG++OIL2bJli8TFxeU13WzY/5bb/5aYu37GLTo6Wl3CTk5OljFjxki7du1EJHOcY9OmTaVGjRoGr50/f764u7vLtm3bDN7rSZw/f140TZOpU6eqZTdv3pQ///xT3n77bTUbiD4jyKeffir79u0z2tNYnhSLQ1I7+l9//SU+Pj6yefNmg/UJCQmSkZEhiYmJ4uXlJfXq1VOnwBcvXizFihWTfv36iUjexx2VKlVKOnfunOMYw9TUVImJiZENGzbIRx99pJ7zamtrK88999xDx6o8rpIlS8rw4cPVeKfr16/LoUOH1Gn9iRMniqZpMnfuXLl+/brcu3dPXn75ZXFwcFBzfT2JrNM52Nvbq+kcHryMkJiYKBs2bJAPP/xQqlatajC1x99//52flBVLy12PP2fOHKlZs6b6khLJ/LGj56QPmu/Zs6daP2fOHHFxcVE/mPK6v7u4uEi/fv1yHKOblJQkJ0+elPnz58urr76qBsS7ublJt27d8hTvYdj/ltP/lpy7zsfHR3766SfV/sjISAkPD5f09HRJTk6WPn36SJEiRSQkJETS09MlISFBWrVqJZ6ennmKp3/mn332mXh4eKg5Ox/8/M6fPy9z5syRTp06iaenp9rXy5UrJ0ePHs1HxnnD4pDUzvvSSy9J1apV5cSJEyKS86+jyZMni7W1tTg6OkqTJk3UnEyHDx82eK8ncfjwYdE0Tb799ttHbnv//n05d+6crFixQl5++WV54403RCRvByo9v/Dw8BzjZx3fFBISIs7OzmJrayuNGjWSChUqiLW1tbpT80nj67EDAgIkMDBQLl26ZLA8pydBxMTEyK+//io9e/YUNzc39YjBvPyKteTc9feuXr26QfwHY967d09N51GxYkXp3LmzWFtbS6lSpfI8vlZEZN26daJpmixatOih22VkZMjt27dl//79Mn36dKlWrZq6CSO/ZxPY/5bZ/5aau97WVatWiaZpsmDBAoP1WfNfvHixaJompUqVkg4dOkhAQIBYWVnJ6NGj8xxfRKRYsWLSsWNHuX79umpTRkZGju8XEREhU6ZMkSZNmoi9vb3cuXMnTzHzg8UhiUjmLzZra2v55JNPDM7EbdiwQfr06aPmooqLi5PRo0dLvXr1pHr16tKmTRs1kDevIiMjZcGCBWr+qsc96CQkJKg/mrwUpfofZe/evaVMmTIGl1lu3rwpX331lXz//fdq2b59+6Rr167i5eUlpUuXlq+++kpN55CX+Onp6TJr1ixZunTpI7d70MWLF0Uk74OTLTl3kf9d4sl6R65I5tnzcePGqf3qzJkz0qdPH/Hz85NSpUpJs2bNZPv27fmKv3v3bpkxY8YT5ZGWliaxsbH52t8ffD8R9r8l9r8l5v6weXRjYmJk+vTpBo/sW7p0qTRo0ECsrKykRIkSMnHiRHVVK69DKAYPHizLli3LdZucnoJy//59ddaQT0ihAqXvcD/++KPY2tqq56OKZJ49GDZsmGialm2y2Rs3bkh0dLTR7pwq6B0/K2dnZ3n77bcNLnOEhoaKq6urjBw5UkT+d8krOTlZUlNTJTo6usDbaYpHKFla7vp7fP755+Lu7m7wWLbExETp1auXaJqW7XWnT5+WixcvGuVpQCJilKEQxsD+t5z+t+TcRTIvm2uaJsOGDTM4M7527Vqxt7eXuXPnisj/CtaEhAS5fv16gc4tqDPHM8QfZFMwt71QYTdnzhw0atQIderUUcvOnz+PLVu2oFWrVnB3d0d6ejo0TYOmafD09DRqfFPdgZkbEYGmaVi9ejWSkpLQrFkzuLi4qPXh4eG4c+cOevfubdA+Ozs7AEDJkiXVe+SnDSLy2Lnrn31+WXLuerzFixejRYsWCAgIUOtOnz6NnTt3olevXgCA1NRUWFtbw8rKCv7+/vmOnZX+WZoD+98y+99Sc8/IyICVlRUWLVoEW1tbBAYGqrveU1NTsWvXLqSkpKBbt24Gr3NxcYGLiwuKFSuW7/09IyPjifbhgv4+zLEN5m4AmZeVlRUuXbqEw4cPo3HjxvD29lbrDh06hEOHDqFfv34G2xfYrfQmJP8/rcKCBQtQrVo1BAUFqXUXLlzAP//8g4CAAFSsWDHXL7H8fg6appnlIGCpuet5h4eHIzo6Gi+++CKKFSum1u/duxfnzp1D//79AUB9OT5r2P+W1/+WnLtu0aJFCAwMxEsvvaSWRUZG4p9//kHLli3h6uqqToA8KL/7+9P4vfls9T49Ef2AsWzZMgDArl27sGzZMhw7dgxXrlzB1q1b4ejoqH5RPW0798NYWVkhKSkJ69atw+XLlzF16lTs2bMHABAdHY3du3ejb9++AGAwx9SzwJJzB4CFCxcCAA4cOIBNmzbhypUruHLlCrZs2YKSJUsiMDAw32cKCjP2v+X2vyXmbmVlhQsXLuDgwYO4fPkyFi5ciMuXLwPIvDp25MgRVRTr34kEznNImeMNW7VqJV5eXmoewc6dO4uXl5e8+uqrImLeMYGmcu7cOalTp47BFBkNGjSQli1birW1tcHUGrndVfa0suTcR4wYIXXq1BEHBwdxdHSUpk2bSt++fcXd3V0++OADczevQLD/LbP/LTX3sLAw9VQSTdPE3d1dOnfuLEFBQeLk5GSwbVpa2jP5ffekNBGWygRcvHgRR44cwY4dOxAaGopTp04hISEBFStWRK9evVCvXj1Ur14dJUqUUOM1nhU3b97Eb7/9hvnz5+Po0aNqeadOndCuXTu88sor8PLyUsvT09PV0ySedpaYe2JiIs6cOYP9+/cjLCwMO3fuxJUrV5CamormzZujZ8+eqFGjBipWrAgPDw9zN9ek2P+W1f+WnDsA7N+/H/Pnz8fSpUtx584dAECRIkXwwQcfoGXLlmjVqpXBWdNnYX/PKxaHZCAlJQVnz57Fvn37sHfvXmzZsgVnzpxBkSJF8Pzzz6NNmzYIDAxEuXLlUKJECXM3N1/S0tJgZWVlMLbm1KlTmD9/Pn799VfExsYCALy8vNC2bVu89tpraNmyJRwcHMzVZKOx5NyziouLw7///os9e/Zgz549CAsLw82bN1GmTBk0b94cQUFBqFu3Lnx8fAxu2njasf8zWWr/A5aVe1paGmxsDO+//fvvvzFnzhz89ddfalmtWrXQsWNHdO7cGTVq1CjoZhYqLA4JAHIcZ5KQkIDTp08jPDwcoaGh2LVrF2JjY+Hm5oaXX34ZixcvNlNrjUtE1C/ErJ/Btm3bMG/ePPz+++9ITk4GALi5uWHDhg14/vnnzdVco7LU3HPa369cuYKjR49i165dCA0NxaFDh5CSkgJfX1/06dMHI0eONFNrTYf9/z+W0v+WnHtGRgYyMjIMCsXExEQsX74c8+bNQ3h4OIDMO6qrVq2KNWvWoEyZMuZqrlmxOKRscjp4XLt2DcePH0d4eDh+//13vPjii/j2228L7LR7Tm0yhZwOHunp6fjjjz8wZ84chISE4Pbt23B1dTV5WwqaJeauH/4evJR07tw5HDp0CLt378by5cvxwQcfYOTIkc/c/p4V+z+TpfS/JecOZOYKwCCnixcvYsmSJfj5558RHR2NjIwMk7ejsGJxSA+V0x/quXPn4OnpCTc3NzWH1LMop4PHnTt34OLiUqB56weogvycLTH3nL4s7969i5MnT6Jy5cpwcnJ65u7kzA37P5Ol9L+l556enp5tmMXFixfh5+dXoOMO09LSsp3FNxcWh/RYcjp4FJRly5ahYsWKqF+/vtkOUFm/LE3dBn18zLFjx1C8eHGzj+20xNzN+UW4bt06BAQEoFy5coXixxf7v2CZu/8tOfeczp6bkr6/nz17FhUqVCiQmI/r2TzlQ0ZnrCcUPC69GN27dy969uyJoUOH4sCBA2Y7aFlbW6tfj6Zugx6nUaNGKFmyJIYPH67urDPHbzlLzN0cl3QBYNWqVejQoQNGjRqF69evm70wBNj/BaEw9b8l525lZVVghSEAFcvf3x92dnaYO3eu+jFmbuY/8hD9v6zjO/QDVHx8PFq0aIEjR46gTZs22Lhxo7maZ1Q5fdHpBwVN03Dv3j00bdoUmqZh2rRpmDVrllr3tLPk3LPKur/rX4RxcXGoXr06li5ditatW+Pff/81V/NMhv2fyVL7H7Ds3AEYFICxsbEoU6YM0tLSMGzYMKxfv96MLcvC2BMnEj0O/eHmIpkPOL97966ISI6T7V6+fFnmz58vlSpVEmdnZzl79myBtdPUUlJSJCYmJtf1MTExMmDAALGzs5OxY8cWYMtMz1JzT0pKUv+f9e9AROT+/fty7Ngx+fLLL8Xd3V3q1q0r8fHxBd3EAsH+t7z+t+Tc09PTJSEhIdf1u3fvlubNm4uDg4MsWbKkAFuWM445JLNJTEzEpEmTsGXLFkRGRqJ69epo2LAhBg4cCD8/v2zbx8fHY+zYsZg2bVqhuNz2pOT/x/KkpqZi+/btmDVrFi5cuAB7e3uULl0aLVq0wLvvvptt+9u3b+Prr79G3bp10aVLFzNmkHeWnLsuKSkJ33//PbZs2YILFy6gUaNGeOGFF9C9e/ccJxzev38/pk+frh5v+TRj/1t2/1ta7vr+m5GRgbCwMCxevBhXr16FnZ0dfH198eqrr6pnPEuWMZ4XLlzAqFGj0KdPH7Ro0cKcKfDMIT3ag7/w8kN/LNH58+flpZdeEk3TpF69etKmTRspWrSoaJomJ0+eFJHMX5IPvu5ppn+O06ZNEw8PD3FxcZFWrVqJv7+/aJomAwYMEJHMMyo3b97MdhbVmP1Q0J6m3I0ZS8/j2LFj0qpVK9E0Tfz9/aVevXrqUV5xcXEG2z6L2P9PR/9bcu6mMHXqVHFzcxMHBwepXbu2uLu7i6ZpMmHCBBERSU5Oljt37pi5lTljcUgFSn9m66BBg8TNzU2+/vprERG5cOGCBAYGSrVq1dS227dvl9atW8uFCxfM0laRzKLUGIWpftCNiooSFxcXady4sVy8eFFERJYsWSKapsnWrVtVzHHjxsm6devUv83BknM3Fv1Lr2fPnlK0aFGZOXOmiIiEh4dL5cqVpXnz5iKS+RmtXr1a3nnnHbl9+7bZ2psV+z//nub+z6+nLffU1FSjFMf6Pnvw4EEpUqSINGvWTCIjIyU1NVWmTp1qcALk7t27MmXKFDl48KDBawsDFof0UEuXLpXw8HARMe6vyuLFi0v37t3l5s2bIiKyadMmcXZ2lokTJ6ptVq1aJY6OjhISEmK0uI+iF69Hjx6V2NhYo72vfqAcP368uLu7y5o1a0RE5OrVq9K9e3cpVqyYwfaenp4yYMAAg7OnpmbJuev++usvOXfunIgY70B99+5dcXBwkIEDB6qxtatXrxYrKyuDsUXffPONFC9eXI4dO2aUuE+K/W/Z/W9puev7+5kzZ4z6vvr+/s4770jp0qVly5YtIpJ5AqR169ZSqVIltW1cXJxomiZTpkwpVIWhiMjTN3CLTE5MNI2M/r779+/H/fv3Ua1aNRQtWhRpaWnYtm0bkpKS0L9/f7V9ZGSkwdMYpACGx5pqKg39fXfv3o1SpUqhZs2aADJz3Lp1K7p37662PX/+PHx8fJCcnAx7e/s8x8xrGy0td1NNpaG/75YtW2BlZYXatWvD0dERiYmJCA4Oho2NDXr27Km2v3z5MooUKaL+XRD7e1bsf8vrf0vO3VTTyOj7+969e+Hv76+e0XzixAls374db7/9ttr2/PnzKFu2LBISEgrdOPrC1Roym4KYRkZ/XxsbG4MJTs+fP4+NGzeiYcOGKF68OADg/v37OHfuHEQEDRo0MHh9fuV04CmIqTTu3bsHDw8PJCQkoGzZshAR7NmzB9euXTMYjH/ixAlER0ejVq1aBm0zBkvOPauCmEoj68H+/v37cHFxAQCcPn0amzZtQocOHdQ2t2/fxqVLl2BnZ4eAgAAAppm6hf2fyVL7H7Ds3IGCmUbm5s2bcHV1xd27d1G8eHHcu3cPO3fuxL1799C3b1+13b///oubN2+qH0yF6nF9BX+ykszN3NPI3L17V0qXLi316tWTmJgY+eOPP0TTNPnll1/UNvv27ZPKlStL+/btc21bfhXkVBr6JYMJEyaIpmmyefNmERFp27at+Pv7G2w3YsQI0TRNjbU0xWB8S83dHFNpREVFiaZp8tZbb8ndu3dlwYIFBuPsRERCQkLEx8dH3Zhh6gH67H/L639Lzr0gp5HR9/fevXuLk5OTXLp0SW7fvi3169eXwMBAtV1iYqIMHDhQ7OzsDPqmsGBxaKHu3Lkjn332mTRo0EA8PDzkxRdflOHDh+d688ft27dl8ODBRhsX8cMPP4imafL6669L165dxcHBQe7du6fWd+/eXZycnOSff/4RkfwfMPSDYUpKimzZskU6d+4sdevWlYYNG0rXrl1l9uzZOW5/69Yt+fzzz+WPP/7IV3xdRESEVKhQQby9vWXw4MFSpEgRmTZtmlq/YcMGKVasmAQFBYmIccb+WHLuusTERJk0aZK0bNlSKlSoIG+++abMmjVL3S35oH379snrr79utPjvvvuuaJomw4YNk1deeUWKFy+u1mVkZEjnzp3FycnJJAPT2f+W3f+Wlru+/6anp8vWrVvlrbfekjZt2kiHDh3k/fffl+Dg4GzbimTOoPHGG2+oMYL5tWrVKnFycpKGDRvKmDFjRNM0WblypVr/+++/i4eHh3Tv3l1ECt8d2ywOLUhhmUYmPT1dUlJS5OOPPxYnJyfRNE2KFSsmP/30k4wYMUKaNWsmmqbJBx98YLSYhWkqjd9++03lrWmavPHGG7Jo0SJ55513pEiRIlKrVi3Ztm2biBjngGGpuReGqTT0z+7y5cvSunVrsbKyEk3TJCAgQP766y+ZNGmStG3bVjRNk8GDB5u0Dex/y+n/wpC7zlz7fmGYRmb8+PHq87a2tpYxY8ZIcHCwDBkyRIoUKSJ169aVQ4cOiQiLQzKjwjaNzO3bt2X27NnSrl078fb2FhsbG9E0Tby9vWXSpEmSnJwsIvn/cjL3VBpZz9zo73fgwAF54403DL4oHR0dpWnTphIREZHvmA/GLkzTiBRU7oVtKo1z587JF198IS+88IIUKVJEfVm6u7vL1KlT1aUlU5w1ZP9bVv8XttwvXLhQILkXlmlk9JMrGRkZsmLFCnn++efVvq4Xik2bNlWFYWHE4tACFfQ0MvofXXR0tGzZskUSExMN1kdFRcnGjRtl/fr1Ehoa+tCxUHlh7qk00tLS1LjOB928eVP+/vtvmTt3rhw8eFAdoI11oDJ37hkZGXLmzBm5cOGCKvZ1cXFxsnbtWvnpp59MkruIeabS0D/zEydOyOXLl7OtO3DggCxbtkx+++03WbFiRbZtjIn9b7n9b47c9R8j0dHRcvjwYYN16enpcvDgQVm2bJn8+uuvsnz5cqPnbq5pZPS8H9zHs67/999/ZdasWfL111/Ljh075Pr16wavLWxszH1DDBUM+f9H9ORnGpm83kGm35U2depUrFixAgsXLkSbNm2Qnp4Oa2trlC5dGqVLl1bbG/uOLXNNpaHfkT1nzhy8//776NKlC95++220bdtWbVO0aFG0a9fO4HUiYrRpDcyVu963YWFhGDBgAJo1a4Y5c+YYbOPh4YFXXnnFYJmxctc/+/xMpZHX/V3/zNu3b49KlSqhTZs2qF+/PqpUqYKiRYuibt26qFu3rkEsU2H/W17/mzN3/XUTJkzA33//jVWrVqFOnTqqTXXq1EGdOnUMYhnTo6aR+fLLL9W2xpxGJiMjA9bW1hg7diymTp2KTz/9FH369EHFihUBZH4uVatWRdWqVbO91pR3ZucHi0MLYa5pZPRYhw8fxuLFi9GuXTu0adMGQOYf8pUrVzBnzhw4OTnh+eefR9OmTU0y35M+lcbRo0cfayqNPn36APjfl1xe6HlYW1ujUqVKWLVqFf7880+4ubmhe/fu6N+/v8GBUp9iIa/xcmOO3PX95euvv0ZGRgY6deqk1sXHx2P//v3YsmULSpUqhS5dusDb29vgdfll7qk0YmNjUbVqVRw6dAgbN26En58fmjRpgqZNm6Ju3bqoVKmS+kI29ZcD+9+y+t9cuev7y+bNm/Hbb7+hW7du6vhmZWWF6Oho/PHHHyhatCjq1KmDgIAAk+z7+ZlGJq/fPfrfSUpKClxdXTF58mRMnjwZNWrUQN++ffHmm28aPEM6JSUFNjY2hW5uQwNmOFtJZlTQ08jorx0wYID4+voaTGFw8OBBqVmzphqH4e7uLj/++GOeY+WmMEylkZCQIH/99Ze89957UrFiRZVz5cqVZerUqSa7tGSO3PXXXbp0Sezs7GTEiBEG6z/44AMpUqSI+gx69er10Gkm8sOcU2kkJibKiRMnZPbs2dK6dWtxcnISGxsbqV27tgwePFhWrFghkZGRJn0yAvvfcvu/oHPXX/vKK69IQECA7N27V60LCwuT2rVrqz6vUqWK2heNqTBMI3PmzBn58ccf5eWXXxZXV1eVc/v27dWwjqcBi0MLVNDTyIiIVKxYUbp37y63bt0Skcw/ztatW4urq6t88cUXMmPGDHF1dVV/wKYYh2GuqTQefJ/Lly/LokWLJCgoyGCQctWqVdU4UGMryNz1/eXrr78WNzc3+fvvv9V7/vXXX6JpmjRr1kzWrVsnnTt3Fk3TZOfOnfnI7uHMOY2IHuPWrVsSHh4uo0aNksqVK4umaVKuXDmpVauWLF++3KjxcsL+t8z+L+jc7969K8WKFZMPP/xQfackJSWpKdOGDx8uQ4YMUXeq6+0wNnNMI5NTHvv375dx48apPtc0TYoUKSL/+c9/JCUlJd8xTYnFoYUxxzQyp06dEm9vb+ndu7eIZN61+91334mmafLDDz+o7bp27SrVqlWTyMhIo8V+UEFPI5P1YJvT+/34449SunRpqVOnjlSpUiXf8R6moHMfMGCAlCxZUp2J2rt3r9SqVUtefPFFNfh969atYmNjI7Nmzcp3vAeZcxqZ9PT0HL8s7t69K8HBweLp6SmVK1cWd3d3Wb9+vXqNKbH/La//Czr37du3i4uLi4waNUpEMufTnThxolhbW8v8+fPVdg0aNJDmzZurmzJMoaCnkck6v+KDfal/55YqVUr8/Pykbt26atvCisWhhSqoaWT0WAEBARIQECDXr1+X3377TTw8PKRp06Zqm7t378obb7whfn5+Bmcx88uc08hklZaWpuJnZGSof6empkq9evXk+++/V08kMOV8VwWZ+7fffqt+ABw7dkzatm0rVlZWEhoaqrZZvXq1FCtWTObMmSMipjtYmmMaGV1OhcKSJUukUaNGRnni0JNg/1te/xfUNDIimZ+zu7u7dOnSRURE5s2bJy4uLtKpUye1za1bt6RVq1by3HPP5TteTsw5jYx+bM+pUIyKipLy5cvLkiVL5OrVqyJS+OY2zIrF4TPO3NPI6KZMmSKapqkDU82aNWXXrl1q/aFDh6R69erSsWNHETHeH405ppHR55Ncvnx5juNqshaKIiKtW7eWt99+2+gHioKeRiTrQVEkc5yRXoS4u7uLg4ODfPjhhwbbjxo1SqysrOTSpUuqzflhrmlEsj5VRB9LltN+p/fDr7/+KhUrVpSjR48aJX5ubWL/G657lvvf3NPIiGQe+/r06SOapqkHK9SuXdsgz+3bt4ufn58MHDhQRIz39CtzTCOjt33NmjXZCv309HSDv4m0tDSpW7euTJ06NV8xCwqLQwvx8ccfi7e39yPHEea3MLp165YqjrK6fv26TJkyRV5//XUZPny4HD9+3GD9yJEjxdHRUV1iye8BQ8/jxx9/FE3T5LXXXlPv/TDGHP+in42tU6eOjB07Vv79999s25w/f14aNWokbdq0MVp8/bMLCQkRf39/6d+//2O9Lq+xc5oTT98HDhw4IB999JG8+OKLMn/+fIMbD/bv3y/VqlWTFi1aiIhxz9qUL19e2rRpI999953s3Lkz17Gcxupv/X30H0GNGjWSUaNGyaZNm+Ty5cvZ/iamT58uRYoUUZdXjbnfsf8tu/8HDhwofn5+jxxHmN+YSUlJOb7HqVOnZODAgRIUFCQDBw7MNn/i4MGDxcHBQQ4cOPDQ9j0ufX///PPPxdraWj7//HOTDk16UFJSkmiaJk5OTtKhQwf59ddfc3wu9ZEjR6RatWrSt29fESm88xvqWBw+w/Q/uoiICHF3d5cePXoYrL98+bJ8+eWXMnXqVINLPXl1//59qVu3rowaNUp2794tcXFx2f4AUlJSsh0od+/eLa6urtK2bdt8t+FBP//8s1SuXFmsra3VGYz33ntPHTh1aWlpRj1zl5aWJgsWLJAOHTqosyf29vbSokULmTVrlly5ckXOnz8v77zzjmiaJj///LN6XX7p/d6uXTupUKGCQVF8+/Zt2bx5s3z22Wfyww8/GOVM8YgRI6R58+aycOFC9fSNrHI7CLZs2VK8vLzUHXzG+vxjYmKkffv24uPjI5qmSdmyZaVXr14yf/58OXTokEkfcr9nzx4ZNGiQ1K9fX2xtbcXV1VWCgoJk+vTpEhISIidPnpTNmzeLj4+PwYS8xsT+t7z+1z+7TZs2iZubW7YfBFeuXJEZM2bIL7/8YpTJrmNiYiQoKEgWLFggp0+fzvEs6e3bt7PddBEcHCwuLi7y2muv5bsND/rkk0/Ew8NDXT6uWbOmzJgxI9szpJOTk436QyQ+Pl6GDRsmderUUbF9fHzk7bfflg0bNkh6erpERUVJv379RNM09QSiwnxJWYTF4TOtoKeR2b9/v5QqVUqKFCkijo6O0rJlS5k5c6YcPXpU4uPjc/xjuH37tgwZMkQCAwMlLCxMRIw/7qcgp5HR2/7vv/+qsZNnzpyRr776Sho0aKAuq2uaJm5ubqJpmjRt2tRo4yzNMY1I1jE95cqVk/79+8vq1auzHZT1Syzp6ekSERGh7iTM6UxzfhXkNCL6e9y6dUsVHqdOnZLff/9d3nnnHalQoYJYWVmJp6en+uzd3d1l4cKFIiJGzZ/9n8nS+r+gp5FZvXq12NjYiK2trfj4+EifPn1k9erVEhUVleswntjYWHnttdckMDBQ9uzZY9BuYynIaWSyPppSt3XrVnn33XfF19dXxXZ2dhZvb2/RNE2dJX8asDi0AAU1jUxKSoocPnxYfvnlF3n77belQoUKommaeHp6Srdu3WTp0qVy7ty5HC9DXb161SS/pMwxjUxiYqKULl3a4MYenT6dxcsvvyxvvPGGTJo0SZ29MeYl5YKeRuTo0aPy0UcfSbFixdRnWqdOHfn0008lLCws2xmEhIQEiYqKyjYG1tgKYhoR/TPv06ePlClTxmC81+3btyUiIkIWLFgg7733njRp0kQ6duwoISEhRr3p68G2sP8zWVL/F+Q0Mrdu3ZKtW7fK119/La1btxZ3d3fRNE2qVaum+vz69evZjr/Jycly4cIFk0wX9CBTTiOjx7tw4YJUqVLF4E5skczvgP/+97/y5ptvygsvvCBt2rSRL7/8Up2IKMx3KetYHD7jzDWNTHx8vOzdu1e+//576dSpk3h5eamD8vvvvy8bNmyQmJiYXAcRG0NBTyOjx/jtt9/Ezs5Ofv31VxHJPDPwYHz9TmVTKahpRHK6E3PTpk3StWtXNeZSv5z+1VdfyZEjR/KeVD7aJGKaaUSyvs7Pz0/eeOONHKfn0M+YifzvTJEpxxyx/y2v/801jUxUVJT8/fff8vnnn8sLL7wgDg4OYmtrK4GBgfLVV1/JwYMHJSEhwaSXUQt6Ghm9DydPniyOjo7y119/qVgPvm9Ol9efBiwOn3EFPY1MTge82NhY2bx5s4wfP16aN28uzs7OYmVlJXXq1JFx48ZJWFiYUaeveVBBTyMza9YsKV26tLpDL+vBIqeDlykU9DQiORW7KSkpsmTJEmncuLH65e7p6Sldu3aVOXPmGFyOMZWCmkYkJiZGGjRooL6Yc/vi15ebejA6+/9/7bKU/i/IaWQyMjKy5ZCamiqnTp2SZcuWyXvvvSdVq1YVKysrcXV1lQ4dOsiiRYvk+PHjJisSzTGNzCeffCLVqlVT+3LWz+TBu/efNiwOLYA5p5HJKiMjQ86dOyerVq2SIUOGSJ06dcTW1lY0TTPar9iCnEZG/8M/efKkwaW56OhoqVq1qrq8lJqaavKDRGGYRkSXkpKS7ZdybGysTJkyRSpVqqQKBf2LNL/MNY3Ir7/+qr5orl69Kk2bNn3sO4ONjf1v2f0vYp5pZEQMz4rqEhMT5eDBg/Lzzz/L66+/LqVLlxZN06R06dJGO4tWkNPI6PmdPHlSTp48qZZHRERItWrV5M6dOwZtehawOHyGFJZpZB7H/fv35fjx4zJnzhyZOHGiiBh3HEZBTCOjt7dBgwbSoEEDERGZNGmSlClTRooXLy7dunXLdtbQ2J9tYZxG5FGOHj0qffv2VZcY8xu7IKcR0bfduXOn2Nvby+rVq+XevXvSqlUradeunZQrV07+/vvvAvuSYP9bZv8XlmlkHseNGzdk+/btMnr0aBk3bpyIGO87pqCmkdE/pwoVKsjrr78uIiLDhg2T5557TooWLZrtxq8HT0I8jVgcPiMK2zQy+qXkGTNmyG+//fbQS0j6L0ljnbkoyGlk4uPjxdraWj755BMREenZs6fBjS7PPfecLFq0KNsBy1gHj8I2jcj+/fvl119/lU2bNsmBAwckJiamwA6SBTGNiP45de/eXcqUKSP//vuvHD58WNzc3NS+Vq5cOZk4caIcOHBA3QRmKuz//7GU/i9s08hcu3ZNDhw4IEuWLJHQ0NCHjqXO+vQSYyiIaWT0tkZGRoqmaTJhwgQREYM7wK2srKR79+453txlyrHlpsTi8BlRGKaR0V8bHBws9erVMyiSihcvLh07dpT//ve/6hS8sRXkNDJ6rO+++04cHBzUQUck81LDF198IdWrV1fxSpUqJX379s33FBIPMvc0IvrncPPmTRk3bpzB9BH+/v7So0cPmTNnjhw8eNBod4PnFL+gpxFxcnKS/v37S2JioqSmpsrBgwfll19+kQEDBki5cuVE0zQpX7689O3bV1asWCEnT540yZ257H/L6//CMI2MXjBt3rxZatWqpfrc3t5eKlWqJEOGDJHw8PA8v//jxi+IaWT0z2no0KHi6empvivv3r0rq1evlh49eoinp6fBCYFJkybJ6dOn85mlebE4fEYUlmlk7t69KwEBAeLp6SmzZ8+WI0eOSPHixVUxpo876d+/v5pmw5jj8QpqGhn9S6l69erSvHlziY6ONliu27p1q/Tv31+NudGne/jkk0+M9ovSnNOI6PvN2LFjRdM0adu2rfz999/qrKx+81HNmjVl0KBBsmLFCjlx4kS+4z4YvyCmEdG3/e9//yuapsmqVauyrb927Zrs2bNHZsyYIW3bthV3d3extbWVevXqyXvvvZdtSIcxsP8tq//NPY1M1sf0+fv7i6enp8ycOVOWL18uDg4O4uDgoPbDBg0ayJQpU1SfG+NYb65pZLy9veW1117L8WzwjRs3ZP78+fLSSy+Jo6OjmjanZcuW2dr3tGBx+AwyxzQy+kH6p59+EhsbG/n+++9FJLPw1DRNpk6dKmvXrlV3Ljo7O4umabJ9+3ajxi+IaWT0g9P58+dF0zR599135dq1awYHvgcPgnfu3JFly5ZJly5d1Jd3Tts9icI0jUjx4sWlbdu26saipk2bSu3atWXJkiUyYMAAg7PIvXr1MkrMgp5GRH+Ptm3bSrFixWTTpk25bpuamipXrlyRLVu2yOjRo6VRo0aiaVq2Z97mB/vfsvtfxDzTyOif4ZdffilOTk4yb948ERE5duyYaJom06ZNk2+++UadwbO3txdN04x2d3hBTiOj7ye7d+8WTdNkzJgx2U6wPLgvnTp1SiZOnKjO6r/88ssi8nTMbZgVi8NniDmnkdFjt2zZUho1aqR+KQ4aNEg8PT1lx44dIpJ59q506dLy0ksvGe1LIquCmEZGP9B++eWXajB0y5YtZfr06XLo0CFJSEh4aKF44cIFdYOMMc4emmsaEf2z/Oeff8TBwUF9Sdy8eVM0TZPPP/9cRDLPWAwYMEDq1asnAwcONPqNTwU5jUh8fLz6PMuUKSP/1955h0V1fG/8zNKkKV2wIFbEXmJP7CZqbCGx92401kSNqLEkRmONSezG9lURjAX1FxuKAhYwdkXBhgoCFkBBirC8vz/InbCAxsDu3oU7n+fJ80T23n3n3Lnl7Nwz7wwZMgQ+Pj54+vTpW/dJTU3FnTt33plMFAbR/8rqf0OxkalVqxa6dOnCZ7v37NkTFStW5Pf+Xbt2wcbGBm3atNGw09EW+rCRkY7X8OHDNeoZfXx8EBkZqZEo5qcXEBDAj0dRm8ksksNiihw2Mi9evECNGjUwduxYfqFUrlwZnTt3RmxsLN9u+PDhGDdunEbb/iuGYCNTpkwZuLu7o0OHDvyVnp2dHb744gts3bo1j6WGPjyv9GUjkjPRnjVrFqpUqYLAwEAAwG+//QYzMzPs2bOHb3/27FkYGxvjr7/+KpSuhL5tRHLWmDLG0LlzZ5QuXZofz9q1a2Py5Mnw9/fXqWfnvyH6XzcYav/r20ZG0rpz5w4qVKigcR7Z2tpi0KBBSExM5H/r0KEDf4uUc/+CaMppI2NhYQEPDw/Uq1ePPzerV6+Or7/+Gv7+/nlKs4qyv6GESA4ViDZtZHKOWNy9exeVKlXiN+mwsDDY2NjwRFC6eEaPHg0PDw+NhPG/IpeNjHTRBwcHgzGGTZs24eXLlzhy5Ai+/fZbNGvWjNecuLm5YfTo0Th48CCioqIMwiVfFzYis2fPhpubG7dK6du3LypUqKBRkH3mzBm4ublh27ZthdKSvkvfNiLScapZsybatWuH2NhYJCcnY+fOnejWrRuvszI1NcVHH32EH374gduFGBKi/wtGUe1/bdrI5Ex4QkJCYGtri4ULFwLIHiEzNzfnM3mlpLVz585o3br1WyfKvA9y2chI8fr4+IAxBh8fHzx8+BCbNm3C4MGDeV2/sbExmjVrhoULFyI0NBQJCQkiORQYJvqykXn9+jVWrlzJvz8lJQWLFy/G0aNHAWSbazs5OWmMEj558gRdunRBzZo1/7NebuSwkZFurP3790fFihXzPAAePnwIHx8fjBkzBjVr1uQzpOvVq4fZs2fjxIkTOksSdW0jIsW+evVqHD58mL/e2rt3L39tlJqaiuHDh8Pe3p6/bgKA9evXw8zMjJ8bBWmXXDYiua0sfvrppzzXy/3797Fy5Uo0a9aMn392dnbo0aMHfv75Z0RHR2ulLe9C9L/y+l/XNjLStk+fPsWuXbv4LPjnz5/jq6++QkhICADg6NGjMDU1xcqVK/m+ERER+PDDD9G+ffv/rJtbXw4bGekcbdOmDerXr6+xtOybN29w8eJFrFixAt27d+ejyCVLlkTXrl2xYcMG3Lhxo0gniSI5LCbo00ZG0pJMZ0+ePMk/S0lJ4RdkSkoKPvroI5iZmWH58uW4evUqJk2aBMYYH7EsyMVrCDYyZmZmGDFiBJ/xmV8cN27c4K923NzcwBhD6dKltdYGuWxEzM3NMW7cuLeOBixfvhyMMUyePBl37tzB/v374eHhAVdXV63o69tGREpKxo8fDwcHB14/m9+NX61W49KlS5g5c6bGa1xfX98C678N0f/K7H992shIsY8dOxaOjo64cuUK/ywhIYFPaoyOjkb58uVRuXJl7N69GzExMRg7diwYY3y2bkFGLOW2kUlISABjDDNmzOA/6nP/sHn58iVOnjyJOXPmoFWrVrC1tQVj2WbsRRmRHBYj9GUjI10cdevWRdu2bTVGCF6+fInw8HD+7507d8LIyEgjWf3000/x/PnzQuvLZSMTEBAAJycn+Pj45PksvxqglJQUnD9/HrNmzcKqVasAaGciij5tRHLbeHh7e/PPMjIyEB8fzx8UiYmJ8PT05L+kGWOwtbXlsRdmqUI5bUQ+/PBDdOvWjdfo/tu5m5KSguPHj2PkyJH5WkgVFtH/mp8rof/lspEpW7YsPD09NerTX716xSfivHnzBvPnz9e4zzPG0LVrV624YshlI7Nt2zY4Ojri8OHDADSPYX5uAU+ePIGfnx8GDx7MtYUJtkA29GkjI10Md+/e5d+dEx8fH3h4eODChQv8b5GRkVi4cCH69OmD1atXF6rW0BBsZDIyMhASEvKvD4n8bh5S4qjN1w36sBHJ/Yol5y/zBw8eoHPnzpgxYwb/282bN/HTTz9h5MiRGD9+PM6dO8fP06JoI5KVlYWIiAjcvXu3wN+hK0T/a1Kc+1+fNjJSPwUFBYGxf1aSkti0aRMaN26ssTJPQEAAhg8fjnbt2uGXX37Jdybxf9WX00YmNjYWhw8f5iPv77rX56aozU7OjUgOiwH6tJGRTvipU6fCzs6Oz1AEsn9JDhkyBCVKlMiz/dvaXFB9Q7GReV+07XElh42IZOMxffp0jdGAgwcPgjGGZcuWabQNgFZnbr569Up2GxFDQfS/svtfHzYyOWs8K1asiMuXL/PPnj59ii5duqBs2bIAdOPhVxRtZPJ7c1RUEclhMUGfNjIA4OLigt69e3M7CSC7IL5ChQoYOnQoAM3kS9sXpyHayOgLfduI5K7xzPmgTU1NxTfffANjY2Ne15XbT7Kwx95QbUTkQvS/MvtfDhsZILvGdMyYMRrfferUKdja2mLmzJkAdHuvl9NGpjg9N/4rKhIUWTIzM/n/JyQkUFpaGmVkZBBjjG7dukUvXrygihUrUunSpUmtVhMRkbGxMZ08eZLi4uKIiIgx9t56AIiIKDQ0lGJjY6l+/frk5OTEPz937hw9evSIRo8eTUREKtU/p5eRkVHBA82lf+bMGYqJiaHp06fTH3/8Qdu3b6fp06eTu7s7/d///R8NGTKEOnToQJMnT6ZDhw5RdHS0xrEq6qhUKlKpVASAGGOUmZlJ9erVI6LsY+Ps7Ey1a9fm2wOgcuXKUVhYWKF0N23aRJUrVyYrKyv+tydPntDRo0epXbt2ZGlpSWq1mrdP4r+cY+9iw4YN1LZtW9q0aRPdu3ePduzYQV27dqU7d+7Qzz//TJ07d6aPP/6YFixYQJcuXdKKpiEi+l95/Q+AH9P4+Hh69eoVWVhYEBHRqVOnKC0tjapVq0alSpUiAJSVlUUmJia0d+9eSk1NJSLN+/H76BER7d+/n9LS0qhly5ZUqlQp/llgYCAlJibSqFGjiEjz/q7Ne72vry+lpqbS3Llzyc/Pj9atW0eDBg2ijIwMWr58OXXs2JF69OhBS5YsoQsXLlBiYmKhtXOirXO3SCJTUiooJHLYyEi/osaMGcN/tbdt2xY7duxAZGQk+vTpgwoVKgDIfymjwmLINjK6Rm4bkejoaO7p1b59eyxcuBBBQUFYtWoVGGO8YFvbpuOGbCOiT0T/K6//5bSRkbbv1KkTP55jxozBhQsXEBcXh/bt2+ODDz4AkG2Ro+0RNqXbyBgCIjksYshtIwNkvz6ePHkyqlevzm/GJiYmKFGiBDcpzYm2HxiGYCMjF3LZiDx58gS//vorBg4ciDJlyoAxBhcXF5QrVw7m5ua4ePEiN0HOSWH73dBsRORG9L9y+l9uGxkgu3bR09NTw/HC2dkZJiYmmDdvnsa22lpoQELJNjKGgEgOixhy28jkbsuRI0cwdOhQjRogFxcXTJw4UeNmpi0MxUZGn8htIyKhVqsRFxeHM2fOYOnSpejUqROcnZ3BGEOdOnUwfPhwbN++HTdv3tR67Zch2IjIheh/Zfe/3DYyQPaPgzVr1qB169YwNTXlGk2bNsWqVav4qKaENgYDlGwjYwgw4O+X+wKDB3/XGN27d4+qVq1KixYtomnTpvHPfX19ae7cubRt2zb64IMPiIjo4cOH5O3tTVevXqWWLVuSp6cnlS5dulDtkOoXc9aWJCQkkJ+fH+3du5eOHz9O6enpRERUo0YNGjx4MPXp04fKly9fKF2i7DrLS5cuUaVKlcjBwYEfk9xkZWURY0zjs6ysLI1araKC1O62bdtSYmIi+fj4UNWqVYmIKDIyksaNG0d169alH3/8kYiIwsLC6NChQ3T37l0qUaIE9evXjxo1akRGRkZaiz0jI4NiYmIoLCyMgoOD6dixY3Tt2jVijFGdOnWoXbt21KBBA2rVqhU5OjoWSgsA3b17l1QqFVWuXLnQbS9qiP5XXv9L/RQcHEwtW7aktWvX8vo+IqLNmzfT2rVraffu3eTq6kpE2bWH27dvp8jISOrevTt99tlnVK5cuUL1uVRDmnP/69ev0+7du8nPz4+uX7/O/961a1caOnQode/eXSvnWFxcHF2+fJkaN25MdnZ277zX566nVKvVWql9VDTy5KSCgiC3jczb2pR7tO7+/ftYtmwZmjZtyn9hurm5aU3zv1IcrAXkthF5F69fv0Z4eDh2796NL7/8EtWqVeP+ajn9LgUFR/S/spDbRiY3WVlZ+T5PTp06hXHjxnFfRcYYOnbsqPP25EdxspExBERyWASR20YmP95287h48SLGjBmDtWvXAkCRnRAiF3LbiLyL/L47MTERV65cwdq1azFs2DCdaRsquvKzFP1fNNB2/8ttI5Mf+dUWJicnY8+ePXyCYu52FQQxoURejOUeuRS8H/h7SF0uG5l/gzHGdbKysggAGRkZUYMGDWjNmjV8OxMTE523xZDI75VHQXhfG5Hcfa3L1+f5fXepUqWobt26VLt2berfvz8RUZF7jV8QpH7WRl/nh+h/w0ab/S8dL7lsZP6NnDGq1WpijJGlpSV5enqSp6cn/8zYuHDpRVE6Z/B3dV5RavO/IXwOixibN28mIqIZM2ZQu3btaOfOnfTw4UM6c+YMubq6UpMmTSgjI0PWNqpUKn6TUqvVlJWVJWt79AkA+uqrr8jf35+I/pu3WH6oVCp68uQJXb9+ncLDw2n27Nm0aNEiCg4OpiNHjtCNGzdo0qRJXBsGUkKsUql4IlOcbpi5kfwzt27dSlOnTqXw8HAiIq2d86L/DRtd9v/69euJiOirr76iL7/8kv766y969uwZBQYGUsOGDcnV1ZXXdsuFkZERv8cVJy/ZdyFdY69evaIff/yRIiIi8tS3FwtkGa8UFBi5bWQE/5DfMn27d+/m/ZLTgqEwyGUjItDkXcfT1dUVjDH07Nnzncu5FQTR/4aBvvtfThsZgSb53esXL17M3QA2bdokV9N0hpitXETJysqi48ePk4+PD/3555/09OlTIiJydnamXr160dChQ6lu3boyt1IZ5Hyd9+jRI1q/fj3t3LmTIiMj6YcffiAvL69Cv1rLysqi58+f0927d+ncuXN04sQJunz5MsXFxVHt2rWpUaNG1KZNG6pfvz5VqlSJSpQooa3wBP9CSkoK7dq1i4KCgsjb25saNWpE//vf/8jNzU1rGqL/DRdd939MTAz5+fmRj48PnT17lr8ZatKkCQ0cOJD69u1Ltra2fPvC3msEbz+GOe/1wcHBtHr1atq7dy9ZWVnR77//Tt27dy82x18kh0UMOW1klIx0wb948YJiYmLo/v37VLJkSWrSpAmZm5vn2T41NZXmzZtHGzdupMDAQKpRo4bW2qJPGxFBdt8/ffqUIiIiyMHBgczMzMjW1lbjgUyUXQP4xx9/0JQpU2jUqFG0evVqnbRH9L9+kav/5bSRUTJS/WhSUhLFx8fT/fv3qUyZMuTu7p7v9hERETRt2jQKCQmhq1evaswFKNLINGIp0AJFwUamOHHixAk0btyYL/5uYWEBS0tLnDp1Kt/tX7x4gd27d+u0TcJGRDdI19WzZ8/w3XffwdHREYwxmJqaombNmpg/f/5b9w0PD8fVq1f10k7R/7rBkPq/KNjIFCfUajVOnTqFZs2aoWTJkjAyMoKTkxPc3d01lvHLyZ07d7BlyxY9t1S3iJHDYgD+Xmg990y1S5cu0YYNG6hevXo0evRoysjIUNxs4cIivUYIDg6mgQMHUkpKCo0dO5bKlStHS5cupfDwcHrx4gXZ2tpSTEwMRUVFUd26dcnU1FSn7UI+ry5evnxJkZGRdP78eQoNDaXff/9dp23IjbZmZhuSfp8+fcjX15e6d+9OzZs3p7CwMNq6dSt9/fXXtGTJEkpPT6ekpCRycHDQWRvyQ/S/fvQNrf9zOkFIvH79mo4ePUqrVq2i4cOHU79+/SgzM7PQs4WVhnSvP3ToEI0bN45SU1NpyJAhZGRkROvXr6eUlBRKTU0lIqLo6Gh6/fo1Va1atfiO1MqZmQq0jyEVJsttSKoNfelYdunSBeXLl+drWb948QJNmzZF69at+bYhISFo0KABbt26BUC+CQFqtRpJSUl6a0Nx6Of8vu/8+fMwMjLCuHHj+GcLFy4EYwwREREAgLS0NFSvXh1eXl4Gdd2J/i/89xl6/+f35kgOsrKyZJ38pC196TuaNGmCqlWr4vz58wCy166uXLky+vfvz7c9ePAgPv30U+41XBwnfwkrm2KGnDYy0LKNiyHoGxkZ0evXr+n06dPUo0cPaty4MRERHT58mEJCQrivJFH2smW3b9+myMhIIpLPwkNfNiK6tnGRSx9/v0zZunUrOTs7U9++fYkoeynKEydOUPXq1fnydWZmZpSZmUmxsbEGY9kk+l8Z/S+HjQxktnHRlT7+Hol/+PAhXbx4kfr378/v9X5+fnT//n2Ne/2FCxfo/PnzFBUVRUTF1K5JxsRUUITRl42LIegHBwfD0tISc+fOBZC9VOGYMWM0lioEgHnz5sHJyQmhoaF52ljUkcvGRU79jh07ok6dOnj+/DkA4NChQzA3N+dL1QHA1atX4e7ujlGjRv1rO4syov+V2/9y27joQ1/6Xl9fX5iammLDhg0Aspcq7NmzJ0qXLq2x/YQJE+Dq6ooHDx7kaWNxQYwcCgqE9EtJcsgnImrcuDF5eXmRm5sbLVq0iJYsWUJEpBNjXn3qu7i4kLm5OcXFxRER0a1bt+jYsWPUo0cPvk1iYiKFhYWRubk5NWrUSKONxYG3xZKSkkJz5syhwYMH04EDB8jT05OPnBZ1/QoVKlBMTAxfneLs2bOUlpZGQ4YM4dvcvHmTHj9+TC1btiQi/Y2a6RvR/8rp/9z3y/zutc2aNaM+ffpQSkoKTZ06lfz8/PLdt6joS99bpkwZysrK4nZB165do4CAABowYADf9smTJxQWFkaOjo7crqg43es5cmamgqKB9Kvo+fPnuH79Ovz8/BAQEICUlJR8t09JScH06dNhb2+PmzdvFnn9N2/eoF27drCxscHdu3fh6+sLxpjGLOV9+/bByckJX375JYDCrytqKGRlZSE2NhaBgYEICwvDvXv3EB8fn2e76OhorFy5EkZGRvwYFHX9DRs2gDGG77//Hn/99Rfq16+PNm3a8M9TU1PRs2dPWFpaIi0tTSuahobof2X1v1TD+OrVK0RGRuLkyZO4ffv2W7cPDw9H9+7d4ezszOvvirL+06dPUaVKFdSpUwfJyclYs2YNGGO8jhwAtm/fDisrK3z//fcAis+9PjciORS8F3LbuMilL92sjh49ilKlSqFkyZKoWbMmHBwc+DbXrl1D9erV4ezsjLCwMI39iiJy23jIrS+Rnp6Opk2bwtjYGG3atIGRkRF+/vlnAEBSUhLmzJkDS0tLTJgwAQAMZkJKYZH7+MutL6HE/pfbxkVOfem8++2338AYQ/Xq1VGzZk24u7sDyP6hcvv2bVSpUgXly5dHbGws/3txRCSHgrci3eyCgoLg5uYGJycnzJ07Fxs3buTL90m/4p88eYLQ0FCkp6cXG/3c/P777/xBxRhDnTp10LhxY6hUKjg4OGD79u060/43dJGM9u7dG4wx9OjRA4sXL8aQIUPAGMM333wDIHum5rNnz3TWBjn1pdGABw8e4PPPP4e1tTUYY2jWrBk6d+4Md3d3MMbQr18/3L9/X+v6/xXR/8ru/8Ii3WsPHjwIV1dXODo6YurUqfj2229hZ2enUV8dFRWF8PBwrSZFcuvnJDU1FTNnztRYnrZbt27o0KEDTExM4OzsjB07dgAovokhIJLDYktxsHGRWz9nGyQeP36MefPmoVatWnByckKdOnUwcOBABAUF8W30ecMobjYecuvnR1RUFNatW4cBAwagZs2aKFWqFGrWrIkffvhB9oRA9L/u+z8mJob3f40aNfjbA0Po/+Ji4yK3fu52ANmDEn379oWDgwPMzc3h6uqKzz//HMHBwfluX9wQyWExISsrC+PGjcPx48e1+r3JycmwtrbG+PHjkZycDCC75oIxBm9vb77d5s2bYWFhgcOHDxd5femGf+HCBaxcuRKXL19GZmZmnhvBvXv3+KsFfSONbGzatAnffPMNr8sp7MNKesh++eWXKFu2LL8RRkZGon379vDw8NDYvkqVKhg2bJjWZobLpS8dt7i4OCxduhSXL1/OU0sUExODR48eISkpCS9fvuR/l+MBIfpfu/pSHyYnJ2PdunXw8fHJs01cXBxiY2ORlJSExMTEPPvqGknn5cuXWLBgAcLDw7X6vZGRkTA2NsbcuXP531avXg3GGAIDA/n23333Hezt7XHx4sUiry+db35+frh3716+27x58waXL19GTExMsU4GcyNmKxdBkGNGlvT/e/bsodWrV9PHH39MXl5efLZVYbly5QplZWWRvb09WVpaUlJSEgUHB5OZmRn16dOHb/fo0SOysrIie3v7PG0savqSd9j06dNpxowZZG5uTkZGRnxGWmxsLKnVaqpUqRKVLl26ENG9H/nFIq1+MHfuXFq2bBnNnj2bnj17VmhvR8kj88GDB2Rvb0/Vq1cnIqIbN27QmTNnaMSIEXzba9eukZGRERkbG5OJiYlW+lwufalv16xZQ1OnTqU+ffrQqFGjaNu2bXTnzh0iInJ2dqby5cuTlZUVWVtb85mpup6pKPpf9/pSX3p7e9O3335LBw8eJCLNY+/k5EQWFhZkZWXFZzAT6bb/84tp3bp1NGvWLGratClt3rxZa1qhoaGkUqmobNmyxBijZ8+eUUBAADk5OdFHH33Et0tMTCRLS0uys7N7axuLir6RkRElJydTjx49yMPDg7p37067du2iFy9e8G1MTEyoXr165OzsTIyxYjEj/X0QyWERREk2LvrWV6vVRER08OBBCg0NpRkzZvAF1wGQr68vDR48mDw8PGjixIn05MmTQkT3fijRxkPf+tIxHjx4MM2fP5+srKxoy5YtNHToUOrduzdNnjyZ/Pz8KDY2lm+vL5N30f+615eS0l9//ZVq1KhB8+bNI6LsY3/v3j2aNGkStWrVir7++mu6cOFCgXX+jdz3ayXYuMitn5qaSnPmzKGOHTtSUFAQ9evXjzw8PGjEiBF08uRJSklJ0dheziUi9Yq+hyoF/w2l27joWz9nnWO9evVw7do1/tnu3bthYmICKysrXqw8c+bMAmv9G0q28ZBbPzMzEyEhIZg8eTIqVKgAxhhsbGzwySefYN68eTh69KhOTd4B0f/60pdexZ87dw6MMaxYsYJ/lpWVhSZNmoAxhjJlysDMzAxubm5vnTmrjXYo1cZFbv3ExET4+/tj1qxZaNGiBUxNTcEYQ+3atTFv3jytvUYvKojksAigVBsXufRfv34NFxcXDBo0iCfh4eHhqFq1KmrWrInz588jNTUVtWvXRsOGDTXqjwqLsPEwDP2cvHr1Ctu3b0f9+vXBGIOxsTGsrKzyTdQKi+h//etLx9zLywvlypXjdY7Jycl8EszMmTNx8+ZNzJgxA4wx/Pnnn4WMMP92KNXGRU79/J4XUVFR2LlzJ1q1asUHAnL/cCjuiOTQQBE2LvLp3759G5UrV0bPnj0BZD+ohg0bBhMTEwQFBfG+GTRoEFxdXd9ayFwYlGzjIaf+22Z/qtVq7N27F1WqVMGIESPg5eWlVd3ciP7Xv/748eNhY2ODGzduAMh+U2BnZ4dhw4bhxYsXAIDAwEDY2dlh0aJFhdaTEDYu8ulnZWXx45+VlZXnPFKr1ejXrx+aNGmCbt268VFMuWep6wORHBoowsZFHn0pOWjfvj0sLCwwZ84cDBw4EIwxjB8/nm8XHx+PPn36oHr16oXSy4kh2njIbeOia33pfHn9+nWe46hWq/OcTy1atMDSpUvz7K8NDLH/5bZx0af+tm3bwBjDlClTsGPHDlSoUAH29vYajgQ7duyAhYUFfzOjzXNQ6TYucutnZGTw/szKyuLlClu2bEHt2rW5W4ZSEMmhAaNEGxe59DMzMzVu9Js2bdKoLRwyZAgePXrEPz9y5AhcXFwwduxYvr822gAoz8ZFTn3pmE+bNg1Tp07F8ePH8eTJE41tJI2kpCT06NED3bp100lipFQbF0PRf/78Ob744gsYGxuDMYayZcti586dfLvk5GQMGzYM1tbWWquzVLKNi1z6km5oaCh69OiBM2fOaHwujSZK1/iOHTtQvnx5jUEIJSCSQwMmODgYlpaWmDt3LoDs2qcxY8ZovGYAgHnz5sHJyQmhoaEAtHPDbNu2LSwsLPIURMfExOhlmSh96Z8+ffqtr+MTEhLg6+ub7yvrfv36wd7enr+C0may0LFjR9SpUwfPnz8HABw6dAjm5uZYtmwZ3+bq1atwd3fHqFGjABSuz6V9586dC8YY3N3dMXToUGzdupWPVOXeXpvxyq2flpYGV1dXMMbg6OiIrl27YsWKFTh79qxGXeG5c+dQtWpVXm6gq5Ezffe/dD1t2LABtra2GDBgQL7f+erVqwJrGJJ+VFQULl++nO/33b59G+vXr8fOnTvzTOjbvXs3ypUrh6FDh2q0uzBIMfr6+sLU1BQbNmwAkD05o2fPnihdurTG9hMmTICrqysePHigsX9BSUpK4jWt3bp1g7e3Nz/v8kPb57yc+rNnz+Y//suWLYvp06fne7+ZMmUKTE1Ni/1yebkRyaEBc+/ePTg4OPAZiCEhIahUqRL69OnDt0lISEDv3r1RoUKFQutJN7sDBw5ozAgDsi8IHx8ffPzxx6hatSomTJiA6OjoQmvKqf/w4UMwxlC5cmVMnDgxzy/It/Hzzz+DMabx2k+bjB49Go6Ojnz0zMvLC4wxXvcEADt37oSFhQVPXLXxoHrw4AG+//57NGzYEIwxqFQq1K9fH5MmTcL+/fsRExNTaA1D1X/69Cl8fX3Rv39/ODk5gTEGNzc39OvXDwsWLMCqVav4hBR/f38AupsEI1f/16lTBy1atNAYxbl79y4mTpyIli1bYuTIkfwHqC7Ql/5nn32G0qVL8/Pq3r17SE1Nfec+T58+hYeHBzw8PHDlyhUA2k1UgoODYWxsjNWrVwMA/P394eDggK+//ppvEx0djfbt26Nhw4Za03369Cnmzp2Lbt26wdbWlv9AGj58OE6cOIHXr19rTcvQ9JOSkrB//34MGTIE5cqV06hnX7x4Mfbt24dx48bB1NQUHTp0AKCMWkMJkRwaMEqzcdG3fkREBDp16oQyZcrw72zYsGG+qw+o1Wqo1Wq8fv0ax44dw4IFC3D37l3+mTaR20ZEbhsXfelL/bZmzRo8fvwYQParw1u3bmHt2rX45JNP+GQIxhicnJz4hBBdoiQbF33rZ2VlYdGiRWjVqhWsra1hZmaGJk2aYM6cOfD398ejR4/ynFtqtRrnz5/H8OHD4efnV2Dtd6F0Gxd96UvPmCtXrmDnzp38R8Hdu3exevVqdO3aFTY2NmCMwcjICIwxtGjRgpd46OOtmaEgkkMDRYk2LnLpP3/+HBs3bsTHH38Mc3NzMMZgbm6ODh06YMOGDRqzQoF/EkVdIbeNSE70aeOiT33p1dCdO3fAGOOvMnN+npiYiBs3bmDv3r1YsWIF/vrrL42ZjbpCSTYucuinp6fj0aNHOHz4MKZPn4569erB2NgYNjY26NSpE1auXImQkJB8X29qMyGTULKNi771pWulXbt2aNy4scYAhMSlS5ewZs0arFy5Ert27dIYsVcSIjksAijJxkWf+rknoQDZo4k//vgjPvjgA368HRwc0LdvX/j5+enULghQto2LvvTVajU/zqtWrUKFChVw7NgxAPKPDCjNxkVu/devX+P27dvw8fHBiBEjULFiRahUKpQtWxb9+/fH1q1bcf36dSQkJGhN820ozcZFLv3k5GS4ublh7Nix/H6e37NA6Yjk0EBRmo2LnPo5b1I5OXfuHCZOnIjKlSvzG7a7uzuGDBmSZzRRFxR3Gxe59QHg1KlTcHNz4xOf8hsZkuuhoQQbF7n08zt3EhIScOnSJaxbtw6fffYZHB0dYWRkhJo1a2LUqFG81lQXKN3GRdf6OVcUS0hIQKNGjTBx4kQAec+j/O49SkQkhwaEUm1c5NYH/rnZvnnzJs/N4s2bNzhw4AD69+8POzs7MMa0VuunZBsXfepL+2zYsAGTJ09GZmYm4uLisHHjRtjZ2eHIkSP56uoaJdu4GJJ+TtRqNWJjYxEUFISFCxeiffv2YIzx2eLaOO5KtXGRS9/LywuXLl0CkF3fOWvWLAwYMIA/X+V+Y2CIiOTQAFGKjYvc+m/jXQ+fuLg4nDhxAoB2k1Kl2rjoS186ztWqVcNHH32ErKwsjB07Fubm5rC3t0flypWxf//+PDWsb3vVrS2UZuMit35+vGtyU3p6Oh4+fIiDBw8iKSkJgPZ+OCjZxkUf+tK2mzdv5i4DkZGRYIzB2toapqam+O233zT2yczMFIni34jk0EBQmo2L3PrAPzePjIwMnDp1CgMGDECPHj0wZcoUbNy4ERcvXtSbK76SbVx0rS/1861btzRGgP73v/+hc+fOcHFx4TOiR4wYAW9vb4SHh+tk8sHbUIqNi9z6OXn16hWWL1+OwYMHw9PTEytXruQrj+gDJdu46ENfuke0bt0ajRo1wv379xEeHo6WLVuiSpUqMDExAWMMTZo0wbZt2/IMVOjz+jdERHJoICjNxkVufeCfpGHp0qWwsbGBqakpatWqxWcu1qlTB+PGjcPOnTsRFhamU/sWCaXYuOhTX7q2Jk6cCEdHR5w+fZr/PTExERcvXsSKFSvQsmVLmJqaokSJEmjSpAm8vLzw559/IjIyUgsR50VpNi5y6wP/nAvXrl1Dhw4dwBhD6dKlYWlpyc+1Nm3aYNeuXXpLDpRi4yKH/vPnz8EYw6xZszSSvytXrmDRokVo27YtzMzMuBNCr169dFpbWpQQyaEBoUQbF7n0pe948OABrK2tUb9+fdy5cwfx8fGws7NDrVq1UKdOHahUKpQrVw6dOnXChAkTNHzHdE1xtXGRS9/R0RGDBw/m/875sMnMzMSzZ89w+vRpTJ8+HTVq1IBKpYK1tTU6d+6sk0kpSrRxkVtf6vO+ffvC2toaixcvBgBMnjwZVlZW8PDw4EliiRIl4Onpyde11zZKs3HRp750bJcsWQIzMzNeU5z73vHmzRsEBgZi+vTp/D4r/SeVDykVkRwaEEqycTEEfSD7wWxvb489e/YAAE6cOAHGGNatW4eIiAiMHj0ajDHY29uDMZanFkpbKMXGRd/60jE9c+YMGGNo165dviUMOY/9mzdv8PjxYxw4cACff/45xowZo7P2Acq1cZFLPzExEcbGxvjyyy95fXH16tXRqVMn3L9/H35+fihXrhwvcejYsSMA7U5SUqqNi770pb6qW7cuHBwcsH79ekRGRvK60fxISEjAvn37MHLkSLi4uPBSHqXOXBbJoYGgVBsXufUbNmyIbt26ISoqCgDQs2dPVKxYEVevXgUAvHz5Ep9++inGjRv33nWR74OwcdGPvnRspWspZ23TvHnz8iT7uZP0lJQUPoqvq2OhNBsXufSlc2Hbtm2ws7ODt7c3AODGjRtgjOGnn37i2/7www9wcXHBL7/8widK6OrHQXG3cdG3vrR/eHg4n/AjlYrMnDkTR48ezbeEISdS7alSE0NAJIeyo2QbF7n0pZvCo0ePUKtWLQwfPpy3w9nZGX379tUYrRg0aBDatGnzzl+d/xUl2bjIrZ+VlQUzMzMMHToUy5YtQ4MGDTQSxTZt2mDt2rV5Jv3o+sGgVBsXufSlfadOnYo6derwH4CzZs2Cra0tjh8/zreNiIhA2bJl+cpT2kCpNi761s9ZY2xtbQ0vLy8MHz4clStXhkql4jXcS5cuxZkzZxAXF6foJPBtiORQJoSNi/z6jx8/RpMmTTB79mwAQEhICBwcHDRGajMzMzFp0iRUqVJF60sFKsXGRS59ad/t27eDMYb9+/fzz8LDwzFjxgyULVuWJ4nW1tbo3bs39u7dqzHaoS2EjYs8+i9fvuQzfzMzM7FgwQKYmZnxCRG9evVC+fLlNSYeHTt2DE5OTvj1118LrPs2lGDjIrc+ADg4OGDAgAFISkpCcnIygoKCsHz5cnTr1g2lS5fmx79Pnz7YuHEjrly5opeVcIoKIjmUAWHjol99SevmzZuoVq0aQkJCuPauXbv4vx88eAA3Nzd07NiRm03fvHkTdevWRcuWLQFoPxkv7jYucurntLL44IMP+Cz43N8dHByMwYMH8wlRUh8MGzZMq0misHHRr77U/5MmTcKaNWt4ghgdHY19+/YByD4Xvv32WzDG8PDhQ77vd999B5VKxSdNCBuX/4Zc+tL9Rqod37hxY55toqOjceTIEXz33Xdo2bIlSpYsCSMjI9SqVQsDBw7E+fPnC6Rd3BDJoQwIGxf96ks3qsmTJ6NkyZLcyiQ/2rRpw1/nL1q0CA0bNoSxsTF8fX01vqswKMnGRW79Z8+egTEGLy8vjQdOzokxOf+2e/dudOrUiY9waAth4yKPvmRl4uXl9dZr9+DBg7ymef78+fj222+hUqnQokULrbQBUKaNixz60nPliy++gKurK/9Bld9KY5mZmbhz5w58fX0xYcIE7jEbEBCg8V1KRSSHMqJUGxe59B0dHdGnTx+NV7b379/HoUOHeL3ZkydP0LdvX36jNjY2xty5c7X+ukVpNi5y6V+7dg2ffvrpW60sJP3c/fvs2TNeJ6WtREXpNi761JfOmcWLF8Pa2lqjrjU9PR1Hjhzh/ZuUlISvv/5aow61Q4cO/I2ONq59Jdm4yK0PAP3798f333+f78h/fuUqr1+/xqVLl/It5VIqIjmUAaXbuOhTX7oJnDx5Mt/XDEuWLAFjTGPE9vHjxzh27BgCAgK0ZkALKM/GRW79nLzv/vqy9VCqjYu+9KXt3d3d0aFDB40VpW7cuIGaNWuiX79+GvtER0dj69at2Ldvn8Ya5tpCKTYucusD2dfX+7haKH108F2I5FBGlGrjok996fj27NkTlStX5qMFQPYEl+7du8PV1RWAfm8USrBxkVvfEFGqjYs+9XPXuea0gAKArVu3gjGG//u//wOQPZKoq/NLaTYucusXBpEoaiKSQ5lRmo2LHPpZWVkwNzfXmIUMAMePH0fJkiUxd+5cAP8kaNq8SSjdxkVufUNFaTYu+tTPWefq4uLCJ5wB2SOXgwYNgq2tbb5t1PZ5pzQbF7n1BdpDJIcGhJJsXPShL910duzYAcYYn4kmJZqLFi0CY4z7SOpi9ECpNi5y6xcFlGDjIqe+s7MzqlWrhnPnzvG/XbhwAWXKlMHIkSMBaK+eNCfCxkV+fUHhEcmhDCjJxkVufQCYP38+T0JcXV3Rt29f/PDDD2jQoAE++OADjW21uUKAkm1c5NY3ZJRg4yK3/s2bNzXOqY8++gjr1q3D999/D8YYn9ymy1nZSrNxkVtfoF1EcigDSrJxkVsfAF68eIHQ0FAsXLgQTZs25StRMMbQsmVL/Pnnn3kshIDCv9pUuo2L3PqGhBJtXOTWP3PmDBYsWICPPvqIJ2RGRkYwNzfHsWPH8piRa/P1phw2LlISLZeNi9z6Au0ikkM9o1QbF7n1gewbUmxsLPz9/TF16lTUrVuX2wc1bdoU06dPx//93/9pfRRHqTYucusbEkqycZFbPzepqak4fvw4Jk2ahHr16vGkrHTp0hg7diyCg4O1lowIGxf59QXaQSSHekZJNi5y67+L1NRUPHjwALt378bAgQP5K157e3t07NgR33//faESE2HjYjj6hoJSbFzk1pfIzxc2Li4Ou3btwuDBg1G+fHmekNWuXRtTp04t9A9DYeMiv75AO4jkUCaUYOMit/778vr1a4SFhWHt2rXo2rUrr1EqTLuEjYtAQkk2LnLrv438aoml1Um6dOnC3SCkNesLgrBxKbr6gryI5FCPKM3GxRD0/wvS6iTBwcH8IVGYUTth41J00GWCoiQbF7n1/4232ceEhIRg7dq1fJuCIGxcBMUJYxLoDRMTEyIiYoyRpaUllSlThoiILly4QJmZmeTg4EA2NjZERKRWq8nOzo7Onj1LarX6P2sBIMYYeXt7U1paGiUmJlJISAjVrFmTrKys6OLFi5SUlETDhg0jIiKVSsXbpg3k1i8IjDEqVaoUtWjRgv/NyMjoP3+PFPvOnTvpzZs31L17d+revTtNmTKFIiIiaMuWLbRt2zY6deoUnTp1iqZOnUqdO3em3r17U8eOHcnc3FybYQnyQeqjx48fU/ny5fn5p01evXpFxsbGZGFhQWq1mmxsbCg8PJyqVatGREQRERFkZWVFVatW5ftERkZSRkYGnThxgjw8PHg73xfpfPXx8aGSJUtSVlYW/+zOnTvk7+9PX3zxBRERZWZmkrFx9iNAW9ed3Pr/BmOMt1Fqm0qlosaNG1Pjxo0L1Rbpe3fs2EHdu3enGTNmEGOMLl++TBcuXKBTp05RSEgIHTt2jMqUKUMfffQRtW/fnj744AOqUKECv/cLdENWVhapVCp6/fo1ZWRkkI2NzX++vhSFnJlpcUfJNi6Goi8HwsbFsJHOsdjYWNjb26N///68j7Q5eqZEGxdD0C8IhR05FjYuho90XY4ZMwadO3dGaGiozC0ybERyqEOUbONiKPpyIWxcDIec107O80qyUWGM4fPPP8eLFy+0pqlkGxdD0Nc3wsbFcJCOX34lBJmZmShXrhwYY7CysuLPV0FeRHKoB5Rs42Io+vpG2LgYFvmNDCUlJeHy5cuYNm0a7Ozs0KlTpzz1nwXVUaKNiyHq6xth4yIv0vWX+zjn/PeVK1ewcOFC2NnZwdHREQcOHNBrG4sKDADkfrVdHMHftQwBAQHUrl072rBhAw0fPpx/vnTpUpo2bRrdvn2b1yBFRUXRrVu3yMTEhEqWLEkNGjTQSdvS0tIoNjaW/vrrLzpw4AD5+/tTbGws2dnZUaNGjahFixb07bff8nqg4qavT9Rq9XvVLarVamKM6aT2TalcvnyZ9u/fT8nJyVSuXDlydnamVq1a8VpfiYSEBNq7dy9NmzaNrl27RmXLli2wpnTdV69enVxdXWnLli1c7+bNm9S7d2+qW7cu7dixg+/z5MkT8vf3p5IlS1Lbtm2pZMmSBdaXyFlPJ/H06VMKCAigw4cP08mTJykqKoqIiGrVqkUdO3akb775hpycnAqtbQj6cpGSkkIpKSnk4ODwzu0gat10QkJCAvn7+9O1a9coJSWFWrVqRV27ds33WD979oxGjhxJHh4etHDhQhlaa+DImpoWY5Rs41KU9AXFj/T0dCxbtgxGRkZgjMHBwQGmpqYwMTHhdb75jSQWZiUiQNk2Loasb+iI+1zhkK6hEydOoGXLlmCM8VKGnM+T/PaJiorKs669IBuRHOoQJdu4FDV9JXsJyh27tvSl62jTpk0wNTVF165dcfXqVZw9exbt27eHiYkJ3/bBgwc4cOAA19bGuaZkG5eioC8o3tSvXx9OTk58rXJpMuTq1asBAMnJydixY4fGdSl4OyI51AHSDW7Hjh1gjPGZaJJf4aJFi8AYw6NHjwDI/3BWIlIfSX2gJOSOXVf6OVenaNGiBTcav3z5MipUqKCxhOG+ffvAGENQUJBW2wAAzs7OqFatGs6dO8f/duHCBZQpUwYjR44EIH89aX6rhxR3fUkvOTmZ+8kqJRmVO3Zd6Us/Nnx8fKBSqfDLL7/wz7777jswxjR8ghs0aICpU6cW+i2BEhAFTjpAqm+4d+8eERFt376devXqRaNGjaIFCxaQr68vNWzYkMqXL09E2XU5WVlZBFH+qRfwd71PXFwc1a9fnwYMGEARERH8s+KM3LHrSl/63kePHtHdu3epefPmVKNGDSIiOnfuHD169IhGjx7Nt3/+/Dk5OjpSYmJiobVzEhYWRi9fvqQ7d+5Q8+bNqWXLlrR+/Xo6cuQIxcTE0JQpU7SiU1hUKhWvB8zpRVic9aU+/uabb6h///504cIFxdT9yR27rvSl79i3bx9Vq1aNWrZsSUREN27coP3791P79u3JysqKiLLrEV+/fk2xsbHFop5d58iTkyoDpdq4GBpyWJkYCnLHrm/9wMBA2NnZYc6cOQCya4o8PT1RpkwZje2ktc3v3buXp22FRWk2LoaGkq1M5I5dDv2MjAx4enqiYsWKXHP79u1gjGHPnj18u+DgYFSsWBGTJk0CIN7Y/RsiOdQDSrNxMUT0ZWViiMgduz71X716BQcHB/Tp0wdA9utcW1tbTJs2jW8TGRmJdu3aoVatWoXWexdKs3ExBJRsZSJ37HLqz5o1C4wx3LlzBy9fvsSwYcNgaWmpsc2qVas0/CRFcvhuhJWNnlGSjYvcyGFlYijIHbtc+gBo+PDhtG3bNpo7dy4lJyfT4sWL6cmTJ+Ts7ExERMuWLaOZM2fSggUL6Ouvv9ZYxk0bKNXGxRBQspWJ3LHLqS9ZxvXs2ZPGjh1Lw4cPp1atWtHvv/9OREQPHz6kfv360ZMnT+jBgweF1lMEMienikbYuOgGuaxMDAG5Y5dbHwAiIiJQrVo1vtqMi4sLzpw5gwsXLmDp0qWwtrbGhx9+qJfCfGHjonuUbGUid+xy60tkZmZi9uzZ/JW1tIShWq3GoUOH0LZtW5ibm+O3337j2wvejUgODQCl27gUFyuTglBcYpdbXyI9PR0AEBMTg7Fjx6JChQpgjMHU1FSj3vevv/4CoL8fYcLGRfco2cpE7tjl1gey7aJmzpwJFxcXfq3b29uDMYYSJUpg/fr1fJ1zca39OyI5VCDCykS3Vibv08biFrtc+pJu7vWrASAhIQEBAQH4+eefMXLkSPTv3x/79u3Ds2fPCq1bGJRo46JkK5PiGrvc+kB2XW9uwsPDsXjxYvTu3RvDhg3D7NmzERoaqjVNpSCsbBQGhJUJEenOyuR92ljcYpdTX9p38+bNVKNGDTp9+jSv9bOxsaHWrVvTxIkTaf369bR9+3bq0aPHvy5tpmuUaOOiK/2iYGVSXGOXS1+6Zi5cuEADBgygAwcOUFRUFKWlpRERUbVq1Wjq1Km0a9cuWrNmDc2fP58aNWpUKE0lIpLDYo5areb/Lz3EibIvrPj4eNq5cyd5eXlRfHy8Th4W+tKX9n348CGZmZmRhYUFERFFR0eTv78/ubi4ULNmzfj2Dx48ILVazZMYXaCU2OXSB0AqlYpevnxJy5YtIwBUpUoV/nl6ejqFh4dTYGAghYWFEZFmnxgC2l5LW0pEAGjEamRkRGq1mg4dOkSHDx+mtm3b0u7du7WqLYe+SqWizMxMevPmDaWnp1OtWrWIiOjq1at0/fp1GjNmDN82LCyM3rx5Q/b29sQY03pirrTY5dKXrpmgoCDau3cv9ezZkz755BOaO3cuBQYGUlxcHKWnpxMRkampaSEiVDh6GqEUyIiwMpHHygRQVuz61pdeJa9cuRIlS5bEtm3b+GdJSUmYOHEiVCoVSpUqhXbt2uXrKVqcEFYm8lmZKDl2ufSjoqJw6NAhzJw5E02bNkWJEiVgYmKCDz/8EEuXLsXFixeRkJAg6gsLiEgOiymXLl3Cd999hylTpmD58uXYuXMnoqOj82wXHx+PjRs3ws7ODlFRUUVePysrC0OHDoWRkRG+//57TJ8+HYwxjeRr6dKlMDMzw9KlSwFofykzpcaub33ppt+gQQO0bt0a9+/f55/NnDkTjDE0b94cQ4YMAWMMbdq0KbBWUSA+Ph6+vr6YNWsWpkyZAj8/v7c+GJ8+fYru3bvj22+/LRb6J0+eBGMMvXr1wqlTp1C5cmUMGzaMfx4ZGYnmzZvDzc1NK3q5UXLscutnZGQgPDwc3t7e+PLLL1GxYkUwxuDs7IxevXrht99+06h9FLwfIjksZshtJSK3PiCflYmSY5dLPyYmBuXLl9d4GB07dgzW1tYYMmQI7t+/D7VajU8++QQeHh75JulFGbmtROTWl5DDykTJsRuCfn42Ua9evcLp06fRqVMnbjhvamoqrGsKgEgOZUZYmRR9KxMlxy63fnR0NNzd3dG+fXukp6fj0qVLaN68OVxcXDRmhI8cORJubm7FLjmUkNtKRG59QD4rEyXHbij6uZ+jiYmJaNiwIcaNG4cjR44AEN6G/xWRHOoZYWVS/KxMlBq7XPq5Hy6dO3cGYww9evRAlSpVYG5ujlWrVvHPIyMj0b59e9SvX7/Q2gVBWJnoRh+Qz8pEybHLpS8d82fPnr31+snKyuL3o3bt2mHu3Lla0VYiIjnUI9IJHRsbC3t7e/Tv358XyRfmYSHt+/DhQ1haWmLq1Kn8s9WrV4MxhrNnz/K/bdiwAU5OTjh48GChteXWlx6869evh4eHB06dOlXg7yoISo5d3/q5f/lLxy4mJgaDBg1C5cqVYWdnh//9739ISUnh223ZsgXW1tY6qzH9N6R2jxkzBp07d9baw1I6/n369EH16tVx5coVAMD169dRp04ddOjQgW8bHx8Pd3d3DBw4UGsjN3LpS7qhoaH4/PPP4efnh8ePH+ebrEij2dpGqbHLqS8duzp16qBmzZpYuXIlHjx4kG/7nj9/ju7du6N58+ZabYOSEAv46hC1Wk1GRkZE9HYrk7S0NFq/fj3Z2dkVWEdYmWRbmTDG8liZREZGUlxcHDk4OFCNGjU0+kQbKDV2OfR//PFH8vDwoIYNG5Kbmxs/9s7OzrRw4UJKSUkhJycnKlmyJN/n5cuXtGLFCnJ2dqahQ4cSEWm1/3MiXeMAKCsri+vktDKJjo6mwMBA2rRpE/Xs2bNQev9mJTJnzhy+bX5WIoW10ZFLP7eVycGDB6lKlSrUtWtX6ty5M7m7u5ONjQ2ZmZnpzMpEqbHLqc8Yo+TkZKpUqRJdvHiRJk2aRNOnT6f27dtT//79qV27dmRjY0MqlYqOHj1Kx44d43Y62r7vKwI5M1MlIKxMlGFlorTY9a1//fp1MMZQqlQptG7dGvPnz4e/v3++103O17g//fQTHB0def2XrlYmEVYmyrQyUWrs+taXjllaWhoA4Nq1a1iyZAk+/fRT2Nra8gmAXbp0Qbt27WBtbQ1bW1tERERo7C94f0RyqAOElYnyrEyUFru+9V++fIkDBw5g4sSJqFSpEhhjcHJyQo8ePbBy5UqcPXs2z+zPN2/e4MyZMzh69ChevXql0W5tI6xMlGllouTY5dD//PPPsXz5cv7vhIQE+Pv7Y9asWWjTpg0qVqyIkiVLomHDhrx0R1AwRHKoRYSVibKtTJQWuxz6aWlpePDgAby9vdG7d284ODiAMYZKlSph6NCh2LJlC27cuJFvDZS2EVYm8uobgpWJUmPXp760f2BgIBhjWLlyJYC898+YmBhcuXIFT58+5fdYQcERyaEWEFYm8ukbipWJEmOXWz85ORk3btzAb7/9hnbt2sHc3BwmJiaoV68epkyZgn379iE8PFznKyQIKxP59eW0MlFy7PrUX7VqFSpXrsydHqQEVbwy1g0iOdQCwspEeVYmSo1dbv38UKvViI+Px7lz5zB37lzUr18fKpUKNjY2qFu3Lh4+fKh1TWFlomwrE6XFLof+y5cvcefOHf7v0NBQ2NjYIDIykusJdIdIDguJsDJRppWJ0mKXW/99ycjIQExMDI4ePYpRo0ahUaNGOtERVibKszJRcuz61JfuNbNmzULfvn2RkZGB0NBQ/Pjjj6hfvz5mz54tlsPTAyI51BKBgYGws7PDnDlzAGTXFHl6eqJMmTIa23l5ecHe3h737t0DUPDkUNovMTER7u7uqF69usaklrS0NNy+fRunT5/mI5nafLUgh/78+fOxe/du3L9/P89xi46O5jMGc5KYmIi6deuiatWqePHihUbbC4oSY5dbPzfx8fEICwt75zapqamIj48HoJvZihkZGfD09ETFihV5/27fvh2MMezZs4dvFxwcjIoVK2LSpElaa8uyZct42UKNGjUwffp0nD59GrGxsXxGpy6RSz8pKQk9evRA+fLl+WvbLl26wNvbG0+fPuUjszt27IC5uTkmT54MQLv3PqXGrm99CwsLeHp6Asj+EcYY4w4Iy5cvR2xsrFbiEuSPSA61hLAyUY6VidJil1s/577Pnz/H7NmzUaVKFZQoUQKOjo4YOXIkDh8+jOTk5AJ/f0ERVibKszJRWuz61JeO2bFjx8AYw6ZNmwAAAQEBmDNnDjp16gQnJycwxuDq6orJkyfj/PnzYmk8HSCSQy0hrEyUY2WitNjl1s9J3759+TEdP348rK2t+SSAKlWqYNasWbhw4YLeVkERVibKtTJRWuz60JcSye7du8PDwyPP24EnT57Az88PkydP5rXFjDHUr18fixcvxq1btwoeoEADkRxqEWFlohwrEyXGLpd+TisLY2NjjWNuZmaG7t27o1+/fjxJVKlUKFu2LJ8ZrkuElYnu9Q3NykRJscuhn5mZCVNTUwwYMID/sMyPu3fvYtu2bRg6dCiqVq0KxhjKli1bKG3BP4jkUEsIKxNlWZkoOXZ960sPqMGDB6Ny5cp8gtf69euhUqlw+PBhAMDu3btRpkwZtG3bFuXKldPqzPx3IaxMlGtlopTY9aEvXRve3t5gjKFOnTqYN28e/vzzz3fePzMyMnDlyhX8+OOP2Lp1K/+boHCI5LCACCsTefTzQ19WJkqOXS79nMvS1atXDz179uSTTD788EM0bNhQo6bzk08+gaenJ3+Y6Co5FlYmutc3FCsTJcYuh750rX/44YcoUaIEypUrx0tYunbtiqVLlyI4OJhPbssPYW+jPURyWECElYlyrEyUHLuh6N+7dw81atTA+PHjAWRPTHF0dMTw4cM1Ri/Gjx+vUbqhTYSViTKtTJQUu9z6sbGxYIzhm2++QVBQEFasWIGOHTvC1tYWKpUKlSpVwsCBA7FhwwZcuXKFj8gLtI9IDguAsDJRlpWJkmOXU//IkSM8yXv27BlatmwJLy8vANkJmoODA8aOHcu3T0pKwvDhw+Hm5qbT123CykR5ViZKi13f+tL1umDBAlhZWfGZ/WlpaXj06BGOHj2KWbNm8dnhpqamqFu3LiZMmIDdu3fj1q1bYtRQy4jksAAIKxPlWJkoOXY59KUbvL+/PypVqoSTJ09qfJ6YmAi1Wo1Xr16hXLlyqF+/Pp48eQIgu+bQyckJ/fr1A6C7OjthZaIcKxMlxS6nvqTt5uaGzp0782s6JykpKYiIiMAff/yBcePGwcPDA0ZGRrC2tkbz5s013toICo9IDguAsDJRjpWJkmOXQ196mHbr1g1ubm64du0a/yz3MZRG8CwsLNCsWTMwxuDo6Mjr/HTtfSasTJRjZaKE2OXWDwsLA2OMl+FI5HfvTExMxJUrV7B582Z06dKF+wuLdZa1h0gOC4iwMlGWlYlSY5dDPyMjA6amppgwYYLG8Txx4gR69+6N27dvAwBevHiB2bNno0aNGqhYsSI+/fRTnDhxosC674uwMlGGlYkSY5dTPzIyEj///DN/0/Y+P6izsrIQExOD58+fAxDJoTYRyWEBEVYmyrUyUVLs+tSXjtfmzZuhUqk0lqDLzMzEnDlz8hjLA/8k7rpYS/jfEFYmxd/KRAmxy62/ZMkS3g5hQ2MYiOTwPyCsTPSvb6hWJlLbinPs+taX9Jo2bYqmTZtqzAi9d+8emjRpghYtWgDITrjUarVekiNhZaIsKxMlxi6nfkBAAIyMjODr61ug/QW6QSSH74GwMpFf3xCsTN5FcY5dn/qSlcXMmTM1rrs9e/ZApVJhy5YtAHRfT5gTYWWiDCsTJccul75arcabN28waNAgWFlZYcmSJXzmd37lGwL9IZLD90BYmcijb4hWJkqJXd/60rXx66+/gjGG1q1bw9fXF48ePUJiYiLGjx8PExMTjdFMfSKsTJRjZaK02OXWB7IdAFq3bg0zMzNMnz49z/M0KytLJIp6RiSH/4KwMlG2lYmSYpdbHwBWrFiBJk2awMbGBowxuLm5oWfPnihTpgy6dOlSqO8uCMLKRBlWJiJ2+W1kMjMzMWbMGDDGUK1aNaxduxb37t3Ls13ON3D6vBcoDZEc/gvCykS/+oZqZaKE2OXWl3j8+DF/CNWuXRsWFhYwMjJCxYoVsWjRIgQHB+cZWdA1wsqkeFuZKDl2Q9CX7hdRUVGYNm0ajI2NYWxsjLZt22Lp0qXw9/fXWGgiJ7o0nlcyIjl8T4SVifKsTJQYu9z6ubl16xbWr1+PAQMGwM3Nja9M0qZNG/zyyy8ICwvT2RJawspEWVYmSo5dbv3cXLt2DaNGjeKjtU5OTmjYsCE++eQTTJ48GYsXL8Y333yD8ePHY9iwYfDx8dGatiAbkRwWAGFlogwrEyXFLrd+zkL0jIyMPA+atLQ0hIaGYunSpfj000/5jzMrKyv+KltXCCuT4m1louTYDUE/Jzmvq1evXiEoKAjLly/HZ599BmdnZxgbG8PS0hJmZmawtbWFu7s7PD0980wQExQekRwWAmFlUnytTJQWu5z6AQEBMDY21khIc7Yr97FMSEjA8ePH8d1336FGjRoYMWIEb5c2EFYmyrIyUXLscuu/DxkZGfyHY3h4OM6dO4cXL17gzp07ouZQh4jkUEsIK5PiaWWipNjl0P8vVhb5JaMPHz7U2mstYWWiXCsTJcYut742KAptLKqI5PA/IqxMir+VidJil1sf+O9WFro0vxZWJvrVB+SzMlFy7IaiLzBMRHL4LwgrE/3pA/JZmSg5dkPRL4iVhTTSUViElYkyrUyUHLsh6QsMD5EcvifCyqR4W5koOXZD0JfbykJYmSjXykTJsRuCvsAwYQBAgnxRq9VkZGREQUFB1LZtWxo0aBD9/vvvRERUokQJ6tixI1laWpK3tzcRETHGyMXFhfz8/Khhw4YF0szMzCRLS0saM2YM/fTTT1SiRAkiIjp58iStX7+e5s2bR+7u7hQfH08///wz7dmzh1JTU6lGjRo0ZcoUatu2baFills/N7dv36agoCAKDAyk4OBgevjwIZmYmFCLFi3os88+o/bt21OFChXIwsKi0FpKjt3Q9K9fv06//fYb7d+/n549e0aOjo5Uvnx5cnBwoBo1apCLiws9ffqU0tPT6fXr1/TJJ59Qr169CqWpVqvJwsKCevXqRatXryZra+t8t7t37x6dPXuWAgICKDg4mO7evUtlypShqKioAms/fPiQ9u/fT506daJq1aoRAGKMvXMfABQXF0cmJiZkb29PWVlZpFKpiqR+bvTZ/0qO3RD1BQaCfHmp4SOsTPSnL6eViZJjNwT9nMhhZSGsTJRrZaLk2A1NX2BYiOTwLQgrE/3py21louTY5dZ/H3RtZSGsTJRpZaLk2IuKvkA+RHL4LwgrE2VYmSgxdrn1tYG2ZlEKKxNlWZkoOfbioi/QLSI5zAdhZaIcKxMlx24o+nIirEzk15cTJccuELwLkRz+jbAykV9fTisTJcduCPpyIaxMDENfTpQcu0DwNkRy+DfCykRefUOwU1Bq7HLry42wMlFu/ys5doHgXQgrmxwIKxPD0ZfbTkHJscutr2+ElYlh6cuJkmMXCDSQNzc1DISViXKtTJQcu6Hpy4GwMjEcfTlRcuwCQX6IkUMi/qu/WbNmRETk7e1Nbm5uRER0//596tevHxkbG1NwcDCp1Wo+qqCNkYJTp05Rhw4dyMfHhzw9PfO0izGmMYqRmJhIf/31FwUFBdEff/xBzZs3pw0bNnDD7qKm/z5kZmYSADIxMaGIiAiKj4+natWqUXx8PFWsWLHAukqOvajo65JTp05R+/btydvbm3r27Cl3c/JF7uMvt76cKDl2gUCMHP6NsDJRlpWJkmMvLvqFQViZFH19OVFy7AJloPjkUFiZyK8vJ0qOXSCsTAQCgSA/FJ8cSggrE2VamQDKjl0grEwEAoEgN6LmMAdRUVEUEhJCAQEBFBgYSPfu3aP09HRydXWl0aNH04cffki1a9emkiVLalVXqlmLjo6mX375hZYvX05ERC1btqTOnTtTvXr1qHr16lS2bNk8+6anp5OZmVmR1pcTJccuEP0vEAgE+SGSw7cgrEyUaeeg5NgFov8FAoGASCSHtHTpUpo4cSKZmJhQZmYmqVQqjVnI6enpdO3aNQoMDKSAgAAKCQmhFy9ekKWlJXXr1o127NihtbYg+zU/qVQqSkpKoqtXr9KFCxcoKCiIzp07R8+fPyczMzPKzMwkCwsLcnJyopo1a9KyZcv47OqirC8nSo5dIPpfIBAIcqLo5FBYmRi+vpwoOXaB6H+BQKBcFJscZmVlkVqtphEjRtDevXtpzpw5fAQxd2KY3+oHjx49IktLS62vjvBfwHus5FCc9eVEybELRP8LBILijWKTQ4no6GgaMGAAnTt3jiZNmkReXl4aE06kw/OuRFEgEAgEAoGguKD45JAoe8biV199RevWraOqVavSlClTqEOHDlSpUiWN7TIzM8nY2JiIiDIyMsjExESO5goEAoFAIBDoDMUnh8LKQiAQCAQCgeAfFJ8c5kZYWQgEAoFAIFAyIjn8G2FlIRAIBAKBQCCSw3cirCwEAoFAIBAoDZEcFhBhZSEQCAQCgaA4IjxZCohIDAUCgUAgEBRHRHIoEAgEAoFAIOCI5FAgEAgEAoFAwBHJoUAgEAgEAoGAI5JDgUAgEAgEAgFHJIcCgUAgEAgEAo5IDgUCgUAgEAgEHJEcCgQCgUAgEAg4IjkUCAQCgUAgEHBEcigQCAQCgUAg4IjkUCAQCAQCgUDA+X9lw5myW2x6MgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAocAAAKOCAYAAADUG7MqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWKUlEQVR4nOzdd3QVVdcG8D3pvRASQigBQmihN6VIN1SVIiiISAdBkCIIIqJ0FF5FRRSQJlJepYnSIQm9E4q0UEJLQk9CAqQ+3x/55ry5JKEkN7mB+/zWYi0yM3fOOffMzN0zc2aPBgBCRERERCQiFqauABERERHlHwwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIsXK1BV40aWmpkpERIQ4OzuLpmmmrg4RERG95ADI/fv3xcfHRywsjH+dj8FhDkVEREixYsVMXQ0iIiIyM1evXpWiRYsafb0MDnPI2dlZRNI6yMXFxcS1ISIiopddbGysFCtWTMUgxsbgMIf0W8kuLi4MDomIiCjP5NZwNj6QQkREREQKg0MiIiIyayVKlBBN0zL8GzhwoNy9e1cGDRokZcuWFXt7eylevLgMHjxYYmJiMl3XnTt3pGjRoqJpmkRHR+dtQ4yEt5WJiIjIrB08eFBSUlLU3ydPnpTXX39dOnbsKBERERIRESHTp0+XChUqyOXLl6V///4SEREhf/75Z4Z19erVSypXrizXr1/PyyYYFYNDIiIiMmuenp4Gf0+dOlX8/PykYcOGommarFy5Us3z8/OTSZMmSdeuXSU5OVmsrP4XSs2ePVuio6Pliy++kA0bNuRZ/Y2Nt5WJiIiI/l9iYqIsWbJEevbsmeUDHzExMeLi4mIQGJ46dUrGjx8vixcvzpXcg3npxa49ERERkRGtWbNGoqOjpXv37pnOv337tkyYMEH69u2rpiUkJEjnzp3lm2++keLFi+dRTXMPg0MiIiKi//frr79Ky5YtxcfHJ8O82NhYad26tVSoUEG+/PJLNX306NFSvnx56dq1ax7WNPcwOCQiIiISkcuXL8vWrVuld+/eGebdv39fWrRoIc7OzrJ69WqxtrZW87Zv3y5//PGHWFlZiZWVlTRt2lRERAoWLCjjxo3Ls/obCx9IISIiIhKRBQsWiJeXl7Ru3dpgemxsrDRv3lxsbW3lr7/+Ejs7O4P5K1eulIcPH6q/Dx48KD179pSdO3eKn59fntTdmBgcEhERkdlLTU2VBQsWyAcffGDwoElsbKwEBgbKgwcPZMmSJRIbGyuxsbEikvaUs6WlZYYA8Pbt2yIiUr58eXFzc8uzNhgLg0MiIiIye1u3bpUrV65Iz549DaYfOXJE9u/fLyIipUuXNph36dIlKVGiRF5VMc9oAGDqSrzIYmNjxdXVVT3WTkRERJSbcjv24AMpRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISLEydQWIiIiI8pM+3+Xs83OHGKMWpsMrh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISMnXweHq1avl9ddfFw8PD7Gzs5OSJUtK586d5erVqwbLxcbGyrBhw8TX11dsbW2lRIkSMmLECImLi8t0vampqfLDDz9IpUqVxN7eXjw9PaVz585y8eLFvGgWERERUb5lZeoKZAaA9O/fX+bMmSN+fn7y7rvvirOzs0REREhISIhcvnxZihUrJiIi8fHx0rBhQwkNDZXAwEDp3LmzHD16VKZPny4hISGyY8cOsbOzM1h/v379ZN68eRIQECCDBw+WiIgI+e9//yubN2+Wffv2ib+/vymaTURERGRy+TI4/P7772XOnDkyYMAA+f7778XS0tJgfnJysvr/119/LaGhofLpp5/K1KlT1fRRo0bJtGnT5Ntvv5XRo0er6UFBQTJv3jxp0KCBbNmyRWxsbEREpEuXLtKqVSv56KOPZNOmTbncQiIiIqL8SQMAU1civYcPH0qRIkXE3d1dzp49K1ZWWcevAKRo0aISGxsrUVFR4ujoqObFx8eLt7e3eHl5yYULF9T0Ll26yLJlyyQkJEQaNGhgsL7GjRtLcHCwXL58WYoXL/5M9Y2NjRVXV1eJiYkRFxeX52wtERER5Td9vsvZ5+cOMUYtspbbsUe+G3O4efNmuXfvnrRt21ZSUlJk1apVMnXqVPn555/l/PnzBsuGhYVJRESE1KtXzyAwFBFxdHSUevXqycWLFw3GKAYHB6t5j2vevLmIiISEhORCy4iIiIjyv3x3W/nw4cMiImJpaSmVK1eWc+fOqXkWFhYydOhQmT59uoikBYcikuUYQX9/f9m0aZOEhYVJsWLFJD4+XiIjI6VixYoZblWnX4++3swkJCRIQkKC+js2NlZERJKSkiQpKUnV09LSUlJSUiQ1NdWg/paWlpKcnCzpL9haWlqKhYVFltP19er0q6npb68/abq1tbWkpqZKSkqKmqZpmlhZWWU5Pau6s01sE9vENrFNbNPL3yZryYm8aFNuynfB4c2bN0VE5D//+Y9Ur15dDhw4IOXLl5ejR49K3759ZcaMGeLn5ycffvihxMTEiIiIq6trpuvSL7Xqyz3v8pmZMmWKfPXVVxmmb968WRwcHEREpHjx4lKtWjU5fvy4XLlyRS1TtmxZKVeunBw4cEBu3bqlpletWlV8fX1lx44dcv/+fTW9Tp064uXlJZs3bzbYEBo3biz29vayfv16gzq0atVKHj58KEFBQWqalZWVtG7dWm7fvi179+5V052dnaVJkyZy9epVCQ0NVdM9PT2lbt26EhYWJmfPnlXT2Sa2iW1im9gmtslc2iTSWnIit9ukX0jLLfluzGHfvn1l7ty5Ym9vL+fPnxcfHx817+TJk1KlShUpWbKknD9/XpYuXSrvvfeejBkzRiZOnJhhXWPGjJHJkyfLqlWrpF27dhIRESFFihSRevXqya5duzIsv2XLFgkMDJTBgwfLzJkzM61fZlcOixUrJrdv31bBJc/M2Ca2iW1im9gmtunFbdOAWTm7cvjL4Nxt0927d8XDwyPXxhzmuyuH+lW9mjVrGgSGIiIVK1aUUqVKyfnz5yU6Olotm9WVPv2Wr77c8y6fGVtbW7G1tc0w3draWqytDTcmS0vLTG9fZ/WQTVbTH19vdqZbWFiIhUXGIaZZTc+q7mwT2/S809kmtkmEbcqqjs87nW0yXZueh6naZCz57oGUsmXLioiIm5tbpvP16Q8fPnzqGMHHxyQ6OjpK4cKF5dKlSwaRe1bLExEREZmbfBccNm7cWERETp8+nWFeUlKSnD9/XhwdHcXT01P8/f3Fx8dHdu/eLfHx8QbLxsfHy+7du6VkyZIqYbaISMOGDdW8x+n5DR9PcUNERERkLvJdcOjn5yeBgYFy/vx5mTdvnsG8qVOnSnR0tLRr106srKxE0zTp3bu3xMXFyYQJEwyWnTBhgsTFxUmfPn0Mpvft21dERMaOHSuJiYlq+oYNGyQ4OFgCAwPF19c3l1pHRERElL/luwdSREQuXLggdevWlZs3b0rr1q2lXLlycvToUdm+fbv4+vrKvn37xNvbW0TSrhDWq1dPjh07JoGBgVK9enU5cuSIbN68WWrVqiUhISFib29vsP4+ffqo1+e1bt1aIiMjZcWKFeLk5CR79+6VMmXKPHNdmQSbiIjo5cIk2PmQn5+fHDp0SLp37y6HDx+W77//XsLCwmTgwIFy4MABFRiKpI0jDAkJkSFDhsjp06dlxowZcubMGRk+fLhs27YtQ2AoIvLLL7+op5Fnzpwp69evl3bt2smBAweeKzAkIiIietnkyyuHLxJeOSQiInq58MohEREREdH/Y3BIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIiXbweGOHTvkypUrT1zm6tWrsmPHjuwWQURERER5LNvBYePGjWXhwoVPXGbx4sXSuHHj7BZBRERERHks28EhgKcuk5qaKpqmZbcIIiIiIspjuTrmMCwsTFxdXXOzCCIiIiIyIqvnWbhnz54Gf69Zs0bCw8MzLJeSkqLGG7Zs2TJHFSQiIiKivPNcwWH6MYaapkloaKiEhoZmuqymaVKrVi359ttvc1I/IiIiIspDzxUcXrp0SUTSxhuWKlVKhgwZIh9//HGG5SwtLcXd3V0cHR2NU0siIiIiyhPPFRz6+vqq/y9YsECqVatmMI2IiIiIXmzPFRym98EHHxizHkRERESUD2Q7ONQdOHBADh48KNHR0ZKSkpJhvqZpMnbs2JwWQ0RERER5INvB4d27d6Vt27aye/fuJ+Y8ZHBIRERE9OLIdnA4bNgw2bVrlzRq1Eg++OADKVq0qFhZ5fhCJBERERGZULajub///ltq164t27Zt41tQiIiIiF4S2X5DysOHD6VBgwYMDImIiIheItkODqtWrZrp21GIiIiI6MWV7eBw3Lhx8tdff8m+ffuMWR8iIiIiMqFsjzmMioqS1q1bS8OGDeW9996T6tWri4uLS6bLduvWLdsVJCIiIqK8o+FJeWiewMLCQjRNM0hj8/j4QwCiaVqm+Q9fFrGxseLq6ioxMTFZBsdERET04ujzXc4+P3eIMWqRtdyOPbJ95XDBggXGrAcRERER5QMvxOvzpk2bJqNGjRIRkb1798qrr75qMD82Nla+/PJLWblypURFRUnhwoWlY8eOMm7cOHFycsqwvtTUVJk1a5bMmTNHzp8/L05OTtKsWTOZNGmSlCpVKk/aRERERJQfZfuBlLxy8uRJGTdunDg6OmY6Pz4+Xho2bCjffvutlCtXToYOHSply5aV6dOnS5MmTeTRo0cZPtOvXz8ZPHiwAJDBgwdLixYtZNWqVVKrVi0JCwvL7SYRERER5VvZvnJ45cqVZ162ePHi2SojKSlJPvjgA6latar4+/vLkiVLMizz9ddfS2hoqHz66acydepUNX3UqFEybdo0+fbbb2X06NFqelBQkMybN08aNGggW7ZsERsbGxER6dKli7Rq1Uo++ugj2bRpU7bqS0RERPSiy/EDKU8tQNMkOTk5O0XIl19+KVOnTpUjR47I119/LYsWLTK4rQxAihYtKrGxsRIVFWVwdTE+Pl68vb3Fy8tLLly4oKZ36dJFli1bJiEhIdKgQQOD8ho3bizBwcFy+fLlZw5o+UAKERHRy4UPpGRTt27dMg0OY2Ji5NixY3Lp0iVp2LChlChRIlvrP3LkiEyaNEnGjx8vFSpUyHSZsLAwiYiIkObNm2e47ezo6Cj16tWTTZs2ydWrV6VYsWIiIhIcHKzmPa558+YSHBwsISEh8v7772er3kREREQvsmwHhwsXLsxyHgCZMWOGfP311/Lrr78+97oTEhKkW7duUrVqVRk5cmSWy+njA/39/TOd7+/vL5s2bZKwsDApVqyYxMfHS2RkpFSsWFEsLS0zXT79erOqW0JCgvo7NjZWRNJugSclJYlI2lVVS0tLSUlJkdTUVLWsPj05OdkgBZClpaVYWFhkOV1fr87KKq3bHr8im9V0a2trSU1NNUgppGmaWFlZZTk9q7qzTWwT28Q2sU1s08vfJmvJibxoU27KdnD4JJqmySeffCL//POPjBgxQlauXPlcn//iiy8kLCxMDh8+nGkQp4uJiREREVdX10zn65da9eWed/nMTJkyRb766qsM0zdv3iwODg4ikjbGslq1anL8+HGDsZlly5aVcuXKyYEDB+TWrVtqetWqVcXX11d27Ngh9+/fV9Pr1KkjXl5esnnzZoMNoXHjxmJvby/r1683qEOrVq3k4cOHEhQUpKZZWVlJ69at5fbt27J371413dnZWZo0aSJXr16V0NBQNd3T01Pq1q0rYWFhcvbsWTWdbWKb2Ca2iW1im8ylTSKtJSdyu02HDx/OUf2eJttjDp/FiBEjZN68eXLv3r1n/szevXulfv368uWXX8rYsWPV9O7du2cYc7h06VJ57733ZMyYMTJx4sQM6xozZoxMnjxZVq1aJe3atZOIiAgpUqSI1KtXT3bt2pVh+S1btkhgYKAMHjxYZs6cmWn9MrtyWKxYMbl9+7YKLnlmxjaxTWwT28Q2sU0vbpsGzMrZlcNfBudum+7evSseHh75b8zhs7hw4cJzXfpMTk6WDz74QCpXrqzyGj6JfgUwqyt9+i1ffbnnXT4ztra2Ymtrm2G6tbW1WFsbbkyWlpaZXvnUd5Jnnf74erMz3cLCQiwsMmYuymp6VnVnm9im553ONrFNImxTVnV83ulsk+na9DxM1SZjMfraU1NT5fr167Jw4UJZu3atNG3a9Jk/GxcXp8b76SlmHlenTh0REVm9erV6UCWrMYKPj0l0dHSUwoULy6VLlyQlJSXDF/60MYxEREREL7tsB4dPS2UDQNzd3WXGjBnPvE5bW1vp1atXpvN27NghYWFh8uabb4qnp6eUKFFC/P39xcfHR3bv3i3x8fEZUtns3r1bSpYsqZ5UFhFp2LChLF++XHbv3p0hlY2e3/Dx6URERETmItvBYYMGDTINDi0sLMTd3V1q1aolPXr0EC8vr2dep729vcybNy/Ted27d5ewsDAZPXq0wevzevfuLePHj5cJEyYYJMGeMGGCxMXFyWeffWawnr59+8ry5ctl7NixBkmwN2zYIMHBwRIYGCi+vr7PXGciIiKil0m2g8Pg4GAjViP7Ro4cKWvXrpVp06bJ0aNHpXr16nLkyBHZvHmz1KpVS4YMGWKwfOPGjaV3794yb948qV69urRu3VoiIyNlxYoVUqBAAfnhhx9M0xAiIiKifCDfv1v5aRwdHSUkJESGDBkip0+flhkzZsiZM2dk+PDhsm3bNrG3t8/wmV9++UU9jTxz5kxZv369tGvXTg4cOCBlypTJ6yYQERER5RtGSWWze/duCQ0NldjYWHFxcZGqVatm+gaSlxFfn0dERPRy4evzcmDPnj3So0cPOX/+vIikPYSij0P09/eXBQsWqKeLiYiIiCj/y3Zw+O+//0pgYKA8ePBAXn/9dWncuLEULlxYoqKiJCgoSDZv3izNmzeXffv2ZfluZCIiIiLKX7IdHI4fP14SExNl/fr10qJFC4N5n376qWzcuFHefPNNGT9+vCxfvjzHFSUiIiKi3JftB1KCg4Pl7bffzhAY6lq0aCFvv/22wXsUiYiIiCh/y3ZwGBMTIyVLlnziMiVLlszyVXVERERElP9kOzj08fGRffv2PXGZ/fv3i4+PT3aLICIiIqI8lu3g8M0335Tg4GAZO3asPHr0yGDeo0ePZNy4cRIUFCRvvfVWjitJRERERHkj23kO79y5I6+88opcunRJPDw8pHbt2lKoUCG5ceOGHDx4UG7duiWlSpWSAwcOSIECBYxd73yDeQ6JiIheLsxzmE0eHh6yb98+GTlypCxfvlzWr1+v5tnZ2UmPHj1k2rRpL3VgSERERPSyyVES7IIFC8r8+fPll19+kTNnzqg3pJQrV06sra2NVUciIiIiyiPPHRxOmjRJ4uPj5auvvlIBoLW1tVSqVEktk5iYKGPGjBFnZ2cZNWqU8WpLRERERLnquR5I2bp1q3zxxRfi4eHxxCuDNjY24uHhIWPGjGGeQyIiIqIXyHMFh4sXLxZ3d3f56KOPnrrswIEDpUCBArJgwYJsV46IiIiI8tZzBYd79uyRZs2aia2t7VOXtbW1lWbNmsnu3buzXTkiIiIiylvPFRxGRERIqVKlnnn5kiVLSmRk5HNXioiIiIhM47mCQwsLC0lKSnrm5ZOSksTCItt5tomIiIgojz1X5Obj4yMnT5585uVPnjwpRYoUee5KEREREZFpPFdw+Nprr8n27dslPDz8qcuGh4fL9u3bpUGDBtmtGxERERHlsecKDgcOHChJSUny9ttvy+3bt7Nc7s6dO9KxY0dJTk6WDz/8MMeVJCIiIqK88VxJsKtXry5DhgyR7777TipUqCD9+/eXxo0bS9GiRUVE5Pr167Jt2zaZM2eO3Lp1S4YNGybVq1fPlYoTERERkfE99xtSZsyYIXZ2dvLNN9/IpEmTZNKkSQbzAYilpaWMHj1aJk6caLSKEhEREVHue+7gUNM0mTx5svTq1UsWLFgge/bskaioKBER8fb2lnr16kn37t3Fz8/P6JUlIiIiotz13MGhzs/Pj1cGiYiIiF4yTEJIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRku+Cw+vXr8t3330ngYGBUrx4cbGxsRFvb2/p0KGD7N+/P9PPxMbGyrBhw8TX11dsbW2lRIkSMmLECImLi8t0+dTUVPnhhx+kUqVKYm9vL56entK5c2e5ePFibjaNiIiIKN/Ld8HhDz/8IEOHDpWLFy9KYGCgDB8+XOrXry9r166VunXryooVKwyWj4+Pl4YNG8q3334r5cqVk6FDh0rZsmVl+vTp0qRJE3n06FGGMvr16yeDBw8WADJ48GBp0aKFrFq1SmrVqiVhYWF51VQiIiKifMfK1BV4XO3atSU4OFgaNmxoMH3nzp3StGlT+fDDD6Vt27Zia2srIiJff/21hIaGyqeffipTp05Vy48aNUqmTZsm3377rYwePVpNDwoKknnz5kmDBg1ky5YtYmNjIyIiXbp0kVatWslHH30kmzZtyoOWEhEREeU/GgCYuhLPqnnz5rJ582Y5ePCg1KxZUwBI0aJFJTY2VqKiosTR0VEtGx8fL97e3uLl5SUXLlxQ07t06SLLli2TkJAQadCggcH6GzduLMHBwXL58mUpXrz4M9UpNjZWXF1dJSYmRlxcXIzTUCIiIjKZPt/l7PNzhxijFlnL7dgj391WfhJra2sREbGySrvgGRYWJhEREVKvXj2DwFBExNHRUerVqycXL16Uq1evqunBwcFq3uOaN28uIiIhISG51QQiIiKifC3f3VbOypUrV2Tr1q1SuHBhqVSpkoiIGh/o7++f6Wf8/f1l06ZNEhYWJsWKFZP4+HiJjIyUihUriqWlZabLp19vZhISEiQhIUH9HRsbKyIiSUlJkpSUJCIiFhYWYmlpKSkpKZKamqqW1acnJydL+gu2lpaWYmFhkeV0fb06PThOTk5+punW1taSmpoqKSkpapqmaWJlZZXl9KzqzjaxTWwT28Q2sU0vf5usJSfyok256YUIDpOSkuT999+XhIQEmTZtmgrsYmJiRETE1dU108/pl1r15Z53+cxMmTJFvvrqqwzTN2/eLA4ODiIiUrx4calWrZocP35crly5opYpW7aslCtXTg4cOCC3bt1S06tWrSq+vr6yY8cOuX//vppep04d8fLyks2bNxtsCI0bNxZ7e3tZv369QR1atWolDx8+lKCgIDXNyspKWrduLbdv35a9e/eq6c7OztKkSRO5evWqhIaGqumenp5St25dCQsLk7Nnz6rpbBPbxDaxTWwT22QubRJpLTmR2206fPhwjur3NPl+zGFqaqq8//77snTpUunTp4/MmTNHzVu6dKm89957MmbMGJk4cWKGz44ZM0YmT54sq1atknbt2klERIQUKVJE6tWrJ7t27cqw/JYtWyQwMFAGDx4sM2fOzLQ+mV05LFasmNy+fVsFlzwzY5vYJraJbWKb2KYXt00DZuXsyuEvg3O3TXfv3hUPD49cG3OYr68cpqamSs+ePWXp0qXStWtX+fnnnw3m61cAs7rSp9/y1Zd73uUzY2trq56UTs/a2lqNidRZWlpmevta30medfrj683OdAsLC7GwyDjENKvpWdWdbWKbnnc628Q2ibBNWdXxeaezTaZr0/MwVZuMJd8+kJKamio9evSQRYsWSefOnWXhwoUZvtCnjRF8fEyio6OjFC5cWC5dumQQuWe1PBEREZG5yZfBoR4YLl68WN555x357bffsnyAxMfHR3bv3i3x8fEG8+Lj42X37t1SsmRJKVasmJresGFDNe9xen7Dx1PcEBEREZmLfBcc6reSFy9eLB07dpQlS5ZkGhiKpN2r7927t8TFxcmECRMM5k2YMEHi4uKkT58+BtP79u0rIiJjx46VxMRENX3Dhg0SHBwsgYGB4uvra+RWEREREb0Y8t0DKV9++aV89dVX4uTkJB9//HGm99Xbtm0rVatWFZG0K4T16tWTY8eOSWBgoFSvXl2OHDkimzdvllq1aklISIjY29sbfL5Pnz4yb948CQgIkNatW0tkZKSsWLFCnJycZO/evVKmTJlnri+TYBMREb1czD0Jdr57ICU8PFxEROLi4mTSpEmZLlOiRAkVHDo6OkpISIh8+eWXsnLlSgkKCpLChQvL8OHDZdy4cRkCQxGRX375RSpVqiRz5syRmTNnipOTk7Rr104mTZokfn5+udU0IiIionwv3105fNHwyiEREdHLxdyvHOa7MYdEREREZDoMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIRERGRwuCQiIiIiBQGh0RERESkMDgkIiIiIoXBIREREREpDA6JiIiISGFwSEREREQKg0MiIiIiUhgcEhEREZHC4JCIiIiIFAaHRERERKQwOCQiIiIihcEhERERESkMDomIiIhIYXBIRERERAqDQyIiIiJSGBwSERERkcLgkIiIiIgUBodEREREpDA4JCIiIiKFwSERERERKQwOiYiIiEhhcEhERERECoNDIiIiIlIYHBIREWViypQpUqtWLXF2dhYvLy9p27atnD171mCZCxcuSLt27cTT01NcXFykU6dOcuPGDRPVmMg4GBwSERFlIiQkRAYOHCj79u2TLVu2SFJSkgQGBkp8fLyIiMTHx0tgYKBomibbt2+X3bt3S2JiorzxxhuSmppq4toTZR+DwxfEs5zBNmrUSDRNM/jXv39/E9WYiOjFtnHjRunevbsEBARIlSpVZOHChXLlyhU5fPiwiIjs3r1bwsPDZeHChVKpUiWpVKmSLFq0SA4dOiTbt283ce2Jso/B4QviaWewuj59+khkZKT69/XXX5uoxi+PZwnM+/XrJ35+fmJvby+enp7y1ltvyZkzZ0xUYyLKDTExMSIiUqBAARERSUhIEE3TxNbWVi1jZ2cnFhYWsmvXLpPUkcgYGBy+IJ52BqtzcHAQb29v9c/FxcVENX55PEtgXqNGDVmwYIGcPn1aNm3aJAAkMDBQUlJSTFhzMoannRzcvXtXBg0aJGXLlhV7e3spXry4DB48WAUS9HJITU2VIUOGSL169aRixYoiIvLqq6+Ko6OjfPrpp/LgwQOJj4+XTz75RFJSUiQyMtLENX6xcb8zLQaHL6jHz2B1v//+uxQsWFAqVqwoo0ePlgcPHhilvGe5evbo0SMZOHCgeHh4iJOTk3To0MFoA7N37Nghb7zxhvj4+IimabJmzRqD+Tdu3JDu3buLj4+PODg4SIsWLSQsLMwoZT9LYN63b19p0KCBlChRQqpXry4TJ06Uq1evSnh4uFHqYM5M2fciTz85iIiIkIiICJk+fbqcPHlSFi5cKBs3bpRevXoZpXxT73umZur+1w0cOFBOnjwpy5cvV9M8PT3ljz/+kHXr1omTk5O4urpKdHS0VK9eXSwsXvyfV1Nue6be78zdi7/1mqHMzmBFRLp06SJLliyRoKAgGT16tPz222/StWtXo5T5LFfPhg4dKuvWrZM//vhDQkJCJCIiQtq3b2+U8uPj46VKlSoya9asDPMASNu2beXixYuydu1aOXr0qPj6+kqzZs0y3HY3hqwC8/R1XbBggZQsWVKKFStm9PLNjan7/mknBxUrVpSVK1fKG2+8IX5+ftKkSROZNGmSrFu3TpKTk3Ncvqn3PVMzdf+LiHz00Ufy999/S1BQkBQtWtRgXmBgoFy4cEFu3rwpt2/flt9++02uX78upUqVMlr5pmLKbc/U+53ZA+VITEwMRAQxMTF5Vmb//v3h6+uLq1evPnG5bdu2QURw/vx5o9fh5s2bEBGEhIQAAKKjo2FtbY0//vhDLXP69GmICPbu3WvUskUEq1evVn+fPXsWIoKTJ0+qaSkpKfD09MTcuXONWnZKSgpat26NevXqZZg3a9YsODo6QkRQtmxZo37vISEhaNOmDQoXLpyh/bpTp07hjTfegIuLCxwcHFCzZk1cvnz5pShfZ8q+14WFhUFEcOLEiSyXmTt3LgoWLJgr5ef1vpdf+h7I+/5PTU3FwIED4ePjg3Pnzj3TZ7Zt2wZN03DmzJkcl5/fmPK4n9f7Xe9vc/Yvt+V27MErhy+YJ53BPu6VV14REZHz588bvR6PXz07fPiwJCUlSbNmzdQy5cqVk+LFi8vevXuNXn56CQkJIpI2EFxnYWEhtra2Rh8UntmtJd17770nR48elZCQEClTpox06tRJHj16ZJRyn3T1RCQt11r9+vWlXLlyEhwcLMePH5exY8cafCcvcvlZycu+F8n6qn16t2/flgkTJkjfvn2NXr5I3u97+bXvRXK//wcOHChLliyRpUuXirOzs0RFRUlUVJQ8fPhQLbNgwQLZt2+fXLhwQZYsWSIdO3aUoUOHStmyZXNc/tNuqafXv39/0TRNvvvuuxyXmxVTHffzw35nbqxMXQF6NgBk0KBBsnr1agkODpaSJUs+9TOhoaEiIlK4cGGj1iWzHTUqKkpsbGzEzc3NYNlChQpJVFSUUct/nH4wGj16tPzyyy/i6Ogo3377rVy7ds2og8L1wHzHjh2ZBuaurq7i6uoq/v7+8uqrr4q7u7usXr1aOnfunOOyW7ZsKS1btsxy/pgxY6RVq1YGT6f7+fnluNz8Un5W8qrvdfrJQVaBR2xsrLRu3VoqVKggX375pdHLN8W+l1/7XiT3+3/27NkikpYmLL0FCxZI9+7dRUTk7NmzMnr0aLl7966UKFFCxowZI0OHDs1x2SL/C8x79uz5xFu1q1evln379omPj49Rys2MKY/7pt7vzBGvHL4gnnYGe+HCBZkwYYIcPnxYwsPD5a+//pJu3bpJgwYNpHLlykavS1ZXz0zB2tpaVq1aJefOnZMCBQqIg4ODBAUFScuWLY0yKByAfPTRR7J69WrZvn37MwXmAASAurKRm1JTU+Wff/6RMmXKSPPmzcXLy0teeeWVJ15leFnKz+2+T+9pV+3v378vLVq0EGdnZ1m9erVYW1sbtXyR/LfvmXrby4t9P7N/emAoIjJ16lSJioqSxMREOXfunAwbNkw0Tctx2SJpgfnEiROlXbt2WS5z/fp1GTRokPz++++5ss3pTLXt5Yf9zhwxOHxBzJ49W2JiYqRRo0ZSuHBh9W/FihUiImJjYyNbt26VwMBAKVeunAwfPlw6dOgg69atM2o9stpRvb29JTExUaKjow2Wv3Hjhnh7exu1DpmpUaOGhIaGSnR0tERGRsrGjRvlzp07RhkU/rTA/OLFizJlyhQ5fPiwXLlyRfbs2SMdO3YUe3t7adWqVY7Lf5qbN29KXFycTJ06VVq0aCGbN2+Wdu3aSfv27SUkJOSlLz83+17k2U4OYmNjJTAwUGxsbOSvv/7KlVuq+XHfM3Xfi+R+/+dnqamp8v7778uIESMkICAg18oxxbaXX/Y7c8Xbyi8IAE+cX6xYsVw9GD/ttnaNGjXE2tpatm3bJh06dBCRtNstV65ckTp16uRavR7n6uoqIiJhYWFy6NAhmTBhQo7X+bRbS3Z2drJz50757rvv5N69e1KoUCFp0KCB7NmzR7y8vHJc/tPor+l666231O2sqlWryp49e+Tnn3+Whg0bvtTl63Kj70XSTg6WLl0qa9euVScHenn29vbqB+rBgweyZMkSiY2NldjYWBFJS3ViaWmZo/Lz876XX/peJPf6Pz+bNm2aWFlZyeDBg3Nl/abc9ky935k7Bof0TJ62o7q6ukqvXr1k2LBhUqBAAXFxcZFBgwZJnTp15NVXX81x+XFxcQYP1ly6dElCQ0OlQIECUrx4cfnjjz/E09NTihcvLidOnJCPP/5Y2rZtK4GBgTku+2mBuY+Pj6xfvz7H5WRXwYIFxcrKSipUqGAwvXz58nnylobcLt+UfS/y9JODI0eOyP79+0VEpHTp0gbLXLp0SUqUKJGj8k297z1JXmx7puz/Pt/l7PNzh+S4Clk6fPiwzJw5U44cOWK029iPM+W2Z+r9ztwxOKRn8iwDs7/99luxsLCQDh06SEJCgjRv3lx++ukno5R/6NAhady4sfp72LBhIiLywQcfyMKFCyUyMlKGDRsmN27ckMKFC0u3bt1k7NixRik7v7OxsZFatWplSE577tw58fX1feHLN3XfP+3koFGjRk9dJidMve89SV5se6bu//xq586dcvPmTSlevLialpKSIsOHD5fvvvvOKAn4TbntmXq/M3ca+O3mSGxsrLi6ukpMTEyuvqouP5/BUu5Lf/WkWrVq8p///EcaN26srp6sXr1a3nnnHZk1a5Y0btxYNm7cKEOGDJHg4GCpX7/+C18+mY45931+Ou5qmiarV6+Wtm3biojInTt3MjyR3bx5c3n//felR48eRkmlY87yU99nJrdjD145JHqK/HCQeNrVk3bt2snPP/8sU6ZMkcGDB0vZsmVl5cqVRvtxNnX5ZDrse9N52i11Dw8Pg+Wtra3F29ubgSHlGINDohfAs9xC6dmzp/Ts2fOlLN+UcnJy8DJcsTfnvje1pwXmL7P8cFJuzhgc0jMx5Y7Kg4R5M+f+N+e2i7D9zzuuzhjjDHXm/t2bO+Y5JCIiIiKFVw6J8jlTn8GbunwyHfY9kXky2+Dw4MGDMm7cONmzZ48kJSVJpUqVZNiwYdKpUydTV42IiIjBOZmMWQaHQUFB0rx5c7Gzs5N3331XnJ2dZeXKlfLOO+/I1atXZfjw4aauIhEREZFJmN2Yw+TkZOnTp49YWFjIjh07ZM6cOTJjxgw5duyYlClTRj777DO5fPmyqatJREREZBJmFxxu375dLly4IF26dJGqVauq6a6urvLZZ59JYmKiLFq0yHQVJCIiIjIhswsOg4ODRUQyfe9m8+bNRUQkJCQkL6tERERElG+YXXAYFhYmIiL+/v4Z5nl7e4uTk5NahoiIiMjcmN0DKTExMSKSdhs5My4uLmqZzCQkJEhCQkKG9d29e1eSkpJERMTCwkIsLS0lJSVFUlNT1bL69OTkZIPEppaWlmJhYZHl9KSkJEl8ZJ2N1v5PdHSqpKSkqL81TRMrKytJTc18+uN1z2n5d+6kfTfp25SelVXappicnJxheuIjLUdl372bnGmbnrWfjNV2XVZttba2zrQ/Eh/lbDe9cyeJ255kb9tLKz/72x+3PW57IqbZ9kREYmOF294Luu09rZ/u3r0rIvJcSdKfh4bcWnM+FRgYKFu2bJGwsDApXbp0hvlFihSRuLi4LAPEL7/8Ur766qvcriYRERHRE129elWKFi1q9PWa3ZVD/YphVsFfbGysuLu7Z/n50aNHq/dbioikpqbK3bt3xcPDQzQtZ2d52RUbGyvFihWTq1eviouLi1mVb85tZ/nc9lg+y+e2b37li6RdMbx//774+PjkyvrNLjjUxxqGhYVJjRo1DOZFRUVJXFyc1K5dO8vP29raiq2trcE0Nzc3o9czO1xcXEy2oZq6fHNuO8vntsfyWb65lc3ysx4eZwxm90BKw4YNRURk8+bNGeZt2rTJYBkiIiIic2N2wWHTpk2lVKlSsnTpUgkNDVXTY2JiZPLkyWJjYyPdunUzXQWJiIiITMjsbitbWVnJvHnzpHnz5tKgQQOD1+ddvnxZpk+fLiVKlDB1NZ+Lra2tjBs3LsPtbnMo35zbzvK57bF8ls9t3/zKzwtm97Sy7sCBAzJu3DjZs2ePJCUlSaVKlWTYsGHyzjvvmLpqRERERCZjtsEhEREREWVkdmMOiYiIiChrDA6JiIiISGFwSEREREQKg0MiIiIiUhgcklHpLwgHkGsvBH+WMs2l/PTlpH85e14x57abqvzMyjTVc4Xsf/Psf3NtuynLT19OXnznfFqZjC4hIUHlfwKQJ++cTl9OamqqWFhYGMwTkVyth6nLNyVzbnt+Y4rvm/2ff5jz923qtpu6fGMzuyTYZHzHjh2T06dPy44dOyQpKUliY2MlLi5OqlSpIj4+PlKyZEnx9/cXf39/o+84q1atkqioKLl06ZJcv35dPDw8xMLCQlxdXaVRo0by2muvibW1tVre2MGqqco/c+aMXL58WXbu3CnW1tZy/fp1sbKyksqVK4ubm5v4+vpK6dKlxdPTM8dlZcVc226q8hMTEyU4OFgePHggJ06ckPv374uzs7OIiHh5ecnrr78upUqVUsunpqaKpmm59mPF/je//jfXtpuy/OvXr8vFixclNDRUbGxs5MKFC1KwYEEpU6aMODg4SLFixaRUqVLGT8gNohyqW7cuNE2Dn58fSpUqBS8vLzg5OcHBwQEWFhZwcXFBrVq18NVXX+HgwYNISUkBAKSmpuao3OXLl0PTNBQoUABOTk4oUqQIfHx8oGma+ufq6opevXrh6NGjRmhp/inf19cXmqbB29sbrq6usLOzU2VaW1ujWLFiePPNNzFnzhxcuHABAJCSkpLj71xnzm03VfnTp0+HhYUFrKysYG1tDRcXFzg6Ohp85xUqVMA333yDu3fvGqOpWWL/m2f/m2vbTVV+cnIynJ2dYWFhAWdnZ1haWmbYx6pWrYr+/fvjr7/+wq1btwBA/cbmBG8rU44kJSVJUFCQ1K9fX27evCkeHh5ia2sr//77r9y8eVPCw8PlwIEDsnXrVrl69apUrlxZRo4cKV26dMlx2Tdu3JBDhw5J/fr1xdLSUq5evSoODg7y6NEj2bt3r2zZskX27dsnly5dEhGR9957Tz7++GOpWbOmUc7sTFX+/fv3ZePGjVKnTh25d++eFC5cWBISEuTff/+VO3fuyNmzZ2Xv3r2ye/duSU5OlmbNmsnYsWPllVdeyXZb2XbTl3/kyBE5c+aMNG3aVOLi4uTOnTvi6OgoUVFREhISIiEhIXLkyBGJj48XR0dHGT58uPTo0UN8fX0lJSVFLC0tjfANpGH/m1//m3PbTVX+9evXZf369VKtWjVJSkqSwoULy61bt+Ts2bMSHR0tx44dk71798qpU6ekYMGC0qlTJ/n888/F29s7R+0VEV45pNyVkpKC+Ph4HDt2DFOnTkW5cuWgaRratm2Ls2fPAsj5FcQnuXbtGmbNmoWKFStC0zTUqVMH+/fvz7Xy8kP5CQkJuH37NrZt24YPP/wQHh4e0DQNI0eONOqZ5dOYY9tNXf6BAwcwfPhwuLq6QtM0dOnSBZGRkblW3pOw/82r/8257aYqPzY2FuHh4fjtt9/Qpk0bWFlZoWDBgpg7dy4ePnwIIPu/rwwOKUey2vAym/7w4UMEBwejXbt20DQNHTp0wJ07d3KlTsnJyRmmz549G8WLF4erqysWLlxo9HLzqvzMvtvU1NRMp9++fRvLli1DjRo1oGkaRo0ale1yn7VuL3PbTVl++jLS/z8lJSXDd3779m0MHToU9vb2KFeuHIKCgrKsvzGx/3OvfFP3P9ue9+Xrn3m8zMfXlZKSgosXL+Kbb75BoUKF4OTkhEWLFj13eekxOKRcoW+8me08ADB37ly4u7ujUaNGRgsQ05epn6GmLz85ORkbNmxAmTJl4OnpiY0bNxql3PxQfvqDRXJycoYz9Pv372PIkCGwtLREnz59kJSUZLSy05dvzm03Vfnp96/05cfFxWHOnDlwcXFB9erVcfHiRaOWmx7733Tlm7L/zbntpio/fcCYnJycIVA8ffo0WrRoAQsLC0yfPj3b5TA4pDyl7zyJiYmYN28eLC0tMWTIkEwDyOfxPGdlN2/eRPPmzVG6dGlcunQpR+Xml/Kzkpqaqr7z6OhojB49Gpqm4aeffjJqGc/qZWt7fi5ft2/fPpQuXRqNGjXCvXv3jL5+9n/+LF+X2/2fGXNuu6nKT78fhoeHo2PHjnB0dMTWrVuztT6msiGj2rNnj/z999+SlJQkzs7OUqxYMWndurV4eXmJiKgcaNbW1tKrVy8pUKCAHDt2LMeP/N+6dUt27dolQUFBYmtrK4GBgVK7dm1xc3NTyyQnJ4umaeLp6Snjx4+X7777Th4+fJijcvND+QcPHpSdO3cKALG3t5cSJUpIkyZNxM7OzmDgv6urq0yePFnc3d3l7t27OS5XZ85tN1X5N2/elJMnT0pQUJAULlxYGjVqJGXLljUY+J6cnCxWVlbyyiuvyKRJk2TJkiXy8OFDg34xBva/efa/ubbdlOWHhobKv//+K8nJyWJvby+lS5eW6tWri8j/8isCEF9fX1m4cKEMGzZMPUjz3HIcrpJZ089W4uPjMXHiRFhbW0PTNBQsWBDW1tawsrLCoUOHAKRdLUx/+wlIuxQfFRWVrbL1dWzatAk1a9aEpmmwt7dXj/l37NjxiZ9PTEzM0QBpU5Wvf4f37t3DxIkTVZl2dnawtbWFt7c3Ll++DAAGt3H0q7Px8fGIiIh47nLTM9e2m7J8vewtW7agatWq0DQNFhYW6jsfN27cEz9/+/Zto405ZP+bX/+z7Xlfvr6P3Lx5E+PHj4eLiws0TYOlpSVcXFxQtWpVxMbGGiz7+Oey+/vK4JByRD8IzJo1C9bW1mjfvj2OHTuG48ePo3HjxnB2dlbLXr58GatWrUJCQoLRyk9MTERAQAC8vb3x22+/4fLlyxgzZgw0TcP8+fMBpN3WmDdvngpSAeM9NWeK8vXvfPz48bC2tkaHDh2wc+dOBAUFoUyZMihVqpRa9vz589izZ0+2y3oSc2y7qcrXf1hu3rwJf39/eHt7Y9GiRdi7dy+6d+8OTdPUOL6bN29i2bJluHbtmvpsbjwlyv43r/4317absnw9sB42bBisrKzQvn17/P3331i6dCmcnZ1Rr149AGn71Llz53Du3LmcNNUAg0MyinLlyqFx48Y4f/48AGDv3r0oUqQI+vfvr5bRE+fu27cvx+XpO82CBQtgZWWFn3/+Wc0bOXIkrKysDILQgIAAjBw50mgDok1dPgAUKlQIbdq0UWkiNm/eDFdXV0yYMEEtM2XKFBQsWFD1izGYc9tNVb7+3U2cOBFOTk747bffAKT9+PTo0QPu7u4GyxYrVgyzZ8/OcbmZYf+bd/+bW9tNXf6jR4/g6OiId955R+1XK1euhLW1NRYsWKCW69+/P2rVqoXbt28bpVyLp994Jsoc/j9/+vnz5+Xy5ctSt25d8fPzExGRAwcOSEREhPTr108tf+fOHSlUqJBER0cbfD479LGLf/31l1SoUEHq168vImljMv766y9p1aqV2NjYiEjaGJFHjx7J7du3xcrKOMNsTVW+/sL13bt3y507d6RZs2ZSsGBBSU5Olr1790psbKz06tVLLR8XFyeOjo4SGxubo3LTM9e2m7J8/btbt26d1KpVSxo0aCAiIrt27ZKNGzfKO++8o5Y9f/68PHjwQCIjI3NcbmbY/+bX/+bcdlOVr3/nf/31lyQmJkrr1q3FxsZG4uPjZceOHSKSllxe9/DhQ3n48KHExcXluGwREQaHlG36ANirV6+Kra2tODo6iojIlStXZPPmzVKiRAmpWrWqWv7ChQuSkpIiAQEBRik7MTFREhMT5dGjR1K+fHkRSfuBOnv2rPTv318te/r0aUlKSlIPxeg73YtYvv7DfPnyZbGxsZFChQqJSNp3u3HjRqldu7YULlxYREQePXokV65cEUtLSylTpky2y3ycubbd1OXfvXtXEhISRESkePHiIpL25oaoqCiD7/zMmTNiaWmp3m9rjO09Pfa/+fW/ObfdVOXr3/mlS5fExsZGvbv5/PnzsnHjRmndurV6d/m9e/fk5s2bYmtrK76+vtku06B8o6yFzFrlypXFxsZGjh49KiIi165dkx07dki3bt3UMhcuXJBDhw5JsWLFpGjRogIgR08oAxAbGxupUKGChIWFSUREhMTGxsq2bdvE1dVVWrZsqZY9evSoXL16Vd56663sNzKflV+5cmVJTk6Wf//9V0REzp49KwcOHJDevXurZcLCwiQ0NFTKly8vjo6ORjtQmnPbTVU+AClQoID4+vrK+fPnRSTtFXabNm2SkiVLSpUqVdSyoaGhcvfuXWndurWISI4zAWRWF/a/efa/Obbd1OUHBATIgwcPJDw8XETS9qlz584Z3JU7e/asnDp1SmrUqCEiIikpKTkul2MOKcdSUlLQpUsX2NjYYPLkyfjkk0+gaRru37+vlpk4cSJsbGwwa9YsADDa+KOQkBBomoZOnTph7dq1KFq0qME4x7Nnz6J27drw9/c3Snn5pfzo6GjUrFkTXl5eWLFiBT788ENYWVkZLDNq1ChYWlpi1apVAJDjXJKPM9e2m7L8BQsWQNM0fPHFF1i7di1cXFwMxnodPHgQlSpVQu3atQHk7htR2P/m1//m3HZTlX/u3Dl4eXmhRo0a2L17N7p06YICBQoYLDNo0CBYWFhg7969AIzzwCWDQzKK8+fPo0KFCtA0DU5OTihatCj27duH0NBQjB07Fvb29mjSpAni4uIAGG/HSUhIwCeffAJLS0u4u7urJyWjoqKwbt06NGzYEM7Ozpg3bx4A4wdIpiw/ODhYvcfTzc0NVatWRWRkJC5cuIDx48fDzs4OzZs3N1p5jzPHtuvbranKv337Nlq2bAkLCwsUK1YMmqZh9+7duHnzJnbt2oW6devC3d0df/75JwDjb+/psf/Nq//Nue2mKl//zufPnw9N0+Ds7Aw3Nze0bNkSAHD9+nVMmDABdnZ2eOutt3JcXnoMDinH9LOU8PBw9OrVS71wPf2/Vq1aITQ0FIDxz+gSEhIwYcIElCtXTuXeKliwIDRNg42NDRYvXpzjl5A/SWJiYp6Wn5SUhMTERADA9u3b0bBhQ/U929jYwM7ODpqmoW3btuo7z60X3ptj2/X1mar8GzduoG/fvihcuDAsLCzg4uKC4sWLQ9M0WFtb47fffjP6a8qywv43r/4357YDaalq8rL8pKQkJCcn4+HDh/jpp59QokQJaJoGKysreHl5oUCBAtA0DW+//TaOHz8OwHjfuQbk4JFRMkv4//GCSUlJYmlpqQbOiqSNdThx4oTs2bNH9u/fLw4ODtKqVSt57bXXjPpmhujo6AzrO3TokGzbtk3CwsLE2tpaPD095d1335UKFSoYrdz05bu4uBi0/ciRI7J582Y5f/68WFlZiZeXl9HKT01NNSjr8brs379fgoOD5cCBA1KkSBF5/fXXpW3btuLs7JzjsjMrz5zarm/vmdXj/v37smfPHtm+fbscPHhQihYtmivf/aNHj8TOzk79HRcXJ9u2bZNt27bJ5cuXxdLSUkqUKCHvv/++VKtWzWjlZob9/z8ve/+bc9t1Dx48EAcHB/V3fHy8bN++XbZs2SKXL18WCwsLKVmypNHKxxPG41+5ckW2bdsmmzZtkuPHj0uFChWkYcOG0rt3b7G3t89x2Y9XhOi56FcAZs+ejTp16qi8hU86YzHGVQN9/bt27UK7du2wbNkynDp1CjExMQbL5fZZ84ULF9C3b198/PHHSEhIyNC23Dxzbdu2LcaMGYPTp09nWjcAKheWMc/azbntuh9//BEdO3ZU7wTOrAz9KpkxytdvS61fvx4ff/wxtm3bhqtXr2ZIIp8X74xl/5t3/5tb2/Xy//33XwwYMADTp0/PtF3R0dG5Uj4AdO7cGYsWLXri71t8fDyA3LkjxuCQnkv6bPElS5ZEuXLlcPfuXTU/ISEBR48exd9//60SoBr7QP3111+r1zZVqlQJw4cPx7p163D+/Hm1s+QG/YDx8ccfw9nZGXPnzjWYHx4ejiNHjuDOnTu5Un54eLi6jWNra4smTZpg9uzZiIyMNFguJSVF3XozFnNtu77tnj59GkWKFEG5cuUMDs6pqak4ffo0du3apQ7ixt7ee/XqBU3TUKBAAQQGBuI///kPdu/ejcjIyAxl5dYDKOx/8+t/th344IMP4ObmpsYR6q5evYrIyMhcOxnas2eP2t59fHzQs2dPbNq0KUMbk5OTc60ODA7puegb4tSpU+Hu7o4VK1aoeXfv3kWfPn3g4OAAW1tb1K1bFydPnjR6HSIjI7F9+3ZMnDgR9erVg729PRwcHPDaa69h8uTJ2L59O65fv54rg/ETEhLg5uaGbt26qXdaAsCiRYtQuXJlaJqGIkWKYObMmUhJSTHaAUtfz9mzZ/HNN9+gdu3a6uBRoEABvPvuu1izZg0ePXpklPIyY45t17f3jz/+GEWKFMH69evVvGvXruHDDz+Eh4cHChYsiHfffRc3b940eh3OnDmDP/74A/369YOfnx8sLCxQuHBhdO7cGQsWLMDRo0dz9QqGjv1vXv1vrm3Xt7fr16/DwcEB/fv3NwhEf/vtN1SqVAmWlpaoU6cONmzYYPA5Y5W/adMmfPjhh+rhF03TUL58eYwePVqN6cxNDA4pWypWrIjmzZurF60DwPDhw6FpGpo0aYIePXpA0zS88cYbuVaHR48e4eLFi1i3bh2GDh0Kf39/aJqG0qVL491338U333xjtAOHHmguWbIEjo6OBkHxhQsX4OjoCB8fH7z55ptwdnaGra2tGiCcW/bv349PPvkEvr6+6uDh5+eHDz74AEePHjVaOebcdp23tzc6d+6sXhkGQG3j9evXR9OmTaFpGj799FOjl62Ljo5GaGgo5s2bh7fffhvu7u6wsrJCnTp1MGTIECxbtsyo7y3Xsf/Nu//Nre369j516lR4eHio4A8Ajh49CltbWxQqVAh16tSBpmkoXrx4rgTGuri4OKxYsQLt27dXD/1omobXXnsNEyZMyLWyGRzSc7ty5Qp8fHzQr18/Ne2ff/5RZ1lXr14FALz++usICAhAVFSUUcvP7NZFTEwMdu3ahZYtW0LTNLi7u8PZ2dloZepnc3379oWPjw+OHDkCALh8+TLefvtteHt74++//waQ9g5pKysr9Q5OY0pJSclwRTQ5ORnz5s2Dh4cHvLy8oGkafvrpJ4N654S5tl3//JEjR+Dq6oovv/xS1WP16tWwtLTExx9/jKioKMTGxsLf3x8tWrTAgwcPclTu43V4vB2pqamIjIzEqlWrUK5cOYPgKDew/82v/8257brWrVujUqVKuHDhAgDg4sWLCAwMhK+vLzZt2gQAGDt2LBwdHREUFGT08pOTkzP81l25cgXDhw+Hra2telI5/RVdYzLOi2bJ7Dg5OcmlS5fk0aNHcuLECRk7dqx4eXnJF198oV6jVKRIEbl48WKWTxpml74+/P+D9pqmiYuLi9SrV0+WLVsmzZs3l8DAQGnRooWIpD1BbWlpmaMy9Sf2vLy8JDIyUgoUKCAiIr/88ousXLlSZs+eLYGBgSIi4ubmJnZ2dnL79m1VT2O+pUBvf2pqqgAQS0tL6dWrlxw5ckT+/fdfmTFjhrz99ttGK89c267XOyUlRaytrdX7Uvfu3Suff/65BAQEyGeffSZeXl6SlJQkfn5+cvfuXaNu7+m/u9TUVNE0TTRNE29vb2nXrp2UKlVKunXrJp07d5a6deuKiEhycrLR3iGu14H9b179b85tF0l7Qtrd3V3279+vXlv3008/yZYtW2TZsmXSqFEjEREpVaqUpKamyq1bt0TEeNu73l79+0xJSRELCwspVqyYTJgwQU6dOiUApGnTpgZvJDKqXAk56aWS2fihJk2aQNM0NG/eHCVKlICTkxMWLFig5l+4cAENGjTAq6++CiBnZ/H61YJr167h1q1bmV45TH9VoU6dOhg7dmy2y8uMXv8NGzZA0zR4e3sjMDAQmqahWbNmBst+//33sLOzw4EDB1TdciIlJUU9JZi+Pvp69XavWLEC1apVw/379406ONvc2v54nR89eoTixYvDyckJ3bp1g5+fH5ycnLB27Vq1zIkTJ1CpUiW0b98+03Vkp/wbN25k+YCV3u7k5GT4+voa7HvGxv43n/4357br9O1n1qxZ0DQNderUQceOHaFpGtq0aWOw3Pjx4+Ho6KiGV2V329M/l5CQYPBmMSDtO9G/F30c6JQpU1TS69x6CI3BIT0XfceMiopCz549UapUKRQoUAArVqwwGBD+yy+/wNHR0aivy9NfTTRz5kwcP348w06k1+uNN95A48aNc1xeZu7evYvRo0fDw8MDnp6e6NWrF44dO6bmh4eHo2nTpihVqlSOy9K/619//RW2trbo06cPVq5cmeGJUP27/eWXX+Dh4YE9e/bkuOzMmFvbU1NTVT327duHZs2awcXFBa6urli6dKnBQfmbb76BjY0NVq9ebVD/nChXrhw6d+6MVatW4cqVK5mOqbpw4QLq1auH7t2757i8p2H/m0//m3PbdZcuXUKnTp1gaWkJZ2dn9OjRA//++6+af/LkSdSuXRu1atUCkLMgLX3QV6pUKYwfPx779u3LMlXUhAkT4OPjo2555wYGh/REI0aMwO+//27w4Inuxo0biIqKUmkM0j/lFRAQgPLly6sALqdnNzExMejUqZN66MTd3R0dOnTAb7/9hrCwMNy+fRtA2muGbGxsMGbMGADZP1D9/fffWL58ucFTmelFRkbi8OHDGdY/btw4uLu749tvvwVgnKD4p59+MhiIXLlyZYwYMQLbt29XaTsuX76Mli1bws3NLcflmWvbk5OTMWHCBAQFBWVoe2pqKi5duoRLly7h2rVrahqQ9kRlQEAAqlWrlqPy07t8+TJq1aoFT09PaJqGsmXLYvjw4di+fbsa5wUAP/zwAywsLNQ4O2P8MLP/za//zbnt69evV1e6M3P06FGEhIRkuCI6dOhQuLu7Y8mSJQCMs73369dPbetOTk5o0aIFvv/+e5w5c0Ytc/bsWTRq1AglS5bMcXlPwuCQsnTgwAFomgZ7e3u88sorGDVqFDZu3JhpLjN9x3jw4AGmTJkCDw8PlQvNGLcZ9DPH48ePY9asWejQoQMKFy4MTdNQrFgxtG7dGq+88gqcnJzg6empgtnsll2rVi31JNqgQYOwa9eup+ZP2759u3p9lB6sGvOSf3BwMDp37gxbW1v1CqWKFSuiQ4cOKF++PDRNwyeffAIgZwcqc237H3/8AU3TULhwYbRt2xYzZ87E0aNHM12f/kP04MEDDBo0CAUKFMDvv/9uMC870n9n8fHx2Lp1K8aOHYu6devC3t4eVlZWqFWrFrp3747AwEA4OTmhSJEiRjsJA9j/5tj/5tx2/XWPderUwcyZMzMMY8isnitXroSmaejSpYtK/m0scXFxmD17NmrWrKkCRW9vbzRr1gwff/wxKlWqBE3TMHXqVAC5l3iewSFlKTk5GVu2bMFHH30Eb29vaJoGV1dXNG/eHFOmTMHu3bszPJ0WHx+P/fv3Y9euXYiLiwNgnB+Jxo0b4z//+Y/6++bNmwgKCsLkyZPRqlUr+Pn5wd7eHk2aNMG6detyVK7+RN7IkSNRo0YNWFpaQtM0VKpUCRMnTsSpU6ey/OzmzZufOP9Zpb9dNnz4cFy5ckXNS05OxrJly9CkSRM4OjrC1tYWRYoUwVdffaXSGmQ3KDbntt+7dw8///wzWrRoASsrK2iahlKlSqFHjx5YtGgRwsLCMnzmzp072LBhA7Zv3672hZxu748ePUKbNm2wZs0aAGnfR1hYGFasWIFBgwahevXqcHd3V2mj9Nt5xkhAzP43z/4317Y/ePAAP/zwA7p166byCdrZ2eGNN97AsmXL1InO4+7du4dff/1V3WY2xi3lH374AT/88IP63QTSbm2PHTsWpUqVUoGiq6srxo0bl+GOnbExOKRncu/ePfz5559o164dHBwcVOb2d955B7/88ovBWAxj0Xf4zZs3w9LSEjNnzsx0uYiICISHh+P27dtGT4h66dIlLF26FL1791a3tC0sLNCoUSPMnTsXERERRi3vccWLF0e1atXUldDHr+DcvXsX+/bty/CmCGMw57afO3cO06ZNQ7Vq1VS7q1atiqFDh+Kvv/7KkJ7JmK8MW7BgAWxtbTF//vwMy8THx+Ps2bP4999/cfbs2Vx9dRr73zz73xzbnpCQgAMHDmD69Olo1aqVCkD1sbVbt241+hXCx1lbW+P1119XAenj3+vJkyexceNGhIeH51pAmB6DQ3puV65cwU8//YT69eurs5ly5cqhf//+WLFihdEGyeo7wPfff4+yZcvi4MGDAP739HRu7SDpn4bUpaSkqFvaem43TdPg7OyMTp06Ye3atUYLTPV2Xbt2DX5+fvjss88yLJNZDixjlW2ubc9McnIy9u/fj6FDh6qEy46OjmjUqBHGjx+P4OBgo7d92LBhqFGjBs6dOwcg82wBuYX9n7Esc+r/9Myh7Zn9jty7dw9bt27FmDFjULduXTWUwd/fH2PGjEFoaKjR3r6ll3306FEULlwY3333ncH8lJSUXH1f+ZMwOKTn8vhB+cSJExg3bpxKSGpvb4+yZcuqRNjZcefOHYNxH9u2bYO9vb1aZ179MACZ/1jGxcVh165dmDhxIpo2bQonJyfV9l9++SXb5QDIkL6hU6dOGDFiBADk6qvxsqqTubY9M/fv38c///yDLl26wM3NDZqmoVChQmjevHmWD288id7u27dvG3x+/vz58PDwUONsTREY6OWy///H3Po/PXNoe2a/K9euXcMff/yBgQMHIiAgQI13LVOmDLZv356j8tK3LTExEXXq1MGcOXMAINOns/N6O2BwSEbx6NEjhISEoHv37qhevXq21qGfjQ0bNgzt27dHYmIi9u7di/Hjx6NKlSqYPHmyUTPwPwt9h8xqx7x58yb+/vtvjBw5EsWLF8dff/0FIHsB7MWLF1G0aFGVbf+zzz7Da6+9hldeecXgFkr6vFe5yZzbnl5m5UVFRWHhwoV49dVX8corrwB4/oO3vt7evXtj0KBBAIBdu3ZhxowZCAgIUOOpTIX9/78yH2cO/Q+YV9v1NmS1fZ0+fRpz585F165d4eDggP379xt87nnK2Lt3L+rWrYuwsDAkJiZi+vTpqFq1Kt5++22D5U111RhgcEjP4erVq7h69SoSEhKeeCavz8vuQdzW1hbvv/8+AKjko5qmwcbGBpMmTcLZs2ef+vSkMeg7ZWJiIqKionDq1KknBqfh4eHZKkf/nj7//HNYWVlhz5492Ldvn7qNo/3/O6qDg4Mz/WxuHDzMue26GzduqG35SbeR9IHh2bnVFBcXB03TMHz4cABA1apV1fZetGhRLFq0CFFRUXn+A8H+N+/+N+e237lzB9evX89y/qNHjxAaGpqtdevfU7du3eDk5IRz585h+fLl0DQNBQsWhK2tLUaOHJlhaFZmV/FzG4NDypK+MUZGRmLUqFEoWbKkeo/loEGDsHbtWly9etUot3z0A8DatWuhaZrKHRUcHIxvvvkGnTp1Uk+TlS1bFp988gmCgoKyfGOKMSQlJWH79u2oXLkyihUrBl9fXzRr1gzjxo17Yl6s7CpatCjat2+vBnz//vvvePPNN9UBU9M0tG7dGj/88IMak5NbzLHt+jZ448YNfP755wgICICjoyMaNmyIadOmYd++fbh7965Rxhvp2+ysWbNgZ2ennrBfunQpRowYgSZNmsDFxQW2trZo0qQJfvzxR5w8edLgScbcxP43r/4317anfzNJUFAQXn31VVSuXBk1atRAly5dMG/evBwNkcqKk5MT+vTpg5iYGMTGxuKzzz5Tt6311DX9+vUz6nje58XgkJ6qQ4cO0DQNTZs2xYgRI9QZvaZpqFKlCsaNG4eQkBDcuHEjRylUACAwMBBVqlQxSPoJpCVG/eeffzBmzBjUqVMHdnZ2sLa2Rp06dfD1119j//79RgsS9QPg8uXL4e3tjUKFCuHjjz9GzZo1YWFhodIJtGrVCt999x3Onj2b7bL0g5N+tUR/o0x6sbGxmDNnDmrUqKG+dx8fH3Tr1g0LFiww6lN75tx2IO1KmR6UvPrqq+jatasq19HREW3atMHcuXNx8uTJbI210unbauXKldGoUSODK28PHz7EsWPHsGDBAvUWIv3Kwrvvvotly5bl2psR2P/m2//m2HZ9e587dy68vLxQsGBBdO7cGYUKFVIpfUqXLo2+ffti1apVOQrU9O191apV0DRN5YZM7+TJkxg6dKjKvahpGqpXr44xY8Zg27ZteXr1kMEhZUrfaTZt2gQrKyv0798fQNrAZGtra3Ts2BG9e/dWedCcnJzg7++f7cvtQFrOKQsLC/Tq1SvLM9SkpCScO3cOK1aswIABA1RC0AoVKmS73KxUrlwZpUuXxq5duwAAH374IYoWLYohQ4agQoUK6ofS09MTQ4YMyVYZejt79+6NwoULq+8vOTkZSUlJGb6HCxcu4PPPP1dXUTVNU+O0jMnc2q6XtWjRIlhbW2Po0KEAgH///ReapqFjx45o1aqVwW2v5s2bP/H209OEh4dD07Qnvgc8Ojoa+/btw8yZM/HWW2+pxO9t27bNdrnPgv1vPv1vzm3XlShRAhUqVFAZMVq2bAl/f3907NgRrq6u6gGcsmXLqjeyPC89sGvRogUqVqyIixcvAkgLyhMTEzPcPt+8eTM6dOigfmM1TcvRydjzYnBImdIPGB07dkT58uXVraTvv/8e1tbW2LRpE4C0vFTe3t5o0aIFKlSokK0zSn2nmT9/vkqLM3LkSKxduxY3btzI8nNxcXEIDQ3Ft99+iz///BNAzrPF63U5duwYLC0tMWXKFDXP0dERffv2BZD2FFvFihVRoEABaNr/3s6Q3dsu7u7usLKyQp8+fbBr1y6D8V0pKSlITEzMcNa4Z88eDBgwIFvlZYZtB+rXr486derg5MmTAIBRo0bB3d1d1WvEiBFwdXXFa6+9Bj8/vxyVNXHiRGiahvr162PmzJnYt29fpk8p6qKiorBt2zaMGDECf//9NwDjvh2B/W+e/W+ubde3140bN8LS0hI//vgjgLT8mZqm4YsvvgCQdmW7YMGCanvX081k5ypefHy8CjSnTZumAsT0dXp8PH1CQgLmzZuHjh07Pnd5OcHgkDLQN/rExEQEBASga9euKuirWbMm6tSpY7BRN23aFG3btlVjM7L75FqNGjXg6Oho8DaWpk2bYsKECdixY8cTx5wYa9CyfsCYNGkSSpYsqYLgNWvWQNM0LFiwQC27ZcsW1K1bFw8ePHjqk51PqvNff/2lEq7qZ4gBAQH48ssvcfz48Qz1y62Hccy17Xpdbt26pa6O6T88vr6+aNOmjTpJiY+PR9myZTFw4EC1D2T3Vo+vry8cHR3Vu4NLliyJrl27Yt68eRmGVaSXW7eW2P/m1//m3HZ9XQMGDEBAQAD27t0LAPjxxx9hbW2NVatWqWVnzpyJtm3bIi4uTn3uebZ3/TOzZ882eNjK2toarVq1wuLFizNcCElKSso0AM6rB3QshOgxFhZpm0V4eLiIiHh7e4uzs7NERkbKxYsXpXLlylKyZEm1fNmyZSUuLk5cXFxERETTtOcu7/Lly3LkyBH55JNPZMuWLfLTTz/Jq6++Kvv27ZMvvvhC3n33Xfnggw/kxx9/lGPHjklKSorBOp63zKxYWlqKiMi9e/ckMTFRypYtKyIi69atkyJFikiFChXUsk5OTnLixAlZt26dKv956gFARER+/PFHqVSpkixevFh+/vlnadGihVy7dk2++uorqVKlijRs2FBmz54tV65cEUtLS7G2thYRkeTkZKO0WWeubdfrHRYWJjY2NlKsWDGxsrKS48ePy40bN6RatWri5eUlqamp4uDgIP7+/pKQkCDFihUTkf/tL8/T7n379smVK1fkiy++kM2bN8vIkSPF0dFRfv/9d+nfv7906tRJPvroI1m5cqVcv37dYB3PU97zYP+bX/+bc9stLCwkNTVV7t27J9bW1lK+fHkREfn777+lXLlyBtu7j4+PBAcHy6lTp1QdsvObM3v2bKlXr57Mnz9fRo0aJRUqVJANGzbIBx98IOXLl5cePXrIxo0bJT4+XqysrMTKykoASFJSklqHsX7rnipPQlB6Yaxfv14lo42KikKVKlXU5fVdu3bBw8ND5aUC0sYgdu3aFaVKlcpWefoZ1ZgxY+Dm5oaQkBAAaWdNd+/eVXkOa9WqpcZelClTBr169cLvv/+e4zEYevmXLl1Sg41TUlKwcOFCNG3aVNXlvffeg5eXl8Gts5UrV6JAgQJYvny5wbqeR1xcHCwsLNStOSDtzHD//v0YN24c6tSpowZGOzo64u2338bKlStx586dbLdZZ85tB9LadvjwYfX3mTNn4OzsjF9//RUA8Oeff8LR0REzZsxQy0RFRaFFixZ49dVXs1Wm/h1+8MEHKF68OI4cOQIgbSD+lStXsHr1avTq1UuNq3N0dMRrr72Gzz//HNu2bcPdu3ez29wM2P/m2//m2Hb9iltERIS6hZ2QkIAvv/wSrVq1ApA2zrFhw4aoVKmSwWd//fVXuLm5YceOHQbreh6XLl2CpmmYNm2amnbnzh2sXLkSPXv2VNlA9Iwgn376KQ4ePGi0t7E8LwaHpDb0devWwcfHB1u3bjWYHxsbi9TUVMTFxcHLyws1a9ZUl8AXLVqEggULonfv3gCyP+6oSJEiaN++faZjDJOSkhAZGYmNGzdi8ODB6j2v1tbWqFGjxhPHqjyrwoULY+TIkWq8061bt3D06FF1WX/SpEnQNA1z587FrVu38PDhQ7Rp0wZ2dnYq19fzSJ/OwdbWVqVzePw2QlxcHDZu3IhBgwahfPnyBqk9/vnnn5w0WTG3tuvlz5kzB5UrV1Y/UkDayY7eJn3Q/Hvvvafmz5kzB87OzuqEKbvbu7OzM3r37p3pGN34+HicOXMGv/76K9566y01IN7V1RWdOnXKVnlPwv43n/4357brfHx88PPPP6v6h4WF4cCBA0hJSUFCQgJ69OgBBwcHBAUFISUlBbGxsWjWrBk8PDyyVZ7+nY8ePRru7u4qZ+fj39+lS5cwZ84ctGvXDh4eHmpbL1myJE6cOJGDFmcPg0NSG+/rr7+O8uXL4/Tp0wAyPzuaMmUKLC0tYW9vjwYNGqicTMeOHTNY1/M4duwYNE3Dt99++9RlHz16hIsXL2LFihVo06YNunbtCiB7Byq9fQcOHMi0/PTjm4KCguDk5ARra2vUrVsXfn5+sLS0VE9qPm/5etkBAQGoV68erly5YjA9szdBREZGYsmSJXjvvffg6uqqXjGYnbNYc267vu6KFSsalP94mQ8fPlTpPEqXLo327dvD0tISRYoUyfb4WgD4+++/oWkaFi5c+MTlUlNTER0djUOHDmHGjBmoUKGCeggjp1cT2P/m2f/m2na9rqtXr4amaZg/f77B/PTtX7RoETRNQ5EiRfDmm28iICAAFhYWGDduXLbLB4CCBQuibdu2uHXrlqpTampqpusLDQ3F1KlT0aBBA9ja2uL+/fvZKjMnGBwSgLQzNktLS3zyyScGV+I2btyIHj16qFxUd+/exbhx41CzZk1UrFgRLVq0UAN5syssLAzz589X+aue9aATGxurdprsBKX6Ttm9e3cUL17c4DbLnTt38PXXX+P7779X0w4ePIiOHTvCy8sLRYsWxddff63SOWSn/JSUFMyaNQtLly596nKPu3z5MoDsD04257YD/7vFk/6JXCDt6vn48ePVdnX+/Hn06NEDvr6+KFKkCBo1aoSdO3fmqPy9e/di5syZz9WO5ORkREVF5Wh7f3x9APvfHPvfHNv+pDy6kZGRmDFjhsEr+5YuXYratWvDwsIChQoVwqRJk9RdrewOoRg6dCiWLVuW5TKZvQXl0aNH6qoh35BCeUrf4H766SdYW1ur96MCaVcPRowYAU3TMiSbvX37NiIiIoz25FReb/jpOTk5oWfPnga3OYKDg+Hi4oIxY8YA+N8tr4SEBCQlJSEiIiLP65kbr1Ayt7br6/jss8/g5uZm8Fq2uLg4dOvWDZqmZfjcuXPncPnyZaO8DQiAUYZCGAP733z635zbDqTdNtc0DSNGjDC4Mv7XX3/B1tYWc+fOBfC/gDU2Nha3bt3K09yCOlO8Q/xxVnnz2Avld3PmzJG6detKtWrV1LRLly7Jtm3bpFmzZuLm5iYpKSmiaZpomiYeHh5GLT+3nsDMCgDRNE3WrFkj8fHx0qhRI3F2dlbzDxw4IPfv35fu3bsb1M/GxkZERAoXLqzWkZM6AHjmtuvffU6Zc9v18hYtWiRNmjSRgIAANe/cuXOye/du6datm4iIJCUliaWlpVhYWIi/v3+Oy05P/y5Ngf1vnv1vrm1PTU0VCwsLWbhwoVhbW0u9evXUU+9JSUmyZ88eSUxMlE6dOhl8ztnZWZydnaVgwYI53t5TU1OfaxvO69/DTOtg6gqQaVlYWMiVK1fk2LFjUr9+ffH29lbzjh49KkePHpXevXsbLJ9nj9LnIvx/WoX58+dLhQoVJDAwUM0LDw+XDRs2SEBAgJQuXTrLH7Gcfg+appnkIGCubdfbfeDAAYmIiJDXXntNChYsqObv379fLl68KH369BERUT+OLxv2v/n1vzm3Xbdw4UKpV6+evP7662paWFiYbNiwQZo2bSouLi7qAsjjcrq9v4i/my9X79Nz0Q8Yy5YtExGRPXv2yLJly+TkyZNy/fp12b59u9jb26szqhdt434SCwsLiY+Pl7///luuXbsm06ZNk3379omISEREhOzdu1d69eolImKQY+plYM5tFxFZsGCBiIgcPnxYtmzZItevX5fr16/Ltm3bpHDhwlKvXr0cXynIz9j/5tv/5th2CwsLCQ8PlyNHjsi1a9dkwYIFcu3aNRFJuzt2/PhxFRTrv4kkzHNIaeMNmzVrBi8vL5VHsH379vDy8sJbb70FwLRjAnPLxYsXUa1aNYMUGbVr10bTpk1haWlpkFojq6fKXlTm3PZRo0ahWrVqsLOzg729PRo2bIhevXrBzc0NH330kamrlyfY/+bZ/+ba9pCQEPVWEk3T4Obmhvbt2yMwMBCOjo4GyyYnJ7+Uv3fPSwMYKpPI5cuX5fjx47Jr1y4JDg6Ws2fPSmxsrJQuXVq6desmNWvWlIoVK0qhQoXUeI2XxZ07d+T333+XX3/9VU6cOKGmt2vXTlq1aiVvvPGGeHl5qekpKSnqbRIvOnNse1xcnJw/f14OHTokISEhsnv3brl+/bokJSVJ48aN5b333pNKlSpJ6dKlxd3d3dTVzVXsf/Pqf3Nuu4jIoUOH5Ndff5WlS5fK/fv3RUTEwcFBPvroI2natKk0a9bM4Krpy7C9ZxeDQzKQmJgoFy5ckIMHD8r+/ftl27Ztcv78eXFwcJBXXnlFWrRoIfXq1ZOSJUtKoUKFTF3dHElOThYLCwuDsTVnz56VX3/9VZYsWSJRUVEiIuLl5SUtW7aUt99+W5o2bSp2dnamqrLRmHPb07t7966cOnVK9u3bJ/v27ZOQkBC5c+eOFC9eXBo3biyBgYFSvXp18fHxMXho40XH/k9jrv0vYl5tT05OFisrw+dv//nnH5kzZ46sW7dOTatSpYq0bdtW2rdvL5UqVcrrauYrDA5JRCTTcSaxsbFy7tw5OXDggAQHB8uePXskKipKXF1dpU2bNrJo0SIT1da4AKgzxPTfwY4dO2TevHnyxx9/SEJCgoiIuLq6ysaNG+WVV14xVXWNylzbntn2fv36dTlx4oTs2bNHgoOD5ejRo5KYmCjFihWTHj16yJgxY0xU29zD/v8fc+l/c257amqqpKamGgSKcXFxsnz5cpk3b54cOHBARNKeqC5fvrysXbtWihcvbqrqmhSDQ8ogs4PHzZs35d9//5UDBw7IH3/8Ia+99pp8++23eXbZPbM65YbMDh4pKSny559/ypw5cyQoKEiio6PFxcUl1+uS18yx7frh7/FbSRcvXpSjR4/K3r17Zfny5fLRRx/JmDFjXrrtPT32fxpz6X9zbrtIWltFxKBNly9flsWLF8svv/wiERERkpqamuv1yK8YHNITZbajXrx4UTw8PMTV1VXlkHoZZXbwuH//vjg7O+dpu/UDVF5+z+bY9sx+LB88eCBnzpyRsmXLiqOj40v3JGdW2P9pzKX/zb3tKSkpGYZZXL58WXx9ffN03GFycnKGq/imwuCQnklmB4+8smzZMildurTUqlXLZAeo9D+WuV0HfXzMyZMnxdPT0+RjO82x7ab8Ifz7778lICBASpYsmS9Ovtj/ecvU/W/Obc/s6nlu0rf3CxcuiJ+fX56U+axezks+ZHTGekPBs9KD0f3798t7770nw4cPl8OHD5vsoGVpaanOHnO7Dno5devWlcKFC8vIkSPVk3WmOJczx7ab4pauiMjq1avlzTfflLFjx8qtW7dMHhiKsP/zQn7qf3Nuu4WFRZ4FhiKiyvL39xcbGxuZO3euOhkzNdMfeYj+X/rxHfoBKiYmRpo0aSLHjx+XFi1ayKZNm0xVPaPK7IdOPyhomiYPHz6Uhg0biqZpMn36dJk1a5aa96Iz57anl357138I7969KxUrVpSlS5dK8+bN5dSpU6aqXq5h/6cx1/4XMe+2i4hBABgVFSXFixeX5ORkGTFihKxfv96ENUvH2IkTiZ6F/nJzIO0F5w8ePACATJPtXrt2Db/++ivKlCkDJycnXLhwIc/qmdsSExMRGRmZ5fzIyEj07dsXNjY2+Oqrr/KwZrnPXNseHx+v/p9+PwCAR48e4eTJk/jiiy/g5uaG6tWrIyYmJq+rmCfY/+bX/+bc9pSUFMTGxmY5f+/evWjcuDHs7OywePHiPKxZ5jjmkEwmLi5OJk+eLNu2bZOwsDCpWLGi1KlTRwYMGCC+vr4Zlo+JiZGvvvpKpk+fni9utz0v/P9YnqSkJNm5c6fMmjVLwsPDxdbWVooWLSpNmjSR/v37Z1g+OjpavvnmG6levbp06NDBhC3IPnNuuy4+Pl6+//572bZtm4SHh0vdunXl1Vdflc6dO2eacPjQoUMyY8YM9XrLFxn737z739zarm+/qampEhISIosWLZIbN26IjY2NFCtWTN566y31jmekG+MZHh4uY8eOlR49ekiTJk1M2QReOaSne/wMLyf01xJdunQJr7/+OjRNQ82aNdGiRQsUKFAAmqbhzJkzANLOJB//3ItM/x6nT58Od3d3ODs7o1mzZvD394emaejbty+AtCsqd+7cyXAV1Zj9kNdepLYbsyy9HSdPnkSzZs2gaRr8/f1Rs2ZN9Sqvu3fvGiz7MmL/vxj9b85tzw3Tpk2Dq6sr7OzsULVqVbi5uUHTNEycOBEAkJCQgPv375u4lpljcEh5Sn9n65AhQ+Dq6opvvvkGABAeHo569eqhQoUKatmdO3eiefPmCA8PN0ldgbSg1BiBqX7QvXr1KpydnVG/fn1cvnwZALB48WJomobt27erMsePH4+///5b/W0K5tx2Y9F/9N577z0UKFAAP/zwAwDgwIEDKFu2LBo3bgwg7Ttas2YN+vXrh+joaJPVNz32f869yP2fUy9a25OSkowSHOvb7JEjR+Dg4IBGjRohLCwMSUlJmDZtmsEFkAcPHmDq1Kk4cuSIwWfzAwaH9ERLly7FgQMHABj3rNLT0xOdO3fGnTt3AABbtmyBk5MTJk2apJZZvXo17O3tERQUZLRyn0YPXk+cOIGoqCijrVc/UE6YMAFubm5Yu3YtAODGjRvo3LkzChYsaLC8h4cH+vbta3D1NLeZc9t169atw8WLFwEY70D94MED2NnZYcCAAWps7Zo1a2BhYWEwtug///kPPD09cfLkSaOU+7zY/+bd/+bWdn17P3/+vFHXq2/v/fr1Q9GiRbFt2zYAaRdAmjdvjjJlyqhl7969C03TMHXq1HwVGALAizdwi3IdcimNjL7eQ4cOyaNHj6RChQpSoEABSU5Olh07dkh8fLz06dNHLR8WFmbwNgbkwfDY3Eqloa937969UqRIEalcubKIpLVx+/bt0rlzZ7XspUuXxMfHRxISEsTW1jbbZWa3jubW9txKpaGvd9u2bWJhYSFVq1YVe3t7iYuLk82bN4uVlZW89957avlr166Jg4OD+jsvtvf02P/m1//m3PbcSiOjb+/79+8Xf39/9Y7m06dPy86dO6Vnz55q2UuXLkmJEiUkNjY2342jz1+1IZPJizQy+nqtrKwMEpxeunRJNm3aJHXq1BFPT08REXn06JFcvHhRAEjt2rUNPp9TmR148iKVxsOHD8Xd3V1iY2OlRIkSAkD27dsnN2/eNBiMf/r0aYmIiJAqVaoY1M0YzLnt6eVFKo30B/tHjx6Js7OziIicO3dOtmzZIm+++aZaJjo6Wq5cuSI2NjYSEBAgIrmTuoX9n8Zc+1/EvNsukjdpZO7cuSMuLi7y4MED8fT0lIcPH8ru3bvl4cOH0qtXL7XcqVOn5M6dO+qEKV+9ri/vL1aSqZk6jcyDBw9QtGhR1KxZE5GRkfjzzz+haRp+++03tczBgwdRtmxZtG7dOsu65VReptLQbxlMnDgRmqZh69atAICWLVvC39/fYLlRo0ZB0zQ11jI3BuOba9tNkUrj6tWr0DQNH3zwAR48eID58+cbjLMDgKCgIPj4+KgHM3J7gD773/z635zbnpdpZPTtvXv37nB0dMSVK1cQHR2NWrVqoV69emq5uLg4DBgwADY2NgZ9k18wODRT9+/fx+jRo1G7dm24u7vjtddew8iRI7N8+CM6OhpDhw412riIH3/8EZqm4d1330XHjh1hZ2eHhw8fqvmdO3eGo6MjNmzYACDnBwz9YJiYmIht27ahffv2qF69OurUqYOOHTti9uzZmS5/7949fPbZZ/jzzz9zVL4uNDQUfn5+8Pb2xtChQ+Hg4IDp06er+Rs3bkTBggURGBgIwDhjf8y57bq4uDhMnjwZTZs2hZ+fH95//33MmjVLPS35uIMHD+Ldd981Wvn9+/eHpmkYMWIE3njjDXh6eqp5qampaN++PRwdHXNlYDr737z739zarm+/KSkp2L59Oz744AO0aNECb775JgYOHIjNmzdnWBZIy6DRtWtXNUYwp1avXg1HR0fUqVMHX375JTRNw6pVq9T8P/74A+7u7ujcuTOA/PfENoNDM5Jf0sikpKQgMTERH3/8MRwdHaFpGgoWLIiff/4Zo0aNQqNGjaBpGj766COjlZmfUmn8/vvvqt2apqFr165YuHAh+vXrBwcHB1SpUgU7duwAYJwDhrm2PT+k0tC/u2vXrqF58+awsLCApmkICAjAunXrMHnyZLRs2RKapmHo0KG5Wgf2v/n0f35ou85U235+SCMzYcIE9X1bWlriyy+/xObNmzFs2DA4ODigevXqOHr0KAAGh2RC+S2NTHR0NGbPno1WrVrB29sbVlZW0DQN3t7emDx5MhISEgDk/MfJ1Kk00l+50dd3+PBhdO3a1eCH0t7eHg0bNkRoaGiOy3y87PyURiSv2p7fUmlcvHgRn3/+OV599VU4ODioH0s3NzdMmzZN3VrKjauG7H/z6v/81vbw8PA8aXt+SSOjX1xJTU3FihUr8Morr6htXQ8UGzZsqALD/IjBoRnK6zQy+k4XERGBbdu2IS4uzmD+1atXsWnTJqxfvx7BwcFPHAuVHaZOpZGcnKzGdT7uzp07+OeffzB37lwcOXJEHaCNdaAyddtTU1Nx/vx5hIeHq2Bfd/fuXfz111/4+eefc6XtgGlSaejf+enTp3Ht2rUM8w4fPoxly5bh999/x4oVKzIsY0zsf/Ptf1O0XT8ZiYiIwLFjxwzmpaSk4MiRI1i2bBmWLFmC5cuXG73tpkojo7f78W08/fxTp05h1qxZ+Oabb7Br1y7cunXL4LP5jZWpH4ihvIH/f0VPTtLIZPcJMv2ptGnTpsmKFStkwYIF0qJFC0lJSRFLS0spWrSoFC1aVC1v7Ce2TJVKQ38ie86cOTJw4EDp0KGD9OzZU1q2bKmWKVCggLRq1crgcwCMltbAVG3X+zYkJET69u0rjRo1kjlz5hgs4+7uLm+88YbBNGO1Xf/uc5JKI7vbu/6dt27dWsqUKSMtWrSQWrVqSbly5aRAgQJSvXp1qV69ukFZuYX9b379b8q265+bOHGi/PPPP7J69WqpVq2aqlO1atWkWrVqBmUZ09PSyHzxxRdqWWOmkUlNTRVLS0v56quvZNq0afLpp59Kjx49pHTp0iKS9r2UL19eypcvn+Gzuflkdk4wODQTpkojo5d17NgxWbRokbRq1UpatGghImk78vXr12XOnDni6Ogor7zyijRs2DBX8j3pqTROnDjxTKk0evToISL/+5HLDr0dlpaWUqZMGVm9erWsXLlSXF1dpXPnztKnTx+DA6WeYiG75WXFFG3Xt5dvvvlGUlNTpV27dmpeTEyMHDp0SLZt2yZFihSRDh06iLe3t8HncsrUqTSioqKkfPnycvToUdm0aZP4+vpKgwYNpGHDhlK9enUpU6aM+kHO7R8H9r959b+p2q5vL1u3bpXff/9dOnXqpI5vFhYWEhERIX/++acUKFBAqlWrJgEBAbmy7eckjUx2f3v0/SQxMVFcXFxkypQpMmXKFKlUqZL06tVL3n//fYN3SCcmJoqVlVW+y21owARXK8mE8jqNjP7Zvn37olixYgYpDI4cOYLKlSurcRhubm746aefsl1WVvJDKo3Y2FisW7cOH374IUqXLq3aXLZsWUybNi3Xbi2Zou36565cuQIbGxuMGjXKYP5HH30EBwcH9R1069btiWkmcsKUqTTi4uJw+vRpzJ49G82bN4ejoyOsrKxQtWpVDB06FCtWrEBYWFiuvhmB/W++/Z/Xbdc/+8YbbyAgIAD79+9X80JCQlC1alXV5+XKlVPbojHlhzQy58+fx08//YQ2bdrAxcVFtbl169ZqWMeLgMGhGcrrNDIAULp0aXTu3Bn37t0DkLZzNm/eHC4uLvj8888xc+ZMuLi4qB04N8ZhmCqVxuPruXbtGhYuXIjAwECDQcrly5dX40CNLS/brm8v33zzDVxdXfHPP/+oda5btw6apqFRo0b4+++/0b59e2iaht27d+egdU9myjQiehn37t3DgQMHMHbsWJQtWxaapqFkyZKoUqUKli9fbtTyMsP+N8/+z+u2P3jwAAULFsSgQYPUb0p8fLxKmTZy5EgMGzZMPamu18PYTJFGJrN2HDp0COPHj1d9rmkaHBwc8M477yAxMTHHZeYmBodmxhRpZM6ePQtvb290794dQNpTu9999x00TcOPP/6oluvYsSMqVKiAsLAwo5X9uLxOI5P+YJvZ+n766ScULVoU1apVQ7ly5XJc3pPkddv79u2LwoULqytR+/fvR5UqVfDaa6+pwe/bt2+HlZUVZs2alePyHmfKNDIpKSmZ/lg8ePAAmzdvhoeHB8qWLQs3NzesX79efSY3sf/Nr//zuu07d+6Es7Mzxo4dCyAtn+6kSZNgaWmJX3/9VS1Xu3ZtNG7cWD2UkRvyOo1M+vyKj/el/ptbpEgR+Pr6onr16mrZ/IrBoZnKqzQyelkBAQEICAjArVu38Pvvv8Pd3R0NGzZUyzx48ABdu3aFr6+vwVXMnDJlGpn0kpOTVfmpqanq76SkJNSsWRPff/+9eiNBbua7ysu2f/vtt+oE4OTJk2jZsiUsLCwQHBysllmzZg0KFiyIOXPmAMi9g6Up0sjoMgsUFi9ejLp16xrljUPPg/1vfv2fV2lkgLTv2c3NDR06dAAAzJs3D87OzmjXrp1a5t69e2jWrBlq1KiR4/IyY8o0MvqxPbNA8erVqyhVqhQWL16MGzduAMh/uQ3TY3D4kjN1Ghnd1KlToWmaOjBVrlwZe/bsUfOPHj2KihUrom3btgCMt9OYIo2Mnk9y+fLlmY6rSR8oAkDz5s3Rs2dPox8o8jqNSPqDIpA2zkgPQtzc3GBnZ4dBgwYZLD927FhYWFjgypUrqs45Yao0IunfKqKPJctsu9P7YcmSJShdujROnDhhlPKzqhP733Dey9z/pk4jA6Qd+3r06AFN09SLFapWrWrQzp07d8LX1xcDBgwAYLy3X5kijYxe97Vr12YI9FNSUgz2ieTkZFSvXh3Tpk3LUZl5hcGhmfj444/h7e391HGEOQ2M7t27p4Kj9G7duoWpU6fi3XffxciRI/Hvv/8azB8zZgzs7e3VLZacHjD0dvz000/QNA1vv/22WveTGHP8i341tlq1avjqq69w6tSpDMtcunQJdevWRYsWLYxWvv7dBQUFwd/fH3369Hmmz2W37Mxy4unbwOHDhzF48GC89tpr+PXXXw0ePDh06BAqVKiAJk2aADDuVZtSpUqhRYsW+O6777B79+4sx3Iaq7/19egnQXXr1sXYsWOxZcsWXLt2LcM+MWPGDDg4OKjbq8bc7tj/5t3/AwYMgK+v71PHEea0zPj4+EzXcfbsWQwYMACBgYEYMGBAhvyJQ4cOhZ2dHQ4fPvzE+j0rfXv/7LPPYGlpic8++yxXhyY9Lj4+HpqmwdHREW+++SaWLFmS6Xupjx8/jgoVKqBXr14A8m9+Qx2Dw5eYvtOFhobCzc0NXbp0MZh/7do1fPHFF5g2bZrBrZ7sevToEapXr46xY8di7969uHv3boYdIDExMcOBcu/evXBxcUHLli1zXIfH/fLLLyhbtiwsLS3VFYwPP/xQHTh1ycnJRr1yl5ycjPnz5+PNN99UV09sbW3RpEkTzJo1C9evX8elS5fQr18/aJqGX375RX0up/R+b9WqFfz8/AyC4ujoaGzduhWjR4/Gjz/+aJQrxaNGjULjxo2xYMEC9faN9LI6CDZt2hReXl7qCT5jff+RkZFo3bo1fHx8oGkaSpQogW7duuHXX3/F0aNHc/Ul9/v27cOQIUNQq1YtWFtbw8XFBYGBgZgxYwaCgoJw5swZbN26FT4+PgYJeY2J/W9+/a9/d1u2bIGrq2uGE4Lr169j5syZ+O2334yS7DoyMhKBgYGYP38+zp07l+lV0ujo6AwPXWzevBnOzs54++23c1yHx33yySdwd3dXt48rV66MmTNnZniHdEJCglFPRGJiYjBixAhUq1ZNle3j44OePXti48aNSElJwdWrV9G7d29omqbeQJSfbykDDA5fanmdRubQoUMoUqQIHBwcYG9vj6ZNm+KHH37AiRMnEBMTk+nOEB0djWHDhqFevXoICQkBYPxxP3mZRkav+6lTp9TYyfPnz+Prr79G7dq11W11TdPg6uoKTdPQsGFDo42zNEUakfRjekqWLIk+ffpgzZo1GQ7K+i2WlJQUhIaGqicJM7vSnFN5mUZEX8e9e/dU4HH27Fn88ccf6NevH/z8/GBhYQEPDw/13bu5uWHBggUAYNT2s//TmFv/53UamTVr1sDKygrW1tbw8fFBjx49sGbNGly9ejXLYTxRUVF4++23Ua9ePezbt8+g3saSl2lk0r+aUrd9+3b0798fxYoVU2U7OTnB29sbmqapq+QvAgaHZiCv0sgkJibi2LFj+O2339CzZ0/4+flB0zR4eHigU6dOWLp0KS5evJjpbagbN27kypmUKdLIxMXFoWjRogYP9uj0dBZt2rRB165dMXnyZHX1xpi3lPM6jciJEycwePBgFCxYUH2n1apVw6effoqQkJAMVxBiY2Nx9erVDGNgjS0v0ojo33mPHj1QvHhxg/Fe0dHRCA0Nxfz58/Hhhx+iQYMGaNu2LYKCgoz60NfjdWH/pzGn/s/LNDL37t3D9u3b8c0336B58+Zwc3ODpmmoUKGC6vNbt25lOP4mJCQgPDw8V9IFPS4308jo5YWHh6NcuXIGT2IDab8B//3vf/H+++/j1VdfRYsWLfDFF1+oCxH5+SllHYPDl5yp0sjExMRg//79+P7779GuXTt4eXmpg/LAgQOxceNGREZGZjmI2BjyOo2MXsbvv/8OGxsbLFmyBEDalYHHy9efVM4teZVGJLMnMbds2YKOHTuqMZf67fSvv/4ax48fz36jclAnIHfSiKT/nK+vL7p27Zppeg79ihnwvytFuTnmiP1vfv1vqjQyV69exT///IPPPvsMr776Kuzs7GBtbY169erh66+/xpEjRxAbG5urt1HzOo2M3odTpkyBvb091q1bp8p6fL2Z3V5/ETA4fMnldRqZzA54UVFR2Lp1KyZMmIDGjRvDyckJFhYWqFatGsaPH4+QkBCjpq95XF6nkZk1axaKFi2qntBLf7DI7OCVG/I6jUhmwW5iYiIWL16M+vXrqzN3Dw8PdOzYEXPmzDG4HZNb8iqNSGRkJGrXrq1+mLP64den5/ZgdPb//+plLv2fl2lkUlNTM7QhKSkJZ8+exbJly/Dhhx+ifPnysLCwgIuLC958800sXLgQ//77b64FiaZII/PJJ5+gQoUKaltO/508/vT+i4bBoRkwZRqZ9FJTU3Hx4kWsXr0aw4YNQ7Vq1WBtbQ1N04x2FpuXaWT0Hf/MmTMGt+YiIiJQvnx5dXspKSkp1w8S+SGNiC4xMTHDmXJUVBSmTp2KMmXKqEBB/yHNKVOlEVmyZIn6oblx4wYaNmz4zE8GGxv737z7HzBNGhnA8KqoLi4uDkeOHMEvv/yCd999F0WLFoWmaShatKjRrqLlZRoZvX1nzpzBmTNn1PTQ0FBUqFAB9+/fN6jTy4DB4Uskv6SReRaPHj3Cv//+izlz5mDSpEkAjDsOIy/SyOj1rV27NmrXrg0AmDx5MooXLw5PT0906tQpw1VDY3+3+TGNyNOcOHECvXr1UrcYc1p2XqYR0ZfdvXs3bG1tsWbNGjx8+BDNmjVDq1atULJkSfzzzz959iPB/jfP/s8vaWSexe3bt7Fz506MGzcO48ePB2C835i8SiOjf09+fn549913AQAjRoxAjRo1UKBAgQwPfj1+EeJFxODwJZHf0sjot5JnzpyJ33///Ym3kPQzSWNducjLNDIxMTGwtLTEJ598AgB47733DB50qVGjBhYuXJjhgGWsg0d+SyNy6NAhLFmyBFu2bMHhw4cRGRmZZwfJvEgjon9PnTt3RvHixXHq1CkcO3YMrq6ualsrWbIkJk2ahMOHD6uHwHIL+/9/zKX/81samZs3b+Lw4cNYvHgxgoODnziWOv3bS4whL9LI6HUNCwuDpmmYOHEiABg8AW5hYYHOnTtn+nBXbo4tz00MDl8S+SGNjP7ZzZs3o2bNmgZBkqenJ9q2bYv//ve/6hK8seVlGhm9rO+++w52dnbqoAOk3Wr4/PPPUbFiRVVekSJF0KtXrxynkHicqdOI6N/DnTt3MH78eIP0Ef7+/ujSpQvmzJmDI0eOGO1p8MzKz+s0Io6OjujTpw/i4uKQlJSEI0eO4LfffkPfvn1RsmRJaJqGUqVKoVevXlixYgXOnDmTK0/msv/Nr//zQxoZPWDaunUrqlSpovrc1tYWZcqUwbBhw3DgwIFsr/9Zy8+LNDL69zR8+HB4eHio38oHDx5gzZo16NKlCzw8PAwuCEyePBnnzp3LYStNi8HhSyK/pJF58OABAgIC4OHhgdmzZ+P48ePw9PRUwZg+7qRPnz4qzYYxx+PlVRoZ/UepYsWKaNy4MSIiIgym67Zv344+ffqoMTd6uodPPvnEaGeUpkwjom83X331FTRNQ8uWLfHPP/+oq7L6w0eVK1fGkCFDsGLFCpw+fTrH5T5efl6kEdGX/e9//wtN07B69eoM82/evIl9+/Zh5syZaNmyJdzc3GBtbY2aNWviww8/zDCkwxjY/+bV/6ZOI5P+NX3+/v7w8PDADz/8gOXLl8POzg52dnZqO6xduzamTp2q+twYx3pTpZHx9vbG22+/nenV4Nu3b+PXX3/F66+/Dnt7e5U2p2nTphnq96JgcPgSMkUaGf0g/fPPP8PKygrff/89gLTAU9M0TJs2DX/99Zd6ctHJyQmapmHnzp1GLT8v0sjoB6dLly5B0zT0798fN2/eNDjwPX4QvH//PpYtW4YOHTqoH+/Mlnse+SmNiKenJ1q2bKkeLGrYsCGqVq2KxYsXo2/fvgZXkbt162aUMvM6jYi+jpYtW6JgwYLYsmVLlssmJSXh+vXr2LZtG8aNG4e6detC07QM77zNCfa/efc/YJo0Mvp3+MUXX8DR0RHz5s0DAJw8eRKapmH69On4z3/+o67g2draQtM0oz0dnpdpZPTtZO/evdA0DV9++WWGCyyPb0tnz57FpEmT1FX9Nm3aAHgxchumx+DwJWLKNDJ62U2bNkXdunXVmeKQIUPg4eGBXbt2AUi7ele0aFG8/vrrRvuRSC8v0sjoB9ovvvhCDYZu2rQpZsyYgaNHjyI2NvaJgWJ4eLh6QMYYVw9NlUZE/y43bNgAOzs79SNx584daJqGzz77DEDaFYu+ffuiZs2aGDBggNEffMrLNCIxMTHq+yxevDi6d++OFStW4ObNm1l+5uHDhwgLC3tiMJET7H/z6v/8kkamYsWKaNOmjXravWPHjihZsqQ69i9fvhxubm5o3LixQTodY8mLNDL699WrVy+D8YwrVqxAeHi4QaCYWXlBQUHq+3jRnmRmcPiSMkUamTt37qBChQoYMGCA2lH8/PzQqlUrREVFqeV69eqFgQMHGtTteeWHNDI+Pj4oW7YsXn/9dXVLr0CBAnj77bexaNGiDCk18iLnVV6lEUkfaH/++ecoXbo0duzYAQD48ccfYWtri5UrV6rl9+zZAysrKxw6dChH5eryOo1I+jGmmqahVatWKFSokPo+K1WqhKFDh2Lr1q25mrPzadj/uSO/9n9ep5HRywoLC4Ovr6/BduTu7o5u3bohOjpaTXv99dfVXaT0n89OmaZMI+Pg4IDy5cujatWq6nezXLlyGD58OLZu3ZphaNaLnN9Qx+DQDBkzjUz6Kxbnz59HqVKl1EH61KlTcHNzU4GgvvP069cP5cuXNwgYn5ep0sjoO/2uXbugaRrmz5+PmJgYbNy4EaNGjUKdOnXUmJMSJUqgX79+WLduHa5du5YvsuTnRhqRsWPHokSJEipVSufOneHr62swIHv37t0oUaIEFi9enKOy9HXldRoR/XsKCAhA06ZNERUVhbi4OCxduhRvvvmmGmdlY2OD1157DRMnTlTpQvIT9n/2vKj9b8w0MukDnv3798Pd3R1TpkwBkHaFzN7eXj3JqwetrVq1QqNGjbJ8UOZZmCqNjN7eFStWQNM0rFixApcvX8b8+fPxwQcfqHH9VlZWqFOnDqZMmYIDBw7g3r17DA4pf8qrNDLx8fGYOXOmWv+DBw/w9ddfY9OmTQDSkmt7eXkZXCWMiIhAmzZtEBAQ8NzlPc4UaWT0A+t7772HkiVLZvgBuHz5MlasWIH+/fsjICBAPSFdtWpVjB07Ftu2bcu1IDG304jobf/pp5+wYcMGdXtr1apV6rbRw4cP0atXL3h4eKjbTQAwZ84c2Nraqm0jO/UyVRqRx1NZTJs2LcP+cvHiRcycORN16tRR21+BAgXQtm1bfPfdd7h+/bpR6vIk7H/z6//cTiOjL3vz5k0sX75cPQV/+/ZtfPTRR9i/fz8AYNOmTbCxscHMmTPVZ8+dO4f69eujWbNmz13u4+WbIo2Mvo02btwY1apVM3i1bGJiIg4fPoxvv/0Wb731lrqK7OLigjfeeANz587FyZMnX+ggkcHhSyIv08joZelJZ7dv367mPXjwQO2QDx48wGuvvQZbW1v85z//wbFjxzBkyBBomqauWGZn580PaWRsbW3Ru3dv9cRnZu04efKkurVTokQJaJqGQoUKGa0OpkojYm9vj4EDB2Z5NeA///kPNE3D0KFDERYWhjVr1qB8+fIoXry4UcrP6zQielAyaNAgFCxYUI2fzezAn5KSgiNHjmDMmDEGt3H/+9//Zrv8rLD/zbP/8zKNjN72AQMGwNPTE6GhoWrevXv31EON169fR7FixeDn54c//vgDkZGRGDBgADRNU0/rZueKpanTyNy7dw+apmH06NHqpP7xE5uYmBhs374d48aNQ8OGDeHu7g5NS0vG/iJjcPgSyas0MvrOUaVKFTRp0sTgCkFMTAzOnj2r/l66dCksLS0NgtXWrVvj9u3bOS7fVGlkgoKC4OXlhRUrVmSYl9kYoAcPHmDfvn34/PPPMWvWLADGeRAlL9OIPJ7GY9myZWpeUlIS7t69q34ooqOj0b59e3UmrWka3N3dVdtz8qpCU6YRqV+/Pt588001Rvdp2+6DBw+wZcsW9OnTJ9MUUjnF/jecbw79b6o0MkWKFEH79u0NxqfHxsaqB3ESExMxfvx4g+O8pml44403jJIVw1RpZBYvXgxPT09s2LABgOF3mFm2gIiICKxduxYffPCBKptJsMlk8jKNjL4znD9/Xq07vRUrVqB8+fI4ePCgmhYeHo4pU6bg3XffxU8//ZSjsYb5IY1MUlIS9u/f/9QficwOHnrgaMzbDXmRRuTxWyzpz8wvXbqEVq1aYfTo0Wrav//+i2nTpqFPnz4YNGgQ9u7dq7bTFzGNSGpqKs6dO4fz589nex25hf1v6GXu/7xMI6P3086dO6Fp/3uTlG7+/PmoXbu2wZt5goKC0KtXLzRt2hTff/99pk8SP2/5pkwjExUVhQ0bNqgr70861j/uRXs6+XEMDl8CeZlGRt/gR4wYgQIFCqgnFIG0M8nu3bvDzs4uw/JZ1Tm75eeXNDLPytg5rkyRRkRP4/Hpp58aXA1Yt24dNE3DjBkzDOoGwKhPbsbGxpo8jUh+wf437/7PizQy6cd4lixZEkePHlXzbt68iTZt2qBIkSIAcieH34uYRiazO0cvKgaHL4m8TCMDAIULF8Y777yj0kkAaQPifX190aNHDwCGwZexd878mEYmr+R1GpHHx3im/6F9+PAhPvnkE1hZWalxXY/nk8zpd59f04iYCvvfPPvfFGlkgLQxpv379zdYd/D/tXfeYVEdaxj/ZmnSFGmCBbFir7FEE+yxJJaQa+81Rq81URNsqDF6FTUmsRvbVVGMBfXGhg2wYeyKoqKIIGBBFEQQdt/7BzknLKzGwO6ehZnf8+R5Ijtn3/nOnDPn2zkz75w4gZIlS2Lq1KkADNvXK2kjU5SeG/8UFQkKLVlZWfL/P3/+nNLT0ykzM5MYY3Tz5k169uwZVahQgUqVKkVqtZqIiMzNzenYsWOUmJhIRESMsffWA0BEROHh4ZSQkED169cnV1dX+fMzZ85QTEwMffnll0REpFL9dXmZmZnlP9Bc+qdOnaL4+HiaMmUK/fbbb7R582aaMmUKeXl50f/+9z8aNGgQtWvXjiZMmED79++nuLg4rXNV2FGpVKRSqQgAMcYoKyuL6tWrR0TZ58bNzY1q164tlwdAZcuWpYiIiALprlu3jipVqkR2dnby3x49ekSHDh2iNm3akK2tLanVarl+Ev/kGnsXa9asodatW9O6desoKiqKtmzZQp07d6Y7d+7Qjz/+SJ06daJPPvmE5s6dSxcvXtSLpiki2p+/9gcgn9OkpCR6+fIl2djYEBHRiRMnKD09napWrUolSpQgAKTRaMjCwoJ27dpFr1+/JiLt/vh99IiI9uzZQ+np6eTt7U0lSpSQPwsJCaHk5GQaMWIEEWn37/rs6wMDA+n169fk5+dHQUFBtGrVKhowYABlZmbS4sWLqUOHDtStWzdauHAhnT9/npKTkwusnRN9XbuFEoWSUkEBUcJGRvoVNXLkSPlXe+vWrbFlyxZER0ejV69eKF++PADdWxkVFFO2kTE0StuIxMXFyZ5ebdu2xbx58xAaGoply5aBMSZP2Na36bgp24gYE9H+/LW/kjYyUvmOHTvK53PkyJE4f/48EhMT0bZtW3zwwQcAsi1y9D3CxruNjCkgksNChtI2MkD26+MJEyagWrVqcmdsYWGBYsWKySalOdH3A8MUbGSUQikbkUePHuHnn39G//79Ubp0aTDG4O7ujrJly8La2hoXLlyQTZBzUtB2NzUbEaUR7c9P+yttIwNkz1308fHRcrxwc3ODhYUFZs2apVVWXxsNSPBsI2MKiOSwkKG0jUzuuhw8eBCDBw/WmgPk7u6OcePGaXVm+sJUbGSMidI2IhJqtRqJiYk4deoU/P390bFjR7i5uYExhjp16mDo0KHYvHkzbty4ofe5X6ZgI6IUov35bn+lbWSA7B8HK1asQMuWLWFpaSlrNG3aFMuWLZNHNSX0MRjAs42MKcCAP1/uC0we/DnHKCoqiqpUqULz58+nyZMny58HBgaSn58fbdq0iT744AMiInrw4AEFBATQlStXyNvbm3x8fKhUqVIFqoc0fzHn3JLnz59TUFAQ7dq1i44cOUIZGRlERFSjRg0aOHAg9erVi8qVK1cgXaLseZYXL16kihUrkrOzs3xOcqPRaIgxpvWZRqPRmqtVWJDq3bp1a0pOTqbt27dTlSpViIgoOjqaRo8eTXXr1qUffviBiIgiIiJo//79dPfuXSpWrBj16dOHGjVqRGZmZnqLPTMzk+Lj4ykiIoLCwsLo8OHDdPXqVWKMUZ06dahNmzbUoEEDatGiBbm4uBRICwDdvXuXVCoVVapUqcB1L2yI9uev/aV2CgsLI29vb1q5cqU8v4+IaP369bRy5UrasWMHeXh4EFH23MPNmzdTdHQ0de3alT7//HMqW7ZsgdpcmkOa8/hr167Rjh07KCgoiK5duyb/vXPnzjR48GDq2rWrXq6xxMREunTpEjVu3JgcHR3f2dfnnk+pVqv1MveRa5TJSQX5QWkbmbfVKfdo3b1797Bo0SI0bdpU/oXp6empN81/SlGwFlDaRuRdvHr1CpGRkdixYwe++uorVK1aVfZXy+l3Kcg/ov35QmkbmdxoNBqdz5MTJ05g9OjRsq8iYwwdOnQweH10UZRsZEwBkRwWQpS2kdHF2zqPCxcuYOTIkVi5ciUAFNoFIUqhtI3Iu9D13cnJybh8+TJWrlyJIUOGGEzbVDGUn6Vo/8KBvttfaRsZXeiaW5iamoqdO3fKCxRz1ys/iAUlymKu9Mil4P3An0PqStnI/B2MMVlHo9EQADIzM6MGDRrQihUr5HIWFhYGr4spoeuVR354XxuR3G1tyNfnur67RIkSVLduXapduzb17duXiKjQvcbPD1I766OtdSHa37TRZ/tL50spG5m/I2eMarWaGGNka2tLPj4+5OPjI39mbl6w9KIwXTP4c3ZeYarz3yF8DgsZ69evJyKi7777jtq0aUNbt26lBw8e0KlTp8jDw4OaNGlCmZmZitZRpVLJnZRarSaNRqNofYwJAPr3v/9NwcHBRPTPvMV0oVKp6NGjR3Tt2jWKjIyk6dOn0/z58yksLIwOHjxI169fp/Hjx8vaMJEpxCqVSk5kilKHmRvJP3Pjxo00adIkioyMJCLS2zUv2t+0MWT7r169moiI/v3vf9NXX31Ff/zxBz158oRCQkKoYcOG5OHhIc/tVgozMzO5jytKXrLvQrrHXr58ST/88APdvn07z/z2IoEi45WCfKO0jYzgL3Rt07djxw65XXJaMBQEpWxEBNq863x6eHiAMYbu3bu/czu3/CDa3zQwdvsraSMj0EZXX79gwQLZDWDdunVKVc1giNXKhRSNRkNHjhyh7du30++//06PHz8mIiI3Nzfq0aMHDR48mOrWratwLfkg5+u8mJgYWr16NW3dupWio6Pp+++/J19f3wK/WtNoNPT06VO6e/cunTlzho4ePUqXLl2ixMREql27NjVq1IhatWpF9evXp4oVK1KxYsX0FZ7gb0hLS6Nt27ZRaGgoBQQEUKNGjei///0veXp66k1DtL/pYuj2j4+Pp6CgINq+fTudPn1afjPUpEkT6t+/P/Xu3ZtKliwply9oXyN4+znM2deHhYXR8uXLadeuXWRnZ0e//vorde3atcicf5EcFjKUtJHhGemGf/bsGcXHx9O9e/eoePHi1KRJE7K2ts5T/vXr1zRr1ixau3YthYSEUI0aNfRWF2PaiAiy2/7x48d0+/ZtcnZ2JisrKypZsqTWA5koew7gb7/9RhMnTqQRI0bQ8uXLDVIf0f7GRan2V9JGhmek+aMpKSmUlJRE9+7do9KlS5OXl5fO8rdv36bJkyfTuXPn6MqVK1prAQo1Co1YCvRAYbCRKUocPXoUjRs3ljd/t7Gxga2tLU6cOKGz/LNnz7Bjxw6D1knYiBgG6b568uQJZsyYARcXFzDGYGlpiZo1a2L27NlvPTYyMhJXrlwxSj1F+xsGU2r/wmAjU5RQq9U4ceIEPvzwQxQvXhxmZmZwdXWFl5eX1jZ+Oblz5w42bNhg5JoaFjFyWATAnxut516pdvHiRVqzZg3Vq1ePvvzyS8rMzORutXBBkV4jhIWFUf/+/SktLY1GjRpFZcuWJX9/f4qMjKRnz55RyZIlKT4+nmJjY6lu3bpkaWlp0HpBx6uLFy9eUHR0NJ09e5bCw8Pp119/NWgdcqOvldmmpN+rVy8KDAykrl27UrNmzSgiIoI2btxIX3/9NS1cuJAyMjIoJSWFnJ2dDVYHXYj2N46+qbV/TicIiVevXtGhQ4do2bJlNHToUOrTpw9lZWUVeLUwb0h9/f79+2n06NH0+vVrGjRoEJmZmdHq1aspLS2NXr9+TUREcXFx9OrVK6pSpUrRHalVMjMV6B9TmpistCGpPvSlc/nZZ5+hXLly8l7Wz549Q9OmTdGyZUu57Llz59CgQQPcvHkTgHILAtRqNVJSUoxWh6LQzrq+7+zZszAzM8Po0aPlz+bNmwfGGG7fvg0ASE9PR7Vq1eDr62tS951o/4J/n6m3v643R0qg0WgUXfykL33pO5o0aYIqVarg7NmzALL3rq5UqRL69u0rl923bx8+/fRT2Wu4KC7+ElY2RQwlbWSgZxsXU9A3MzOjV69e0cmTJ6lbt27UuHFjIiI6cOAAnTt3TvaVJMretuzWrVsUHR1NRMpZeBjLRsTQNi5K6ePPlykbN24kNzc36t27NxFlb0V59OhRqlatmrx9nZWVFWVlZVFCQoLJWDaJ9uej/ZWwkYHCNi6G0sefI/EPHjygCxcuUN++feW+PigoiO7du6fV158/f57Onj1LsbGxRFRE7ZoUTEwFhRhj2biYgn5YWBhsbW3h5+cHIHurwpEjR2ptVQgAs2bNgqurK8LDw/PUsbCjlI2LkvodOnRAnTp18PTpUwDA/v37YW1tLW9VBwBXrlyBl5cXRowY8bf1LMyI9ue3/ZW2cTGGvvS9gYGBsLS0xJo1awBkb1XYvXt3lCpVSqv82LFj4eHhgfv37+epY1FBjBwK8oX0S0lyyCciaty4Mfn6+pKnpyfNnz+fFi5cSERkEGNeY+q7u7uTtbU1JSYmEhHRzZs36fDhw9StWze5THJyMkVERJC1tTU1atRIq45FgbfFkpaWRjNnzqSBAwfS3r17ycfHRx45Lez65cuXp/j4eHl3itOnT1N6ejoNGjRILnPjxg16+PAheXt7E5HxRs2MjWh/fto/d3+pq6/98MMPqVevXpSWlkaTJk2ioKAgnccWFn3pe0uXLk0ajUa2C7p69SodP36c+vXrJ5d99OgRRUREkIuLi2xXVJT6ehklM1NB4UD6VfT06VNcu3YNQUFBOH78ONLS0nSWT0tLw5QpU+Dk5IQbN24Uev03b96gTZs2cHBwwN27dxEYGAjGmNYq5d27d8PV1RVfffUVgILvK2oqaDQaJCQkICQkBBEREYiKikJSUlKecnFxcVi6dCnMzMzkc1DY9desWQPGGObMmYM//vgD9evXR6tWreTPX79+je7du8PW1hbp6el60TQ1RPvz1f7SHMaXL18iOjoax44dw61bt95aPjIyEl27doWbm5s8/64w6z9+/BiVK1dGnTp1kJqaihUrVoAxJs8jB4DNmzfDzs4Oc+bMAVB0+vrciORQ8F4obeOilL7UWR06dAglSpRA8eLFUbNmTTg7O8tlrl69imrVqsHNzQ0RERFaxxVGlLbxUFpfIiMjA02bNoW5uTlatWoFMzMz/PjjjwCAlJQUzJw5E7a2thg7diwAmMyClIKi9PlXWl+Cx/ZX2sZFSX3puvvll1/AGEO1atVQs2ZNeHl5Acj+oXLr1i1UrlwZ5cqVQ0JCgvz3oohIDgVvRersQkND4enpCVdXV/j5+WHt2rXy9n3Sr/hHjx4hPDwcGRkZRUY/N7/++qv8oGKMoU6dOmjcuDFUKhWcnZ2xefNmg2n/HYZIRnv27AnGGLp164YFCxZg0KBBYIzhm2++AZC9UvPJkycGq4OS+tJowP379/HFF1/A3t4ejDF8+OGH6NSpE7y8vMAYQ58+fXDv3j296/9TRPvz3f4FRepr9+3bBw8PD7i4uGDSpEn49ttv4ejoqDW/OjY2FpGRkXpNipTWz8nr168xdepUre1pu3Tpgnbt2sHCwgJubm7YsmULgKKbGAIiOSyyFAUbF6X1c9ZB4uHDh5g1axZq1aoFV1dX1KlTB/3790doaKhcxpgdRlGz8VBaXxexsbFYtWoV+vXrh5o1a6JEiRKoWbMmvv/+e8UTAtH+hm//+Ph4uf1r1Kghvz0whfYvKjYuSuvnrgeQPSjRu3dvODs7w9raGh4eHvjiiy8QFhams3xRQySHRQSNRoPRo0fjyJEjev3e1NRU2NvbY8yYMUhNTQWQPeeCMYaAgAC53Pr162FjY4MDBw4Uen2pwz9//jyWLl2KS5cuISsrK09HEBUVJb9aMDbSyMa6devwzTffyPNyCvqwkh6yX331FcqUKSN3hNHR0Wjbti2qV6+uVb5y5coYMmSI3laGK6UvnbfExET4+/vj0qVLeeYSxcfHIyYmBikpKXjx4oX8dyUeEKL99asvtWFqaipWrVqF7du35ymTmJiIhIQEpKSkIDk5Oc+xhkbSefHiBebOnYvIyEi9fm90dDTMzc3h5+cn/2358uVgjCEkJEQuP2PGDDg5OeHChQuFXl+63oKCghAVFaWzzJs3b3Dp0iXEx8cX6WQwN2K1ciEEOVZkSf+/c+dOWr58OX3yySfk6+srr7YqKJcvXyaNRkNOTk5ka2tLKSkpFBYWRlZWVtSrVy+5XExMDNnZ2ZGTk1OeOhY2fck7bMqUKfTdd9+RtbU1mZmZySvSEhISSK1WU8WKFalUqVIFiO790BWLtPuBn58fLVq0iKZPn05PnjwpsLej5JF5//59cnJyomrVqhER0fXr1+nUqVM0bNgwuezVq1fJzMyMzM3NycLCQi9trpS+1LYrVqygSZMmUa9evWjEiBG0adMmunPnDhERubm5Ubly5cjOzo7s7e3llamGXqko2t/w+lJbBgQE0Lfffkv79u0jIu1z7+rqSjY2NmRnZyevYCYybPvrimnVqlU0bdo0atq0Ka1fv15vWuHh4aRSqahMmTLEGKMnT57Q8ePHydXVlT7++GO5XHJyMtna2pKjo+Nb61hY9M3MzCg1NZW6detG1atXp65du9K2bdvo2bNnchkLCwuqV68eubm5EWOsSKxIfx9EclgI4cnGxdj6arWaiIj27dtH4eHh9N1338kbrgOgwMBAGjhwIFWvXp3GjRtHjx49KkB07wePNh7G1pfO8cCBA2n27NlkZ2dHGzZsoMGDB1PPnj1pwoQJFBQURAkJCXJ5Y5m8i/Y3vL6UlP78889Uo0YNmjVrFhFln/uoqCgaP348tWjRgr7++ms6f/58vnX+jtz9NQ82Lkrrv379mmbOnEkdOnSg0NBQ6tOnD1WvXp2GDRtGx44do7S0NK3ySm4RaVSMPVQp+GfwbuNibP2c8xzr1auHq1evyp/t2LEDFhYWsLOzkycrT506Nd9afwfPNh5K62dlZeHcuXOYMGECypcvD8YYHBwc0L59e8yaNQuHDh0yqMk7INrfWPrSq/gzZ86AMYYlS5bIn2k0GjRp0gSMMZQuXRpWVlbw9PR868pZfdSDVxsXpfWTk5MRHByMadOmoXnz5rC0tARjDLVr18asWbP09hq9sCCSw0IArzYuSum/evUK7u7uGDBggJyER0ZGokqVKqhZsybOnj2L169fo3bt2mjYsKHW/KOCImw8TEM/Jy9fvsTmzZtRv359MMZgbm4OOzs7nYlaQRHtb3x96Zz7+vqibNmy8jzH1NRUeRHM1KlTcePGDXz33XdgjOH3338vYIS668GrjYuS+rqeF7Gxsdi6dStatGghDwTk/uFQ1BHJoYkibFyU07916xYqVaqE7t27A8h+UA0ZMgQWFhYIDQ2V22bAgAHw8PB460TmgsCzjYeS+m9b/alWq7Fr1y5UrlwZw4YNg6+vr151cyPa3/j6Y8aMgYODA65fvw4g+02Bo6MjhgwZgmfPngEAQkJC4OjoiPnz5xdYT0LYuCinr9Fo5POv0WjyXEdqtRp9+vRBkyZN0KVLF3kUU+lV6sZAJIcmirBxUUZfSg7atm0LGxsbzJw5E/379wdjDGPGjJHLJSUloVevXqhWrVqB9HJiijYeStu4GFpful5evXqV5zyq1eo811Pz5s3h7++f53h9YIrtr7SNizH1N23aBMYYJk6ciC1btqB8+fJwcnLSciTYsmULbGxs5Dcz+rwGebdxUVo/MzNTbk+NRiNPV9iwYQNq164tu2XwgkgOTRgebVyU0s/KytLq6NetW6c1t3DQoEGIiYmRPz948CDc3d0xatQo+Xh91AHgz8ZFSX3pnE+ePBmTJk3CkSNH8OjRI60ykkZKSgq6deuGLl26GCQx4tXGxVT0nz59in/9618wNzcHYwxlypTB1q1b5XKpqakYMmQI7O3t9TbPkmcbF6X0Jd3w8HB069YNp06d0vpcGk2U7vEtW7agXLlyWoMQPCCSQxMmLCwMtra28PPzA5A992nkyJFarxkAYNasWXB1dUV4eDgA/XSYrVu3ho2NTZ4J0fHx8UbZJspY+idPnnzr6/jnz58jMDBQ5yvrPn36wMnJSX4Fpc9koUOHDqhTpw6ePn0KANi/fz+sra2xaNEiucyVK1fg5eWFESNGAChYm0vH+vn5gTEGLy8vDB48GBs3bpRHqnKX12e8Suunp6fDw8MDjDG4uLigc+fOWLJkCU6fPq01r/DMmTOoUqWKPN3AUCNnxm5/6X5as2YNSpYsiX79+un8zpcvX+Zbw5T0Y2NjcenSJZ3fd+vWLaxevRpbt27Ns6Bvx44dKFu2LAYPHqxV74IgxRgYGAhLS0usWbMGQPbijO7du6NUqVJa5ceOHQsPDw/cv39f6/j8kpKSIs9p7dKlCwICAuTrThf6vuaV1J8+fbr8479MmTKYMmWKzv5m4sSJsLS0LPLb5eVGJIcmTFRUFJydneUViOfOnUPFihXRq1cvuczz58/Rs2dPlC9fvsB6Ume3d+9erRVhQPYNsX37dnzyySeoUqUKxo4di7i4uAJrKqn/4MEDMMZQqVIljBs3Ls8vyLfx448/gjGm9dpPn3z55ZdwcXGRR898fX3BGJPnPQHA1q1bYWNjIyeu+nhQ3b9/H3PmzEHDhg3BGINKpUL9+vUxfvx47NmzB/Hx8QXWMFX9x48fIzAwEH379oWrqysYY/D09ESfPn0wd+5cLFu2TF6QEhwcDMBwi2CUav86deqgefPmWqM4d+/exbhx4+Dt7Y3hw4fLP0ANgbH0P//8c5QqVUq+rqKiovD69et3HvP48WNUr14d1atXx+XLlwHoN1EJCwuDubk5li9fDgAIDg6Gs7Mzvv76a7lMXFwc2rZti4YNG+pN9/Hjx/Dz80OXLl1QsmRJ+QfS0KFDcfToUbx69UpvWqamn5KSgj179mDQoEEoW7as1nz2BQsWYPfu3Rg9ejQsLS3Rrl07AHzMNZQQyaEJw5uNi7H1b9++jY4dO6J06dLydzZs2FDn7gNqtRpqtRqvXr3C4cOHMXfuXNy9e1f+TJ8obSOitI2LsfSldluxYgUePnwIIPvV4c2bN7Fy5Uq0b99eXgzBGIOrq6u8IMSQ8GTjYmx9jUaD+fPno0WLFrC3t4eVlRWaNGmCmTNnIjg4GDExMXmuLbVajbNnz2Lo0KEICgrKt/a74N3GxVj60jPm8uXL2Lp1q/yj4O7du1i+fDk6d+4MBwcHMMZgZmYGxhiaN28uT/EwxlszU0EkhyYKjzYuSuk/ffoUa9euxSeffAJra2swxmBtbY127dphzZo1WqtCgb8SRUOhtI1IToxp42JMfenV0J07d8AYk19l5vw8OTkZ169fx65du7BkyRL88ccfWisbDQVPNi5K6GdkZCAmJgYHDhzAlClTUK9ePZibm8PBwQEdO3bE0qVLce7cOZ2vN/WZkEnwbONibH3pXmnTpg0aN26sNQAhcfHiRaxYsQJLly7Ftm3btEbseUIkh4UAnmxcjKmfexEKkD2a+MMPP+CDDz6Qz7ezszN69+6NoKAgg9oFAXzbuBhLX61Wy+d52bJlKF++PA4fPgxA+ZEB3mxclNZ/9eoVbt26he3bt2PYsGGoUKECVCoVypQpg759+2Ljxo24du0anj9/rjfNt8GbjYtS+qmpqfD09MSoUaPk/lzXs4B3RHJoovBm46Kkfs5OKidnzpzBuHHjUKlSJbnD9vLywqBBg/KMJhqCom7jorQ+AJw4cQKenp7ywiddI0NKPTR4sHFRSl/XtfP8+XNcvHgRq1atwueffw4XFxeYmZmhZs2aGDFihDzX1BDwbuNiaP2cO4o9f/4cjRo1wrhx4wDkvY509T08IpJDE4JXGxel9YG/Ots3b97k6SzevHmDvXv3om/fvnB0dARjTG9z/Xi2cTGmvnTMmjVrMGHCBGRlZSExMRFr166Fo6MjDh48qFPX0PBs42JK+jlRq9VISEhAaGgo5s2bh7Zt24IxJq8W18d559XGRSl9X19fXLx4EUD2/M5p06ahX79+8vNV6TcGpohIDk0QXmxclNZ/G+96+CQmJuLo0aMA9JuU8mrjYix96TxXrVoVH3/8MTQaDUaNGgVra2s4OTmhUqVK2LNnT545rG971a0veLNxUVpfF+9a3JSRkYEHDx5g3759SElJAaC/Hw4827gYQ18qu379etllIDo6Gowx2Nvbw9LSEr/88ovWMVlZWSJR/BORHJoIvNm4KK0P/NV5ZGZm4sSJE+jXrx+6deuGiRMnYu3atbhw4YLRXPF5tnExtL7Uzjdv3tQaAfrvf/+LTp06wd3dXV4RPWzYMAQEBCAyMtIgiw/eBi82Lkrr5+Tly5dYvHgxBg4cCB8fHyxdulTeecQY8GzjYgx9qY9o2bIlGjVqhHv37iEyMhLe3t6oXLkyLCwswBhDkyZNsGnTpjwDFca8/00RkRyaCLzZuCitD/yVNPj7+8PBwQGWlpaoVauWvHKxTp06GD16NLZu3YqIiAiD2rdI8GLjYkx96d4aN24cXFxccPLkSfnvycnJuHDhApYsWQJvb29YWlqiWLFiaNKkCXx9ffH7778jOjpaDxHnhTcbF6X1gb+uhatXr6Jdu3ZgjKFUqVKwtbWVr7VWrVph27ZtRksOeLFxUUL/6dOnYIxh2rRpWsnf5cuXMX/+fLRu3RpWVlayE0KPHj0MOre0MCGSQxOCRxsXpfSl77h//z7s7e1Rv3593LlzB0lJSXB0dEStWrVQp04dqFQqlC1bFh07dsTYsWO1fMcMTVG1cVFK38XFBQMHDpT/nfNhk5WVhSdPnuDkyZOYMmUKatSoAZVKBXt7e3Tq1Mkgi1J4tHFRWl9q8969e8Pe3h4LFiwAAEyYMAF2dnaoXr26nCQWK1YMPj4+8r72+oY3Gxdj6kvnduHChbCyspLnFOfuO968eYOQkBBMmTJF7mel/6TpQ7wikkMTgicbF1PQB7IfzE5OTti5cycA4OjRo2CMYdWqVbh9+za+/PJLMMbg5OQExlieuVD6ghcbF2PrS+f01KlTYIyhTZs2Oqcw5Dz3b968wcOHD7F371588cUXGDlypMHqB/Br46KUfnJyMszNzfHVV1/J84urVauGjh074t69ewgKCkLZsmXlKQ4dOnQAoN9FSrzauBhLX2qrunXrwtnZGatXr0Z0dLQ8b1QXz58/x+7duzF8+HC4u7vLU3l4XbkskkMTgVcbF6X1GzZsiC5duiA2NhYA0L17d1SoUAFXrlwBALx48QKffvopRo8e/d7zIt8HYeNiHH3p3Er3Us65TbNmzcqT7OdO0tPS0uRRfEOdC95sXJTSl66FTZs2wdHREQEBAQCA69evgzGG//znP3LZ77//Hu7u7vjpp5/khRKG+nFQ1G1cjK0vHR8ZGSkv+JGmikydOhWHDh3SOYUhJ9LcU14TQ0Akh4rDs42LUvpSpxATE4NatWph6NChcj3c3NzQu3dvrdGKAQMGoFWrVu/81flP4cnGRWl9jUYDKysrDB48GIsWLUKDBg20EsVWrVph5cqVeRb9GPrBwKuNi1L60rGTJk1CnTp15B+A06ZNQ8mSJXHkyBG57O3bt1GmTBl55yl9wKuNi7H1c84xtre3h6+vL4YOHYpKlSpBpVLJc7j9/f1x6tQpJCYmcp0Evg2RHCqEsHFRXv/hw4do0qQJpk+fDgA4d+4cnJ2dtUZqs7KyMH78eFSuXFnvWwXyYuOilL507ObNm8EYw549e+TPIiMj8d1336FMmTJykmhvb4+ePXti165dWqMd+kLYuCij/+LFC3nlb1ZWFubOnQsrKyt5QUSPHj1Qrlw5rYVHhw8fhqurK37++ed8674NHmxclNYHAGdnZ/Tr1w8pKSlITU1FaGgoFi9ejC5duqBUqVLy+e/VqxfWrl2Ly5cvG2UnnMKCSA4VQNi4GFdf0rpx4waqVq2Kc+fOydrbtm2T/33//n14enqiQ4cOstn0jRs3ULduXXh7ewPQfzJe1G1clNTPaWXxwQcfyKvgc393WFgYBg4cKC+IktpgyJAhek0ShY2LcfWl9h8/fjxWrFghJ4hxcXHYvXs3gOxr4dtvvwVjDA8ePJCPnTFjBlQqlbxoQti4/DOU0pf6G2nu+Nq1a/OUiYuLw8GDBzFjxgx4e3ujePHiMDMzQ61atdC/f3+cPXs2X9pFDZEcKoCwcTGuvtRRTZgwAcWLF5etTHTRqlUr+XX+/Pnz0bBhQ5ibmyMwMFDruwoCTzYuSus/efIEjDH4+vpqPXByLozJ+bcdO3agY8eO8giHvhA2LsroS1Ymvr6+b7139+3bJ89pnj17Nr799luoVCo0b95cL3UA+LRxUUJfeq7861//goeHh/yDStdOY1lZWbhz5w4CAwMxduxY2WP2+PHjWt/FKyI5VBBebVyU0ndxcUGvXr20Xtneu3cP+/fvl+ebPXr0CL1795Y7anNzc/j5+en9dQtvNi5K6V+9ehWffvrpW60sJP3c7fvkyRN5npS+EhXebVyMqS9dMwsWLIC9vb3WvNaMjAwcPHhQbt+UlBR8/fXXWvNQ27VrJ7/R0ce9z5ONi9L6ANC3b1/MmTNH58i/rukqr169wsWLF3VO5eIVkRwqAO82LsbUlzqBY8eO6XzNsHDhQjDGtEZsHz58iMOHD+P48eN6M6AF+LNxUVo/J+97vLFsPXi1cTGWvlTey8sL7dq109pR6vr166hZsyb69OmjdUxcXBw2btyI3bt3a+1hri94sXFRWh/Ivr/ex9WC99HBdyGSQwXh1cbFmPrS+e3evTsqVaokjxYA2QtcunbtCg8PDwDG7Sh4sHFRWt8U4dXGxZj6uee55rSAAoCNGzeCMYb//e9/ALJHEg11ffFm46K0fkEQiaI2IjlUGN5sXJTQ12g0sLa21lqFDABHjhxB8eLF4efnB+CvBE2fnQTvNi5K65sqvNm4GFM/5zxXd3d3ecEZkD1yOWDAAJQsWVJnHfV93fFm46K0vkB/iOTQhODJxsUY+lKns2XLFjDG5JVoUqI5f/58MMZkH0lDjB7wauOitH5hgAcbFyX13dzcULVqVZw5c0b+2/nz51G6dGkMHz4cgP7mk+ZE2Lgory8oOCI5VACebFyU1geA2bNny0mIh4cHevfuje+//x4NGjTABx98oFVWnzsE8GzjorS+KcODjYvS+jdu3NC6pj7++GOsWrUKc+bMAWNMXtxmyFXZvNm4KK0v0C8iOVQAnmxclNYHgGfPniE8PBzz5s1D06ZN5Z0oGGPw9vbG77//nsdCCCj4q03ebVyU1jcleLRxUVr/1KlTmDt3Lj7++GM5ITMzM4O1tTUOHz6cx4xcn683lbBxkZJopWxclNYX6BeRHBoZXm1clNYHsjukhIQEBAcHY9KkSahbt65sH9S0aVNMmTIF//vf//Q+isOrjYvS+qYETzYuSuvn5vXr1zhy5AjGjx+PevXqyUlZqVKlMGrUKISFhektGRE2LsrrC/SDSA6NDE82Lkrrv4vXr1/j/v372LFjB/r37y+/4nVyckKHDh0wZ86cAiUmwsbFdPRNBV5sXJTWl9DlC5uYmIht27Zh4MCBKFeunJyQ1a5dG5MmTSrwD0Nh46K8vkA/iORQIXiwcVFa/3159eoVIiIisHLlSnTu3Fmeo1SQegkbF4EETzYuSuu/DV1ziaXdST777DPZDULasz4/CBuXwqsvyItIDo0IbzYupqD/T5B2JwkLC5MfEgUZtRM2LoUHQyYoPNm4KK3/d7zNPubcuXNYuXKlXCY/CBsXQVHCnARGw8LCgoiIGGNka2tLpUuXJiKi8+fPU1ZWFjk7O5ODgwMREanVanJ0dKTTp0+TWq3+x1oAiDFGAQEBlJ6eTsnJyXTu3DmqWbMm2dnZ0YULFyglJYWGDBlCREQqlUqumz5QWj8/MMaoRIkS1Lx5c/lvZmZm//h7pNi3bt1Kb968oa5du1LXrl1p4sSJdPv2bdqwYQNt2rSJTpw4QSdOnKBJkyZRp06dqGfPntShQweytrbWZ1gCHUht9PDhQypXrpx8/emTly9fkrm5OdnY2JBarSYHBweKjIykqlWrEhHR7du3yc7OjqpUqSIfEx0dTZmZmXT06FGqXr26XM/3Rbpet2/fTsWLFyeNRiN/dufOHQoODqZ//etfRESUlZVF5ubZjwB93XdK6/8djDG5jlLdVCoVNW7cmBo3blygukjfu2XLFuratSt99913xBijS5cu0fnz5+nEiRN07tw5Onz4MJUuXZo+/vhjatu2LX3wwQdUvnx5ue8XGAaNRkMqlYpevXpFmZmZ5ODg8I/vL65QMjMt6vBs42Iq+kogbFxMG+kaS0hIgJOTE/r27Su3kT5Hz3i0cTEF/fxQ0JFjYeNi+kj35ciRI9GpUyeEh4crXCPTRiSHBoRnGxdT0VcKYeNiOuS8d3JeV5KNCmMMX3zxBZ49e6Y3TZ5tXExB39gIGxfTQTp/uqYQZGVloWzZsmCMwc7OTn6+CvIikkMjwLONi6noGxth42Ja6BoZSklJwaVLlzB58mQ4OjqiY8eOeeZ/5leHRxsXU9Q3NsLGRVmk+y/3ec7578uXL2PevHlwdHSEi4sL9u7da9Q6FhYYACj9arsogj/nMhw/fpzatGlDa9asoaFDh8qf+/v70+TJk+nWrVvyHKTY2Fi6efMmWVhYUPHixalBgwYGqVt6ejolJCTQH3/8QXv37qXg4GBKSEggR0dHatSoETVv3py+/fZbeT5QUdM3Jmq1+r3mLarVamKMGWTuG69cunSJ9uzZQ6mpqVS2bFlyc3OjFi1ayHN9JZ4/f067du2iyZMn09WrV6lMmTL51pTu+2rVqpGHhwdt2LBB1rtx4wb17NmT6tatS1u2bJGPefToEQUHB1Px4sWpdevWVLx48XzrS+ScTyfx+PFjOn78OB04cICOHTtGsbGxRERUq1Yt6tChA33zzTfk6upaYG1T0FeKtLQ0SktLI2dn53eWg5jrZhCeP39OwcHBdPXqVUpLS6MWLVpQ586ddZ7rJ0+e0PDhw6l69eo0b948BWpr4iiamhZheLZxKUz6gqJHRkYGFi1aBDMzMzDG4OzsDEtLS1hYWMjzfHWNJBZkJyKAbxsXU9Y3dUQ/VzCke+jo0aPw9vYGY0yeypDzeaLrmNjY2Dz72guyEcmhAeHZxqWw6fPsJah07PrSl+6jdevWwdLSEp07d8aVK1dw+vRptG3bFhYWFnLZ+/fvY+/evbK2Pq41nm1cCoO+oGhTv359uLq6ynuVS4shly9fDgBITU3Fli1btO5LwdsRyaEBkDq4LVu2gDEmr0ST/Arnz58PxhhiYmIAKP9w5hGpjaQ24AmlYzeUfs7dKZo3by4bjV+6dAnly5fX2sJw9+7dYIwhNDRUr3UAADc3N1StWhVnzpyR/3b+/HmULl0aw4cPB6D8fFJdu4cUdX1JLzU1VfaT5SUZVTp2Q+lLPza2b98OlUqFn376Sf5sxowZYIxp+QQ3aNAAkyZNKvBbAh4QE5wMgDS/ISoqioiINm/eTD169KARI0bQ3LlzKTAwkBo2bEjlypUjoux5ORqNhiCmfxoF/DnfJzExkerXr0/9+vWj27dvy58VZZSO3VD60vfGxMTQ3bt3qVmzZlSjRg0iIjpz5gzFxMTQl19+KZd/+vQpubi4UHJycoG1cxIREUEvXrygO3fuULNmzcjb25tWr15NBw8epPj4eJo4caJedAqKSqWS5wPm9CIsyvpSG3/zzTfUt29fOn/+PDfz/pSO3VD60nfs3r2bqlatSt7e3kREdP36ddqzZw+1bduW7OzsiCh7PuKrV68oISGhSMxnNzjK5KR8wKuNi6mhhJWJqaB07MbWDwkJgaOjI2bOnAkge06Rj48PSpcurVVO2ts8KioqT90KCm82LqYGz1YmSseuhH5mZiZ8fHxQoUIFWXPz5s1gjGHnzp1yubCwMFSoUAHjx48HIN7Y/R0iOTQCvNm4mCLGsjIxRZSO3Zj6L1++hLOzM3r16gUg+3VuyZIlMXnyZLlMdHQ02rRpg1q1ahVY713wZuNiCvBsZaJ07ErqT5s2DYwx3LlzBy9evMCQIUNga2urVWbZsmVafpIiOXw3wsrGyPBk46I0SliZmApKx66UPgAaOnQobdq0ifz8/Cg1NZUWLFhAjx49Ijc3NyIiWrRoEU2dOpXmzp1LX3/9tdY2bvqAVxsXU4BnKxOlY1dSX7KM6969O40aNYqGDh1KLVq0oF9//ZWIiB48eEB9+vShR48e0f379wusxwUKJ6dcI2xcDINSViamgNKxK60PALdv30bVqlXl3Wbc3d1x6tQpnD9/Hv7+/rC3t8dHH31klIn5wsbF8PBsZaJ07ErrS2RlZWH69OnyK2tpC0O1Wo39+/ejdevWsLa2xi+//CKXF7wbkRyaALzbuBQVK5P8UFRiV1pfIiMjAwAQHx+PUaNGoXz58mCMwdLSUmu+7x9//AHAeD/ChI2L4eHZykTp2JXWB7LtoqZOnQp3d3f5XndycgJjDMWKFcPq1avlfc7Fvfb3iOSQQ4SViWGtTN6njkUtdqX0Jd3c+1cDwPPnz3H8+HH8+OOPGD58OPr27Yvdu3fjyZMnBdYtCDzauPBsZVJUY1daH8ie15ubyMhILFiwAD179sSQIUMwffp0hIeH602TF4SVDWdAWJkQkeGsTN6njkUtdiX1pWPXr19PNWrUoJMnT8pz/RwcHKhly5Y0btw4Wr16NW3evJm6dev2t1ubGRoebVwMpV8YrEyKauxK6Uv3zPnz56lfv360d+9eio2NpfT0dCIiqlq1Kk2aNIm2bdtGK1asoNmzZ1OjRo0KpMkjIjks4qjVavn/pYc4UfaNlZSURFu3biVfX19KSkoyyMPCWPrSsQ8ePCArKyuysbEhIqK4uDgKDg4md3d3+vDDD+Xy9+/fJ7VaLScxhoCX2JXSB0AqlYpevHhBixYtIgBUuXJl+fOMjAyKjIykkJAQioiIICLtNjEF9L2XtpSIANCK1czMjNRqNe3fv58OHDhArVu3ph07duhVWwl9lUpFWVlZ9ObNG8rIyKBatWoREdGVK1fo2rVrNHLkSLlsREQEvXnzhpycnIgxpvfEnLfYldKX7pnQ0FDatWsXde/endq3b09+fn4UEhJCiYmJlJGRQURElpaWBYiQc4w0QilQEGFlooyVCcBX7MbWl14lL126FMWLF8emTZvkz1JSUjBu3DioVCqUKFECbdq00ekpWpQQVibKWZnwHLtS+rGxsdi/fz+mTp2Kpk2bolixYrCwsMBHH30Ef39/XLhwAc+fPxfzC/OJSA6LKBcvXsSMGTMwceJELF68GFu3bkVcXFyecklJSVi7di0cHR0RGxtb6PU1Gg0GDx4MMzMzzJkzB1OmTAFjTCv58vf3h5WVFfz9/QHofyszXmM3tr7U6Tdo0AAtW7bEvXv35M+mTp0KxhiaNWuGQYMGgTGGVq1a5VurMJCUlITAwEBMmzYNEydORFBQ0FsfjI8fP0bXrl3x7bffFgn9Y8eOgTGGHj164MSJE6hUqRKGDBkifx4dHY1mzZrB09NTL3q54Tl2pfUzMzMRGRmJgIAAfPXVV6hQoQIYY3Bzc0OPHj3wyy+/aM19FLwfIjksYihtJaK0PqCclQnPsSulHx8fj3Llymk9jA4fPgx7e3sMGjQI9+7dg1qtRvv27VG9enWdSXphRmkrEaX1JZSwMuE5dlPQ12UT9fLlS5w8eRIdO3aUDectLS2FdU0+EMmhwggrk8JvZcJz7Errx8XFwcvLC23btkVGRgYuXryIZs2awd3dXWtF+PDhw+Hp6VnkkkMJpa1ElNYHlLMy4Tl2U9HP/RxNTk5Gw4YNMXr0aBw8eBCA8Db8p4jk0MgIK5OiZ2XCa+xK6ed+uHTq1AmMMXTr1g2VK1eGtbU1li1bJn8eHR2Ntm3bon79+gXWzg/CysQw+oByViY8x66UvnTOnzx58tb7R6PRyP1RmzZt4OfnpxdtHhHJoRGRLuiEhAQ4OTmhb9++8iT5gjwspGMfPHgAW1tbTJo0Sf5s+fLlYIzh9OnT8t/WrFkDV1dX7Nu3r8DaSutLD97Vq1ejevXqOHHiRL6/Kz/wHLux9XP/8pfOXXx8PAYMGIBKlSrB0dER//3vf5GWliaX27BhA+zt7Q02x/TvkOo9cuRIdOrUSW8PS+n89+rVC9WqVcPly5cBANeuXUOdOnXQrl07uWxSUhK8vLzQv39/vY3cKKUv6YaHh+OLL75AUFAQHj58qDNZkUaz9Q2vsSupL527OnXqoGbNmli6dCnu37+vs35Pnz5F165d0axZM73WgSfEBr4GRK1Wk5mZGRG93cokPT2dVq9eTY6OjvnWEVYm2VYmjLE8VibR0dGUmJhIzs7OVKNGDa020Qe8xq6E/g8//EDVq1enhg0bkqenp3zu3dzcaN68eZSWlkaurq5UvHhx+ZgXL17QkiVLyM3NjQYPHkxEpNf2z4l0jwMgjUYj6+S0MomLi6OQkBBat24dde/evUB6f2clMnPmTLmsLiuRgtroKKWf28pk3759VLlyZercuTN16tSJvLy8yMHBgaysrAxmZcJr7ErqM8YoNTWVKlasSBcuXKDx48fTlClTqG3bttS3b19q06YNOTg4kEqlokOHDtHhw4dlOx199/tcoGRmygPCyoQPKxPeYje2/rVr18AYQ4kSJdCyZUvMnj0bwcHBOu+bnK9x//Of/8DFxUWe/2WonUmElQmfVia8xm5sfemcpaenAwCuXr2KhQsX4tNPP0XJkiXlBYCfffYZ2rRpA3t7e5QsWRK3b9/WOl7w/ojk0AAIKxP+rEx4i93Y+i9evMDevXsxbtw4VKxYEYwxuLq6olu3bli6dClOnz6dZ/XnmzdvcOrUKRw6dAgvX77Uqre+EVYmfFqZ8By7EvpffPEFFi9eLP/7+fPnCA4OxrRp09CqVStUqFABxYsXR8OGDeWpO4L8IZJDPSKsTPi2MuEtdiX009PTcf/+fQQEBKBnz55wdnYGYwwVK1bE4MGDsWHDBly/fl3nHCh9I6xMlNU3BSsTXmM3pr50fEhICBhjWLp0KYC8/Wd8fDwuX76Mx48fy32sIP+I5FAPCCsT5fRNxcqEx9iV1k9NTcX169fxyy+/oE2bNrC2toaFhQXq1auHiRMnYvfu3YiMjDT4DgnCykR5fSWtTHiO3Zj6y5YtQ6VKlWSnBylBFa+MDYNIDvWAsDLhz8qE19iV1teFWq1GUlISzpw5Az8/P9SvXx8qlQoODg6oW7cuHjx4oHdNYWXCt5UJb7Erof/ixQvcuXNH/nd4eDgcHBwQHR0t6wkMh0gOC4iwMuHTyoS32JXWf18yMzMRHx+PQ4cOYcSIEWjUqJFBdISVCX9WJjzHbkx9qa+ZNm0aevfujczMTISHh+OHH35A/fr1MX36dLEdnhEQyaGeCAkJgaOjI2bOnAkge06Rj48PSpcurVXO19cXTk5OiIqKApD/5FA6Ljk5GV5eXqhWrZrWopb09HTcunULJ0+elEcy9flqQQn92bNnY8eOHbh3716e8xYXFyevGMxJcnIy6tatiypVquDZs2dadc8vPMautH5ukpKSEBER8c4yr1+/RlJSEgDDrFbMzMyEj48PKlSoILfv5s2bwRjDzp075XJhYWGoUKECxo8fr7e6LFq0SJ62UKNGDUyZMgUnT55EQkKCvKLTkCiln5KSgm7duqFcuXLya9vPPvsMAQEBePz4sTwyu2XLFlhbW2PChAkA9Nv38Rq7sfVtbGzg4+MDIPtHGGNMdkBYvHgxEhIS9BKXQDciOdQTwsqEHysT3mJXWj/nsU+fPsX06dNRuXJlFCtWDC4uLhg+fDgOHDiA1NTUfH9/fhFWJvxZmfAWuzH1pXN2+PBhMMawbt06AMDx48cxc+ZMdOzYEa6urmCMwcPDAxMmTMDZs2fF1ngGQCSHekJYmfBjZcJb7Err56R3797yOR0zZgzs7e3lRQCVK1fGtGnTcP78eaPtgiKsTPi1MuEtdmPoS4lk165dUb169TxvBx49eoSgoCBMmDBBnlvMGEP9+vWxYMEC3Lx5M/8BCrQQyaEeEVYm/FiZ8Bi7Uvo5rSzMzc21zrmVlRW6du2KPn36yEmiSqVCmTJl5JXhhkRYmRhe39SsTHiKXQn9rKwsWFpaol+/fvIPS13cvXsXmzZtwuDBg1GlShUwxlCmTJkCaQv+QiSHekJYmfBlZcJz7MbWlx5QAwcORKVKleQFXqtXr4ZKpcKBAwcAADt27EDp0qXRunVrlC1bVq8r89+FsDLh18qEl9iNoS/dGwEBAWCMoU6dOpg1axZ+//33d/afmZmZuHz5Mn744Qds3LhR/pugYIjkMJ8IKxNl9HVhLCsTnmNXSj/ntnT16tVD9+7d5UUmH330ERo2bKg1p7N9+/bw8fGRHyaGSo6FlYnh9U3FyoTH2JXQl+71jz76CMWKFUPZsmXlKSydO3eGv78/wsLC5MVtuhD2NvpDJIf5RFiZ8GNlwnPspqIfFRWFGjVqYMyYMQCyF6a4uLhg6NChWqMXY8aM0Zq6oU+ElQmfViY8xa60fkJCAhhj+OabbxAaGoolS5agQ4cOKFmyJFQqFSpWrIj+/ftjzZo1uHz5sjwiL9A/IjnMB8LKhC8rE55jV1L/4MGDcpL35MkTeHt7w9fXF0B2gubs7IxRo0bJ5VNSUjB06FB4enoa9HWbsDLhz8qEt9iNrS/dr3PnzoWdnZ28sj89PR0xMTE4dOgQpk2bJq8Ot7S0RN26dTF27Fjs2LEDN2/eFKOGekYkh/lAWJnwY2XCc+xK6EsdfHBwMCpWrIhjx45pfZ6cnAy1Wo2XL1+ibNmyqF+/Ph49egQge86hq6sr+vTpA8Bw8+yElQk/ViY8xa6kvqTt6emJTp06yfd0TtLS0nD79m389ttvGD16NKpXrw4zMzPY29ujWbNmWm9tBAVHJIf5QFiZ8GNlwnPsSuhLD9MuXbrA09MTV69elT/LfQ6lETwbGxt8+OGHYIzBxcVFnudnaO8zYWXCj5UJD7ErrR8REQHGmDwNR0JX35mcnIzLly9j/fr1+Oyzz2R/YbHPsv4QyWE+EVYmfFmZ8Bq7EvqZmZmwtLTE2LFjtc7n0aNH0bNnT9y6dQsA8OzZM0yfPh01atRAhQoV8Omnn+Lo0aP51n1fhJUJH1YmPMaupH50dDR+/PFH+U3b+/yg1mg0iI+Px9OnTwGI5FCfiOQwnwgrE36tTHiK3Zj60vlav349VCqV1hZ0WVlZmDlzZh5jeeCvxN0Qewn/HcLKpOhbmfAQu9L6CxculOshbGhMA5Ec/gOElYnx9U3VykSqW1GO3dj6kl7Tpk3RtGlTrRWhUVFRaNKkCZo3bw4gO+FSq9VGSY6ElQlfViY8xq6k/vHjx2FmZobAwMB8HS8wDCI5fA+ElYny+qZgZfIuinLsxtSXrCymTp2qdd/t3LkTKpUKGzZsAGD4+YQ5EVYmfFiZ8By7UvpqtRpv3rzBgAEDYGdnh4ULF8orv3VN3xAYD5EcvgfCykQZfVO0MuEldmPrS/fGzz//DMYYWrZsicDAQMTExCA5ORljxoyBhYWF1mimMRFWJvxYmfAWu9L6QLYDQMuWLWFlZYUpU6bkeZ5qNBqRKBoZkRz+DcLKhG8rE55iV1ofAJYsWYImTZrAwcEBjDF4enqie/fuKF26ND777LMCfXd+EFYmfFiZiNiVt5HJysrCyJEjwRhD1apVsXLlSkRFReUpl/MNnDH7At4QyeHfIKxMjKtvqlYmPMSutL7Ew4cP5YdQ7dq1YWNjAzMzM1SoUAHz589HWFhYnpEFQyOsTIq2lQnPsZuCvtRfxMbGYvLkyTA3N4e5uTlat24Nf39/BAcHa200kRNDGs/zjEgO3xNhZcKflQmPsSutn5ubN29i9erV6NevHzw9PeWdSVq1aoWffvoJERERBttCS1iZ8GVlwnPsSuvn5urVqxgxYoQ8Wuvq6oqGDRuiffv2mDBhAhYsWIBvvvkGY8aMwZAhQ7B9+3a9aQuyEclhPhBWJnxYmfAUu9L6OSeiZ2Zm5nnQpKenIzw8HP7+/vj000/lH2d2dnbyq2xDIaxMiraVCc+xm4J+TnLeVy9fvkRoaCgWL16Mzz//HG5ubjA3N4etrS2srKxQsmRJeHl5wcfHJ88CMUHBEclhARBWJkXXyoS32JXUP378OMzNzbUS0pz1yn0unz9/jiNHjmDGjBmoUaMGhg0bJtdLHwgrE76sTHiOXWn99yEzM1P+4RgZGYkzZ87g2bNnuHPnjphzaEBEcqgnhJVJ0bQy4Sl2JfT/iZWFrmT0wYMHenutJaxM+LUy4TF2pfX1QWGoY2FFJIf/EGFlUvStTHiLXWl94J9bWRjS/FpYmRhXH1DOyoTn2E1FX2CaiOTwbxBWJsbTB5SzMuE5dlPRz4+VhTTSUVCElQmfViY8x25K+gLTQySH74mwMinaViY8x24K+kpbWQgrE36tTHiO3RT0BaYJAwAS6EStVpOZmRmFhoZS69atacCAAfTrr78SEVGxYsWoQ4cOZGtrSwEBAURExBgjd3d3CgoKooYNG+ZLMysri2xtbWnkyJH0n//8h4oVK0ZERMeOHaPVq1fTrFmzyMvLi5KSkujHH3+knTt30uvXr6lGjRo0ceJEat26dYFiVlo/N7du3aLQ0FAKCQmhsLAwevDgAVlYWFDz5s3p888/p7Zt21L58uXJxsamwFo8x25q+teuXaNffvmF9uzZQ0+ePCEXFxcqV64cOTs7U40aNcjd3Z0eP35MGRkZ9OrVK2rfvj316NGjQJpqtZpsbGyoR48etHz5crK3t9dZLioqik6fPk3Hjx+nsLAwunv3LpUuXZpiY2Pzrf3gwQPas2cPdezYkapWrUoAiDH2zmMAUGJiIllYWJCTkxNpNBpSqVSFUj83xmx/nmM3RX2BiaBcXmr6CCsT4+kraWXCc+ymoJ8TJawshJUJv1YmPMduavoC00Ikh29BWJkYT19pKxOeY1da/30wtJWFsDLh08qE59gLi75AOURy+DcIKxM+rEx4jF1pfX2gr1WUwsqELysTnmMvKvoCwyKSQx0IKxN+rEx4jt1U9JVEWJkor68kPMcuELwLkRz+ibAyUV5fSSsTnmM3BX2lEFYmpqGvJDzHLhC8DZEc/omwMlFW3xTsFHiNXWl9pRFWJvy2P8+xCwTvQljZ5EBYmZiOvtJ2CjzHrrS+sRFWJqalryQ8xy4QaKFsbmoaCCsTfq1MeI7d1PSVQFiZmI6+kvAcu0CgCzFySCT/6v/www+JiCggIIA8PT2JiOjevXvUp08fMjc3p7CwMFKr1fKogj5GCk6cOEHt2rWj7du3k4+PT556Mca0RjGSk5Ppjz/+oNDQUPrtt9+oWbNmtGbNGtmwu7Dpvw9ZWVkEgCwsLOj27duUlJREVatWpaSkJKpQoUK+dXmOvbDoG5ITJ05Q27ZtKSAggLp37650dXSi9PlXWl9JeI5dIBAjh38irEz4sjLhOfaiol8QhJVJ4ddXEp5jF/AB98mhsDJRXl9JeI5dIKxMBAKBQBfcJ4cSwsqETysTgO/YBcLKRCAQCHIj5hzmIDY2ls6dO0fHjx+nkJAQioqKooyMDPLw8KAvv/ySPvroI6pduzYVL15cr7rSnLW4uDj66aefaPHixURE5O3tTZ06daJ69epRtWrVqEyZMnmOzcjIICsrq0KtryQ8xy4Q7S8QCAS6EMnhWxBWJnzaOfAcu0C0v0AgEBCJ5JD8/f1p3LhxZGFhQVlZWaRSqbRWIWdkZNDVq1cpJCSEjh8/TufOnaNnz56Rra0tdenShbZs2aK3uiD7NT+pVCpKSUmhK1eu0Pnz5yk0NJTOnDlDT58+JSsrK8rKyiIbGxtydXWlmjVr0qJFi+TV1YVZX0l4jl0g2l8gEAhywnVyKKxMTF9fSXiOXSDaXyAQ8Au3yaFGoyG1Wk3Dhg2jXbt20cyZM+URxNyJoa7dD2JiYsjW1lbvuyP8E/AeOzkUZX0l4Tl2gWh/gUBQtOE2OZSIi4ujfv360ZkzZ2j8+PHk6+urteBEOj3vShQFAoFAIBAIigrcJ4dE2SsW//3vf9OqVauoSpUqNHHiRGrXrh1VrFhRq1xWVhaZm5sTEVFmZiZZWFgoUV2BQCAQCAQCg8F9ciisLAQCgUAgEAj+gvvkMDfCykIgEAgEAgHPiOTwT4SVhUAgEAgEAoFIDt+JsLIQCAQCgUDAGyI5zCfCykIgEAgEAkFRRHiy5BORGAoEAoFAICiKiORQIBAIBAKBQCAjkkOBQCAQCAQCgYxIDgUCgUAgEAgEMiI5FAgEAoFAIBDIiORQIBAIBAKBQCAjkkOBQCAQCAQCgYxIDgUCgUAgEAgEMiI5FAgEAoFAIBDIiORQIBAIBAKBQCAjkkOBQCAQCAQCgcz/AexeJmBNMLKNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/docs/source/example_grover_factors.ipynb b/docs/source/example_grover_factors.ipynb index 5809def1..bfeabb2c 100644 --- a/docs/source/example_grover_factors.ipynb +++ b/docs/source/example_grover_factors.ipynb @@ -9,17 +9,17 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from typing import Tuple\n", - "from qlasskit import qlassf, Qint2\n", + "from qlasskit import qlassf, Qint\n", "from qlasskit.algorithms import Grover\n", "\n", "\n", "@qlassf\n", - "def factorize(a: Tuple[Qint2, Qint2]) -> bool:\n", + "def factorize(a: Tuple[Qint[2], Qint[2]]) -> bool:\n", " return a[0] * a[1] == 9\n", "\n", "\n", @@ -28,17 +28,17 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHYCAYAAAAxof53AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY1UlEQVR4nO3deVxU9f4/8NcZ9gBRUVQUcAmlzERzSTEUS1Apl9ttUSuX1Gtpfl3KNVNzN9e8lZllmmndUitvKrgAGkquaJYLqCmGuJEgiMAM798f/uZcRkBgZmDg8Ho+Hj4e9Zkz5/358Dln5jVnzjmjiIiAiIiIiDRFZ+sOEBEREZH1MeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaZC9rTtQGBHBli1bsGLFCpw+fRppaWnw8fFBly5dMHHiRDRu3Nhk+fT0dMyYMQObNm1CSkoK6tWrhxdeeAHTp0+Hm5tbgfXn5eXho48+wqpVq5CYmAg3Nzc888wzmDNnToF1FycvLw/Jyclwd3eHoigWjZuIiIioOCKC27dvw9vbGzrdA47XSQU0btw4ASD16tWTESNGyIQJEyQsLEwURRF3d3f57bff1GUzMjIkMDBQAEhoaKhMnDhRQkNDBYC0bdtWsrKyCqx/6NChAkCaN28uEyZMkFdeeUUcHR2lZs2acvbs2VL1NSkpSQDwH//xH//xH//xH/+V67+kpKQHZhRFRAQVSEpKCurXrw8fHx8cP34cHh4e6mNLly7FuHHjMHjwYHzxxRcAgOnTp+P999/HxIkTMX/+fHXZSZMmYcGCBZg7dy4mT56stkdFRaFr164IDg7Gzp074ejoCADYvn07evbsidDQUERERJS4v2lpaahevTqSkpJQrVo1S4dPRERE9EDp6enw8fHBrVu3THLS/SpcyIuLi0OHDh3Qv39/fP311yaPJSQkoGnTpnj22WexdetWiAgaNGiA9PR0pKSkwNXVVV02MzMTdevWhZeXF86dO6e29+/fHxs3bkRMTAyCg4NN1h8SEoLo6GhcvHgRvr6+Jepveno6PDw8kJaWxpBHREREZa6k2aPCXXjh7+8PR0dHxMbGIj093eSx//73vwCAp59+GsC90JecnIygoCCTgAcArq6uCAoKwvnz55GUlKS2R0dHq4/dLywsDAAQExNj1TERERERlbcKd+GFp6cn5s+fj/HjxyMgIAC9e/dGtWrVcPz4cezZswdvvvkmRo0aBeBeyAPuBcPC+Pv7IyIiAgkJCfDx8UFmZiauXLmCxx57DHZ2doUun3+9hcnOzkZ2drb6/8Ygmpubi9zcXACATqeDnZ0dDAYD8vLy1GWN7Xq9HvkPoNrZ2UGn0xXZblyvkb39vWnT6/UlandwcEBeXh4MBoPapigK7O3ti2wvqu8cE8fEMXFMHBPHpLUx+fv74+LFi7jfiBEj8PHHH+Nf//oXdu/ejeTkZLi5ueHJJ5/EwoULERAQoI7p8OHDmDp1Ko4ePQpFUdC2bVvMnTsXLVu2LJMxlUSFC3kAMHbsWNSvXx9Dhw7FypUr1fZOnTqhf//+6saSlpYGAEV+H208hGlcrrTLF2bevHmYOXNmgfbIyEg89NBDAABfX1+0atUKJ06cwKVLl9RlmjVrhoCAABw8eBDXr19X2wMDA+Hn54e9e/fi9u3banuHDh3g5eWFyMhIkwkNCQmBi4sLtm3bZtKHnj17IisrC1FRUWqbvb09wsPDcePGDRw4cEBtd3d3R9euXZGUlIT4+Hi1vXbt2ujYsSMSEhJw5swZtZ1j4pg4Jo6JY+KYtDqm999/H61bt0atWrWwa9cunD9/HtOnT0f9+vVx+/ZttGrVCg0bNkStWrWQkZGBb775BmFhYTh+/Dj27t2LrKwsDB8+HO3bt8evv/6Kq1evYtKkSejWrRtWr16NGjVqWHVMR44cQUlUuHPygHt/7NmzZ+P999/HK6+8gurVqyM+Ph5jx45FfHw8Nm3ahF69emHDhg0YMGAApk6ditmzZxdYz9SpUzF37lxs3rwZffv2RXJyMurXr4+goCD88ssvBZbfuXMnQkNDMXr0aCxfvrzQvhV2JM/Hxwc3btxQQyI/KXFMHBPHxDFxTBxT5R3T+PHjsW3bNvzxxx9wcHAo0PcTJ06gTZs2SEhIgJ+fH44cOYIOHTrg3LlzaNy4MfLy8hAfH48nnngCf/zxB/z9/a06ptTUVHh6ehZ7Tl6FO5K3a9cuTJ8+HWPHjsWkSZPU9k6dOmHr1q1o3Lgxxo8fj169eqlH5Io68mb8KtW4XGmXL4yTkxOcnJwKtDs4OKgbgpGdnV2hXwsbN/aStt+/XnPadTpdoffSKaq9qL5zTBxTads5Jo4J4JiK6mNp2zmmsh+TiGDDhg0YN26cegeO/H3PzMzE+vXr0ahRI/j6+sLBwQHNmzeHp6cn1q1bhylTpsBgMGDdunV45JFH1IBXHmO6X4W78GL79u0A7h3yvV/dunUREBCAxMREZGRkFHsO3f3n7Lm6uqJevXq4cOGCSZIuankiIiKqWn744QfcunULgwYNMmn/+OOP4ebmBjc3N2zfvt3kNmzu7u6Ijo7G+vXr4eLiAjc3N+zYsQPbt28vcSArCxUu5OXk5ACAyffn+V2/fh06nQ4ODg7w9/eHt7c3YmNjkZmZabJcZmYmYmNj0ahRI/j4+KjtnTt3Vh+7n/H+ePffWoWIiIiqhs8//xw9evSAt7e3SfuAAQNw7NgxxMTEoGnTpnjxxRdx9+5dAEBWVhZef/11BAUFIS4uDrGxsXjssccQHh6OrKwsWwwDQAUMecZbmyxZsqTA16orV67E5cuX0aFDBzg5OUFRFAwdOhQZGRmYNWuWybKzZs1CRkYGhg0bZtI+fPhwAMC0adPUQAncO4IYHR2N0NBQ+Pn5lcXQiIiIqAK7ePEidu3ahaFDhxZ4zMPDA/7+/ggODsb333+P06dPY8uWLQCADRs24M8//8SaNWvQtm1bPPnkk9iwYQMuXLiAH3/8sbyHoapw5+S98MIL+OSTT7B37140bdoUvXr1QvXq1XH06FHs2bMHLi4uWLJkibr8hAkT8OOPP2LBggU4duwYWrdujaNHjyIyMhJt27bFmDFjTNYfEhKCoUOHYvXq1WjdujXCw8Nx5coVfPvtt6hZsyZWrFhRziMmIiKiimDNmjXw8vJCeHj4A5cTEYiIeiHmnTt3oNPpTH7D3vj/+S+cKHel+qHWcnL37l2ZN2+etGrVSh566CGxt7eX+vXryyuvvCJ//PFHgeVv3bolY8aMER8fH3FwcBBfX18ZP368pKenF7p+g8Egy5cvl+bNm4uTk5N4enrKSy+9JImJiaXua1pamgCQtLS0Uj+XiIiIKgaDwSC+vr4yceJEk/Zz587J3Llz5fDhw3Lx4kWJjY2V5557TmrWrClXr14VEZFTp06Jk5OTvPHGG/LHH3/IyZMn5ZVXXhEPDw9JTk62el9Lmj0q5C1UKhP+rBkREVHlFxkZibCwMJw5cwZNmzZV25OTkzF06FAcOXIEf//9N+rUqYPg4GC89957aNasmbrczp07MXPmTJw8eRI6nQ6tWrXCnDlz8OSTT1q9ryXNHgx5FmLIIyIiovJUaX+7loiIiIgsx5BHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEH2tu4AERERUUUybJllz/9sjDV6YTkeySMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg2q0CFvy5Yt6NatGzw9PeHs7IxGjRqhX79+SEpKMlkuPT0d48aNg5+fH5ycnNCwYUO88847yMjIKHS9eXl5WLFiBVq0aAEXFxfUrl0b/fr1w/nz58tjWERERERlzt7WHSiMiGDEiBFYtWoVmjRpgpdffhnu7u5ITk5GTEwMLl68CB8fHwBAZmYmOnfujPj4eISGhqJfv344duwYFi1ahJiYGOzduxfOzs4m6//Xv/6F1atXo3nz5hg9ejSSk5Pxn//8B5GRkYiLi4O/v78thk1ERERkNRUy5H344YdYtWoV3nzzTXz44Yews7MzeVyv16v/vXDhQsTHx2PixImYP3++2j5p0iQsWLAAS5cuxeTJk9X2qKgorF69GsHBwdi5cyccHR0BAP3790fPnj0xatQoRERElPEIiYiIiMqWIiJi607kl5WVhfr166NGjRo4c+YM7O2LzqEiggYNGiA9PR0pKSlwdXVVH8vMzETdunXh5eWFc+fOqe39+/fHxo0bERMTg+DgYJP1hYSEIDo6GhcvXoSvr2+J+pueng4PDw+kpaWhWrVqpRwtERERVTTDlln2/M/GWKMXRStp9qhw5+RFRkbi77//Rp8+fWAwGLB582bMnz8fK1euRGJiosmyCQkJSE5ORlBQkEnAAwBXV1cEBQXh/PnzJufwRUdHq4/dLywsDAAQExNTBiMjIiIiKj8V7uvaI0eOAADs7Ozw+OOP4+zZs+pjOp0OY8eOxaJFiwDcC3kAijyHzt/fHxEREUhISICPjw8yMzNx5coVPPbYYwW+As6/HuN6C5OdnY3s7Gz1/9PT0wEAubm5yM3NVftpZ2cHg8GAvLw8k/7b2dlBr9cj/wFUOzs76HS6ItuN6zUyHt3M/7X1g9odHByQl5cHg8GgtimKAnt7+yLbi+o7x8QxcUwcE8fEMWl/TA6wRHmMqSQqXMi7du0aAGDJkiVo3bo1Dh48iEceeQTHjh3D8OHDsXjxYjRp0gRvvPEG0tLSAAAeHh6Frst4CNO4XGmXL8y8efMwc+bMAu2RkZF46KGHAAC+vr5o1aoVTpw4gUuXLqnLNGvWDAEBATh48CCuX7+utgcGBsLPzw979+7F7du31fYOHTrAy8sLkZGRJhMaEhICFxcXbNu2zaQPPXv2RFZWFqKiotQ2e3t7hIeH48aNGzhw4IDa7u7ujq5duyIpKQnx8fFqe+3atdGxY0ckJCTgzJkzajvHxDFxTBwTx8QxVZUxAeGwRFmPyXhArDgV7py84cOH47PPPoOLiwsSExPh7e2tPnby5Em0bNkSjRo1QmJiIjZs2IABAwZg6tSpmD17doF1TZ06FXPnzsXmzZvRt29fJCcno379+ggKCsIvv/xSYPmdO3ciNDQUo0ePxvLlywvtX2FH8nx8fHDjxg01JPKTEsfEMXFMHBPHxDFV3jG9+ZFlR/I+HV22Y0pNTYWnp2ex5+RVuCN5xqNsbdq0MQl4APDYY4+hcePGSExMxK1bt9RlizryZvwq1bhcaZcvjJOTE5ycnAq0Ozg4wMHBdKOws7Mr9Gvhoi4mKar9/vWa067T6aDTFTwFs6j2ovrOMXFMpW3nmDgmgGMqqo+lbeeYbDem0rDVmArUK9FS5ahZs2YAgOrVqxf6uLE9Kyur2HPo7j9nz9XVFfXq1cOFCxdMknRRyxMRERFVVhUu5IWEhAAATp06VeCx3NxcJCYmwtXVFbVr14a/vz+8vb0RGxuLzMxMk2UzMzMRGxuLRo0aqTdOBoDOnTurj93PeH+8+2+tQkRERFTZVLiQ16RJE4SGhiIxMRGrV682eWz+/Pm4desW+vbtC3t7eyiKgqFDhyIjIwOzZs0yWXbWrFnIyMjAsGHDTNqHDx8OAJg2bRpycnLU9u3btyM6OhqhoaHw8/Mro9ERERERlY8Kd+EFAJw7dw4dO3bEtWvXEB4ejoCAABw7dgx79uyBn58f4uLiULduXQD3jtgFBQXh+PHjCA0NRevWrXH06FFERkaibdu2iImJgYuLi8n6hw0bpv6sWXh4OK5cuYJvv/0Wbm5uOHDgAJo2bVrivvJmyERERNrCmyGXoSZNmuDw4cMYNGgQjhw5gg8//BAJCQkYOXIkDh48qAY84N55djExMRgzZgxOnTqFxYsX4/Tp0xg/fjx2795dIOABwKeffqpePbt8+XJs27YNffv2xcGDB0sV8IiIiIgqqgp5JK8y4ZE8IiIibeGRPCIiIiKqsBjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIg8wOeXv37sWlS5ceuExSUhL27t1rbgkiIiIiMpPZIS8kJARffvnlA5dZt24dQkJCzC1BRERERGYyO+SJSLHL5OXlQVEUc0sQERERkZnK9Jy8hIQEeHh4lGUJIiIiIiqEfWkWHjJkiMn///DDD/jzzz8LLGcwGNTz8Xr06GFRB4mIiIio9EoV8vKfg6coCuLj4xEfH1/osoqioG3btli6dKkl/SMiIiIiM5Qq5F24cAHAvfPxGjdujDFjxuD//u//CixnZ2eHGjVqwNXV1Tq9JCIiIqJSKVXI8/PzU/97zZo1aNWqlUkbEREREVUMpQp5+Q0cONCa/SAiIiIiKzI75BkdPHgQhw4dwq1bt2AwGAo8rigKpk2bZmkZIiIiIioFs0Neamoq+vTpg9jY2AfeM48hj4iIiKj8mR3yxo0bh19++QVdunTBwIED0aBBA9jbW3xgkIiIiIiswOxU9t///hft2rXD7t27+asWRERERBWM2b94kZWVheDgYAY8IiIiogrI7JAXGBhY6K9dEBEREZHtmR3ypk+fjp9++glxcXHW7A8RERERWYHZ5+SlpKQgPDwcnTt3xoABA9C6dWtUq1at0GVfe+01sztIRERERKWnyIPuf/IAOp0OiqKY3D7l/vPzRASKohR6/zytSE9Ph4eHB9LS0ooMuURERFR5DFtm2fM/G2ONXhStpNnD7CN5a9asMfepRERERFTG+LNmRERERBpk9oUXRERERFRxmX0k79KlSyVe1tfX19wyRERERGQGs0New4YNS3QjZEVRoNfrzS1DRERERGYwO+S99tprhYa8tLQ0HD9+HBcuXEDnzp3RsGFDS/oHAFiwYAEmTZoEADhw4ACefPJJk8fT09MxY8YMbNq0CSkpKahXrx5eeOEFTJ8+HW5ubgXWl5eXh48++girVq1CYmIi3Nzc8Mwzz2DOnDlo3Lixxf0lIiIisjWzb6HyICKCxYsXY+HChYiLi7MoOJ08eRJt2rSBvb09MjMzC4S8zMxMdOrUCfHx8QgNDUWrVq1w7NgxREZGom3btti7dy+cnZ1N1jls2DCsXr0azZs3R3h4OJKTk/Gf//wHbm5uiIuLg7+/f4n7x1uoEBERaYtWbqFSJhdeKIqCt99+G82bN8c777xj9npyc3MxcOBABAYGom/fvoUus3DhQsTHx2PixImIiIjA/PnzERERgYkTJ+LQoUNYunSpyfJRUVFYvXo1goODcfToUSxYsABfffUVfvjhB6SmpmLUqFFm95eIiIiooijTq2vbtGmDPXv2mP38OXPm4Pfff8cXX3wBOzu7Ao+LCFavXg03NzdMmzbN5LFp06bBzc0Nq1evNmn/7LPPAACzZs2Co6Oj2t6jRw906dIFkZGRpbqohIiIiKgiKtOQd+7cObMvujh69CjmzJmD6dOn49FHHy10mYSEBCQnJyMoKAiurq4mj7m6uiIoKAjnz59HUlKS2h4dHa0+dr+wsDAAQExMjFl9JiIiIqoozL7woih5eXn466+/8OWXX+LHH3/E008/Xep1ZGdn47XXXkNgYCAmTJhQ5HIJCQkAUOQ5dP7+/oiIiEBCQgJ8fHyQmZmJK1eu4LHHHiv0yKBxPcb1FtW37Oxs9f/T09MB3PtqOTc3F8C9n3yzs7ODwWBAXl6euqyxXa/Xm/wcnJ2dHXQ6XZHtxvUa2dvfm7b7A3RR7Q4ODsjLyzP5eTlFUWBvb19ke1F955g4Jo6JY+KYOCbtj8kBliiPMZWE2SHP+Nu1RRER1KhRA4sXLy71ut977z0kJCTgyJEjhYYxo7S0NACAh4dHoY8bT0Y0Llfa5Qszb948zJw5s0B7ZGQkHnroIQD37gvYqlUrnDhxwuSr32bNmiEgIAAHDx7E9evX1fbAwED4+flh7969uH37ttreoUMHeHl5ITIy0mRCQ0JC4OLigm3btpn0oWfPnsjKykJUVJTaZm9vj/DwcNy4cQMHDhxQ293d3dG1a1ckJSUhPj5eba9duzY6duyIhIQEnDlzRm3nmDgmjolj4pg4pqoyJiAclijrMR05cqRE/TD76touXboUGvJ0Oh1q1KiBtm3bYvDgwfDy8irVeg8cOIBOnTphxowZJufZDRo0CGvXrjW5unbDhg0YMGAApk6ditmzZxdY19SpUzF37lxs3rwZffv2RXJyMurXr4+goCD88ssvBZbfuXMnQkNDMXr0aCxfvrzQ/hV2JM/Hxwc3btxQQyI/KXFMHBPHxDFxTBxT5R3Tmx9ZdiTv09FlO6bU1FR4enoWe3Wt2UfyoqOjzX1qkfR6PQYOHIjHH39cvS/egxiPyBV15M34VapxudIuXxgnJyc4OTkVaHdwcICDg+lGYWdnV+iRSOPGXtL2+9drTrtOp4NOV/AUzKLai+o7x8QxlbadY+KYAI6pqD6Wtp1jst2YSsNWYyqwXImWKicZGRnq+XD5r3zNr0OHDgCALVu2qBdkFHUO3f3n7Lm6uqJevXq4cOECDAZDgT9ccef4EREREVUWVgl5sbGxiI+PR3p6OqpVq4bAwMBCr14tjpOTE15//fVCH9u7dy8SEhLQq1cv1K5dGw0bNoS/vz+8vb0RGxuLzMxMkytsMzMzERsbi0aNGsHHx0dt79y5M7755hvExsYiODjYpEZERAQAFGgnIiIiqmwsCnn79+/H4MGDkZiYCODexRbG8/T8/f2xZs0a9chbSbi4uBS4r53RoEGDkJCQgMmTJ5v84sXQoUPx/vvvY9asWZg/f77aPmvWLGRkZGDKlCkm6xk+fDi++eYbTJs2DTt37lSPGG7fvh3R0dEIDQ2Fn59fiftMREREVBGZHfJ+//13hIaG4s6dO+jWrRtCQkJQr149pKSkICoqCpGRkQgLC0NcXFyR97mzhgkTJuDHH3/EggULcOzYMbRu3RpHjx5Vf9ZszJgxJsuHhIRg6NChWL16NVq3bo3w8HBcuXIF3377LWrWrIkVK1aUWV+JiIiIyovZIe/9999HTk4Otm3bhu7du5s8NnHiROzYsQO9evXC+++/j2+++cbijhbF1dUVMTExmDFjBjZt2oSoqCjUq1cP48ePx/Tp0+Hi4lLgOZ9++ilatGiBVatWYfny5XBzc0Pfvn0xZ84cNGnSpMz6SkRERFRezL6FSp06dfD0009jw4YNRS7Tv39/7N69G1evXjW7gxVdSX8kmIiIiCqHYcsse/5nY6zRi6KVNHuY/bNmaWlpaNSo0QOXadSo0QNvLExEREREZcPskOft7Y24uLgHLvPrr7/C29vb3BJEREREZCazQ16vXr0QHR2NadOm4e7duyaP3b17F9OnT0dUVBR69+5tcSeJiIiIqHTMPifv5s2baN++PS5cuABPT0+0a9cOderUwdWrV3Ho0CFcv34djRs3xsGDB1GzZk1r97vC4Dl5RERE2qKVc/LMvrrW09MTcXFxmDBhAr755huTHyN2dnbG4MGDsWDBAk0HPCIiIqKKyqKbIdeqVQtffPEFPv30U5w+fVr9xYuAgACr/PYbEREREZmn1CFvzpw5yMzMxMyZM9Ug5+DggBYtWqjL5OTkYOrUqXB3d8ekSZOs11siIiIiKpFSXXixa9cuvPfee/D09HzgkTpHR0d4enpi6tSpiIqKsriTRERERFQ6pQp569atQ40aNTBq1Khilx05ciRq1qyJNWvWmN05IiIiIjJPqULe/v378cwzz8DJyanYZZ2cnPDMM88gNjbW7M4RERERkXlKFfKSk5PRuHHjEi/fqFEjXLlypdSdIiIiIiLLlCrk6XQ65Obmlnj53Nxc6HRm32+ZiIiIiMxUqgTm7e2NkydPlnj5kydPon79+qXuFBERERFZplQh76mnnsKePXvw559/Frvsn3/+iT179iA4ONjcvhERERGRmUoV8kaOHInc3Fz885//xI0bN4pc7ubNm3jhhReg1+vxxhtvWNxJIiIiIiqdUt0MuXXr1hgzZgyWLVuGRx99FCNGjEBISAgaNGgAAPjrr7+we/durFq1CtevX8e4cePQunXrMuk4ERERERWt1L94sXjxYjg7O+ODDz7AnDlzMGfOHJPHRQR2dnaYPHkyZs+ebbWOEhEREVHJlTrkKYqCuXPn4vXXX8eaNWuwf/9+pKSkAADq1q2LoKAgDBo0CE2aNLF6Z4mIiIioZEod8oyaNGnCI3VEREREFRRvYkdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQRUu5P31119YtmwZQkND4evrC0dHR9StWxfPP/88fv3110Kfk56ejnHjxsHPzw9OTk5o2LAh3nnnHWRkZBS6fF5eHlasWIEWLVrAxcUFtWvXRr9+/XD+/PmyHBoRERFRualwIW/FihUYO3Yszp8/j9DQUIwfPx6dOnXCjz/+iI4dO+Lbb781WT4zMxOdO3fG0qVLERAQgLFjx6JZs2ZYtGgRunbtirt37xao8a9//QujR4+GiGD06NHo3r07Nm/ejLZt2yIhIaG8hkpERERUZuxt3YH7tWvXDtHR0ejcubNJ+759+/D000/jjTfeQJ8+feDk5AQAWLhwIeLj4zFx4kTMnz9fXX7SpElYsGABli5dismTJ6vtUVFRWL16NYKDg7Fz5044OjoCAPr374+ePXti1KhRiIiIKIeREhEREZUdRUTE1p0oqbCwMERGRuLQoUNo06YNRAQNGjRAeno6UlJS4Orqqi6bmZmJunXrwsvLC+fOnVPb+/fvj40bNyImJgbBwcEm6w8JCUF0dDQuXrwIX1/fEvUpPT0dHh4eSEtLQ7Vq1awzUCIiIrKZYcsse/5nY6zRi6KVNHtUuK9rH8TBwQEAYG9/7wBkQkICkpOTERQUZBLwAMDV1RVBQUE4f/48kpKS1Pbo6Gj1sfuFhYUBAGJiYspqCERERETlosJ9XVuUS5cuYdeuXahXrx5atGgBAOr5c/7+/oU+x9/fHxEREUhISICPjw8yMzNx5coVPPbYY7Czsyt0+fzrLUx2djays7PV/09PTwcA5ObmIjc3FwCg0+lgZ2cHg8GAvLw8dVlju16vR/4DqHZ2dtDpdEW2G9drZAy5er2+RO0ODg7Iy8uDwWBQ2xRFgb29fZHtRfWdY+KYOCaOiWPimLQ/JgdYojzGVBKVIuTl5ubi1VdfRXZ2NhYsWKAGtLS0NACAh4dHoc8zHsI0Llfa5Qszb948zJw5s0B7ZGQkHnroIQCAr68vWrVqhRMnTuDSpUvqMs2aNUNAQAAOHjyI69evq+2BgYHw8/PD3r17cfv2bbW9Q4cO8PLyQmRkpMmEhoSEwMXFBdu2bTPpQ8+ePZGVlYWoqCi1zd7eHuHh4bhx4wYOHDigtru7u6Nr165ISkpCfHy82l67dm107NgRCQkJOHPmjNrOMXFMHBPHxDFxTFVlTEA4LFHWYzpy5EiJ+lHhz8nLy8vDq6++ig0bNmDYsGFYtWqV+tiGDRswYMAATJ06FbNnzy7w3KlTp2Lu3LnYvHkz+vbti+TkZNSvXx9BQUH45ZdfCiy/c+dOhIaGYvTo0Vi+fHmh/SnsSJ6Pjw9u3LihhkR+UuKYOCaOiWPimDimyjumNz+y7Ejep6PLdkypqanw9PQs9py8Cn0kLy8vD0OGDMGGDRvwyiuvYOXKlSaPG4/IFXXkzfhVqnG50i5fGCcnJ/XK3vwcHBzUcwaN7OzsCv1a2Lixl7T9/vWa067T6aDTFTwFs6j2ovrOMXFMpW3nmDgmgGMqqo+lbeeYbDem0rDVmArUK9FSNpCXl4fBgwdj7dq16NevH7788ssCf5jizqG7/5w9V1dX1KtXDxcuXDBJ0kUtT0RERFRZVciQZwx469atw0svvYSvvvqqyAslvL29ERsbi8zMTJPHMjMzERsbi0aNGsHHx0dt79y5s/rY/Yz3x7v/1ipERERElU2FC3nGr2jXrVuHF154AevXry804AH3vsseOnQoMjIyMGvWLJPHZs2ahYyMDAwbNsykffjw4QCAadOmIScnR23fvn07oqOjERoaCj8/PyuPioiIiKh8VbgLL2bMmIGZM2fCzc0N//d//1fo9859+vRBYGAggHtH7IKCgnD8+HGEhoaidevWOHr0KCIjI9G2bVvExMTAxcXF5PnDhg3D6tWr0bx5c4SHh+PKlSv49ttv4ebmhgMHDqBp06Yl7i9vhkxERKQtWrkZcoW78OLPP/8EAGRkZGDOnDmFLtOwYUM15Lm6uiImJgYzZszApk2bEBUVhXr16mH8+PGYPn16gYAHAJ9++ilatGiBVatWYfny5XBzc0Pfvn0xZ84cNGnSpKyGRkRERFRuKtyRvMqGR/KIiIi0RStH8ircOXlEREREZDmGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIqIKad68eWjbti3c3d3h5eWFPn364MyZMwWWO3DgALp27QpXV1dUq1YNwcHByMrKskGPiSoWhjwiqtBK+kYPACKCHj16QFEU/PDDD+VW/1//+heaNGkCFxcX1K5dG71798bp06etUr8qi4mJwciRIxEXF4edO3ciNzcXoaGhyMzMVJc5cOAAunfvjtDQUBw8eBCHDh3CqFGjoNPx7a0ys/V+rxXcCyqJkmzwq1atQpcuXVCtWjUoioJbt27ZprNEVlSSN3qjZcuWQVGUcq//xBNPYM2aNTh16hQiIiIgIggNDYXBYLBqX6qaHTt2YNCgQWjevDlatmyJL7/8EpcuXcKRI0fUZcaOHYvRo0dj0qRJaN68OZo1a4YXX3wRTk5OFtcv7nU3NTUVb731Fpo1awYXFxf4+vpi9OjRSEtLs7h2VWfr/V4rGPIqiZJs8Hfu3EH37t0xZcoUG/ZUe0oSsO/evYuRI0fC09MTbm5ueP7553H16lUb9VhbSvJGDwDx8fFYvHgxvvjii3KvP3z4cAQHB6Nhw4Zo3bo1Zs+ejaSkJPz5559W7UtVZwxPNWvWBABcu3YNv/76K7y8vNCxY0fUqVMHnTt3xi+//GKVesW97iYnJyM5ORmLFi3CyZMn8eWXX2LHjh14/fXXrVK/KrP1fq8VDHmVREk2+DFjxmDSpEl48sknbdhT7SlJwB47diy2bt2K7777DjExMUhOTsY//vEPq/Vh7969eO655+Dt7V3oVxIZGRkYNWoUGjRoABcXFzz66KNYuXJludVXFKXQfx988IHV+mB0/xs9cO8DTv/+/fHRRx+hbt26Vq9ZXP38MjMzsWbNGjRq1Ag+Pj5l2peqJC8vD2PGjEFQUBAee+wxAMD58+cBADNmzMCwYcOwY8cOtG7dGk8//TQSEhIsrlnc6+5jjz2GTZs24bnnnkOTJk3QtWtXzJkzB1u3boVer7e4fkXa72zN1vt9ZcWQV0kV90ajNcW92A0aNKjAC1337t2tUru4F/q0tDR8/vnnWLJkCbp27ap+dbd//37ExcVZpQ+ZmZlo2bIlPvroo0IfHzduHHbs2IH169fj1KlTGDNmDEaNGoWffvqpXOpfuXLF5N8XX3wBRVHw/PPPW6W+UWFv9MC9kN2xY0f07t3bqvVKWh8APv74Y7i5ucHNzQ3bt2/Hzp074ejoaHFNW277FcnIkSNx8uRJfPPNN2pbXl4egHvnRA4ePBitWrXC0qVL0axZszI5slOS1920tDRUq1YN9vb2Ftez9X5X3LYHAKdOnUKvXr3g4eEBV1dXtG3bFpcuXbJKfSNb7/eVGUNeJfSgN5qyUpKd3WjEiBFQFAXLli2zWv3iXuwAoHv37iYveBs3brRa/fzuf6E/cuQIcnNz8cwzz6jLBAQEwNfXFwcOHLBKzR49emD27Nno27dvoY/v378fAwcORJcuXdCwYUMMHz4cLVu2xMGDB8ulft26dU3+/fjjjwgJCUHjxo2tUt+osDf6n376CXv27LHq9laa+kYDBgzAsWPHEBMTg6ZNm+LFF1/E3bt3La5p623f1vs+AIwaNQr//e9/ERUVhQYNGqjt9erVAwA8+uijJss/8sgj5RY08rtx4wZmzZqF4cOHW6Wmrfe74ra9c+fOoVOnTggICEB0dDROnDiBadOmwdnZ2Sr1jWy931dmln/UoHJn3OCtdd5JSRh39iFDhjzwa8gtW7YgLi4O3t7eVq3fo0cP9OjR44HLODk5lfkh+8Je6FNSUuDo6Ijq1aubLFunTh2kpKSUaX+MOnbsiJ9++glDhgyBt7c3oqOjcfbsWSxdurRc6ud39epV/Pzzz1i7dq1V12t8o9+7d6/JG/2ePXtw7ty5An//559/Hk899RSio6PLtL6Rh4cHPDw84O/vjyeffBI1atTAli1b0K9fP4vq2nrbt+W+LyJ46623sGXLFkRHR6NRo0Ymjzds2BDe3t4FzpE9e/ZssX+z0irudTc9PR3h4eF49NFHMWPGDKvWLomy2O+K2/amTp2Knj17YuHChWpbkyZNrFYfsP1+X9kx5FUyxb3RlJWSvNH89ddfeOuttxAREYHw8PBy6tn/REdHw8vLCzVq1EDXrl0xe/ZseHp6WrWGLQJ2SaxYsQLDhw9HgwYNYG9vD51Oh88++wzBwcHl3pe1a9fC3d3dauckFvdGP2nSJAwdOtSkrUWLFli6dCmee+65Mq9f1HNEBNnZ2RbXL4my3PZtue+PHDkSGzZswI8//gh3d3f1Q5OHhwdcXFygKAreeecdTJ8+HS1btkRgYCDWrl2L06dP4/vvv7daP4p73b19+za6d+8Od3d3bNmyBQ4ODlarXVLW3u+Kk5eXh59//hkTJkxAWFgYjh07hkaNGmHy5Mno06ePxeu39X6vFQx5lYQ5bzTlKS8vD6+++ireeecdNG/evNzrd+/eHf/4xz/QqFEjnDt3DlOmTEGPHj1w4MAB2NnZWaVGUS/0devWRU5ODm7dumXyqfLq1avldjLwihUrEBcXh59++gl+fn7Yu3cvRo4cCW9vb5OvkcvDF198gQEDBljtK5vi3uiNX1Xdz9fX1yr7SXH1z58/j2+//RahoaGoXbs2Ll++jPnz58PFxQU9e/a0uH5xymPbf5Cy3Pc/+eQTAECXLl1M2tesWYNBgwYBuHfB2d27dzF27FikpqaiZcuW2Llzp1WOKJXkdTc9PR1hYWFwcnLCTz/9ZPWvKkvK2vtdca5du4aMjAzMnz8fs2fPxoIFC7Bjxw784x//QFRUFDp37mzR+m2932sFQ14lUdwGD9z72jAlJQWJiYkAgN9++w3u7u7w9fUt8ws0FixYAHt7e4wePbpM6xTl5ZdfVv+7RYsWePzxx9GkSRNER0fj6aeftmjdxb3QP/HEE3BwcMDu3bvVE57PnDmDS5cuoUOHDhbVLomsrCxMmTIFW7ZsUY+iPP7444iPj8eiRYvKNeTt27cPZ86cwbfffmu1dZbkjb4sFVff2dkZ+/btw7Jly/D333+jTp06CA4Oxv79++Hl5VXm/SvLbb8kynLfF5ESLTdp0iRMmjTJ6vWLe91NT09HaGgo7ty5g/Xr1yM9PR3p6ekAgNq1a5dLyAbKZr8rjvGil969e2Ps2LEAgMDAQOzfvx8rV660OOTZer/XCoa8SqIkG/zKlSsxc+ZM9THjV3VlvVMcOXIEy5cvx9GjRyvMDSkbN26MWrVqITEx0eI3uuJe6D08PPD6669j3LhxqFmzJqpVq4a33noLHTp0KJfb2eTm5iI3N7fAHf7t7OzUF+Ly8vnnn+OJJ55Ay5YtrbbOkr7RW/occ9fl7e2Nbdu2Wa2epay57RenIu771lTc6+7Ro0fx66+/AgAefvhhk2UuXLiAhg0blkc3y2S/K06tWrVgb29f6EUv1jidxdb7vVYw5FUSJdl4Z8yYYZMTfvft24dr167B19dXbTMYDBg/fjyWLVtmkxvCXr58GTdv3lSvvrNESQL20qVLodPp8PzzzyM7OxthYWH4+OOPLa5tlJGRoR6hBe69gcTHx6NmzZrw9fVF586d8c4778DFxQV+fn6IiYnBunXrsGTJknKpD9z72uq7777D4sWLrVKTzGPNbb84FXHft6biXne7dOlSpsGiIu93jo6OaNu2baEXvfj5+ZVrX6hoDHlksVdffbXAV4JhYWF49dVXMXjwYKvUeNCLXc2aNTFz5kw8//zzqFu3Ls6dO4cJEybg4YcfRlhYmMW1S/Ii7uzsjI8++uiBt7mwxOHDhxESEqL+/7hx4wAAAwcOxJdffolvvvkGkydPxoABA5Camgo/Pz/MmTMHI0aMKJf6APDNN99ARCy+mpRM2XLbL05Z7/vDlln2/M/GWNwFm7L1fldcyHznnXfw0ksvITg4GCEhIdixYwe2bt3KK1srEEV4fNMi6enp8PDwUG+AqVX5d/ZWrVphyZIlCAkJMflEmV/Dhg0xZswYjBkzxir1o6OjTV7sjAYOHIhPPvkEffr0wbFjx3Dr1i14e3sjNDQUs2bNQp06daxSn2ynqr/R23rbt+W+X9Xn3tYetO0ZQ+YXX3yBefPm4fLly2jWrBlmzpxplZsT23rubV2/OCXNHjySRyVSkk+UZam4r0UiIiLKvA9UNVnyYm+NF3pbb/u23vdtqaK/0Ze1knwdPWTIEAwZMqScekSlxZBXSdj6xaa0555U9nNx8rP1357Ilqryvk9U2THkEVVwDJlERGQOhjwieiCGTCLbsOW+x/1eG6psyDt06BCmT5+O/fv3Izc3Fy1atMC4cePw4osv2rprFRJfbIjKn623fVvXJyLLVMmQFxUVhbCwMDg7O+Pll1+Gu7s7Nm3ahJdeeglJSUkYP368rbtIREREZBFd8Ytoi16vx7Bhw6DT6bB3716sWrUKixcvxvHjx9G0aVNMmTIFFy9etHU3iYiIiCxS5ULenj17cO7cOfTv3x+BgYFqu4eHB6ZMmYKcnBysXbvWdh0kIiIisoIqF/KMd+IODQ0t8JjxDvExMTHl2SUiIiIiq6tyIS8hIQEA4O/vX+CxunXrws3NTV2GiIiIqLKqchdepKWlAbj39WxhqlWrpi5TmOzsbGRnZxdYX2pqKnJzcwEAOp0OdnZ2MBgMyMvLU5c1tuv1epObi9rZ2UGn0xXZnpubi5y7DmaM9n9u3cqDwWBQ/19RFNjb2yMvr/D2+/tuaf2bN+/9bfKPKT97+3ubol6vL9Cec1exqHZqqr7QMZV0nqw1dqOixurg4FDofOTctWw3vXkzl9sezNv27tU3f/vjtsdtD7DNtgcA6engtldJt73i5ik1NRVA8b+tXuV+uzY0NBQ7d+5EQkICHn744QKP169fHxkZGUUGvRkzZmDmzJll3U0iIiKiB0pKSkKDBg2KfLzKHckzHsErKsSlp6ejRo0aRT5/8uTJ6m83AkBeXh5SU1Ph6ekJRbHsU5e50tPT4ePjg6SkpAf+ULEW61flsbM+tz3WZ31u+1WvPnDvCN7t27fh7e39wOWqXMgznouXkJCAJ554wuSxlJQUZGRkoF27dkU+38nJCU5OTiZt1atXt3o/zVGtWjWbbXC2rl+Vx8763PZYn/WrWm3WL/q0s/yq3IUXnTt3BgBERkYWeCwiIsJkGSIiIqLKqsqFvKeffhqNGzfGhg0bEB8fr7anpaVh7ty5cHR0xGuvvWa7DhIRERFZQZX7utbe3h6rV69GWFgYgoODTX7W7OLFi1i0aBEaNmxo626WipOTE6ZPn17ga+SqUL8qj531ue2xPutz26969Uujyl1da3Tw4EFMnz4d+/fvR25uLlq0aIFx48bhpZdesnXXiIiIiCxWZUMeERERkZZVuXPyiIiIiKoChjwiIiIiDWLIIyIiItIghjyNMJ5ayVMsiYiICGDI0wzjT6rZ6qfVjD+gLCI2CZqsb5v6+evZYtxVvT5g223P1uO3ZX1bjx3g3Ffl+iXFq2srsTt37kBRFBw9ehSKoiArKwt///03mjdvjvr168PBwQGOjo6ws7OzdVeJiIionDHkVWJ9+vTB7t27AQCZmZkmj9WtWxdPPfUUOnfujG7duqm/2ZuXlwedzjoHcG/duoWsrCzExsbC0dER165dQ3Z2Nlq1agV3d3dUr14dtWrVgouLi1XqsX7FqX/16lWkpKRg7969cHBwwOXLlwEAjz/+OFxdXeHt7Y1GjRqV2e86V/X6tt72bD1+W9a39dg591W7fmkx5FVSt2/fxvDhw/HMM88gNzcXzs7O8PDwQHx8PBITE3Hu3DmcO3cON2/eRJMmTTBkyBCMGTPGqjt+165dER0dDRcXF2RlZZk8Vr16dbRo0QLt27dH9+7d8cQTT8DDw8OqIZP1bVe/Y8eOiIuLg4eHBzIzM2EwGNSvLJycnODr64vAwECEh4cjODgYDRs2RF5eHhRFscopBVW9vq23PVuP35b1bT12zn3Vrl9aDHkadenSJZw6dQpRUVH46aefcPr0aTzyyCN4//338fzzz1u8/jt37mD27Nno3Lkz7ty5g+rVq8PFxQXHjh3DX3/9hbNnz+LEiRNITExErVq18M9//hOTJ09G/fr1rTA61rdl/ezsbKxbtw5t2rTBnTt34O3tjezsbPz+++9ITU3F2bNnceDAARw+fBg6nQ5hYWGYMmUK2rZta4WRs76ttz1bj9+W9W09ds591a5vFqFKyWAwiIhIXl6eyX/r9foCyx09elRGjRoliqJIgwYNZOvWrWXev+vXr0t8fLx88sknEhoaKoqiSPXq1eXDDz+UO3fuqP1lfe3Vv3PnjqSkpMj27dtlyJAhUqNGDVEURSZNmiTXr18Xkf9tv6xvfbbe9mw9flvWt/XYOfdVu35hGPIqufwbjF6vV3fgvLy8Ajvz0aNHJSgoSBwdHWXNmjVWqZu/jsFgKLAB5+XlSWJiosyfP188PT3F2dlZVq5caVHtilbf+N9VpX7+bSx/W2FvHteuXZP169dLYGCgKIoikydPtqh2Ratf2HZY1vVtve1VpL9/edfn3Ffdub+/vi3m3xwMeZXQ/RvU3bt3CyyTf6fP/yJw+PBh6dKlizg7O8u2bdvKtqP3uXjxojz//POiKIpMnz7dKusszafSsq5fXF/Kon7+ec7NzTXpy/39KYv6JXXz5k0ZNWqU2NnZyWuvvSZZWVkWrzP/2Iv725dF/fxsUb+yzL2Ituefc/9gWp77ilC/OAx5lZTBYJCvvvpKxo8fL4MGDZL+/fvLkiVL5OzZswWWu38jzM3NlWeffVYmTZpUpofu8/fBuFNevHhRBgwYIIqiyPr168u8dlnUv/8F9u+//7ZZfRGRW7dulWv90sj/ppORkSHvvvuuKIoiy5YtM3t9+eV/gyvv+jdv3pQrV66Ua/3KNPci2pp/zn3paGnu769vi/k3l73tzgak0hIRKIqCixcvYubMmfjyyy8BAG5ubsjIyMDGjRsxfvx4tGnTBsOGDcNrr70GJycnk3UYDAbY29tj6dKluHnzpsVX+xj79CD5r+ry9fXF+vXr4erqivj4ePTr18/sq752796NY8eOoXr16vD390fnzp3Lpb5Op0N2djbGjx+PP//8Ey4uLujVqxdeffXVAssaDAYoiqLWsFb9nJwcLFu2DCdPnsSlS5eg1+vx1FNPISQkBIGBgfDy8lLr63Q6dY6s9feX/38j0OKem3/bcHV1xaxZs+Dk5ISLFy/CYDCU+h6OxvV99dVX+O233+Do6IiAgAA899xz8PDwKJf6t27dwptvvonExESICHr37o3x48cXuHLdeKNa49/IGvUrwtwDVXP+Off3VMW5N67PlvNvtnKNlGQR46eyN954QxwdHWXMmDESGxsr165dk/3798usWbOkS5cu4uDgIIqiiL+/v6xdu7bYTzyllZmZqZ7Ea1TUeQn56fV6ycnJERGRlJQUiY+PL1Vd4/pv3Lgh77//vuh0OlEURRRFEW9vb/nggw/U9RfGYDCofwtL6l+4cEH69+8viqJI7dq1xcXFRWrVqiWbN29Wl01MTJTs7OwC6zBeGGNJ/YSEBOnTp496UnXNmjXVv4OiKBIQECAzZsyQa9euWa2+sfatW7ckPT29wGMlmXvj3z4zM7PAEeeS1k9OTpaxY8eqY7W3t5dq1arJ+PHjJTMzs8jn5597S+onJibKc889J4qiSPPmzcXDw0NcXFxk1apVInLv6MKxY8cKPcpi3H8tqW+Luc9fvyrOP+e+6s59/vq2mn9LMeRVMgaDQdzd3WXo0KGFBhq9Xi9RUVHy6quviqIo4uXlJd9//736XCNzvqY1vlDMmTNHRowYIVu2bJHz588XWFdZfQVs7L/xsPczzzwjixcvlpkzZ0rDhg1FURT54osvyqwPxvpjx44VZ2dnmTp1qvz+++/y448/iqenp/Tq1UsuXrwozz33nHh5eUndunVl1KhRVtupjfWHDRsmrq6uMn36dDl//ryIiBw/flw+++wzGTRokDRu3FgURREXFxeZP39+sV/rlIRx7idOnCjdunWTf//73xIfH1/gK6TCTg+wBmOdCRMmiKIo8sILL8hXX30l69atk6CgIFEURWbMmCEiZTv3b731llSrVk3mzZsnN2/elBMnTkizZs2kY8eO8scff8iTTz4piqKInZ2d/POf/5SjR49atb4t5l6kas8/577qzn3++raaf0sx5FUyUVFR4uzsLEuXLhWR/+2AhV1htX//fvH29pY6derIyZMnrVLfYDCon6Rq1qwpXbt2lVmzZsmuXbskJSWlwLIiIlevXpUpU6bIl19+aZX61atXl2effVZu3LghIvd27Li4OPHz85MGDRoUCFWZmZmyfft2iYuLs0p9T09P6d+/v8mRupdeeknq168v7dq1k6ZNm0pISIh6RPXVV19V+2mN+tWqVSsy5BsMBjly5IhMmTJF3N3dRVEUWbFihfqYpbXt7OzUF7KmTZvK66+/LuvXr1ffdPIvK3Lv0/eQIUPkgw8+sKi2cZ0eHh7St29f9YiCXq+XU6dOSdu2bcXV1VWOHDkiIv/7W9++fVu++uorq9w2yGAwSI0aNeSVV14xOXl62LBhUq1aNQkMDJT27dtLv379pEmTJqIoinTu3PmBRxlKW99Wc29cR1Wdf8591Z17Y31bzr8lGPIqmePHj4uLi4tMmDChyGX0er26o61bt04URZHPPvvMorrGHWfXrl2iKIp069ZNXn31ValXr576dek//vEPWbFihcTFxUlaWpr63K1bt4qTk5O88847ImLei46x/vfffy/Ozs7y9ddfq2M1Wr58uSiKIlOnThWR/52YGxsbK40bN5Z58+aZrMuc+t999504OTmp9Y2PGY+czp07Vw27f//9t3Tv3l0URZHvvvuu1DUL88svv4irq6vMnTtXRB4c8i9cuCBt2rQRJycn2bt3r9k1jWPfs2ePKIoivXv3lilTpkjTpk1FURRxdHSUNm3ayNtvvy1bt241+bro559/Fp1OJ2+++abaT3Prb968WVxcXAqd+++//14URZHhw4eLyP/mfv/+/eLr6yvvvvuuybrMqf/999+Li4uLfPXVV+pjBoNBhg0bpr6pGt8A7t69K4MHDxZFUSy+XZGRLeZepGrPP+e+6s59/ufYev4twZBXydy5c0cef/xx8fDwkI0bNxZ6+xSR/+1QFy5ckOrVq8uoUaMsqmvc2I1Bau3atSJyL0AtWbJEwsLCpFq1aqLT6dRPeevWrZM//vhDvRHzb7/9ZtI3c+qPHTtWGjVqJIcPHzZpFxHJzs6Wp556SurWrSupqanqY8uWLRNFUeT48eMW13/jjTfkkUceMTkUf+7cOenYsaO0a9dObTO+0ERERIidnZ0sWrSo1DULc+7cOalZs6a88sorhfZPxPSFf9u2bWJnZycLFy60uPbHH38siqKoR2QvXrwomzdvloEDB0qdOnVEURTx8PCQp59+WubMmSO//PKLjBw5UhRFUY8kW/K3nzhxovj4+KhHZO9/0X755ZfF0dFRLl26pLZZc+5Hjx4tDz/8sLrtidybj/bt20vbtm3VZY1vQIcPHxZnZ2d57733Sl2zMLace5GqOf+c+3uq4tznr2Pr+bcEQ14ltHPnTtHpdOLm5iYzZsyQkydPFhn2tm/fLu7u7gW+3jWHXq+XOXPmiE6nk1OnTqntOTk5cvnyZdm1a5e8++670q5dO3F0dBRnZ2dp2bKluLu7yyOPPCIiln1lmZubKyNGjBB3d/cCFzUYQ9XatWvVI2oiIpcuXZLu3buLv7+/xfXv3r0rffr0EX9/f5O/96ZNm0RRFPn8889FxPRI6m+//SYODg4yfvx4s+vmZzAYpHPnzuLi4iIrVqwo9OuA/DfqTEpKknr16smgQYMsrrtixQpxdnYucK7J3bt3JSEhQT777DMJDw8XV1dX9eiug4ODPProo2q/zKXX62Xs2LHi6OhY4D5TxrFGRESIoigyduxYEbk3dmvNfXZ2tgwaNEiaNGliUn/79u3i5OSkfmLPf0PyU6dOibu7u3okw1K2mntj7ao6/5z7qjv3IhVj/i3BkFfJGDei//73vxIYGCg6nU4CAgJk4sSJEhkZKadOnVLv33P27Fnp1q2buLm5qYfRLdnY8/LyZNeuXfLmm2/KxYsXC13mzp07kpiYKJs2bZIxY8aIj4+PKIoiS5YsEZHi7230IAaDQWbNmiWPPPJIkfcoSktLkzZt2oi3t7fk5uZKdHS0uLq6yuzZsy2un5OTIytWrFDPsTMG5qSkJBk/fnyBm5KK/O8w/6effmryHEv89ttv4u3tLYqiyODBgyUiIkKuXr1a6Nz+/PPP4ubmph5JtKT+4cOHZc6cOXL58uUil8nIyJDDhw/LkiVLJCAgwGpzLyKyYsUKadq0aZEXsty9e1e6d+8uTk5O8vfff0tMTIy4urrKnDlzLK6v1+vl66+/Vt9EjG8uKSkpsnDhQpO/6/1fMX300UfqOixlq7kXqbrzz7mvunMvUnHm31wMeZXY0aNHZfz48er5EcZPTu3atVOPoDk7O8v7778vItb9zbySrOv69evSu3dvURTFKiFT5F5w/f7779XfASzMihUrRFEUWbp0qcyaNUsURZGrV69apX5+xa0rNzdX3nnnHavWN/7dDxw4IF27dhU7OzupV6+eDBgwQFatWiVRUVFy7tw5MRgMsm/fPunYsaNUr17dan//kq7j7t270q9fP6vOfWpqquzfv19u3rxZ5DLGo6pTp06V6dOnl9ncFycnJ0fefvttzc19SddTleefc191516kbObfEgx5lVx2drYcOnRIli1bJgMHDpTg4GBp0KCBeHp6Su/eveXnn39WP0VY6+rO4hjrxcfHi7e3twQHB5f4udbw119/SfPmzaV+/frStm1b9Vw5S+vnP+civ8JuJSAiEhcXJwEBAdKzZ0+r1L9fSkqKrFixQrp27Sru7u5iZ2cnderUES8vL2nQoIHY2dlJjRo11E/T1ri6tqTLHD58WOrWrVvuc5+eni5PPfWUuLm5ScuWLaV9+/ZWq1+aud+/f780bdpUnn32WavVz6+8576k69Dq/HPuq+7ci1Ss+S8thrxK7P7Qdvv2bbly5YrcvXu30BtilreNGzeKvb29erKuNW7KXFxQNe5Qc+bMUW/1smHDBhEp/0Pm3bp1Ey8vL/U3gsuivl6vl4SEBNm0aZO899578uKLL0pAQIA8/vjjMnz4cNm3b5+6bHl+mvzhhx/koYceUs9XsfYNuQtjHJ/xvExFUWTjxo0iUv5z37FjR6lXr55ERESUWf2KOvciVXv+OfdVd+5Fymf+S4MhTwOK+qRgy0PEIiKnT5+Wf//73zb5JHPp0iVp166deHh4lPtOZrxnVVBQkMyYMaPc5iE7O1u9h1Zxv6db1q5cuSJbt261yTZ4/fp1CQsLE09Pz3Kf+7y8PDl16pQ8++yzsnDhwio59yJVc/459/dUxbkXsd38F0cRESmfH1AjKl/R0dG4ffs2nnvuufL9rUAAmZmZuH79Ojw9PeHu7l6i3/g1V1HrLsuaFV1CQgJu3LiBDh06IC8vz+zf6TSHXq/H3bt34eDgUOC3o62Nc184W80/5972qsq+X1IMeVRmqvqLTVXGua/aOP9VF+e+YmHII83iiw0REVVl5Xcck6icMeAREVFVxpBHREREpEEMeRqSl5dn6y4QERFRBcGQpyHGq4hsFfZsHTKren0iIqL8GPIqudzcXADAjh07EBUVBQDlesl4frYOmVW9vpHBYKiStVmf9bnts35VrV8UhrxKIP/Gc//F0A4ODgCAnj174umnn8aLL76I69evl1vfbB0yq3p9vV4PAPjhhx/w+eefIzs7u9zuB2jL2qzP+tz2Wb+q1i+Vcr75MpWB3Nxceffdd6Vp06aiKIoMHjxYUlNTrbb+/HcOL+ou3safknnhhRes/pNqVb1+SdSsWVMURZGnnnpKfvvttypTW+v1DQZDsXfOZ/2yqW/rsev1etavwvWthSGvgrp586bs2LFD3n77bZk2bZqsW7dOdu3aJQkJCXL37t1Cn2MwGGThwoVSs2ZNmTRpUrn1taxDJus/mF6vl2XLlkmXLl1EURTp0aOHXLlyRfO1tVq/ND8DyPrWrW/rsZcG61ft+iXFkFeBGF9gdu/eLR07dlSPDhn/eXh4SKdOnWTGjBkSFxenHmHKyclRf7swKytLPvnkE9m1a5dFfbF1yKzq9c39Ue///Oc/0qBBAxk4cGClrM36IpmZmfLrr7/Kp59+Kps3b5YbN26ISPG/Rc36lte39dgTExNl9uzZ0qNHD1mwYIFcvXrV5PGi+sH62qhfFhjyKhi9Xi/NmzcXLy8vWbhwoezbt082bNggS5culYEDB0qTJk1Ep9NJ48aNZdGiRerzrPFjyLYOmVW9fmFzaDAYiv2h7by8PJNg8vPPP0tcXFylqc36/9v2jh8/Li+++KLJdhceHi6///57kfWN2x7rm1e/oox9x44d8sgjj5jUf/7559Uaxu0sMzNT/X/Wr/z1yxpDXgVhfJP56quvxNHRUVavXl1gmZs3b8qhQ4fkgw8+kFatWqmHiK9fv26yHksCny1DJuvfq//CCy/Ixo0b1ReT/I+V5uukylSb9e+92XTr1k0cHBwkNDRUZsyYIc8995zodDoJDg4u86+CqnJ9W49dr9dL+/btpU6dOvL999/LoUOH5JVXXhFFUeTAgQOyc+dO6dWrlwQGBsrIkSPlyJEjrK+h+mWJIa+CMIaE1157TXx8fOTMmTMicu8o0f0BIjc3Vw4dOiR9+vQRRVFkwoQJVqtvq5DJ+vee880336ifIn18fOTNN9+UmJiYAsvr9Xr1U+TBgwdl8+bNkpmZWelqs/7/6n/99deiKIpMnDhRfezWrVsyYsQIURRFPvjggwLPuXTpknqkqbijjqxfsWrnX9f69evFxcVFPvzwQ/WxpKQkcXJykv79+0v16tWlbt268vDDD4uDg4M4OTnJ1q1bzarJ+hWnfnlgyKtA9Hq9jBkzRqpVq6aGvAedH6TX66VLly5Sv359ycjIsKh2RQmZVb3+Sy+9JIqiSKdOnUSn06mh4/HHH5eZM2fKyZMnCzx38ODBoiiK2ufKVJv1//d1Ubdu3aR9+/Zy6tQpEflfcEhNTZWgoCCpUaOGyQcKEZFFixaJTqeT8+fPs34lq52/fmhoqLRp00ZOnz6tPnb8+HHx8vKSxo0by8qVKyUvL09OnDgh06dPF0VRJCQkRO7cuWN2bda3ff3ywJBXQRjfaL7//nv1Cs37H8//dZHx5P93331XPDw8ZN++fRb3wZYhk/XvnevRpUsXadCggYiI3L59Wz766CNp3769yXkiISEh8tFHH0laWppcu3ZN2rRpI48++qiImP+1sS1rs/69o0YPP/ywDBo0yGSbM+7zxteFBQsWqI9duXJFunfvLv7+/qxvQX1bj/3vv/+Whg0byogRI0zqb9y4UXQ6naxYsaLAcwYMGCDu7u6SnJxsdl3Wrxj1yxpvhlxBKIqCvLw8dO/eHS+//DK+/PJLhIaGIiIiAllZWVAURb3Jrl6vh5OTEwwGA3Jzc5GTk4PmzZtbVF9EYGdnh06dOuH27duYP38+AMDe3l59PP8vORhv/tipUydkZGTg2LFjrG+hlJQUpKSkoHr16gAANzc3vPnmm4iLi8PZs2fx7rvvolGjRoiOjsaoUaPg6+uL3r1748iRIxg8eDAA8++6bsvarA8kJSUhJycH7u7usLe3V7c14z7fq1cvtG7dGh9++CGuXLkCADhx4gT27duHIUOGsL4F9W099tOnTyM7OxseHh7q6012djYOHToEEcHQoUMB3HsNysnJAQDUrl0b9vb2+PPPP82uy/oVo36Zs0WypILyH6X7448/pEePHqIoiri6usoLL7wgn376qZw4ccLkOdu3b5f69etLt27dCqzD3D5kZGRIv379RFEU6datm+zYsaPAIWnjpx29Xi8TJ04UFxcXq9wXrqrXv3XrlsydO1c++eQTdS5zc3MLHCWIjY2V4cOHS/Xq1dUjTCW91UNFrM36IufPnxd7e3sZPny4iBS+L3/33XeiKIp89tlnYjAY5N133xVFUdSbb7O+efVtPfZTp05Jnz591Cvyja9DH3/8scybN09ETM/5y8nJkYEDB0qtWrXk1q1bZtdl/YpRv6wx5FVg69atk3bt2qlvJvXr15e2bdtK//79pVu3buLi4iL+/v4SFRUlIuaf/Cti+5DJ+veem5GRUegLh8FgKPDV8cGDB8Xd3V2eeeYZi+rbsjbr/++50dHR8p///KfIwJCZmSnNmjWTdu3aydGjR6V9+/YSFBTE+hbUt/XYjfX++uuvQl+/jafl5L+g69SpUxIYGCghISGsX8nrlweGvArggw8+UK/WMxgMJhvN9evX5eeff5ZRo0ZJQECAKIoiDg4O4uPjI926dZOjR4+WWb/KM2SyfskZt5UPP/xQFEWRr7/+utzq27I264usXLlSvX+XnZ2drF27lvXLqb6tx24MGR988IE4OzvLxo0bWb8K1TcXQ56NRUVFib29vWzatOmByxk3sKSkJPnll1/k2rVr6tEFSz9J2Dpksr5p/ZK4ffu2hISEiKIoFs2/LWuzvmn9krxZpKSkiJ+fnzg6OoqbmxvrW2nbt/XYS7quU6dOyaOPPirt27e3+N6crG/b+uWFIc+GDAaD5OTkyGuvvSZubm4PDBsihZ/3YemGZuuQyfolq38/g8Egu3fvlpUrV4qIeT/FZcvarG9+/QULFqhHlETMP5JQletXxrHn5OTIsGHDxMnJST2KZO5rD+vbtn55YsirAC5fvixdunQRJycnmThxoqSlpZk8bjAY1JBhzU8Ptg6ZrP/g+mX5SdGWtVnfsvq5ubny1VdfFbinG+tX/NqW1he5d6FIVlaWiJj3+sP6tq1f3hjyKgi9Xq/eXb1p06aycuVKOXfuXIHl8h81sNa5ALYKmaxfsvrm/opGRa/N+qzPbb/k9a3dF9a3bf3ywpBXARjD2uXLl2XChAlib28v9vb20rVrV1m0aJHs2rVLLl++XOhzjVf/WKMPtgqZrG9efXO/JqxItVmf9bnts35VrV8eGPIqoBMnTsjw4cPFy8tLFEURLy8veeKJJyQsLEzGjh0rCxculLffflveeustGTJkiHz77bcW1bN1yGR929WvymNn/apdvyqPnfVtX7+8KCIitr4hM90j90I3dDodbt++jePHj+PQoUPYt28fDhw4gBs3bsDJyQl6vR4PPfQQvLy80Lx5cyxevBgNGza0Wj9+++03/Pvf/8YPP/yA69evo3bt2vDx8UGtWrXw6KOPol69erh27Rqys7ORmZmJsLAwvPjii6yvgfpVeeysX7XrV+Wxs77t65cVhrwKTq/XQ0Tg4OCAs2fPIjU1FU2bNkVqaioaNWoEOzs7q9WydchkfdvVr8pjZ/2qXb8qj531bV+/rDHkVWIiAkVRyrRGeYZM1q9Y9avy2Fm/atevymNnfdvXtyaGPDJbeYRM1q+Y9avy2Fm/atevymNnfdvXLy2GPCIiIiIN0tm6A0RERERkfQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBr0/wDsLltUXM2+MwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHWCAYAAAALq58HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUZUlEQVR4nO3deVxUZfs/8M8ZdtlUkkRF3FDSLDXRFAOxxK1cnla1UivN0nxcMrfMhVxzK/N5TC3XbFXra7ngArg/rrj0mOKSUkDuIKjAzFy/P/zNeRgWgZmBGQ6f9+vF66X3uedc9zX3gbnmnnPOKCIiICIiIiJN0dl7AERERERkeyzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINcrb3AMo7o9GI5ORkeHt7Q1EUew+HiIiINE5EcPv2bdSoUQM6XeHrdSzyrJScnIzAwEB7D4OIiIgqmKSkJNSqVavQ7SzyrOTt7Q3g/hPt4+Nj59EQERGR1qWnpyMwMFCtQQrDIs9Kpo9ofXx8WOQRERFRmSnqNDFeeEFERESkQQ5Z5IkI1q9fj8jISAQEBKBSpUpo1KgR3n77bVy4cCFf//T0dIwcORJBQUFwc3NDnTp1MHr0aGRkZBS4f6PRiIULF6Jp06bw8PBAtWrV0Lt37wL3TURERFQeOWSR9/777+P555/HmTNn0LNnT7z33nuoW7culi5dimbNmuHUqVNq38zMTERERGD+/PkICQnBiBEj0KhRI8yZMwcdOnTAvXv38u3/7bffxrBhwyAiGDZsGDp37oz169cjNDQUiYmJZZkqERER2VmdOnWgKEq+nyFDhpj1ExF06dIFiqLgp59+UttXrFhR4OMVRcGVK1fKOBvzATuUlJQU0el0EhQUJLdu3TLbNm/ePAEgAwYMUNs++ugjASBjxowx6ztmzBgBINOnTzdr37lzpwCQ8PBwycrKUts3bdokACQqKqpE401LSxMAkpaWVqLHERERkWO4cuWKpKSkqD/btm0TABIbG2vWb968edKlSxcBIBs2bFDb79y5Y/b4lJQU6dSpk0RERJTKeItbezjcSt4ff/wBo9GIsLAw+Pr6mm179tlnAQBXr14FcL+iXrZsGby8vDBx4kSzvhMnToSXlxeWLVtm1r506VIAQHR0NFxdXdX2Ll26oH379oiJicHly5dtnhcRERE5pmrVqqF69erqzy+//IL69esjIiJC7ZOQkIC5c+fiq6++yvd4Dw8Ps8c7OTlh586dePPNN8syjXwcrsgLDg6Gq6sr9u7di/T0dLNtv/zyCwDg6aefBgAkJiYiOTkZYWFh8PT0NOvr6emJsLAwXLhwAUlJSWp7XFycui2vTp06AQDi4+NtmhMRERGVD9nZ2VizZg3eeOMN9erVO3fuoE+fPli0aBGqV69e5D5WrVqFSpUq4YUXXijt4T6Qw91Cxc/PDzNnzsSoUaMQEhKCHj16wMfHB8ePH8fOnTvx7rvvYujQoQCgnj8XHBxc4L6Cg4OxdetWJCYmIjAwEJmZmUhJScGjjz4KJyenAvvn3m9BsrKykJWVpf7fVIjm5OQgJycHAKDT6eDk5ASDwQCj0aj2NbXr9XqIiNru5OQEnU5XaLtpvybOzvenTa/XF6vdxcUFRqMRBoNBbVMUBc7OzoW2FzZ25sScmBNzYk7MScs5/fjjj7h16xb69u2LnJwcODs7Y/jw4XjyySfRtWtXNWcRgYgUmNOXX36JV155Bc7OzsjJySmVnIrD4Yo8ABgxYgRq1qyJt956C4sXL1bb27Vrhz59+qgHS1paGgDk+1jXxHTfOlO/kvYvyIwZMzBlypR87TExMahUqRIAoHbt2mjevDlOnDhh9tFvo0aNEBISgoMHD6ofOQNAs2bNEBQUhF27duH27dtqe5s2beDv74+YmBizCY2MjISHhwc2bdpkNoauXbvi7t27iI2NVducnZ3RrVs3XLt2Dfv371fbvb290aFDByQlJSEhIUFtr1atGtq2bYvExEScOXNGbWdOzIk5MSfmxJwqQk5z5sxB8+bNkZCQgISEBHXc0dHRZnkZDAbcvn07X05Vq1bF6dOn8eabb6r9bZ3TkSNHUByK5C5jHcTUqVPx8ccfY+rUqXj11VdRuXJlJCQkYMSIEUhISMC6devQvXt3rF27Fn379sWECRPw8ccf59vPhAkTMH36dKxfvx69evVCcnIyatasibCwMOzZsydf/23btiEqKgrDhg3Dp59+WuDYClrJCwwMxLVr19Qike+UmBNzYk7MiTkxp/KXU1JSEurVq4fvv/8e3bt3B3D/jh8LFy40+45Yg8EAnU6Hp556Ctu2bTPLafDgwTh69CgOHjxYajnduHEDfn5+SEtLe+AXMTjcSt727dsxadIkjBgxAmPHjlXb27Vrh40bN6JevXoYNWoUunfvrq7IFbbyZvoo1dSvpP0L4ubmBjc3t3ztLi4ucHFxMWtzcnIq8GNh08Fe3Pa8+7WkXafTFfglxoW1FzZ25sScStrOnJgTwJwKG2NJ25lT6ea0fPly+Pv7o0ePHur2cePGYeDAgWb9mjZtivnz5+O5554zyykjIwPff/89ZsyYUaJcbZVTvn7F6lWGNm/eDOD+km9e1atXR0hICI4dO4aMjIwiz6HLe86ep6cnAgICcPHiRRgMhnxPXFHn+BEREZE2GY1GLF++HP369TMrokxXzOZVu3Zt1K1b16ztu+++g16vx6uvvlrq4y0Oh7u6Njs7GwDMPj/P7erVq9DpdHBxcUFwcDBq1KiBvXv3IjMz06xfZmYm9u7di7p16yIwMFBtj4iIULfltXXrVgBAeHi4rdIhIiKicmD79u24fPky3njjDYv38eWXX+If//gHKleubLuBWcHhijzTrU3mzZuX72PVxYsX488//0SbNm3g5uYGRVHw1ltvISMjA9HR0WZ9o6OjkZGRkW+JddCgQQDu30fPVFAC91cQ4+LiEBUVhaCgoNJIjYiIiBxUVFQURAQNGzYssq+IoGfPnvna9+3bh6+//roURmcZh7vwwmAwoEOHDti1axf8/f3RvXt3VK5cGUePHsXOnTvh4eGBuLg4tGrVCsD9FbuwsDAcP34cUVFRaNGiBY4ePYqYmBiEhoYiPj4eHh4eZjEGDhyIZcuWoUmTJujWrRtSUlLw3XffwcvLC/v37y/WBJukp6fD19e3yJMfiYiIiGyhuLWHwxV5wP0rWOfPn4/vv/8eZ86cQXZ2Nh5++GFERkZi/PjxeOSRR8z6p6WlYfLkyVi3bh1SU1MREBCAF198EZMmTYK3t3e+/RuNRnz++edYsmQJzp07By8vLzzzzDOYNm0a6tevX6KxssgjIiKislSui7zyhEUeERERlaXi1h4Od04eEREREVmPRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBzvYeABEREZEjGbjAuscvHW6LUViPK3lEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBDl3kbdiwAR07doSfnx/c3d1Rt25d9O7dG0lJSWb90tPTMXLkSAQFBcHNzQ116tTB6NGjkZGRUeB+jUYjFi5ciKZNm8LDwwPVqlVD7969ceHChbJIi4iIiKjUOdt7AAUREQwePBhLlixB/fr18corr8Db2xvJycmIj4/HpUuXEBgYCADIzMxEREQEEhISEBUVhd69e+PYsWOYM2cO4uPjsWvXLri7u5vt/+2338ayZcvQpEkTDBs2DMnJyfj+++8RExODAwcOIDg42B5pExEREdmMQxZ5n332GZYsWYJ3330Xn332GZycnMy26/V69d+zZ89GQkICxowZg5kzZ6rtY8eOxaxZszB//nyMGzdObY+NjcWyZcsQHh6Obdu2wdXVFQDQp08fdO3aFUOHDsXWrVtLOUMiIiKi0qWIiNh7ELndvXsXNWvWRJUqVXDmzBk4Oxdeh4oIatWqhfT0dKSmpsLT01PdlpmZierVq8Pf3x/nz59X2/v06YNvvvkG8fHxCA8PN9tfZGQk4uLicOnSJdSuXbtY401PT4evry/S0tLg4+NTwmyJiIjI0QxcYN3jlw63xSgKV9zaw+HOyYuJicHNmzfRs2dPGAwGrF+/HjNnzsTixYtx7tw5s76JiYlITk5GWFiYWYEHAJ6enggLC8OFCxfMzuGLi4tTt+XVqVMnAEB8fHwpZEZERERUdhzu49ojR44AAJycnPDYY4/h7Nmz6jadTocRI0Zgzpw5AO4XeQAKPYcuODgYW7duRWJiIgIDA5GZmYmUlBQ8+uij+T4Czr0f036JiIiIyiuHK/KuXLkCAJg3bx5atGiBgwcP4pFHHsGxY8cwaNAgzJ07F/Xr18c777yDtLQ0AICvr2+B+zItYZr6lbR/QbKyspCVlaX+Pz09HQCQk5ODnJwcAPeLUScnJxgMBhiNRrWvqV2v1yP3p+ROTk7Q6XSFtpv2a2L6CDv3uYkPandxcYHRaITBYFDbFEWBs7Nzoe2FjZ05MSfmxJyYE3PSfk4usEZZ5FQcDlfkmZJxdXXFTz/9hBo1agAAnnrqKfzwww94/PHHMXfuXLzzzjt2Gd+MGTMwZcqUfO0xMTGoVKkSAKB27dpo3rw5Tpw4gcuXL6t9GjVqhJCQEBw8eBBXr15V25s1a4agoCDs2rULt2/fVtvbtGkDf39/xMTEmE1oZGQkPDw8sGnTJrMxdO3aFXfv3kVsbKza5uzsjG7duuHatWvYv3+/2u7t7Y0OHTogKSkJCQkJanu1atXQtm1bJCYm4syZM2o7c2JOzIk5MSfmVFFyArrBGqWdk+lTz6I43IUXo0ePxpw5c/DUU09h165d+bYHBwfj3LlzuHnzJvbu3Ytnn30WQ4cOxcKFC/P1fe+99/D5559jx44d6NChAzIzM+Hl5YVHH30UJ0+ezNd/3bp1eOGFFzBx4kRMnTq1wPEVtJIXGBiIa9euqSuBfKfEnJgTc2JOzIk5ld+c3l1k3UreF8NKN6cbN27Az8+vyAsvHG4lr1GjRgCAypUrF7jd1H737t0iz6HLe86ep6cnAgICcPHiRRgMhnzn5RV1jh8AuLm5wc3NLV+7i4sLXFzMDwonJ6cCz/0r7Irhwtrz7teSdp1OB50u/3U2hbUXNnbmxJxK2s6cmBPAnAobY0nbmZP9cioJe+WUL16xepWhyMhIAMDp06fzbcvJycG5c+fg6emJatWqITg4GDVq1MDevXuRmZlp1jczMxN79+5F3bp11RsnA0BERIS6LS/T/fHy3lqFiIiIqLxxuCKvfv36iIqKwrlz57Bs2TKzbTNnzsStW7fQq1cvODs7Q1EUvPXWW8jIyEB0dLRZ3+joaGRkZGDgwIFm7YMGDQIATJw4EdnZ2Wr75s2bERcXh6ioKAQFBZVSdkRERERlw+HOyQOA8+fPo23btrhy5Qq6deuGkJAQHDt2DDt37kRQUBAOHDiA6tWrA7i/YhcWFobjx48jKioKLVq0wNGjRxETE4PQ0FDEx8fDw8PDbP8DBw5Uv9asW7duSElJwXfffQcvLy/s378fDRs2LPZYeTNkIiIibeHNkEtR/fr1cfjwYfTv3x9HjhzBZ599hsTERAwZMgQHDx5UCzzg/nl28fHxGD58OE6fPo25c+fi999/x6hRo7Bjx458BR4AfPHFF/j0008BAJ9++ik2bdqEXr164eDBgyUq8IiIiIgclUOu5JUnXMkjIiLSFq7kEREREZHDYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBpkcZG3a9cuXL58+YF9kpKSsGvXLktDEBEREZGFLC7yIiMjsWLFigf2WbVqFSIjIy0NQUREREQWsrjIE5Ei+xiNRiiKYmkIIiIiIrJQqZ6Tl5iYCF9f39IMQUREREQFcC5J5zfeeMPs/z/99BP++OOPfP0MBoN6Pl6XLl2sGiARERERlVyJirzc5+ApioKEhAQkJCQU2FdRFISGhmL+/PnWjI+IiIiILFCiIu/ixYsA7p+PV69ePQwfPhz//Oc/8/VzcnJClSpV4OnpaZtREhEREVGJlKjICwoKUv+9fPlyNG/e3KyNiIiIiBxDiYq83Pr162fLcRARERGRDVlc5JkcPHgQhw4dwq1bt2AwGPJtVxQFEydOtDYMEREREZWAxUXejRs30LNnT+zdu/eB98xjkUdERERU9iwu8kaOHIk9e/agffv26NevH2rVqgVnZ6sXBomIiIjIBiyuyn755Re0atUKO3bs4LdaEBERETkYi7/x4u7duwgPD2eBR0REROSALC7ymjVrVuC3XRARERGR/Vlc5E2aNAn/93//hwMHDthyPERERERkAxafk5eamopu3bohIiICffv2RYsWLeDj41Ng39dff93iARIRERFRySnyoPufPIBOp4OiKGa3T8l7fp6IQFGUAu+fpxXp6enw9fVFWlpaoUUuERERlR8DF1j3+KXDbTGKwhW39rB4JW/58uWWPpSIiIiIShm/1oyIiIhIgyy+8IKIiIiIHJfFK3mXL18udt/atWtbGoaIiIiILGBxkVenTp1i3QhZURTo9XpLwxARERGRBSwu8l5//fUCi7y0tDQcP34cFy9eREREBOrUqWPN+IiIiIjIAhYXeStWrCh0m4hg7ty5mD17Nr788ktLQxARERGRhUrlwgtFUfD++++jSZMmGD16tNX7mzVrFhRFgaIoBX7DRnp6OkaOHImgoCC4ubmhTp06GD16NDIyMgrcn9FoxMKFC9G0aVN4eHigWrVq6N27Ny5cuGD1WImIiIgcQaleXduyZUvs3LnTqn2cOnUKkyZNgqenZ4HbMzMzERERgfnz5yMkJAQjRoxAo0aNMGfOHHTo0AH37t3L95i3334bw4YNg4hg2LBh6Ny5M9avX4/Q0FAkJiZaNV4iIiIiR1CqRd758+etuugiJycH/fr1Q7NmzdCrV68C+8yePRsJCQkYM2YMtm7dipkzZ2Lr1q0YM2YMDh06hPnz55v1j42NxbJlyxAeHo6jR49i1qxZWL16NX766SfcuHEDQ4cOtXi8RERERI7C5kWe0WhEUlISoqOj8fPPP6NNmzYW72vatGn47bff8NVXX8HJySnfdhHBsmXL4OXlhYkTJ5ptmzhxIry8vLBs2TKz9qVLlwIAoqOj4erqqrZ36dIF7du3R0xMTIluD0NERETkiCwu8nQ6HZycnPL9uLi4oE6dOpg0aRIqV66MuXPnWrT/o0ePYtq0aZg0aRIaN25cYJ/ExEQkJycjLCws38e5np6eCAsLw4ULF5CUlKS2x8XFqdvy6tSpEwAgPj7eojETEREROQqLr64NDw8v8BYqOp0OVapUQWhoKAYMGAB/f/8S7zsrKwuvv/46mjVrhg8++KDQfqbz54KDgwvcHhwcjK1btyIxMRGBgYHIzMxESkoKHn300QJXBk37edB5eVlZWcjKylL/n56eDuD+R8s5OTkA/lcAGwwGGI1Gta+pXa/XQ0TUdicnJ+h0ukLbTfs1cXa+P215PwovrN3FxQVGoxEGg0FtUxQFzs7OhbYXNnbmxJyYE3NiTsxJ+zm5wBplkVNxWFzkxcXFWfrQIn300UdITEzEkSNHCizGTNLS0gAAvr6+BW738fEx61fS/gWZMWMGpkyZkq89JiYGlSpVAnD/Gz6aN2+OEydOmH3026hRI4SEhODgwYO4evWq2t6sWTMEBQVh165duH37ttrepk0b+Pv7IyYmxmxCIyMj4eHhgU2bNpmNoWvXrrh79y5iY2PVNmdnZ3Tr1g3Xrl3D/v371XZvb2906NABSUlJSEhIUNurVauGtm3bIjExEWfOnFHbmRNzYk7MiTkxp4qSE9AN1ijtnI4cOVKscSiSu4x1APv370e7du0wefJks/Ps+vfvj5UrV2L//v148sknAQBr165F3759MWHCBHz88cf59jVhwgRMnz4d69evR69evZCcnIyaNWsiLCwMe/bsydd/27ZtiIqKwrBhw/Dpp58WOL6CVvICAwNx7do1tUjkOyXmxJyYE3NiTsyp/Ob07iLrVvK+GFa6Od24cQN+fn5IS0tTa4+CWLySl9vevXuRkJCA9PR0+Pj4oFmzZgWe81YUvV6Pfv364bHHHsPYsWOL7G9akSts5c30UaqpX0n7F8TNzQ1ubm752l1cXODiYn5QmM5TzMt0sBe3Pe9+LWnX6XTQ6fKfgllYe2FjZ07MqaTtzIk5AcypsDGWtJ052S+nkrBXTvn6FatXIfbt24cBAwbg3LlzAO5f7Wo6Ty84OBjLly8v0dW1GRkZ6vlwua98zc20vw0bNqgXZBR2Dl3ec/Y8PT0REBCAixcvwmAw5HviijrHj4iIiKi8sLjI++233xAVFYU7d+6gY8eOiIyMREBAAFJTUxEbG4uYmBh06tQJBw4cKPTq2Lzc3Nzw5ptvFrht165dSExMRPfu3VGtWjXUqVMHwcHBqFGjBvbu3YvMzEyzK2wzMzOxd+9e1K1bF4GBgWp7REQEvv32W+zduxfh4eFmMbZu3QoA+dqJiIiIyhuLi7ypU6ciOzsbmzZtQufOnc22jRkzBlu2bEH37t0xdepUfPvtt8Xap4eHR7772pn0798fiYmJGDdunHpOHgC89dZbmDp1KqKjozFz5ky1PTo6GhkZGRg/frzZfgYNGoRvv/0WEydOxLZt29QVw82bNyMuLg5RUVEICgoq1niJiIiIHJVVV9e+8MIL+Qo8k86dO+OFF17Ajh07LB5ccXzwwQf4+eefMWvWLBw7dgwtWrTA0aNHERMTg9DQUAwfPtysf2RkJN566y0sW7YMLVq0QLdu3ZCSkoLvvvsOVatWxcKFC0t1vERERERlweKbIaelpaFu3boP7FO3bt0H3o7EFjw9PREfH4/hw4fj9OnTmDt3Ln7//XeMGjUKO3bsgIeHR77HfPHFF+rVs59++ik2bdqEXr164eDBg2jYsGGpjpeIiIioLFh8C5V69eqhbt26D1ype+aZZ3DhwgVcuHDB4gE6uvT0dPj6+hZ5GTMRERGVDwMXWPf4pcNtMYrCFbf2sHglr3v37oiLi8PEiRNx7949s2337t3DpEmTEBsbix49elgagoiIiIgsZPFK3vXr19G6dWtcvHgRfn5+aNWqFR5++GH8/fffOHToEK5evYp69erh4MGDqFq1qq3H7TC4kkdERKQtWlnJs/jCCz8/Pxw4cAAffPABvv32W7OvMHF3d8eAAQMwa9YsTRd4RERERI7KqpshP/TQQ/jqq6/wxRdf4Pfff1e/8SIkJMQmd4wmIiIiIsuUuMibNm0aMjMzMWXKFLWQc3FxQdOmTdU+2dnZmDBhAry9vYv19WREREREZFsluvBi+/bt+Oijj+Dn5/fAlTpXV1f4+flhwoQJiI2NtXqQRERERFQyJSryVq1ahSpVqmDo0KFF9h0yZAiqVq2K5cuXWzw4IiIiIrJMiYq8ffv24ZlnnoGbm1uRfd3c3PDMM89g7969Fg+OiIiIiCxToiIvOTkZ9erVK3b/unXrIiUlpcSDIiIiIiLrlKjI0+l0yMnJKXb/nJwc6HQW32+ZiIiIiCxUogqsRo0aOHXqVLH7nzp1CjVr1izxoIiIiIjIOiUq8p566ins3LkTf/zxR5F9//jjD+zcuRPh4eGWjo2IiIiILFSiIm/IkCHIycnBCy+8gGvXrhXa7/r163jxxReh1+vxzjvvWD1IIiIiIiqZEt0MuUWLFhg+fDgWLFiAxo0bY/DgwYiMjEStWrUAAH/99Rd27NiBJUuW4OrVqxg5ciRatGhRKgMnIiIiosKV+Bsv5s6dC3d3d3zyySeYNm0apk2bZrZdRODk5IRx48bh448/ttlAiYiIiKj4SlzkKYqC6dOn480338Ty5cuxb98+pKamAgCqV6+OsLAw9O/fH/Xr17f5YImIiIioeEpc5JnUr1+fK3VEREREDoo3sSMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQQ5X5P31119YsGABoqKiULt2bbi6uqJ69ep4/vnn8Z///KfAx6Snp2PkyJEICgqCm5sb6tSpg9GjRyMjI6PA/kajEQsXLkTTpk3h4eGBatWqoXfv3rhw4UJppkZERERUZhyuyFu4cCFGjBiBCxcuICoqCqNGjUK7du3w888/o23btvjuu+/M+mdmZiIiIgLz589HSEgIRowYgUaNGmHOnDno0KED7t27ly/G22+/jWHDhkFEMGzYMHTu3Bnr169HaGgoEhMTyypVIiIiolLjbO8B5NWqVSvExcUhIiLCrH337t14+umn8c4776Bnz55wc3MDAMyePRsJCQkYM2YMZs6cqfYfO3YsZs2ahfnz52PcuHFqe2xsLJYtW4bw8HBs27YNrq6uAIA+ffqga9euGDp0KLZu3VoGmRIRERGVHkVExN6DKK5OnTohJiYGhw4dQsuWLSEiqFWrFtLT05GamgpPT0+1b2ZmJqpXrw5/f3+cP39ebe/Tpw+++eYbxMfHIzw83Gz/kZGRiIuLw6VLl1C7du1ijSk9PR2+vr5IS0uDj4+PbRIlIiIiuxm4wLrHLx1ui1EUrri1h8N9XPsgLi4uAABn5/sLkImJiUhOTkZYWJhZgQcAnp6eCAsLw4ULF5CUlKS2x8XFqdvy6tSpEwAgPj6+tFIgIiIiKhMO93FtYS5fvozt27cjICAATZs2BQD1/Lng4OACHxMcHIytW7ciMTERgYGByMzMREpKCh599FE4OTkV2D/3fguSlZWFrKws9f/p6ekAgJycHOTk5AAAdDodnJycYDAYYDQa1b6mdr1ej9wLqE5OTtDpdIW2m/ZrYipy9Xp9sdpdXFxgNBphMBjUNkVR4OzsXGh7YWNnTsyJOTEn5sSctJ+TC6xRFjkVR7ko8nJycvDaa68hKysLs2bNUgu0tLQ0AICvr2+BjzMtYZr6lbR/QWbMmIEpU6bka4+JiUGlSpUAALVr10bz5s1x4sQJXL58We3TqFEjhISE4ODBg7h69ara3qxZMwQFBWHXrl24ffu22t6mTRv4+/sjJibGbEIjIyPh4eGBTZs2mY2ha9euuHv3LmJjY9U2Z2dndOvWDdeuXcP+/fvVdm9vb3To0AFJSUlISEhQ26tVq4a2bdsiMTERZ86cUduZE3NiTsyJOTGnipIT0A3WKO2cjhw5UqxxOPw5eUajEa+99hrWrl2LgQMHYsmSJeq2tWvXom/fvpgwYQI+/vjjfI+dMGECpk+fjvXr16NXr15ITk5GzZo1ERYWhj179uTrv23bNkRFRWHYsGH49NNPCxxPQSt5gYGBuHbtmlok8p0Sc2JOzIk5MSfmVH5zeneRdSt5Xwwr3Zxu3LgBPz+/Is/Jc+iVPKPRiDfeeANr167Fq6++isWLF5ttN63IFbbyZvoo1dSvpP0L4ubmpl7Zm5uLi4t6zqCJk5NTgR8Lmw724rbn3a8l7TqdDjpd/lMwC2svbOzMiTmVtJ05MSeAORU2xpK2Myf75VQS9sopX7xi9bIDo9GIAQMGYOXKlejduzdWrFiR74kp6hy6vOfseXp6IiAgABcvXjSrpAvrT0RERFReOWSRZyrwVq1ahZdffhmrV68u9EKJGjVqYO/evcjMzDTblpmZib1796Ju3boIDAxU2yMiItRteZnuj5f31ipERERE5Y3DFXmmj2hXrVqFF198EWvWrCmwwAPuf5b91ltvISMjA9HR0WbboqOjkZGRgYEDB5q1Dxo0CAAwceJEZGdnq+2bN29GXFwcoqKiEBQUZOOsiIiIiMqWw114MXnyZEyZMgVeXl745z//WeDnzj179kSzZs0A3F+xCwsLw/HjxxEVFYUWLVrg6NGjiImJQWhoKOLj4+Hh4WH2+IEDB2LZsmVo0qQJunXrhpSUFHz33Xfw8vLC/v370bBhw2KPlzdDJiIi0hat3AzZ4S68+OOPPwAAGRkZmDZtWoF96tSpoxZ5np6eiI+Px+TJk7Fu3TrExsYiICAAo0aNwqRJk/IVeADwxRdfoGnTpliyZAk+/fRTeHl5oVevXpg2bRrq169fWqkRERERlRmHW8krb7iSR0REpC1aWclzuHPyiIiIiMh6LPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlEREREGsQij4iIiEiDWOQRERERaRCLPCIiIiINYpFHREREpEEs8oiIiIg0iEUeERERkQaxyCMiIiLSIBZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQaxCKPiIiISINY5BERERFpEIs8IiIiIg1ikUdERESkQSzyiIiIiDSIRR4RERGRBrHIIyIiItIgFnlULDNmzEBoaCi8vb3h7++Pnj174syZMwX2FRF06dIFiqLgp59+KtuBloKKnDtQvPzbt28PRVHMfgYPHmynERMREcAij4opPj4eQ4YMwYEDB7Bt2zbk5OQgKioKmZmZ+fouWLAAiqLYYZSloyLnDhQ//4EDByIlJUX9mT17tp1GbFtFFbk3btzAe++9h0aNGsHDwwO1a9fGsGHDkJaWZsdRExGxyCs3irOasmTJErRv3x4+Pj5QFAW3bt2yWfwtW7agf//+aNKkCR5//HGsWLECly9fxpEjR8z6JSQkYO7cufjqq69sFtveKnLuQPHzr1SpEqpXr67++Pj42GnEtlVUkZucnIzk5GTMmTMHp06dwooVK7Blyxa8+eabdh45kXWK87pz7949DBkyBH5+fvDy8sLzzz+Pv//+204jprxY5JUTxVlNuXPnDjp37ozx48eX+nhMqxRVq1Y1i9+nTx8sWrQI1atXL/Ux2EtFzh0oOH8A+Prrr/HQQw/h0Ucfxbhx43Dnzh17DM/miipyH330Uaxbtw7PPfcc6tevjw4dOmDatGnYuHEj9Hq9nUdPZLnivO6MGDECGzduxA8//ID4+HgkJyfjH//4hx1HTbmxyCsnirOaMnz4cIwdOxZPPvlkqY7FaDRi+PDhCAsLw6OPPqq2jxgxAm3btkWPHj1sHnPXrl147rnnUKNGjULPdzt9+jS6d+8OX19feHp6IjQ0FJcvX7bpOOyRO+D4+ffp0wdr1qxBbGwsxo0bh9WrV+PVV1+1Scyics97LqDp55NPPrFJ/LwKK3Lz9vHx8YGzs7PV8ew99/Z+/u0Z397Pvb0V9bqTlpaGL7/8EvPmzUOHDh3wxBNPYPny5di3bx8OHDhg59ETwCKv3CrOC01pGTJkCE6dOoVvv/1Wbfu///s/7Ny5EwsWLCiVmJmZmXj88cexaNGiArefP38e7dq1Q0hICOLi4nDixAlMnDgR7u7uNh2HPXIHHDt/ABg0aBA6deqEpk2bom/fvli1ahU2bNiA8+fPWx2zqNxznweYkpKCr776Coqi4Pnnn7c6dl6FFbm5Xbt2DdHR0Rg0aJBNYtp77u39/Nszvr2fe0eT93XnyJEjyMnJwTPPPKP2CQkJQe3atbF//367jJHyELJKWlqaAJC0tLQyi2kwGKRbt24SFhZW4PbY2FgBIDdv3rR57CFDhkitWrXkwoULZu3//Oc/RVEUcXJyUn8AiE6nk4iICJuOAYBs2LDBrO3ll1+WV1991aZx8nKE3EUcL/+CZGRkCADZsmWLTcdQUO559ejRQzp06GDTuCaDBw+WoKAgSUpKKnB7WlqatGrVSjp37izZ2dk2j2+vuX9Q/LxK8/m3Z3x7PPfx8fHy7LPPSkBAQIHxJ02aJI0aNZJKlSpJ5cqV5emnn5YDBw6UylgKet35+uuvxdXVNV/f0NBQ+eCDD6yOac/835pv3U9pK27twZW8cqiw1ZTSJCIYOnQoNmzYgJ07d6Ju3bpm28eOHYsTJ04gISFB/QGA+fPnY/ny5aU6NqPRiF9//RUNGzZEp06d4O/vj9atW9vsFiaOnDtg//wLYnoOAgICbDKG4vr777/x66+/lspFD0OHDsUvv/yC2NhY1KpVK9/227dvo3PnzvD29saGDRvg4uJi8zHkVdpzX1Kl+fw7WvyyeO6LWkls2LAhPv/8c5w8eRJ79uxBnTp1EBUVhatXr9psDCb2eN1xpPzLrdKvN7WtrFfyirOaUhoree+88474+vpKXFycpKSkqD937twp9DEoxrtuS+Tdb0pKigCQSpUqybx58+TYsWMyY8YMURRF4uLirI7nSLkXtG9753/u3DmZOnWqHD58WC5evCg///yz1KtXT8LDw62OnVdRz+usWbOkSpUqcvfuXZvFNBqNMmTIEKlRo4acPXu2wD5paWny5JNPSkREhGRmZtosdl5lPfdFxc+rNJ5/R4nv6M+9yP9ej7Zv327T2IW97uzYsaPA15ratWvLvHnzbDqGss5fKyt51p8VTGVCRPDee+9hw4YNiIuLK9Zqii39+9//BnD/pre5LV++HP379y/TseRlNBoBAD169MCIESMAAM2aNcO+ffuwePFiREREWLV/R84dsH/+rq6u2L59OxYsWIDMzEwEBgbi+eefx4cffmhVXEt89dVX6Nu3r03PiRoyZAjWrl2Ln3/+Gd7e3khNTQUA+Pr6wsPDA+np6YiKisKdO3ewZs0apKenIz09HQBQrVo1ODk52WwseZX23JdUaTz/jhrf0Z777OxsLFmyBL6+vnj88cdtss+iXneeeOIJuLi4YMeOHeo5kGfOnMHly5fRpk0bm4yhuEojfy1gkVdOFPVCAwCpqalITU3FuXPnAAAnT56Et7c3ateubfUFGiJSJo+xxEMPPQRnZ2c0btzYrP2RRx7Bnj17rN6/I+cO2D//wMBAxMfHWx3HWrt378aZM2fw3Xff2XS/RRW5R48exX/+8x8AQIMGDcz6XLx4EXXq1LHpeHIr7bkvidJ6/h01vqM897/88gteeeUV3LlzBwEBAdi2bRseeughm+y7qNcdX19fvPnmmxg5ciSqVq0KHx8fvPfee2jTpk2p3+XBpDTz1wIWeeVEcVaTFi9ejClTpqjbwsPD8/XRIldXV4SGhua7SefZs2cRFBRkp1GVnYqev8mXX36JJ554wubv4osqctu3b1+mRX1ujjT3pfX8O2p8R3nuIyMjkZCQgGvXrmHp0qV46aWX8J///Af+/v5W77s4rzvz58+HTqfD888/j6ysLHTq1An/+te/rI5dXKWZvxawyCsnivMiMnnyZEyePLn0B2MHGRkZ6golcH+FJCEhAVWrVkXt2rUxevRovPzyywgPD0dkZCS2bNmCjRs3Ii4uzn6DtqGKnH9RuQNAeno6fvjhB8ydO9dewyw19p57ez//9oxv7+e+ODw9PdGgQQM0aNAATz75JIKDg/Hll19i3LhxVu+7OK877u7uWLRoUaEXR5S20sxfC1jkUbEMXGDd45cOt+7xhw8fRmRkpPr/kSNHAgD69euHFStWoFevXli8eDFmzJiBYcOGoVGjRli3bh3atWtnXWDYP3egYudfVO4A8O2330JE0Lt3b+uCOSB7zn1x4gOl+/zbM769n3tLGI1GZGVl2S2+vVX0/PNSxF6fM2hEeno6fH191Tvca5W9X+jtqSLnDjB/a/Iv77mTfeVeSWzevDnmzZuHyMhIVK1aFX5+fpg2bRq6d++OgIAAXLt2DYsWLcLatWtx5MgRNGnSxM6jt54983f0v3vFrT24kldOOPoBR0REtvWglcTFixfj999/x8qVK3Ht2jX4+fkhNDQUu3fvtkmB5wivOfbMXytY5BERETmgoi7qWb9+fRmOpuxV9PxtgUUeOTxHeEdpT8zfuseX5/ztnTvj2zc+kbUq7NeaHTp0CF27dkXlypXh6emJJ598Et9//729h0VERERkExVyJS82NhadOnWCu7s7XnnlFXh7e2PdunV4+eWXkZSUhFGjRtl7iEREVMFV5JXEipy7LVW4lTy9Xo+BAwdCp9Nh165dWLJkCebOnYvjx4+jYcOGGD9+PC5dumTvYRIRERFZpcIVeTt37sT58+fRp08fNGvWTG339fXF+PHjkZ2djZUrV9pvgEREREQ2UOGKPNOdyKOiovJt69SpEwA4xPdwEhEREVmjwhV5iYmJAIDg4OB826pXrw4vLy+1DxEREVF5VeEuvEhLSwNw/+PZgvj4+Kh9CpKVlWX2lSmmvjdu3EBOTg4AQKfTwcnJCQaDAUajUe1ratfr9Wb3/nFycoJOpyu0PScnB9n3XCzI9n9u3TLCYDCo/1cUBc7OzjAaC27PO3Zr41+/fv+5yZ1Tbs7O9w9FvV6frz37nmJV7Bs39AXmVNx5slXuJoXl6uLiUuB8ZN+z7tf0+vUcHnuw7Ni7H9/y44/HHo89wD7HHgCkp4PHXjk99oqapxs3bgAo+vuFK9zXmkVFRWHbtm1ITExEgwYN8m2vWbMmMjIyCi30Jk+ejClTppT2MImIiIgeKCkpCbVq1Sp0e4VbyTOt4BVWxKWnp6NKlSqFPn7cuHHqV6sA978M+caNG/Dz84OiWPeuy1Lp6ekIDAxEUlKSXb4/157xK3LujM9jj/EZn8d+xYsP3F/Bu337NmrUqPHAfhWuyDOdi5eYmIgnnnjCbFtqaioyMjLQqlWrQh/v5uYGNzc3s7bKlSvbfJyW8PHxsdsBZ+/4FTl3xuexx/iMX9FiM37hp53lVuEuvIiIiAAAxMTE5Nu2detWsz5ERERE5VWFK/Kefvpp1KtXD2vXrkVCQoLanpaWhunTp8PV1RWvv/66/QZIREREZAMV7uNaZ2dnLFu2DJ06dUJ4eLjZ15pdunQJc+bMQZ06dew9zBJxc3PDpEmT8n2MXBHiV+TcGZ/HHuMzPo/9ihe/JCrc1bUmBw8exKRJk7Bv3z7k5OSgadOmGDlyJF5++WV7D42IiIjIahW2yCMiIiLSsgp3Th4RERFRRcAij4iIiEiDWOQRERERaRCLPCIiIiINYpGnEabrZ+x1HY3pC5RFxC5jYHz7xM8dzx55V/T4gH2PPXvnb8/49s4d4NxX5PjFxatriYiIiDSowt0MWUvu3LkDRVFw9OhRKIqCu3fv4ubNm2jSpAlq1qwJFxcXuLq6wsnJqVTi37p1C3fv3sXevXvh6uqKK1euICsrC82bN4e3tzcqV66Mhx56CB4eHoyvsfh///03UlNTsWvXLri4uODPP/8EADz22GPw9PREjRo1ULdu3VL7XueKHt/ex56987dnfHvnzrmv2PFLTKjc6tGjh3h5eYmXl5coimL2ExAQIC+99JIsWrRIzp49qz7GYDDYLH5kZKQoiiKVKlXKF79KlSoSHh4uo0ePlh07dsitW7cYX0Px27RpI4qiSOXKlcXFxUV0Op0a293dXRo2bCgvvfSSrFy5Ui5evKjGNhqNjG8D9j727J2/PePbO3fOfcWOX1L8uLacun37NgYNGoRnnnkGOTk5cHd3h6+vLxISEnDu3DmcP38e58+fx/Xr11G/fn288cYbGD58uM3e3d25cwcff/wxIiIicOfOHVSuXBkeHh44duwY/vrrL5w9exYnTpzAuXPn8NBDD+GFF17AuHHjULNmTcYv5/GzsrKwatUqtGzZEnfu3EGNGjWQlZWF3377DTdu3MDZs2exf/9+HD58GDqdDp06dcL48eMRGhpqg8wZ397Hnr3zt2d8e+fOua/Y8S1il9KSSt2lS5dky5YtMmbMGHnkkUdEURRp3Lix/Pjjj2US/+rVq5KQkCD//ve/JSoqSn3n89lnn8mdO3dEREr1nQ3j2y/+nTt3JDU1VTZv3ixvvPGGVKlSRRRFkbFjx8rVq1dFxLYrC4xvzt7Hnr3zt2d8e+fOua/Y8QvCIq+cMh0oRqPR7N96vT5fv6NHj8rQoUNFURSpVauWbNy40abxTX80DAZDvgPYaDTKuXPnZObMmeLn5yfu7u6yePFiTcU3/buixDc937lfLHLPQ25XrlyRNWvWSLNmzURRFBk3bpxVsR0tfkHHYWnHt/ex50jPf1nH59xX3LnPG98e828JFnnlXO5fbr1eb3YQ5j3wjh49KmFhYeLq6irLly8vy2GKyP3Vxeeff14URZFJkybZZJ8leVda2vGLGktpxM89/zk5OWZjyTue0ohfXNevX5ehQ4eKk5OTvP7663L37l2r95k796Ke+9KIn5s94peXuRfR9vxz7h9My3PvCPGLwiKvHMp7UN27dy9fn9y/BLnf6R0+fFjat28v7u7usmnTptIdaAHxL126JH379hVFUWTNmjXlMn7eP7A3b960W3wRUU+uLqv4JZH7RScjI0M+/PBDURRFFixYYPH+csv9AlfW8a9fvy4pKSllGr88zb2Ituafc18yWpr7vPHtMf+W4i1UyiFFUWA0GrF27VokJCTg+vXryM7ORsuWLfHss88iODgYOt39+1wbjUYoigJFUQAATzzxBLZt24ZevXph165d6Ny5s7rNEiJS5ONNYwGA2rVrY82aNfD09ERCQgJ69+5ttr0kduzYgWPHjqFy5coIDg5GREREmcTX6XTIysrCqFGj8Mcff8DDwwPdu3fHa6+9lq+vwWCAoihqDFvFz87OxoIFC3Dq1ClcvnwZer0eTz31FCIjI9GsWTP4+/ur8XU6nTpHtnr+5f/fCLSox+Y+Njw9PREdHQ03NzdcunQJBoOhxLf3Me1v9erVOHnyJFxdXRESEoLnnnsOvr6+ZRL/1q1bePfdd3Hu3DmICHr06IFRo0blu6jJdKNa03Nki/iOMPdAxZx/zv19FXHuTfuz5/xbrExLSrKK6V3BH3/8IQMGDFAv2/b29ja7jD40NFSWLFlS4Aqf6Zy9xMREOXDggEXjyMzMVE/izT22opat9Xq9ZGdni4hIamqqJCQklCiuaf/Xrl2TqVOnml26XqNGDfnkk0/U/RfEYDCo7/6siX/x4kXp06ePKIoi1apVEw8PD3nooYdk/fr1at9z585JVlZWvn2Ynn9r4icmJkrPnj3Vk6qrVq1qNv8hISEyefJkuXLlis3im2LfunVL0tPT820rztybnvvMzEyz2/qUJH5ycrKMGDFCzdXZ2Vl8fHxk1KhRkpmZWejjc8+9NfHPnTsnzz33nCiKIk2aNBFfX1/x8PCQJUuWiMj91YVjx44VuMpiWlWxJr495j53/Io4/5z7ijv3uePba/6txSKvHDEdKO+88464urrK8OHDZe/evXLlyhXZt2+fREdHS/v27cXFxUUURZHg4GBZuXJlkcvaxWX6QzFt2jQZPHiwbNiwQS5cuJDvl7y0rt4y5W9a9n7mmWdk7ty5MmXKFKlTp44oiiJfffVVqY3BFH/EiBHi7u4uEyZMkN9++01+/vln8fPzk+7du8ulS5fkueeeE39/f6levboMHTrUZr/UpvgDBw4UT09PmTRpkly4cEFERI4fPy5Lly6V/v37S7169URRFPHw8JCZM2cW+bFOcZjmfsyYMdKxY0f5/PPPJSEhId9HSKV1PyhTnA8++EAURZEXX3xRVq9eLatWrZKwsDBRFEUmT54sIqU79++99574+PjIjBkz5Pr163LixAlp1KiRtG3bVv773//Kk08+KYqiiJOTk7zwwgty9OhRm8a3x9yLVOz559xX3LnPHd9e828tFnnljMFgEG9vb3nrrbcKXLXS6/USGxsrr732miiKIv7+/uptU0pysuqD4pveSVWtWlU6dOgg0dHRsn37dklNTc3XV0Tk77//lvHjx8uKFSssipl3n5UrV5Znn31Wrl27JiL3czlw4IAEBQVJrVq18hVVmZmZsnnzZotXLvPG9/Pzkz59+pit1L388stSs2ZNadWqlTRs2FAiIyPVYvu1115Tx2mL+D4+PoXOv8FgkCNHjsj48ePVFd6FCxeq26yN7eTkpP4ha9iwobz55puyZs0a9UUnd1+R++++33jjDfnkk0+sim3ap6+vr/Tq1UtdUdDr9XL69GkJDQ0VT09POXLkiIj877m+ffu2rF692mZXlFepUkVeffVVs5OnBw4cKD4+PtKsWTNp3bq19O7dW+rXry+KokhERMQDVxlKGt9ec2/aR0Wdf859xZ17U3x7zr81WOSVM7GxseLu7i7z588Xkf+9yyroMvp9+/ZJjRo15OGHH5ZTp05ZFdf0i7N9+3ZRFEU6duwor732mgQEBKgfl/7jH/+QhQsXyoEDByQtLU197MaNG8XNzU1Gjx6tjtXS+D/++KO4u7vL119/LSJidsuYTz/9VBRFkQkTJojI/07M3bt3r9SrV09mzJhhti9L4v/www/i5uamxjdtMxXV06dPV4vdmzdvSufOnUVRFPnhhx9KHLMge/bsEU9PT5k+fbqIPHj+L168KC1bthQ3NzfZtWuXxTFNue/cuVMURZEePXrI+PHjpWHDhqIoiri6ukrLli3l/fffl40bN5p9XPTrr7+KTqeTd999Vx2npfHXr18vHh4eBc79jz/+KIqiyKBBg0Tkf3O/b98+qV27tnz44Ydm+7Ik/o8//igeHh6yevVqdZvBYJCBAweqL6qmF4B79+6pp1TY6kp2e8y9SMWef859xZ373I+x9/xbg0VeOXP8+HHx8PCQDz74oNA+er1e/YVatWqVKIoiS5cutSqu6WA3FVIrV64UkfsF1Lx586RTp07i4+MjOp1OfZe3atUq+e9//6veo+/kyZMiYt0v+4gRI6Ru3bpy+PBhs3YRkaysLHnqqaekevXqcuPGDXXbggULRFEUOX78uNXx33nnHXnkkUfMluLPnz8vbdu2lVatWqltpj80W7duFScnJ5kzZ06JYxbk/PnzUrVqVXn11VcLHJ+I+R/+TZs2iZOTk8yePdvq2P/6179EURR1RfbSpUuyfv166devnzz88MOiKIr4+vrK008/LdOmTZM9e/bIkCFDRFEU9U2GNc/9mDFjJDAwUF2RzftH+5VXXhFXV1e5fPmy2mbLuR82bJg0aNBAPfZE7s9H69atJTQ0VO1regE6fPiwuLu7y0cffVTimAWx59yLVMz559zfVxHnPncce8+/NVjklTN37tyRxx57THx9feWbb74p8OIKkf8d0BcvXpTKlSvL0KFDrY6t1+tl2rRpotPp5PTp02p7dna2/Pnnn7J9+3b58MMPpVWrVuLq6iru7u7y+OOPi7e3tzzyyCMiYt1Hljk5OTJ48GDx9vbOd1GDqahauXKluqImInL58mXp3LmzBAcHWx3/3r170rNnTwkODjZ73tetWyeKosiXX34pIuZF9smTJ8XFxUVGjRplcdzcDAaDREREiIeHhyxcuLDAjwNy36gzKSlJAgICpH///lbHXbhwobi7u+c71+TevXuSmJgoS5culW7duomnp6e6uuvi4iKNGzdWx2UpvV4vI0aMEFdX13z3mTLlunXrVlEURUaMGCEi93O31dxnZWVJ//79pX79+mbxN2/eLG5ubuo79tz3qjx9+rR4e3urKxnWstfcm2JX1Pnn3FfcuRdxjPm3Bou8cmjbtm2i0+nEy8tLJk+eLKdOnSq02Nu8ebN4e3vn+3jXEkajUbZv3y7vvvuuXLp0qcA+d+7ckXPnzsm6detk+PDhEhgYKIqiyLx580Sk6HsbPYjBYJDo6Gh55JFHCr1HUVpamrRs2VJq1KghOTk5EhcXJ56envLxxx9bHT87O1sWLlyonmNnei6TkpJk1KhR+W5KKvK/Zf4vvvjC7DHWOHnypNSoUUMURZEBAwbI1q1b5e+//y7wD9mvv/4qXl5e6kqiNfEPHz4s06ZNkz///LPQPhkZGXL48GGZN2+ehISE2GzuRUQWLlwoDRs2LPRClnv37knnzp3Fzc1Nbt68KfHx8eLp6SnTpk2zOr5er5evv/5afRExvbikpqbK7NmzzZ7XvB8xLVq0SN2Htew19yIVd/459xV37kUcZ/4txSKvnDEdRL/88os0a9ZMdDqdhISEyJgxYyQmJkZOnz6tFkBnz56Vjh07ipeXl3quhK2uPirO0vfVq1elR48eoiiKzeKfPXtWfvzxR/V7AAuycOFCURRF5s+fL9HR0aIoivz99982iZ9bUfvKycmR0aNH2zS+6Xnfv3+/dOjQQZycnCQgIED69u0rS5YskdjYWDl//rwYDAbZvXu3tG3bVipXrmzT+S/OPu7duye9e/e26dzfuHFD9u3bJ9evXy+0j2lVdcKECTJp0qRSm/uiZGdny/vvv6+5uS/ufiry/HPuK+7ci5TO/FuDRV45dvToURk1apR6EqxpebxVq1bqx6Tu7u4ydepUEbHdVVZFMb1rSUhIkBo1akh4eLjN4hfHX3/9JU2aNJGaNWtKaGioeq6ctfFzn3ORW0G3EhAROXDggISEhEjXrl1tEj+v1NRUWbhwoXTo0EG8vb3FyclJHn74YfH395datWqJk5OTVKlSRX03bYura4vb5/Dhw1K9evUyn/v09HR56qmnxMvLSx5//HFp3bq1zeKXZO737dsnDRs2lGeffdZm8XMr67kv7j60Ov+c+4o79yKONf8lxSKvnMvKypJDhw7JggULpF+/fhIeHi61atUSPz8/6dGjh/z666/qAVrW7ya++eYbcXZ2Vk/WtcX9+orKwfQLNW3aNPVWL2vXrhWRsl8y79ixo/j7+6tfH1ca8fV6vSQmJsq6devko48+kpdeeklCQkLksccek0GDBsnu3bvVvmU5/z/99JNUqlRJPV/FVvdqfBBTfqbzMhVFkW+++UZEyn7u27ZtKwEBAbJ169ZSi++ocy9Sseefc19x516kbOa/JFjklWN5f3lv374tKSkpcu/evQLvel7Wfv/9d/n888/t8k7m8uXL0qpVK/H19S3zXzLTPavCwsJk8uTJZfZHNisrS72HVlHfp1vaUlJSZOPGjXb5mOLq1avSqVMn8fPzK/O5NxqNcvr0aXn22Wdl9uzZFXLuRSrm/HPu76uIcy9iv/kviiIiUjZfoEalxWg0Fvg9glKM75XVsri4ONy+fRvPPfdc2X5XIIDMzExcvXoVfn5+8Pb2LtW5KGzfFXn+ExMTce3aNbRp06bQ34/Sotfrce/ePbi4uMDNza1UY3HuC2av+efc219F+d0vLhZ5VGoq+h+bioxzX7Fx/isuzr1jYZFHmsU/NkREVJGV3TomURljgUdERBUZizwiIiIiDWKRR0RERKRBLPI0xGg0Mn4Fjk9ERJQbizwNMV0qbq9ig/HtG9/EYDBUyNiMz/g89hm/osYvDIu8ci4nJwcAsGXLFsTGxgJAmd4XiPHtG1+v1wMAfvrpJ3z55ZfIysoqs/sB2jM24zM+j33Gr6jxS6SMb75MFsh95+7C7qJt+iqXF1980ebfdsH49o1fHFWrVhVFUeSpp56SkydPVpjYWo9vMBiKvHM+45dOfHvnrtfrGb8Cx7cVFnkakJOTIx9++KE0bNhQFEWRAQMGyI0bNxi/gsTX6/WyYMECad++vSiKIl26dJGUlBTNx9Zq/JJ8DSDj2za+vXMvCcav2PGLi0Weg7p+/bps2bJF3n//fZk4caKsWrVKtm/fLomJiXLv3r0CH2MwGGT27NlStWpVGTt2LOOX4/iWfqn3999/L7Vq1ZJ+/fqVy9iML5KZmSn/+c9/5IsvvpD169fLtWvXRKToL5pnfOvj2zv3c+fOyccffyxdunSRWbNmyd9//222vbBxML424pcGFnkOxPQucseOHdK2bVv1I0DTj6+vr7Rr104mT54sBw4cUD9GzM7OVr+g+u7du/Lvf/9btm/fzvjlLH5Bf0AMBkORX7RtNBrNCpNff/1VDhw4UG5iM/7/jr3jx4/LSy+9ZHbcdevWTX777bdC45uOPca3LL6j5L5lyxZ55JFHzOI///zzagzTcZaZman+n/HLf/zSxiLPwej1emnSpIn4+/vL7NmzZffu3bJ27VqZP3++9OvXT+rXry86nU7q1asnc+bMUR9X1DtNxi8/8V988UX55ptv1D8mubeV5OOk8hSb8e+/2HTs2FFcXFwkKipKJk+eLM8995zodDoJDw8v9Y+CKnJ8e+eu1+uldevW8vDDD8uPP/4ohw4dkldffVUURZH9+/fLtm3bpHv37tKsWTMZMmSIHDlyhPE1FL80schzEKYiYfXq1eLq6irLli3L1+f69ety6NAh+eSTT6R58+bqeQBXr141248lBQfjO0b8b7/9Vn0XGRgYKO+++67Ex8fn66/X69V3kQcPHpT169dLZmZmuYvN+P+L//XXX4uiKDJmzBh1261bt2Tw4MGiKIp88skn+R5z+fJldaWpqFVHxnes2Ln3tWbNGvHw8JDPPvtM3ZaUlCRubm7Sp08fqVy5slSvXl0aNGggLi4u4ubmJhs3brQoJuM7TvyywCLPQZgOttdff10CAwPlzJkzInL/o8C8Lx45OTly6NAh6dmzpyiKIh988AHjayT+yy+/LIqiSLt27USn06lFx2OPPSZTpkyRU6dO5XvsgAEDRFEUdczlKTbj/+/joo4dO0rr1q3l9OnTIvK/wuHGjRsSFhYmVapUMXtDISIyZ84c0el0cuHCBcYvZ7Fzx4+KipKWLVvK77//rm47fvy4+Pv7S7169WTx4sViNBrlxIkTMmnSJFEURSIjI+XOnTsWx2Z8+8cvCyzyHIher5fhw4eLj4+P+qLxoJPA9Xq9tG/fXmrWrCkZGRmMX87jZ2ZmSvv27aVWrVoiInL79m1ZtGiRtG7d2uw8kcjISFm0aJGkpaXJlStXpGXLltK4cWMRsfxjY3vGZvz7q0YNGjSQ/v37mx1zphehH3/8URRFkVmzZqnbUlJSpHPnzhIcHMz4VsS3d+43b96UOnXqyODBg83if/PNN6LT6WThwoX5HtO3b1/x9vaW5ORki+MyvmPEL228GbKDEBE4OTmhXbt2uH37NmbOnAkAcHZ2Vrfn/iYF080X27Vrh4yMDBw7dozxy3F8AEhNTUVqaioqV64MAPDy8sK7776LAwcO4OzZs/jwww9Rt25dxMXFYejQoahduzZ69OiBI0eOYMCAAQAsv+u6PWMzPpCUlITs7Gx4e3vD2dlZPdZMN9bu3r07WrRogc8++wwpKSkAgBMnTmD37t144403GN+K+PbO/ffff0dWVhZ8fX3VvzdZWVk4dOgQRARvvfUWgPt/g7KzswEA1apVg7OzM/744w+L4zK+Y8QvbSzyHISiKDAajejcuTNeeeUVrFixAlFRUdi6dSvu3r0LRVHUPzp6vR5ubm4wGAzIyclBdnY2mjRpwvjlOD4A+Pn54fXXX8eQIUPUFxq9Xg8RQYMGDTB16lScP38ee/bswcCBA6EoCg4cOAAAaqFh6V3X7Rmb8QFPT08kJycjKyurwO0uLi4YO3YskpOT8euvv8JoNGL37t24c+cO3nzzTca3Ir69c69cuTJat26Njh07Arj/tYh6vR4NGjTA9OnT4e7uDoPBAEVR4OrqipycHNy8eRNOTk5o3LixxXEZ3zHil7qyXTikwuS+cu+///2vdOnSRRRFEU9PT3nxxRfliy++kBMnTpg9ZvPmzVKzZk3p2LFjvn0wfvmMn5GRIbdu3Spwe96Pjg8ePCje3t7yzDPPWBXfnrEZ/3+PjYuLk++//77Qj/4yMzOlUaNG0qpVKzl69Ki0bt1awsLCGN+K+PbO3RTvr7/+KvDiDdM9OXNf0HX69Glp1qyZREZGMn45j18WWOQ5sFWrVkmrVq3U84Fq1qwpoaGh0qdPH+nYsaN4eHhIcHCwxMbGiojlV3gxvmPGL4zpys7PPvtMFEWRr7/+uszi2zM244ssXrxYvX+Xk5OTrFy5kvHLKL69czcVGZ988om4u7vLN998w/gVKL6lWOQ5gE8++UR98TAYDGbvDK5evSq//vqrDB06VEJCQkRRFHFxcZHAwEDp2LGjHD16lPE1Fr84bt++LZGRkaIoilXvJO0Zm/HN4xfnxSI1NVWCgoLE1dVVvLy8GN9Gx769cy/uvk6fPi2NGzeW1q1bW31vTsa3b/yywiLPzmJjY8XZ2VnWrVv3wH6mAyopKUn27NkjV65cUT9CsuaPDeOXj/h5GQwG2bFjhyxevFhELPsqLnvGZnzL48+aNUtdURKxfCWhIscvj7lnZ2fLwIEDxc3NTV1FsvRvD+PbN35ZYpFnRwaDQbKzs+X1118XLy+vB64oiRR8mb417yYY37Hjl+Y7RXvGZnzr4ufk5Mjq1avz3dON8R0/trXxRUQuXLggd+/eFRHL/v4wvn3jlzUWeQ7gzz//lPbt24ubm5uMGTNG0tLSzLbnPvBK46BifMeOn/ukXy3FZnzG57Ff/Pi2Hgvj2zd+WWGR5yD0er36FToNGzaUxYsXy/nz5/P1y/3RkC1P+GT88hff0o8JHSk24zM+j33Gr6jxywKLPAdgKhb+/PNP+eCDD8TZ2VmcnZ2lQ4cOMmfOHNm+fbv8+eefBT7WdIk34zN+eYvN+IzPY5/xK2r8sqKIiNj7Xn1k7uTJk/j888/x008/4erVq6hWrRoCAwPx0EMPoXHjxggICMCVK1eQlZWFzMxMdOrUCS+99BLjM365js34jM9jn/EravzSwiLPgcj9lVXodDrcvn0bx48fx6FDh7B7927s378f165dg5ubG/R6PSpVqgR/f380adIEc+fORZ06dRif8ctlbMZnfB77jF9R45c2FnkOzvTVSi4uLjh79ixu3LiBhg0b4saNG6hbt65VX6fD+IzvqLEZn/F57DN+RY1vSyzyyjERgaIojM/4FSo24zM+j33Gr6jxS4pFHhEREZEG6ew9ACIiIiKyPRZ5RERERBrEIo+IiIhIg1jkEREREWkQizwiIiIiDWKRR0RERKRBLPKIiIiINIhFHhEREZEGscgjIiIi0iAWeUREREQa9P8A7S0agVSKOagAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "execution_count": 16, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -60,17 +60,17 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABtoAAAn8CAYAAABsxTVgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU9d33//eZyUZCIISwJoGwJAJhUwT3BastakFb9xts6WVre1WrVSte1++yl73u2+u2WKytl72vetVSuliLFatW1NaKVqAuKKskLMGwZANCEsi+zJzfH0eWSIDMMOecmXNez8cjDzRzzsxnMt853+XzPd+vYZqmKQAAAAAAAAAAAAARCbgdAAAAAAAAAAAAAJCISLQBAAAAAAAAAAAAUSDRBgAAAAAAAAAAAESBRBsAAAAAAAAAAAAQBRJtAAAAAAAAAAAAQBRItAEAAAAAAAAAAABRINEGAAAAAAAAAAAARIFEGwAAAAAAAAAAABAFEm0AAAAAAAAAAABAFEi0AQAAAAAAAAAAAFEg0QYAAAAAAAAAAABEgUQbAAAAAAAAAAAAEAUSbQAAAAAAAAAAAEAUSLQBAAAAAAAAAAAAUSDRBgAAAAAAAAAAAESBRBsAAAAAAAAAAAAQBRJtAAAAAAAAAAAAQBRItAEAAAAAAAAAAABRINEGAAAAAAAAAAAARIFEGwAAAAAAAAAAABAFEm0AAAAAAAAAAABAFEi0AQAAAAAAAAAAAFEg0QYAAAAAAAAAAABEgUQbAAAAAAAAAAAAEAUSbQAAAAAAAAAAAEAUSLQBAAAAAAAAAAAAUSDRBgAAAAAAAAAAAESBRBsAAAAAAAAAAAAQhSS3AwAAAAAAAEhUW7Zsiej4ffv26bnnntONN96owYMH9+qccePGRRMaAAAAHMAdbQAAAAAAAA7Zv3+/fvazn2n//v1uhwIAAIAYINEGAAAAAAAAAAAARIFEGwAAAAAAAAAAABAFEm0AAAAAAAAAAABAFEi0AQAAAAAAOKR///6aPXu2+vfv73YoAAAAiAESbQBc8/777+vyyy9XZmam+vXrp1mzZmn9+vVuhwUAAAAAtsnLy9Ojjz6qvLw8t0MBALjsjTfe0Le+9S1Nnz5daWlpMgxDb7/9ttthAYgQiTYArnjvvfd0ySWXqLy8XP/7f/9v/cd//Ie2b9+uiy66SJs2bXI7PAAAAACwRXt7u3bt2qX29na3QwEAuOyZZ57R4sWLFQqFNH78eLfDARAlEm0AXHHXXXcpJSVF77zzju655x7dc889euedd2QYhu677z63wwMAAAAAW5SVlWnWrFkqKytzOxQAgMv+8z//U42NjVq7dq3mzp3rdjgAopTkdgDwh7a2Nv3whz/Us88+qz179iglJUX5+fmaNWuWfvSjH7kd3nFMU+oIuR1FZFKCkmG4G8POnTt133336Y033pAkzZw5Uz/5yU80c+ZMFRQUHLn1vaysTGvWrNE//dM/KTc398j5ubm5uuGGG/SrX/1KNTU1Gjp0qBtvAwAAAAB8z+/9YtM01RJOrD9AeiAow+2BAQ+hDCTedSAexsak3o+PSeo2LgYgcZFogyPuuOMOLV68WF/5yld07733qqurS9u3b9eKFSvcDq1HHSHpgaVuRxGZhTdJqS5+ow8cOKCLLrpIe/fu1be+9S2NHz9eK1eu1MyZM9Xc3Nzt2DVr1kiSzjvvvOOe59xzz9XixYv10Ucf6eqrr3YkdgAAAABAd37vF7eEQxqw4o3YPJlD6i+7QhlBhvpihTKQeNcBt8fGpMjGxwB4B7UvHPGnP/1JV155pX7961+7HQpssnDhQlVUVOh3v/vdkVvd//mf/1kLFiw47q7FqqoqST3P2jn8u8rKSpsjBgAAAAAAAGInkvExAN7BHm1wRP/+/bV582Z9/PHHbocCm/z5z3/WsGHDdMstt3T7/fe+973jjm1paZEkpaamHvdYWlpat2MAAAAAAACARBDJ+BgA7yDRBkf85Cc/UX19vSZNmqQxY8bo61//ul566SWFw2G3Q0OMlJeXa+zYsQoEul9WBg8erKysrG6/S09PlyS1t7cf9zxtbW3djgEAAAAALykuLlZpaamKi4vdDgUAEGORjI8B8A4SbXDENddco507d+q3v/2tLrvsMr355pu69tprdemll6qjo8Pt8OCw4cOHS+p5ecjDv2MzWAAAAAAAAABAvCPRBsdkZ2dr3rx5+sUvfqFPPvlECxYs0MqVK/XSSy+5HRpioKCgQGVlZcfdpbhv3z41NDR0+9306dMlSe++++5xz/Pee+/JMAxNmzbNtlgBAAAAwC3l5eW6+eabVV5e7nYoAIAYi2R8DIB3kGiD7UKh0HEViWEYOvPMMyVJdXV1LkSFWJs9e7aqq6v17LPPdvv9okWLjjt27NixOvvss/XHP/5RVVVVR35fVVWlP/7xj7rssss0dOhQ22MGAAAAAKe1tLRow4YN7EsNAB4UyfgYAO9IcjsAeF9jY6OGDRumOXPm6Mwzz9TgwYNVXl6u//7v/9aAAQM0e/Zst0NEDDzwwAP6/e9/r6997Wv64IMPNG7cOK1cuVL/+Mc/lJOTI8Mwuh3/05/+VDNnztRFF12k73znO5Kk//qv/1I4HNZjjz3mxlsAAAAAAAAAohbp+NjGjRv18ssvS5JWr14tSfrtb3+rVatWSZK+853vqH///s6+CQARI9EG26Wnp+u73/2u3nzzTf3tb39TU1PTkcTbv/7rvx7ZrwuJLScnR6tWrdJ9992nxYsXyzAMzZw5U2+99ZamT5+uPn36dDv+/PPP19tvv60HH3xQDz74oAzD0Pnnn68//vGPmjJlikvvAgAAAAAAAIhOpONja9eu1fe///1uv1u8ePGR/543bx6JNiABkGiD7VJSUvTII4+4HQYcMGrUKL3wwgvdfnfgwAEdOHBAI0aMOO748847T2+++aZT4QEAAAAAAAC2imR8bP78+Zo/f76D0QGwA3u0AYiZ1tbW4373wx/+UJJ0xRVXOB0OAAAAAMSd3NxcLVy4ULm5uW6HAgCwAeNjgP9wRxuAmLnqqqs0cuRInXXWWQqHw3rzzTf1yiuv6Pzzz9e1117rdngAAAAA4LqsrCzNmTPH7TAAADZhfAzwHxJtOC1btmyJ6Ph9+/bpueee04033qjBgwf36pxx48ZFExoccmwZmDFjhl566SUtW7ZM7e3tGjJkiL72ta/pjjvu0Pbt2yVRBgAAAAD4W11dnV577TVdeeWVys7OdjscAMBp+uz46KnGxxgbA7yHRBsctX//fv3sZz/TzJkze12RIHF87Wtf09e+9rWTHkMZAAAAAOBn1dXVevjhhzV16lQSbQDgQacaH2NsDPAe9mhzQG1trRYsWKCxY8cqLS1N+fn5uvvuu9Xc3KzbbrtNhmHoySefdDtMADYyw1Ldbqlqk1S5STqwUwqH3Y4KgJPam6SaLVLlRqmmVGptcDsiOK1pv1RdYpWBvVulzja3I4KTTPPTtsDHVlug9hMpHHI7KsA5pikdrJaqNlvXwX3bpVCH21EBcFJXu7Rvm3UNqN4sNe5zOyIATju01/r+V260rgddtAXgEdzRZrP169fryiuvVE1NjTIyMjRhwgRVVVXpiSee0I4dO1RXVydJmjp1qruBwhYVJW9r2f+dqQtv+ZGmXf29Ho/56TxDBVOv1jXfe8Xh6OCEUIe0Z51UsUFqO9T9sdS+Uu4UacRZUlKqO/EBsN/BamnXGml/mZV0P1bOaGnENCl7pDuxwX6mKe3bKu1eJx2s7P5YIEkaOl4aOV3K4IYGzwp1SRWftgU+m2BPyZByJ1nXgeQ+roQH2M40rQRzxbrjB9WTUqVhxdLIs6W0fu7EB/vRL5ZCi5co/IfnFLz3uwrM+ny3x0zTVOj+f5FZWqqkJ5+QMarAnSBt1NIg7V5jTTgKdXZ/rN8wKf9Mq01kGK6EZzu/f/5cA2CaUk2JNT52qKb7Y8Fkqy0w4mwpPcuV8ICY4I42G9XW1mr27NmqqanRfffdp+rqaq1du1Y1NTVauHChli9frjVr1sgwDE2ePNntcAHEWEeL9OFSqWzl8Uk2ybq75ZPV0ppnpbZG5+MDYL+qj6U1v7dm6n02ySZZd7Ss/aO08wPnY4P9TFPa+jdp0yvHJ9kkKdxl3en8we+kA7ucjw/262yzvuPb/97zXawdzVL5e9Z1ovWg4+EBtguHpE1/lkr/0vOdK13t0p610vu/PX7gDfCSwK1zpYKRCj31C5n7a7s9Fn7hRZkbNylw6zxPJlkaKqQPfmtNOPlskk2SDlVLm1+VSl7vub3sBX7+/IFwWNr8mvXTU10f6pQq1lt9ooYe+kxAoiDRZqO77rpLFRUVuvPOO7Vo0SJlZmYeeWzBggWaMmWKurq6VFBQoH79/DF9r3///po9e7b69+/vdihwiV/KQKhTWv+C1Lj31Mc210rrl3G7POA1+8qsAQOZpz627B1r6Qx4S9k71qDSqYQ6pA1/YpDZa8IhacOLPSdZP6ulXlr3PMuJwltMUyr5izXZ5FQ6W63vQEuD7WHFhYyMDF1wwQXKyMhwOxQ4xEhOVtL990ltbQr9+CdHfm/uqVB4yW9kjDtDgRuucy9AmzTVSutesJLqp1K9Wdr6lv0xucGvnz9OzC9jY5K09U3rbrZT6WqzxtGaak99LBCPSLTZpLS0VEuXLlVOTo4eeeSRHo+ZNm2aJGnKlCndfl9eXq45c+YoMzNTAwYM0Fe+8hUdOHDA9pidkJeXp0cffVR5eXluhwKX+KUMVJdENmDaVCtV9mIwFkBiMMPSthWRnbP97z3P8kViam2wlgztrXCXdQc0vGPvVmsWf2+11Ft39gBecaimdwNrh3W2SZ/8w7544klBQYGefvppFRQUuB0KHGQUjlXg5htlfrRW4eWvyQyFFHp0kWSaCt5/n4xg0O0QY65sZWR7MVask5q9Mfx1HD9+/jgxv4yNNe2PbKyrq13asdq+eAA7sUebTZ599lmFw2HNnTtXffv27fGYPn2sjRiOTbQ1NjZq5syZys7O1rPPPqvW1lYtWLBAX/ziF7V69WoFAomdG21vb1dNTY2GDh2q1FT/bErV1dGi1kamZEj+KAOmad32HqmKDdaa1F5dlx7wkwPlPS8ZezJd7VLNFmu/JiS+iijuUKzbJTXXsV+bV0TTFqjcKBWcIwUYa4MHVKyL/Jy9W6WiS6WU9JiHE1dCoZBaW1vVp08fBX00uE6/WArMvUXhd99X6BdPK7DjE5lbtylw+9dl5HtvsL31oLVMeqQq1ktnfC7m4cQFP33+PeEacJQfxsak3q3u8Vn7y6ztVdIyT30sEE9ItNlkxQprGvvMmTNPeExFhTXF9dhE2//8z/+osrJS77zzjkaMGCHJmuVw/vnn6+WXX9a1115rX9AOKCsr0/XXX6/nn39excXFbofjmPeWPaT3lj3kdhhxwQ9loLnWmrUTqdYG6WC1lDU85iEBcFh1aXTn1ZSQaPOKSO7i6HZeqTTmgtjGAue1NkgHqyI/r71Jqq+QBo6MeUiAo8IhK2kWKTNkLTWZNzXmIcWVLVu2eL5P1BP6xZKRlKSk++9V13e+q/Ary2VMLFbgy9e6HZYt9m5Rr5ZQ/6zqUu8m2vz0+feEa8BRfhgbM01rtafIT7SuHyOnxzwkoEemaaqlpUWSlJ6eLiPKOyBItNlk1y5rR/uRI3vuJXd1dWn1aute2GMTba+88oouvPDCI0k2STrvvPM0evRo/fnPf44q0Xb22WerpsaeTT/mz58f0fHV1dWSpFdffVXr1vVuiuOSJUsijOr0BZP76EsPb4/Z802cebsKz7mhx8f+9MMrYvIaRYWFCnW2xuS5IuHVMnA6ikdcpPu//GxU5371lm/oox2vxTgiAE77l+v/qHF550V8XsmGMl1z36WxDwiO++VdOxUMRN7U/tX/PKMlNz1gQ0Rw0thh0/TgTS9Fde4/33a3/rFlWYwjApyV2Weg/uub0a2LvvDhn+hP7y2KcUT28mqfyO/9YjMlRXrqZzF5rm4yMqTkZKmrS8b0s2XEcOWiosIiGR3xsfn3/7rkB/r8mV+P+LyuNqlg5Gh1RbLmpE1sKQM2fv5S7MtALK8DiXYNiIRX64HTkZKUpv+5syyqc//rx0/pDyv/T4wjAnoWDoePfCenTp3a6+/kZ5Fos0lzc7MkqbW154v70qVLVVtbq8zMTI0aNerI70tKSnTDDcdXOsXFxSopiW5qdE1NjSore7ELexQOZ3t7q62t7ci/vT3XrthPJik1tmuVZA0t1IiJl8f0OT+rqrpKXe2RfR6x4NUycDoGpe2N+tz9B/Yl3PsFcLzW1uiux20dbVwDPCIcDisYxbhJY9MhyoAHZAZyoz639sB+ygASXmZ69IOcDQfrEu474NU+ke/7xWmpSo7NMx1hmqZCjz0udXVKI/IV/v0fFLjkYhnDh8Xk+auqq6S29pg81+k6dOhg1OdWVOxRKNwVw2iiFOMyYPfnL8W+DMTyOpBw14AIeLUeOB3JwZSozz3YeDDh3i+8Ye/e6Md0SbTZZOjQoaqvr9fatWt13nndZ7RXV1fr/vvvlyRNnjy52+2I9fX1ysrKOu75srOztXVrFGtvfBqLXdLTI6tw09LSjvzb23Nzc6MfqIhWMLmP4695uoYPG+7KrB2vloHTYaZYn4Npmr2+3fjwseGkloR7vwCOd6gtusbZwZZqrgEeUXtot4Zlj434vJauOsqABwTSOhQ2wwoYvc+2Hm4LhJKaKANIeIYRUHNbgzLSsiI+t908mHDfAa/2ifzeLzZTUhTFjgAnFX7xZZkbNirwta8qcN656rrjOwo99riCixZGvVTVsYYPGx43d7S1huqiOu9AY5WGDhsS42iiE+syYPfnL8W+DCTadYCxsfhS31SjAX0jH5duC9cn5PtFYjr2jrYhQ6Kvf0i02eTyyy9XaWmpFi5cqCuuuEJFRUWSpDVr1ujWW29Vba21+efUqVNtj+XDDz+07bm3bNkS0fGbN2/W4sWLddVVV/V6DeKHH344mtBOS3uX9MBSx1/2tGzbvl2pLnyjvVoGTtdHz0n1u3vfUDYMQ/2GSu+tf8PGqAA45WCVtOb3kZ/3lXuv0Pf+X0XsA4Ljdn4glb0T2TlGQHry9/+m1Ix/sycoOGr9n6TaHb0/3jAMZQyU3v7gZcVorA1w1ba3pN0fRXZOUqr07Gs/VTD5p/YEZROv9on83i9uDnVpwIrY9c/MykqFFy+RcUaRAjdeLyMYVGDeXIV/9WuFX3xZwS9dc9qvsW37NmUE42Oor7NVWvlza8/GSEz/wnBV/Ed8tIdjWQac+Pyl2JeBRLsOMDYWX3asksrfi+ycQJK0+IVHlJz2iD1BAZ/R3Nysvn37SpJWrVoV9fPEdiFgHLFgwQINHDhQe/bsUXFxsSZNmqTCwkLNmDFDo0eP1mWXXSap+/5skjRgwAA1NDQc93x1dXXKzs52InRbFRcXq7S01LMbfeLU/FIG8qac+pjjzpka8zAAuKTfMClzcGTnpGZKOaPtiQfOGz5RCgQjO2dwoZSaYU88cF409XreVJFkg2fkRtEeHlYsBWO9Vl8cKioq0urVq49MyIX3meGwQj/6sRQOK3j/vTKCViMhcOP1MooKFV68RGZVtctRxlZyH2nI+MjOMQwpd7I98bjJj58/Ts4vY2O5UyRF2LYdOl5KTrMlHMBWJNpskpeXp5UrV+rqq69WWlqadu7cqezsbD311FNavny5tm3bJun4RNv48eN73IutpKRE48dH2EIB4JrBRdZPb+WMloZOsC8eAM4yDGn8F3o/WGgEpOJZUoz3QoeLUtKlMyLYgiK1r1R4qW3hwAUDC6ykQW8NGOHNwUX4V0a2NObCyI4ffb598cST5ORkZWdnKznZB1lFSJLCz78gs6RUga/OkzFixJHfG8Gggt+7VwqHFHrscZmm6WKUsTf2IimtX++PL5pptYm8xq+fP5CWKRVd2vvj+/SXxkbQdgDiCcM5Nho/frxeeeUVNTY2qrGxUe+//75uv/12NTc3a+fOnQoEApo4cWK3c774xS9q1apVqqg4epv8+++/rx07dmj27NlOv4WYKy8v180336zy8nK3Q4FL/FIGDEOaeJU0ZNypj80ZI02azQA74DX9hkhnXiclnWI2XiBJmnyNlD3SmbjgnNxJ0rjLdcpZnH36S2fdaHVE4R2GIY3/vDRs4qmPzS6Qplwb+V2QQLwrOKd3ybO+g6Qzb/DPDPbdu3fr29/+tnbv3u12KHCAuXu3wr/+rYzx4xS47svHPW4UjFRg3lyZmz5W+MWXXYjQPqkZ0rQbpfReLNBUeKmUf5btITnOz58/TswvY2OSNGKaNPbiUx+XkW31iVJY4QMJKj4WbvaZzZs3yzRNFRUVHbfh5e23367/+q//0jXXXKP/+I//UFtbmxYsWKAZM2bommtis16zm1paWrRhwwa1tLS4HYoj8iZcqrt/d/IZSad63Gv8VAYCSdLEq6VhE6SK9VLtJ90fH1hgLRGVM9q6mwWA92TlSed9TaraJFVskNobj3nQkApmWEvNRjLTF4klb6pVDirWS9WbpVDn0ccysq3HhxVb+xLBewJBacIXrCVwKtZL+8skHdP0GzDCKgODxjLhBt5kGFaibeAo6zuwd0v3/Zoyh1jfgaHj/LFk5GGNjY166623dMcdd7gdiiP83i82RoxQ8vKXTnpM8JabFLzlJociclafLGnGPKmmVKpYJzXVdn88d7J1HYh02fVE4ffPX+Ia0BM/jY1JVr93YMGnfaISKdx19LG+gz7tE42XgikuBQjEAIk2F2zatEnS8ctGSlK/fv20YsUK3X333br55puVlJSkL37xi3r88ccVoPcNJBzDsBJpOaOl9mbpvSXWptAp6dKZ17sdHQAnpGZIo86VRs6QWuulD/9w9Dow9iK3o4MT+uZYd7aNvVha/Qvr809Ol879Gvtx+YFhSANHWj8dLdK7vzp6DZh2o9vRAc7oP8z6KZop/eOXR78DM+ZxHQT8ICnFmlyWO1lqbbCuA4eN/7xrYQFwUOZg6/teeIm0+umjbYFzvkJbAN5Aos0FJ0u0SdKYMWP0yiuvOBkSAAekZhxdEoo72AD/CQSkjIHHXAfoTPhOUsrRzz8QoAz4UUo6bQH4W3Ja9+8A10HAXwxDSh8ga1ltU6dcXhuA9ySl0haAN9G9c8GpEm0AAAAAAAAAAACIf9zR5oIVK1a4HYJrcnNztXDhQuXm5rodClxCGQAAAADgZ0OGDNEDDzygIUOGuB0KAMAFjI0B3kOiDY7KysrSnDlz3A4DLqIMAAAAAPCznJwczZ8/3+0wAAAuYWwM8B6WjoSj6urq9Mwzz6iurs7tUOASygAAAAAAPzt48KBef/11HTx40O1QAAAuYGwM8B4SbXBUdXW1Hn74YVVXV7sdClxCGQAAAADgZxUVFbrnnntUUVHhdigAABcwNgZ4D4k2AAAAAAAAAAAAIAok2gAAAAAAAAAAAIAokGgDAAAAAAAAAAAAokCiDY7KyMjQBRdcoIyMDLdDgUsoAwAAAAD8LC0tTePHj1daWprboQAAXMDYGOA9SW4HAH8pKCjQ008/7XYYcBFlAAAAAICfjRkzRi+88ILbYQAAXMLYGOA93NEGR4VCITU1NSkUCrkdClxCGQAAAAAAAIBfMTYGeA+JNjhqy5Ytmj59urZs2eJ2KHAJZQAAAACAn5WUlGjy5MkqKSlxOxQAgAsYGwO8h0QbAAAAAACAQ0zTVGdnp0zTdDsUAAAAxAB7tAE9SAlKC29yO4rIpATdjgAAAAAA4BV+7xenB4Kqv+yK2D2hA9IDDAzEEmUg8a4DjI0BcAuJNqAHhiGl8u0AAAAAAPiU3/vFhmEoI+jjPwAoA+I6AAC9xdKRAAAAAAAAAAAAQBSYkwBHFRUVafXq1crMzHQ7FLiEMgAAAADAz8aMGaOXX35Z+fn5bocCAHABY2OA95Bog6OSk5OVnZ3tdhhwEWUAAAAAgJ+lpaWpsLDQ7TAAAC5hbAzwHpaOhKN2796tb3/729q9e7fbocAllAEAAAAAflZZWakHH3xQlZWVbocCAHABY2OA95Bog6MaGxv11ltvqbGx0e1Q4BLKAAAAAAA/a2ho0LJly9TQ0OB2KAAAFzA2BngPiTYAAAAAAAAAAAAgCiTaAAAAAAAAAAAAgCiQaAMAAAAAAAAAAACiQKINjgoGg7rgggsUDAbdDgUuoQwAAAAA8LNAIKDp06crEGBIBgD8iLExwHto1cFRoVBIq1evVigUcjsUuIQyAAAAAMDPwuGw1qxZo3A47HYoAAAXMDYGeA+JNgAAAAAAAAAAACAKJNoAAAAAAAAAAACAKJBoAwAAAAAAAAAAAKJAog2O6t+/v2bPnq3+/fu7HQpcQhkAAAAA4Gf0iQDA36gHAO9JcjsA+EteXp4effRRt8OAiygDAAAAAPyMPhEA+Bv1AOA93NEGR7W3t2vXrl1qb293OxS4hDIAAAAAwM/oEwGAv1EPAN5Dog2OKisr06xZs1RWVuZ2KHAJZQAAAACAn9EnAgB/ox4AvIelI4EemKbUEXI7isikBCXDcDsKAAAAAIAX+L1fbJqmWsKJ9QdIDwRlMDAQM5SBxLsOMDYGwC0k2oAedISkB5a6HUVkFt4kpfKNBgAAAADEgN/7xS3hkAaseCM2T+aQ+suuUEaQgYFYoQwk3nWAsTEAbmHpSAAAAAAAAAAAACAKJNoAAAAAAAAAAACAKHAzLRxVXFys0tJSt8OAiygDAAAAAPyMPhEA+Bv1AOA93NEGAAAAAAAAAAAARIFEGxxVXl6um2++WeXl5W6HApdQBgAAAAD4GX0iAPA36gHAe0i0wVEtLS3asGGDWlpa3A4FLqEMAAAAAPAz+kQA4G/UA4D3kGgDAAAAAAAAAAAAokCiDQAAAAAAAAAAAIgCiTYAAAAAAAAAAAAgCiTa4Kjc3FwtXLhQubm5bocCl1AGAAAAAPgZfSIA8DfqAcB7ktwOAP6SlZWlOXPmuB0GXEQZAAAAAOBn9IkAwN+oBwDv4Y42OKqurk7PPPOM6urq3A4FLqEMAAAAAPAz+kQA4G/UA4D3kGiDo6qrq/Xwww+rurra7VDgEsoAAAAAAD+jTwQA/kY9AHgPiTYH1NbWasGCBRo7dqzS0tKUn5+vu+++W83NzbrttttkGIaefPJJt8MEANuZphQOux0F3GSakunzMmCabkcAN/H5w+9lgLaA9f79Xg4A+BzXQAA+R3vQe9ijzWbr16/XlVdeqZqaGmVkZGjChAmqqqrSE088oR07dhy5RXjq1KnuBgpbVJS8rWX/d6YuvOVHmnb193o85qfzDBVMvVrXfO8Vh6MDnBEOSfu2SxXrpYPVkhmSAknSwFFS3lQpe4RkGG5HCTt1tklVH0uVG6XWeqsxmdxHGnKGVQb65rgdob1MUzpQbn0H6nZL4S7r9x2t0t5t0qAxUiDoaoiwWahTqtkiVa6XOpqt37U3SR+/KuVNkfoP5zrode3NUtUm6+dIGWiWtv9dyp0ipWe5Gp7twiFp/45P2wKV1v8HkqTskdZ3YOAo738HmvZLFRukvVulzlbr/fYZIOVOloZPlJLT3I4QsA/9Yim0eInCf3hOwXu/q8Csz3d7zDRNhe7/F5mlpUp68gkZowrcCdJmB6utemB/2TG/NK1r49DxUlKKW5HZz++fP9cAwBoXaKiwroO1n1h9RCMg9RtqjYsMLpKCZGoSGh+fjWprazV79mzV1NTovvvu00MPPaTMzExJ0qOPPqoHHnhASUlJMgxDkydPdjlaAIi9xn3Shj9JbY3dfx/ukvZvt376DZOmXCulZrgSImxWs0Uqef1ocumwzlargVmx3hpgHHeFN5NNbY3S+j9JTfuOf8wMSZtelvpkSVO/JGUMdDw8OKB+j7TxZavMf1ZNifUzsECaNFtKSnU8PDhgzzpp21s93M1rSrvWWD8jp0tjL/Zmsqn5gHUdbG3o/vtwl1S7w/rpO9i6DqZluhKircIhqfQNqfrj7r83TamlTtr+trRjlTRhljR0nCshAnBA4Na5Cr/3vkJP/ULGtLNkDDo60yz8wosyN25S4J/mezLJEuqwJhd1S7AdY8sbUtk7VltoYIGjoTnGz58/AGuS7caXrETbscywdLDK+tn+d2tsrP8wV0JEDLB0pI3uuusuVVRU6M4779SiRYuOJNkkacGCBZoyZYq6urpUUFCgfv36uRipczIyMnTBBRcoI4MRdb+iDPhH037po6XHJ9k+61C19NEfrIYHvKW6RPr4leOTbJ9V9bG06RXvLSnZ3iR9+GzPSbZjtTZYx7XUOxIWHFRfIa17vuck27EO7JTW/tEaiIK37PpQ2vrmqa9vu9Z8epzHlo9prrOub59Nsn1W0z7ruPZmR8JyjBm26rfPJtk+K9xl1Zc1pc7EBffRJ/IfIzlZSfffJ7W1KfTjnxz5vbmnQuElv5Ex7gwFbrjOvQBtEu6S1r1w4iTbYV3t0voXrDaRF/n188eJUQ/4R1e7tHbp8Um2z+poltY+Jx2qcSYuxB6JNpuUlpZq6dKlysnJ0SOPPNLjMdOmTZMkTZky5cjvDifmZsyYodTUVBkem9ZaUFCgp59+WgUFBW6HApdQBvzBNKWNf7YaFL3RUi9t/Zu9McFZbYesO9l6a/+ny4t6SclfrL9Db3S2SZv+7L1Bdj8LdVqzFsOh3h1/qEYqW2VvTHDWob3W3Uq9VbHeWmrZK0zTSh51tvXu+EjrjURQsd6q33pr82u9rzeQ2OgT+ZNROFaBm2+U+dFahZe/JjMUUujRRZJpKnj/fTKC3lve4ZN3Tz24fJgZttrDXR6deOTHzx8nRj3gH1vfkppqe3fskT6kxyYh+wVLR9rk2WefVTgc1ty5c9W3b98ej+nTp4+k7om2srIyLVu2TNOnT1dKSopWr17tSLxOCYVCam1tVZ8+fRT0USOiq6NFrY29vKp6nF/LgN/U7bKWQ4rEvm3WHUCpPV8ykWAqN0Z+h9qe9VLemd5YOq2l3tqXLRKN+6wlI7Jy7YkJzjq8D1Mkqj6Wxlzo7T1K/CSayQMV66QhRTEPxRUHq6zrWiQOlEstDd7Ys840rWVDIzonbNWfYy60JybED7/2iegXS4G5tyj87vsK/eJpBXZ8InPrNgVu/7qM/Dy3Q4u5UJd1TYtEV7u1rHbeVFtCcp2fPv+ecA04yq/1gN90tEh7I1yxoK3RWlp9cKE9McE+JNpssmLFCknSzJkzT3hMRYU1refYRNvFF1+s6upqSdIPfvADzyXatmzZouuvv17PP/+8iouL3Q7HMe8te0jvLXvI7TDigl/LgN9EM7homlZHbPT5MQ8HDguHI+9US1Zytn6PlD0i9jE5rXJDdOdVbCDR5hUVUZSBUIe1dFzelFMfi/jW1R7dMoD1e6w9zbywZ2M03wHJun4WXhLbWNxQvye6JYErN0qjzpcCrD3jaX7tE9EvloykJCXdf6+6vvNdhV9ZLmNisQJfvtbtsGyxb1vkk44kqy/p1USbnz7/nnANOMqv9YDfVG/u/Qonx6pYT6ItEZFos8muXbskSSNHjuzx8a6uriNJtGMTbQEbelRnn322amrsWeB1/vz5ER1/OIn46quvat263k3xXLJkSYRRnb5gch996eHYrd0zcebtKjznhh4f+9MPr4jJaxQVFioUTSv2NHm1DNjlx7etUXbmMFVXVysvb7rb4djm0a+t1uD+PV//Tua5X7+qJ2+83YaI4KSsjKH6yTc+jOrc793xkP667pcxjsh53/vSM5o4MvKR4g/+XqJZt3/ehojgtP+5s0wpSWkRn/fkj5bod28/aENEcFLB4Mn6wf96Napzb73hn/XBtj/HOCLn/Z+5byh/0PiIz3vlj2/rsbnzbIjIWZ8/8+v6X5f8IOLzOlqkyeOnqaF5b+yDihNebA97tU/k936xmZIiPfWzmDxXNxkZUnKy1NUlY/rZMmI4DlRUWCSjIz7WXrzxwn/TVWf/c8TnNdVK+fkjZMbBBs62lAEbP38p9mUglteBRLsGRMKr9YBdvNgW6MntX/ipzh8f+f6L5SX7NCfvLBsiQk/Cx6zVeeGFF/b6O/lZJNps0txs7eTd2trzxX3p0qWqra1VZmamRo0aZWssNTU1qqystOW5W1paIjq+ra3tyL+9Pdeu2E8mKTU9ps+XNbRQIyZeHtPn/Kyq6ip1tUf2ecSCV8uAXUKh0JF/vfS+Piuo5KjOC3d56/P2q/DA1KjPbW3u8EQZCIeiW/8yoCRPvH9ISYHo1n/s7PB2/eAXWckFUZ/b3NjqiTIQiLKraYYMT7z/1qJeblTbg7oDDao+kPh/gxPxYnvYq30i3/eL01Kj7NWcmGmaCj32uNTVKY3IV/j3f1DgkotlDB8Wk+evqq6S2qK//sRSe1tn1Ofu31urdheSJceJcRmw+/OXYl8GYnkdSLhrQAS8Wg/YxYttgZ50dUQ3YSApkOrpv0s827s3+sluJNpsMnToUNXX12vt2rU677zzuj1WXV2t+++/X5I0efJkGTZvRjN06FDbnjs9PbIKNy0t7ci/vT03N9f5NbSCyX0cf83TNXzYcFdm7Xi1DNjl8NrbwWDQU+/rs1o7D0kaHvF5XWrz9N/FLzJSo7+GBlPDnigDXWZ0nbv2riZPvH9ILe0H1bfPgMhPDHRSBjwgPdMaljNNM+K2fnIfwxNloK2rMarzOs1WT7z/YGr0d2L07Z+m3LTE/xuciBfbw17tE/m9X2ympGh/TJ7pqPCLL8vcsFGBr31VgfPOVdcd31HosccVXLQwJmNDw4cNj5s72oykrqjO6+hqU87g7BhHE51YlwG7P38p9mUg0a4DjI0lBi+2BXoSCkSX9G7pOOjpv0u8CYfDR+4yHTJkSNTPQ6LNJpdffrlKS0u1cOFCXXHFFSoqsnY1X7NmjW699VbV1lqbf06dOtX2WD78MLrlu3pjy5YtER2/efNmLV68WFdddVWv1yB++OGHownttLR3SQ8sdfxlT8u27duV6sI32qtlwC4rfy61N0nDhg07sk+jF5Wtkna+F/l533zgy/r3X3459gHBcR/+QWqIsIgbhvT0cwuVlrnQnqAcVPWxVPJ65Od94caz9M3HvHtt8JOS161yEKnvP/YtPZb7rdgHBEeZpvTuYqmlPrJBs2CK9OLffqWk6G6IjCs735fKVkZ+3q3fmaUHfp7418G2Rmn1/1hlIRJZedK2HZvtCSpOeLE97NU+kd/7xc2hLg1Y8UZsnkySWVmp8OIlMs4oUuDG62UEgwrMm6vwr36t8IsvK/ila077NbZt36aMYHwM9TXuk97/TeTn5U9Mi5trQyzLgBOfvxT7MpBo1wHGxhKDF9sCPan9RFr/QuTnTbtshCr+j3f/LvGmublZffv2lSStWrUq6udhi2WbLFiwQAMHDtSePXtUXFysSZMmqbCwUDNmzNDo0aN12WWXSeq+P5sfFBUVafXq1UcSj/AfyoA/5E2WFOGEvNS+0qAxtoQDF0SzgfmgsVJaZsxDccWQM6RIt+cygtLwSfbEA+dF8x3oO0jqH/nNwIhDhhFdGRhWLE8k2SRp+ETJiLC3mZxmXT+9IC1Tyhkb+Xn5U2MeCuIQfSL/McNhhX70YykcVvD+e2V8ejdH4MbrZRQVKrx4icyqapejjK3MwdG1a6KpP+OdHz9/nBz1gD8MHCX16R/5ebn+Shd4Bok2m+Tl5WnlypW6+uqrlZaWpp07dyo7O1tPPfWUli9frm3btknyX6ItOTlZ2dnZSk6O9UrnSBSUAX9I6yflTo7snFHnSYGgPfHAeYMLpb6De398ICgVnGNfPE4LJkujInw/+WdKKbHdCgUu6jfUSh5HYvT5VoIG3jCsOLKOdVKqNGKaffE4LSVDyo9wD/eCc6Q4uREjJkadE1nbJnOwNKjQvngQP+gT+U/4+RdklpQq8NV5MkaMOPJ7IxhU8Hv3SuGQQo89LjPS22Dj3OjzFdEEzOyRUpYHV0vz6+ePE6Me8AfD+PQ6GIGhE6SM+Fg9FxEi0Waj8ePH65VXXlFjY6MaGxv1/vvv6/bbb1dzc7N27typQCCgiRMnuh2mo3bv3q1vf/vb2r17t9uhwCWUAf8447LeDzIXnCvl+WvegecFgtKZX5bSe9FANILSxNlWYsJLRpzd+0HmIeOkwovtjQfOK76q94NFRZdZCWp4R3KaNPU6647tUwmmSFO+JKVn2R6Wowovtq5vvZF/lnXd9JJ+Q6WJX7TquVNJz5amfplJR35Bn8hfzN27Ff71b2WMH6fAdccvk28UjFRg3lyZmz5W+MWXXYjQPgMLpPFXqFfJtn5DpclzvDfpyM+fP06MesA/hhVLYy7s3bEDC6Txn7c1HNjIQ/MFE8fmzZtlmqaKiop63PDy+eeflySVlJR0+/+CggKdfXZi9z4bGxv11ltv6Y477nA7FEfkTbhUd//u5DOSTvW41/itDPhZIGh1lHZ+IO1ZJ3U0H39MerY1e31475YkR4JJ7StNv0Xa/o5UUyqFe9gPfUC+1ej04sxVw5CKZkoZA6Vda6TWhuOPSe1rDS6PnO69QQVYSwCeeYP0yWqpcpPU1Xb8MZmDpVHnS4OjWGIO8S8jW5o+V9r+d2nfNskMH3/MwFFWQqrvIOfjs5sRkCZebZXzPWutvTg+q0+WVDDDWjrXi9fBwYXStBulHauk+j3HPx5IkoaOt8pAch/n44M7/NYn8nu/2BgxQsnLXzrpMcFbblLwlpscishZuZOl1EyrPXSo5vjHk1KlYROlsRdYE0+8xu+fv8Q1oCd+qwf8btS5Vpu3/F2p+cDxjyf3sSafs9JTYiPR5oJNmzZJOvGykTfccEOP///Vr35VS5YssTU2AIglI2A1KEZOl/Zvl0r+IoU6rWX1pnzJSrJ4cVANRyX3kSZ8QSq8xEq2lb1ztAxMnyv1zXE7QnsZhtVgzp0s1e2U6nZJe9ZbScekNOmC26UA6wt4WjDJKv+jz5f2bpW2vnn0O3DWjdbsba6D3paWKU36otTebF0Hd6yWwp3WYOK5X7E63V5mGFYibcTZUu0OafOrR78Dk6+xlgnz+ncgK1eadpPUVGtdB3at+bQeSLHqgeQI9/QEgESTM8r6OVQj7dsu7Xz/6GMXfdObCTYAONbQcdZexA2VUu0n1iS0cJc12eCib1qTr5DYGNpxwakSbaZp9vhDkg1AogoEraWjklKt/09KlbJHeH9gDUclp1l7kB1bBryeZDuWYXx618qlRwdUg0kk2fwkmCwNn9j9O9B/GNdBP0nNkEaeLSUfLgMp3k+yHSsQsO7uOvY7MLDAX9+BvjnSmAuOqQdSSLIB8Jd+Q6WxF+noUpIGSTYA/mEY0oC8T1cyONweTCbJ5hUM77jgVIk2AAAAAAAAAAAAxD/ypS5YsWKF2yG4ZsiQIXrggQc0ZMgQt0OBSygDAAAAAPyMPhEA+Bv1AOA9JNrgqJycHM2fP9/tMOAiygAAAAAAP6NPBAD+Rj0AeA9LR8JRBw8e1Ouvv66DBw+6HQpcQhkAAAAA4Gf0iQDA36gHAO8h0QZHVVRU6J577lFFRYXbocAllAEAAAAAfkafCAD8jXoA8B4SbQAAAAAAAAAAAEAUSLQBAAAAAAAAAAAAUSDRBgAAAAAAAAAAAESBRBsclZaWpvHjxystLc3tUOASygAAAAAAP6NPBAD+Rj0AeE+S2wHAX8aMGaMXXnjB7TDgIsoAAAAAAD+jTwQA/kY9AHgPd7QBAAAAAAAAAAAAUSDRBkeVlJRo8uTJKikpcTsUuIQyAAAAAMDP6BMBgL9RDwDeQ6INjjJNU52dnTJN0+1Q4BLKAAAAAAA/o08EAP5GPQB4D3u0AT1ICUoLb3I7isikBN2OAAAAAADgFX7vF6cHgqq/7IrYPaED0gMMDMQSZSDxrgOMjQFwC4k2oAeGIaXy7QAAAAAA+JTf+8WGYSgj6OM/ACgD4joAAL3F0pEAAAAAAAAAAABAFJiTAEeNGTNGL7/8svLz890OBS6hDAAAAADwM/pEAOBv1AOA95Bog6PS0tJUWFjodhhwEWUAAAAAgJ/RJwIAf6MeALyHpSPhqMrKSj344IOqrKx0OxS4hDIAAAAAwM/oEwGAv1EPAN5Dog2Oamho0LJly9TQ0OB2KHAJZQAAAACAn9EnAgB/ox4AvIdEGwAAAAAAAAAAABAFEm0AAAAAAAAAAABAFEi0AQAAAAAAAAAAAFEg0QZHBQIBTZ8+XYEARc+vKAMAAAAA/Iw+EQD4G/UA4D18m+GocDisNWvWKBwOux0KXEIZAAAAAOBn9IkAwN+oBwDvIdEGAAAAAAAAAAAARIFEGwAAAAAAAAAAABAFEm0AAAAAAAAAAABAFEi0wVH9+/fX7Nmz1b9/f7dDgUsoAwAAAAD8jD4RAPgb9QDgPUluBwB/ycvL06OPPup2GHARZQAAAACAn9EnAgB/ox4AvIc72uCo9vZ27dq1S+3t7W6HApdQBgAAAAD4GX0iAPA36gHAe0i0wVFlZWWaNWuWysrK3A4FLqEMAAAAAPAz+kQA4G/UA4D3kGgDAAAAAAAAAAAAosAebUAPTFPqCLkdRWRSgpJhuB0FAAAAAMAL/N4vNk1TLeHE+gOkB4IyGBiIGcpA4l0HGBsD4BYSbUAPOkLSA0vdjiIyC2+SUvlGAwAAAABiwO/94pZwSANWvBGbJ3NI/WVXKCPIwECsUAYS7zrA2BgAt7B0JAAAAAAAAAAAABAFcvxwVHFxsUpLS90OAy6iDAAAAADwM/pEAOBv1AOA93BHGwAAAAAAAAAAABAFEm1wVHl5uW6++WaVl5e7HQpcQhkAAAAA4Gf0iQDA36gHAO8h0QZHtbS0aMOGDWppaXE7FLiEMgAAAADAz+gTAYC/UQ8A3kOiDQAAAAAAAAAAAIgCiTYAAAAAAAAAAAAgCiTaAAAAAAAAAAAAgCiQaIOjcnNztXDhQuXm5rodClxCGQAAAADgZ/SJAMDfqAcA70lyOwD4S1ZWlubMmeN2GHARZQAAAACAn9EnAgB/ox4AvIc72uCouro6PfPMM6qrq3M7FLiEMgAAAADAz+gTAYC/UQ8A3kOiDY6qrq7Www8/rOrqardDgUsoAwAAAAD8jD4RAPgb9QDgPSTaAAAAAAAAAAAAgCiQaHNIbW2tFixYoLFjxyotLU35+fm6++671dzcrNtuu02GYejJJ590O0zEWEXJ2/rpPEMfLV90wmN+Os/QS4u+6GBUgPNCnVLVx1Jnm/X/ne3S/h2SGXY3LsAp4bC0b7u05W9HvwehTinc5W5ccE5Xu7Rn3dHPv6tdqtstmaa7ccE5bYekT97tXgaaat2NCc46VCNtf/uYMtAhdTS7GhLgCPrFUmjxEnV+/iqFX//rcY+Zpqmu7z2gzqvnyCzf6XxwDjFNqX6PtPUtSYfbP+bRa6KX+f3z5xoAWExTqi2XtrzZfVwg1OFuXIiNJLcD8IP169fryiuvVE1NjTIyMjRhwgRVVVXpiSee0I4dO46sxzt16lR3AwWAGAuHpE/+IVVskLqO6UCFO6UNf5LS+kkFM6TcKZJhuBcnYBfTlPaslXatkdqbuj/W1S6tfErKP1Mada5kMP3Jk0Id0vaVUvXHVifqyO87pbXPSenZ0ujzpaHj3IsR9mptkLa9bU0w0TGJ1VCn9N4SaUC+VHiJ1G+oO/HBfnW7pbJ3rETbsUIdVj0w5Ayp6FIpJcOV8AA4IHDrXIXfe1+hp34hY9pZMgblHHks/MKLMjduUuCf5ssYVeBekDbat13asVpq7mGCycqfS8OKpcKLpaRU52Nzgt8/fwDW5PPy96y+wbEOjwsMnySNvVAKkK1JWAzp2Ky2tlazZ89WTU2N7rvvPlVXV2vt2rWqqanRwoULtXz5cq1Zs0aGYWjy5Mluh2u7jIwMXXDBBcrIoBfpV5QB/wh3Wcm0ne93T7Idq+2QdYfP9re5qwPeY5rSljekbW8dn2Q7rLPVSkZvfNlKTMNbutqlj56TKtZ1T7Idq6VO+vgVaecHzsYGZzTtlz74vbS/TN2SbMeq3yN9+AepbpejocEhNVukdc8fn2Q7zAxLNaXSmt9b7SL4A30i/zGSk5V0/31SW5tCP/7Jkd+beyoUXvIbGePOUOCG69wL0EZ71kobX+o5ySZZ/cbKDVZd2NnqbGxO8fPnj55RD/jLjlVSyevHJ9kO62qXdn8orX3+xP1GxD8SbTa76667VFFRoTvvvFOLFi1SZmbmkccWLFigKVOmqKurSwUFBerXr5+LkTqjoKBATz/9tAoKCtwOBS6hDPhH6d+kAzt7d+zuj6wl1QAv2fm+VLmxd8fuL7MSzvAO05Q2/fnEg+ufVfaOtHeLvTHBWZ2t0roXpM6WUx8b7pI2vCQ119kfF5xzsFra/GrvlspuPSitW8aSwn5Bn8ifjMKxCtx8o8yP1iq8/DWZoZBCjy6STFPB+++TEQy6HWLM7d8hbV3Ru2Ob9lt1oVcnYPrx88eJUQ/4R+Um60623miosBJySEwk2mxUWlqqpUuXKicnR4888kiPx0ybNk2SNGXKlCO/e/7553Xddddp5MiRSk9P17hx4/Rv//Zvamo6wXT4BBIKhdTU1KRQyF/T9rs6WtTaWNvjj9/4tQz4TWuDtUxaJHa+xx098I5Qh7VcZCQqNkjt7NXjGYdqej/Z4LBP3vXu4JIfVX0stTf2/vhQhzXxBN5R/l5k+9E2H7CWV4P3+bVPRL9YCsy9RRo9WqFfPK3wz34uc+s2BeZ/RUZ+ntuh2aL83ciOb6iw7vT2Kr99/p/FNeAov9YDfmOGpfJ/RHbO3q1WmxCJh1U/bfTss88qHA5r7ty56tu3b4/H9OnTR1L3RNuiRYs0YsQI/d//+3+Vl5en9evX6z/+4z/097//Xe+8844CgcTNj27ZskXXX3+9nn/+eRUXF7sdjmPeW/aQ3lv2kNthxAW/lgG/qejlXTzH6mixBpfYpwheULPFWv4hEmZYqtpk7deGxFcRxV26zQesAaYB+bGPB84yTalifeTn1ZR4e48aP2k9KNV+Evl5e9ZLQ8fHPBzEGb/2iegXS0ZSkpLuv1dd3/muwq8slzGxWIEvX+t2WLY4WN37O/uPVbFeyh4R83Digp8+/55wDTjKr/WA39SWS20RTLw7rGK9dMbnYh4ObEaizUYrVlj3x8+cOfOEx1RUVEjqnmj785//rEGDBh35/0suuUSDBg3S3LlztWrVKl188cU2RQy7TJx5uwrPuaHHx/70wyscjgawX+2O6M8j0QYv2B/ld2B/GYk2r9gfxQC7ZJUdEm2Jr/mAlWiJVKhTqtsjDR4b+5jgrAPlOuG+fCdzsNJadjS5T8xDAlxHv/hTGRlScrLU1SVj+tkyEngy9clEM9lAstpCpikZRmzjiRs++fx7wjUAfhPt2Nj+HSTaEhGJNhvt2mXtaD5y5MgeH+/q6tLq1asldU+0HZtkO+zss8+WJFVWVkYcx9lnn62amiimEfXC/PnzIzq+urpakvTqq69q3breTfVesmRJhFGdvmByH33p4dit25I1tFAjJl4es+frSVFhoUIu7Bzs1TJglx/ftkbZmcNUXV2tvLzpbodjm8e//qEG9B0a8Xl/efVNzfrmV22ICPHCL9+Bf73+eZ2RF3nGbFvpJ/pyHhNqvGDx3bsVMCIfOPntkmf1q3n32xARnFQ4fLr+7cY/RXXud/75u1pd+nyMI4offqkHrp5+h2644F+jOnfGtPO1/9DuGEcUP7xYBrzaJ/J7v9hMSZGe+llMnuvIc5qmQo89LnV1SiPyFf79HxS45GIZw4fF5PmLCotkdHTE5LlO19xL/reuOPOfIj7PDEmjC8aqM9RmQ1QRxhLjMmD35y/FvgzE8jqQaNeASHi1HrCLF9sCPbnjqp9retEXIz6vbv9B5eVxp6NTwuGja71feOGFvf5OfhaJNhs1N1sbrbS29nyBX7p0qWpra5WZmalRo0ad9LneeustSdL48ZGvI1JTUxNVgq43Wlp6sbv7Mdra2o7829tz7Yr9ZJJS0x1/zdNVVV2lrvbIPo9Y8GoZsMvh9bdDoZCn3tdntbY3a0DPK+ae1MHGek//XeCf70BjcxS3skhqbj3k6b+Ln3R0tiktJfL2RH1DLWXAA9I1JOpza/ZVeboM+KUe2D9qb9Tn7q4oV12jPRMl44EXy4BX+0S+7xenpSo5Ns90RPjFl2Vu2KjA176qwHnnquuO7yj02OMKLlooIwa3cFVVV0ltEa5fbpO6hv1RnRcOh7Vrzycy42Hj2hiXAbs/fyn2ZSDRrgOMjSUGL7YFetLQWBfVea3tLZ7+u8SzvXujb8OTaLPR0KFDVV9fr7Vr1+q8887r9lh1dbXuv9+arTx58uSTVqiVlZX6/ve/r1mzZmnq1KlRxWGX9PTIKty0tLQj//b23Nzc3IjjOl3BBFyrZfiw4a7M2vFqGbBLMBg88q+X3tdnVdZt0fCBYyI+b3/jDk//XeCf78DeQ2WSvhDxedUN2zz9d/GTPbWbVTg88tmZda27KAMeEE5pVltHs9JSMnp9jmmaMgxDTaFqT5cBv9QDBzusLQIOf669Vd9Uo4z+KerTz7t/Gy+WAa/2ifzeLzZTUhRdqugEz1dZqfDiJTLOKFLgxutlBIMKzJur8K9+rfCLLyv4pWtO+zWGDxseN3e01bXuiuq8PbUlGj58eIyjiU4sy4ATn78U+zKQaNcBxsYSgxfbAj3Z3xTdGrqVdVs8/XeJN+Fw+MhdpkOGRD9hkkSbjS6//HKVlpZq4cKFuuKKK1RUVCRJWrNmjW699VbV1tZK0kmTZ01NTbrmmmuUkpKixYsXRxXHhx9+GNV5vbFly5aIju/s7NRtt92mzMxMJSf3bl7Qww8/HE1op6W9S3pgqeMve1q2bd+uVBe+0V4tA3ZZ+XOpvUkaNmzYkT0avahut7T2ucjOMQLST373gP474wF7gkJc8Mt3oLVBWv105Ofd85836geLb4x5PHBedYm0+dXIzklKlX77yiIFkxfZExQcVfqGVLmh98cbhqHskdJHH6+0L6g44Jd6wDSl95ZIzQciu0Nh2ueHavcPohucThReLANe7RP5vV/cHOrSgBVvxOS5zHBYoR/9WAqHFbz/XhmfDjIHbrxe5up/KLx4iQLnzDjtJQS3bd+mjGB8DPWFQ9Kqp6SOCG8umjVvom57ND6uDbEqA059/lLsy0CiXQcYG0sMXmwL9KSzzXqv4a7Izrv1npm690nv/l3iTXNzs/r2tZblWrVqVdTP458dN12wYMECDRw4UHv27FFxcbEmTZqkwsJCzZgxQ6NHj9Zll10mqfv+bMdqbW3V7NmzVV5err/+9a8aNix2aza7JTk5WdnZ2b2uROA9lAF/GJAvZeREds6QcVJq7yf+A3GtT5Y0aGxk5/QbJvWz7yZ0OGxIkRTBzUySpNxJUpDq0TPyp0qKcBWo/LPsiARuMIzIP89AUMqdbE88iC/0ifwn/PwLMktKFfjqPBkjRhz5vREMKvi9e6VwSKHHHo+P5RJjJBCUcnse7jqh5DRp6Dh74nGTHz9/nBz1gD8kp0nDJkR2Tp/+Us7Jd5hCnCLRZqO8vDytXLlSV199tdLS0rRz505lZ2frqaee0vLly7Vt2zZJPSfaOjs7df311+vDDz/Ua6+9pgkTIvxWxqndu3fr29/+tnbv9u7m3jg5yoA/GIY0eY7VqOiNjBzpjMvsjQlw2vjPS+kDendsSoY06YvWdwfeEEiSplxr/dsbWXnS6AttDQkO6ztIGve53h8/4mxpUOSrLiOO5U6WhvZ2i21Dmni1lBrFHrdIPPSJ/MXcvVvhX/9WxvhxClz35eMeNwpGKjBvrsxNHyv84ssuRGifUedK2SN7d2wgKE2+Rgqm2BuT0/z8+ePEqAf8o/BSKbOXqxEGU6w+pEHGJiHFx/3kHjZ+/Hi98sorx/2+qalJO3fuVCAQ0MSJE7s9Fg6HNXfuXL355pt69dVXNWPGDKfCtV1jY6Peeust3XHHHW6H4oi8CZfq7t+dfEbSqR73Gr+VAT/LyJbOvkXa8KLUUn/i4wbkS5MiSMoBiSIlXZp2s7TxJelg1YmPyxgoTfmSNXMN3tJ/mDTtJqsMtDed+LhBhdLEK6U4WekJMZQ3VTKC0tY3T7xkjGFIo86zfuAthiFNuFJKSpMq1p34uGCKNPGqyO+ERuLyW5/I7/1iY8QIJS9/6aTHBG+5ScFbbnIoIucEgtagcclfpL0nWVkvJd3qEw7Icyw0x/j58z/M79eAnvitHvCzpBRp2o3Spj9LB3ae+Li0fta4QN9BjoWGGKM775LNmzfLNE0VFRUdt+nlHXfcoT/+8Y/6l3/5F6Wnp+u999478tiYMWM0aBDfOACJIWOgdN7XpNpya4Dp2EbF0AnWAGT/YdzFA+9KzbASzg0VUsV6a//Cw3tzB4LS5GulgQV8B7ys/zDpgm9I+7ZbZaDh8FL7hrVUZN5UKXOwiwHCdrmTpMGFUtXHUtUmqfnApw8Y1kz/3MlSWqarIcJGgYB1Z+OIadaefTVbpPZG6zEjIJ3xOeuutySP3cEBAIcFk62VG0ada7WF9m2XOpqPPl58lTS4iAlHALwrKVU683rpYLV1Haz95Oi4gBGUJl0t5Yy12o1IXHx8Ltm0aZOknpeNfO211yRJP/zhD3Xeeed1+1m+fLmjcQLA6TIC1lJYZ15/dDmk1L7WzO2s4SQY4H2G8emdm7OlS+44+j1I7mOtvc53wPsCQWu/kbNvPuY6mGEtL0qSzR+S06SRZ1uTT44tA2MuIMnmF+lZUuEl0kXfPFoGUtKlvCkk2QD4Q98cadzl0sX/rKN7mBrW/kUk2QD4Qf9hUvGV3ccFUvpYkw1IsiU+qjKXnCzRtnPnToejAQAAAAAAAAAAQKTIlbrkZIk2LxsyZIgeeOABDRnSy10g4TmUAQAAAAB+Rp8IAPyNegDwHu5oc8mKFSvcDsEVOTk5mj9/vtthwEWUAQAAAAB+Rp8IAPyNegDwHu5og6MOHjyo119/XQcPHnQ7FLiEMgAAAADAz+gTAYC/UQ8A3kOiDY6qqKjQPffco4qKCrdDgUsoAwAAAAD8jD4RAPgb9QDgPSTaAAAAAAAAAAAAgCiQaAMAAAAAAAAAAACiQKINAAAAAAAAAAAAiAKJNjgqLS1N48ePV1pamtuhwCWUAQAAAAB+Rp8IAPyNegDwniS3A4C/jBkzRi+88ILbYcBFlAEAAAAAfkafCAD8jXoA8B7uaAMAAAAAAAAAAACiQKINjiopKdHkyZNVUlLidihwCWUAAAAAgJ/RJwIAf6MeALyHRBscZZqmOjs7ZZqm26HAJZQBAAAAAH5GnwgA/I16APAeEm0AAAAAAAAAAABAFJLcDgCIRylBaeFNbkcRmZSg2xEAAAAAALzC7/3i9EBQ9ZddEbsndEB6gIGBWKIMJN51gLExAG4h0Qb0wDCkVL4dAAAAAACf8nu/2DAMZQR9/AcAZUBcBwCgt7hUwlFjxozRyy+/rPz8fLdDgUsoAwAAAAD8jD4RAPgb9QDgPSTa4Ki0tDQVFha6HQZcRBkAAAAA4Gf0iQDA36gHAO8JuB0A/KWyslIPPvigKisr3Q4FLqEMAAAAAPAz+kQA4G/UA4D3kGiDoxoaGrRs2TI1NDS4HQpcQhkAAAAA4Gf0iQDA36gHAO8h0QYAAAAAAAAAAABEgUQbAAAAAAAAAAAAEAUSbQAAAAAAAAAAAEAUSLTBUTk5OfrGN76hnJwct0OBSygDAAAAAPyMPhEA+Bv1AOA9JNrgKMMwlJKSIsMw3A4FLqEMAAAAAPAz+kQA4G/UA4D3kGiDo/bv36+f/exn2r9/v9uhwCWUAQAAAAB+Rp8IAPyNegDwHhJtAAAAAAAAAAAAQBRItAEAAAAAAAAAAABRINEGAAAAAAAAAAAARIFEGxzVv39/zZ49W/3793c7FLiEMgAAAADAz+gTAYC/UQ8A3pPkdgDwl7y8PD366KNuhwEXUQYAAAAA+Bl9IgDwN+oBwHu4ow2Oam9v165du9Te3u52KHAJZQAAAACAn9EnAgB/ox4AvIdEGxxVVlamWbNmqayszO1Q4BLKAAAAAAA/o08EAP5GPQB4D0tHAj0wTakj5HYUkUkJSobhdhQAAAAAAC/we7/YNE21hBPrD5AeCMpgYCBmKAOJdx1gbAyAW0i0AT3oCEkPLHU7isgsvElK5RsNAAAAAIgBv/eLW8IhDVjxRmyezCH1l12hjCADA7FCGUi86wBjYwDcwtKRAAAAAAAAAAAAQBRItAEAAAAAAAAAAABR4GZaOKq4uFilpaVuhwEXUQYAAAAA+Bl9IgDwN+oBwHu4ow0AAAAAAAAAAACIAok2OKq8vFw333yzysvL3Q4FLqEMAAAAAPAz+kQA4G/UA4D3kGiDo1paWrRhwwa1tLS4HQpcQhkAAAAA4Gf0iQDA36gHAO8h0QYAAAAAAAAAAABEgUQbAAAAAAAAAAAAEAUSbQAAAAAAAAAAAEAUSLTBUbm5uVq4cKFyc3PdDgUuoQwAAAAA8DP6RADgb9QDgPckuR0A/CUrK0tz5sxxOwy4iDIAAAAAwM/oEwGAv1EPAN7DHW1wVF1dnZ555hnV1dW5HQpcQhkAAAAA4Gf0iQDA36gHAO8h0QZHVVdX6+GHH1Z1dbXbocAllAEAAAAAfkafCAD8jXoA8B4SbQ6ora3VggULNHbsWKWlpSk/P1933323mpubddttt8kwDD355JNuhwnAZq0HpXDI+m8z7G4sgBvam49+B8JhyTTdjcdp4S7pUI31r+S/9w+ps+2Y70CIusCP2g51vw76Taij+3fg8PUQ/tHR/JnrIHUh4CumKTXul3T4u881APCdjhbaAvAmEm02W79+vSZNmqQf/ehHqqmp0YQJE9TZ2aknnnhCN910k0pLSyVJU6dOdTdQ2KKi5G39dJ6hj5YvOuExP51n6KVFX3QwKjjJDEt7t0ofLZVW/0LqbLV+39EiffisVFN6tIEBeJFpSnW7pA0vSSt/fvQ70Nkivf9rqWK9NfDqZW2HpLKV0sqnpA9+ZyVbJGuwcesKqZnVQjzvUI20+TVp5X8f8x1olVY/Le18X+podTc+2Ms0pX1l0trnpVX/0/06+MEzUtVm77cFmuus693Kp7p/B1Y+ZV0f2w65Gx/sV79H2vjy8WXgvV9Ju9dKXR5vC/gd/WIptHiJOj9/lcKv//W4x0zTVNf3HlDn1XNklu90PjgHdLZJuz6U/vFLqw9wrI+XSwer3InLKX7//LkGQJIaKq3ve7dxgVbp3cXW9eFwPxlIVEluB+BltbW1mj17tmpqanTffffpoYceUmZmpiTp0Ucf1QMPPKCkpCQZhqHJkye7HC2AWAt1Wo2I/WU9P95Qaf1kb5Ymz5GSUpyND7CbGZa2vSXtWdfz40210pa/SRUbpDOvk1L7OhufEw4nGU+UTNyzVqrcIBVfJQ05w9nY4Ixda6Ttf+/5scNJ2D3rpTO/LPUd5GhocEC4S9r8urR3S8+PH6qWSqqlqk3SlGul5DRHw3PE3q3S5ld7TiZ2tlrJ5j3rpCnXSNkjnY8P9jJNqewd61rYk+Y6adsKa+LNmddJffo7Gh7gmMCtcxV+732FnvqFjGlnyRiUc+Sx8Asvyty4SYF/mi9jVIF7QdqkuU5av8xa4aUnNaXWz+gLpFHnSobhbHxO8PPnD5imVP6u9Mk/en68pV7a/vbRtkD6ACejA2KHO9psdNddd6miokJ33nmnFi1adCTJJkkLFizQlClT1NXVpYKCAvXr18/FSJ2TkZGhCy64QBkZGW6HApf4pQyYYWnTKydOsh2rbqe08SXvz2aH/2z/+4mTbMdq2i+t/aP3ZrAdrJLWv3DqO/bCIet6UfuJM3HBOXvWnTjJdqz2RumjP0qtDbaHBAeZ5smTbMdqqJA2/EkKeWwpxdpPrOvbqdo4oQ5p/Z+kg2xT4jmfrD5xku1YLXVWW6Cjxf6Y4oFf+kQ4ykhOVtL990ltbQr9+CdHfm/uqVB4yW9kjDtDgRuucy9Am7Q1Wt/tEyXZjtXb60Ui8uvnjxPzUz2w64MTJ9mO1dogffSc1N5ke0iALUi02aS0tFRLly5VTk6OHnnkkR6PmTZtmiRpypQpR363cuVKXX755Ro2bJhSU1OVl5fXbYnJRFdQUKCnn35aBQUFbocCl/ilDOzdJtXu6P3xdbuk6s32xQM47VCNtPuj3h/ffEDa+YF98TjNNKXSv0aQQI/0eMS9jmZp29u9P76zpXdJOSSO2k96l2Q7rKHSusPVK8IhqeQv6vX+O+Eu6zrIPh3e0XxAKn+v98e3NkifvGtbOHHFL30idGcUjlXg5htlfrRW4eWvyQyFFHp0kWSaCt5/n4xg0O0QY65spTWhKJLjvbqcsB8/f5yYX+qB1oPW97q32hsjOx6IJywdaZNnn31W4XBYc+fOVd++Pa+F1adPH0ndE2319fWaNGmSvvnNb2rw4MGqqKjQI488ovPOO08ff/yx8vLyHInfLqFQSK2trerTp4+CPmpEdHW0qLWx1u0w4oJfykDF+sjP2bNeGj7Jm0tlwH+i+Q5UbZJGny8FPdA6OVhpLY0ZifYmaf8OaUiRPTHBWZUfS2aEidP9ZdbM77TMUx+L+BfNdbBivZR/ljfaAvvLrIRzJJr2W3cDZ+XaExOcFc13oHqzNPYi7y+p7pc+0WfRL5YCc29R+N33FfrF0wrs+ETm1m0K3P51GfmJPdbTk44Wa/ngiJhS5UZpzIW2hOQ6P33+PeEacJRf6oHKjZGfs3eLVHiplNIn5uEAtvLAUFZ8WrFihSRp5syZJzymoqJCUvdE25w5czRnzpxux02fPl1nnHGGli1bprvvvtuGaJ2zZcsWXX/99Xr++edVXFzsdjiOeW/ZQ3pv2UNuhxEX/FAGWuqtJaAi1bRPatwn9RsS+5gAJ4U6pZoI7uI4rLPVuhPUC3uVVX4c3XlVm0i0eUXVpsjPMU2pukQadU7s44Gz2pukA+WRn9dSbyXqszww3lZ1GtdBEm2JLxyWqqJYrSHUIe3bJg2fGPuY4okf+kQ9oV8sGUlJSrr/XnV957sKv7JcxsRiBb58rdth2aJmS+STjiSpcpN3E21++vx7wjXgKL/UA9H0icIhaW+pNfkMSCQk2myya9cuSdLIkT3v6N3V1aXVq1dL6p5o68nAgQMlSUlJ0X1cZ599tmpqaqI691Tmz58f0fHV1dbGC6+++qrWrevFxj2SlixZEmFUpy+Y3Edfenh7zJ5v4szbVXjODT0+9qcfXhGT1ygqLFSoszUmzxUJr5aB0zE+/wI9cN3SqM6dd+NtWrvjLzGOKH78+LY1ys4cpurqauXlTXc7HNhkYGauHrvt/ajO/bf7/49eX/tUjCNy3oLrlmpC/gURn7fxw62afffnbIgITnv6O+VKCiZHft7PfqtfX/evNkQEJ40Zepa+f/PLUZ37ja9+R+9u/VOMI3Lef966QrkDI5858MarK/X5r99iQ0Txww/tob5pA/Tkt6IYXZP0nw89ppfefzzGEdnLq30iv/eLzZQU6amfxeS5usnIkJKTpa4uGdPPlhGI3a4uRYVFMjpOsUGwQ26++N8166zbIz6vo1kaOaJAobD7G5faUgZs/Pyl2JeBWF4HEu0aEAmv1gOnIzmYql98J4I9VY7xk0d/rqWrHo5xRPHFD+3BRBEOh4/894UXXtjr7+RnkWizSXOztU5Ka2vPF/elS5eqtrZWmZmZGjVq1HGPh0IhhcNh7dq1S//6r/+qoUOH6sYbb4wqlpqaGlVWVkZ17qm0tES2W3VbW9uRf3t7rl2xn0xSanpMny9raKFGTLw8ps/5WVXVVepqd373cK+WgdMxOP1A1OfW1dUl3PuNRCgUOvKvl9+n33UNiL55cejQIU+UjY726Dq3oa6wJ94/otfc0kIZ8IB+SflRn1vfUO+JMhAKhU99UA86Ojo98f5Pxg/tof4Z7VGf29TUlHB/F6/2iXzfL05LVeRTZk7ONE2FHntc6uqURuQr/Ps/KHDJxTKGD4vJ81dVV0lt0X//Yqm5KcL1g49RXVWtzlAcJAxjXAbs/vyl2JeBWF4HEu4aEAGv1gOnIyUpLepzm5oTry0QKT+0BxPR3r17oz6XRJtNhg4dqvr6eq1du1bnnXdet8eqq6t1//33S5ImT54so4dNGC655JIjd7yNHTtWK1as0KBBg6KOxS7p6ZFVuGlpaUf+7e25ubnOrx0TTE68hYCHDxvuyqwdr5aB0xFMtWbemabZ4/e7J4ePDaR2Jdz7jcThtceDwaCn36ffpSQlqyvUGdXdPGawzRNlo6WzPqrzGttrPfH+ITU071VOv8jX/+s0mygDHpDcx0oyRdIWOMxI7vBEGWhqi24PltbOek+8/5PxQ3soGEhSe2erUqPoV3UZLQn3d/Fqn8jv/WIzJUX7Y/JMR4VffFnmho0KfO2rCpx3rrru+I5Cjz2u4KKFEdcXPRk+bHjc3NHWqaaozmtsrdPgodGNf8VarMuA3Z+/FPsykGjXAcbG4ktTW4P6pmVFfF6XmhPy/UbCD+3BRBEOh4/cZTpkSPT7+ZBos8nll1+u0tJSLVy4UFdccYWKiqxlU9asWaNbb71VtbVWx3Pq1Kk9nv/LX/5SDQ0NKi8v149+9CN9/vOf1+rVqzVixIiIY/nwww+jfh+nsmVLZJvwbN68WYsXL9ZVV13V6zWIH37Y+VuF27ukB6Jb+c8127ZvV6oL32ivloHTYZrSB7+TGvf2vqFsGIbSs6W/r/mzYtS+jksrf27tWzNs2LAj+1TCmzb9OfLNz4Mp0rOv/ZeSUv7LnqAcdKBcWrcs8vNu+OZFuvsJvhteULZK2vle5Of96Jf36WdZ98U+IDjuwz9IDRWRVeppmdJf//GcjNiuIuWKqo+lktcjP++O71+nf//ldbEPKI74pT1U8nrke/UFgtKSPy1Ucp+F9gRlE6/2ifzeL24OdWnAijdi82SSzMpKhRcvkXFGkQI3Xi8jGFRg3lyFf/VrhV98WcEvXXPar7Ft+zZlBONjqK+tUVr9P1b/OBLFF2ar4vvxcW2MZRlw4vOXYl8GEu06wNhYfNm6QtqzNrJzjID0/559SKl9vb2fn1/ag4mgublZffv2lSStWrUq6ufxQBcuPi1YsEADBw7Unj17VFxcrEmTJqmwsFAzZszQ6NGjddlll0k68f5sZ5xxhs455xzdfPPNevPNN9XY2KhHH33Uybdgi6KiIq1evfpI4hH+44cyYBhS3tTIz8ubIk8n2eAv0XwHhhVLSSkxD8UV2QVSn6zIzklOk4acYUc0cEPeZEkRXtMHFkjpWTYEA1dEcx3MnSJPJNkk63qWHOGKQekDpOyet7hGAormOzBkvJRgN09ExQ99InRnhsMK/ejHUjis4P33yvj0TobAjdfLKCpUePESmVXVLkcZW2mZUs7YyM/L7XmYLKH58fPHyfmlHsiL4vs8aKyU2jf2sQB280g3Lv7k5eVp5cqVuvrqq5WWlqadO3cqOztbTz31lJYvX65t27ZJOnGi7VhZWVkaO3asysrK7A7bdsnJycrOzlZycqxXOkei8EsZGDZeyorgzu/MIVLuJPviAZyWlScNHd/741MzpVHn2BeP0wxDOuNziijRUjhTipMJyIiBtH7SqHN7f3wwRRp7iX3xwHmDCyNLGmUMlPLPtC8epwWTretarxlS0WVMOvKSfkOl3Mm9Pz4lXRp93qmP8wK/9IlwVPj5F2SWlCrw1XkyjlmpyAgGFfzevVI4pNBjj8uM9PavODf2IimSbZpGnC1lZNsXj1v8+vnjxPxSD2QMlPKn9f74pDTrugEkIhJtNho/frxeeeUVNTY2qrGxUe+//75uv/12NTc3a+fOnQoEApo4ceIpn2ffvn3aunWrxowZ40DU9tq9e7e+/e1va/fu3W6HApf4pQwEkqQp10r9h5/62Mwh0tQvW4OsgFcYhjThC9LgXkzQS+snnXW992at5YySJl4tGcFTH3vGZdLw3q0YggQy+nxpRC86lkmp0tQvSZnxsR0JYiQQlCbPkQb0YuX3jIHSmddbZcFLhhdb17dTMYLW9TJnlP0xwVlnfE4aOuHUx6X2lc68QerT3/6Y4oFf+kSwmLt3K/zr38oYP06B67583ONGwUgF5s2VueljhV982YUI7ZORLZ15Xe/uVM2dIhV6cNKRnz9/nJif6oGiS3o38Sa5j3W9SB9gf0yAHZg37YLNmzfLNE0VFRUdt+HlvHnzNHbsWE2dOlVZWVnavn27Hn/8cSUlJemee+5xKeLYaWxs1FtvvaU77rjD7VAckTfhUt39u5PPSDrV417jpzKQ3Ec66wapcpNUsV5qqev+eJ8s6zb63CneWS4POFYgSZo0W6ousb4Dhz6zGkpKhtXgzj/TmsXuRUPHWQMMuz+S9m6RwqHujw8ushIxkdwBi8RhGFLRTCvRsmedVLez++NJqdaSqflnsWSkVyWlWgMGVZukPeul5truj6f1s9oCeVO9l2Q7LP8sa1LR7o+k/WWSGT76WCAoDRlnXQczB7sXI+wTCErFV1pJ1Ir1UkNl98eT+xxtC3htws3J+KlPJNEvNkaMUPLyl056TPCWmxS85SaHInJW/2HSObdKu9da+zZ2tXV/fMAIKX+qNKjQm3c1+/3zl7gG9MRP9YARkMZdYW2vULFOqt/T/fHkNGn4RKvNmNbPlRCBmCDR5oJNmzZJ6nnZyHPPPVe/+c1v9NOf/lRtbW3Kz8/XzJkz9f/9f/+fRo5kwwIg0QSTpRFnWYMHh6qldcukrnZrUOH827zZkQCOZRjWHQ3Di6XG/dJHS63OdXKadOHt1gCc12UOtgYZCy+VDlZKm1+zrgMp6dbdLvC+QWOsn5Z66YNnrO9AUpp00e3czewHgaCVSMudIh2qkdY9f7QtcMHXvbMn28lk5Vo/7U3Su0uOfgfOv01K8cF+XH5nGNZy0kPHS0210od/ONoWuOib1sQcAN6W1k8qulQac4FUXyGtX3b0sWk3uhYWAIcYhjSkyPppPiCtefaYcYFvWmNnQKKjSeuCkyXa7rzzTt15551OhwTAZoZhLSMZTLYG1wJBkmzwn8xB1h5kXbIG1fyQZDtWSh9rY+fD1wE/DK6ju/QBR78DwSSSbH5jGNas/m5tAZ9dB1L7dv8OkGTzn745n2kLMCIB+Eow+dNlgg1JpiLazxiAN2QM7N4WIMkGr/BZ1y4+nCzRBgAAAAAAAAAAgMTA/DEXrFixwu0QXDNkyBA98MADGjJkiNuhwCWUAQAAAAB+Rp8IAPyNegDwHhJtcFROTo7mz5/vdhhwEWUAAAAAgJ/RJwIAf6MeALyHpSPhqIMHD+r111/XwYMH3Q4FLqEMAAAAAPAz+kQA4G/UA4D3kGiDoyoqKnTPPfeooqLC7VDgEsoAAAAAAD+jTwQA/kY9AHgPiTYAAAAAAAAAAAAgCiTaAAAAAAAAAAAAgCiQaAMAAAAAAAAAAACiQKINjkpLS9P48eOVlpbmdihwCWUAAAAAgJ/RJwIAf6MeALwnye0A4C9jxozRCy+84HYYcBFlAAAAAICf0ScCAH+jHgC8hzvaAAAAAAAAAAAAgCiQaIOjSkpKNHnyZJWUlLgdClxCGQAAAADgZ/SJAMDfqAcA7yHRBkeZpqnOzk6Zpul2KHAJZQAAAACAn9EnAgB/ox4AvIc92oAepASlhTe5HUVkUoJuRwAAAAAA8Aq/94vTA0HVX3ZF7J7QAekBBgZiiTKQeNcBxsYAuIVEG9ADw5BS+XYAAAAAAHzK7/1iwzCUEfTxHwCUAXEdAIDeYulIAAAAAAAAAAAAIArMSYCjxowZo5dffln5+fluhwKXUAYAAAAA+Bl9IgDwN+oBwHtItMFRaWlpKiwsdDsMuIgyAAAAAMDP6BMBgL9RDwDew9KRcFRlZaUefPBBVVZWuh0KXEIZAAAAAOBn9IkAwN+oBwDvIdEGRzU0NGjZsmVqaGhwOxS4hDIAAAAAwM/oEwGAv1EPAN5Dog0AAAAAAAAAAACIAok2AAAAAAAAAAAAIAok2gAAAAAAAAAAAIAokGiDowKBgKZPn65AgKLnV5QBAAAAAH5GnwgA/I16APAevs1wVDgc1po1axQOh90OBS6hDAAAAADwM/pEAOBv1AOA95BoAwAAAAAAAAAAAKJAog0AAAAAAAAAAACIAok2AAAAAAAAAAAAIAok2uCo/v37a/bs2erfv7/bocAllAEAAAAAfkafCAD8jXoA8J4ktwOAv+Tl5enRRx91Owy4iDIAAAAAwM/oEwGAv1EPAN7DHW1wVHt7u3bt2qX29na3Q4FLKAMAAAAA/Iw+EQD4G/UA4D0k2uCosrIyzZo1S2VlZW6HApdQBgAAAAD4GX0iAPA36gHAe0i0AQAAAAAAAAAAAFFgjzYAAHpgmqZawiG3w4hIeiAowzDcDgOAR3AdBAAAAAD/ok/YeyTaAADoQUs4pAEr3nA7jIjUX3aFMoJU7QBig+sgAAAAAPgXfcLeY+lIAAAAAAAAAAAAIApM94SjiouLVVpa6nYYcBFlAAAAAICf0ScCAH+jHgC8hzvaAAAAAAAAAAAAgCiQaIOjysvLdfPNN6u8vNztUOASygAAAAAAP6NPBAD+Rj0AeA9LR8JRLS0t2rBhg1paWtwOBS7xWxkIh6WWA9KhvVJzrdTZZv2+q12q3CT1GyplDJQCHp720N4sHaqRGvdKne3W77rapZ0fWO8/c7CUnOZujAAAAHYJdUlN+622UHN99/ZgzRap3xCpT5ZkGK6GaRvTlFoPWu+/cV/39uCeddb77ztICia7G6eT/NYnAgB057d6wDSltkPW2FjTZ9oCu9dabYHMwd5uC3S1W++/ca/U1ti9Pbi/zBofS+3rbow4PSTaAMAGTfulivVSdakU6jj+8VCnVPoX678DSdLQ8VLeVKtx4QVd7VLVZqlyvdRcd/zjoU6p7J2j/98/V8qfKg0utP4eAAAAicw0pfo9Vntwf5lkho8/JtQpffyK9d8p6dLwiVLuFKlPf0dDtU1bo1S5wZpc1tF8/OOhTmnrm9Z/G4aUM8ZqD2eP9G7SEQAAP2lvstoBlRul9sbjHw91SttWfPo/hpQzymoLDBzljbZAOGS1AyvWW+3CnoQ6pQ0vWv+dPsBqCw4vlpL7OBUlYoXhTACIoZZ6acvfpLpdvT8n3CVVbbJ+svKkcZdLfXPsi9FO4S6p/D1p14fWf/fWwUrrJyVdGnOhNHySNxpVAADAf+orpC1vSM0Hen9OR4t1t//OD6Qh46QzZkopGfbFaKeOVmn7W1JNqZVw7A3TtAai9pdJ6dnSuM9ZCTcAAJB4OtusydVVH/c82ahHplT7ifXTp790xueknNG2hmkb07TaQdv/3vNkoxNpqZe2vy3tWCXlnymNPt/bd/l5DYk2AIgB05T2rJXKVkaWYPqshgrp/d9KY86XRkxPrCUlD9VIm1+3lsiMVkeLVPpXae82acLnpbR+sYsPAADATqEOqWyV1SY8HXu3WJO2xn3OSrolkn1l0pa/Wm26aLXUSWv/aM3oLrxESkqJXXwAAMBetZ9Y4zrtTdE/R+tBaf0L0rBiqWhmYm030t4klb4h1e6I/jnCXdKuNdL+HdKEWVLW8NjFB/sk0BAuvCA3N1cLFy5Ubm6u26HAJV4sA+GQtOnP0ra3Ti/JdpgZshJ2G1+0biFPBHu3Smt+f3pJtmPV7bQSjof2xub5AAAA7NTRIn249PSTbId1tkqbXrFmQvf2rjA3maa0Y7XVfj2dJNuxKjdY7cvTGaiLV17sEwEAes+r9cDOD6wEWazq7urN0ppnrP3dEkHTfmss63SSbMdqqZM+etb6OyD+kWiDo7KysjRnzhxlZWW5HQpc4rUyEA5bSbZ922L/3LWfSBteik3yzk57t1oDQb1eDqCXOlultc+RbAMAAPGts1X66Dlrc/tY27XGWkIo3pNtn6yWyt+N/fM210ofLY1s2aVE4LU+EQAgMl6sB3a+by0XGWst9dKHf7D2fo1nTbVWezDWbRbTlDa/JlWRbIt7JNrgqLq6Oj3zzDOqq6tzOxS4xGtlYPvb1l4Sdqnbae35Fq8OVksfL5dk0+BPV7u0fpn3BlcAAIA3mKY1MSpWd/X3ZPdHUsV6+57/dFVtsvbotUtLvbT+RWuCm1d4rU8EAIiM1+qBvVutlZns0nbIGhuK14nonW3SumXW5Cu7lL5u7QOM+EWiDY6qrq7Www8/rOrqardDgUu8VAbq90S+PNCMedKF37T+7a2qj2N323kshbqkktcju5Mtmvff0SJteTPy+AAAAOy2Z621x24komkPbf+71NIQ2es4oe2QtPWtyM6J5v0fqrbu7vMKL/WJAACR81I90N4c+QTxaNoCTbXSJzbcPR8L21ZI7RHecRfp38A0rTG4UEfk8cEZJNoAIAqhDquCi1RKhpSWaf0bidI3rBky8aT8Xan5QGTnRPv+922zZkgBAADEi5aG6GZvR9MeCh+e4BRHS0iaplT618gHfKJtD37yD2uQDQAAxI+tf4v8Tq5o2wK7PpAO1UR2jt1qd0jVJZGfF83foLVBKlsV+WvBGSTaHFBbW6sFCxZo7NixSktLU35+vu6++241Nzfrtttuk2EYevLJJ90OE0AEqjZLrQede732Jqlyo3OvdyqdrdYyRk7asTq+Bpd6K7R4iTo/f5XCr//1uMdM01TX9x5Q59VzZJbvdD44AI4wTesu6E2vHF0Kt6PFGjSO1Ubh8YzrILxq5/vOLmHUUCHV7Xbu9U7lYJV0YKdzr2eG7F2iEgAARKZxn7Rvu3OvZ5rxdVebaVpjVU6qWG/dRZho/NAnJNFms/Xr12vSpEn60Y9+pJqaGk2YMEGdnZ164okndNNNN6m0tFSSNHXqVHcDBdBrpilVbHD+dSs3RLZMo52qNju/NnZLnTVQnWgCt86VCkYq9NQvZO7vPg07/MKLMjduUuDWeTJGFbgTIABbNddJ7/9G+miptHfL0QkDZthKtK16ylpqJRxyN047cR2EF3W2STWlzr9uPO3V5kYs+7axdy8AAPHCjbGx2k+cnfh+ModqrGSjk8xwfE3E7y0/9AlJtNmotrZWs2fPVk1Nje677z5VV1dr7dq1qqmp0cKFC7V8+XKtWbNGhmFo8uTJbofriIyMDF1wwQXKyIjw3mB4hhfKwMFKeze8P5HWg87OGj4R07SSfm6Ip8Gl3jKSk5V0/31SW5tCP/7Jkd+beyoUXvIbGePOUOCG69wLEIBtmg9IH/5eatp/4mNM07q2bfpz/EymiDWug/Ci6hLnJx1J0v4yqS3CPUDs0NEi7d3m/OuaYWv/4kTnhT4RACB6XqgHujqkmiiWTDxtplS5yYXX7YFbY1SVGxNvxSc/9AlJtNnorrvuUkVFhe68804tWrRImZmZRx5bsGCBpkyZoq6uLhUUFKhfv34uRuqcgoICPf300yooKHA7FLjEC2XAzSV74mG5oPZGqaXendeu3514jQlJMgrHKnDzjTI/Wqvw8tdkhkIKPbpIMk0F779PRjDodogAYiwcltb/qff7a+4vk8rftzcmN3EdhNfU7XLphU1rCUm3NVRaSzm6IR7aw6fLC30iAED0vFAPHKyWQp3uvHa9W+2wz3CrTdLeaK36lGi83ick0WaT0tJSLV26VDk5OXrkkUd6PGbatGmSpClTppzwea688koZhqEf/OAHdoTpuFAopKamJoVCHl4fCSflhTJwaK97r93o4msf5ub772yT2g659/qnIzD3Fmn0aIV+8bTCP/u5zK3bFJj/FRn5eW6HBsAGtTuszaojUbHO40tIch2Eh7jZJjtU495rH+bq+9+bmBOvjuWFPhEAIHpeqAcaXWyPNO63Jja6qaPZSni5xc2xudPh5T4hiTabPPvsswqHw5o7d6769u3b4zF9+vSRdOJE23PPPaf169fbFaIrtmzZounTp2vLli1uhwKXeKEM+H1gwe1kX6I2JoykJCXdf6/U0anwK8tlTCxW4MvXuh0WAJtEs4xIR4uzm4k7jesgvKK9WWpvcu/1nd4LpCdutse62qS2ONmbJVpe6BMBAKLnhXrAzfZIuEtqOeDe60vSIZfbY26PzUXLy33CJLcD8KoVK1ZIkmbOnHnCYyoqrDU/ekq0HTp0SN/97ne1aNEizZs377RiOfvss1VTY880g/nz50d0fHV1tSTp1Vdf1bp163p1zpIlSyKMCk7yYxn45V07FQz0fPmcMU9KOckS26kZR/+98JsnPq6jWfrgd8f/PtQhjS4Yo85QewQRx9b8zy3UpZPm9vhYrN6/dOK/wfe++696a+Nvexlt9MyUFOmpn8X2STMypORkqatLxvSzZQRiO9+lqLBIRkdHTJ8z1n582xplZw5TdXW18vKmux2OK/gb+MPPv71VaSe7IJ7Aj//PL/X7vz9kQ0SR4zpoD79fA7zw/vMGjtPDt/6tx8dO1RaSTr89+PH6bbrmvst6Ga09HrpluUYN6XnCqBPtwVmXz9GOmrW9jNZ+fuwTAadj8V27FAgEFQ6FlJc30u1wgNPmx3rgX65/XuPyzu3xMSfaAl+ac5NK96zuZbSxd8H46/WNL/ykx8ecaA/+4Xcv6H9uvat3wZ4GP/QJw8fcHnnhhRf2+jv5WSTabLJrl7VY7MiRPTcYurq6tHq1dTHoKdH2b//2byoqKtLcuXNPO9FWU1OjysrK03qOE2lpaYno+La2tiP/9vZcu2JHbPitDBiGccIkm2RVpGmZJ3z46PMEendcT/bt3a8WF+9P72g/8SLcTrz/5sYWZ8pEWqqSY/h0pmkq9NjjUlenNCJf4d//QYFLLpYxfFjMXqOqukpqcy8J2xuHl8YIhUJx9d12En8Df4gmySZZ+xzETbngOmgLv18DvPD+0zXkhI/1ti0knUZ7yAy4/rczw8YJH3OiPVhf1+D63+BYfusTAafLlHnkX8o2vMCP9UA4dOLllpxoCxysP+Tq36Qxt/mEjznRHuzs6GJs7AROp0+4d2/0twqSaLNJc7P1ZWttbe3x8aVLl6q2tlaZmZkaNWpUt8c+/PBD/eIXv9BHH30Uk1iGDh0ak+fpSXp6ekTHp6WlHfm3t+fm5uZGHBec48cy0BXqVFKw52qm48T1rCRrpooRkMywtezQiZzseQYNyVFXqF8vIrVHcuqJq45Yvf+TPVdG3z6OlAkzJUX7Y/h84RdflrlhowJf+6oC552rrju+o9Bjjyu4aKEM48SDVZEYPmx43N/JEfx0c9tgMBh3322n8Dfwh5b2Q0pPjfxaHUgKx0254DpoD79fA7zw/gcMzDrhY6dqC0kxaA8aIff/dsaJN0Zxoj2Yld1fuR3xU3782CcCToch48i/lG14gR/rgUDwxI850Rbon5Xp6t+kb78Tf25OtAeTU5xpS/uhTxgOh4/cZTpkyIkn1J2KYZpu7/bjTRMmTFBpaamefPJJ3XHHHd0eq66u1rRp01RdXa0LLrhAq1atOvJYKBTSjBkzNHPmTC1atEiSdQfNQw89pB/84AdOvoVeiXQt4c2bN+v666/X888/r+Li4l6dM27cuGhCg0P8WAZW/0JqjXJfiAu/ac1UaWuUVj0V+fnJfaSLvy3FqO6JyifvSp9EeXf+6b5/SZryJWnQmOjOjURzqEsDVrwRk+cyKyvV9a07ZRSMVPAnj8kIBhV6dqnCv/q1Av/8TQW/dE1MXqf+siuUEYzvOTQrf27ta5PaV7roW25H4w7+Bv6w8aXo9lub+mUpZ3Ts44kG10F7+P0a4IX339km/f3J6M8/3fZQdoF01vXRv34sbHhR2l8W3bmxaA8efo544cc+EXA6/vaYJFOSIV1+n9vRAKfPj/XAx69KNSXRnRuLtsB5/yRlZEd3bizU7ZbWPhf9+af7Nxg5Qyq8OPrX7y0/9Ambm5vVt29fSVJTU5MyMqJbnSa2C2DiiMsvv1yStHDhQm3btu3I79esWaOZM2eqtrZWkjR16tRu5z355JPau3dvXCbVYqGoqEirV69WUVGR26HAJV4oA5nRT244bf2GuJtkOxyDn18/UmY4rNCPfiyFwwref6+MT2fyB268XkZRocKLl8isqnY5SgCxlndm5Of06S8NLIh5KK7jOgivSU6zvq9uiYe2kJvt4UiWY4pXXugTAQCi54V6wM32SDBFSh/g3utLUuZgd18/HtqDkfBDn5BEm00WLFiggQMHas+ePSouLtakSZNUWFioGTNmaPTo0brsMmvz6mP3Z6utrdX3v/99/fu//7u6urrU0NCghoYGSdaavQ0NDd0250tEycnJys7OVnJyLFd3RSLxQhlwszJzc1AjHmJIybBmwCeS8PMvyCwpVeCr82SMGHHk90YwqOD37pXCIYUee1zcYA54y4B8qV+Ey8yPnGEtH+I1XAfhRW62h+KhPehmezjRBpZ64oU+EQAgel6oB1xtCw12fxJ6cprUJ8u910+09pAf+oQe7MrHh7y8PK1cuVJXX3210tLStHPnTmVnZ+upp57S8uXLj9zldmyiraKiQo2NjfrmN7+pAQMGHPmRrDvjBgwYoN27d7vyfmJl9+7d+va3v53w7wPR80IZGDjq1MfYJcfF1z4sNcO9BlU8vP9ImLt3K/zr38oYP06B67583ONGwUgF5s2VueljhV982YUIAdjFMKQp1/Z+pmX+WVLuZFtDcgXXQXiVW0u8BpKsRL7bsvKkE2xZbDs32+Kx4oU+EQAgel6oB/oNtbY3cUO8jA25FUd6tpTm4uoKkfJLnzC+NzBIcOPHj9crr7xy3O+bmpq0c+dOBQIBTZw48cjvx44dq7feeuu442fOnKmvfvWrmj9/voYOHWprzHZrbGzUW2+9ddy+dfAPL5SBzMFS/+HSwSpnX7fvIKl/nOx9mzdVKv2LC68bxVJsbjJGjFDy8pdOekzwlpsUvOUmhyIC4KTUDOnsW6TSNz7dy6iHyXnJfaSCc6QR09yflWkHroPwqiFnSNvelrranH/dFJcGtY6VlCINK5Yq1jv7usFkadgEZ1/TDl7oEwEAoueFeiCYJA2fKO1a4+zrBoLS8EnOvuaJ5E2V9qxz53UTqe/olz4hiTYXbN68WaZpqqioSOnp6Ud+37dvX1166aU9nlNQUHDCxwA4L2+q84m2vCnxU5EOHSdtf1vqanfuNfsNTbxb4wEgJV2aco3UelCq3CTtXiOFQ1YHcfwXpMFFVicVQGIJJluDS7s/dPZ186Y6+3onkzfF+UTb0AlSUqqzrwkAAHqWO8X5RNvgM6w+VjzIGGitNFC/x7nXDCRJw4udez30HktHumDTpk2Sui8bCSCxDDnD2eUTMwZKwyae+jinBJOl0ec7+5pjL3b29QAglvr0l8ZeeHR5leQ+1l0ZJNmAxDVyurNLJg0ukvpHuPejnfoOcvbusmCKNOpc514PAACcXHqWNfHGKYEk58eiTmXsxZIcnBQ/6jwmHcUrEm0uiDTRZpqmfvCDH9gYEYBIBYJS8SzJcOIqakgTZsXfYGz+Wdb+HE7IO1PKHnHq4wAAAJySmiGd8TlnXiu5jzTOodeKRNFlUkqGQ681U0rLdOa1AABA74y9RErr59BrXWwl9+JJ/2HSyLOdea1+Q6yJXohPJNpc4Oc72oYMGaIHHnhAQ4aw/ptfeakM9B0kjbkwsnM6mqW2Ruvf3hp1TnzNXj7MMKQJX4hsJk007z89Wxp7UeTxAQAA2G3IGdKQcZGdE017aPwVziW0IpGcZrUHI5nJHc37zxljLdXpFV7qEwEAIueleiApRSq+MrKJ6NG0BbJHSPlnRh6fE0ZfYI0RRiLSv0EwWZpwpRQgmxO34uz+CH9YsWKF2yG4JicnR/Pnz3c7DLjIa2Vg5HSpvUnas7Z3x3/wu8ief/hEq8KOV+kDpKlfltb+UQp3nfr4SN9/aqZ01vVWww0AACDeGJ+uPNDZItXt7t05kbaHii6zlo2MVzmjpfGfl0r/0rvjI33//XOlSV+Mn72KY8FrfSIAQGS8Vg8MyLeSbR+/Ksk89fGRtgUyh0iTr4nftkAwSTrzOunDP0itDb07J5K/QSAoTblW6psTTXRwCjlQOOrgwYN6/fXXdfDgQbdDgUu8VgYMw1rGxo5bt/OmSuO/EL8NicOycqWzbpCS0mL7vOkDpLNvdm4JAgAAgGgEk6QpX7LuuoopQxp3hTTirBg/rw1yJ1mzrGPdbs0eaQ1cBZNj+7xu81qfCAAQGS/WA0PHfzoxJhjb583Kk6bdGP/7kqX2tcawMmKcDAumSFOvs9pEiG8k2uCoiooK3XPPPaqoqHA7FLjEi2XAMKTCS6wBllgs6ZPcR5o0Wxp3efwn2Q7LypXO/ao0cFRsni9vijTjVqlP/9g8HwAAgJ2CydZM46LLpEAM1o1Jz5am/y+rTZQohhdL0+fFZrZ1IGjtw3Lmdd5c2cCLfSIAQO95tR4YcoZ0zjzrDrTTZQSsFZ7OuiH+k2yHpfaVZsyV8qfF5vkGjLDG2rJHxOb5YC+WjgSAGBk0RsqaL5WtlKpLereU4rGMoDR0nJW0S0m3JURbpWVay0hWb5Y++YfUdijy58gcLBVeSiMCAAAkHsOw7j7LGSVte1uq3RH5cySlSnlnSqPOte6USzT9hliTpXa+by2t3tkW+XMMLLBWjMgYGPPwAACAzfoOsiYL7f5Q2vWh1Nka+XNkj5AKZ0qZEe57Fg+CydIZM6UhhdK2v0uHqiN/jtRMqy2YOzlxJuCDRBsAxFRyH2uPijEXSdUfS1Wbpebak5+TkS0NLZZyJ8bnJveRMAxrX7lhE6QD5VLFBql+jxTqPPE5yX2sAam8M6V+Q2lEAACAxJY+QJr6JWuPjoqN0t4tJ5+AZASsmd+5k6xJV8EEv4MrEJRGn28trb53q1S5STpUI5mhE5+TmmnNgs+bYv39AABA4goEpYJzpBHTpL3bpMqNVsIpfLK2QF9rT9q8Kd6YbJOVZ93ddqhGqlgv1X4idbSc+PhAkjQgT8qdau1/G2AdwoRDog0AbJDSxxpcGDld6uqQmvZLTbVSqMN6PJhsNRwyh3hzORwjYO1TkjNGMsNSS73UuM9qVIRDVgMiLdOa9ZyaSXINAAB4T58sqfBi66ejVWrcK7XUSaEuq62UlGrN1O6bE5vlJuNNMNmagDV8otX+a6q12oNd7Vb7MJBkJdX6DUnM1RwAAMDJBZKsidjDJlhtgeYDVlugs+2YtkCWNTaWmuATz0+k31BpwizJNKX2JunQXmsCVrjLSkgm97FWd8rIttqHSFwebM4jnqWlpWn8+PFKS0tzOxS4xI9lICnF2sMsK9ftSNxhBKykohdmJAEAAEQjpY+1JOLAArcjcUcgaCXU+sVgzxYv8GOfCABwlB/rgUDQSihlDnY7EncYhjXhPC3T7UhgFxJtcNSYMWP0wgsvuB0GXEQZAAAAAOBn9IkAwN+oBwDv4YZEAAAAAAAAAAAAIAok2uCokpISTZ48WSUlJW6HApdQBgAAAAD4GX0iAPA36gHAe0i0wVGmaaqzs1OmabodClxCGQAAAADgZ/SJAMDfqAcA72GPNgAAepAeCKr+sivcDiMi6YGg2yEA8BCugwAAAADgX/QJe49EGwAAPTAMQxlBqkkA/sV1EAAAAAD8iz5h77F0JAAAAAAAAAAAABAF0pFw1JgxY/Tyyy8rPz/f7VDgEsoAAAAAAD+jTwQA/kY9AHgPiTY4Ki0tTYWFhW6HARdRBgAAAAD4GX0iAPA36gHAe1g6Eo6qrKzUgw8+qMrKSrdDgUsoAwAAAAD8jD4RAPgb9QDgPSTa4KiGhgYtW7ZMDQ0NbocCl1AGAAAAAPgZfSIA8DfqAcB7SLQBAAAAAAAAAAAAUSDRBgAAAAAAAAAAAESBRBsAAAAAAAAAAAAQBRJtcFROTo6+8Y1vKCcnx+1Q4BLKAAAAAAA/o08EAP5GPQB4D4k2OMowDKWkpMgwDLdDgUsoAwAAAAD8jD4RAPgb9QDgPSTa4Kj9+/frZz/7mfbv3+92KHAJZQAAAACAn9EnAgB/ox4AvIdEGwAAAAAAAAAAABAFEm0AAAAAAAAAAABAFEi0AQAAAAAAAAAAAFEg0QZH9e/fX7Nnz1b//v3dDgUuoQwAAAAA8DP6RADgb9QDgPckuR0A/CUvL0+PPvqo22HARZQBAAAAAH5GnwgA/I16APAe7miDo9rb27Vr1y61t7e7HQpcQhkAAAAA4Gf0iQDA36gHAO8h0QZHlZWVadasWSorK3M7FLiEMgAAAADAz+gTAYC/UQ8A3sPSkQAAADiOaZpqCYfcDiMi6YGgDMNwOwzPoAwAAAAAAHBqJNoAAABwnJZwSANWvOF2GBGpv+wKZQRp3sYKZQAAAAAAgFNj6UgAAAAAAAAAAAAgCiTaAAAAAAAAAAAAgCiwrgocVVxcrNLSUrfDgIsoAwAAAAD8jD4RAPgb9QDgPdzRBgAAAAAAAAAAAESBRBscVV5erptvvlnl5eVuhwKXUAYAfzLDUku9FA5Z/x8OSaFOd2NyWkeLdGjv0b+BGZZM092YADgnHJaaD3zmOtjlbkxOMk2pvan7++9ocTcmwC30iQDA36gHAO9h6Ug4qqWlRRs2bFBLC71qv6IMAP7RXCdVbZIOVkmN+7on1jpbpbeekDKypX5DpSFnSANHSYbhXryx1tUh1ZRIB3ZaCbb2xu6Pd7RIK/9byhwiZY+UhhdLyX1cCRWATRr3SVUfSwerpab9UviYxFpnq/T2E1JGjtR/qDR0vJSV563rYGerVLVZqtslNe7tnljrbJXe+X9SaqbUb4hVBwwdLyWluBcv4BT6RADgb9QDgPeQaAMAADF1oFzatUaq232KA03r7o7mA1L1ZqlPfylvqpR/phRI4BZKW6O08wPrPYU6Tn5sR4v19zpQLu1YJQ0ZJ406R0of4EysAGLPNKV926TdH1kTDU56bFhq2mf9VG6UMgZK+WdJuZMkI4HXHmmpl8rfl/Zu6Z5c7El7o7S/UdpfJm3/uzSsWCqYIaVlOhMrAAAAAJyuBB7GAgAA8aSzTdq2Qqouie781oPWIGvVZql4lnWnWyIxTSu5tu0tqas98vPDXVL1x9bA9NiLrMF2L93ZAvhBe5NU+oZUuyO685sPSFvesK4lE2ZZd/0mEjMs7V5rTRw4VYKtJ6EOqWKddTdw0Uwr6cZ1EAAAAEC8S+B5kgAAIF4crJbeWxJ9ku1YzbXSmmesu8ISRahT2viSVPJ6dEm2Y4W7rGTdR0utpdUAJIYDO6V3l0SfZDvWwSrp/d9Yy04mis5W6aPnpO1vR5dkO1ZXu3U93fiS//bzBAAAAJB4SLTBUbm5uVq4cKFyc3PdDgUuoQwA3lNfIa19zrqTI1ZMUyp7RypbGbvntEtXh7RumbXsWSw1VFjJtg6W7Qfi3r4yaf0LUldb7J4z3GUlm3avjd1z2qWjRfpwqXXdiqX9Zdb19VTL8AKJhj4RAPgb9QDgPSTa4KisrCzNmTNHWVlZbocCl1AGAG9p3G8NLtt1x8HO96393uJVOGzdcRHrweXDmmo/HWTmjg4gbtXvkTb92Vo20Q6nsySvE0Kd1nWqudae52+okDa8bN/fF3ADfSIA8DfqAcB7SLTBUXV1dXrmmWdUV1fndihwCWUA8I5wSNq8PLI7DWbMky78pvVvb5W9Ix3aG3l8Ttj9oVS3K7JzIv0bNO619jsCEH+62qWPX5XMUO/PieY6uOUNax/LeFS2yrpO9VY0779up7Trw4hDA+IWfSIA8DfqAcB7SLTBUdXV1Xr44YdVXV3tdihwCWUA8I7yd607riKRkiGlZVr/9pZpWsunhSMYyHZC8wHpk9WRnxfN32D3R/bdNQcgetveltobIzsnmmtAqFMq+Yt1PYwn9RXSno8iOyea9y9Z19vmA5GdA8Qr+kQA4G/UA4D3kGhzQG1trRYsWKCxY8cqLS1N+fn5uvvuu9Xc3KzbbrtNhmHoySefdDtMAAB6rfWgtayjU5r2SxXrnXu93tj6lrPJvy1/i79B9t4ILV6izs9fpfDrfz3uMdM01fW9B9R59RyZ5TudD85Bpikd2Gnt6SdZd4K2NrgZkXO8WgYO1UhVm5x7vfrd0t6tzr3eqZimtPVvzr1eOGRddwEAAAAg3iS5HYDXrV+/XldeeaVqamqUkZGhCRMmqKqqSk888YR27Nhx5BbhqVOnuhsoAAARqNzofNKnYr2Uf5ZkGM6+bk+a66ylzJzUVCs1VEoD8px93dMVuHWuwu+9r9BTv5Ax7SwZg3KOPBZ+4UWZGzcp8E/zZYwqcC9IG5lhac866+fYxFpXx//P3r3HR1Xf+R9/n5mEDCThEiIBEiBcEoFwU4QWwSqutCoFteKtaEVt7dbrz1Jgt+u22112LS7W1mq3VqtYa5UW0CKorRa1iFVBrhIit3BJSIAAgVzIbeb8/jgSQQLMHGbOSc55PR+PPNA5t88k3/l+5/v9nO/3SCueljL7Sblfljr3dC3EhPNqGdi9xvlrlqyVug90/rotqSyJfVbz2Tq4w6p/UzOcvS4AAAAAnA4z2hKooqJCkyZNUnl5uaZPn66ysjKtXr1a5eXlmjNnjpYuXaqVK1fKMAwNGzbM7XABAIhKpMlKtDmt9lDsz0NLFLdm17W2WX3RMJKTlTRjulRXp/DPft78urm7RJF5v5Mx8FwFrrvWvQATKBKW1r8qbX771LPXKrZLH78klRc5GpqjvFgGGo66M7usssSa4dsauFUfla5z57oAAAAAcCok2hLovvvuU0lJie655x7NnTtX6enpzdtmzpyp4cOHq6mpSbm5uerYsaOLkTonNTVVY8eOVWpqjA9lgGdQBoC279BuqfGoO9duLcum7dvsznX3b2l9z6qLhpE3QIEbr5f58WpFlr4uMxxW+OG5kmkqOGO6jGDQ7RATougt6292JmZE2viadHBX4mNyi9fKQMU266YDN7SGejASlvZvdefareH9A2eLPhEA+BvtAOA9JNoSZNOmTZo/f74yMzP10EMPtbjPyJEjJUnDhw9vfu2dd96RYRgn/Xhlacnc3Fw9/fTTys3NdTsUuIQyALR9R/a6eO1y9659TH219eOGSNj5pdriJTD1JqlfP4WfelqRJ34t89PNCkz7loxebWwtzCjVHIjt+V1mRNr2XuLiaQ28VAb8Xg9WV7iX9K+vlupr3Lk2EC/0iQDA32gHAO8h0ZYgL774oiKRiKZOnaq0tLQW92nfvr2kExNtxzzxxBP6xz/+0fzz/PPPJzRep4TDYVVXVyscboO34yMuKANA2+fmAHPNASns0iySY9x8/5JU5fL17TKSkpQ04/tSQ6MiS5bKGFKgwDeudjushLGzrN7hPVLVvriH0mp4qQy4+Tk8stf5Z2R+kdv1UFUrSDYCZ4M+EQD4G+0A4D0k2hJk2bJlkqTx48efcp+SkhJJLSfaBg8erC9/+cvNP0OHDk1MoA4rKirSqFGjVFTk4QeR4LQoA0DbV3vIvWubEanusHvXl9x9/63h+mclNVVKTpYkGaMukBHw7ldRu8vbeX5ZPI+UATc/h41HpaZ6964vuV8P1bTlehAQfSIA8DvaAcB7ktwOwKt27twpSerTp0+L25uamrRixQpJLSfa4umCCy5QeXlibvucNm1aTPuXlZVJkl577TWtWbMmqmPmzZsXY1RwEmUA8J85095TVufcFreNvllqd5pl5lNSP/933HdPf52GGumj35/8+oTLvqZd+zdGF2wCTBp1r64dO6vFbWd6/1L0v4NTvf/fPvWsfj/136OM1j6zXTvpySfidz7TVPiRR6WmRql3L0X+8JICF39FRs8ecbtGfl6+jIaGuJ3vbDxz304FArE/d+y5p/+gZ2+amYCIYkcZOLUn796slOQOLW6LVz14qjpAkkYMO0+Ha/dHGW383XzJbF02YlqL25xoBx76759qycrHowsWcAB9IiA2x74nRcJh5eS0PG4GtCW0A0DbFYlEmv973LhxUX8mv4hEW4LU1FgPDjh69GiL2+fPn6+Kigqlp6erb9++J22/4YYbVFFRoa5du2ry5Mn66U9/qszMTFuxlJeXq7S01NaxZ1JbWxvT/nV1dc3/RntsomJHfFAGAP9paDj1VIp2qVIo/cznMALR7deS8r1lKi1zr144lH/qqRTRvn/J/u/gSNVhZ+rFUIqS43i6yCuLZa5br8Bttyow5stquvtehR95VMG5c2QYRlyusadsj1Tn8lSfzzSFG9XORqLtcNWh1tPuUQZOqSncpJRT/HKcqAdL95TocI17D2ysqjr11GIn3n9lZSv6nACiTwTEypTZ/C9lG15AOwB4w9699tfIJ9GWIN27d9ehQ4e0evVqjRkz5oRtZWVlmjFjhiRp2LBhJwwsdOrUSTNmzNBXvvIVpaWl6R//+IceeughffDBB1q1apVCoZCtWBKlQ4eW7+Q9lWPxh0KhqI/Nzs6OOS44hzIA+E9jpOWbSCRr9sHppKRag6tmRKo/w76nOlfHzh2UHXCvXkhOOfW2M71/KfrfwanOFUg2HakXzXbtFK/5MmZpqSLPzJNxbr4C10+REQwqcPNURZ59TpFXFit4zVVxuU7PHj1bzYy28srt6n3O4JiPq2rY12raPcrAqdU1VCk11LHFbfGqB091nogZUZeunZTW+TSVUYIZyZFTbnOiHUgOGa3mcwJI9ImAWBkymv+lbMMLaAeAtisSiTTPMs3KyrJ9HsM03X6Utjfdd999+uUvf6levXrprbfeUn5+viRp5cqVuuWWW7R9+3Y1Njbq7rvv1uOPn37Zk1dffVWTJ0/WM888o9tuu82J8KMW61rCGzdu1JQpU7RgwQIVFBREdczAgQPthAaHUAYA/yn8i7Rng71jx33XmsFQVyW992TsxyelSBffI8Vp8ostlXukVX+wf/zZ/g6GXSV1y7N//WjVhJvUZdmbZ30eMxJR+PszZG7ZqqT/+6WM3r2t18Nhhe//vsydu5T05K/isnzgoUsnKDXYOu4j271G+vRvsR0TCEoX/bOU3D4xMcWKMnBqaxdJFdvtHXu2dUCHDOnC2+1dO172bZbWL7Z37Nm+f0ka9U2pU097xwKJQJ8IiM1bj0gyJRnSZdPdjgY4e7QDQNtVU1OjtLQ0SVJ1dbVSU8/wPJBTaJtPH28DZs6cqa5du2r37t0qKCjQ0KFDlZeXp9GjR6tfv3669NJLJUX3fLavf/3rSk1N1apVqxIddsLl5+drxYoVzYlH+A9lAGj7OiZuovSZr53lbpJNktLPkeRiDB3t32DlisiCRTILNylw683NCRZJMoJBBX/wfSkSVviRR+W1e796DJaC7WI7JmtQ60myxZMXy0C6i59DN+vg1hCDYUhp57h3fSAe6BMBgL/RDgDeQ6ItQXJycrR8+XJNnDhRoVBIO3bsUEZGhp588kktXbpUmzdvlhRdou2YeD27wk3JycnKyMhQcnI8n/iBtoQyALR9nV2cRdAaZjAEk6X0bu5cOyXd+mkrzF27FHnueRmDBipw7TdO2m7k9lHg5qkyN3yiyCs2p8e0UkkpUsGVijop26GLlHdxQkNyhVfLQGcXV+5xsw4+xs26KD3LqoeBtow+EQD4G+0A4D0k2hJo0KBBWrJkiaqqqlRVVaUPP/xQd955p2pqarRjxw4FAgENGTLkjOdZvHixampqNHr0aAeiTqxdu3bprrvu0q5du9wOBS6hDABtX9o57s1m6HnmZtMR2UPdu25buu/G6N1byUv/rKRf/ExGMNjiPsGbblDyX1+L2zO6WpNuA6Rhk6wlIU8nrZs08gapnQdns3m1DGT0lk7xiLaECiRJWa1g1SDDcK8+7ulS/QvEE30iAPA32gHAe0i0uWDjxo0yTVN5eXknPfDy5ptv1o9+9CO98soreuutt/Rf//VfuvnmmzVixAjdeOONLkUcP1VVVXr77bdVVVXldihwCWUA8IacEc5fM7Of1L6z89dtSXcbywKeLcNggLkt6pYvjb1T6jf25BlAXXpLQydLo6dKKWnuxAd7jICUE/3CFHHTfZCUHHL+ui3JHuZ84j/YzvodAG0dfSIA8DfaAcB7SLS5YMOGDZJaXjayoKBAL7/8sr71rW/piiuu0DPPPKPvfOc7euedd9SuncMjegAAnELWuc7P5ugzytnrnU5SO+eTjd0HS6E2tGwkPpeSKvUbI437jtTus+cqt0uVRl4vZeWfecYbWqeeQ6UkB5NeRkDqPdK5651JKN2ql5zUa4RV/wIAAABAa0KizQWnS7T967/+qzZs2KAjR46osbFRxcXF+tnPfqZOnTo5HSYAAKcUTJYGfc2562UPl7r0cu560eg3xnqulhPapUr5lzhzLSSOEfh8BlBbWgIULWvXQTr3Uueu1/fLUlqmc9eLRt4l1u/BCR0ypL5jnLkWAAAAAMSCRJsLTpdoAwCgrejax0qAxaKhRqqrsv6NVihdyrs4tus4IZgsDb489uPs/A4GTZCSPfj8LqCt6z5Iyuwf2zF26oC0blLul2K7jhPatZcGfjW2Y+y8fxlSweVWvQsAAAAArU2S2wH40bJly9wOwTVZWVmaNWuWsrKy3A4FLqEMAN6Sf4lUc0CqLIlu/49+H9v5k1Kk4de03qXCOmdLAy+Tit6K/phYfwf9LpTOGRDbMQCcYRhSwRXSxy9J1RXRHRNrHZCSJg2f3HqXGO02wJppVvyP6PaP9f1LVj3bqWfsxwGtFX0iAPA32gHAe5jRBkdlZmZq2rRpysxsZevewDGUAcBbgsnSiGukzjnxP3dySDpvipTeLf7njqecEVJ+gpaPy/0yS6UBrV1ySDr/OintnPifOyVdOv96qX3n+J87nvpdaNVXiXDupVIOC4HAY+gTAYC/0Q4A3kOiDY46fPiw3njjDR0+fNjtUOASygDgPUkp0nnXWgmneOmYJV1wk9SpR/zOmUi9z5eGXRW/5R2D7axn4A0Yx7O8gLagXao08gYpa2D8ztmltzTqJik1I37nTBTDsOqrQV+z6q94SG5v1au9zo/P+YDWhD4RAPgb7QDgPSTa4KiSkhI98MADKimJco0xeA5lAPCmYLK1tNf510uhjvbPYwSl/hdJF0yVUrvGLz4ndMuTxtwmdcs/u/Nk5EpjpknZQ+MRFQCnJIekoV+3kkPtOtg/T3N9et3Z1aduyB5q1V8Zfc7uPN3yP6tP8+ISFtDq0CcCAH+jHQC8h2e0AQCAuMnoLV14u7R3s1SyVjq8J7rjUtKk7GHWT0paQkNMqHYdpGGTpSPl1vsvL5IiTWc+zghYA8s5I6znvjGLDWi7uuVJXftYn//da6Tq/dEd176TVQf0GCK1i9PsWDeEOlrL/laWWvXgvs2SGTnzcYEkqfsga5nIjt0THiYAAAAAxA2JNgAAEFeBJKnHYOun5oBUuUeqKpeq9ktNDZIi1j4dMqwlItOzrORSIOh25PHTsbs0+HIp7xLpUIn1/o/sleqrpUjYeq/tOhz3/nOklFS3owYQL8F21o0DPYdaibbDZVYCvrpCCjdIMqVAsjVzt2OWVWd06umdJLthSF1yrJ/6GqmyRKraa9WDDbWf14MpaZ/Vg92tfZNDbkcOAAAAALEj0QYAABImtetnS0D6dBnE5JDUbYD1A8B/DENK72b9aLjb0bgjJVXKOtf6AQAAAAAv4hltcFQoFNKgQYMUCnG7ql9RBgAAAAD4GX0iAPA32gHAe5jRBkf1799fixYtcjsMuIgyAAAAAMDP6BMBgL/RDgDew4w2AAAAAAAAAAAAwAYSbXBUYWGhhg0bpsLCQrdDgUsoAwAAAAD8jD4RAPgb7QDgPSTa4CjTNNXY2CjTNN0OBS6hDAAAAADwM/pEAOBvtAOA9/CMNgAAAJykQyCoQ5dOcDuMmHQIBN0OwVMoAwAAAAAAnBmJNgAAAJzEMAylBvmq6GeUAQAAAAAAzoylIwEAAAAAAAAAAAAbuEUVjurfv78WL16sXr16uR0KXEIZAAAAAOBn9IkAwN9oBwDvIdEGR4VCIeXl5bkdBlxEGQAAAADgZ/SJAMDfaAcA72HpSDiqtLRUDz74oEpLS90OBS6hDAAAAADwM/pEAOBvtAOA95Bog6MqKyu1cOFCVVZWuh0KXEIZAAAAAOBn9IkAwN9oBwDvIdEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2OCoQCGjUqFEKBCh6fkUZAAAAAOBn9IkAwN9oBwDv4dMMR0UiEa1cuVKRSMTtUOASygAAAAAAP6NPBAD+RjsAeA+JNgAAAAAAAAAAAMAGEm0AAAAAAAAAAACADSTaAAAAAAAAAAAAABtItMFRnTp10qRJk9SpUye3Q4FLKAMAAAAA/Iw+EQD4G+0A4D1JbgcAf8nJydHDDz/sdhhwEWUAAAAAgJ/RJwIAf6MdALyHGW1wVH19vXbu3Kn6+nq3Q4FLKAMAAAAA/Iw+EQD4G+0A4D0k2uCorVu36vLLL9fWrVvdDgUuoQwAAAAA8DP6RADgb7QDgPeQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgQ5LbAcBfCgoKtGnTJrfDgIsoAwAAAAD8jD4RAPgb7QDgPcxoAwAAAAAAAAAAAGwg0QZHFRcX68Ybb1RxcbHbocAllAEAAAAAfkafCAD8jXYA8B6WjoSjamtrtW7dOtXW1rodClxCGQAA+EndEamyVDpSLlXtkxo+a/4aaqV1f5Y6Zkkdu0uds6VgsruxAgCcQZ8IAPyNdgDwHhJtAAAAQByZEelAsbR7rfXvqfbZv8X6kaSkkNSzQMoZIXXo4lSkAAAAAADgbJFoAwAAAOKker+08Q2pam9sxzXVSbs+tn56nS8NGCcF2yUmRgAAAAAAED8k2gAAAICzZJrSjg+l7e9bs9XOxu7VUsV2qeAKa0lJAAAAAADQegXcDgD+kp2drTlz5ig7m1Ejv6IMAAC8JhKRNr4ubXvv7JNsxxytlFb/Udq/NT7nAwC0HvSJAMDfaAcA72FGGxzVuXNnTZ482e0w4CLKAADAS0xTKnxDKi+M/7kjYWn9YmnENVLXvvE/PwDAHfSJAMDfaAcA72FGGxx18OBBvfDCCzp48KDbocAllAEAgJfsWpWYJNsxZkRa/6pUdyRx1wAAOIs+EQD4G+0A4D0k2uCosrIyzZ49W2VlZW6HApdQBgAAXlFzUNq2IrZjRt8sjfuu9W+0wg1S4V+s2XMAgLaPPhEA+BvtAOA9JNocUFFRoZkzZ2rAgAEKhULq1auX7r//ftXU1OiOO+6QYRh6/PHH3Q4TAAAAUTJNadNfpEhTbMe1S5VC6da/sTi4U9rzSWzHtEb1jdKhGqm6ToqQOAQAAAAAeADPaEuwtWvX6oorrlB5eblSU1M1ePBg7dmzR4899pi2bdvWPEV4xIgR7gYKAACAqB3eI1WWOnvNnSulnkMkw3D2umcrHJE+KZHe2yxt2fv56106SGPypDH9pfT27sUHAAAAAMDZYEZbAlVUVGjSpEkqLy/X9OnTVVZWptWrV6u8vFxz5szR0qVLtXLlShmGoWHDhrkdLgAAAKJUstb5a9YelA7tdv66Z+NwrfToG9Kzy09MsknSoVrptXXST/4srW9j7wsAAAAAgGNItCXQfffdp5KSEt1zzz2aO3eu0tPTm7fNnDlTw4cPV1NTk3Jzc9WxY0cXI3VOamqqxo4dq9TUGNdLgmdQBgAAbV1TvbR3szvXLl3vznXtqKmXnvibVHLo9Ps1haVn/27NegMAP6BPBAD+RjsAeA+JtgTZtGmT5s+fr8zMTD300EMt7jNy5EhJ0vDhw0/a9vLLL+vCCy9UamqqOnXqpLFjx2rjxo0JjdkJubm5evrpp5Wbm+t2KHAJZQAA0NYdKZfMsDvXPrzHnevasXiNtO9IdPuakp5fIdU1JjQkAGgV6BMBgL/RDgDeQ6ItQV588UVFIhFNnTpVaWlpLe7Tvr31MIovJtoee+wxXX/99Ro3bpwWL16sF198UZdddpmOHj2a8LgTLRwOq7q6WuGwS6NTcB1lAADQ1h3Ze+Z9EqXuiNRQ6971o1VTL328I7Zj6pukVcUJCQcAWhX6RADgb7QDgPeQaEuQZcuWSZLGjx9/yn1KSqz1cY5PtG3btk0zZszQo48+qocfflj/9E//pCuvvFI/+clPdMEFFyQ2aAcUFRVp1KhRKioqcjsUuIQyAABo66r3+/v60VhVbC0JGav3t8Y/FgBobegTAYC/0Q4A3pPkdgBetXPnTklSnz59Wtze1NSkFStWSDox0fbMM88oOTlZ3/nOd+IWywUXXKDy8vK4ne9406ZNi2n/srIySdJrr72mNWvWRHXMvHnzYowKTqIMAAD85oGrntPwvv/U4rbRN0vtTvOohZTUz/8d993TX6ehRvro9ye/fvutd2rV1teijNYd5139P+o/5lsxH7d7X51ycgYkICIASBz6REBsnrlvpwKBoCLhsHJyWh43A9oS2gGg7YpEIs3/PW7cuKg/k19Eoi1BampqJOmUyz3Onz9fFRUVSk9PV9++fZtff//993Xuuefq97//vWbPnq3du3crLy9PP/rRj3TTTTfZiqW8vFylpaW2jj2T2trY1i6qq6tr/jfaYxMVO+KDMgAA8JuGhlM/SKxdqhRKP/M5jEB0+7Xk0KHKVt82Dqq397A1I5jc6t8bAHwRfSIgNqbM5n8p2/AC2gHAG/butf+cCBJtCdK9e3cdOnRIq1ev1pgxY07YVlZWphkzZkiShg0bJsMwTthWWlqqf/3Xf9WcOXPUq1cv/fa3v9U3v/lNnXPOObrssstsxZIoHTp0iGn/UCjU/G+0x2ZnZ8ccF5xDGQAA+I0RNE+5raHm9MempFpJNjMi1Z9h31OdK71jh1bfNgZNe88Wbqg52OrfGwB8EX0iIDaGjOZ/KdvwAtoBoO2KRCLNs0yzsrJsn8cwTfPUIwWw7b777tMvf/lL9erVS2+99Zby8/MlSStXrtQtt9yi7du3q7GxUXfffbcef/zx5uPy8/O1ZcsWvfzyy7r66qslSaZpasSIEercubPeffddN97OKcW6lvDGjRs1ZcoULViwQAUFBVEdM3DgQDuhwSGUAQCA32x5V9q50t6x475rzWSrq5Lee9LeOcbcLqVm2DvWKbsPSo+8HvtxF50rXdv2H0sMwGfoEwGxeesRSaYkQ7psutvRAGePdgBou2pqapSWliZJqq6uVmrqaZ4FcRqBeAaFz82cOVNdu3bV7t27VVBQoKFDhyovL0+jR49Wv379dOmll0o68flskpSRYY2aHD9zzTAMXXbZZfrkk0+cewMJkp+frxUrVjQnHuE/lAEAQFuXbv8mt7MWbCd16OLe9aPVK0Pqkxn7cWPz4h8LALQ29IkAwN9oBwDvIdGWIDk5OVq+fLkmTpyoUCikHTt2KCMjQ08++aSWLl2qzZs3Szo50Xa6uxiOrd/bliUnJysjI0PJycluhwKXUAYAAG1dx8Styn1G6d2k41Ydb9UmDpcCMcQ6up/UvVPi4gGA1oI+EQD4G+0A4D0k2hJo0KBBWrJkiaqqqlRVVaUPP/xQd955p2pqarRjxw4FAgENGTLkhGOuuuoqSdJf//rX5tcikYjefPNNjRo1ytH4E2HXrl266667tGvXLrdDgUsoAwCAtq59J/dmtWWd68517cjvLk29MLpk27Be0vWjEx8TALQG9IkAwN9oBwDvIdHmgo0bN8o0TeXl5Z30wMtJkybpoosu0p133qmnnnpKf/nLX3TDDTdo48aN+tGPfuRSxPFTVVWlt99+W1VVVW6HApdQBgAAbZ1hSDkjnL9uMFnqMdj5656NkbnSvROkwT2llvJtmWnS1SOlaeOkpKDT0QGAO+gTAYC/0Q4A3pPkdgB+tGHDBkknLxspWc9jW7x4sWbNmqUf/vCHOnLkiIYPH67XXnut+bluAAAAcFf3gdLWd6VGB1f27jFYSkpx7nrx0vcc6c7xUkWVtLFUevnjz7f9cHJsy0sCAAAAANDaMKPNBadLtElS586d9eSTT2r//v2qr6/XRx99pK997WtOhggAAIDTCCZLeZc4d712HaR+Y527XiJkpksXD/x8ZpshkmwAAAAAgLaPRJsLzpRoAwAAQOvXo0DK7OfMtQZeZiXbAAAAAABA68LSkS5YtmyZ2yG4JisrS7NmzVJWVpbbocAllAEAgFcYhjToq9JHL0j1UT5eoaHmxH+jkT1M6pYfe3wAgNaJPhEA+BvtAOA9JNrgqMzMTE2bNs3tMOAiygAAwEtS0qTzr5M+nh9d8uyj38d2/qxzrdlsAADvoE8EAP5GOwB4D0tHwlGHDx/WG2+8ocOHD7sdClxCGQAAeE1qhnTBTVKHjPieN2eENGSiZPCNHQA8hT4RAPgb7QDgPXTb4aiSkhI98MADKikpcTsUuIQyAADwog6dpS/dIvUZJck4u3OlpEkjvmHNZCPJBgDeQ58IAPyNdgDwHpaOBAAAAOIgmCzlXWw9T23HR9L+rZLM6I9Pbm89j63PKCk5lLAwAQAAAABAHJFoAwAAAOKoUw9p+FVS3RFpzyfSoRKpaq/UVH/yvu07Sx2zpHMGSN3ypADfzgEAAAAAaFPoygMAAAAJEOoo9bvQ+m/TlOoOS411UiQiBYJS+07MXAMAAAAAoK0j0QZHhUIhDRo0SKEQo0p+RRkAAPiRYViz19q7HQgAwHX0iQDA32gHAO8h0QZH9e/fX4sWLXI7DLiIMgAAAADAz+gTAYC/0Q4A3hNwOwAAAAAAAAAAAACgLSLRBkcVFhZq2LBhKiwsdDsUuIQyAAAAAMDP6BMBgL/RDgDeQ6INjjJNU42NjTJN0+1Q4BLKAAAAAAA/o08EAP5GOwB4D4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAAAAAAAAAG5LcDgD+0r9/fy1evFi9evVyOxS4hDIAAAAAwM/oEwGAv9EOAN5Dog2OCoVCysvLczsMuIgyAAAAAMDP6BMBgL/RDgDew9KRcFRpaakefPBBlZaWuh0KXEIZAAAAAOBn9IkAwN9oBwDvIdEGR1VWVmrhwoWqrKx0OxS4hDIAAAAAwM/oEwGAv9EOAN5Dog0AAAAAAAAAAACwgUQbAAAAAAAAAAAAYAOJNgAAAAAAAAAAAMAGEm1wVCAQ0KhRoxQIUPT8ijIAAAAAwM/oEwGAv9EOAN7DpxmOikQiWrlypSKRiNuhwCWUAQAAAAB+Rp8IAPyNdgDwHhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBog6M6deqkSZMmqVOnTm6HApdQBgAAAAD4GX0iAPA32gHAe5LcDgD+kpOTo4cfftjtMOAiygAAAAAAP6NPBAD+RjsAeA8z2uCo+vp67dy5U/X19W6HApdQBgAAAAD4GX0iAPA32gHAe0i0wVFbt27V5Zdfrq1bt7odClxCGQAAAADgZ/SJAMDfaAcA7yHRBgAAAAAAAAAAANjAM9qAFpim1BB2O4rYtAtKhuF2FAAAAAAAL/B7v9g0TdVG2tYvoEMgKIOBgbihDLS9eoCxMQBuIdEGtKAhLM2a73YUsZlzg5TCJxoAAAAAEAd+7xfXRsLqsuzN+JzMIYcunaDUIAMD8UIZaHv1AGNjANzC0pEAAAAAAAAAAACADeT44aiCggJt2rTJ7TDgIsoAAAAAAD+jTwQA/kY7AHgPM9oAAAAAAAAAAAAAG0i0wVHFxcW68cYbVVxc7HYocAllAAAAAICf0ScCAH+jHQC8h0QbHFVbW6t169aptrbW7VDgEsoAAAAAAD+jTwQA/kY7AHgPiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLTBUdnZ2ZozZ46ys7PdDgUuoQwAAAAA8DP6RADgb7QDgPckuR0A/KVz586aPHmy22HARZQBAAAAAH5GnwgA/I12APAeZrTBUQcPHtQLL7yggwcPuh0KXEIZAAAAAOBn9IkAwN9oBwDvIdEGR5WVlWn27NkqKytzOxS4hDIAAAAAwM/oEwGAv9EOAN5Dog0AAAAAAAAAAACwgUSbAyoqKjRz5kwNGDBAoVBIvXr10v3336+amhrdcccdMgxDjz/+uNthIgFKCt/RL2429PHSuafc5xc3G/rz3K87GBUAAICzmsLSqmJp3nLJ/Ow1U9KhGjejAgA4gX6xFH5mnhq/eqUib/z1pG2maarpB7PUOHGyzOIdzgfnkEhYKi+SNryqE74MHK10MSiH+P3vTx0AwA+S3A7A69auXasrrrhC5eXlSk1N1eDBg7Vnzx499thj2rZtW/NavCNGjHA3UAAAACDOTFN691PpzU+kmvqTt//nn6VhvaTrR0upKc7HBwCAEwK3TFXkgw8VfvIpGSPPl3FOZvO2yKJXZK7foMDt02T0zXUvyAQqWSdtf19qaOEGmxVPS5n9pUFflVJSnY/NCX7/+wOAHzCjLYEqKio0adIklZeXa/r06SorK9Pq1atVXl6uOXPmaOnSpVq5cqUMw9CwYcPcDtcRqampGjt2rFJTPfrtCWdEGQAAwB9MU3pltfTKxy0n2Y7ts26X9PO/SFVHnY0PANxCn8h/jORkJc2YLtXVKfyznze/bu4uUWTe72QMPFeB6651L8AE2vaeVPRmy0m2Yyq2SStfkOqqnIvLSX7++6NltAOA95BoS6D77rtPJSUluueeezR37lylp6c3b5s5c6aGDx+upqYm5ebmqmPHji5G6pzc3Fw9/fTTys3NdTsUuIQyAACAP/xjq/RuUXT77q+Sfvt3K/EGAF5Hn8ifjLwBCtx4vcyPVyuy9HWZ4bDCD8+VTFPBGdNlBINuhxh3ZYVS8QfR7Vt3RFq7SDIjiY3JLX78++PUaAcA7yHRliCbNm3S/PnzlZmZqYceeqjFfUaOHClJGj58ePNrl1xyiQzDaPHnn//5nx2JPZHC4bCqq6sVDofdDsVRTQ21OlpV0eKP3/i1DAAA4CeRiPS3wtiO2VEhbd2XmHgAoDXxa5+IfrEUmHqT1K+fwk89rcgTv5b56WYFpn1LRq8ct0OLO9OUdnwY2zHV+6UDxYmJpzXw09+/JdQBn/NrOwB4Gc9oS5AXX3xRkUhEU6dOVVpaWov7tG/fXtKJibZf/epXOnLkyAn7LV26VLNnz9bXv972HwpaVFSkKVOmaMGCBSooKHA7HMd8sPDH+mDhj90Oo1XwaxkAAMBPisqkA9WxH/feZikvK/7xAEBr4tc+Ef1iyUhKUtKM76vp3v+nyJKlMoYUKPCNq90OKyEqS6SaA7Eft3ut9cw2L/LT378l1AGf82s7AHgZibYEWbZsmSRp/Pjxp9ynpKRE0omJtsGDB5+033//93/rnHPO0eWXXx7nKOGUIePvVN6Xrmtx28s/neBwNAAAAIn1abnN48riGwcAoPWgX/yZ1FQpOVlqapIx6gIZAW8uNnVgp73jDu60ZsMZRnzjaTV88vdvCXUAAC8j0ZYgO3da3yj69OnT4vampiatWLFC0omJti/av3+/3njjDd11111KSrL357rgggtUXm5ztOMMpk2bFtP+ZWXW6Mlrr72mNWvWRHXMvHnzYozq7AWT2+ua2Vvidr7O3fPUe8hlcTtfS/Lz8hRuPJrQa7TEq2UAAADYN3LKXPUddWPMxx2tjygnp3cCIgKAxPFqn8jv/WKzXTvpySficq7mc5qmwo88KjU1Sr17KfKHlxS4+CsyevaIy/nz8/JlNDTE5Vxna+rF/6kJ590e83FmROrfd4AamuoSEFWMscS5DCT67y/FvwzEsx5oa3VALLzaDgB+EIl8/nDQcePGRf2Z/CISbQlSU1MjSTp6tOXKff78+aqoqFB6err69u17yvO8+OKLampq0i233GI7lvLycpWWlto+/nRqa2tj2r+urq7532iPTVTsp5OU0sHxa56tPWV71FQf298jHrxaBgAAgH0DDtp72FpjfQ3tPoA2x6t9It/3i0MpSo7PmZpFXlksc916BW67VYExX1bT3fcq/MijCs6dIyMOU7j2lO2R6urjEOnZqzi019Zx4UhYO3Ztl2macY7IhjiXgUT//aX4l4G2Vg8wNgbgbOzda6/tkki0JUz37t116NAhrV69WmPGjDlhW1lZmWbMmCFJGjZs2Gkb0+eff16DBg3SBRdccFaxJEqHDrE1uKFQqPnfaI/Nzs6OOa6zFUxu7/g1z1bPHj1duWvHq2UAAADYV3/gU1vHHSpZQ7sPoM3xap/I7/1is1077Y/LmT47X2mpIs/Mk3FuvgLXT5ERDCpw81RFnn1OkVcWK3jNVWd9jZ49eraaGW17qzfbOm57+Rr17NkzztHYE88y4MTfX4p/GWhr9QBjYwBiFYlEmmeZZmXZf2A4ibYEueyyy7Rp0ybNmTNHEyZMUH5+viRp5cqVuuWWW1RRUSFJGjFixCnPUVRUpFWrVul//ud/ziqWVatWndXxp1NUVBTT/o2NjbrjjjuUnp6u5OTo7guaPXu2ndDOSn2TNGu+45c9K5u3bFGKC59or5YBAABgX1NY+o+XpeoYb6j+1zu+ohf/oyQxQQFAgni1T+T3fnFNuEldlr0Zl3OZkYjC//szKRJRcMb3ZQSDkqTA9VNkrnhfkWfmKfCl0We9hODmLZuVGmwdQ31mRFrxlFRXFdtxV3/7An3vZ63ju0C8yoBTf38p/mWgrdUDjI0BiFVNTY3S0tIkSe+9957t8/jniZsOmzlzprp27ardu3eroKBAQ4cOVV5enkaPHq1+/frp0ksvlXT657M9//zzMgxDU6dOdSrshEtOTlZGRkbUjQi8hzIAAID3JQWlcefGdkxmulTAjboAfIA+kf9EFiySWbhJgVtvltH782eRGsGggj/4vhQJK/zIo61jucQ4MQJSr5GxHZOSLmXlJyYeN/nx74/Tox0AvIdEW4Lk5ORo+fLlmjhxokKhkHbs2KGMjAw9+eSTWrp0qTZvtqbQnyrRZpqmXnjhBV1yySXq3ds7D4TftWuX7rrrLu3atcvtUOASygAAAP4woUAakhPdvqkp0nculoL0TgD4AH0ifzF37VLkuedlDBqowLXfOGm7kdtHgZunytzwiSKvLHYhwsTpPVLKGhjdvkkp0ohrpEDrmJAXN37+++PUaAcA7/FY89W6DBo0SEuWLDnp9erqau3YsUOBQEBDhgxp8di///3v2rlzp3784x8nOkxHVVVV6e2339bdd9/tdiiOyBl8ie7//envSDrTdq/xWxkAAMCvggHptoukl1dJ72+VIqf4ytOzszTtIqlbR0fDAwDX+K1P5Pd+sdG7t5KX/vm0+wRvukHBm25wKCLnGIY05EopJVXavcZaTrIlqRnS0ElS2jnOxucEP//9j/F7HdASv7UDgB+QaHPBxo0bZZqm8vPzT/nAy+eff17t27fXlClTHI4OAAAAiI9gQJoyWrpsiPSPrdInJVJtg5QclLK7SOPypH7drIE4AADgPUZAyh8v9Rktla6X9m+RGuusmWtpXaWcEVKX3nwXAAC0bSTaXLBhwwZJp142sq6uTgsWLNDVV1+t9PR0J0MDAAAA4q5zB+mKYdYPAADwn5RUqd8Y6wcAAK8h0eaCMyXaQqGQKisrHYwIAAAAAAAAAAAAseJx4y44U6LNy7KysjRr1ixlZWW5HQpcQhkAAAAA4Gf0iQDA32gHAO9hRpsLli1b5nYIrsnMzNS0adPcDgMuogwAAAAA8DP6RADgb7QDgPcwow2OOnz4sN544w0dPnzY7VDgEsoAAAAAAD+jTwQA/kY7AHgPiTY4qqSkRA888IBKSkrcDgUuoQwAAAAA8DP6RADgb7QDgPeQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBscFQqFNGjQIIVCIbdDgUsoAwAAAAD8jD4RAPgb7QDgPUluBwB/6d+/vxYtWuR2GHARZQAAAACAn9EnAgB/ox0AvIcZbQAAAAAAAAAAAIANJNrgqMLCQg0bNkyFhYVuhwKXUAYAAAAA+Bl9IgDwN9oBwHtItMFRpmmqsbFRpmm6HQpcQhkAAAAA4Gf0iQDA32gHAO/hGW1AC9oFpTk3uB1FbNoF3Y4AAAAAAOAVfu8XdwgEdejSCfE7oQM6BBgYiCfKQNurBxgbA+AWEm1ACwxDSuHTAQAAAADwKb/3iw3DUGrQx78AUAZEPQAA0WLpSAAAAAAAAAAAAMAG7kmAo/r376/FixerV69ebocCl1AGAAAAAPgZfSIA8DfaAcB7SLTBUaFQSHl5eW6HARdRBgAAAAD4GX0iAPA32gHAe1g6Eo4qLS3Vgw8+qNLSUrdDgUsoAwAAAAD8jD4RAPgb7QDgPSTa4KjKykotXLhQlZWVbocCl1AGAAAAAPgZfSIA8DfaAcB7SLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINjsrMzNR3vvMdZWZmuh0KXEIZAAAAAOBn9IkAwN9oBwDvMUzTNN0OAgAAAAAAAAAAAHBKTU2N0tLSJEnV1dVKTU21dR5mtAEAAAAAAAAAAAA2kGgDAAAAAAAAAAAAbCDRBgAAAAAAAAAAANhAog0AAAAAAAAAAACwgUQbAAAAAAAAAAAAYAOJNgAAAAAAAAAAAMAGEm0AAAAAAAAAAACADSTaAAAAAAAAAAAAABtItAEAAAAAAAAAAAA2kGgDAAAAAAAAAAAAbCDRBgAAAAAAAAAAANhAog0AAAAAAAAAAACwgUQbJEmRSET/+Z//qQEDBqh9+/bq3bu37rvvPtXU1LgdGgAAAAAAAAAAQKuU5HYAaB0eeeQRzZ07V88++6xGjhypTz/9VLfddpvq6+v15JNPuh0eAAAAAAAAAABAq0OiDZKkFStWaMKECbr22mslSbm5ubrpppu0bNkylyMDAAAAAAAAAABonVg6EpKkcePGacWKFVq/fr0kafv27Xrttdc0ceJElyMDAAAAAAAAAABonZjRBknS9OnTVVdXp/PPP1+GYaipqUnf+c539F//9V9uhwYAAAAAAAAAANAqMaMNkqQFCxboV7/6lZ599lmtXr1af/rTn/T666/rwQcfdDs0AAAAAAAAAACAVskwTdN0Owi4r3fv3rr77rs1a9as5teef/553X777aqqqlIoFHIxOgAAAAAAAAAAgPipqalRWlqaJKm6ulqpqam2zsOMNkiyClQgcGJxCAaDMk1T5GIBAAAAAAAAAABOxjPaIEm6+uqrNXfuXA0YMEDnnXeePv30Uz344IO64oor1L59e7fDAwAAAAAAAAAAaHVItEGS9NhjjykjI0PTp0/Xnj171K1bN33961/X7Nmz3Q4NAAAAAAAAAACgVeIZbQAAAAAAAAAAAPAVntEGV+ws3asFr72rA5VH3A4FAAAAAAAAAADAVSTaEJO33vtYqzZ8qnf+sdbtUAAAAAAAAAAAAFzlmUSbYRgyDEOS9Oqrr+qiiy5Sx44dlZmZqSlTpmjbtm3N+y5ZskQXX3yxOnfurI4dO+qqq67Sli1bTnnu+vp6/eIXv9CFF16ozp07KxQK6dxzz9WMGTNUUVHR4jEffvihZs2apVGjRql79+5KSUlRdna2rr/+eq1cufKU13rttdd05ZVXqlu3bkpOTlbXrl01aNAg3X777VqxYoXN30587Cwp15YdJQoEDI0fM8LVWAAAAAAAAAAAANzmmWe0HUuyPf7447rnnnvUs2dPZWVlqaioSEePHlV2drbWrFmjF154QQ888IB69Oih7t27N2/v3r271q9fr3POOeeE8+7du1dXXHGF1qxZo0AgoF69eqljx47avHmz6uvr1bt3b7399tvq16/fCccNGDBA27ZtU0ZGhnr06KF27dpp165dOnDggJKSkvTSSy/p2muvPeGYX/3qV7r77rslSV27dlWfPn109OhR7d69W9XV1frud7+rX//61wn8LZ7eb+e/pi07SjRq2EBde8VXXIsDAAAAAAAAAADgbPCMtlOYOXOmnnvuOZWWlmr16tUqKSnRqFGjVFpaqttvv10//OEP9dxzz2nPnj1avXq1du/erZEjR6q8vFyPPPLICecyTVM33HCD1qxZo4kTJ2rbtm3asWOH1q9fr4qKCt1+++3atWuXbr755pPi+NGPfqQtW7bowIED+uSTT7R69Wrt27dPixYtUigU0re//W1VV1c379/U1KQHH3xQkpVw27t3rz7++GMVFhbqyJEjevfdd/W1r30tsb+802A2GwAAAAAAAAAAwIk8N6Pt3nvv1WOPPXbCtjfeeENXXHHFKbe//vrruvLKKzVs2DCtW7eu+fXXXntNEydO1JAhQ7Ry5UqFQqETjguHwxo9erRWr16t9957T2PHjo0q1n//93/X7Nmz9eKLL+rGG2+UJJWXl6tHjx7q0qWLDh48GNubP4NfPrdIVdVHz+octUfr1BQOKzk5Se1TUuIUGQAAAAAAAAAAgPMa6uv0k+nfliT975Mv6Ad3ftPWeZLiGVRr8O1vf/uk184///yotm/fvv2E1xcuXChJuvXWW09KsklSMBjU5MmTtXr1ar3zzjsnJdq2bNmil156SevWrdOBAwfU2NgoSdq3b58kae3atc2JtnPOOUehUEiVlZV68803NWHChKjf85lUVR/VkeqauJyrsbFJjY1NcTkXAAAAAAAAAACAGxoa6pv/u/osJit5LtHWv3//k147/rlrLW3v1q2bJJ2wlKMkrV+/XpL07LPP6pVXXmnxenv37pUklZaWnvD6I488on/5l39RU9Opk1IHDhxo/u9gMKj7779fc+bM0Ve/+lWdf/75uuyyyzRu3DhdfPHF6tix4ynPcybpae1tHysxmw0AAAAAAAAAAHhLQ32w+b/TziKP4rmlI0/1duxsz8vL09atW6O6/q233qp58+ZJklasWKFx48YpGAzqJz/5ia666irl5uYqNTVVhmHomWee0R133HHCMZIUiUT0q1/9Sk888YSKioqaX09JSdE3v/lNzZ07VxkZGVHFEy87S8r1fy8sViBg6AffuUEZne0n/AAAAAAAAAAAAFqDmpoapaWlSbImYqWmpto6j+dmtMXTsV/w4sWLNWnSpKiPe/755yVJ06dP17/927+dtP34mWzHCwQCuueee3TPPfeopKREy5cv15tvvqk//vGPevbZZ7V79269+eabMb+Ps3lGW+3ROknWjLtfv/CqrXMAAAAAAAAAAAC0JqZp6sePPC1J+u2f3tB90661dR4SbadRUFCgtWvX6pNPPokp0VZcXCxJGjduXIvbP/jggzOeIycnRzfddJNuuukmTZ8+XUOHDtVbb72l4uJi9e3bN+pYpPg8o41nswEAAAAAAAAAAC+qrqmzfSyJttOYMmWKXnjhBf3mN7/Rvffe2zzD7Uzat7fW8iwvLz9p25YtW7RkyZKY4igoKFCnTp1UWVmpPXv2xJxos/uMNp7NBgAAAAAAAAAAvM5uHkUi0XZaV111lS6++GK9++67+upXv6rf/OY3GjJkSPP2SCSiDz/8UM8995xmzpypfv36SZIuuugi/fnPf9ZDDz2kSy+9VP3795ckbdy4Uddee60CgcBJ1yosLNSjjz6qO+64Q1/60peanxkXDof1y1/+UpWVlQqFQiooKIj5fdx76zdiPub4Z7M9cPsUns0GAAAAAAAAAADwBYZpmqbbQcTDscTUqd6O3e0VFRW66qqr9P7770uS+vTpo+7du+vo0aPatm2bamqsJRk3bdqkgQMHSpKqqqp0/vnna+vWrUpOTta5556rSCSiTZs2qUePHrrrrrv04IMP6tZbb9W8efMkSWvXrtV5550nSUpPT1f//v0VDAa1Y8eO5me6/epXv9L3vvc9W7+fWP12/mvasqNEo4YN1LVXfMWRawIAAAAAAAAAALQlJ0+twgkyMzP17rvvat68eZowYYJqamq0atUqFRcXa8CAAbr//vv17rvvKj8/v/mY9PR0vffee7r99tvVpUsXffrpp6qurtZ3v/tdrV69WtnZ2SddJz8/X08//bRuuOEG9ejRQ9u3b9e6desUCoV03XXXafny5Y4l2UrK92vLjhIFAobGjxnhyDUBAAAAAAAAAADaGs/MaEP8mKapwq07tf9ApS758gi3wwEAAAAAAAAAAGiVSLQBAAAAAAAAAAAANrB0JAAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsCHJ7QAAAACAtqyoqCjqffft26c//vGPuv7669WtW7eojxs4cKCd0AAAAAAAQIIxow0AAABwyP79+/XEE09o//79bocCAAAAAADigEQbAAAAAAAAAAAAYAOJNgAAAAAAAAAAAMAGEm0AAAAAAAAAAACADSTaAAAAAId06tRJkyZNUqdOndwOBQAAAAAAxAGJNgAAAMAhOTk5evjhh5WTk+N2KAAAF9XV1empp57SVVddpdzcXLVv3179+vXTTTfdpE2bNrkdHgAAAGJgmKZpuh0EAAAA0FYVFRVFvW99fb3Ky8vVvXt3paSkRH3cwIED7YQGAGilioqKNGjQII0bN05f/epX1bNnT23fvl3/93//p5qaGr3xxhsaP36822ECAAAgCiTaAAAAgLMQS6Jt48aNmjJlihYsWKCCgoKojyPRBgDecuDAAe3evVsjRow44fXCwkKdd955Gjp0qFatWuVOcAAAAIhJktsBAAAAAGh9TFNqCLsdRWzaBSXDiM+5TNNUbaRt/QI6BIIy4vULgO/LgN/rALt27Nih6dOn680335QkjR8/Xj//+c81fvx45ebm6p133pEkde3aVV27dj3p+MGDB2vIkCH65JNPnAwbAAAAZ4FEGwAAAICTNISlWfPdjiI2c26QUuLUw6mNhNVl2ZvxOZlDDl06QalBunjx4vcy4Pc6wI4DBw7ooosu0t69e/XP//zPGjRokJYvX67x48erpqYmqnNEIhGVlZUpKysrwdECAAAgXgJuBwAAAAAAANDWzZkzRyUlJXr22Wf12GOP6Xvf+57+8Ic/6Prrr1dFRUVU5/j1r3+tsrIy3XrrrQmOFgAAAPFCog0AAAAAAOAsvfrqq+rRo4duuummE17/wQ9+ENXx77//vr7//e9r+PDh+uEPf5iIEAEAAJAArCsCAAAAOKSgoECbNm1yOwwAQAIUFxdr9OjRCgROvKe5W7du6ty582mP/fjjjzVx4kT17NlTS5cuVSgUSmCkAAAAiCdmtAEAAAAAALhk9erVmjBhgjp16qS3335b2dnZbocEAACAGJBoAwAAABxSXFysG2+8UcXFxW6HAgCIs9zcXG3dulWRSOSE1/ft26fKysoWj1m9erUuu+wypaen6+2331afPn0ciBQAAADxRKINAAAAcEhtba3WrVun2tpat0MBAMTZpEmTVFZWphdffPGE1+fOndvi/mvWrNGECROUlpamt99+W3379nUiTAAAAMQZz2gDAAAAAAA4S7NmzdIf/vAH3Xbbbfroo480cOBALV++XO+//74yMzNlGEbzvjt37tSECRN06NAh3XfffXr//ff1/vvvn3C+a665RqmpqU6/DQAAAMSIRBsAAAAAAMBZyszM1Hvvvafp06frmWeekWEYGj9+vN5++22NGjVK7du3b963uLhYBw4ckCT9x3/8R4vnKy4uJtEGAADQBpBoAwAAAAAAiIO+fftq0aJFJ7x24MABHThwQL17925+7ZJLLpFpmk6HBwAAgATgGW0AAACAQ7KzszVnzhxlZ2e7HQoAIAGOHj160ms//elPJUkTJkxwOhwAAAA4gBltAAAAgEM6d+6syZMnux0GACBBrrzySvXp00fnn3++IpGI/va3v2nJkiW68MILdfXVV7sdHgAAABKARBsAAADgkIMHD+r111/XFVdcoYyMDLfDAQDEQVFRUfN/jx49Wn/+85+1cOFC1dfXKysrS7fddpvuvvtubdmyRZK0b98+/fGPf9T111+vbt26RXWNgQMHJiR2AAAAnD0SbQAAAIBDysrKNHv2bI0YMYJEGwB40G233abbbrvttPvs379fTzzxhMaPHx91og0AAACtF89oc0BFRYVmzpypAQMGKBQKqVevXrr//vtVU1OjO+64Q4Zh6PHHH3c7TCRQuEEq3SB9+ra06U1p63vSkXK3o4KT6qulHR9JRX+Tit6Sdnwo1R1xOyo4qXq/tO09qehN6dNlUsk6qane7agA5xytlIo/sOrAT/8m7VwlNdS4HRWcUFL4jn5xs6GPl8495T6/uNnQn+d+3cGonBN+Zp4av3qlIm/89aRtpmmq6Qez1DhxssziHc4H56BIRNq3Rdr8jvV9eMu70oEdkmm6HVni+b0M+L0OwOfqjlj9oKK3rH7RzpVWPwmAP5gRaf82acs7n30XeEeq2Ga9Dn9ocXx0r9tRwUktjo9WuR1VfDCjLcHWrl2rK664QuXl5UpNTdXgwYO1Z88ePfbYY9q2bZsOHjwoSRoxYoS7gSIhwo3WwPqeT04eUN/xgdSxh9R/rNQ115Xw4ICjldLW5dbA0he/PG59TzqnvzTgK1Iqkxo869Buqx6oLD1525Z3pB4F0oCLpKQUx0MDHFG936oHK7afvG3rcikr36oHQ+nOxwY4IXDLVEU++FDhJ5+SMfJ8GedkNm+LLHpF5voNCtw+TUbfXPeCTCDTlHatknatluq/0IneuVJq31nKHS31HCoZhishJpzfywBQc1Da+ndrgF1fSK5vXS51y7O+C7Tv5Ep4ABLMNKXda6zvA1+84XjnKuuz3/sCKWeEd78L+F24Qdq6Qtqzwfrv4+34QOrUQ+rH+Kin1VZ+9l1g68njo9vekzIHWGNjbXl8lBltCVRRUaFJkyapvLxc06dPV1lZmVavXq3y8nLNmTNHS5cu1cqVK2UYhoYNG+Z2uIizpnrp4/nSro9PPWvlSJm0ZqF1Nwe8p3q/9NEfpL2fnuIOLdNqYFb+QTpc5nh4cEB5kbT6Ty0n2SQrGV+yVlr1ktRQ62hogCMqS6SVL7acZJMkMyyVb7LqwZqDzsYGOMVITlbSjOlSXZ3CP/t58+vm7hJF5v1OxsBzFbjuWvcCTCAzIn2y1Jq99sUk2zFHK6VNf7Vmunl1dpufywBwuMxq5/dv1UlJNsmqJ/Z+Kq18weo/AfAW0/ysnV926lV9jh62VrwoetO73wX8rLHOGh/d/fHJSbZjDn82PrrnE2djgzOq9lvt/L7NLY+Pmqa0f4v1faEtrwBHoi2B7rvvPpWUlOiee+7R3LlzlZ7++a3aM2fO1PDhw9XU1KTc3Fx17NjRxUgRb6YprV8cZeXw2ZeOAzsSHRWc1FBrfUlojCJ50lQnrV3knanSsFSWShtfi24ZjOr90rpXWDID3lJbKa19+dSdqePVV0lrF/pjOdXU1FSNHTtWqampbocCBxl5AxS48XqZH69WZOnrMsNhhR+eK5mmgjOmywgG3Q4xIbb+XdpbFN2+uz+2blDzKr+WAbSsU6dOmjRpkjp18vYUrroqq5/TVHfmfRtqpTWLuPkM8Jrif1izmKJRut5aah7eYZrShsVRLg9pSoV/kQ7uTHhYcFBDjdXXbzx65n2b6qzvAm11WWkSbQmyadMmzZ8/X5mZmXrooYda3GfkyJGSpOHDh5/wenFxsSZPnqz09HR16dJF3/rWt3TgwIGEx4z4qSyNsWEwpe3/SFg4cEHp+tgahsajUsmaxMUD5xX/I7bE2eE9JNzhLbtWxZY4O3pY2rMxcfG0Frm5uXr66aeVm5vrdiiOa2qo1dGqihZ//CAw9SapXz+Fn3pakSd+LfPTzQpM+5aMXjluh5YQDTXSrhi/2+z4wJrt7VV+KwNf5Pc64Hg5OTl6+OGHlZPj7b/97jXRDawdU19l9aMAeENTvbVMdCx2fiQ1RXGjHtqGQ7ulg7tiOIDxUc8piXV8tNb6/tAW8Yy2BHnxxRcViUQ0depUpaWltbhP+/btJZ2YaKuqqtL48eOVkZGhF198UUePHtXMmTP19a9/XStWrFAgQG60LbCTMDlcKlXtk9K7xT8eOCsSkUrWxX5c6Qap74VSkJq5zas9ZC9pVrJWyuwX72gA5zU1SGWFsR9XslbqdZ63n80QDod19OhRtW/fXkGfzWD5YOGP9cHCH7sdhmuMpCQlzfi+mu79f4osWSpjSIEC37ja7bASZs8n1vKwsWisk/ZulnoWJCYmt/mtDHyR3+uA49XX16u8vFzdu3dXSoo3H9Qbbop+FsvxStZZz200GPoA2rw9G2O/gSbcKJVttPoEaPtK1sZ+TGWJtepP2jlxDwcOi0SkUjvjo+ulfmOkQBsbH21j4bYdy5YtkySNHz/+lPuUlJRIOjHR9pvf/EalpaX6+9//rt69e0uy7na78MILtXjxYl199dVRx2CapmprrXUXOnToIMPLo1atiPnZc7fs2L+VRJsXVO099XNITqfxqDWrKaN3/GOCs/Zvs3dcxXYp0tT2vkwAX3RoV3RLRn5R7UHrJ7Vr/GNqLYqKijRlyhQtWLBABQUezSacwpDxdyrvS9e1uO3ln05wOBqXpKZKyclSU5OMURfI8PBNdPvsfh/e4t1EmyRflYEvog743NatWz3fFhwujW022zH1VdYNqB27xz8mAM46m7ExEm1tn2naHxvZt5VEmxdU7bW3DGTjUanSwfHReOVQGMpLkJ07rXUD+/Tp0+L2pqYmrVixQtKJibYlS5Zo3LhxzUk2SRozZoz69eunV199NaZEW21tbfNsuh49ejAbziHtkkL6zT32vk38+onf6g/Xc5dnWzekz8X6wTUv2Dr29m99V6u2Lo1zRHDaN8bM0OQv3W/r2CGDR+hIrf+WUIK3jBt8nb791UdtHTvx8qu1tWxVnCNKrGnTpkW9b1lZmSTptdde05o10U+BnzdvXoxRnb1gcntdM3tL3M7XuXueeg+5LG7na0l+Xp7CdkZ2W2C2ayc9+URcziVZHbjwI49KTY1S716K/OElBS7+ioyePeJ2jfy8fBkNrWO9pZ/e+nd17xL7NO3l73ygifdMSUBEsfN7GfB7HRCLWNoByV5b4EY7cDZG5U3U3ROftHXsdd/4pjbu+nucIwLgtJ988w316TYk5uM+/midJj8wMQERwUkpyR305N2bbR37f798Si9e95M4RwSnDc0dr+lXP2/r2Ntu+Y4+3vZ6nCNqWSQSaf5uNmLEiJj66ccj0ZYgNTU1kqSjR1v+kj9//nxVVFQoPT1dffv2bX69sLBQ11138l1+BQUFKiy0sQbTZ44VFiRe4CzWuDhUWaHS0tI4RgM3dE0psX1s+b5SyoAHHDi03/axO3dtV62dKZFAK7I30/73jj1lu9tcPXjs7rdo1NXVNf8by3Fu/E6SUjo4fs2ztadsj5rqo/+9nlYoRcnxOZMkKfLKYpnr1itw260KjPmymu6+V+FHHlVw7py4rTyxp2yPVBfDwxETqLbO3lPMq2oqW08d4PMy4Ps6IAax1OeSvbag1XwuotSr4x7bx5aVl7S59wvgZDVH7fVra2qrqAM8IHgWS/UcZHzUEzJDbW98dO/evbaPJdGWIN27d9ehQ4e0evVqjRkz5oRtZWVlmjFjhiRp2LBhJ3SqDh06pM6dO590voyMDH366ae242FGm7NKKoqUkzkw5uMq60qUnZ2dgIjgpIZApZrCjUoKxjY0EzEjqlMFZcADDjfY+zKw//AudcnsqC7qGOeIAGfVRKwvp6ZpxjR4XN94VGa72jZXD3boEP1gdCgUav43luPc+J0Ek9s7fs2z1bNHz7jOaLN/28QXzlVaqsgz82Scm6/A9VNkBIMK3DxVkWefU+SVxQpec1VcrtOzR89WM6OtvHKr+vUYFvNx+6uKW00d4Pcy4Pc6IBax1OeSvbagtXwuonVUFYqYkZhvRG0KN6gxeLjNvV8AJ9t7ZJsGa8yZd2zhOOoAbyg9sFnZXfNjPq6ynvFRL2g8q/HRA46VgeNntGVlZdk+D4m2BLnsssu0adMmzZkzRxMmTFB+vlWprFy5UrfccosqKqxlwUaMGOFIPFu2bFFqaqoj14K0e4306d9iOya5vfTSX36pYNIvExMUHLXhVWlvjLnxc/oFtLbwg8QEBEdFItKKp2J/Vt+Yr/dWyX/Zv+MHaE1WvSRVlsQ2Q6Pv+e21ZfumBEWUOEVFRVHvu3HjRj3zzDO68sorY3ouz+zZs+2Edlbqm6RZ8x2/7FnZvGWLUuLUw6kJN6nLsjfP+jxmJKLw//5MikQUnPF9GcGgJClw/RSZK95X5Jl5CnxpdFyWD9y8ZbNSg62ji1dZYtUDsZr9f9/Tz7p8L/4B2eD3MuD3OiAWsbQDkr22wI124GytWSgdKI7tmOzB7bRpy7rEBATAUVX7pA9/F/txP/zZrXronFvjHxAct2u1tHlZbMckt5f+9JcnFEiK3/LdcM/6xdK+GFcQ7dY/oHWbPkxMQC2oqalpfvzWe++9Z/s8THFKkJkzZ6pr167avXu3CgoKNHToUOXl5Wn06NHq16+fLr30UkknPp9Nkrp06aLKysqTznfw4EFlZGQ4ETrioMdgKdgutmOyh0mtZFwEcZBj48G9POzXOwIBKWdEjMcEpZ6xL18PtFp26rRYPzdtUX5+vlasWNF8Exa8L7JgkczCTQrcerOM457DbASDCv7g+1IkrPAjj8o0TRejjL9O2VJat9iO6dpX6tAlMfG4ya9lAKdWUFCgTZs2xXTDRVtk57sAfSLAO9K7SZ1jnJDSOUdKPycx8cB5tsZHh0tnseokWhk/fRcg0ZYgOTk5Wr58uSZOnKhQKKQdO3YoIyNDTz75pJYuXarNm61U7hcTbYMGDWrxWWyFhYUaNGiQI7Hj7CWlSMMmSdGuktE5R+ob+2x6tGJdYvyb9r5AyuyXuHjgvD4XSF1zo99/yESpHROP4SHd8q1OUrTyLpY62l+loc1ITk5WRkaGkpPj+eQntFbmrl2KPPe8jEEDFbj2GydtN3L7KHDzVJkbPlHklcUuRJg4hiEN/bqUFIpu/1C6NPhriY3JDX4uA0BmP6n3yOj373eh1TcG4B0FV0bfz22XKg25MrHxwFnJIev7oKJc6KRzjtTvywkNCQ7r0kvqG8PftM8o6+a7tsgwuW3OcdXV1erYsaMMw1BVVdUJa7LPnTtXP/zhD7V9+3bl5FjfMD/88EN9+ctf1qJFi3TNNddEfZ3jpz1WV1ezdKQLDhRLG5ZITad5Hnlmf2uAPSnGOzzQ+pmmtPMjadt71n+fSt8vS/3GWgNS8JZwo1T4xumXEQ0mW52PbnnOxQU4xTSlLe9Ku1adeh8jIOVdIvU+37Gw4i6WJcN27dqln/70p/qXf/kX9T5uZsuZDBwY+7Nfz1ZbXDZuzg1qdUtHOunQpRNazdKRx1RXSOtelo4ePvU+aedII66RQq3sEaV+LwN+rwNiEevSkcXFxfrXf/1XPfTQQ+rbN7rRJDfagXgwTWn7Cqn4NCvkG4bUf5zUZzR9IsCLag9Ja1+Wag+eep/UDGn4N6QOnR0LCw6q2G6Nj4ZP8xjZcwZYidZYZ8Ch9TNNacdn46M63fjoGOumG6e/C8Qrh9K6emE+sXHjRpmmqfz8/JMefHznnXfql7/8pa666ir95Cc/UV1dnWbOnKnRo0frqqvi84BsOKdrX2ncd6XyQqlknVR93NPUexRYS2R17E5nwqsMQ8r9ktR9sFS6XtrzyXHP7DKk3NHWkqHtO7kaJhIomCwNnWQNGpSusxJuxxLvx5ILPQusWbCAFxmGlH+JlDPcagfLC6WG2mMbrS/R2cOkFB/dC1RVVaW3335bd999t9uhAI5Iy5TG3C7t3yqVrJUO7f58W2Y/6/tw19zoV4IAvKC2tlbr1q1TbW3tmXdu444l0XoOtb4PlxVK9dXHNlo3HWYPs2a1AvCmDl2kL0+TKrZZfYKDOz7f1jX3s+8C/axHMMCbMvtJF/3z6cdHO539o2rRShmG1PdLUo9Bn42PbvTm+ChVmAs2bNgg6eRlIyWpY8eOWrZsmXr06KEbb7xR3/72t3XhhRdqyZIlCtDitElJ7awG48u3fj5dPiVNKrjCakRIsnlfKF3qP1a66LvHlYFUacBFbb8RQXQ6ZkmDvipdcu/nZaBdB2sGD0k2+EGHLlbC7St3nVgP9hvjryQb4FeBoJR1rjTyhuNeNKQR37AGXkiyAd7XvpM04CvWQOvx3wX6jyXJBvhBIGCt4nL+lOP6xKnSeVOsmUwMeXrfmcZH4X2hjtbNN14dH2VGmwtOl2iTpP79+2vJkiVOhgSHkFQDZQCUAfgdnwHA5wyddskYAN7HdwHA347VAdQF/sXfHl4sA9wv4IIzJdoAAAAAAAAAAADQ+jGjzQXLli1zOwQAAAC4ICsrS7NmzVJWVpbboQAAXJKdna05c+YoOzvb7VAAAAAQByTaAAAAAIdkZmZq2rRpbocBAHBR586dNXnyZLfDAAAAQJywdCQAAADgkMOHD+uNN97Q4cOH3Q4FAOCSgwcP6oUXXtDBgwfdDgUAAABxQKINAAAAcEhJSYkeeOABlZSUuB0KAMAlZWVlmj17tsrKytwOBQAAAHFAog0AAAAAAAAAAACwgUQbAAAAAAAAAAAAYAOJNgAAAAAAAAAAAMAGEm0AAACAQ0KhkAYNGqRQKOR2KAAAl6Smpmrs2LFKTU11OxQAAADEQZLbAQAAAAB+0b9/fy1atMjtMAAALsrNzdXTTz/tdhgAAACIE2a0AQAAAAAAOCQcDqu6ulrhcNjtUAAAABAHJNoAAAAAhxQWFmrYsGEqLCx0OxQAgEuKioo0atQoFRUVuR0KAAAA4oBEGwAAAOAQ0zTV2Ngo0zTdDgUAAAAAAMQBz2gDAAAAcJJ2QWnODW5HEZt2wfidq0MgqEOXTojfCR3QIRDHXwB8Xwb8XgcAAAAA0SLRBgAAAOAkhiGl+Li3YBiGUoM+/gXA92XA73UAAAAAEC2WjgQAAAAAAAAAAABs4P40AAAAwCH9+/fX4sWL1atXL7dDAQC4JD8/XytWrFB6errboQAAACAOSLQBAAAADgmFQsrLy3M7DACAi5KTk5WRkeF2GAAAAIgTlo4EAAAAHFJaWqoHH3xQpaWlbocCAHDJrl27dNddd2nXrl1uhwIAAIA4INEGAAAAOKSyslILFy5UZWWl26EAAFxSVVWlt99+W1VVVW6HAgAAgDgg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAADAIYFAQKNGjVIgwNdwAPCrYDCosWPHKhgMuh0KAAAA4oAePgAAAOCQSCSilStXKhKJuB0KAMAl4XBYK1asUDgcdjsUAAAAxAGJNgAAAAAAAAAAAMAGEm0AAAAAAAAAAACADSTaAAAAAAAAAAAAABtItAEAAAAO6dSpkyZNmqROnTq5HQoAwCW0BQAAAN6S5HYAAAAAgF/k5OTo4YcfdjsMAICLaAsAAAC8hRltAAAAgEPq6+u1c+dO1dfXux0KAMAltAUAAADeQqINAAAAcMjWrVt1+eWXa+vWrW6HAgBwCW0BAACAt7B0JAAAAICTmKbUEHY7iti0C0qGEZ9zmaap2kjb+gV0CARlxOsXAN+XAb/XAQAAAEC0SLQBAAAAOElDWJo13+0oYjPnBiklTj2c2khYXZa9GZ+TOeTQpROUGqSLFy9+LwN+rwMAAACAaLF0JAAAAAAAAAAAAGADiTYAAAAAAAAAAADABhZVAAAAABxSUFCgTZs2uR0GAMBFtAUAAADewow2AAAAAAAAAAAAwAYSbQAAAIBDiouLdeONN6q4uNjtUAAALqEtAAAA8BYSbQAAAIBDamtrtW7dOtXW1rodCgDAJbQFAAAA3kKiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAIBDsrOzNWfOHGVnZ7sdCgDAJbQFAAAA3pLkdgAAAACAX3Tu3FmTJ092OwwAgItoCwAAALyFGW0AAACAQw4ePKgXXnhBBw8edDsUAIBLaAsAAAC8hUQbAAAA4JCysjLNnj1bZWVlbocCAHAJbQEAAIC3kGhzQEVFhWbOnKkBAwYoFAqpV69euv/++1VTU6M77rhDhmHo8ccfdzvMhKurko6US1X7pMajbkfjvKYGKRK2/tuMSKbpbjxwXkPNiWUA/nP08HFlwId1QGOd1QYcKZfqjrgdjfMiEanmgHS4TKqu+LwsAIBfRMKSjrV/Jt+HAPhPuNH6Hni4TKo95M8+gd81Hj2uT1TldjTOi4StfpFk/UufyH8YH4VXx0d5RluCrV27VldccYXKy8uVmpqqwYMHa8+ePXrssce0bdu25qUiRowY4W6gCRIJS/u2SCVrpcqSz183AlK3PClnhNQ5RzIMtyJMvKp91vsv32R9qZakhlrpw99Z77/7ICmpnZsRIpFMUzqwwyoDFdvVPLjUUCutWWCVgcx+1mcC3hRulPYWWWXgyN7PX2+okTa+IfUaIXXs7lZ0zqjcY73/vZ9K5nEdqU49rc9AVr4U8PA3kvoaac8GqWSdVH9cZ7pdB6nnUClnuBTq6F58QKKVFL6jhf8zXuNu+l+NnPiDFvf5xc2GckdM1FU/WOJwdIkXfmaeIi/9UcHv/z8FLv/qCdtM01R4xr/I3LRJSY8/JqNvrjtBJljdEasO3LPhxNdXPCVlD7fqwpRUd2Jzgt/LgN/rAECSag5a9WDZJ1JT/eevd+hifR/uUSAlh1wLDwlmmtaYWMlaa4zs+IHlzjlWGeiWJwWCbkWYeHVVUul666ex1nqtsfaz7wLDrJ+UNHdjRGIdGx8tK5QiTdZrx4+P9hgkBRkf9SzTlA4UHzc++pnm8dHzpMy+bXt81MPDWu6rqKjQpEmTVF5erunTp+vHP/6x0tPTJUkPP/ywZs2apaSkJBmGoWHDhrkcbfw11knrXjkxwXaMGbEGXPd+an2Qzh3ftj9Ip7JzlbTlnZa3Ve+Xit6Udn0snXet1L6To6HBAZEmK5Gyt6jl7Qd2WD/nDJCGTJSCyU5GByfUVUlrF1mf95aUfWL99LtQ6jvGezcdmKa0dbm086OWtx/eY/3sXi2NuEZq58FB1spSae3LUlPdydsaaqUdH1rtwNBJ0jn9nY8PQOIFbpmqyAcfKvzkUzJGni/jnMzmbZFFr8hcv0GB26d5MsEiSfu3SRte/XxA5Xh1VdK296zvzCOukTpnOx+fE/xeBgC/2/OJtOmvLd+1X3tI2vy2VQ+e9w0p7Rzn40NimRHp02XW4HJLKkusn8450vCrvZlwPbBTWv9nKdxw8rb6amn7+9ZnYPjVUkZvx8ODA3aulLa82/K2Y+Ojuz+WRjA+6knhJqnwdSsP0BKvjI96MLXRetx3330qKSnRPffco7lz5zYn2SRp5syZGj58uJqampSbm6uOHb11K3u40RpcbinJ9kUla6RP3/beVOFdq0+dZDte7UFp9R+tGQ/wDtOUNr5+6iTb8fZv/WwAykPTpWHdbLD6T6dOsh1v+/vSjlMko9qybe+dOsl2vCPl0pqF1hISXnJkr3VnVktJtuNFmqyO58GdzsQFd6Wmpmrs2LFKTfVgZhktMpKTlTRjulRXp/DPft78urm7RJF5v5Mx8FwFrrvWvQAT6OBnA2stJdmO11Rn1ZfHz/z2Ej+XAbSMtsA/youkwjfOvDRWfZX08Z+k2kpHwoJDTPP0SbbjVZZY42jHVkLyispSad2ilpNsxws3SGsXWjdiwlt2fXzqJNvxaj4bH21gfNRTTFPa+Nqpk2zH279V2rCk7S4nSaItQTZt2qT58+crMzNTDz30UIv7jBw5UpI0fPjw5teOJeZGjx6tlJQUGW10esPu1bE1jiVrpMOliYvHafXV0SXZjjl6WNq2PGHhwAX7tkTXiBxTsV0qL0xcPHDe9vetRHq0ti237mj1iqp91mytmPb3ULLRNK07l6PtKJsRawYsCXfvy83N1dNPP63c3Fy3Q4GDjLwBCtx4vcyPVyuy9HWZ4bDCD8+VTFPBGdNlBL23VlTks3ot2o5yuPGzGR8eu/nuGD+WAZwabYE/NDVY9Vq0GmulzcsSFw+cd7g0uiRb8/6frfbhFaZpJZqjfQ5bJPzZdwePfhfwo7qq2MdHt76XsHDggn2brZ9oVWyTyjYlLp5EItGWIC+++KIikYimTp2qtLSWFxlu3769pBMTbVu3btXChQvVvXt3jRo1ypFY482MWGuPx8rOMa1V6frYs+/lRdYMGHhDLF+mz+YYtE7hBqlsY+zHeaketPNe9qz3zsOwj5RLVTHOzKivOnGtcnhTOBxWdXW1wmGPFPYYNDXU6mhVRYs/fhCYepPUr5/CTz2tyBO/lvnpZgWmfUtGrxy3Q0uIim0nPpcyGlV7rfrTq/xWBr7I73XA8fzcFvhJeeGZZ/F8UcV2a6AZ3rB7bezHlK73TqLp4K7YbyatPSgd2p2YeOC80nWxl+fyTYyPeomdsc5SG8e0BjyjLUGWLbNuQxo/fvwp9ykpsdZVPD7R9pWvfEVlZWWSpP/4j//QihUrEhhlYhzcbT3wPFZ7N0sDL5OSUuIfk9NKN5x5ny+KNFmNSa/z4h8PnHW0Ujq0K/bjjpRbywyyLn/bt2/LiQ85j1bZJ1LexW3/WW3hJnszNBtqrcGFbnnxj8lppevtHbdng9RtQHxjQetSVFSkKVOmaMGCBSooKHA7HEd9sPDH+mDhj90OwzVGUpKSZnxfTff+P0WWLJUxpECBb1ztdlgJs8fG9+Fjx3XqEd9YWgu/lYEv8nsdcDw/twV+YmdcQLKe6dZ/bHxjgfMa62KbxXHM0cPWeEJGn/jH5LQ9Z9En4llt3rDnk9iPiTRZj2HJGRH3cOCw2kp7ifPDZVJ1hZSWeeZ9WxMSbQmyc6f1oJU+fVpuGZuampqTaMcn2gKBxEwyzMvLS9i5v+jiIVN122VzYj7ODEsXjhqvPQe3JCAq5wQDSfrtfTtsHfvzh3+t+ctnxzcgOG5QzoWaNeWPto696drbtWZ7DOuLoFW66ksP6Jox02M+rrFOOndAgWrr2/ZtrBnpPfWzO+ytA/nD6f+pN1b/Js4ROW/mN17S4N7jYj5u7YdF+vq9lyUgotbjZ3esVEZ6D5WVlSknp23O3v+iadOmRb3vsRuqXnvtNa1Zsybq4+bNmxdjVGcvmNxe18yO3/eyIePvVN6Xrmtx28s/nRCXa+Tn5SnceDQu5zLbtZOefCIu52qWmiolJ0tNTTJGXSAjzt/P8/PyZTS0jgde/vctf1N213NjPu4vr/5dE27/ZgIiip3fy4Df64BYxNIOSPbaAjfagUTx4neBljz+z58oLdQ55uNeeGahfnPD/fEPCI7qmZGv//mWvbVA7/3uTL37yR/iHJHzfnTjEvXrPiLm495b9rEu/+5V8Q8IjkoKttPT99pbsuVnP/0//fG9/45zRHDa4F7jNPPal2wde+M107S2+K04R9SyyHHP8Bg3blxM/fTjkWhLkJoa68mNR4+2/CV//vz5qqioUHp6uvr27ZvweI59kXdCVe8Y14g5TkXFAZWWte2HtSWfxZS82pqjKi1t2+8fUlYH+w/aqjxUSRnwgJqaWtvH7tu7T4dr2vYSSuEuybaPraqq9sRnoLGxydZxkYg88f5P59gyWeFw2DPvtbY2+s98XV1d87+xHOfG7yoppUNcz9e5e556D0lsInlP2R411duvg08QSpH92uxkpmkq/MijUlOj1LuXIn94SYGLvyKjZ/ymb+0p2yPV2ZhSnQB2lwJuamxFdYPPy4Dv64AYxFKfS/baglbzuYgDL34XaIlh82ktdXX1nv69+EVKpKvtY48cqfJEGWhqsvdloFV9F4BtKcntbR9bW1NLGfCAHmmVto895NL46N69MT4D5Dgk2hKke/fuOnTokFavXq0xY8acsK2srEwzZsyQJA0bNkyGA2uE9ejRw7EZbUqOvWNnmqYMw1BKqqHs7OwEBOWsmrpKpdq4cy0cOOqJ9+93Se2tOyGOletoHNs3GApTBjwgHLA3wNPYVKdOGalK69y219BNSU5WONKkYCD2rxlmUr0nPgNHmyptHVdTf9AT7/90gsFg879eea8dOkQ/GB0KhZr/jeU4N35XwbPoHLulZ4+ecZ3Rtj8uZ7JEXlksc916BW67VYExX1bT3fcq/MijCs6dE7f+QM8ePVvNjLbq+gO2jjvadLjV1A1+LwN+rwNiEUt9LtlrC1rL5yIevPhdoCVHavcpNdQx5uMazGpP/178IqWDVa/HMi5wjJHc4IkyUNtg7ybko42Vnnj/kGrrj6hDSuz1IOOj3hAMWcl2O+OjSaGIY2UgEok0T1LKysqyfR4SbQly2WWXadOmTZozZ44mTJig/Px8SdLKlSt1yy23qKLCmq0wYsQIR+LZsmWLUlNTHblWuFF678nYHlxpGIYycqVNW9YlLC4nFb1l42GPhvTY736o33T8YSJCgoNMU/rwd1L1/ui/TBuGofadpbc/+nObfz4XpIYaaflvrCVxY9F7eEg7d+1ISExOW/dnaX+Mq00Fk6U/LPmFklJ+kZigHLR/m7Tu5diP+8a3L9S9vyiJf0CtyPJfS/XV1k1Ax55X29YVFRVFve/GjRv1zDPP6Morr4zpuTyzZzu/tHR9kzRrvuOXPSubt2xRSpx6ODXhJnVZ9mZczmWWliryzDwZ5+YrcP0UGcGgAjdPVeTZ5xR5ZbGC18RneaTNWzYrNdg6unil66VNNlbD/t4Pr9a/P3113OOxw+9lwO91QCxiaQcke22BG+1Aonjxu0BLtv9D2r4i9uN+9Oidmpt1Z/wDguNW/0k6uDO2Dn5ySHr5b79VK2nOz0r5JumTpbEf9637v6oZ/+fdusFPit6USmId6jWkXz7/oEIdH0xITHCOaUofPCfVVMQ+PvrOysWOjY/W1NQoLS1NkvTee+/ZPo9DU5z8Z+bMmeratat2796tgoICDR06VHl5eRo9erT69eunSy+9VNKJz2fzimCy1HNI7Md56SGXdt7LOf0lGze7oRUyDHtlIGe4SLJ5RLtUKSs/9uO8VA/2Oi/2Y7oPls5i9d1WJbNv7HV6UorUfWBi4kHrkZ+frxUrVjTfhAXvMyMRhf/3Z1IkouCM78v4bCZH4PopMvLzFHlmnsw9zi3z7pTuA2Ov09t3krrmJiQcV/m1DODUaAv8IXuoZMQ46taph9TR/s30aGXs9O96DpUnkmyS1C1fahfjKsTtUqVz8hITD5xna3x0AOOjXmEYUq8RsR+XM6Jtjo+SaEuQnJwcLV++XBMnTlQoFNKOHTuUkZGhJ598UkuXLtXmzZsleTPRJkm9R0mh9Oj3z8iVMvslLBzHpWVaSZNoBdtJ/ccmLh44r8dgqWP36PdPzZSyhyUuHjiv34VSUij6/bvHWGZauy69YusgtUuV+n4pcfE4zQhI+eNjO2bAV6ybVeBtycnJysjIUHIyf2y/iCxYJLNwkwK33iyjd+/m141gUMEffF+KhBV+5FGZpulilPEXbGfVa7HIuyT2Qem2wK9lAKdGW+APKWlSbgzfb42glHdx4uKB8zL7W+Nd0Qp1lHpfkLBwHBcIWm17LPIvsY6DN6SdE9tYF+Oj3tOjQEqP4QaSWMtMa+LBbkzrMWjQIC1ZskRVVVWqqqrShx9+qDvvvFM1NTXasWOHAoGAhgyxMfWrDUhJlc67Lro7ELr0koZNkpx6hJxT8v/JGjg/k6QUacQ3rIoE3hFMlkZcE11jktpVOu9a78zkgaVDF+vvGs3jTbrlSYO/1jbv2DkVw5CGXCl17XvmfdulSudN8d5da8f+rori7zrgothu0EDbtWvXLt11113atWuX26HAAeauXYo897yMQQMVuPYbJ203cvsocPNUmRs+UeSVxS5EmFg5w6367YwMq77s5sE72P1eBtAy2gL/6Heh1HvkmfcLJEnDJkudcxIfE5wTCFjjXV16nXnfUEerT5TizFNfHNNjsHTupdHte+4/Sd0HJTYeOO/cy6L7uyalSOd9w5q8AO8IJlvj3undzrxvaqa1b1K7xMeVCB6ZjNy2bNy4UaZpKj8/v8UHHy9YsECSVFhYeML/5+bm6oIL2s6tLakZ0qip0q6PpT0bpC8+k7pDF2sqaM4Ib96tEghIBVdIXftIu9dIR8pP3B5MthJxfS6wfhfwnnap0sgbpJI11prUdUdO3J6SZt2l0et8ax12eE+nHtLom6Vdq6Q9G6Vww4nb07pZ0+h7DvVWku2YYLI0/Bppz3qrHqw5cOL2pJDUs8C6azOWWdBtSc+hVjJ95yrrmXVfnKzQta/1/rv2cSc+OK+qqkpvv/227r77brdDcUzO4Et0/+9PP1PnTNvbKqN3byUv/fNp9wnedIOCN93gUETOy/2SlN7dagsPFJ+4zTCs2c99LpA69XQnvkSjDPi7DjgVP7YFfmUY1ioHnbOlXaulyi88dioQlLLOlfqM4uZbr0pKsRJoJWutn9pDJ25Pbm8tM9p7pDWG4EW9zrfK985VUsV2ScdX+Yb1KJXeF0hdSDR7UiAgFVxpze4sOcX4aI/B1upoHTq7ESESLSVVGnmjNS5Uulaqq/rC9jQpe7jU+/y2PQmBRJsLNmzYIOnUy0Zed911Lf7/rbfeqnnz5iU0tnhLSZXyvmLdxXVwp7TxNamp3voiMeZ2bw4sH88wrCmyPQqkI3ul1X+03n9SSBr3nbZdeSA6Se2sAaY+o6SDu6UNiz/7DISksd/xZpIZJ2rfybozr/9FVj1Y+Mbn9eCXbvF+PRgIWDdUZA+XDu+R1i76vB686Lv+WCqxU0/rDuW6Kmtwpegt63fQroM16xEAvK5rH+untlJ6/+nPXx/3XatjDQBe1y3f+qmukFa9+Nn34RTpwjtif4YV2p5A0Eqk9Trf6g+se+XEPlHAB6OzXXpZP0cPSx/+7vPPwJdv9d7KJjiZYVg32fYssBJtq//E+KjfJLWzHheS29L46J3eWOnOA2+h7TlTos00zRZ/2lqS7XjBJOsOlWMDqoGg9weXv6hj1ufvP5hEI+I3RsAaYGr+DCSRZPObpHbWklh+rQcNw7qT9/h60A9JtuOF0q0lM469by8+hwgATqdDZ32+nK5Bkg2A/6RlHvd9OJkkm98YhpVsOr5P5Ick2/HadzrxM0CSzX86dmd81M9aHB/1yNiIR95G23KmRBsAAAAAAAAAAABaP5/dN9E6LFu2zO0QAAAA4IKsrCzNmjVLWVlZbocCAHAJbQEAAIC3kGgDAAAAHJKZmalp06a5HQYAwEW0BQAAAN7C0pEAAACAQw4fPqw33nhDhw8fdjsUAIBLaAsAAAC8hUQbAAAA4JCSkhI98MADKikpcTsUAIBLaAsAAAC8hUQbAAAAAAAAAAAAYAOJNgAAAAAAAAAAAMAGEm0AAAAAAAAAAACADSTaAAAAAIeEQiENGjRIoVDI7VAAAC6hLQAAAPCWJLcDAAAAAPyif//+WrRokdthAABcRFsAAADgLcxoAwAAAAAAAAAAAGwg0QYAAAA4pLCwUMOGDVNhYaHboQAAXEJbAAAA4C0k2gAAAACHmKapxsZGmabpdigAAJfQFgAAAHgLz2gDAAAAcJJ2QWnODW5HEZt2wfidq0MgqEOXTojfCR3QIRDHXwB8Xwb8XgcAAAAA0SLRBgAAAOAkhiGl+Li3YBiGUoM+/gXA92XA73UAAAAAEC2WjgQAAAAAAAAAAABs4P40AAAAwCH9+/fX4sWL1atXL7dDAQC4hLYAAADAW0i0AQAAAA4JhULKy8tzOwwAgItoCwAAALyFpSMBAAAAh5SWlurBBx9UaWmp26EAAFxCWwAAAOAtJNoAAAAAh1RWVmrhwoWqrKx0OxQAgEtoCwAAALyFRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAhwQCAY0aNUqBAF/DAcCvaAsAAAC8hW91AAAAgEMikYhWrlypSCTidigAAJfQFgAAAHgLiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAADunUqZMmTZqkTp06uR0KAMAltAUAAADekuR2AAAAAIBf5OTk6OGHH3Y7DACAi2gLAAAAvIUZbQAAAIBD6uvrtXPnTtXX17sdCgDAJbQFAAAA3kKiDQAAAHDI1q1bdfnll2vr1q1uhwIAcAltAQAAgLeQaAMAAAAAAAAAAABs4BltAAAAAE5imlJD2O0oYtMuKBlGfM5lmqZqI23rF9AhEJQRr18AfF8G/F4HAAAAANEi0QYAAADgJA1hadZ8t6OIzZwbpJQ49XBqI2F1WfZmfE7mkEOXTlBqkC5evPi9DPi9DgAAAACixdKRAAAAAAAAAAAAgA3c6wUAAAA4pKCgQJs2bXI7DACAi2gLAAAAvIUZbQAAAAAAAAAAAIANJNoAAAAAhxQXF+vGG29UcXGx26EAAFxCWwAAAOAtJNoAAAAAh9TW1mrdunWqra11OxQAgEtoCwAAALyFRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAh2RnZ2vOnDnKzs52OxQAgEtoCwAAALwlye0AAAAAAL/o3LmzJk+e7HYYAAAX0RYAAAB4CzPaAAAAAIccPHhQL7zwgg4ePOh2KAAAl9AWAAAAeAuJNgAAAMAhZWVlmj17tsrKytwOBQDgEtoCAAAAbyHRBgAAAAAAAAAAANhAos0hFRUVmjlzpgYMGKBQKKRevXrp/vvvV01Nje644w4ZhqHHH3/c7TCRAKYpHS6TNr4uNdRarzXUSrs+lhrr3I0NzohEpH1bpLUvf14GGo9Ke4ukSNjd2OCMpnpp9xrp4/nHlYE66VCJVUfA++qOSNvek1a+8HkZaKqXag+5GxfghJLCd/SLmw19vHTuKff5xc2G/jz36w5G5ZzwM/PU+NUrFXnjrydtM01TTT+YpcaJk2UW73A+OAfVHpI2vy3pWLtnWvVi3RE3o3KG38uA3+sA4Jiq/dKmN08cFyj+UGqocTcuwClHK6Ut7574Gdjyd+t1eJ9pSof3MD7qZ6ccH/3UG+OjSW4H4Adr167VFVdcofLycqWmpmrw4MHas2ePHnvsMW3btq15XfYRI0a4GyjirvaQ9MkS6cjeE183I9ZAw9blUp9RUr8LJcNwJ0YkVsV2qzNVX3Xi65GwtGGJ1C5VGvhPUrd8d+JDYpmmtPMjqfgDKdx44rZIk/TxS1LaOdKQiVJapjsxIrHCjVLRm1LZJn0+uHzctvd/K50zQBp8uZQcciVEAAkWuGWqIh98qPCTT8kYeb6Mcz6v8COLXpG5foMCt0+T0TfXvSATqLFOKnxD2r/15G3FH1iDzD0GSQMnSMFk5+Nzgt/LAOB39dXSJ0ulQ7tPfN2MSNuWS9vfl3KGS3mXSAFuh4cHNdVLhX+R9m0+8XUzYvWXd34kZZ0rDfqalNTOnRiRWDUHrXqw6jTjo7mjpb5jGB/1qoptn42PVp/4eiQsbXj1s/HRy6Ruee7EFw804QlWUVGhSZMmqby8XNOnT1dZWZlWr16t8vJyzZkzR0uXLtXKlStlGIaGDRvmdriIo5oD0so/nJxkO16kSSr+hzUIy6wW79n7qXWXxheTbMdrqJHWL5b2fOJcXHCGaUpb3rG+MH4xyXa86v3SqhdPX1egbQo3SmsWSGWFOinJdrz9W6VVL3EXn1+kpqZq7NixSk1NdTsUOMRITlbSjOlSXZ3CP/t58+vm7hJF5v1OxsBzFbjuWvcCTKDGOqt+aynJ1sy06sk1C0/fgaJp4wABAABJREFUXrZlfi4DaBltgX/UVVkrGnwxyXY8MyztXi1tWGwNOgNe0tQgffzHk5NsX7T3U2n1H6394S3VFdKqP5ycZDtepMm66aDoLcZHvai8SFr7yslJtuM11Ejr/yzt2ehYWHFHoi3B7rvvPpWUlOiee+7R3LlzlZ6e3rxt5syZGj58uJqampSbm6uOHTu6GCniKRKW1i6ypr9Go3S9VLI2oSHBYTUHpI2v6bSD68fb9FcSLV5TXmgtgRCNpnqrzgjTqfCUzW9LlaXR7VtT8VmdAc/Lzc3V008/rdzcXLdDgYOMvAEK3Hi9zI9XK7L0dZnhsMIPz5VMU8EZ02UEg26HmBAbX7Pqt2hUlny2tKRH+bUMoGW0Bf5gmtK6V6xkWzT2b5W2/yOhIQGO2/TX0ydYjnek3LoRHd4RafpsfDTKm0pL11k/8I7qCmu50KjHR/8iVe1LaEgJQ6ItgTZt2qT58+crMzNTDz30UIv7jBw5UpI0fPjw5tcWLFiga6+9Vn369FGHDh00cOBA/du//Zuqq0+T9kWrsm+LdPRwbMfs+pi7Nrxk95rY1hc2I9LuKJMyaP1MU9q5KrZjGmqk8k8TEw+c11AT+51YFdutJD28LRwOq7q6WuGwBxahj1FTQ62OVlW0+OMHgak3Sf36KfzU04o88WuZn25WYNq3ZPTKcTu0hKg5YNVrsdiz8fPnNXiR38rAF/m9Djien9sCPzm0O/oEwzEla7w7uxf+c/SwNVMtFuVF/nh+q1/s2xL733PnKsZHvaRkjTVzO1pmJPqb1lsbntGWQC+++KIikYimTp2qtLS0Fvdp3769pBMTbXPnzlXv3r31P//zP8rJydHatWv1k5/8RO+++67+/ve/K8Ci3a2endlpRyulA8VSZr94RwOnNTV8tlRcjPZ+aq3L365D3EOCww7vsZaEjFXJGqnnENYk94LST2L7MnlMyTrp3EvjHw9aj6KiIk2ZMkULFixQQUGB2+E46oOFP9YHC3/sdhiuMZL+P3t3HidVdef//32reqne6KZpaKAXmqWbfXEBJRK3aOISSaLGJWhCJpP4/UZHYww4yc+ZZGb8jsElTozJjBNjzGIcEjWGiHGiQRPFDWXfQWigm26ggYbeu6vq/v64skk31L1ddW/Vrdfz8ehHa9ddPlXcOufe8zlLhjLmfVPhf/iGoi8sljFpogJXf9brsBKmzkFvZDMi7V4jVZ0T/3iSQbpdAx+V7mXA8dK5LkgnTtoFejqt58Lhk+IeDuC6+tWKeRTLUaZUt1oaMysREcFtTttHD9RKg0bGORi4LtzlsH1044ftozlxDymhSLQl0JIlSyRJF110UZ/b1NXVSTox0fbHP/5RgwcPPvr/F1xwgQYPHqw5c+bojTfe0Pnnn287lurq6qRI0P3gK8tUXDBMDQ0NKi+f7nU4CWHI0M9ur1UgYH/6l3/7x0f07Jv3JyAquGnMsLN1z/XP294vGpE+c+lNWrPjtbjHBHddOf1Wff68b9ver2WvNHpktbrDMc47m4LSoR6QpDs/80tNHWk/Y/b6S2v0iS9enoCIkocfr4G5c+fGvG1DQ4Mk6cUXX9SKFSti3u/JJ5+0GVX/BTNz9Ll7t8TteJMu+pqqz/l8r6/9/vuXxuUcNdXVisQ6d/dpmFlZ0mM/jsuxjsrLkzIzpXBYxvSzZcT5/rymukZGd3LMQ/wvX3hJI4bYbyl+9pd/0cPXfCkBEdmX7tdAupcBdtipByRndYEX9UCi+PFeoDc//OpyFeYNsb3ffz74tH7+yrwERIRkkS7fgW9//lmNLbPfe+alZ97S92/ovb5A6jBk6Gd37FDAsH+v8y/z/0PPvfVgAqKCm2rKztF3Pv+s7f2iEemqT3xB63b+LQFR9XK+6LEFUmfNmmXrOf14JNoSaMeOHZKkESNG9Pp6OBzW0qVLJZ2YaDs+yXbE2WefLUmqr49xsZePOHIj77UjU2NEIhHH7yXZZWfmOEqySdZIKL9+LulkWJ7zXqntrV1cAz7QM9n5KubNB1p00O4cMykkHeoBSTJMZ7dYmUbI15+L5M9roL099rnuOjs7j/62s58Xn1VGdnyHWBcNrVblpEviesyP2t2wW+GuOM09GMpWZnyOJEkyTVORhx6Wwj1SZYWiv/kfBS44X8bwYXE7x+6G3VJnV9yO1x8ZRraj/QwzM3nKhjS/BtK+DLDBTnkuOasLkuZ7EQd+vBfoTVaGs++QGQ74+nNB+nwHgspytF9AWb7+XNJFKCvPUZJNon3UL8oKnHd+8qp9dM8e5+1xJNoSqK2tTZLU0dH7RbVw4UI1NTWpoKBAI0eeejzsq69aK4OPHz/eUSzDhg1LihFtwQ8X+Q4GgyorK/M4msQwZCgajThKtmVkybefSzrJG+B8bHNufjbXgA9kZjsvb4uK85U7wL/VczrUA5JkGmFH+/VEO3z9uUj+vAZyc2NvSAuFQkd/29nPi88qmJlic3VIGj5seFxHtDmYBbhP0ecXyVy1WoEvf0mBmecqfOs/KPLQwwo+uEBGnOYMHj5seNKMaOsxY1z1/iOi6k6asiHdr4F0LwPssFOeS87qgmT5XsSDH+8FetMVblNOdu/LiJyKkRH19eeC9PkOROSsPkqmewE4Z8hQ1Iw6SrbRPuoPeQUhx/u62T4ajUaPDlIqLS11fBz/tuQlgaFDh+rgwYNavny5Zs6cecJrDQ0NmjfPmgpgypQpp3ywqq+v1z/90z/psssu07Rp0xzFsmXLFuXl5TnaN55e/y+pq9VK/B2ZNtOPlv9WOrDT/n7ffeB2/XDE7fEPCK6K9FjXethmZ+JAhrToL79WpvN6CEniUIO07Cn7+w0YJm2r3Rr/gJJIutQDO5ZJW/5qf78Lrpyiugf8+7lI/rwGNm7cGPO269at0xNPPKErrrjC1ro89957r5PQ+qUrLN290PXT9svmLVuUHacnnLZIWAOXvByXY5n19Yo+8aSMsTUKXHetjGBQgZvmKPrzXyj6/CIFP/eZuJxn85bNygsmxyPe5tekne/Z3+/zf3eJvvWT5Cgb0v0aSPcywA479YDkrC7woh5IFD/eC/Rm7WKpcYP9/W69+0b925M3xj8gJI10+Q58sFTa/pb9/a64bqZu+w//fi7p5P2F0sFd9vf73kPf0COV34h7PHBXpFv6239Zv+0IZEgvLPmNa+2jbW1tys+3Osa88cYbjo/j/RAnH7vkEmtajAULFmjz5s1H/75s2TJddNFFampqkqRTJs9aW1v1mc98RllZWXriiScSGi/ip3ya/X1yi6WBlXEPBR4IZkrDHCxePXS8SLL5xIChUoGDTjBOyg4kp2GTJCezCJdNi3soSDI1NTVaunSpampqvA4FLjGjUUUe+IEUjSo475syPuzFHrjuWhk11Yo+8aTM3ckxzXs8lU89/TYfFQhKw53PwJ200vUaQN+oC9KDk3v7zBxpSHXcQwE8UTZFsjtg2whY+8EfHLePVsQ9FHggmCUNd9A+OmxCaraPkmhLoPnz52vQoEHatWuXJk6cqMmTJ6u6ulozZszQqFGjdPHFF0s6cX2243V0dOiqq67S9u3b9ec//1nDhsVv7n4kVskYq2KwY8R0+zcgSF4V06weGLEyglLlmQkLBy4zDKnK5prWoQKplLYW38jKkYbbfEAcUi3lFiUkHCSRzMxMFRcXKzMznis/IZlFn3lO5voNCnzpJhmVx3pVGcGggt/6phSNKPLQwzJN08Mo4y93oP3G4uFTrEZmv0nXawB9oy5ID4XDrR87Ks+y9xwJJLNQgTR0gr19hk6QHMy4iiQ1eIx1T2hHFe2jvlJxhr16LRC09klFJNoSqLy8XK+//rquvPJKhUIh1dbWqri4WI899pgWL158dJRbb4m2np4eXXvttXrvvff0pz/9SRMm2KyZ4KlAQJp2tZQV42ydFWc5y/AjeeUOlCZfZfXGOi1Dmni5lD844WHBRaXjpJHnxrZtZo407RprNCT8o+ZCqXhEbNsOKJUmXJ7QcJAkdu7cqa9//evaudPBHNNIOebOnYr+4lcyxo9T4JqrT3rdqBqhwE1zZK5Zq+jzizyIMLEmXBb7CO/iEVa56Tfpfg2gd9QF6cEwpCmfkXKKYtt+6Hip6pyEhgS4btwlUlGMyywVlUvjPpHYeOCuQNBe+2jlWc5miELyyh0oTf60jfbRK1K3fZR+Mgk2fvx4vfDCCyf9vbW1VbW1tQoEApo06cQSJBqNas6cOfrLX/6iF198UTNmzHArXMRRbpE0Y4607k99z0eckW01xFeeTW8NPxo8WjrjWmnjy1L7wd63ySmUxn5CKhnlbmxwx+hZ1g3ltjelno7etykcbiVa7fbyQvILBKVpn7PWKapfI5mRk7cxDCspO+5Sa8Fn+F9LS4teffVV3XrrrV6H4pryCRfqjl+feqTO6V5PVUZlpTIX/+GU2wRvvF7BG693KSJ3ZWRLZ11v3Qvt2Sj1NmDLCEplk6Wai5xNuZvs0v0akNK7DOhLOtYF6So7T5r+BWn9S1LTtt63CWZanW9Hn0e7APwnmPlhu8hfpMb1khk9eRsjIA2bKI29mM6nfpQ70CoH1/1Jau5j6T3aR/1t8BirHNjwZ6mjufdtcgqlsZdIJSNdDS2uSLR5ZN26dTJNUzU1NcrNzT3htVtvvVW/+93v9I//+I/Kzc3V22+/ffS10aNHa/DgFE3rpqHQAKtxoXWfVLdaql9tNbQGglbhMXQcNxF+V1wpzfw76cBOqWGttGeTdWMZyJCmzJYGjeQmwu8qzpCGT5b2bpL2bJb2bz92DZx9ozWSCf4VyLB6cY76mLR7jVUWHNxlXQPBTKt8CBV4HSUAJE5GljTpSmnM+da98Pa3jr025nxrVoes3L73B4BUl5VrjehoPyjVr5J2rrDaBYygVHOBlWDIyPY6SiBxgpnSxMukMbOsDojb3z72HRg103pezo5xxBNSU06hdPYNH7aPrjrWEZX20fRRXCl97CvSgR3S7rXS3s3HtY9+RhpUlfrto0wd6ZE1a9ZI6n3ayD/96U+SpO9///uaOXPmCT+LFy92NU7ER/5ga/h71odrTmTmWD13qUTSg2FIg0ZYjUxHGpIyQ9YotlSvRBCbYIb1AD3tcydeAyTZ0kdWrjUV0JmfP3YNZGSTZAOQPkIF1mgNHbn3MaSqGSTZAKSP3IFS9YXH2gWycqSKM0myIX1k51uJteO/AyPPJcmWTvIHWx1RaR9NT4ZhJdQmf/oj7aM+GYTAiDaPnCrRVltb63I0AAAAAAAAAAAAsIsRbR45VaINAAAA/lRaWqq7775bpaUMaQWAdEVdAAAA4C+MaPPIkiVLvA4BAAAALispKdHcuXO9DgMA4CHqAgAAAH9hRBsAAADgkkOHDumll17SoUOHvA4FAOAR6gIAAAB/IdEGAAAAuKSurk533nmn6urqvA4FAOAR6gIAAAB/IdEGAAAAAAAAAAAAOECiDQAAAAAAAAAAAHCARBsAAAAAAAAAAADgAIk2AAAAwCWhUEjjx49XKBTyOhQAgEeoCwAAAPwlw+sAAAAAgHQxevRoPffcc16HAQDwEHUBAACAvzCiDQAAAAAAAAAAAHCARBsAAADgkvXr12vKlClav36916EAADxCXQAAAOAvJNoAAAAAl5imqZ6eHpmm6XUoAACPUBcAAAD4C2u0AQAAADhJVlBacL3XUdiTFYzfsXIDQR28+NL4HdAFuYE4fgBI+2sg3csAAAAAIFYk2gAAAACcxDCk7DR+WjAMQ3nBNP4AkPbXQLqXAQAAAECsmDoSAAAAAAAAAAAAcID+aQAAAIBLRo8erUWLFqmiosLrUAAAHqEuAAAA8BcSbQAAAIBLQqGQqqurvQ4DAOAh6gIAAAB/YepIAAAAwCX19fW65557VF9f73UoAACPUBcAAAD4C4k2AAAAwCXNzc169tln1dzc7HUoAACPUBcAAAD4C4k2AAAAAAAAAAAAwAESbQAAAAAAAAAAAIADJNoAAAAAAAAAAAAAB0i0AQAAAC4pKSnRV7/6VZWUlHgdCgDAI9QFAAAA/kKiDQAAAHCJYRjKysqSYRhehwIA8Ah1AQAAgL+QaAMAAABcsm/fPv34xz/Wvn37vA4FAOAR6gIAAAB/IdEGAAAAAAAAAAAAOECiDQAAAAAAAAAAAHCARBsAAAAAAAAAAADgAIk2AAAAwCWFhYW66qqrVFhY6HUoAACPUBcAAAD4S4bXAQAAAADpory8XPfff7/XYQAAPERdAAAA4C+MaAMAAABc0tXVpR07dqirq8vrUAAAHqEuAAAA8BcSbQAAAIBLtm7dqssuu0xbt271OhQAgEeoCwAAAPyFqSMBAAAAnMQ0pe6I11HYkxWUDCM+xzJNU+3R1PoAcgNBGfH6AJD210C6lwEAAABArEi0AQAAADhJd0S6e6HXUdiz4HopO05POO3RiAYueTk+B3PJwYsvVV6QR7x4SfdrIN3LAAAAACBWTB0JAAAAAAAAAAAAOECiDQAAAAAAAAAAAHCASRUAAAAAl0ycOFEbNmzwOgwAgIeoCwAAAPyFEW0AAAAAAAAAAACAAyTaAAAAAJds375dN9xwg7Zv3+51KAAAj1AXAAAA+AuJNgAAAMAl7e3tWrVqldrb270OBQDgEeoCAAAAfyHRBgAAAAAAAAAAADhAog0AAAAAAAAAAABwgEQbAAAAAAAAAAAA4ACJNgAAAMAlZWVlWrBggcrKyrwOBQDgEeoCAAAAf8nwOgAAAAAgXRQVFWn27NlehwEA8BB1AQAAgL8wog0AAABwyYEDB/TUU0/pwIEDXocCAPAIdQEAAIC/kGgDAAAAXNLQ0KB7771XDQ0NXocCAPAIdQEAAIC/kGhzQVNTk+bPn68xY8YoFAqpoqJCd9xxh9ra2vSVr3xFhmHo0Ucf9TrMhAp3S40brd+SFAlL0ai3MbnJNKWDu6RIj/X/kR6pu93bmOCuaFjau+XE70Ak7G1McFdPh9Sw7tg1EA1bZUO6MKPS/lopcuQ70COFuzwNCS6L9Eh7PnovEPE2Jrijbv1r+uFNht5f/GCf2/zwJkN/ePDTLkblnsgTT6rnk1co+tKfT3rNNE2Fv3W3eq6cLXN7rfvBuax1n6QjdZ8ptTd7GIyL0v0aSPcyAMdEwtKezdwLIH1Fo1LTto88E3V7G5Pb2vaf2DbWxsDetEL7KPzcPsoabQm2cuVKXX755WpsbFReXp4mTJig3bt365FHHtEHH3xwdKqIadOmeRtognS2SLXvSA3rj91ISFK4U1r6U6l8qlR5lhTM9C7GRDKjUt0qqW7FiTcP4S7p9cek0hqpaoaUP9i7GJFYPZ3SjmXS7jUn3jyEO6U3HpOGT5RGzJCycr2LEYnVdkCqfVfas+HEhoSeTumtJ6TyaVL5GVLAp11fohFp5/tS/Sqp49Cxv4e7pL/9pzRsglUO5hR5FiISrKvV+g40rDsxuRrulN74b6lsijRiupSR5V2MQCIFbp6j6NvvKPLYT2WcdaaMwSVHX4s+97zM1WsU+Lu5MkZWeRdkgu3dYtUFzXUn/v3Nx6VBVda9UHGlJ6G5gmsA6a67XdrxrrR7rXUPfMTRZ6LJ1r1AZsi7GIFEivRIO96T6ldLXS3H/h7ukl7/rw+fic6RQgXexZhoTdusz+DgzmN/C3dZz8TFlVLldKlkpHfxIbFO2z469sP20ZK+j4HUdqR9tH611RH9iKP3ApOse4FUbh/1abNecmhqatJVV12lxsZG3XXXXWpoaNDy5cvV2NioBQsWaPHixVq2bJkMw9CUKVO8DjfuWvZJ7/5aqlt5YpLtiK4W6YM3pOW/PfFm2y+iEWnNH6VNf+m9h44ZkRo3SMt+Y43ygP90tkjvPW0lm3vrodPTYd1oLvuN1NHsenhwwcE6adlTUsPa3nvrth+UNr8qrfr9sR5dfhLullY8I23924lJtiOiYesm692npEPMnORLbQes78Cu5b2PYOxuk7a/Jb3/P9Z/A35kZGYqY95dUmenIj/4j6N/N3fVKfrkL2WMG6vA56/xLsAEMk3rfn/1H05Osh2xv9Z6Hti13NXQXJXO1wDQ0Ww97+x4r/fn/u5263npvaet5yfAb3o6rHpu29ITk2xHRLqtdrN3f221o/lR7TvSyudOTLId78BOaeWzVuc8+E80LK0+Xfvoeuu5cf8O9+ND4nW2SO/9xioLjk+yHdHTYSXh3nu697ajVEGiLYFuv/121dXV6bbbbtODDz6ogoJjXVPmz5+vqVOnKhwOq6qqSgMGDPAw0vjrbLEaV2NpNDvUIK163n9TRmz4s9V793QiPdb7P7wn4SHBReFu60aybf/pt+1ollY868+EczprbbKugVimR9y/XVr3or+mkjRNq7PBwV2n37anw3qwSpcpxNJFd5t1LxBLo1nLXmnl7/0zZcSp5OXl6bzzzlNeXp7XocBFRvUYBW64Tub7yxVd/CeZkYgi9z8omaaC8+6SEQx6HWJC7FoubX87tm03LbGmmverdL0G0Lt0qQt6Oq3nnFg6Fbbt//DeOc2m0YO/RSPSqj/E1qnQzr1zKqlfLW19PbZtt/5Nql+T2HjgvvV/lvbF2D66+nnaR/0m3G3dC8QyTWz7wdRuHyXRliAbNmzQwoULVVJSovvuu6/Xbc466yxJ0tSpU4/+7fXXX9cll1yiYcOGKTs7W+Xl5br++uu1YcMGV+KOlx3L7PVMb66T9m1NXDxua9lrTZEVq2jY6u0L/2hY++E6JDFqP2hNrQf/2P5W76N5+7J3i3Rod+LicduBWiuBGKueTqt3E/xj53Kp83Ds2x9utNZw87uqqio9/vjjqqqq8joU14W729XR0tTrTzoIzLlRGjVKkZ8+ruiP/0vmps0KzP2ijIpyr0NLiHC3/fvbLX/19zrO6XYNfFS6lwHHS5e6oG6V9ZwTq9Z99p6jgWS3b2vfI7p7091mjf70i0g49iTbEVv/ZrWRwR8O77FGq8Uq0mON/oR/7F4rtdm41Ws/YCXoUxFrtCXI008/rWg0qjlz5ig/P7/XbXJyciSdmGg7ePCgJk+erFtuuUVDhgxRXV2d7rvvPs2cOVNr165VeXnyP4RFup3dHNettObk9YM6BwmT/dut0Ry5RfGOBm4zTet6tqtulTUfsUEXiJTX1RrbiNaPqlspFZXFPRxP7Fppf5/GDVL1BazP4QfRiLU2pV11K6252f0sEomoo6NDOTk5CqbZCJa3n/2u3n72u16H4RkjI0MZ876p8D98Q9EXFsuYNFGBqz/rdVgJ07je/rTIXS3WGi5DxiQmJq+l2zXwUeleBhwvHeoCMyrVr7S/X91Kaw1jw4hzQIAHnLQLNKyVxsySgplxD8d1ezf1Pk3cqfR0WM/SQ8cnJia4y8l3oGmbNX1gTmHcw4HLnLaP1q+SRpydeu2jJNoSZMmSJZKkiy66qM9t6uqsbi3HJ9pmz56t2bNnn7Dd9OnTNXbsWD377LO64447EhBtfO2vjW2qtI86uEvqapOyfTB7RqPDAYh7Nkkjz4lvLHBfa1NsQ6I/qvOwNaKpKPnz6TiNvVusxgW79myWJlwmBVK8vSXcZd0c2xUNW70+/Z5oSQcHd/a+NuXpHG70f6eTjRs36tprr9UzzzyjiRMneh2OqyZd9DVVn/P5Xl/7/fcvdTkaj+TlSZmZUjgsY/rZMgIp9vRog9NpIPds8G+iTVJaXQMfRRlwTDrUBYd2O5sCr22/9TxVMDj+MQFu6mqLbRr9jwp3WR2xh9TEPya3Ob0XaNxAos0PTNP5jCV7NkpVtI+mvNZ91gg1uzoOWVPuplpHdBJtCbJjh7V644gRI3p9PRwOa+lSayzs8Ym23gwaNEiSlJHh/J+rurpaAZce4i6e8kV98eJ/d7TvBeddqrqm1Jom86Myg9n66T984Gjf/3zkcf3mr9+Lb0Bw3cTKj2ve1U872nfuTV/Te1tfjHNEcNvVM7+l2ed8w/Z+ZkSaOG6KWjoc3IkkkZIBFXrw795ytO/37vl3vfjeT+IcUXL5wVeWqbhgmBoaGlRePt3rcBLiY+Ov0dc+9UNH+15x6We0teH9OEeUWHPnzo1524YGa5GOF198UStWrIh5vyeffNJmVP0XzMzR5+51MDy3D0VDq1U56ZK4Ha83NdXVitjtOt0HMytLeuzHcTmWJJmmqchDD0vhHqmyQtHf/I8CF5wvY/iwuJ2jprpGRndyLHB03xf/qmHFo23v99orb+ry/3tdAiKyL92vgXQvA+ywUw9IzuoCL+qB/jh7zBW67dP/7Wjfaz9zo9bttDnfXApJh3tBSBUl4/VvN73saN+7vvFtvbr6V3GOyH3fu/FFVZVOsb3fu2+u1Kdv/3QCIoKbsjJC+u/bnK0T9OgP/1v/87d/jXNEcNvkERfqrs/92tG+X/zC32v5By/FOaLeRY+bu37WrFm2ntOPR6ItQdrarAXKOjp6v8lfuHChmpqaVFBQoJEjR570eiQSUTQa1Y4dO/Ttb39bQ4cO1XXXOX/gPHIj74amMhsLU31EQ0Od6vfWxzEa9wUDzr9WzYcOqr4+td8/pJJQo+N99+5r5BrwgYPNzhNlu+p2qq3zUByjcV93q/O5fg4cbPL9dyASiRz97df32jS4H/cCjbtT7nNpb499+F5nZ+fR33b28+IzycjOdf2c/bW7YbfCXQ6GU/YmlK14ztoUfX6RzFWrFfjylxSYea7Ct/6DIg89rOCDC2TEaY603Q27pU4HU0skQGe3s2RHe0dr8pQBaX4NpH0ZYIOd8lxyVhckzfciRpVFexzv27inIeXerx3pcC8IKdgzwPG++/fv88W10dHl7F6go7PdF+8/3WX0Y/7TQ7SP+sKQHOf5CK/aR/fscX7/QqItQYYOHaqDBw9q+fLlmjlz5gmvNTQ0aN68eZKkKVOm9PpQdcEFFxwd8TZmzBgtWbJEgwc7nzth2LBhro1o6zasBmLTNG09MPaEO5WZZ6qsLMXGhfZi36GdGlxYaXu/9kiTL95/uotmWol2O9+BI9uGgy1cAz7QEXWWaDvcvl8DBxWoSL2v7ZkqMoKZ6uhqUU52ge19O82Dvv8OHFmLJRgM+va99gQOS7J/LxCJhhUIdafc55KbG3tjdCgUOvrbzn5efCbBzBzXz9lfw4cNj+uINucp448cq75e0SeelDG2RoHrrpURDCpw0xxFf/4LRZ9fpODnPhOX8wwfNjxpRrQdbKvTSNmfC7i5oyFpyoB0vwbSvQyww055LjmrC5LlexGrcMCaN9LJM5GZ1Z5y79eOdLgXhJSZFbXauTJiX4D6yHeg2zjki2vjYJuzRvLm9t2+eP+Q9h+u16AB9v8t2yP7uQZ8oD/toxEX20ej0ejRQUqlpaWOj0OiLUEuueQSbdiwQQsWLNCll16qmhprcuVly5bp5ptvVlNTkyRp2rRpve7/s5/9TM3Nzdq+fbseeOABffKTn9TSpUtVWWk/eSNJW7ZsUV6eO4ufmab05s+kjmZ7vTIrp4a0dZvDyXuTzPa3pQ/esLdPMFN68vkFyshekJig4KoVz0j7a2P/DhiGocIy6d3VryYwKrgl0iO98ZjU02lvvykXDtKuf3YwkX8S2vgXqc7maPvsfGnRaz+X35eref2/pK5WqxPMkfVa/cY0pXd+KbXus3cvMGxchjZsWZWgqBJn48bY71/WrVunJ554QldccYWtdXnuvfdeJ6H1S1dYunuh66ftl81btig7Tk84bZGwBi5xNuXT8cxoVJEHfiBFowrO+6aMDxtYA9ddK3Ppm4o+8aQC58yIy/SBm7dsVl4wOR7xmj6QVv7e/n7ffvBLuq/0S/EPyIF0vwbSvQyww049IDmrC7yoB/pr2W+kQ7vtPRMNqpJWb3g3cUElgXS4F4Rl3YtSw/rYtzcMQ7kDpZff+p3iNNDZUwd3Se87qEfu+Ndr9d0nro1/QHDdtrekbUvt7RPMlH6x6H5lZN2fmKDgquW/kw7ssHcvUFQuLVvz1wRGdaK2tjbl51sd3t94w2aD/nF83pTlnfnz52vQoEHatWuXJk6cqMmTJ6u6ulozZszQqFGjdPHFF0vqe322sWPH6pxzztENN9ygv/zlL2ppadH996dGAWMYUvk0+/s52SdZDZ8sGUF7+wydIGVkJyYeuM/J9VzhYB8kp2CmNNxuJ35DKjv1kp0ppdzBeymbIt8n2dIF9wJ9q6mp0dKlS492woL/RZ95Tub6DQp86SYZx3WaM4JBBb/1TSkaUeShh2WapodRxt+gkVJOob19CodJA5x3Ik1a6XoNoG/pUhc4uhc4I+5hAJ5xcj2XTZUvkmySVFQu5Q2yt09+iVTIQCbfKJssGTaf8YdNlDKyEhMP3JdO7QI0ZyVIeXm5Xn/9dV155ZUKhUKqra1VcXGxHnvsMS1evFibN2+W1Hei7XhFRUUaM2aMtm51toCkFyrOkAZWxL591QzrwdovsvOkcTbW+c4tlsbMSlw8cF/JaOvmIFZDaqTScYmLB+4b+TEpf0js29dcZL9BMpnll0ijbZRrhcOkEawF7yvDJ0slo2Lf3u69Q6rKzMxUcXGxMjPjufITkpW5c6eiv/iVjPHjFLjm6pNeN6pGKHDTHJlr1ir6/CIPIkwcIyBNvEIKxNj5LCNbGv+pxMbkhXS+BtC3dKkLho63nnNiNXySvXsHINkVDpNGzIh9+4GV1j2xXxiGNPFyqyNqLIKZ0oTL/ZNohDVrjZ320bxie+0ISH6Dx0jDJsS+felY6ycVJce8Ij41fvx4vfDCCyf9vbW1VbW1tQoEApo06fRDHvbu3atNmzbpnHPOSUSYCREISlM/J61ZJO2vPfW2Vef4sxAtmyyZUWnTK9YUWn3JHyKdcbWUgksg4BQMQxr/SauRafeaU287dLw04VPcTPpNRpZ05rXWtFmHT7P+a/WFUuWZroTlqqoPq63TTaU7sEKa8pnYH8CQGgIBafJV0trF0r7T9BWqOFOquTA9ysGdO3fq+9//vv7xH//R8ZTgqaZ8woW649enHqlzutdTlVFZqczFfzjlNsEbr1fwxutdishdRWXStGukVc9LkVMsG5aVJ0272uqk4Tfpfg1I6V0G9CVd6gLDkCZdIa0LSHtOM7vm8MnSuEvT414A6WXMxyVDUu1pZkQdVCVNnh17B5VUMWCodMaHz8XhUyytkJljtSP6cWR7uiubYrWPbvyLpFNU9wVDrPvBzNiXNUQKMAyrM50RkHavPfW2qd4+SqLNA+vWrZNpmqqpqTlp4eObbrpJY8aM0bRp01RUVKQtW7bo4YcfVkZGhu68806PInYmI8sqIPdvl3attH4fb/hka2qxAUM9Cc8V5VOl4kqpbpVVmBx/U1FYZk0VOKRaCvBN9KVA0Eq2DZ8k7Voh7d1s3VwcMaTGGg49sCJ1KxGcWlaudPYNVpKhbqU1R/3xKs6wrgG702mkCsOQRp4rDR5t1QON6631644oHmG9/5LRTBnpV8FMK4l6YIf1Hdj3gU54uBo2wZpSx0+j2k+npaVFr776qm699VavQwFcUVwpnfcV6164bpXUefjYa7nFVj0wbAKNKkgv6VQXBDKkSVdaDa11K6V9W07siDp0vFUOFA7nmQj+ZBjSmPOt5/+6VVLjBikaPvZ6ySjrOzCoyv4Ue6miqEz62FekhrVWOdBx6NhrOUVW29nwSXRA97Pyadbzf93KD9tHu469VlRmvU77qH8Fglaybfgkq23Ir+2jXL4eWLPGGt7S27SR5557rn75y1/qhz/8oTo7O1VRUaGLLrpI3/nOdzRixAi3Q+03I2A1oJaMlno6pDd/LvW0W71WJ/hwapje5A60eumPmSW98d9Sd7vV+D79Rq8jgxsMw7ppKCqzbiSW/uzYd2DKbK+jgxsCwWND37vbpbeePHYNjP2E19G5I3+wNP5Sqyxc+tMPy8E86czPex0Z3GAYVsPBoCqpp1N684lj34GJV3gdHQA3ZOVZo5xHTJf+8oNjf5/55dR+mAYQG8Owku7FlSc/E0260uvoAHcMGCpNGCqNvUha+vixZ6JpJ88q7EtZOdZ9QOXZ0uv/eaxt7GNf4V4gXeQOtJbMGP1xaelx7aNn0z6aFgzDWrexqNy/7aMk2jxwqkTbbbfdpttuu83tkFyRmXNsxEI6VqKBjGO9k/zaSwmnlpGd3t8BWDeR6XwNBDOPKwfT8P3DGrGSzt8BIN0ZAVnzZ5nWb8oBIP3wTIR0F8xK72ciwzixbSwdP4N0F6R9NO359V6Ay9kDp0q0AQAAAAAAAAAAIDUwos0DS5Ys8ToEAAAAeKC0tFR33323SktZ6R0A0hV1AQAAgL+QaAMAAABcUlJSorlz53odBgDAQ9QFAAAA/sLUkQAAAIBLDh06pJdeekmHDh3yOhQAgEeoCwAAAPyFRBsAAADgkrq6Ot15552qq6vzOhQAgEeoCwAAAPyFRBsAAAAAAAAAAADgAIk2AAAAAAAAAAAAwAESbQAAAAAAAAAAAIADJNoAAAAAl4RCIY0fP16hUMjrUAAAHqEuAAAA8JcMrwMAAAAA0sXo0aP13HPPeR0GAMBD1AUAAAD+wog2AAAAAAAAAAAAwAESbQAAAIBL1q9frylTpmj9+vVehwIA8Ah1AQAAgL+QaAMAAABcYpqmenp6ZJqm16EAADxCXQAAAOAvrNEGAAAA4CRZQWnB9V5HYU9WMH7Hyg0EdfDiS+N3QBfkBuL4ASDtr4F0LwMAAACAWJFoAwAAAHASw5Cy0/hpwTAM5QXT+ANA2l8D6V4GAAAAALFi6kgAAAAAAAAAAADAAfqnAQAAAC4ZPXq0Fi1apIqKCq9DAQB4hLoAAADAX0i0AQAAAC4JhUKqrq72OgwAgIeoCwAAAPyFqSMBAAAAl9TX1+uee+5RfX2916EAADxCXQAAAOAvJNoAAAAAlzQ3N+vZZ59Vc3Oz16EAADxCXQAAAOAvJNoAAAAAAAAAAAAAB0i0AQAAAAAAAAAAAA6QaAMAAAAAAAAAAAAcINEGAAAAuCQQCGj69OkKBLgNB4B0RV0AAADgL9zVAQAAAC6JRqNatmyZotGo16EAADxCXQAAAOAvJNoAAAAAAAAAAAAAB0i0AQAAAAAAAAAAAA6QaAMAAAAAAAAAAAAcINEGAAAAuKSwsFBXXXWVCgsLvQ4FAOAR6gIAAAB/yfA6AAAAACBdlJeX6/777/c6DACAh6gLAAAA/IURbQAAAIBLurq6tGPHDnV1dXkdCgDAI9QFAAAA/kKiDQAAAHDJ1q1bddlll2nr1q1ehwIA8Ah1AQAAgL8wdSQA4CSmaao9GvE6DFtyA0EZhuF1GAAAAADgCzwXAkh3lIOIFYk2AMBJ2qMRDVzystdh2HLw4kuVF6RaAwAAAIB44LkQQLqjHESsmDoSAAAAAAAAAAAAcIBEGwAAAAAAAAAAAOAAYwgBAAAAl0ycOFEbNmzwOgwAgIeoCwAAAPyFEW0AAAAAAAAAAACAAyTaAAAAAJds375dN9xwg7Zv3+51KAAAj1AXAAAA+AtTRwIAACRIpFs61CAd3iO17JE6W6Xuduu1ng5p+9tSQalUNFzKyPY21kQwTamtSTrUKLU0Sm0Hjr3/7g5p06vSgFKpcJiUO9DbWN3S3t6uVatWqb293etQAAAeSae6wDSltv3S4Ubrp23/R+4Fllj3QoXDpLxib2NNlO72D+8HG6WWvce9/3Zp7WLr/R+5HwrQSgcAQEqiCgcAAIiztv1S3SqpYZ0U7up9m2hE+uAN678DGdLQ8VL5NKuhJdWFu6XG9VLdSqm1qfdtzIi06/1j/19UZr3/ITVSIOhGlAAAIFEiPVLjButeoGVv79uYEWnX8mP/P2CYdS9QOlYKpnhrlWlKh3Zb73/PJsmM9rJN1PqMGj9cri8zRyqbYv3kFLoaLgAA6KcUv3UBAABIHj2d0pbXpN1r7e0XDUu711g/g6ulcZdI2XkJCTGhTNNKsG16VQp32tu3ud76Cf1NGv8paVBVQkIEAAAJtmeTtPEVa/S+HYcbpPUN0gevS+MulQaPTkx8idbRLK3/s3Rwp739ejqk2nek2nelyrOk0edJwcyEhAgAAOKMRBsAAEAc7K+V1r8kdbX27zj7tkjNddK4T0il4+ISmiu62qQNf5aaPujfcTpbpBXPWL25ay6UgllxCQ8AACRYd4e08WVp7+b+HaerVVr1e2nYBGnsJ1Jnem3TlOpXSVv+ao3oc34gaed71j3VxMulwuFxCxEAACRIwOsAAAAAUt3uNdKKZ/ufZDuip0Na84LVqzkVdDRL7/2m/0m249Wvlpb/zhol6CdlZWVasGCBysrKvA4FAOARP9YFnS3S+0/3P8l2vIb10vsLpe62+B0zUUxT2vyaNZKvX0m247QftN7/vjjeXwEAgMQg0QYAANAPu9dJ6/9Xkhn/Y299XdqxLP7HjafOFun930odh+J/7EMN1ui2cHf8j+2VoqIizZ49W0VFRV6HAgDwiN/qgu42aflvpbYD8T92y15p+TPJ3fHGNK2pw49fezZeohFp9R+kpu3xPzYAAIgfEm0AAAAOHW6UNryU2HNs+as1LWUyikatxp/Ow4k7x+FGa0pKvzhw4ICeeuopHTiQgNZIAEBK8FNdYJrWKPz2g4k7R+s+ad2frHMlo4Z10s4EJNmOMKPSmkXWDAIAACA5kWgDAABwIBqW1r1kv9Fnxk3SrFus37Fa/79SuMveedywc5mVCLPDyfvfszG+U1F5qaGhQffee68aGhq8DgUA4BE/1QV1K6SDu+zt4+ReoOkDqXG9vfO4obNF2vyqvX2cvP9Ij3U/mKzJRgAA0h2JNhc0NTVp/vz5GjNmjEKhkCoqKnTHHXeora1NX/nKV2QYhh599FGvwwSQYKZ57MGIByQg9W1/R2prsr9fVp4UKrB+x6qrRdryN/vnSqS2A9IHb9rfz8n7l6w1T5J52igAANJNxyFn9ydO7wU2LUm+9do2vmK/M5TT939wl7WGLQCkOtrG4Eck2hJs5cqVmjx5sh544AE1NjZqwoQJ6unp0SOPPKLrr79eGzZskCRNmzbN20ABJEz7QauX419/fOzBsLtN2vgXqdVBI32qiTzxpHo+eYWiL50895tpmgp/6271XDlb5vZa94MDHIr0SLuWu3vO3WukriRqXNr1vmRG3Dtfd7u0e6175wMAAKdWt8Ia4e+WcJdUl0SJptYma6Sdm3a8m5oN0zwTAuhul2rflZb+9MS2sdV/kA7sTM2yzQ7KQf8j0ZZATU1Nuuqqq9TY2Ki77rpLDQ0NWr58uRobG7VgwQItXrxYy5Ytk2EYmjJlitfhAogz05Q+eEN682fWnP3hj4zEqFshvf2klYTz8w1F4OY5UtUIRR77qcx9J2YWo889L3P1GgVuvknGyCpvAgQcaNzo/lSOZtRKtiWDcJfU4MH0TfWr/F1eAgCQKiI93nSAqV9trRGbDOpWun/OjkPJu3bvqfBMCKS3vZulN/5b2vo3qxw74bUt0vLfSiueSc7lEuKFctD/SLQl0O233666ujrddtttevDBB1VQUHD0tfnz52vq1KkKh8OqqqrSgAEDPIwUQCJs/Zu0/e3Tb7fzfWnTK/5tPDYyM5Ux7y6ps1ORH/zH0b+bu+oUffKXMsaNVeDz13gXIODAbo96U9evTo6yYs8mq4HNbe0H7a8Dk2zy8vJ03nnnKS/P5nxRAADf8ENdsG+rN1M6d7VI+7e7f96Pioa96XQkpeb0kTwTAulr7xZp9aLTj4A+sENa/ow3z5luoBz0PxJtCbJhwwYtXLhQJSUluu+++3rd5qyzzpIkTZ06tc/jXH755TIMQ9/73vcSESaABDmwU9qxLPbt61a5P+2Im4zqMQrccJ3M95cruvhPMiMRRe5/UDJNBefdJSMY9DpEIGaRHulwozfn7jwsdbV6c+7jHazz7tzN9d6dOx6qqqr0+OOPq6qqyutQAAAe8UNdkO73Ai37pEi3N+durkuOjld28UwIpJ+eDmnt4ti3P9wgbXOwDniqoBz0twyvA/Crp59+WtFoVHPmzFF+fn6v2+Tk5EjqO9H229/+VitXrkxUiAASaNcKZ/sMHhP/WJJFYM6Nir71jiI/fVyBD7bJ3LRZga/9vYyKcq9DA2xpbfK2caNljxQqOP12iY4hHc8dD5FIRB0dHcrJyVGQBykASEt+qAvS/V7Ayxh6OqyRfaEUnBiJZ0IgvexeZ38tz91rpFEfk4KZiYnJa5SD/sWItgRZsmSJJOmiiy7qc5u6OqsLWG+JtsOHD+sb3/iGHnzwwcQECCBhulqlpq329zuww5oWza+MjAxlzPum1N2j6AuLZUyaqMDVn/U6LMC2lr3pff5IWGo74N35vX7//bVx40ZNnz5dGzdu9DoUAIBHUr0uME2pdZ9350+Ge4EWD99/MpzfKZ4JgfRSv8r+Pj2d1ppufkU56F+MaEuQHTt2SJJGjBjR6+vhcFhLly6V1Hui7f/7//4/1dTUaM6cObrpppv6HU91dbUCAe/zqj/4yjIVFwxTQ0ODysunex2O69L9/aeLsWXn6tuff8bRvp+f/SWt2v6XOEdkn5mVJT324/gfOC9PysyUwmEZ08+WEcdyqaa6Rka3R/O32JDu5YAf3v8VZ39d1836Tq+vzbhJyjrNcivZecd+z7ql7+2626R3f33y3//z0Z/q6ev+JcZo468gZ5B+dEvfT0yn+wz6+/4P7Duk8vKJMUbrjrlz58a8bUNDgyTpxRdf1IoVsQ9/fvLJJ21GBSSnJ27foUAgqGgkovLy3p+VgFRjpx6QnNUFyVQPZGWE9N+39d2zMNH3Ap1tYZWXV8UWbIL83yt+onNqZvf6Wrzev9T3Z3DrLXfozY3Pxhitcwl5LkzgM6GUGs+Ffngm6o90f//pIhjI0M9ur3W074J/fVTPLP1+fANyiHIwMZKpHIhGo0f/e9asWbae049Hoi1B2traJEkdHR29vr5w4UI1NTWpoKBAI0eOPOG19957Tz/96U/1/vvvxy2eIzfyXotEIkd/19cnwcTqLkv3958uhuYddrxvy6G25Lg2QtmK9yh90zQVeehhKdwjVVYo+pv/UeCC82UMHxaX4+9u2C11dsXlWImU7uWAH95/29i2Pl/Lyot9Wkcj4GwKyI72Tk8/u+KCyClfj/UzcPr+DQWT7tppb2+PedvOzs6jv+3sl2zvGXDKlHn0N9c1/MJOeS45qwuS6fuSm33qCjzR9wLBQIbnn0d3V0+fryX6/UvS4UOH3fkM4vxcmOhnQik1ngv98EzUH+n+/tNFKDPX8b5dHT3Jc21QDiZEspYDe/Y4nxuaRFuCDB06VAcPHtTy5cs1c+bME15raGjQvHnzJElTpkyRYRhHX4tEIrrlllt02223aeLE+PXWHjZsWFKMaDsy/3wwGFRZWZnH0bgv3d9/usjOc77OQlZuICmuDTMrS/GejST6/CKZq1Yr8OUvKTDzXIVv/QdFHnpYwQcXnFAOOjV82PCk77EjUQ744f2HcrP6fK277xzcUdl5VsOKGZW6TrF9X8fKDmV6+tnlZhee8vXTfQb9ff/haHfSXTu5ubE/RIZCoaO/7eyXbO8ZcMqQcfQ31zX8wk55LjmrC5Lp+xIMnLrJMdH3At3hTs8/j2BG388v8Xr/pzpW3oBcVz6DeD8XJvqZUEqN50I/PBP1R7q//3TSE+5UZkbI/o4ZPUlzbVAOJkYylQPRaPToIKXS0lLHxzFM0zTjFRSOuf322/WjH/1IFRUVeuWVV1RTUyNJWrZsmW6++WZt27ZNPT09uvXWW/Xoo48e3e+HP/yhHnjgAW3cuFH5+fmSJMMw9N3vflff+973bMXQ1tZ29Bitra3KyzvNXFYueP2/rPWrsvOlj/8fr6NxX7q//3RhRqU3fyZ1HLK3X1auNXVIIAnWQ2+LhDVwyctxO55ZX6/w/7lNRtUIBf/jIRnBoCJPL1T0579Q4P/eouDnPtPvcxy8+FLlBZO//0i6lwN+eP97t0qrn3e+/6xbrN7LnS3SG4/Z33/cpVL5ybNOu8Y0pb/+WAp3Otu/v+9/wDBpxhxn504UO2vsrFu3Ttdee62eeeYZW52qxo0b5yQ0IOm88pAkU5IhXXKX19EA8WF3rTUndUGy1QOvPyZ1tTjbt7/3AnmDpJlfdnbuePlgqbT9LWf79vf9S9L0OVJh/AY/9Cmez4VuPBNKqfFc6Idnov5I9/efTtYulho32N9v5petsj4ZUA4mRjKVA/HKoXg/xMmn5s+fr0GDBmnXrl2aOHGiJk+erOrqas2YMUOjRo3SxRdfLOnE9dmampr0T//0T/rnf/5nhcNhNTc3q7m5WZI1pURzc/MJc4YCSE5GQCpz0AheNiU5kmzxZkajijzwAykaVXDeN2V82GslcN21MmqqFX3iSZm7k2N6WyAWA5x3cPLF+Q3D2xi8fv/9VVNTo6VLlx7thAUASD9+qAs8vRcY6t25kyEGIyDlD/bu/E7wTAikp/Jp9vcZWJk8SbZ4ohz0PxJtCVJeXq7XX39dV155pUKhkGpra1VcXKzHHntMixcv1ubNmyWdmGirq6tTS0uLbrnlFg0cOPDojyQtWLBAAwcO1M6dOz15PwDsKZsi5Zx6drUTZOdL5WckLh4vRZ95Tub6DQp86SYZlZVH/24Egwp+65tSNKLIQw+LAdZIFdn51ghULxgBKb/Em3Mfz8vGpYIUT7RlZmaquLhYmZnxXgkTAJAq/FAXpPu9gJeJxrwSKckHKpyEZ0IgPRUOl0pGxb69EZBGfSxx8XiJctD/SLQl0Pjx4/XCCy+opaVFLS0teuedd/S1r31NbW1tqq2tVSAQ0KRJk45uP2bMGL366qsn/UjSl770Jb366qsaOjQJum4BOK3MkDTtGuk064RLshrsp11jzdXvN+bOnYr+4lcyxo9T4JqrT3rdqBqhwE1zZK5Zq+jzizyIELDPMKQhHnVAHzxaCiRBw8qQam/OawSlwTYe1JLRzp079fWvf53OUwCQxvxQF3h1LyBDGjLGo3MfJzvfakD2QmmKDYTkmRBIX4YhTfq0VFQew7YBadIV0sAYtk01lIPpIQmaatLPunXrZJqmampqTlj4OD8/XxdeeGGv+1RVVfX5GoDklFcsTf+CtO1Na07qaPjE142gVDpWGn2evdFvqcSorFTm4j+ccpvgjdcreOP1LkUExEf5VKlupQfnneb+OXszYKj1c7jR3fOW1khZKd4poaWlRa+++qpuvfVWr0MBAHjED3VB3iBpYIV0cJe75x08WgoNcPecfSmfKh3a7e45jYA0fLK75+wvngmB9JaRJZ1xrVT7tlS/WupuP3mb4hHSqJmxJeRSEeVgeiDR5oE1a9ZIOnHaSAD+FCqQJnxKqr5A2rNR2vJXKdJj3Wh87O+9m34OQP/kD7YeAprr3DtnbrE1X32yKD9DWv8nl885zd3zAQCAvpWf4X6iLZmm2x8yVtr8mtTT4eI5a/w5EwoAfwtmSKNnSSNnSnu3SBv+12obC2ZJM26yOqoDqY6pIz1gN9Fmmqa+973vJTAiAImWGbIaiDOyrf8PZpFkA1Ld2IutXsVuGfcJa+qNZDFsvLtTJg2dIBWVuXc+AABwakOqpWIXOwENdvl8pxPMkGoucvF8WVL1+e6dDwDiLRCUho471jaWkUWSDf5Bos0DjGgDACD1FQyRRp7rzrnKplrTaSQTIyBNuMydNeOy8qSxLjZkAQCA0zMMafynpGBm4s+VGZLGXZJcnY4kaeh4qWS0O+equTB5ps0EAAAnItHmgSVLlsg0TV155ZVehwIAAPqh6hz7o6y626TOFut3LPJKrOlnk1Fesf2e3HbfvxGQJl4mZebYjy8ZlZaW6u6771ZpaanXoQAAPOKnuiCnUBp3qb197N4L6MOEXjJOmWgY0vhPStkFse9j+/3LGs2XamuzAQCQTlijDQAAwKFAUJp2tbT8t9LhPbHt8+6vYz9+7kDpzGutKTWSVflUqadT+uD12La38/4NQ5p4uTRopLPYklFJSYnmzp3rdRgAAA/5rS4YNsFap2zzq7Ftb+deQLISWUOq7cflluw86czPS+8vjC15Zvf9F4+QJl2ZfKP5AADAMYxoAwAA6IeMbOnM6+I/teOAUumsG6Ts/PgeNxFGniPVxHnNumCmNHm2NSWTnxw6dEgvvfSSDh065HUoAACP+LEuqDzLSogZwfgdM5BhJZjKUmAkV16xdPaNViepeCodK037nLUeHAAASF4k2gAAAPopI1s641pp7MX9X7PMCEijzpPO/kJyTpHUl8ozpelzpPzB/T9WcaV07tzk7r3uVF1dne68807V1dV5HQoAwCN+rQvKpkjn3Gx1FuqvojLp3C+lVoeb3CLpnC9aScf+yghJE6+QJn3anfVwAQBA/1BdAwAAxIFhSBVnSoNGSdvfkvZslKIRG/sHpMFjpFEz45Os8sKAUmnGTdKu5dKuFVLnYXv755dIlWdLwyYyPRIAAKkov0Q6e45Ut9K6H+hotrd/brGVqCqbkpr3AsFMa/3aIWOl2relpm329x82URo5M7U6XAEAkO5ItAEAAMRRbpG1rlj1hVLDWmn/dmv9tnDXydsGM6WCUmvaybLJqTFN5OkEgtKI6VYj2f7tUsMG6XBjHw1thjXVUuEwafgkqbAsNRvVAADAMYGANdK94gzpQK3UsN66F2g/2Pv2uR/eCwybKA2s8Me9QNFwax3f9mZp92rpYJ3UsleKhk/eNjPH6qxUMtr6DJJ5bV4AANA7Em0AAAAJkJVjJZxGTJdMU+o4JHW1WqPcAgEpK89ax8MPjUm9MQJWg1HJaOv/ezqltgNStEeSYSUZ8wdJQRqTAADwJcOQBo20fiSr01Hbfily3L1A3iB/J5Zyi6Qx51v/HY1K7fute6Jo1OqclDNAyi7w7/0gAADpgkQbAABAghmG1dCSW+R1JN7JDFm9u9NdKBTS+PHjFQqFvA4FAOCRdK0LMrKlwjS+FwgEUnd6cAAAcGok2gAAAACXjB49Ws8995zXYQAAPERdAAAA4C8BrwMAAAAAAAAAAAAAUhGJNgAAAMAl69ev15QpU7R+/XqvQwEAeIS6AAAAwF9ItAEAAAAuMU1TPT09Mk3T61AAAB6hLgAAAPAX1mgDAJwkNxDUwYsv9ToMW3IDQa9DAAAAAADf4LkQQLqjHESsSLQBAE5iGIbyglQRAAAAAJCueC4EkO4oBxErpo4EAAAAAAAAAAAAHCAdCwAAALhk9OjRWrRokSoqKrwOBQDgEeoCAAAAfyHRBgAAALgkFAqpurra6zAAAB6iLgAAAPAXpo4EAAAAXFJfX6977rlH9fX1XocCAPAIdQEAAIC/kGgDAAAAXNLc3Kxnn31Wzc3NXocCAPAIdQEAAIC/kGgDAAAAAAAAAAAAHCDRBgAAAAAAAAAAADhAog0AAAAAAAAAAABwgEQbAAAA4JJAIKDp06crEOA2HADSFXUBAACAv3BXBwAAALgkGo1q2bJlikajXocCAPAIdQEAAIC/kGgDAAAAAAAAAAAAHCDRBgAAAAAAAAAAADhAog0AAAAAAAAAAABwgEQbAAAA4JLCwkJdddVVKiws9DoUAIBHqAsAAAD8JcPrAAAAAIB0UV5ervvvv9/rMAAAHqIuAAAA8BdGtAEAAAAu6erq0o4dO9TV1eV1KAAAj1AXAAAA+AuJNgAAAMAlW7du1WWXXaatW7d6HQoAwCPUBQAAAP5Cog0AAAAAAAAAAABwgDXaAPTKNE21RyNeh2FLbiAowzC8DsMX+PcHAAAAAADpjLYRcA0gViTaAPSqPRrRwCUvex2GLQcvvlR5QYq1eODfHwAAAAAApDPaRsA1gFgxdSQAAAAAAAAAAADgAKlNAAAAwCUTJ07Uhg0bvA4DAOAh6gIAAAB/YUQbAAAAAAAAAAAA4ACJNgAAAMAl27dv1w033KDt27d7HQoAwCPUBQAAAP7C1JFIuEhYat0ntR2QIj0f/q1Ham2S8oolw+fpXtOUOg5JLXtPfP8Hd0kFpVJGlrfxAUi8SLfUsk9qP3hcORC2/j+nSDIMT8NLONOU2g9Yn8Hx5WDzbqlgsBTM9DY+wE3t7e1atWqV2tvbvQ4FAOAR6gIg/ZhRq12stenEZ6JDDVL+YCmYBi20XW1Sy54T33/TNqttLDvP29gAJF40IrXtP7kcPLxHyi+RAkFv4+uvNCjG4YXudmn3WmnPRuvLY0ZPfD3cJb39pNW4OmCoNHySNGSsf24szKjUtF2qXy0110vhzhNfD3dJ7y+0/ju3WBpSLZVPlUID3I8VQGJ0tlhlwN7N1gOVzBNfD3dKb/5MCmZJRcOlsilSyRgp4JPOB9GItHeLtHuN9fAY6T7x9XCX9N5vrCRjXolUOlYaPpkHLAAAAAD+EAlLezdZ7WOHG481LB8R7pKWPWV1QM8vkUrHWe1jWbnexJsIhxqkulXSgVqpq/XE18Jd0srnrP/OLpAGjZDKp1nthAD8IdwtNW6QGtZZifZo5COvd0nv/koyglLBEGnYBOsnI9ubePvDJ2kNJIuuNmnr36wE20e/OL05MrLr4C5p82tSxRlS1QwpkKJXpmlKdSulHe9ajeyxaD8g1b4j1b4rDR4tjTnfGukHIDV1NEtb/ibt22KVCacT6Zb211o/2flS5dlS5ZmpO9o3GpF2viftfN/qdHE6pmmNem7dJ21700q4jTlfChUkPlYAAAAAiLdoWNr+jtU+1NNx+u3NqDULUsteadtSqXS8NObjqd0JcX+t9MHr1kiVWHS1WAnJ3WutRNvoj1uJNwCpKdxtlWf1a07ueN0bMyIdbrB+tv7N6nQwelZqJdxSNJ2BZGOaVnJt01+kns7Tb9+bng6rkXXPJmnCZVLhsPjGmGjtzdL6l6TmOocHMKV9W62bkdGzUruhHUhHpinVr5K2/PXknoqx6mqVtrxmlYMTL5PyBsU1xIRr2Set/5P1gOiEGbV6OjVtk2oulIZN8v+0mgAAAAD841CD1TbUtt/Z/tGI1LBWavpAGvsJqyNiKj0ThbusjvS71zg/xuFGacXvrFlfqi9IrYZ2ANKBHdL6/5U6DzvbP9Ij7Voh7d0qjf+kVDIyvvElCs346DczKm34s7R2sfMk2/Ha9lvTidWt6v+x3NK0zZoK03GS7TjRsNXQvuI5K/sPIPlFwtLqP0gbX3GeZDve4QbpnV9Kezb3/1huaVhvDfd3mmQ7XrjLuilbuzi20dFAKikrK9OCBQtUVlbmdSgAAI9QFwD+VLdKWvYb50m24/V0SGtfsNrbProcS7JqP2g9x/YnyXa8+tXW8dqb43M8AIllmtYgmuW/c55kO15Xi7TyWWnr67HNGOU1Em3oFzMqrX0xfpXo0eOa0saXpZ3L43vcRNj3gbTqeStBFk8HaqUVz8Y2vBaAdyJhadXvrRGp8RSNSGv+KDVujO9xE6F+jbTuxfg/AO7ZKK1eRLIN/lJUVKTZs2erqKjI61AAAB6hLgD8Z+dyqx3ro2tz99fuNVa7W7In29oPSu/9j9RxKL7H7Tgkvfe0dXwAye2DN6xEW7zVvmONlE32ZBuJNvTL5teshtCEHX+JNYVasjrUIK1ZlLgbnkP10uo/Jn9BAqQr07SmSjywI1EnsBJYB3Ym6Phx0LTN6mWZsON/YI0UBPziwIEDeuqpp3TgwAGvQwEAeIS6APCXPZus9quEHX+jtURBsurukJb/VupuS9Dx26wRMrGsdwfAGzuXWwmxRNn1vrRjWeKOHw+s0QbHDuyQdtkccTbjJikrz6ok3/11bPtsfFkqKk++RWAjPdK6P9kbaeHk/e/fbg2XL5/qLE4AibNno/3OAHbLATNqzfF/7lwpI8tRmAnT02FN8Win16aTcnD3GmnwaGnwGEdhAkmloaFB9957r6ZNm6bi4mKvwwEAeIC6APCPrlZpw8v29nHyTLTzfalktFRcaT/GRNu8ROpsiX17J++/87C06VVp0hXOYgSQOG37pa02OwM4KQc+eEMaNFIqGGw/Rjcwog2OhLs/bFy1KStPChVYv2PV02kl25JtVNe2N6V2mx0Qnbx/yVqzLd7D7wH0T1ebtOkv9vdzUg50Hk7OHoybXrXfa9FpObjhZXowAgAAAEgepmk9p4Q77e3n9Jlo/UtWe1wy2btFatxgbx+n779xvbV8C4DkcaRzuN0lP5yUA2bUmlUqWZcXIdHmgqamJs2fP19jxoxRKBRSRUWF7rjjDrW1tekrX/mKDMPQo48+6nWYtuxaHp9FDWO1b6vUXOfe+U6ns0Xa+Z5754v0JGaOWzdEnnhSPZ+8QtGXTp5bzjRNhb91t3qunC1ze637wbmodZ+0+dVjiYJwl3R4j7cxucWv18D2t62OAG6pXyW1JdHsQof3WA86buluk3a4WO4CAAAAwKk011lT3bul87C0a4V75zsd03S/Q+iW15KvI34s/NouYldX64ltKT2d1nIUyb4GYTz49RrYs9laWsktLXvtJ/fdQqItwVauXKnJkyfrgQceUGNjoyZMmKCenh498sgjuv7667Vhg3VlTJs2zdtAbTCjVoOv2+pWun/OvtSvcr9i37PJmvc61QRuniNVjVDksZ/K3Nd0wmvR556XuXqNAjffJGNklTcBJljLXmtB4Ld/YU31cKTXRaRHevdX0rtPuVshecGP10C4W2pY5/556zwoe/viRZlcv1qKht0/LwAAAAB8lCfPRCuTJylxoFbqaHb3nO0Hk3sN8774sV3Eju52ac0fpTf+25r+78hzfTQsrXxOevNnUoOLHXm94NdrwItyMJlyBMcj0ZZATU1Nuuqqq9TY2Ki77rpLDQ0NWr58uRobG7VgwQItXrxYy5Ytk2EYmjJlitfhxqxpu725l+Nl7xZrqjavRSNS/RoPzhuWGta6f97+MjIzlTHvLqmzU5Ef/MfRv5u76hR98pcyxo1V4PPXeBdgAjXXSe89ferRmIcbpPcXSvtrXQvLdX68Bho3SBEPpuxoWGslab3W0+lND6KeDqu3FJDK8vLydN555ykvL8kWnwUAuIa6AEh9XW1WO5XbOlusdrlksGulN+etS6JRfbHyY7tIrLparbaxPZv6ThJ3HJLWvSjVvutubG7y4zXQus+bGegONybnoAUSbQl0++23q66uTrfddpsefPBBFRQUHH1t/vz5mjp1qsLhsKqqqjRgwAAPI7XHzWHxxzOjVm8Zr7Xssb8mUbw0bfPmvP1lVI9R4IbrZL6/XNHFf5IZiShy/4OSaSo47y4ZwaDXIcZdZ4u08vnYkiLRsLT6D1bPLL/y2zXg1Xcx3CU17/bm3Mc7uMu7kWWpWg4CR1RVVenxxx9XVVWV16EAADxCXQCkvv213o0sS4ZnomjEuza6/bVSNElG9dnht3aRWJhRaeXvY2/v2vo3aa+PO9f67RrwsixKhnLwo0i0JciGDRu0cOFClZSU6L777ut1m7POOkuSNHXq1KN/e+2112QYxkk/yTS1pJfrSiXDmlaHGz08957UnItakgJzbpRGjVLkp48r+uP/krlpswJzvyijotzr0BKibqW9BZEjPdbah37mp2vAy3KgxcNzH+Hp+0+CegDoj0gkotbWVkUiSbqCMwAg4agLgNTn5XOZl89jR7Q2HVsaw23RsNS+35tz95ef2kVisb/W/jP89ndSt+0zFn66Brxsp0/GtiESbQny9NNPKxqNas6cOcrPz+91m5ycHEknJtqO+PGPf6y33nrr6M+vfvWrhMYbq2jYGhbqlaRItHkYQ6Tb/fmv48XIyFDGvG9K3T2KvrBYxqSJClz9Wa/DSohoWNrtYHrR3eustb/8yi/XQFerd6NapeQoB728oWk/aI3sA1LVxo0bNX36dG3cuNHrUAAAHqEuAFKfl89lXia5jvC6kTsZnoud8Eu7SKycrKXVsic5ksmJ4qdrwMtyIBnLgAyvA/CrJUuWSJIuuuiiPrepq7MmMe0t0TZhwgSde+65iQmuH7rbvV10tfOwd+c+GoMH69OdcP7DUu5Ab2NwLC9PysyUwmEZ08+WEfBnrr9lr/VdsSvSLR3aLQ2qintIycMH10AylAFe8zqGzhYpP9vbGAAAAACkLy+fC82I1fkz5OEqNJ4/EybBc7FjPmgXiYVpSvsdrifYtE0qHBbfeJKKT64BL7+H3W3WFLLJ9NGRaEuQHTt2SJJGjBjR6+vhcFhLly6V1HuiLd6qq6sViMOVV1o0Ugvmvt7n6zNukrJOsZ5zdt6x37Nu6Xu77jbp3V+f/Pd9e5pUXj4ttmAT5Duff041ZTN6fS1e71/q+zO4ec4Xtap2SYzROmdmZUmP/Th+xzNNRR56WAr3SJUViv7mfxS44HwZw+NXc9ZU18jo9n5I2KQRF+hbn3vK0b5//+VbtGzL4jhHZF+8//2lxF8Dbv3715Sdo+98/tleXztdGSD1vxxcu2a9ri7/ZIzRJsb9c9/QkKKqXl9zoxz81KWXace+tbEFC7hg7ty5MW/b0GCt2vziiy9qxYrYV3J/8sknbUYFJKcnbt+hQCCoaCSi8vLen5WAVGOnHpCc1QXUA0ByeeRrKzUgt6TX1xLdNiZJ533s49rT7DCLEQefn/UdXXn213t9zY1nwh/+x4/07HULYozWOdrGnMvOzNVjtzpbcO2xnzyu31z/vfgG5BDXQO8MI6Cf37Gzz9fdKAerR9eoq8fBSIePiB636OOsWbNsPacfj0RbgrS1WfOKdXR09Pr6woUL1dTUpIKCAo0cOfKk16+//no1NTVp0KBBmj17tr7//e+rpKT3CjwWR27k+yvcfupLJitPChWc/jhGILbtPqqru1P19fX2d4yjto7WPl9L9PuXpMa9De58BqFsZcbxcNHnF8lctVqBL39JgZnnKnzrPyjy0MMKPrhAhmHE5Ry7G3ZLnd7PKTcwq++K5nR2N+7y/BqXFPd/fynx14Bb//4DMnb3+VqsZYDkvBzo6Gzz/Brp7Oq9bpPcKQd3N9Spfk8SfE+AD7W3x35z39nZefS3nf28/t4D8WLKPPqb6xp+Yac8l5zVBXxfgOTS3dP3s6cbz0R19Tu1t9m7cuFgc9+LpLnx/g8276dtrA/J0jYWMJwP+Gg6sCd56j2ugT5Fo9E+B/a4UQ7s3FWrcKTH2c592LPH+ZyUJNoSZOjQoTp48KCWL1+umTNnnvBaQ0OD5s2bJ0maMmXKCV+iwsJCzZs3T+eff77y8/P11ltv6b777tPbb7+t9957T6FQyFE8w4YNi8uItlDmqefqOt26Rdl51hfIjEpdp9i2r+O0dzerrKzsNFEmVk+078Dj9f5PdazsPMOVz8DMylK8luMz6+sVfeJJGWNrFLjuWhnBoAI3zVH0579Q9PlFCn7uM3E5z/Bhw5Oi106XcUDd4U5lZdj7vkaiYbVF93h+jUvx/feX3LkG3Pr3D+UF+3wtlrXb+lsOdoZbPL9GOsJ9zw/gRjmYOyBTZRnef0+AI3Jzc2Pe9si9XCgUsrWf1997IF4MGUd/c13DL+yU55KzuoDvC5Bc2rubJfX+vUx021jUjCq/KFuZed6VC0ZGuM/X3HgmNDJ6aBvrQ7K0jUlS7Z7VqiqdYnu/pvZtSVPvcQ30raVjvwrzBvf6WsJzBF2HVTp0SIyRnlo0Gj06SKm0tNTxcQzTNM24RIQT3H777frRj36kiooKvfLKK6qpqZEkLVu2TDfffLO2bdumnp4e3XrrrXr00UdPeaw//vGPmj17tp544gl9+ctfjjmGtrY25efnS5JaW1uVl3ea+cxi9ObPpPaDzvaddYuVpe5skd54zP7+wydJEy5zdu54qX1H2tr37Jmn1N/3bwSli26XAn2388dNWySsgUte7vdxzGhUkW/Ok7llqzL+80cyKiutv0ciitzxTZk7dirjsZ/EZYj0wYsvVV4wOfoPrHtJarA5s92QGmnK7MTEY1e8/v0l964Bt/79TVN67UfWmnpO9LccqDpXGjPL2bnjZdMSaddyZ/v29/1n5Unn/19n5wYSZePGjTFv29PTo5aWFhUUFCgzM/a+kePGjXMSGpB0XnlIkinJkC65y+togPiwUw9IzuoC6gEguTh55j+iv89EucXSx/7O2bnj5WCd9P7/ONu3v+9fks7+glQ03Nm+dtA21j/1a6QN/2tvn+wC6byvJs/aW1wDfVvxjLS/1tm+/S0HBlZIZ13v7NwfFa8cSpJcsv4zf/58DRo0SLt27dLEiRM1efJkVVdXa8aMGRo1apQuvvhiSbGtz/bpT39aeXl5eu+99xIddkwKnCd2U/rcyRBDQYk7SbZ4ij7znMz1GxT40k1HKxFJMoJBBb/1TSkaUeShh+W3nH/FGZJsjviuODMhoXjOb9eAYUgDPCwHvDz3EV6Wg8nw/oH+yMzMVHFxsa0kGwDAX6gLgNSX9s+E8RlI4owhFfQ+iCZp+a1dJFZDx0mZOfb2qTgjeZJs8eTHa6BgqIfnToJy8KN8eNkmh/Lycr3++uu68sorFQqFVFtbq+LiYj322GNavHixNm+2FoOMJdF2RLzmae2v4srTb5MoAyu8O/cRhcOkgEcdQ5Lh/dth7typ6C9+JWP8OAWuufqk142qEQrcNEfmmrWKPr/IgwgTZ0CpNO4TsW8/5nxpYHni4vGKX68Br76LRsCdXnun4+W1OtDDOgiIh507d+rrX/+6du50vp4nACC1URcAqc/L9plkaBvKyJIG9H/gjSOFw6RgCvVT8Gu7SCyCmdLUz8Xejjq4WhpxdmJj8oJfr4HiNC8HPyo5xpH61Pjx4/XCCy+c9PfW1lbV1tYqEAho0qRJpz3OokWL1NbWphkzZiQiTNtKx0mbX3M+bZpTReVSfom75+xNRrY0dLy0e4375y6LPS+bFIzKSmUu/sMptwneeL2CN8ZprG+SKZ9m3UxsWtL39yWQIdVcaG3rR369BoZPlra/ZU0j6aYh1dbUiV7LKZRKRklN29w9byBDGjbR3XMC8dbS0qJXX31Vt956q9ehAAA8Ql0ApL78EqudqrnO3fMGs6x2uWRQPlVa3+DNeVOJX9tFYlU03Jrib80ia5rAvpRNlcZebHUw9hu/XgMDK6Xcgc6XmHIqVCCVjHT3nLEg0eaBdevWyTRN1dTUnLTw8U033aRRo0bpzDPPVH5+vt566y3df//9mjZtmm644QaPIj5RRpbV0Fm3wt3zJlMionya+4m2QVVW4YXUMnyStfZa43pp91rp8B5JpnXjUH2hNHyilbxFagkVSIPHSHu3uHveZCsH3U60lY6VsmxOOwEAAAAAiVA+zf1E2/CJVrtcMigda3XED3e6d87MHGnIWPfOh/goHCZ97KtS0wdS/Spp/w5ZbWOGNGKGVDbF6tCL1GIYVoJ0y2vunrdsWnImZJMwJP9bs8bK0PQ2beTEiRP1+9//Xl/84hd1+eWX64knntBXv/pVvfbaa8rKSpKaVNYwXjeHaeeVWCM5ksWAUqlktLvnHDnT3fMhfjKyrBvwGTdJ2R+ORsrKlSrPJMmWyqrOtW4q3DKwwuoxmSwGVbk7VUggKFUlx8BuAAAAANCQaqu9yi3BTKkyiabVC2ZKVdPdPWfVDCnIsJGUFAhY35kzrj2ubSxPGvNxkmyprGyylJ3v3vmycqXyKe6dzw4SbR44VaLt29/+ttasWaPDhw+rp6dH27dv1w9+8AMVFiZXiZNTaK0p5QbDkCZeZjWyJpPxl7qXJKk4Syoqc+dcAGIzoFSqOsedcwUzpQmfcjexdzpGwN2yedR5Ut4gd84FAAAAAKcTCFrPRG49p1VfkHwJicrp0oCh7pyrcJhUeZY75wIQm4xsafwn3TvfuEutka3JiESbB06VaEsl5dOsuVjt6G6z5uPtbot9n6pz3Ku07cjOl8Z+wt4+Tt5/7kBpzCx75wHgjpEzpfzB9vZxUg6MOV/KKbJ3HjfkDbISYHY4ef+Fw5Kr5ybQH6Wlpbr77rtVWlrqdSgAAI9QFwD+MWCo/Q6YTp6JikdYU7Qlm0BAmnCZtZ52rJy8/0CGdZ5knC4OSHclo6Thk+3t46QcGDo+uWa8+ygG23pgyZIlXocQF4YhTblKen+h1NoU2z7v/treOYaOt9+I66ZhE6wFH7e/Fdv2dt9/Vp407Rp3p+kEELtAUJp2tfTe01Ln4dj2sVsOVJ6VXGuzfdSI6VJHs1S/Orbt7b7/3IHSlM9aD3CAH5SUlGju3LlehwEA8BB1AeAvo86TOg5JjRti297uM1H+YGnyVck1w8nx8kus9sFVf5DM6Om3t/v+jYA0ZTYznADJbNwnrHaxAzti295uOVBU7u7IOSdotkK/ZOZIZ14nFSSgI96wCdKEy5P3RuKIUR+zfuItVCCddb2UWxT/YwOInyPf1USMOBtxtlR9YXKXg4ZhDd0vT0DvyrxB1md7ZP52wA8OHTqkl156SYcOHfI6FACAR6gLAH8xDKv9auiE+B+7oFQ68/NSZij+x46nktHSlM/Ef2mBQIY09TPWiBkAySuQIU39rDRoZPyPXVxpdXJP9oEoJNrQb1m5VkNovEZcBDKksRdbNympMILBMKxE2+TZ8ZsjdnC1NP0mKa84PscDkFg5hdL0OdYo3HjICEkTr5DGXJDcSbYjDEMae4nVuyiYFZ9jDp8sTf+Cu4vqAm6oq6vTnXfeqbq6Oq9DAQB4hLoA8J9AQJp4uVRzsb1pFE+lfJrV3paVG5/jJdrg0dZzsd3lFfqSP9h6JiwZHZ/jAUisYKaVbBt1XnymeTUMaeS51mxvGXFqa0okpo5EXGRkSeMukYbUSBtftqZTdKK4Uhr3ydQcxVVaIw0slzYtkfZsdHaMrDyp5iKpdGxqNK4DOCYrR5p0pVUObloidbU4O87gamvIfaolmAxDKpsiDaqSNrws7d/u7DihAVZ9Qo9FAAAAAKnEMKTKM61nmY1/lg7sdHac3IHWrCHFlfGNzw0FQ6QZN1lLrOx4T4qG7R8jkGEtUTDy3PiPkAOQWIGgNGqmlXjf8GfpcKOz4xQMsTpzDxga3/gSiUQb4qq4Upr5d9L+WqlupdS0TZJ56n0CGdY0keXTrC9RKsvKlSZ/Who9S6pfJe1eK/V0nH6/onLr/Q+p5iYCSHVDqq0Hq6YPrHIwloerjGxp+CRrcetUH8kaGiCdcY21dmfdKqlhnRTpPv1+g6qk8jOkkpEscA0AAAAgdeUWWcustOy1ngkb1seQcDKs58iKaVJxVWp3vg4ErXaxyrOk3eus9rFYOuTnDrTaxoZNTP6pMgGcWsEQa4TroQarHNyzSTIjp97HCFid18unSUVlqVcOkmhD3BmG1VBaMlIKd1k3Fof3SG37P7yxMKwRcPmDpQGl1qKp8RpWnyxyi6TqC6TRH5fa91vvv2WvFO6UolEpmGGt5zSg1JpvO1WmAQAQm0DQujkYUmMl2w/vlVoarYeLSNi6ecjMtm48CoZayTW/JdnzS6yReTUXWkm3lj1Syz6rXpBplfu5A63eSQVDeJACAAAA4C9HRmSMvdh6Jjq8R2rdJ4W7dfSZKG/Qh21DQ6wOmH6SmWOtO155ltR5+MO2sT1SV6sUjVjPwNn5x9rGQgNSr2EdQN8MQyoabv2Mv9Qq/w43Sq37pUiPJNNafuRoOTg4fsuReMFn6Q0km4xsaWCF9ZOOAgEroRiv+akBpJ7MHGnQCOsnHQWC1g3TgFKvIwGSQygU0vjx4xUKkV0GgHRFXQCkl0CG1cEwlaZAiyfDsNY1zym0ll0BkH6CmVLhcOvHr0i0AQAAAC4ZPXq0nnvuOa/DAAB4iLoAAADAX1gFBQAAAAAAAAAAAHCARBsAAADgkvXr12vKlClav36916EAADxCXQAAAOAvJNoAAAAAl5imqZ6eHpmm6XUoAACPUBcAAAD4C4k2AAAAAAAAAAAAwIEMrwMAkJxyA0EdvPhSr8OwJTcQ9DoE3+DfHwAAAAAApDPaRsA1gFiRaAPQK8MwlBekiEhX/PsDAAAAAIB0RtsIuAYQK64SAAAAwCWjR4/WokWLVFFR4XUoAACPUBcAAAD4C4k2AAAAwCWhUEjV1dVehwEA8BB1AQAAgL8EvA4AAAAASBf19fW65557VF9f73UoAACPUBcAAAD4C4k2AAAAwCXNzc169tln1dzc7HUoAACPUBcAAAD4C4k2AAAAAAAAAAAAwAESbQAAAAAAAAAAAIADJNoAAAAAAAAAAAAAB0i0AQAAAC4pKSnRV7/6VZWUlHgdCgDAI9QFAAAA/kKiDQAAAHCJYRjKysqSYRhehwIA8Ah1AQAAgL+QaAMAAABcsm/fPv34xz/Wvn37vA4FAOAR6gIAAAB/IdEGAAAAAAAAAAAAOECiDQAAAAAAAAAAAHCARBsAAAAAAAAAAADgAIk2AAAAwCWFhYW66qqrVFhY6HUoAACPUBcAAAD4S4bXAQAAAADpory8XPfff7/XYQAAPERdAAAA4C+MaAMAAABc0tXVpR07dqirq8vrUAAAHqEuAAAA8BcSbQAAAIBLtm7dqssuu0xbt271OhQAgEeoCwAAAPyFRBsAAAAAAAAAAADgAIk2AAAAAAAAAAAAwAESbQAAAAAAAAAAAIADJNoAAAAAAAAAAAAABzK8DgAAAABIFxMnTtSGDRu8DgMA4CHqAgAAAH9hRBsAAAAAAAAAAADgAIk2AHCJaVo/R/4bAJB+tm/frhtuuEHbt2/3OhQAgEeoCwAA6Yy2MfgRU0cCQIL0dEp7N0uHGqSWPVJrk2RGrde626S3fyENKJUGDJOG1EhZOd7GCwBIvPb2dq1atUrt7e1ehwIA8Ah1AQAgXUQjUtMH0sF6q22sZa8U6bZe626Tlj5utY0VlEpDqqXcgd7GCzhFog0A4qxln7RrudS4QYqG+96udZ/1s3uttHmJVDpOqjhDGjDUvVgBAAAAAACAeOpqlepWSvVrrIRaXzqarZ89m6Stf5MGVUnlZ0gloyTDcCdWIB5ItAFAnETC0ral0o73JNkc/h6NSA3rrJ+KM6Uxs6RgVkLCBAAAAAAAAOLOND/sUP7qsZFrduyvtX4GVUnjPymFBsQ5QCBBSLQBQBy07pNW/1FqP9D/Y+1aLjVtkyZ/mtFtAAAAAAAASH49HdLaF6X9cViCdH+t9NaT0vhLpaHj+388INECXgcAAKnuUIP03sL4JNmO6GiW3l8oHdwVv2MCALxXVlamBQsWqKyszOtQAAAeoS4AAPhNd5vVjhWPJNsRkW5p7WJp5/L4HRNIFBJtANAPrfukFc9K4c74HzvSI618TjrcGP9jAwC8UVRUpNmzZ6uoqMjrUAAAHqEuAAD4SbhLWv6M1NqUmONvXmKt9QYkMxJtAOBQJCyteSExSbaj5+iR1vxRCjuY1xoAkHwOHDigp556SgcOxHEYNAAgpVAXAAD8ZNNfrI7oibTxlcSfA+gPEm0A4ND2N6W2/fb2mXGTNOsW63esOg5JW/9m7zwAgOTU0NCge++9Vw0NDV6HAgDwCHUBAMAv9n0gNay3t4+TtjEzIq1/SYpG7Z0LcAuJNhc0NTVp/vz5GjNmjEKhkCoqKnTHHXeora1NX/nKV2QYhh599FGvwwRgQ2uTVLvM/n5ZeVKowPptR91Kay24VNbaKW1qkNbWSVv3SN1hryMCAAAAAACAE5GwtPFl+/s5bRs7vEeqW2H/fMmkJ2K1ia2ts9rIWjq8jgjxkuF1AH63cuVKXX755WpsbFReXp4mTJig3bt365FHHtEHH3xwdKqIadOmeRsoAFt2rZBkunzO5VLhle6eMx527pf+tklasUOKHNfzKCdLmjFK+niNVFLgXXwAAAAAAACwZ+9mqavV3XPuWi5VnCkZhrvn7a+DbdLrm6R3tkltXcf+HgxIUyqk88dKIwd7Fx/6jxFtCdTU1KSrrrpKjY2Nuuuuu9TQ0KDly5ersbFRCxYs0OLFi7Vs2TIZhqEpU6Z4HS6AGIW7pEabw+LjYc9mqbvN/fP2xxubpYdfkt7bfmKSTZI6uqW/bpQeeNHqxQMAAAAAAIDUULfS/XN2HJL2b3f/vP3xwV7p/helJRtOTLJJVlvZih3SD/8svbrBm/gQHyTaEuj2229XXV2dbrvtNj344IMqKDg2ZGP+/PmaOnWqwuGwqqqqNGDAAA8jBWDH3i1SpMf985oRac8m98/r1LvbpGeWnX7gX1dYevyvUm2TK2EBgKfy8vJ03nnnKS/P5jwpAADfoC4AAKS69oPSod3enNvumnBeqjsg/ferVmfz0/nDcqvDOlITibYE2bBhgxYuXKiSkhLdd999vW5z1llnSZKmTp160mu///3v9bGPfUx5eXkqLCzUeeedp3Xr1iU0ZgCxOdzo3bkPeXhuO7rC0nPvxb59T8Te9gCQqqqqqvT444+rqqrK61AAAB6hLgAApDov28YOp9CsSL9/32oji9UflkvtXaffDsmHRFuCPP3004pGo5ozZ47y8/N73SYnJ0fSyYm2Rx55RNddd51mzZqlRYsW6emnn9Yll1yijg5WRwSSweE93p27xcNz27G8Vuq0Oepv537rBwD8LBKJqLW1VZFIxOtQAAAeoS4AAKQ6LxNtHYeknk7vzh+rhmZr2kg7eiLSuyk2NSYsJNoSZMmSJZKkiy66qM9t6urqJJ2YaPvggw80b948Pfzww7r//vv1iU98QldccYX+5V/+RWeffXZigwYQkzYPpzhsOyCZ0dNv57V3P3B3PwBIFRs3btT06dO1ceNGr0MBAHiEugAAkOpaPe4o3ZYCHbWXbXO237sO94O3MrwOwK927NghSRoxYkSvr4fDYS1dulTSiYm2J554QpmZmfrqV78a13iqq6sVCJBXBeLhyW/U9fnajJukrFMstZCdd+z3rFv63q67TXr31728YEpjRteoq6c9tmA9csW331FuUZnt/X77hz/rG1f/XQIiAoDEmTt3bszbNjRY85y8+OKLWrFiRcz7PfnkkzajApLTE7fvUCAQVDQSUXl5789KQKqxUw9IzuoC6gEAQDL5zuefU03ZjF5fi1fbmNR3+9gN183R2h1/jTFab8y48VFVTvus7f221x1Uefnk+AeEXkWjx0Y0zJo1y9Zz+vFItCVIW1ubJPU53ePChQvV1NSkgoICjRw58ujf33zzTY0dO1a//vWvde+992rXrl2qrq7WP//zP+vGG290HM+RG3kAiZWVJ4UKTr+dEYhtu97s3r1bnd1tznZ2SSTsbBqczs5O1dfXxzkaAEis9vbYOz90dnYe/W1nP8pG+IUp8+hvrmv4hZ3yXHJWF/B9AQAkk+7u7j5fc6NtbH9TU9LXjU6XgYpGo0n/3vxqzx7na/aQaEuQoUOH6uDBg1q+fLlmzpx5wmsNDQ2aN2+eJGnKlCkyDOOE1+rr6/Xtb39bCxYsUEVFhX72s5/pC1/4ggYPHqxLLrnEUTzDhg1jRBsQJ53dbQr10TXndPmv7DzrRsKMSl2n2Lav40SjEZUMKZZpFsUWrEe6WveooKTS9n7RzgMqK7M/Eg4AvJSbmxvztqFQ6OhvO/tRNsIvDBlHf3Ndwy/slOeSs7qA7wsAIJmYgXCfr8WrbexUx8obkJP8dWNXs7PdWhqT/735SDQaPTpIqbS01PFxDNM0zXgFhWNuv/12/ehHP1JFRYVeeeUV1dTUSJKWLVumm2++Wdu2bVNPT49uvfVWPfroo0f3q6mp0ZYtW/T73/9en/3sZyVJpmlq2rRpKioq0l//GvuQ2La2NuXn50uSWltblZd3ijG7AGL27lPSYYeDRGfdYvXW6WyR3njM/v55g6SZX3Z2bje9tVVa+I79/b55mVQ5KP7xAEAi2VljZ926dbr22mv1zDPPaOLEiTHvN27cOCehAUnnlYckmZIM6ZK7vI4GiA+7a605qQuoBwAAyWTzq9LO953t29+2MUm64DYpM+RsX7c0NEsLFtvf77NnSRdS7bsmXjkUhjglyPz58zVo0CDt2rVLEydO1OTJk1VdXa0ZM2Zo1KhRuvjiiyWduD6bJBUXF0vSCSPXDMPQJZdcorVr17r3BgD0aYDzzg39VuDhue04s0oKZdrbp3IQSTYA/ldTU6OlS5ce7YQFAEg/1AUAgFQ3YKh3584pTP4kmyQNK5JGD7G3T2ZQmjHy9Nsh+ZBoS5Dy8nK9/vrruvLKKxUKhVRbW6vi4mI99thjWrx4sTZv3izp5ETbqXqzHZnHHYC3vLyZKPTw3HZkZ0hXnx379plBe9sDQKrKzMxUcXGxMjNt9kYAAPgGdQEAINV52TY2YJh357br6rOtNrJYffZMKTc7cfEgcUi0JdD48eP1wgsvqKWlRS0tLXrnnXf0ta99TW1tbaqtrVUgENCkSZNO2Oczn/mMJOnPf/7z0b9Fo1G9/PLLmj59uqvxA+jdkGop6MEzsRGUSlNo6PiMUdK10yXjNNtlZ0h/f4FUVeJKWADgqZ07d+rrX/+6du7c6XUoAACPUBcAAFJd7kCpcLg35x42wZvzOlE2UPraRVJO1um3/cyZ0nkMdk9ZNvKpiJd169bJNE3V1NSctPDxVVddpY9//OP62te+pv3796uyslKPP/641q1bp5dfftmjiAEcLyNbGjpBql/l7nlLx0pZ9tZZ99ysGms6yNc3SSt2SOHosddysqRzRlnblBR4FyMAuKmlpUWvvvqqbr31Vq9DAQB4hLoAAOAH5dOkQ7vdPWdOoTQoxaZWHD1Emn+F9Ppm6Z0PpLauE18/c4T08bHSyMHexIf4YESbB9asWSPp5GkjJWs9tkWLFumaa67Rd77zHc2ePVs7duzQiy++eHRdNwDeqzhDpx+qlYhzpqDKQdKcj0nf+9yJf/+Xz1kLvJJkAwAAAAAASC1DaqTsfHfPWXGmZLjcHhcPA/Ok2WdYbWP/cMmJr31xFkk2PyDR5oFTJdokqaioSI899pj27dunrq4uvfvuu/rUpz7lZogATiO/RKpycTbX8jOkwhSag7o3+aFjuUlDUhZjqgEAAAAAAFJSMEMad6l75xsw1GofS2WZQWl06YntY/AHEm0eOF2iDUBqGPUxKW+QvX2626TOFut3rHIKpeqP2zsPAAAAAAAAkEiDR9tfM81J25gRlCZcJgXIZiBJMZ7AA0uWLPE6BABxEMiQJl8lvfc/Urgztn3e/bW9cwQzrXMEY1g0FQCQ/EpLS3X33XertLTU61AAAB6hLgAA+MnYT0gtTVLr3ti2t9s2JknjLrFmlwKSFTlgAOiH/BLpjGukjFD8jx3MlKZdbQ2NBwD4Q0lJiebOnauSEp4SASBdURcAAPwkI1s685rEJcJqLpbKJifm2EC8kGgDgH4qHCadfb2UWxy/Y+YUSWddLw2siN8xAQDeO3TokF566SUdOnTI61AAAB6hLgAA+E1WntWONWhk/I4ZzJImXSlVnhm/YwKJQqINAOIgf7B0zhelEdPV75VMK86Uzv0iI9kAwI/q6up05513qq6uzutQAAAeoS4AAPhRZo41M9OET/V/CZRBVdLMudLQ8fGIDEg81mgDgDgJZkjVF1iLwO5aITWsl6Lh2PYNZEilY60k2wCWagAAAAAAAECKMQxp+GRrZFvdKql+tdTdFvv+g6qk8jOkklHWsYBUQaINAOIsf7A0/pPSmPOlvZulw43S4T1SW5MUjVjbGAEpr8RKqg0YKg2pkbJyvI0bAAAAAAAA6K/sfGn0edLIc6WmD6TmeqttrGWvFOk+tl1OkdU2VlAqDamWcgd6FjLQLyTaACBBMkNS2RTr54hoVJIpBYKehQUAAAAAAAAkXCBodS4fUnPsb2bU+jGCjFqDf5BoAwAXBVgZEwDSWigU0vjx4xUKhbwOBQDgEeoCAEA6MwLWD+AnJNoAAAAAl4wePVrPPfec12EAADxEXQAAAOAv5I4BAAAAAAAAAAAAB0i0AQAAAC5Zv369pkyZovXr13sdCgDAI9QFAAAA/kKiDQAAAHCJaZrq6emRaZpehwIA8Ah1AQAAgL+QaAMAAAAAAAAAAAAcINEGAAAAAAAAAAAAOECiDQAAAAAAAAAAAHAgw+sAAAAAgHQxevRoLVq0SBUVFV6HAgDwCHUBAACAv5BoAwAAAFwSCoVUXV3tdRgAAA9RFwAAAPgLU0cCAAAALqmvr9c999yj+vp6r0MBAHiEugAAAMBfSLQBAAAALmlubtazzz6r5uZmr0MBAHiEugAAAMBfSLQBAAAAAAAAAAAADpBoAwAAAAAAAAAAABwg0QYAAAAAAAAAAAA4QKINAAAAcEkgEND06dMVCHAbDgDpiroAAADAX7irAwAAAFwSjUa1bNkyRaNRr0MBAHiEugAAAMBfSLQBAAAAAAAAAAAADpBoAwAAAAAAAAAAABwg0QYAAAAAAAAAAAA4QKINAAAAcElhYaGuuuoqFRYWeh0KAMAj1AUAAAD+kuF1AAAAAEC6KC8v1/333+91GAAAD1EXAAAA+Asj2gAAAACXdHV1aceOHerq6vI6FACAR6gLAAAA/IVEGwAAAOCSrVu36rLLLtPWrVu9DgUA4BHqAgAAAH9h6kgAAAAAJzFNqTvidRT2ZAUlw4jPsUzTVHs0tT6A3EBQRrw+AKT9NZDuZQAAAAAQKxJtAAAAAE7SHZHuXuh1FPYsuF7KjtMTTns0ooFLXo7PwVxy8OJLlRfkES9e0v0aSPcyAAAAAIgVU0cCAAAAAAAAAAAADpBoAwAAAAAAAAAAABxgUgUAAADAJRMnTtSGDRu8DgMA4CHqAgAAAH9hRBsAAAAAAAAAAADgAIk2AAAAwCXbt2/XDTfcoO3bt3sdCgDAI9QFAAAA/kKiDQAAAHBJe3u7Vq1apfb2dq9DAQB4hLoAAADAX0i0AQAAAAAAAAAAAA6QaAMAAAAAAAAAAAAcINEGAAAAAAAAAAAAOECiDQAAAHBJWVmZFixYoLKyMq9DAQB4hLoAAADAXzK8DgAAAABIF0VFRZo9e7bXYQAAPERdAAAA4C+MaAMAAABccuDAAT311FM6cOCA16EAADxCXQAAAOAvJNoAAAAAlzQ0NOjee+9VQ0OD16EAADxCXQAAAOAvJNpc0NTUpPnz52vMmDEKhUKqqKjQHXfcoba2Nn3lK1+RYRh69NFHvQ4TAAAAAAAAAAAANpBoS7CVK1dq8uTJeuCBB9TY2KgJEyaop6dHjzzyiK6//npt2LBBkjRt2jRvAwWABDFNaUuj9PPXJfPI3yT99l1p90EvIwMAuKFu/Wv64U2G3l/8YJ/b/PAmQ3948NMuRuWeyBNPqueTVyj60p9Pes00TYW/dbd6rpwtc3ut+8G5xDSlg3XSmhd0ws3A+v+VDu/xMjJ3pPs1kO5lAAAAgCQ1HpKeXSb92x9ObB/b2CBFzVPtiVSQ4XUAftbU1KSrrrpKjY2Nuuuuu/Td735XBQUFkqT7779fd999tzIyMmQYhqZMmeJxtAAQf/tbpSf+JtX3klB7c4v1M7FMuvk8KZTpfnwAACRa4OY5ir79jiKP/VTGWWfKGFxy9LXoc8/LXL1Ggb+bK2NklXdBJlBni7T6D9LhxpNf273G+ikeIU3+tJSZ4358bkj3awAAACCddYWl37wlrdrZ++v/tUQaWij93fnSkAHuxob4YURbAt1+++2qq6vTbbfdpgcffPBokk2S5s+fr6lTpyocDquqqkoDBvAtAuAv+1ulH/5v70m2462rl378itTV405cAOClvLw8nXfeecrLy/M6FLjEyMxUxry7pM5ORX7wH0f/bu6qU/TJX8oYN1aBz1/jXYAJ1Nkivfeb3pNsxzuwQ3pvodTT6U5cbkvnawC9oy4AACA9dIetRFpfSbYjGg9JP/yztOewO3Eh/ki0JciGDRu0cOFClZSU6L777ut1m7POOkuSNHXq1KN/u/DCC2UYRq8//+f//B9XYgeA/jJNa6rIwzE2mO06IP3+/cTGBADJoKqqSo8//riqqqq8DgUuMqrHKHDDdTLfX67o4j/JjEQUuf9ByTQVnHeXjGDQ6xATYu1iK9kWi7YmaePLiY3HS+l6DaB31AUAAKSHP66Utu+Lbdu2Lulnf2UayVTF1JEJ8vTTTysajWrOnDnKz8/vdZucHGtulOMTbT/5yU90+PCJqevFixfr3nvv1ac/zZz1AFLDtn1S3QF7+yzbLn16mpQfSkhIAJAUIpGIOjo6lJOTo2CaNayHu9vV0dLkdRieCcy5UdG33lHkp48r8ME2mZs2K/C1v5dRUe51aAlxeI/UXGdvn72brcRcqOD026aidLsGPirdy4DjpXNdAABAuujolt75wN4+ew9Lmxqk8cMTExMSh0RbgixZskSSdNFFF/W5TV2d9eR5fKJtwoQJJ233//7f/9PgwYN12WWXxTlKAEiMNzbb3ycStW5APjEx/vEAQLLYuHGjrr32Wj3zzDOaODG9Cry3n/2u3n72u16H4RkjI0MZ876p8D98Q9EXFsuYNFGBqz/rdVgJU7fS/j6mKdWvlkafF/dwkkK6XQMfle5lwPHSuS4AACBdvLfdmjrSrqVbSLSlIhJtCbJjxw5J0ogRI3p9PRwOa+nSpZJOTLR91L59+/TSSy/p61//ujIynP9zVVdXKxBgplAA7rhs3hvKL6myvd9//vIFfekppskFkFrmzp0b87YNDQ2SpBdffFErVqyIeb8nn3zSZlT9F8zM0efu3RK340266GuqPufzvb72++9fGpdz1FRXK9LTEZdjmVlZ0mM/jsuxjsrLkzIzpXBYxvSzZcT5/rymukZGd3dcj+nUv875X1UOtp9AeP43S/Tw9V9MQET2pfs1kO5lgB126gHJWV3gRT0AAACcO/u6h1V1Vu/3PqeybH2jvjfn7AREhN5Eo9Gj/z1r1ixbz+nHI9GWIG1tbZKkjo7eb/IXLlyopqYmFRQUaOTIkX0e5+mnn1Y4HNbNN9/cr3iO3MgDgCuCWY52C0cDqq+vj3MwAJBY7e3tMW/b2dl59Led/bwoGzOyc+N6vKKh1aqcdElcj/lRuxt2K9wV++d6SqFsZcbnSJIk0zQVeehhKdwjVVYo+pv/UeCC82UMHxa3c+xu2C11dsXteP0RlLN7AcPMSJ57gTS/BtK+DLDBTnkuOasLkuZ7AQAAYjLVwWg2SQpk5FDve2TPnj2O9yXRliBDhw7VwYMHtXz5cs2cOfOE1xoaGjRv3jxJ0pQpU2QYRp/H+dWvfqXx48fr7LP7l8UeNmwYI9oAuCba0+Zov4DZrbKysjhHAwCJlZsbe2N0KBQ6+tvOfl6UjcHMHNfP2V/Dhw2P64i2GNctj0n0+UUyV61W4MtfUmDmuQrf+g+KPPSwgg8uOOXzgB3Dhw1PmhFtXRFn9wIRszNp7gXS/RpI9zLADjvlueSsLkiW7wUAAIhNhuEs0xbuaqHed1E0Gj06SKm0tNTxcUi0Jcgll1yiDRs2aMGCBbr00ktVU1MjSVq2bJluvvlmNTVZi0BPmzatz2Ns3LhR7733nv793/+93/Fs2bJFeXl5/T4OAMTi9+9Lf91of79vf/2zmv7gZ+MeDwAk0saNsRd469at0xNPPKErrrjC1ro89957r5PQ+qUrLN290PXT9svmLVuUHacnnLZIWAOXvByXY5n19Yo+8aSMsTUKXHetjGBQgZvmKPrzXyj6/CIFP/eZuJxn85bNygsmxyPeB29I29+2v9+Nt3xS8/6zLv4BOZDu10C6lwF22KkHJGd1gRf1AAAAcG7VTunnr9vf79Lp5fppXXLcD6eDtrY25efnS5LeeOMNx8dhiFOCzJ8/X4MGDdKuXbs0ceJETZ48WdXV1ZoxY4ZGjRqliy++WNKp12f71a9+JcMwNGfOHLfCBoC4mFVtf5+8bGla78taAoBv1NTUaOnSpUc7YcH/zGhUkQd+IEWjCs77poxgUJKsZEtNtaJPPClzt/+meS+bKtkdpBXMkoZOSEw8XkrXawB9oy4AAMD/JpVLhQ4mCDiP24OURKItQcrLy/X666/ryiuvVCgUUm1trYqLi/XYY49p8eLF2rx5s6S+E22maeqpp57ShRdeqMrKSjdDB4B+GzxAOsNm0uyi8VJmMDHxAECyyMzMVHFxsTIz47nyE5JZ9JnnZK7foMCXbpJx3H29EQwq+K1vStGIIg89LNM0PYwy/kIF0rBJ9vapPFPKcLa0W1JL12sAfaMuAADA/4IB6ZLYJzGRJE0sk8oGJiYeJBaJtgQaP368XnjhBbW0tKilpUXvvPOOvva1r6mtrU21tbUKBAKaNKn3p8+//e1v2rFjh26++WaXowaA+LjxXGnU4Ni2PXe09Akf9mAHgI/auXOnvv71r2vnzp1ehwIXmDt3KvqLX8kYP06Ba64+6XWjaoQCN82RuWatos8v8iDCxBr3Cak4xo43peOkUeclNh4vpPs1gN5RFwAAkB5m1Ujnj41t28pB0s0+vB9OF8kxgX+aWbdunUzTVE1NTZ8LH//qV79STk6Orr32WpejA4D4yMqQ/u8npEUrpHe2St2Rk7fJD0kXj7dGs9mdXgoAUlFLS4teffVV3XrrrV6H4pryCRfqjl+feqTO6V5PVUZlpTIX/+GU2wRvvF7BG693KSJ3BTKkaVdLW1+X6ldLke6Tt8nMkSrOlEae6897gXS/BqT0LgP6ko51AQAA6cgwpM+dJZUUSK+skw53nLxNRlCaPlL67FnyZK1ZxAf/dB5Ys2aNpL6njezs7NQzzzyjz372syooKHAzNACIq8ygdM3Z0hVTpGXbpR1NUndYCmVJ44ZJUyusGwoAAOBPgaBUc6E06mNS43qpebeVcMvIska7DRkrBXkqBQAAgE8ZhjWq7bxqaU2dtL5e6ui2OqhXFEvTR0l52V5Hif7ikcYDp0u0hUIhNTc3uxgRACRWTtaHQ+VjHC4PAAD8JSNLKp9m/QAAAADpJhiQplVaP/Af1mjzwOkSbQAAAAAAAAAAAEh+jGjzwJIlS7wOAQAAAB4oLS3V3XffrdLSUq9DAQB4hLoAAADAX0i0AQAAAC4pKSnR3LlzvQ4DAOAh6gIAAAB/YepIAAAAwCWHDh3SSy+9pEOHDnkdCgDAI9QFAAAA/kKiDQAAAHBJXV2d7rzzTtXV1XkdCgDAI9QFAAAA/kKiDQAAAAAAAAAAAHCARBsAAAAAAAAAAADgAIk2AAAAAAAAAAAAwAESbQAAAIBLQqGQxo8fr1Ao5HUoAACPUBcAAAD4S4bXAQAAAADpYvTo0Xruuee8DgMA4CHqAgAAAH9hRBsAAAAAAAAAAADgAIk2AAAAwCXr16/XlClTtH79eq9DAQB4hLoAAADAX0i0AQAAAC4xTVM9PT0yTdPrUAAAHqEuAAAA8BfWaAMAAABwkqygtOB6r6OwJysYv2PlBoI6ePGl8TugC3IDcfwAkPbXQLqXAQAAAECsSLQBAAAAOIlhSNlp/LRgGIbygmn8ASDtr4F0LwMAAACAWDF1JAAAAAAAAAAAAOAA/dMAAAAAl4wePVqLFi1SRUWF16EAADxCXQAAAOAvJNoAAAAAl4RCIVVXV3sdBgDAQ9QFAAAA/sLUkQAAAIBL6uvrdc8996i+vt7rUAAAHqEuAAAA8BcSbQAAAIBLmpub9eyzz6q5udnrUAAAHqEuAAAA8BcSbQAAAAAAAAAAAIADJNoAAAAAAAAAAAAAB0i0AQAAAAAAAAAAAA6QaAMAAABcUlJSoq9+9asqKSnxOhQAgEeoCwAAAPzFME3T9DoIJEZbW5vy8/MlSa2trcrLy/M4IgAAAAAAAAAAAO/FK4fCiDYAAAAAAAAAAADAARJtAAAAAAAAAAAAgAMk2gAAAAAAAAAAAAAHSLQBAAAAAAAAAAAADpBoAwAAAAAAAAAAABwg0QYAAAAAAAAAAAA4QKINAAAAAAAAAAAAcIBEGwAAAAAAAAAAAOAAiTYAAAAAAAAAAADAARJtAAAAAAAAAAAAgAMk2gAAAAAAAAAAAAAHSLQBAAAAAAAAAAAADpBogyQpGo3qX//1XzVmzBjl5OSosrJSt99+u9ra2rwODQAAAAAAAAAAIClleB0AksNDDz2kBx98UD//+c911llnadOmTfryl7+srq4uPfbYY16HBwAAAAAAAAAAkHRItEGStHTpUl166aW65pprJElVVVW68cYbtWTJEo8jAwAAAAAAAAAASE5MHQlJ0qxZs7R06VKtXr1akrRt2za9+OKLuvLKKz2ODAAAAAAAAAAAIDkxog2SpLvuukudnZ0688wzZRiGwuGwvvrVr+rf/u3fvA4NAAAAAAAAAAAgKTGiDZKkZ555Rj/5yU/085//XMuXL9fvfvc7/elPf9I999zjdWgAAAAAAAAA/n/2/jy+ivru//+fc042CGEJa0iAsASBsLmAG2rhI9YNtO5eaN16aatW21Kh13XZq+319XdZFGtrtVet1uLVWksr1g31qi1qEatFdkjYAyEhCQlJIPtyzvz+GAnEBMgZzpnJmXncb7fc0DPLeZ2TybyX17zfbwBAt2SYpmm6HQRio66uTr169ZIk1dbWKjU19bj7Dh8+XPfdd58WLlzY9tpvf/tb3XnnnaqpqVFKSkrM4wUAAAAAAAAAAHBCJDmUE2FEGyRZF1Qg0P5yCAaDMk1T5GIBAAAAAAAAAAA6Yo02SJKuvvpqLV68WGPGjNHpp5+ubdu26eGHH9Zll12mHj16uB0eAAAAAAAAAABAt0OiDZKkp556Sunp6Zo/f77279+vQYMG6corr9QjjzzidmgAAAAAAAAAAADdEmu0eVi05hc91pHLxTCMUz4XAAAAAAAAAACAG1ijDa7Ysn2PnlryqrbuKnQ7FAAAAAAAAAAAAFeRaEOXhU1Tf121RiUHDqpw/wG3wwEAAAAAAAAAAHCVZxJthmG0TWf45ptv6oILLlDv3r01YMAAXXfdddq1a1fbvm+99ZYuuugi9e3bV71799ZVV12lHTt2HPfcTU1N+tnPfqbzzjtPffv2VUpKik477TQ99NBDqqio6PSYTz/9VAsXLtS0adM0ZMgQJScnKzMzUzfccINWr1593Pd6++23dfnll2vQoEFKTExU//79NX78eN15551atWqVzW8nOvK271FpeaWSkxI146yJrsYCAAAAAAAAAADgNs+s0XYkyfb000/r/vvv19ChQzV48GBt3bpVDQ0NyszM1Lp16/TSSy/p29/+tjIyMjRkyJC27UOGDNHGjRs1cODAductKyvTZZddpnXr1ikQCGjYsGHq3bu3tm/frqamJg0fPlzvv/++Ro0a1e64MWPGaNeuXUpPT1dGRoaSkpJUWFiogwcPKiEhQX/4wx907bXXtjvmF7/4he677z5JUv/+/TVixAg1NDRo3759qq2t1T333KNf/vKXXf5OorlGW9g09dRvlqm0vFKzzjtDl1xwlu1zAQAAAAAAAAAAuIk12o5jwYIFevHFF1VcXKy1a9eqqKhI06ZNU3Fxse688079+7//u1588UXt379fa9eu1b59+3TmmWeqtLRUTzzxRLtzmaapG2+8UevWrdMVV1yhXbt2ac+ePdq4caMqKip05513qrCwULfcckuHOP7zP/9TO3bs0MGDB7V582atXbtWBw4c0KuvvqqUlBR97WtfU21tbdv+ra2tevjhhyVZCbeysjKtWbNGeXl5Onz4sD788EN9+ctfju2XdwKMZgMAAAAAAAAAAGjPcyPavvnNb+qpp55qt+3dd9/VZZdddtzt77zzji6//HJNnjxZGzZsaHv97bff1hVXXKGJEydq9erVSklJaXdcKBTS9OnTtXbtWn300Uc6//zzuxTr97//fT3yyCN6+eWXddNNN0mSSktLlZGRoX79+qmysjKyD38cx2Zjf/DE80pKTjnJEcdXW1+vcNhUclKikpOSohIfAAAAAAAAAACAG5qbGvWj+V+TJD3+7Ev67t3/Yus8CdEMqjv42te+1uG1M844o0vbd+/e3e71ZcuWSZJuu+22Dkk2SQoGg5o7d67Wrl2rDz74oEOibceOHfrDH/6gDRs26ODBg2ppaZEkHThwQJK0fv36tkTbwIEDlZKSourqar333nuaPXt2lz9zVxyuq1dSS+iUz9PU3KKm5pYoRAQAAAAAAAAAAOCO5uamtv+urW2wfR7PJdpGjx7d4bVj113rbPugQYMkqd1UjpK0ceNGSdJvfvMbvfbaa52+X1lZmSSpuLi43etPPPGEvve976m1tfW4sR48eLDtv4PBoB588EEtWrRIl1xyic444wxdfPHFmjFjhi666CL17t37uOfpit6pPW2PaGM0GwAAAAAAAAAA8JLmpmDbf/fq1cP2eTw3deTxPo6d7Tk5Odq5c2eX3v+2227TkiVLJEmrVq3SjBkzFAwG9aMf/UhXXXWVsrOzlZqaKsMw9MILL+iuu+5qd4wkhcNh/eIXv9AzzzyjrVu3tr2enJysf/mXf9HixYuVnp7epXik6Czkt3lbgX732ntKTkrUwq/frJ497E8/CQAAAAAAAAAA0B1EI4cikWg74fbTTz9d69ev1xtvvKE5c+Z0OZavf/3revbZZ7VgwQItWrSow/bHH39cCxYs6JBoO1ZRUZFWrlyp9957T3/84x9VV1eniy++WO+9916X4zBNU/X19fqfl15XU3O47TNGgtFsAAAAAAAAAADAa0zTVMvn00emp/fVA7dfa+s8nps6Mppyc3O1fv16bd68OaJEW0FBgSRpxowZnW7/5JNPTnqOrKws3Xzzzbr55ps1f/58TZo0SX/9619VUFCgkSNHdikOwzCUmpqq5hZTNXX1XY6/M6zNBgAAAAAAAAAAvKi2rtH2sSTaTuC6667TSy+9pF/96lf65je/2TaE8GR69LDm8iwtLe2wbceOHXrrrbciiiM3N1d9+vRRdXW19u/f3+VE2xFpNucWZTQbAAAAAAAAAADwOrt5FIlE2wldddVVuuiii/Thhx/qkksu0a9+9StNnDixbXs4HNann36qF198UQsWLNCoUaMkSRdccIFef/11Pfroo5o1a5ZGjx4tSdqyZYuuvfZaBQKBDu+Vl5enJ598UnfddZfOPvvstmkeQ6GQfv7zn6u6ulopKSnKzc2N+HN887ZrIj6GtdkAAAAAAAAAAABOjDXaTrK9oqJCV111lT7++GNJ0ogRIzRkyBA1NDRo165dqqurkyTl5+dr3LhxkqSamhqdccYZ2rlzpxITE3XaaacpHA4rPz9fGRkZuvfee/Xwww+3W6Nt/fr1Ov300yVJaWlpGj16tILBoPbs2aODBw9Kkn7xi1/oG9/4hq3vJxJh09RTv1mm0vJKzTrvDF1ywVkxf08AAAAAAAAAAIB403FoFdoZMGCAPvzwQy1ZskSzZ89WXV2dPvvsMxUUFGjMmDF68MEH9eGHH2rs2LFtx6Slpemjjz7SnXfeqX79+mnbtm2qra3VPffco7Vr1yozM7PD+4wdO1bPP/+8brzxRmVkZGj37t3asGGDUlJSdP3112vlypWOJNkkaX9ZhQ5UVCk5KVEzzpp48gMAAAAAAAAAAAB8yDMj2hBdB6sOq7S8Urljs90OBQAAAAAAAAAAoFsi0QYAAAAAAAAAAADYwNSRAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGBDgtsBAEA827p1a0T7HzhwQH/84x91ww03aNCgQV0+bty4cZGGBgAAAAAAAMRcJP1j9I3BixjRBgAOKi8v1zPPPKPy8nK3QwEAAAAAAAAcRd8YvIhEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gDAQX369NGcOXPUp08ft0MBAAAAAAAAHEXfGLzIME3TdDsIAIhXW7dudeR9xo0b58j7AAAAAAAAAJFwon+MvjF0Z4xoAwAHNTU1ae/evWpqanI7FACAy773ve/pvPPO06BBg5ScnKxhw4bpyiuv1AcffOB2aAAAAAAQE/SNwYtItAGAg3bu3KlLL71UO3fudDsUAIDLPvnkE02ePFkLFy7U//zP/+gb3/iGdu/erZkzZ+q3v/2t2+EBAAAAQNTRNwYvSnA7AAAAAMCPOhu59sADD2j06NF69NFHdeuttzofFAAAAAAAiAiJNgBAB6YpNYfcjiIySUHJMKJ3PtM0VR+Ory+hZyAoI5pfgs/F2zUQ7d8/9wF79uzZo/nz5+u9996TJM2cOVM//elPNXPmTGVnZ590WshevXqpf//+qqqqciBaAAAAAMDx+L1dHG/9IpJ7fWMk2gAAHTSHpIVL3Y4iMotulJKjWKrVh0Pqt+K96J3QAVWzZis1SNEeLfF2DUT79899IHIHDx7UBRdcoLKyMn3961/X+PHjtXLlSs2cOVN1dXXHPa6iokLhcFglJSV67rnnlJ+frzvvvNPByAEAAAAAX+T3dnG89YtI7vWN0RsHAAAARMGiRYtUVFSk3/3ud5o3b54k6Rvf+IYWLFigxx9/vNNjamtrNXDgwLb/79Gjh+6++2795Cc/cSRmAAAAAABwaki0AYCDcnNzlZ+f73YYAIAYePPNN5WRkaGbb7653evf/e53j5to69Gjh9577z21trZq7969eumll1RbW6v6+nqlpqY6ETYAAAAAOIa+MXgRiTYAAAAgCgoKCjR9+nQFAoF2rw8aNEh9+/bt9JhgMKiLL7647f+/9rWv6Utf+pJmzZqltWvXKjExMZYhAwAAAACAUxQ4+S4AgGgpKCjQTTfdpIKCArdDAQB0Q8FgUPPmzdPmzZv197//3e1wAAAAACCq6BuDF5FoAwAH1dfXa8OGDaqvr3c7FABAlGVnZ2vnzp0Kh8PtXj9w4ICqq6u7fJ6GhgZJUmVlZTTDAwAAAADX0TcGLyLRBgAAAETBnDlzVFJSopdffrnd64sXL+6wb1VVlZqbmzu8XldXp1//+tcKBAKaPn16zGIFAAAAAADRwRptAAAAQBQsXLhQv//973XHHXfon//8p8aNG6eVK1fq448/1oABA2QYRtu+H374oe655x5de+21GjNmjNLS0lRQUKDf/va3Kioq0g9+8AONGDHCxU8DAAAAAAC6gkQbAAAAEAUDBgzQRx99pPnz5+uFF16QYRiaOXOm3n//fU2bNk09evRo23fSpEmaM2eOPvjgA7300kuqr69X//79NW3aNP3yl7/UFVdc4eInAQAAAAAAXUWiDQAclJmZqUWLFikzM9PtUAAAMTBy5Ei9+uqr7V47ePCgDh48qOHDh7e9Nnr0aD3//PNOhwcAAAAArqJvDF5Eog0AHNS3b1/NnTvX7TAAADHS0NDQbuSaJP34xz+WJM2ePduNkAAAAACg26BvDF5Eog0AHFRZWal33nlHl112mdLT090OBwAQZZdffrlGjBihM844Q+FwWH/729/01ltv6bzzztPVV1/tdngAAAAA4Cr6xuBFJNoAwEElJSV65JFHNHXqVCoTAOARW7dubfvv6dOn6/XXX9eyZcvU1NSkwYMH64477tB9992nHTt26MCBA/rjH/+oG264QYMGDerye4wbNy4WoQMAAACAo+gbgxeRaAMAAACi5I477tAdd9xx3O3l5eV65plnNHPmzIgSbQAAAAAAoHsKuB2AH1RUVGjBggUaM2aMUlJSNGzYMD344IOqq6vTXXfdJcMw9PTTT7sdJhAzrU1S4Vpp3SvSP38nrVkq7fhAqq9yOzLEWlHeB/rZLYbWLF983H1+douh1xdf6WBUzgq9sEQtl1yu8Lt/6bDNNE21fnehWq6YK7Ngj/PBOcQ0pUMlUt7/SZ/9QfrnS9L6P0ul+VK41e3oYs/v1wD3AUhSa7NUtP5oXeCzP0jbVkh1B92ODIBTDpdJ+e8dUxd4Vdq/RQr5oC4AyQxLFbukTW9Kq38vrX5Z2vSWdHCPVVeE94WapeKN0rplR+sCW/8m1Za7HRngjHBIKtsmbXhNWv2S9NnL0pZ3pOpi7oN+4Pd2sR/6RRjRFmPr16/XZZddptLSUqWmpmrChAnav3+/nnrqKe3atUuVlZWSpKlTp7obKBADZljatUoqXNOxM71qn7T3M2nAKGnCpVJST3diBGItcOs8hT/5VKFnn5Nx5hkyBg5o2xZ+9TWZGzcpcOftMkZmuxdkDNVWSHnvWJ1rX1Sxy/rbH32BlDnJ+dic4vdrAP5mmlLBP6S9q6VQS/tt1UXSvrVSeraUe6mU3MuVEAHEWF2llPeudGh/x20Vu60H8EadJw073fHQ4JCK3dLWv0qNh9u/fkhS2VapZz9p3Gwpfbgr4SHGTNOqB+z51HoI91jVRVLROqnfMCn3MimltzsxArFWkift+FBqrmv/enWxVLJF6jXQ6hvrPdid+IBY80O/CCPaYqiiokJz5sxRaWmp5s+fr5KSEq1du1alpaVatGiRli9frtWrV8swDE2ePNntcIGoMk1p89tWZfpEI1YqdltPNDbVHX8fL0lNTdX555+v1NRUt0OBQ4zERCU8NF9qbFToJz9te93cV6Twkv+VMe40Ba6/1r0AY+hwmfWUXmdJtiOa66X8/7PuFV7l52sA/maaUv5fpN0fd0yyHatyj/VU7xc7YAHEv9oK6bPfd55kO6KlQdr2N2nXR87FBeeUbrVmMjjRPb6+yhrxXL7LubjgDNOUtr8v7fx7xyTbsar2WSNd66sdCw1wTOFaacvbHZNsx6otl9b8wUq8+QF9Y/7jh34REm0x9MADD6ioqEj333+/Fi9erLS0tLZtCxYs0JQpU9Ta2qrs7Gz17s1jO/CWPZ9aTyd2RUO1tPF1fwyVz87O1vPPP6/s7Gy3Q4GDjJwxCtx0g8w1axVe/o7MUEihxxZLpqngQ/NlBINuhxh1rU3WlFAnalAfa+dKa4SbV/nxGkDn+vTpozlz5qhPnz5uhxJz+9ZK+zd1bd/GGmn9a/6oCwB+EWqR1i+TWhq7tn/BJ11vPyA+1JRb06KpC/d2M2xNK8nyAt6yf7NVH+iK5jqr/RAOxzYmwEmVhdL2FV3bN9Qibfiz9TCq19E35k9e7xch0RYj+fn5Wrp0qQYMGKBHH320033OPPNMSdKUKVPavV5QUKC5c+cqLS1N/fr101e/+lUdPMgCFogf4VZrushIHNp/4iddvSIUCqm2tlahUMjtUBzV2lyvhpqKTn/8IjDvZmnUKIWee17hZ34pc9t2BW7/qoxhWW6HFhMleSd+Yq8ze1bHJpbuwm/XwBdxH7BkZWXpscceU1aWt3/v4bA1RXQkag9IlXtjEw8A55Vts5Lokdjr8bqA3+xbI5kRNHvCrdZ6nvAG05T2/jOyY+orvf3wHfwn0nKtpdFKUHudX/vGJNrFXu4XYY22GHn55ZcVDoc1b9489erV+YITPXr0kNQ+0VZTU6OZM2cqPT1dL7/8shoaGrRgwQJdeeWVWrVqlQIBcqPo/sq2W1PARKpovdQ3M+rhdCtbt27Vddddp1deeUW5ubluh+OYT5b9QJ8s+4HbYbjKSEhQwkPfUes3v6XwW8tlTMxV4Jqr3Q4rJkzTXidJdZE1xVSvASffNx756RroDPcBS1NTk0pLSzVkyBAlJye7HU7MVOyWmiLsYJese0f/7GhHA8ANduoCh8ukQyVSn4yohwOHtTRKpfmRH7d/szR6hhRMjH5McFZlob0RikXrpUE5UQ8HcFx9tXSwIPLjijdII6ZJhhH1kLoNv/aNSbSLvdwvQqItRlassMYFz5w587j7FBUVSWqfaPvVr36l4uJi/f3vf9fw4dZKwFlZWTrvvPP0xhtv6Oqrr+5yDKZpqr7eGm/cs2dPGV6+Q6NbqSq0d1ylzePQ/U2cebdyzr6+021//vFsh6NxUWqqlJgotbbKmHaWDI8+PNFcL9XZHIhdVejdRJsk31wDneE+YNm5c6cvGpXUBQB/a22WDpfaO7aqkESbFxzaL4VtDFRobZJqDnj/AUw/sFsXqCq0HtyjCwvxrmqfveMaDkmNh6QefaMaDroJ2sXqdv0i0cqhkGiLkb17rXlvRowY0en21tZWrVq1SlL7RNtbb72lGTNmtCXZJOncc8/VqFGj9Oabb0aUaKuvr28bTZeRkcFoODjmG5f/QmePnRvxcYeqapWVNS4GEcXO7bffHtH+JSUlkqS3335b69at6/JxS5Ysieh9TlUwsYe+8siOqJ2v75AcDZ94cdTO15mxOTkK2RlKeRxmUpL07DPRO59pKvTEk1JrizR8mMK//4MCF10oY2j0epLG5oyV0dwctfPZNbDPCD1+xypbxz7y/z2q5auj972fini7BqL9++c+0HWRlAXxUg6cqjtnL9aFuTdFfFxLU1hZWcNPviOAbq1Pz4H62d1dv8cd68knntKyjx+LckRw2rScK3TfFc/aOvamG+Zp894PoxwRnDbvov/S7NPvjPg405RGjxyj5tYuLvAIdFMXT71Tt3zpv2wdO+tLs7WvwsawYBd5tU3k93ZxvPWLSJH3jYTD4bZrcurUqRFdk8ci0RYjdXXWwjQNDZ1f1EuXLlVFRYXS0tI0cuTIttfz8vJ0/fUds9q5ubnKy8uzHc+RiwVwQmV1ua3j6hsOq7i4OMrRxNaRJx66qrGxse3fSI51+ntJSO7p6PtFw/6S/WptiuKqwSnJiuaMNeHX3pC5YaMCd9ymwLnnqPW+byr0xJMKLl4UtRHH+0v2S41NUTnXqag71CLJqkBF+tnKDhR3n/tAnF0D0f79cx/oukju5/FSDpyqg1UHbB3X0FQbd58VQEcHk6ptH1tWsZ/7gAcM7WV/iPK+4gKuAQ+oqLQ3rDUUDqlgLwu1If6VDi2yfeyefbtUWhlf90Gvtol83y6Os34R6dT6RsrKymy/L4m2GBkyZIiqqqq0du1anXvuue22lZSU6KGHHpIkTZ48ud1FVFVVpb59+3Y4X3p6urZt22Y7Hka0wUnF1fZWbt1VtkaZmfE1R0jPnpEVuCkpKW3/RnKs099LMLGHo+8XDUMzhkZ9RJu9lHEn5youVviFJTJOG6vADdfJCAYVuGWewr95UeHX3lDwK1dF5X2GZgztFiPaJKmkcpcy0kd3ef8jSbkD9du7zX0g3q6BaP/+uQ90XST383gpB05VcfUWW8ftLPks7j4rgM7tPbBZIwZN7PL+R+oCpTVbuQ94wOHWIrW0NioxISWi4xqaatRoVHANeMD+GnujcXbsX83vH55QXm+Ngor0AdSDh4uV2DOkzB7x9Xfg1TaR39vF8dYvIkXeN3LsiLbBgwfbfl8SbTFy8cUXKz8/X4sWLdLs2bM1duxYSdLq1at16623qqKiQpI1HNEJO3bsUGpqqiPvBYRapI+etRbAjsQ3vj9H//6rObEJKka2bt0a0f4tLS266667lJaWpsTErj8T8sgjj0Qa2ilpapUWLnX0LU/Z9h07lBzFUq0u1Kp+K9475fOY4bBCj/9ECocVfOg7MoJBSVLghutkrvpY4ReWKHD29KgMk9++Y7tSg92jaC9cI21/v+v7G4ahPkOlj9f9JXZBRSjeroFo//65D3RdJGXBli1b9MILL+jyyy+PaI02p8uBUxUOSR/9Smqui+y4274zS/Ofsf/0L4Duo3ijlB9BsW4YhnoNlN7/52uszeQRm9+WSiOcmCfnnDTt+o/tsQkIjjJN6ePnrfWmInH918/R/T+lLgBvWPsnqXJvZIXa9MszVfhfe2MUUexE0iaKl74xiXZxvPWLSJH3jdTV1bUtv/XRRx/Zfl+GOMXIggUL1L9/f+3bt0+5ubmaNGmScnJyNH36dI0aNUqzZs2S1H59Nknq16+fqqurO5yvsrJS6enpToQOnLJgopR1emTH9B4s9c2KTTzdSWJiotLT0yOqSCC+hV95VWZevgK33SLjmPU3jWBQwe9+RwqHFHriSZmm6WKU0ZeRK0X64NeIabGJxW1+vQbQudzcXOXn50eUZItHgaA0/MzIjkntL/UfefL9AMSHIeOkpAif9RxxlkiyecjwMyUjgl6nQFAaNjVm4cBhhiENPyuyY3r0kQbmxCYewA0jIvwbSEiWhk6KTSzdCX1j/uOHfhESbTGSlZWllStX6oorrlBKSor27Nmj9PR0Pfvss1q+fLm2b7ee0Ppiom38+PGdrsWWl5en8ePHOxI7EA0jz5UGjunavilp0uSr/dGoLiws1L333qvCQvtrFiB+mIWFCr/4Wxnjxylw7TUdthvZIxS4ZZ7MTZsVfu0NFyKMncQUacpXrMR7V4w8RxrkwUa1n68BYMQ0aUgXq69JqdY9I5IOWQDdWzBJmnqN1WnYFcPPtB7UgXf0HiyNv6SLOxtS7uXWQxfwjqypUubkru2b2MO6ZwSCMQ0JcFT/kdKYC7q2byAoTb5KSvbBhGT0jfmLX/pFDDOe04Rxqra2Vr1795ZhGKqpqWk3F+3ixYv17//+79q9e7eysqzhPZ9++qnOOeccvfrqq/rKV77S5fc5dthjbW0tU0fCceGwtOMDqWiDZIY636ffMGniFVJyL0dDi5pIp47csmWLrrvuOr3yyisRjWYYN25cpKGdkngcGr/oRnXLqSOdVDVrdreZOvKIw2XSluVSXWXn2xOSpVHnS8PPcDauroi3ayDav3/uA10XSVlQUFCgf/u3f9Ojjz6qkSO7PnzL6XIgWsywtPMjad8aazrJzvTJlCZebj3FDsB7aiukzcul2uMs8BFMsh64GTHNHw/e+VHZdmnb344/nXBymjR+tjRglLNxwRmmKe3+WNq7Wgq3dr5P7yFWv0DPfs7GBjileKO08+/HX2KlZz8p9zKpz1Bn44qmSKfTj4e+MYl2cbz1i0iR941EK4fSvXrjfGLLli0yTVNjx47tsODj3XffrZ///Oe66qqr9KMf/UiNjY1asGCBpk+frquuis6CgIBTAgHptFlWw3n/Jqlit3SoxOp0CyRI0+dJvQa6HSWAWOo9WDrnDqlqn9W4KDum7j3+y9KQ06wONsAv6uvrtWHDBtXX17sdiiOMgJRzodWBXrJZKt8lHdp/tC5w1s3WfQKAd/UaIJ39VelQsVT0eV3ADEtGUDptpjRkgpRAXcDTBo+VBo6WyndKJVukg3s+LweC0sQ5VoItwIhmzzIMafT51qjVkjzpwPb2dYEzb5T6nPqSPEC3ljnZmumhbJtUulWqKjz6NzDlail9BA+bAPGOqowLNm3aJKnjtJGS1Lt3b61YsUIZGRm66aab9LWvfU3nnXee3nrrLQWoeSJOJfWUss+2OtOSPs8tJ6aQZAP8wjCk9OHSpCslHWk8GFLmJJJsgF8k9bCSbWfd1L4uQJIN8AfDsNZjnnj50XtAUg9rWjmSbP4QCEqDT7OmBmwrB3pIg8aQZPOLxBRrFosv1gVIssEvgonS0InSGde1/xvon02SDfACRrS54ESJNkkaPXq03nrrLSdDAgAAAAAAAAAAQIR4bsgFJ0u0AfCuwYMHa+HChRo8mEf4AQAAAAAA4C/0jcGLGNHmghUrVrgdAgCXDBgwQLfffrvbYQAAXJKZmalFixYpMzPT7VAAAAAAwHH0jcGLGNEGAA46dOiQ3n33XR06dMjtUAAALujbt6/mzp2rvn37uh0KAAAAADiOvjF4EYk2AHBQUVGRvv3tb6uoqMjtUAAALqisrNRLL72kyspKt0MBAAAAAMfRNwYvItEGAAAAOKSkpESPPPKISkpK3A4FAAAAAABEAYk2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAwEEpKSkaP368UlJS3A4FAAAAAAAAcBR9Y/CiBLcDAAA/GT16tF599VW3wwAAuCQ1NVXnn3++UlNT3Q4FAAAAABxH3xi8iEQbAAAA4JDs7Gw9//zzbocBAAAAAACihKkjAcBBeXl5mjx5svLy8twOBQDgglAopNraWoVCIbdDAQAAAADH0TcGLyLRBgAOMk1TLS0tMk3T7VAAAC7YunWrpk2bpq1bt7odCgAAAAA4jr4xeBFTRwIAOkgKSotudDuKyCQFo3u+noGgqmbNju5JY6xnIMpfgs/F2zUQ7d8/9wEAAAAAgJ/5vV0cb/0iknt9YyTaAAAdGIaU7PMSwjAMpQZ9/iX4nN+vAe4DAAAAAAA/83u72O/9IpFg6kgAAAAAAAAAAADABtKRAOCg0aNH64033tCwYcPcDgUAAAAAAABwFH1j8CISbQDgoJSUFOXk5LgdBgDAJWPHjtWqVauUlpbmdigAAAAA4Dj6xuBFTB0JAA4qLi7Www8/rOLiYrdDAQC4IDExUenp6UpMTHQ7FAAAAABwHH1j8CISbQDgoOrqai1btkzV1dVuhwIAcEFhYaHuvfdeFRYWuh0KAAAAADiOvjF4EYk2AAAAwCE1NTV6//33VVNT43YoAAAAAAAgCki0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsINEGAA4aMGCA/vVf/1UDBgxwOxQAAAAAAADAUfSNwYtItAGAgwzDUFJSkgzDcDsUAIALgsGgzj//fAWDQbdDAQAAAADH0TcGLyLRBgAOKi8v1zPPPKPy8nK3QwEAuCAUCmnVqlUKhUJuhwIAAAAAjqNvDF5Eog0AAAAAAAAAAACwgUQbAAAAAAAAAAAAYAOJNgAAAAAAAAAAAMAGEm0A4KA+ffpozpw56tOnj9uhAABcQDkAAAAAwM9oE8GLEtwOAAD8JCsrS4899pjbYQAAXEI5AAAAAMDPaBPBixjRBgAOampq0t69e9XU1OR2KAAAF1AOAAAAAPAz2kTwIhJtAOCgnTt36tJLL9XOnTvdDgUA4ALKAQAAAAB+RpsIXsTUkQCADkxTag65HUVkkoKSYUTvfKZpqj4cX19Cz0BQRjS/BJ+Lt2sg2r9/7gMAAAAAAD/ze7s43vpFJPf6xki0AQA6aA5JC5e6HUVkFt0oJUexVKsPh9RvxXvRO6EDqmbNVmqQoj1a4u0aiPbvn/sAAAAAAMDP/N4ujrd+Ecm9vjGmjgQAAAAAAAAAAABsINEGAAAAAAAAAAAA2MDkOgDgoNzcXOXn57sdBgDAJZQDAAAAAPyMNhG8iBFtAAAAAAAAAAAAgA0k2gDAQQUFBbrppptUUFDgdigAABdQDgAAAADwM9pE8CISbQDgoPr6em3YsEH19fVuhwIAcAHlAAAAAAA/o00ELyLRBgAAAAAAAAAAANhAog0AAAAAAAAAAACwgUQbAAAAAAAAAAAAYAOJNgBwUGZmphYtWqTMzEy3QwEAuIByAAAAAICf0SaCFyW4HQAA+Enfvn01d+5ct8MAALiEcgAAAACAn9Emghcxog0AHFRZWamXXnpJlZWVbocCAHAB5QAAAAAAP6NNBC8i0QYADiopKdEjjzyikpISt0MBALiAcgAAAACAn9EmgheRaHNARUWFFixYoDFjxiglJUXDhg3Tgw8+qLq6Ot11110yDENPP/2022HGVKhVKt8lFW+UijdJVfsk03Q7KmcdLpP2b5aKNkhl26TWJrcjAmKvKO8D/ewWQ2uWLz7uPj+7xdDri690MCpnhV5YopZLLlf43b902Gaaplq/u1AtV8yVWbDH+eAcZJpSdbGkI/d+Uwq1uBmRc/x+DXAfACymKVUWWnXh4o1SxS4pHHI7Kjgp1CId2GG1B/ZvsspFP7WJTFM6VHK0/A+1Sq3N7sYEZ4VDUkXB0Wsg3CqZYXdjgrNam6z+kLZrwGfloGla/WFH6gLlu6x7oZ80HJJK8qyysCRPajzsdkSAM/zeLvZDvwhrtMXY+vXrddlll6m0tFSpqamaMGGC9u/fr6eeekq7du1qGyI7depUdwONkaY6qfAzK8HU0tB+W89+UtZU6ycQdCO62DPNzysQ66TDpe23BROlIROkEWdZ3wUAbwrcOk/hTz5V6NnnZJx5hoyBA9q2hV99TebGTQrcebuMkdnuBRlD4bC0f6O0b51Ud7D9tpW/lIZOlIafJaWkuROfE/x+DQB+F2qx7oHFG6zOpWMl9ZSGTpaGnykl9XAnPsReY83RNtEXH7ZL7S8NO926DgIefQzWDFuffd86qbb86OutjZ/XBXKtukCPPu7FiNhqaZT2rbUSC0217V9f9ZyUOdX6O0hIci1ExFh9lbT3M6k0r/3Ddi0N0j9/Z/3+h0yQDMO9GGMp3GollorWW9/FsRJ7SEMnWXWB5FRXwnNE1T7rGqjYraMPX0qSIQ0YJY2YJvXLcis6ALHmh34Rj1blu4eKigrNmTNHpaWlmj9/vkpKSrR27VqVlpZq0aJFWr58uVavXi3DMDR58mS3w426ukpp9UvS3tUdk2ySVbnY/r607hVvju4Kh6Ut70h573RMsklW5bJ4g1WprNrnfHwAnGEkJirhoflSY6NCP/lp2+vmviKFl/yvjHGnKXD9te4FGEOhFmnDn6Wtf+2YZJOse3/hGus+WFPecbtX+PkaAPyupUFa+ydp5987Jtkkqble2vOJ9NnvpYZqx8ODA2rKrXKucE3nbZ66g1Y5ueHP3hzpHW6VNr4p5f+lfZLtiFCzlYD75++s0W7wnsYa6bOXpd0ft0+yHbt910ppzVKpuc75+BB7Vfusv/HiDZ3f5w6XHu07CXtwhGNrk7RumdX/9cUkm2TVFfb+0+o/q/PoclWFa62/8Ypdap9kk/X/FbukNX+wygMA3uSHfhESbTH0wAMPqKioSPfff78WL16stLSjj+svWLBAU6ZMUWtrq7Kzs9W7d28XI42+pjpp3Z+6NgS8ap/V+PJahWr736yntU6mtUla/+fOG57wntTUVJ1//vlKTfXwo2rowMgZo8BNN8hcs1bh5e/IDIUUemyxZJoKPjRfRtB7w3pNU9r8tnSw4OT7NtdZD114edoQP14D6BzlgH+EQ9KG16VD+0++b32V1QnX2cNpiF+Nh63yrSvJg4MFVrnppakkTVPK+z+pfMfJ921pkNYv67wTGvHrSIKhsweuvqimzGoXezHh7Ge15dbvtSsPV5fkSdtXxD4mJ4XD0sY3uvZw9ZEyo8ljCedIfq/b/iaV5sc2HnQPtIn8yev9IiTaYiQ/P19Lly7VgAED9Oijj3a6z5lnnilJmjJlSttrRxJz06dPV3Jysow4HTdfuNp6Mq2rKvd8PnzcI2orrGkBuirULO1aFbt40H1kZ2fr+eefV3Z2ttuhOKq1uV4NNRWd/vhFYN7N0qhRCj33vMLP/FLmtu0K3P5VGcO8OT9G1b6udawd0VwnFXwau3i6A79dA1/EfcDi13LAj8q2SdVFXd+/voonub2m4NPIRuiU7/DWTBeHSyPrMG1plHb/I3bxwHnFG6W6CIr5w6VWpzy8Y+dHVn9HVxWt71piNl5U7JIq93Z9/8bD1lTDXhEOSTs+iOyY7R/4b+0+P/Jzm8jv7WIv94uwRluMvPzyywqHw5o3b5569erV6T49elgLMRybaNu5c6eWLVumadOmKSkpSatWxV/2JdRizcEfqaL10qAxUQ/HFUXrIz+mfJdVqUrx1uBGfEEoFFJDQ4N69OihYJw/qRGJT5b9QJ8s+4HbYbjKSEhQwkPfUes3v6XwW8tlTMxV4Jqr3Q4rZux0FpfmSTkXSgnJ0Y+nO/DbNfBF3Acsfi0H/MhOfbB4o5R9tnfXL/aT1qauzW7xRUXrpPTh0Y/HDXbqAmXbpLFfstYvRHwzTXv3waL1UuZk767V5ScNh+w9UL1vvTTu/0U9HFfY+RvYv0kadZ4UTIx6OI47sN2aJjsSzXXWgyeDx8UmJnQPfm4T+b1d7OV+ERJtMbJihTUueubMmcfdp6jIesT12ETbhRdeqJISa3L6H/7wh3GZaDu4x3oaMVKVe6wCNckDo4ZtDXU3reOyz456OOhGtm7dquuuu06vvPKKcnNz3Q7HMRNn3q2cs6/vdNuffzzb4WhclJoqJSZKra0ypp0lI+DNgeWtzVLFzsiPC7VIB3ZKQ738p+GTa6Az3Acsfi0H/KahumtTRn5RU601oql/drQjgtMO7LQ3BV75TqscTUiKfkxOCoekA9siP84MWR2zWVOjHhIcdmh/52tTnkxtuTUKrtfA6McEZ5VtVcf1uLqgNM8bibamushGsx3R0mj1qw3KiXpIjrM7DWRJPok2r/Nzm4h2sTzbL0KiLUb27rVK0xEjRnS6vbW1tS2JdmyiLRCjCysnJydm5/6iWZO/qq/O+m9bx154/mwVVcT3hMyJwWQ9981dto595mfP6eW//yjKEXUvP7lrtdLTMlRSUqKsrGluh3PKbr/99oj2P5JIf/vtt7VuXdcf812yZElE73Oqgok99JVHIpj37yT6DsnR8IkXR+18nRmbk6NQFBe3MZOSpGefid75TFOhJ56UWluk4cMU/v0fFLjoQhlDM6L2HmNzxspojmBulhgZ0HuYFt9pb+6nH/z7/0/vrPmfKEdkT7xdA9H+/XMf6LpIyoJ4KQdiyWt1gc6MyThTD9/4uq1jv/G1B/Xx1mVRjghOu/yse3XDjH+P+DjTlM6aeo4qDkcw72g3lNajv35+TwRz6R9j0SM/1Z8/WRzliOC0s8Zcrvuv/JWtY6+Ze5Py9n0U5YjgtH+56Ie65PSvRXxca5OUPWKUWiOZc7IbGjZgvP6/W96zdez8B/9N72/8bZQjct4Pb35b2YMnR3zcP1et15XfvDIGEXUfXqwPe7VN5Pd2cbz1i0iR942Ew+G2/54xY0ZE1+SxSLTFSF2dNRl/Q0PnF/XSpUtVUVGhtLQ0jRw5MubxHLmBOeFglv05ZUtKilV8oDiK0TgvGLD/Z3W45pCKi+P7859MKBRq+9cLn7W+PrJ5EBobG9v+jeRYp7+rhOT4m69nf8l+tTZFOC/FiaQkK5qzdYRfe0Pmho0K3HGbAueeo9b7vqnQE08quHhR1Nbj3F+yX2rswkrjMdZcZ//Bjurqyu5zb4izayDav3/uA10Xyf08XsqBWPJaXaAzaYFM28dWHCz37PfiJ1VjKm0fu39/scoPxfc1kNbTfudO9aFuVBeAbSP6HrB97IHyMq4BDzh82MaQxs8VFe1TKNwaxWicl9Dax/axBw9WeOJvoLHJxnRXkhqbGjzx+U/Ei/Vhr7aJfN8ujrN+EenU+kbKyspsvy+JthgZMmSIqqqqtHbtWp177rnttpWUlOihhx6SJE2ePDlqF9GJZGRkODaircU4bO+41iYlpZrKzLTfMdFdHKzZr/5pQyM+riFU6YnPfyJH5l4OBoOe+Kw9e0ZW4KakpLT9G8mxTn9XwcQejr5fNAzNGBr1EW3l0TpXcbHCLyyRcdpYBW64TkYwqMAt8xT+zYsKv/aGgl+5KirvMzRjaLcY0ZYYTFRjc51SbMwF3KRD3ebeEG/XQLR//9wHui6S+3m8lAOx5LW6QGcCKc0Kh0MKRLDYmmmaMgxDoWCtZ78XP2k27XUwNzbXKbVPkpJ6xfc1YBgB1TZWq1dK34iPbTSr+RvwgFCC9fDxkXtbV7Ttm9TANeABDSF7DxwcPFysIRmDoxyN85KSTbWGmpUQjHwu4JbAYU/8DRxqsPfQ/6GGUk98/hPxYn3Yq20iv7eL461fRIq8byQcDrcNUho82H75Q6ItRi6++GLl5+dr0aJFmj17tsaOHStJWr16tW699VZVVFijvqZOnepIPDt27FBqqjOLn5lh6eNfRz4f+7BJydqxO76njTxi98fWTyQCCdKvX/1vJabYm3YzXqz8pbX+SEZGRts6hfFs69atEe2/ZcsWvfDCC7r88ssjmof6kUceiTS0U9LUKi1c6uhbnrLtO3YoOYqlWl2oVf1W2Jvq41hmOKzQ4z+RwmEFH/qOjM8r1IEbrpO56mOFX1iiwNnTozJMfvuO7UoNdo+iPf89qTjCGaOSekqvrXheEfRLx1S8XQPR/v1zH+i6SMqCeCkHYslrdYHjWf9nqSKC2cQNw1Bqf+mD1W/IgefwEGPhkPTRs1JzhA8Tj56WqoJ/tzcNfXez/X2pcE1kxyQkS3945ykFE5+KTVBw1D9/Jx0u7foNzTAMpY+Q1ud9EsOo4JSWRqvMj3Rg2rRLM1X0X96oH2xeHvk6ZT36SH/5eKkn6gIH90rr/hT5cff951f0/ee/Ev2AuhEv1oe92ibye7s43vpFpMj7Rurq6tSrVy9J0kcf2Z+62hsrzXVDCxYsUP/+/bVv3z7l5uZq0qRJysnJ0fTp0zVq1CjNmjVLUvv12bzCCEiZNj6Wlxa8zpxsfQ+RGDJeSkyJTTzoPsaOHatVq1a1Jd/hfeFXXpWZl6/AbbfIGD687XUjGFTwu9+RwiGFnnhSpmljpfBuzM49PXOyuk2SLZr8eg2gc5QD/jFsauTHZE2VJzrWYJVnQyNflsZTbSI7nyVjohSM5vxEcJWdayDLe10kvpWYIg0ZF9kxRsBqE3iFrTbRFO/UBdKHSz37RXZMarrUb1hs4kH3QZvIf/zQL0KiLUaysrK0cuVKXXHFFUpJSdGePXuUnp6uZ599VsuXL9f27dsleTPRJknDTpf6RDBz4rAzItu/u0vuJY2d2fX9e/SRxsyIXTzoPhITE5Wenq7ERHoQ/MAsLFT4xd/KGD9OgWuv6bDdyB6hwC3zZG7arPBrb7gQYeykDZSyz4lg/8HSiOmxi8ctfr4G0DnKAf9Iz5aGToxg/xHe6lyElD1dShvU9f1HnmOVn17Rs580+oKu75/aXxp17sn3Q/wYMkEaMKrr+w8eJw3MiV08cN6YC6z+jq4aO9PqT/GKPkOt/rEu759p9Y95hWFIEy7r+sOUgQRrf68kGnF8tIn8xS/9It1jfimPGj9+vN56660Or9fW1mrPnj0KBAKaODGC1nccCSZKU6+RNrwmVZ9kBPSw06WxX/JeQTrsdGsaze3vn3i/1HRp6rWSjaWMEIcKCwv14x//WN/73vc0/JgnOLwqa8KX9ODvTvw0ysm2xzNj+HAlLn/9hPsEb75RwZtvdCgiZ40+X5Ip7fn0xPv1zpCmfkVKiHz5gm7P79eAxH3gi/xWDviZYUjjZksypP2bTrxv/2xp0lxvjur1s4Qk6fTrrGlED59kmZrss6VR5zsTl5Oyp1ttot2rTrxfr0HS6dcww4fXBALSpDnW9HnlO0+875Dx0oQve69fwO+SUqUzbpDWLZPqT7Jk29iZkSWl4oFhWJ/LlFS07sT79hsmTb5K6iYrAURN36FWn9eG16TQCZZMSki2Pn+fU581DnHAj20iP7eL/dIv4rHbd3zYsmWLTNPU2LFjO13w8ZVXXpEk5eXltfv/7OxsnXXWWc4FeooSU6QzrpfKd0j71ndMuA0eZw2j75vp3cr08DOlfsOlovVSaZ4Uajm6rddAqxI5ZJxkY21cxKmamhq9//77uu+++9wOBYg5w7CeYh04Rtq3TirbJpmho9v7DLXKgcFjracXAT+gHPCXQFAaf4nVgVy0zupoPnY2lPQR1n1wwGirQxrek9RTOutGqWy71SY4tL/99owJUtbp3u1YNAxrlNqAkZ+3ifKt9euO6D3k87rAaUwZ6VXBRGnyXKmiwLoPHtzTfvvAMdY1kD7Cu/0Cftejj3T2LVLpVqtNUFvefnvmFGu65V4eGtF7LCMgnTbLus8VrZcObLceQDii3zDrb2DgGO8+cJM+XDrvTql4o/XTVHt0W3Iva0R/5mRvjWbEidEmghfRreWCTZusR1qPN23k9ddf3+n/33bbbVqyZElMY4u2QNBKqA0eJzXWSJ/+r9TSYD3VNOlKt6NzRtpAafxsKeciadVzn3/+ntLZX6UhAcAf+mRYP6fNkj58+ujr0/7FvZgAwCmGYXUwpQ+Xmuulf/zmaH3wjOtPfjziXyDBSqhlTJAaD0uf/vZomyj3crejc0bvIdKES62RHaueP/o3MP0WtyODE4yANHC09dNUJ32y5OjfwJSr3Y4OTggmWYmUoZOkhkPS6peOXgPjZ7sdXewZhtQvy/ppaZA+fuHoffDM+B7A0WXJvaRR51kjuFc+K7XUS4k9pfP/1bsJRgD+QqLNBSdLtMXzon8nkpJ2tPD0Y4IpIemYzx/w53cAwN8SUyQZsuZO4R4IwIeSeravD8J/Unr7vE2UzN+A3yWn+vtvwO8MQ+rZ19/XQGIPf98HA8Gjo/gDAZJsALzDh7d0950s0QYAAAAAAAAAAIDujxFtLlixYoXbIQBwyeDBg7Vw4UINHjzY7VAAAC6gHAAAAADgZ7SJ4EUk2gDAQQMGDNDtt9/udhgAAJdQDgAAAADwM9pE8CKmjgQABx06dEjvvvuuDh065HYoAAAXUA4AAAAA8DPaRPAiEm0A4KCioiJ9+9vfVlFRkduhAABcQDkAAAAAwM9oE8GLSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAByUkpKi8ePHKyUlxe1QAAAuoBwAAAAA4Ge0ieBFCW4HAAB+Mnr0aL366qtuhwEAcAnlAAAAAAA/o00EL2JEGwAAAAAAAAAAAGADiTYAcFBeXp4mT56svLw8t0MBALiAcgAAAACAn9EmgheRaAMAB5mmqZaWFpmm6XYoAAAXUA4AAAAA8DPaRPAi1mgDAHSQFJQW3eh2FJFJCkb3fD0DQVXNmh3dk8ZYz0CUvwSfi7drINq/f+4DAAAAAAA/83u7ON76RST3+sZItAEAOjAMKdnnJYRhGEoN+vxL8Dm/XwPcBwAAAAAAfub3drHf+0UiwdSRAAAAAAAAAAAAgA2kIwHAQaNHj9Ybb7yhYcOGuR0KAMAFlAMAAAAA/Iw2EbyIRBsAOCglJUU5OTluhwEAcAnlAAAAAAA/o00EL2LqSABwUHFxsR5++GEVFxe7HQoAwAWUAwAAAAD8jDYRvIhEGwA4qLq6WsuWLVN1dbXboQAAXEA5AAAAAMDPaBPBi0i0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAcFAgENG3aNAUC3H4BwI8oBwAAAAD4GW0ieBFXMwA4KBwOa/Xq1QqHw26HAgBwAeUAAAAAAD+jTQQvItEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2AHBQnz59NGfOHPXp08ftUAAALqAcAAAAAOBntIngRQluBwAAfpKVlaXHHnvM7TAAAC6hHAAAAADgZ7SJ4EWMaAMABzU1NWnv3r1qampyOxQAgAsoBwAAAAD4GW0ieBGJNgBw0M6dO3XppZdq586dbocCAHAB5QAAAAAAP6NNBC9i6kgAQAemKTWH3I4iMklByTCidz7TNFUfjq8voWcgKCOaX4LPxds1EO3fP/cBAAAAAICf+b1dHG/9IpJ7fWMk2gAAHTSHpIVL3Y4iMotulJKjWKrVh0Pqt+K96J3QAVWzZis1SNEeLfF2DUT79899AAAAAADgZ35vF8dbv4jkXt8YU0cCAAAAAAAAAAAANpBoAwAAAAAAAAAAAGxgch0AcFBubq7y8/PdDgMA4BLKAQAAAAB+RpsIXsSINgAAAAAAAAAAAMAGEm0A4KCCggLddNNNKigocDsUAIALKAcAAAAA+BltIngRiTYAcFB9fb02bNig+vp6t0MBALiAcgAAAACAn9EmgheRaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAOCgzM1OLFi1SZmam26EAAFxAOQAAAADAz2gTwYsS3A4AAPykb9++mjt3rtthAABcQjkAAAAAwM9oE8GLGNEGAA6qrKzUSy+9pMrKSrdDAQC4gHIAAAAAgJ/RJoIXkWgDAAeVlJTokUceUUlJiduhAABcQDkAAAAAwM9oE8GLSLQ5pKKiQgsWLNCYMWOUkpKiYcOG6cEHH1RdXZ3uuusuGYahp59+2u0wEWOm6XYEAOAy7oMAfI76IPyOvwFwDYBrwN+O/P65DgB4CYk2B6xfv16TJk3S448/rtLSUk2YMEEtLS166qmndOONNyo/P1+SNHXqVHcDRUy0NktF66VPXpSa66zXmmqlLW9Lh0qoWMDbivI+0M9uMbRm+eLj7vOzWwy9vvhKB6NyVuiFJWq55HKF3/1Lh22maar1uwvVcsVcmQV7nA/OIc0N0t7V0se/PuZFU8p/T6otdy0sx/j9GuA+AFh1v90fSx89e0x9sE7a/r5UX+VubIATWhqlwjXSP15o3ybK+z/pcJm7scEZDdXSjr9Lf/+f9vfBXR9JjTWuhgYHmKbV/7H5ben9nx29Bprrrf6S1mZXw4MDwmHpwA5p7Z+O+f3XWf9/YIe1HfAyv7eL/dAvkuB2AF5XUVGhOXPmqLS0VPPnz9cPfvADpaWlSZIee+wxLVy4UAkJCTIMQ5MnT3Y5WkTbwQJp01tSa1PHbSV51s+A0dLEK6SEJOfjAxB7gVvnKfzJpwo9+5yMM8+QMXBA27bwq6/J3LhJgTtvlzEy270gY6g03+pEC7d23Fa8wfrJyJXGXyIFgs7H5wS/XwOA3xWulXZ8IJlf7EAyrcRD4Rpp+FlSzkWSYbgRIRBbB3ZYDxmGWjpu27/J+hl8mjThUimY6Hx8iC3TlHavkgo+6Wyj9fqeT6XRM6QR07kPelFrs7R5uVSxq+M2Myxt/au0c6U0aY7UP9vx8OCA+ipp/Z+l+k6W46rca/30TJemXiP17Ot4eAAc4Id+EUa0xdgDDzygoqIi3X///Vq8eHFbkk2SFixYoClTpqi1tVXZ2dnq3bu3i5Ei2g4WWBWJzpJsx6rYJa1/VQp10gkN70lNTdX555+v1NRUt0OBQ4zERCU8NF9qbFToJz9te93cV6Twkv+VMe40Ba6/1r0AY6gkz2pUd5Zka7ffFuuhhA6d0B7h52sAHVEO+Mve1dL2FSe/vxV+ZnU0MtMBvKZsu7Tx9c6TbO3222btFw45Execs+OD4yTZjmGaVqKl4B+OhAQHhVql9cs6T7Idq7XJ6hc5WOBMXHBOwyHpsz90nmQ7Vn2l9NnL1v7wPtpE/uOHfhESbTGUn5+vpUuXasCAAXr00Uc73efMM8+UJE2ZMqXttVdeeUXXXnutRowYoZ49e2rcuHH6j//4D9XW1joSN05da5O08c2udxpXF9Go8Ivs7Gw9//zzys7OdjsUOMjIGaPATTfIXLNW4eXvyAyFFHpssWSaCj40X0bQe0O5Gg9Lee92ff/yHdK+9TELx3V+vAbQOcoB/zhcJu34sOv7F2+QDmyPXTyA05rrpC3Lu77/wT3S3s9iFg5cULHbGrXbVbs/ttrG8I6Cf0jVxV3b1wxb/Sgne1gZ8WXL20enijyZ5jppyzuxjQfdA20if/J6vwhTR8bQyy+/rHA4rHnz5qlXr16d7tOjRw9J7RNtixcv1vDhw/Xf//3fysrK0vr16/WjH/1IH374of7+978rECA/2t2V5EmhCOcYL94ojTxXCvJX6WmhUEgNDQ3q0aOHgnFegESitbleDTUVbofhqsC8mxX+x6cKPfe8Art2y9y2XYG7vyZjWJbbocVE0cbIR6gVrZOGne7dKYP8dg18EfcBi1/LAT8qWhf5MfvWWVPoAV5QvDnyEWpF66UR0ySavN6wz+Z9sK8/qkaeF2q1+jkiOqbZ6k8ZdnpsYoKzDpd1PdF6RHWRVFMupQ2MTUzoHvzcJvJ7u9jL/SJ06cfQihUrJEkzZ8487j5FRdbjWscm2t58800NHHi0RLnooos0cOBAzZs3Tx999JEuvPDCGEWMaClaH/kxLQ3WU8wZE6IeDrqRrVu36rrrrtMrr7yi3Nxct8NxzCfLfqBPlv3A7TBcZSQkKOGh76j1m99S+K3lMibmKnDN1W6HFRPhkLQ/wka1ZM3dX7VPSh8e/Zi6Az9dA53hPmDxazngNy2N1hqVkaoukmorpF4DTr4v0J2ZplS8PvLjmmqkg7ulgWOiHhIc1lBtbxrAAzukpjopmdnE4t6B7VY/R6SKNpBo84riDTaPWy+Nmx3VUNDN+LlN5Pd2sZf7RUi0xdDevXslSSNGjOh0e2trq1atWiWpfaLt2CTbEWeddZYkqbg4wkdBPpeTk9MtRsL95K7VSk/LUElJibKyprkdTkwYRkC/ebDQ1rGP/dcv9KeP/jvKEXUvXrsGbr/99oj2LykpkSS9/fbbWreu6494LlmyJKL3OVXBxB76yiM7ona+iTPvVs7Z13e67c8/jk4NemxOjkJ2WnLHYSYlSc8+E7XzSZJSU6XERKm1Vca0s2RE+b48NmesjOYIh9PGQN/UIfrpv9qb++m79/1Af1n36yhHZE+8XQPR/v1zH+i6SMqCeCkHYslrdYHOZA+arB/+y9u2jv3qDd/QP7e/GeWI0J344W+gZ3Jv/eIbebaO/c+HFunN1T+PckRw2tSRF+tbVy2J+DgzLF0261ptL/40+kHBUTfM+A9dftY3Ij6urkIaNmy4TK8u4Cx/lAOS9PCNr2tMxpkRH7fi7X/q4juuiUFE3YcXrwGvton83i6Ot34RKfK+kXD4aHkzY8aMiK7JY5Foi6G6OmsS4oaGzi/spUuXqqKiQmlpaRo5cuQJz/X+++9LksaPH28rliM3MLeFQqG2f+0mDbu75MQeto9tbmjx7PdyhNeugfr6+oj2b2xsbPs3kmOd/q4SkntG9Xx9h+Ro+MSLo3rOL9pfsl+tTZH9Pk4oJVmJ0TubTNNU6IknpdYWafgwhX//BwUuulDG0Iyovcf+kv1So/uLGoT7J9s+tr6uqfvcG+LsGoj275/7QNdFcj+Pl3IglrxWF+hM38Rs28fWHq737PcCix/+Bvqltdo+ttEHbSI/GN2/i4sydeJwdQ3XgAc0NbbYPvZAabmaWxujGE334odyQJIUttl5Hg54+3uRN68Br7aJfN8ujrN+EenU+kbKyspsvy+JthgaMmSIqqqqtHbtWp177rnttpWUlOihhx6SJE2ePFnGCRakKS4u1ve//31deumlmjp1qq1YMjIyusWItiPz7gaDQWVmZrocTew0tzYqKSEl8gMTWj39vUjeuwZ69oyswE1JSWn7N5Jjnf6ugqeQMHbL0IyhUR/RVh61s0nh196QuWGjAnfcpsC556j1vm8q9MSTCi5edMIyIBJDM4Z2ixFtPZNt3P8+F0wyu829Id6ugWj//rkPdF0k9/N4KQdiyWt1gc706GU1s0zTjPjvO6mH4dnvBRY//A0kBpMVNsMKGJG3QY1E77eJ/CCph/26TUpqAteAFwTtJdqaWxs1cHD/KAfTvfihHJCkplCtreOaw3We/l4kb14DXm0T+b1dHG/9IlLkfSPhcLhtkNLgwYNtvy+Jthi6+OKLlZ+fr0WLFmn27NkaO3asJGn16tW69dZbVVFhLXx4ouRZbW2trrrqKiUlJemFF16wHcuOHTuUmur+JOcrfyk11VqJvyPr03nRpreksq2RH/fj/5mvZwbNj35A3YjXroGtWyP7RW/ZskUvvPCCLr/88ojmoX7kkUciDe2UNLVKC5c6+panbPuOHUqOYqlWF2pVvxXvReVcZnGxwi8skXHaWAVuuE5GMKjALfMU/s2LCr/2hoJfuSoq77N9x3alBrtH0f7ZH6y1hiJhGNILryxScq9FsQkqQvF2DUT79899oOsiKQvipRyIJa/VBTpjmtI/fiPVV0bWWAwmSa/9bYkSkmIUGLoFP/wNSNK6ZfbW6Hr6tz9Uz74/jHo8cFaoVfro2cjX6EpJk1Z+9rZs5GjRzdQckD7938iPGzYxxdP3Rsk/5cC+tdK2FZEfd91dF+lbP/fu9yJ58xrwapvI7+3ieOsXkSLvG6mrq1OvXr0kSR999JHt96XqEkMLFixQ//79tW/fPuXm5mrSpEnKycnR9OnTNWrUKM2aNUtS+/XZjtXQ0KA5c+aooKBAf/nLX5SREb0hlIitrKmRH9MnU0obFPVQ0M2MHTtWq1ataku8w/vMcFihx38ihcMKPvQdGZ8/uRa44ToZY3MUfmGJzP3dY3rfaBo2NfJjBuZIyb2iHorr/HoNoHOUA/5gGFJW51X8ExqaK5Js8Aw7dYH+2VLPvlEOBK4IJkhDJ0V+XOYUkWTziLRBUp+hkR9n596B7ikjVwpGOOdcMFEaMiE28aD7oE3kP37oF6H6EkNZWVlauXKlrrjiCqWkpGjPnj1KT0/Xs88+q+XLl2v79u2SOk+0tbS06LrrrtNnn32md955RxMmUMrEk76ZUvqICA4wpFHnnnw3xL/ExESlp6crMTGaMxyjOwu/8qrMvHwFbrtFxvDhba8bwaCC3/2OFA4p9MSTMk3TxSijb2BOZA8PBIJS9tmxi8dNfr0G0DnKAf8YOlHq0afr+yekSMPOjF08gNP6j4ysk90ISCNpE3nKsNOlSGbcSk6TMifHLh44b9R5kiIY3J2ebT2EDG9ISJZGTIvsmBHTeejID2gT+Y8f+kVItMXY+PHj9dZbb6mmpkY1NTX69NNPdffdd6uurk579uxRIBDQxIkT2x0TDoc1b948/e1vf9Prr7+u6dOnuxQ97DIMafJcqfeQruwsjb/EenoT3ldYWKh7771XhYWFbocCB5iFhQq/+FsZ48cpcO01HbYb2SMUuGWezE2bFX7tDRcijJ1AUJp6jdQzvWv7Tpoj9bY/FXa35edrAJ2jHPCPhGRp6rVWx/HJBJOkqVczkgfeYgSkKVdLvQZ2bd/cy60HFuEdKWlWfbAry5cn9ZROv8b6F97RP9vq7+hKsq13hjR5jtWfAu8YeW7XR7dmTpZGnhPbeNA90CbyF7/0i3SPhVx8aMuWLTJNU2PHju2w6ON9992nP/3pT/re976nnj176pNPPmnbNnr0aA0c2IWWClyXkCydeaO06yNp/2aptanjPn0ypFHnk2Tzk5qaGr3//vu677773A7FEVkTvqQHf3fip1FOtj2eGcOHK3H56yfcJ3jzjQrefKNDETkruZc07WZp50qpJE8Kt3bcJ324NHqGvWll4oHfrwGJ+8AX+a0c8LvUdGnav0g7/y6VbZfMUMd9BoySxlzQtWQEEG+Sekpn3XS0LhDqZF36vlnS6POlfsOcjw+x1yfj8/vgSql8p6QvFPlGQBqUI425MLJRwIgfmZOklF7S7o+lQ53MCpaQbI0CHz0j8mkG0f0Znz9cnjZQ2vuZ1Hi44z49+kjDz7KWYSHR6g9+bBP5uV3sl34REm0u2bRpk6TOp4185513JEk//vGP9eMf/7jdtt/85je6/fbbYx4foiOYKI2daTUcy7ZZi8CGWqzXz7zJm6M3AOBYiT2shlXORVJpvrT1r0e3nXuHlNrfvdgAwAkpadLEK6w6YWm+9RBWqMUaxXbObXQsw/sSkqVxF1uJlNJ8accHR9tE0/6FJLMfpKZLU66SGmusa2D3P6Tw5/fB8+6SklPdjhCx1n+k9XO4TCrfYSVcwq3W/eGCr5Ng8zrDkIadYSXSDu6RNr15tByYNMe6NkiwAYh3TB3pkhMl2vbs2SPTNDv9IckWn4JJ1lD5hGTr/xOSSbIB8JeEZKth1TZtjEGSDYC/JPWUhp95TH0wiSQb/CUhScqa0r5NRJLNX1LSpOzpUuIx90GSbP7Se7A1ci3x8+lEg4kk2fzECFgj+Y8tBwaMIskGwBtItLnkRIk2AAAAAAAAAAAAdH9MHemSFStWuB0CABcMHjxYCxcu1ODBDGkEAD+iHAAAAADgZ7SJ4EUk2gDAQQMGDGAKWADwMcoBAAAAAH5GmwhexNSRAOCgQ4cO6d1339WhQ4fcDgUA4ALKAQAAAAB+RpsIXkSiDQAcVFRUpG9/+9sqKipyOxQAgAsoBwAAAAD4GW0ieBGJNgAAAAAAAAAAAMAGEm0AAAAAAAAAAACADSTaAAAAAAAAAAAAABtItAGAg1JSUjR+/HilpKS4HQoAwAWUAwAAAAD8jDYRvCjB7QAAwE9Gjx6tV1991e0wAAAuoRwAAAAA4Ge0ieBFjGgDAAAAAAAAAAAAbCDRBgAOysvL0+TJk5WXl+d2KAAAF1AOAAAAAPAz2kTwIhJtAOAg0zTV0tIi0zTdDgUA4ALKAQAAAAB+RpsIXsQabQCADpKC0qIb3Y4iMknB6J6vZyCoqlmzo3vSGOsZiPKX4HPxdg1E+/fPfQAAAAAA4Gd+bxfHW7+I5F7fGIk2AEAHhiEl+7yEMAxDqUGffwk+5/drgPsAAAAAAMDP/N4u9nu/SCSYOhIAAAAAAAAAAACwgXQkADho9OjReuONNzRs2DC3QwEAuIByAAAAAICf0SaCF5FoAwAHpaSkKCcnx+0wAAAuoRwAAAAA4Ge0ieBFTB0JAA4qLi7Www8/rOLiYrdDAQC4gHIAAAAAgJ/RJoIXkWgDAAdVV1dr2bJlqq6udjsUAIALKAcAAAAA+BltIngRiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBgIMCgYCmTZumQIDbLwD4EeUAAAAAAD+jTQQv4moGAAeFw2GtXr1a4XDY7VAAAC6gHAAAAADgZ7SJ4EUk2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYADurTp4/mzJmjPn36uB0KAMAFlAMAAAAA/Iw2Ebwowe0AAMBPsrKy9Nhjj7kdBgDAJZQDAAAAAPyMNhG8iBFtAOCgpqYm7d27V01NTW6HAgBwAeUAAAAAAD+jTQQvItEGAA7auXOnLr30Uu3cudPtUAAALqAcAAAAAOBntIngRSTaAAAAAAAAAAAAABtYow0A0IFpSs0ht6OITFJQMozonc80TdWH4+tL6BkIyojml+Bz8XYNRPv3z30AAAAAAOBnfm8Xx1u/iORe3xiJNgBAB80haeFSt6OIzKIbpeQolmr14ZD6rXgveid0QNWs2UoNUrRHS7xdA9H+/XMfAAAAAAD4md/bxfHWLyK51zfG1JEAAAAAAAAAAACADTzzCwAOys3NVX5+vtthAABcQjkAAAAAwM9oE8GLGNEGAAAAAAAAAAAA2ECiDQAcVFBQoJtuukkFBQVuhwIAcAHlAAAAAAA/o00ELyLRBgAOqq+v14YNG1RfX+92KAAAF1AOAAAAAPAz2kTwIhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAHZWZmatGiRcrMzHQ7FACACygHAAAAAPgZbSJ4UYLbAQCAn/Tt21dz5851OwwAgEsoBwAAAAD4GW0ieBEj2gDAQZWVlXrppZdUWVnpdigAABdQDgAAAADwM9pE8CISbQDgoJKSEj3yyCMqKSlxOxQAgAsoBwAAAAD4GW0ieBGJNgAAAAAAAAAAAMAGEm0OqKio0IIFCzRmzBilpKRo2LBhevDBB1VXV6e77rpLhmHo6aefdjvMmKo5IO34UGpptP6/tVlqrHE3JjjHNKWK3dLWvx69BkIt1nUAbyvK+0A/u8XQmuWLj7vPz24x9PriKx2MylmhF5ao5ZLLFX73Lx22maap1u8uVMsVc2UW7HE+OAc11Ul7PpVkfv6CKR3yycNrfr8GuA9AsuoCB/dIW/92TF2gWWptcjUswFGHSqTt77dvEzXVuRuTk5rrpb2rj/n8TVJ1sXV/gD/UHZR2rmx/DdRXuxoSHGSaUmWhtG1F+/vgkf/2g8YaqeCT9n8DNQfcjQnOOlwm7fiA/lE/8nu72A/9IgluB+B169ev12WXXabS0lKlpqZqwoQJ2r9/v5566int2rWrbS7aqVOnuhtojFQXSTv+Lh3a3/71ULO06lfSgDHSaTOllN7uxIfY27/Jqkg2HGr/emuTtPKX0tBJ0pgLpCB3I3hU4NZ5Cn/yqULPPifjzDNkDBzQti386msyN25S4M7bZYzMdi/IGGqqszoVD2yXzHD7batfknoPlsZcKKWPcCc+J/j9GgBK86XdH0v1Ve1fb2226gIZuVLOhVIwyZ34gFir3Gu1iWrK2r8eapY+elYaNFYaO1NKTnUnvlhrbrDqAmXbJDN09PVQi/TZy1KvgVZ7YMAo92JEbNUckLZ/IFUVtn891CJ9/LzUP9v6G0jt70Z0cMKB7dKuj6S6LyzHFPq8LjBkvDT2S1JCsivhxVzjYWnb+1LFzvYPF4RapE//V+oz1KoL9c1yL0bEVlWRtPPDjg+btusfnSWlpLkTHxBrfugXYURbDFVUVGjOnDkqLS3V/PnzVVJSorVr16q0tFSLFi3S8uXLtXr1ahmGocmTJ7sdbtSV75TW/Kljku0I05TKd0irf9+xsgVv2PWRlPd/HZNsR4SapX1rpHV/sv7bD1JTU3X++ecrNdWjPSnowEhMVMJD86XGRoV+8tO21819RQov+V8Z405T4Ppr3QswhhoOWcm0sq0dk2xHHC6T1i2TSrc6G5uT/HwNoCO/lQMFn0qbl3dMsh0RapGK1ktr/sjoNnhT6VZp7Ssdk2xHmGGrnFz90vHrzPGsqVb67PdSaV77JNuxasul9X+Wijc5GxucUVVkJVS/mGQ71sE90uqXpcOljoUFBxWulTa+cfx+n3Cr9YDuZ3+wEvNeU1dp9XuV7zj+CN5D+63+s/KdzsYGZxzYIa390/FndGnrH33p+HVmr/Fbmwj+6Bch0RZDDzzwgIqKinT//fdr8eLFSks7+ljCggULNGXKFLW2tio7O1u9e3trSFfNAWnTm8dvTB2rqVZav4xpBL2m+PORbF1RXSxtfie28XQX2dnZev7555Wdne12KHCQkTNGgZtukLlmrcLL35EZCin02GLJNBV8aL6MYNDtEKMu1Cqtf9V6evNkzLC05e3jP5jhBX68BtA5P5UDpVulXSu7tu/h0s/rjkwhBw+p3m+Vb+rCdd142Co3w60xD8sx4bD1mbrUaWhK+X+xppWDdzQckjb82Xqo4mRaG6V1r/prOlU/KN8lbV/RtX1ry6WNr3urLtDabPV3NdWefF8zZNWFmErSWw6XSZvf6nr/6Dqf9I/6qU2Eo7zeL0KiLUby8/O1dOlSDRgwQI8++min+5x55pmSpClTprS9tnLlSl188cXKyMhQcnKysrKydOONNyo/P9+RuKNl72op3IVC5IiGQ9ZTjvAGMywV/COyY8p3WBVrrwuFQqqtrVUoFMEfiAe0Nteroaai0x+/CMy7WRo1SqHnnlf4mV/K3LZdgdu/KmOYN+cHObDdWoejq8ywNfLFy/x2DXwR9wGLX8oB05QKPo7smIN7GM0Ab9nz6fFHdHem7qBUtj128TitYleEHcZm1x/UQ3zYtzay0cot9dYoZ3hHpHWB6iKpal9sYnFDyZbIRiuHQ1Z/Grwj4v7Ramvada/zS5uoM35vF3u5X4RVkWLk5ZdfVjgc1rx589SrV69O9+nRo4ek9om2qqoqTZo0Sffcc48GDRqkoqIiPfroozr33HO1efNmZWV1/4uuuc5eA7FovZQ5RTKMqIcEh1UUdG0UyxcVbZDGXRz9eLqTrVu36rrrrtMrr7yi3Nxct8NxzCfLfqBPlv3A7TBcZSQkKOGh76j1m99S+K3lMibmKnDN1W6HFTN2OkkqdlsN0R59oh5Ot+C3a+CLuA9Y/FIOVO2zNzV40TqpT0b04wGc1nDISjRFqmi9lDEh6uG4wk5doKrQSjiyVlf8C7VI+zdHftz+TdLIc6RAfD/UDlnT5B0+zrS5J1K0TkofHv14nGaaVh9HpMq2W2sWJvWMfkxwVlOd9QBqpIrWS5mTvd0/6pc2UWf83i72cr8IibYYWbHCGhs/c+bM4+5TVFQkqX2ibe7cuZo7d267/aZNm6bTTjtNy5Yt04MPPhiDaKPr4N6uDYn+otoKKznj1Q5WP6nYbe+48l3eT7T51cSZdyvn7Os73fbnH892OBoXpaZKiYlSa6uMaWfJCHhzYHlzg81pIE3pYIGUNTXaEXUjPrkGOsN9wF/sJBgkqdxmHQLobg4W2Dvu0H6ppUFK7BHdeJwWapEq99o7tmI3iTYvqN5vb+3NplprJCQPXcQ/2/0Cu60kVbwnGRoPS3U2BqiYIev+OWR89GOCsyr3RDay/YjacqmpRkrx1ipD+BztYnm2X4REW4zs3Wu1KkaMGNHp9tbWVq1atUpS+0RbZ/r3t1oZCQn2f105OTkKOHTR/r8pt+vWmY/YO/ZLX1Zh+ZYoR9R9/OSu1UpPy1BJSYmysqa5HU7MfOPyX+jssXNPvuMXVB+sVVbWuBhEFDu33357RPuXlFir37799ttat25dl49bsmRJRO9zqoKJPfSVR3ZE7Xx9h+Ro+MTYZlHH5uQo1BK91bPNpCTp2Weidz7TVOiJJ6XWFmn4MIV//wcFLrpQxtDo9SKMzRkro9n9Cd0H9hmhx+9YZevY/+9Hj2r56uh976ci3q6BaP/+uQ90XSRlQbyUA6fqztmLdWHuTREf19wQVlaWBx5jPwG/1Af97opp9+n68//N1rHTzzpf5YdsZqm6iT49B+pnd3f9Hnesnzz+lJZ9/FiUI4LTpuVcofuueNbWsTdeN0+b934Y5YjgtHkX/Zdmn35nxMeZIWn0yDFqbm2MQVTOGT4wV/817/9sHbvwuw/rbxuWRDegbsQvdaGLp96pW770X7aOnXnhbO2riK85JL3aJvJ7uzje+kWkyPtGwuGjGfEZM2ZEdE0ei0RbjNTVWSv4NjR0flEvXbpUFRUVSktL08iRIztsD4VCCofD2rt3r/7t3/5NQ4YM0Q033GA7niM3MCeUDbUzjMFSWFSg4oriKEbTvRyZezgUCqm42Luf89BhG3NFSWpsqou776W+vj6i/RsbG9v+jeRYp7+XhOT4m6dif8l+tTZF9vs4oZRkJUbvbAq/9obMDRsVuOM2Bc49R633fVOhJ55UcPEiGVF6XHN/yX6p0cajw1HWWGPjsb3PlVeUdp/7QJxdA9H+/XMf6LpI7ufxUg6cqqpqe2sMNLU0xN1njZRf6oN+Vz7Sxnxpnyvct1uVNfG9YGFVSo3tY8sPdqO6AGzL6m3/d1hcUsg14AGV1fYWYQ+Hw9pTuFumaUY5ImcZzam2jy07UOzpvwG/1IUOZNrviy0sKtD+g/H13Xi1TeT7dnGc9YtIp9Y3UlZmvw5Poi1GhgwZoqqqKq1du1bnnntuu20lJSV66KGHJEmTJ0/u9CK66KKL2ka8jRkzRitWrNDAgQNtx5ORkeHYiLbDLdaUmKZpRvQHUttQpcSeIWVmZsYqNNcFg8G2f738OQ/U2psjouhgftx9Lz17RlbgpqSktP0bybFOfy/BOJyvaGjG0KiPaLPXNOzkXMXFCr+wRMZpYxW44ToZwaACt8xT+DcvKvzaGwp+5aqovM/QjKHdYkRbwAiqqrZU/XoN6fIxR8qM6uaibnMfiLdrINq/f+4DXRfJ/TxeyoFTVVFnb968feVb4u6zRsov9UG/q27eJynyNlFVbalS+ySpR+/4vzbKqvdocN/siI+ratrH34YH1IfLFA6HFIhwsbWW1ia1BKq5BjzgYMMeW8ftq8jT0KFDoxuMCxKCraptrFavlL5dPuZImXG4tdjTfwN+qQsdstk/WtNQqcTUsDJT4uu78WqbyO/t4njrF5Ei7xsJh8Ntg5QGDx5s+31JtMXIxRdfrPz8fC1atEizZ8/W2LFjJUmrV6/WrbfeqooK6ynfqVOndnr8r3/9a1VXV6ugoECPP/64LrnkEq1atUrDh9ubSmfHjh1KTbX/NE2kVr8kHSqJLAude0E/FXzf5oIecWLlL6055zMyMtrW6POilkbrs4ZbIzvulm99Sd9+Or6+l61bt0a0f0tLi+666y6lpaUpMbHrz4Q88oi96VjtamqVFi519C1P2fYdO5QcxVKtLtSqfiveO+XzmOGwQo//RAqHFXzoOzI+b1QEbrhO5qqPFX5hiQJnT4/KMPntO7YrNdg9ivbdH1s/XWUYhlL7S3/7ZFm3WY8h3q6BaP/+uQ90XSRlQbyUA6cq1GLVBSJdn+eau6fr3ifjqy4QKb/UB/3ONKVPlkh1ByMr1M68ZIgKfxjf00YesXe1tCPC2f969JHeXvnbblMXwKlZ/+fI1+wcNjlZW3duik1AcFQ4JH30rNQc4aCKS2+ZqLse80b5uP0DqfCzru9vGIb6DJU+XveXmMXUHfipLvTP30mHSyMr1CZemK4934+/hYu92ibye7s43vpFpMj7Rurq6tSrVy9J0kcffWT7fb2x0lw3tGDBAvXv31/79u1Tbm6uJk2apJycHE2fPl2jRo3SrFmzJB1/fbbTTjtNZ599tm666Sb97W9/U01NjR57LH7mqR92RmT7GwEpc2pMQoELElOkobmRHdOjjzRgVGzi6U4SExOVnp4eUUUC8S38yqsy8/IVuO0WGcc8LGEEgwp+9ztSOKTQE0/G/dQoX5Q5WYrwAWYNPzP+Fz3vjF+vAXTOL+VAMFHKnBTZMcm9pEE5sYkHcJphRN4mCgSt8tMrhk607gWRyDrdm3UBvxp+ZuTHDDs9+nHAHYGglDU1smMSU6Qh8bVs+wllTbH6uyIRadmB7s1W/2jnXcWe4pc2EY7yQ78IibYYycrK0sqVK3XFFVcoJSVFe/bsUXp6up599lktX75c27dvl3T8RNux+vbtqzFjxmjnzp2xDjtqBo+LrGCY8GWpZ9+YhQMX5Fwk9e7irHHBJGny1ZFXQONRYWGh7r33XhUWFrodChxgFhYq/OJvZYwfp8C113TYbmSPUOCWeTI3bVb4tTdciDB2kntJE6+U1MXOsiETpKERdsrHAz9fA+icn8qBUTOkvlld2zeQIE2+yvoX8IrMyVb51iWGVW4m94ppSI5K7CFNmtv1Ov7AHGk4Hcyekj5cGnnuyfc7IudLUp9Tf5Ad3Uj22VL/7K7tGwha/QLBpFhG5Kye/az+rq7KmiINPi128cB5Q8ZH2D96qT/6R/3UJoJ/+kVoysbQ+PHj9dZbb3V4vba2Vnv27FEgENDEiRNPep4DBw5o27ZtOvvss2MRZkwYhjTuYikxWdqzWtJxktHBRGn8l731xBIswSTpjOulzculihOMeE/pLU35ipRmfwnCuFJTU6P3339f9913n9uhOCJrwpf04O9O/DTKybbHM2P4cCUuf/2E+wRvvlHBm290KCJnDcqRplwtbXn7xNPHDTtDGvslbz7B7vdrQOI+8EV+KgeCCdLp10hb3pEO7Dj+fslp0uS5dK7CewxDyr3UGqGxb+3x90tIlnIvlwaOdi42pwwYKU29xmoTnGipkMzJ0mn/zx8P3vnNqPOsdv+ujyQz3Pk+gaA0dmbko5/Q/R1JnuX/n1Saf/z9klKtukDf+FqSqksyciUjaH0HoZbj7GRI2dOk0Rd4s03kZ0f6RxOSpL2f6YT9oxMu9U+i1U9toiP83C72S78IiTYXbNmyRaZpauzYsR0WfLzllls0ZswYTZ06VX379tWOHTv05JNPKiEhQd/+9rdditgew5DGXGhVlos3WpWqhkOfbwtYFemMCVbDEt6UkGw1rA+XSkUbrPn5j8zPbgSlSVdKA0ZLARrUgGcNHC1dcI9UulUq3iAdLju6bcR0KWuy1KOva+EBiLFgkjVSraZcKlovle+UmuusbUZQmni5NHBM5FPNAvHCCEinzbJGahVtlMq2So2Hj24bd7H10KGXRnB8Uf9sacbdUtk2q01wuOTzDYb1vWRNtUZ9wJsMQ8qebi0tULxZKtki1Vd+vi0gjblAypgoJfVwN07ETjBBmniFNbqtaINUvsNan0uyroHcy6wH9Lw8qn3IOOvBg5I8qXiTVHvg8w2GNPJs62GDlN6uhogYMgxr1qdhp39eF/hC/+hps6wR8AkergsAfkD3tgs2bbIW9u1s2shzzjlHb7/9tu644w5ddtllevzxx3XBBRdo/fr1GjNmjNOhRkVKb2n0DOn8fz06FUpST6uAIcnmD72HWNMlXHjvMddAj88r09yFAM8LJlmNx+m36uhUkoaUcyFJNsAv0gZK42dLF36jfV1g8Gkk2eAPPfpa5d6Mu9u3iTInezvJdkQw0Vqzbfq8o58/OdV6+JIkmz8kpVoJhfPubP83MGIaSTa/6DVAGvf/pAu+3v4aGDLe20m2IxKSrX6wc77a/j44egZJNr9I6S2N6aR/NGsqSTbAC3xQlHU/J0q03X///br//vudDgkAAAAAAAAAAAARYiyJC06UaAPgbYMHD9bChQs1ePBgt0MBALiAcgAAAACAn9Emghcxos0FK1ascDsEAC4ZMGCAbr/9drfDAAC4hHIAAAAAgJ/RJoIXMaINABx06NAhvfvuuzp06JDboQAAXEA5AAAAAMDPaBPBi0i0AYCDioqK9O1vf1tFRUVuhwIAcAHlAAAAAAA/o00ELyLRBgAAAAAAAAAAANhAog0AAAAAAAAAAACwgUQbAAAAAAAAAAAAYAOJNgBwUEpKisaPH6+UlBS3QwEAuIByAAAAAICf0SaCFyW4HQAA+Mno0aP16quvuh0GAMAllAMAAAAA/Iw2EbyIEW0AAAAAAAAAAACADSTaAMBBeXl5mjx5svLy8twOBQDgAsoBAAAAAH5GmwheRKINABxkmqZaWlpkmqbboQAAXEA5AAAAAMDPaBPBi0i0AQAAAAAAAAAAADYkuB0AAKD7SQpKi250O4rIJAWje76egaCqZs2O7kljrGcgyl+Cz8XbNRDt3z/3AQAAAACAn/m9XRxv/SKSe31jJNoAAB0YhpTs8xLCMAylBn3+Jfic368B7gMAAAAAAD/ze7vY7/0ikeBbAgAHjR49Wm+88YaGDRvmdigAABdQDgAAAADwM9pE8CISbQDgoJSUFOXk5LgdBgDAJZQDAAAAAPyMNhG8KOB2AADgJ8XFxXr44YdVXFzsdigAABdQDgAAAADwM9pE8CISbQDgoOrqai1btkzV1dVuhwIAcAHlAAAAAAA/o00ELyLRBgAAAAAAAAAAANhAog0AAAAAAAAAAACwgUQbAAAAAAAAAAAAYAOJNgBw0IABA/Sv//qvGjBggNuhAABcQDkAAAAAwM9oE8GLSLQBgIMMw1BSUpIMw3A7FACACygHAAAAAPgZbSJ4EYk2AHBQeXm5nnnmGZWXl7sdCgDABZQDAAAAAPyMNhG8iEQbAAAAAAAAAAAAYAOJNgAAAAAAAAAAAMAGEm0AAAAAAAAAAACADSTaAMBBffr00Zw5c9SnTx+3QwEAuIByAAAAAICf0SaCFyW4HQAA+ElWVpYee+wxt8MAALiEcgAAAACAn9Emghcxog0AHNTU1KS9e/eqqanJ7VAAAC6gHAAAAADgZ7SJ4EUk2gDAQTt37tSll16qnTt3uh0KAMAFlAMAAAAA/Iw2EbyIqSMBAAAAAB2Ypqn6cMjtMLqsZyAowzDcDgOAR8TbPVDiPggAgFtItAEAAAAAOqgPh9RvxXtuh9FlVbNmKzVIExdAdMTbPVDiPggAgFuYOhIAAAAAAAAAAACwgUQbAAAAAAAAAAAAYAPjyQHAQbm5ucrPz3c7DACASygHAAAAAPgZbSJ4ESPaAAAAAAAAAAAAABtItAGAgwoKCnTTTTepoKDA7VAAAC6gHAAAAADgZ7SJ4EVMHQnEiBmWKgul6iLpcJlUc0BqrrO2NdVKn7wopQ2Weg+WBo6WUnq7G28s1FdJFbs///ylUsNhKdxqbWuqk9b/2fr8/YZJfbMkw3A3XifU19drw4YNqq+vdzsUAIAL/FYONFRL5butesDhMqnxsBRqsbY11UnrX7XqQ/2ypH7DvVcXCLVYdaFD+63PX1chtTRa25pqpdUvfV4fHCINHCMlprgbLwAAQLQdLpMq93zeN1Rm1YEk699Vzx3tG0vPtv71muYGqXyndLjU+vx1lVKo2drWVCut+aP1uftkSANGSQEf9Nb7rU0Ef/DBny7grJYGqXijVLTB6kw6ntpy66dks7RthdW5Mmxq/HcymaZUsUsqWi8d3HOiHa39KnZZ/9szXcqaKg2dKCUkxT5OAAAQG6YpHSyw6gIVu0+0o7W9YrdUIKlHX6sukDlJSkh2JNSYaai2Pv/+zUcTa505VGL9SFanSsYEKet0KW2gE1ECAADERjgklW616kOHS46/X8Mh6+fAdkkrrWRT1lRp8DgpEHQo2Bg5XCrtWyeVbbW+j+OpKrR+JCmppzR0kpQ1xZsP5ANeRqINiKKybdLWv1rJtoiYUvkO62fgGGncbCk5NSYhxlRDtZT3f1LVvsiPra+Utq+Q9q6WJnxZ6p8d7egAAECsNdZI+f93kodtjqOhWtrxgVUXGH+JNeI/3phhae9n0u5VJ+5Q6Uy41XpYq3ijNPxMafQMKZgYmzgBAABi5XCptOVdayR/pI48hLT3Myn3MiltUPTji7XWZmnHh1LxhsiPba6X9nwqFa6RxlwoDTs9vh/GB/yERBsQBa3NUt67nz+Bc4rKd1rTTY7/sjQo59TP55TiTVai7Mh0UHY11UjrXpEyJ0unzfLHkHkAALygNF/Kf+/oVDh2NddJG/4sDZkgjZ8dP8mmhkPSprdO/NR2VxWusUb6TbzSm1MoAQAA7zFNqeAf1o9pntq5asulf/5OGnmuNPKc+Ek2VRdLm5efeIarrgi3Wn1sB7ZLk66UkntFJz4AsRNwOwAg3rU0Smv/GJ0k27Hn3Pi69URzPCj4xHp6/VSTbMcq3mit4RbNc3YHmZmZWrRokTIzM90OBQDgAq+WA4VrrE6FU02yHas0T1q3zHqgqburOyh99nJ0kmxH1FdJa5bamykAAADASWbYmuFo98ennmQ79py7V0n5f4neOWOpokBa+6dTT7Idq7rIqmM2VEfvnN2BV9tE8DcSbcApCDVL65dZw+JjIf8vUklebM4dLXs/k3Z9FJtzV+6VNr4R+dRL3Vnfvn01d+5c9e3b1+1QAAAu8GI5ULxR2v5+bM5dXWSNbgu1xub80dBwyOpUaaqN/rlDzdL6V4+u4wYAANDdmKa07W9SyebYnH//Juv83TnZVrXPemA+HIM6ayzrmm7xYpsIINEGnILtH8a+4yP/L1JdZWzfw67q/dZaKrF0sMCan9orKisr9dJLL6myspv+UgEAMeW1cqDmgLU+bSxV7ZN2x+ihnlNlhq2RfLHs+Ai1SJvejI+RfQAAwH9K86UiG+uRRaJovVS2NbbvYVdzg1VXi0WS7YiGQ9KWd7p3sjESXmsTARKJNsC2yr2RL2w6/RZpxj3Wv10VbrXWfzPDkb1XrIVapLx3Ij/OzndQ8InVkecFJSUleuSRR1RSwqPpAOBHXioHwqHPG/wR1lHs1AX2fmY94NPdFK6RDkUYl53P33hY2vFhZO8DAAAQa0210rYVkR1jpy4kWaPamuoiO8YJ2/4mNddHdoyd76ByrzW6zwu81CYCjiDR5oCKigotWLBAY8aMUUpKioYNG6YHH3xQdXV1uuuuu2QYhp5++mm3w0QEwiFr7ulIJaVKKWnWv5E4tD/2TwdFas+n1tohkbLzHRyZ69srT+4AAOAFhZ9ZC9VHym59KP/d7lUXaDhkb/psu5+/eINUXRz5+wFAd1JfdXTUR3d7mBRA5La/L7U2RnaM3bpQS2Pspiu3q6LA3kg7u9/B9g+k5m6YbARAoi3m1q9fr0mTJunxxx9XaWmpJkyYoJaWFj311FO68cYblZ+fL0maOnWqu4EiIuU7o7u4aVcUruk+nUuhFmvYvpNqyuhcAgCguwiHpH3rnH3PukprSunuoniD8+vIFq5x9v2iJfTCErVccrnC7/6lwzbTNNX63YVquWKuzII9zgcHIObCIWvt8dW/lz7+tdVZLlkjQNYslcq2eT/pxn0QXtR4WCrb7ux7HtgmNdY4+54n4nTdLNQs7Y/RWngATg2JthiqqKjQnDlzVFpaqvnz56ukpERr165VaWmpFi1apOXLl2v16tUyDEOTJ092O1xEwOkkkyQ1VFvDxLuDsu1HG0dOcuN7BwAAHVXscmdB9u5SFwi3SsUuTN1TvtOd7/1UBW6dJ2WPUOjZ52SWV7TbFn71NZkbNylw6y0yRma7EyCAmGltkta/Km15u/Opdvxd8CMAAPK+SURBVKv2WWsbbXjdeqDTq7gPwouKNkpy+IFw05SKNzr7nsdTXyVV7nH+fYs2eP/hBCAekWiLoQceeEBFRUW6//77tXjxYqWlpbVtW7BggaZMmaLW1lZlZ2erd+/eLkaKSDQcshoDbuguT62UuBTHge1Sa7M77x0tqampOv/885WaGuH8AAAAT/BKObB/izvvW7G7e0yXU1EgtTQ4/75mWCrNd/59T5WRmKiEh+ZLjY0K/eSnba+b+4oUXvK/MsadpsD117oXIICYCIesBFpXHhit2CVtesu7ncfcB+E1pule35Bb7/tFJS7VhxsPS1VF7rx3tHilTQQci0RbjOTn52vp0qUaMGCAHn300U73OfPMMyVJU6ZMOe55LrvsMhmGoR/+8IexCBM2HHZxnc7Dpe699xGm6V4cZtiaQjKeZWdn6/nnn1d2drbboQAAXOCFcsA0Xa4PdYO6gJuf/1Ccrhlv5IxR4KYbZK5Zq/Dyd2SGQgo9tlgyTQUfmi8jGHQ7RABRVrJFqirs+v4Vu5yfhs5J3AfhJU217o2yb6yRmrrBg1eHXOyji9f64BFeaBMBX0SiLUZefvllhcNhzZs3T7169ep0nx49ekg6fqLtj3/8o9avXx+rEGGTm507DdXuTNl4rPoqd6f06A6da6ciFAqptrZWoZDDi7oAALoFL5QDTbXWujpu6Q51ATdjiOeHjgLzbpZGjVLouecVfuaXMrdtV+D2r8oYluV2aACizDTtreXZXaYIjhXug/AKt+sjbr+/abobQ003eBD/VHihTQR8EYm2GFmxYoUkaebMmcfdp6jIGufbWaLt8OHD+ta3vqXFixfHJkDYVltx8n1iqc7l93f787v9/qdq69atmjZtmrZu3ep2KAAAF3ihHHC7LHa7LiS5+x00HJJCcTqVtpGQoISHviM1tyj81nIZE3MVuOZqt8MCEAM1B6Ta8siPqy6yHu70Ku6D8Aq364N27i/R1FzvzjTiR7j9/Z8qL7SJgC9KcDsAr9q715qEfMSIEZ1ub21t1apVqyR1nmj7j//4D40dO1bz5s3TLbfccsrx5OTkKBBwP6/6k7tWKz0tQyUlJcrKmuZ2OLZ877pXNC7rnE63Tb9FSjrB9MLJqUf/nXHPid+nuU765+86vn7zjbdo094PuhZsDMyYcL2+dsmTnW472eeXuv4dHO/zv/7qm/ry177RxWhj7/bbb49o/5ISa3z/22+/rXXruv6I55IlSyJ6H6C7euGBvQoEggqHQsrK6ryMBOJNJGWBF8qBaTlX6L4rnu10mxN1gb+8+zdd9o3buhhtbPzPvVvVI6nzWSuiVR883ueXpIm5U1TTcLCL0dpnJiVJzz4T3ZOmpkqJiVJrq4xpZ8mIYhtlbM5YGc3dPwvphTbRqfD75/eLM0ZfqgfmPG/r2Ksuu0H5RR9HOaLIxeQeKHEfFPcBL3z+a89bqDnTv9npNif6xn6y+Kd69R/uDU4Y3HekFt2+8rjbY10fLN5Xqqyss7oYrTP81iaCd4TDRxeInTFjRkTX5LFItMVIXZ01WXBDQ+ePNyxdulQVFRVKS0vTyJEj22377LPP9Nxzz2nNmjVRi+fIDcxtR4YEh0IhFRcXuxyNPc0nqLQmpUopaSc/hxHo2n6dOXjwoKvfXXVG9XG3dfXzS/a/g8aGxm517dTXRzZ3VmNjY9u/kRzbnT4zcCpMmW3/cl3DKyK5n3uhHBjd//hDDZyoCzQ1Nrn/fZjH3+REfbCsrExVTsxXlJKsxCiezjRNhZ54UmptkYYPU/j3f1DgogtlDM2Iyvn3l+yXGpuicq5Y8kKb6FT4/fP7xch+lbaPdbvN2ybK90CJ++ARfr8PeOHz19Yef4E2J+pCNTW17n53TT1PuDnW30E4FO52147f2kTwprIy+20sEm0xMmTIEFVVVWnt2rU699xz220rKSnRQw89JEmaPHmyDMNo2xYKhXTPPffo/vvvV25ubtTiycjI6BYj2oKfL+4bDAaVmZnpcjT2GIHwcbc1n2Qx1uRUqxA1wydfuPV45+rVp6er312PXsnH3Xayzy91/Ts43rkCiWa3unZ69jxx5eqLUlJS2v6N5Nju9JmBU2HIaPuX6xpeEcn93AvlQK+0lONuc6IuYATDrn8fza0N6pHc+Yi2aNUHT3Se9P591LN37JtyZlKSojkzU/i1N2Ru2KjAHbcpcO45ar3vmwo98aSCixe1axPZNTRjaFyM5PBCm+hU+P3z+4WRbC3sbZpml/++j+wbTGntFtdGtO+BEvfBI/x+H/DC509OOX49xIm+saQe7n53fVN7n3B7rOuDLeGmbnft+K1NBO8Ih8Ntg5QGDx5s+zyGaZoneB4Tdj3wwAP6+c9/rmHDhumvf/2rxo4dK0lavXq1br31Vu3evVstLS2677779PTTT7cd97Of/UyPP/64tm7dql69rMa7YRj6wQ9+oB/+8IcRxVBXV9d2jtraWqWmnmQeHwes/KXUVCsl95Iu+Lrb0diz/X2p0OZgwxn3WE+qNNZIH3U+49JJXXivlBRZbieqasulT160f/ypfgdjLpSyp9t//2iLdD7pLVu26LrrrtMrr7wSUTJ93LhxkYYGdEt/fULWSBBDuni+29EA0RFJWeCFcqChWlplbzYwSadeFxh5rjT6fPvvHw1rlkpV++wde6qfPzlNuuAk0yxFS12oVf1WvBeVc5nFxWr9+v0yskco+NMnZASDCr28VOHfvKjAN+5R8CtXnfJ7VM2ardRg93+W1AttolPh98/vF6Yp/eM3Un2EA9t6D7GmXOsOonkPlLgPHsvv9wEvfP6y7dKmN+wdG42+sclXS4PG2Ds2GkxT+vBpqdXmANJT/Q4GjJamfsXee8eK39pE8I5o5VDcH+LkUQsWLFD//v21b98+5ebmatKkScrJydH06dM1atQozZo1S1L79dkqKir0/e9/X//5n/+p1tZWVVdXq7q6WpI1lLa6urrdnKFwR+8h7r13Spq7STZJ6tlfCrhYb3fz+4+GsWPHatWqVW3JdwCAv3ihHEjpIyUef1BbzPW2/5Bh1KS5GEN3+PyRMsNhhR7/iRQOK/jQd2R8/iR/4IbrZIzNUfiFJTL3d4+p7gFEh2FIWR2Xoz8pO8fEA+6D8Bq36yNuv79hSGmD3Ht/+saA7odEW4xkZWVp5cqVuuKKK5SSkqI9e/YoPT1dzz77rJYvX67t27dLap9oKyoqUk1Nje655x7169ev7UeSFi1apH79+qmwsNCVz4Oj3CzMukNBGgi4WKFxuSITDYmJiUpPT1diYrRn+wcAxAMvlAOGQX2oj88/f6TCr7wqMy9fgdtukTF8eNvrRjCo4He/I4VDCj3xpJhsBfCWzEmRtR37ZklDxscuHjdxH4TXpPR270HwpFRrNKDbekdnaUV77x2H9cFjeaFNBHwRibYYGj9+vN566y3V1NSopqZGn376qe6++27V1dVpz549CgQCmjhxYtv+Y8aM0fvvv9/hR5Juu+02vf/++xoyJM7vpB7Qs597hemQ6C3bd0qGTHDnfQeMcvcJ+mgoLCzUvffeS9IcAHzKK+WAW3WB9OHdo2NlwCgp4fjL1sZUvHVCm4WFCr/4Wxnjxylw7TUdthvZIxS4ZZ7MTZsVfs3mHFQAuqVgkjT1mq6NAu6bKU252t3ZU2KF+yC8yDDcq5NkTLDe320ZLn3+pP8/e38eZ2dd343/rzOTZZLJRhJIQhYCIYEQCJugCBahYFE2FWQRUSp1BaWKhPb+edf2vvnWslhbi7aopVgXpAVUCuhdLaiIiuxgEpZAWBISIIRAMpNtZs7vjyORmARmTs6ca+bM8/l4zGMyc23vc+bk+pzP9Tqfz9VaeU/cnzVKnwherQHfwvR98+fPT7lczqxZsza74eOIESPy1re+davbTJ8+fZvLqL8p+yUL6jyrw9CRlYs6fcHE2cmjP0s663yP5an71fd4vWH16tW59dZbc8455xRdCgAFaJR2YKdZlfvWblxb3+NO2a++x9uW5iHJpDnJ0/fU97jjd0uGja7vMbdXadq0DL7pB6+5TvPpp6b59FPrVBFQT0Nakzecmix5IFl6f9L+4ubLW8dVzu0775P0g1uLVcV5kEY1Zb/kqbvrf9zJfWSK2RE7VkbirlpS3+NO3idpaq7vMWutUfpE8GpGtBXgwQcfTLL5tJH0LxP2qP8Q+an7VaZt7AsGDak07PU0fGwydnp9jwkAbF3zoPrfR6dlVDK+wJve/6Ep+9X/09RTD6jv8QBqoXlIsssbkkM+mLzh9GTQ72YpGTwsedNZydT9Gzdkg0Y2fIf6fyB8/Ixk+Jj6HvO11Pu9WVNz3wkagc31kcv2A0tPg7ZyuZy//uu/7sWK6KnmQcmeR9fveCPGJ9PeUL/jdcdub66MsquXvd7WN6YGAAAqpr8xGTamfseb/ba+86GjJGkdW3kO6mXCnsm46fU7HkCtlUqVKSJfCdWamvXxoL+bdWTSXKfbbDUPTvY4sj7H6q6dZtY3bNzt0KSljtfigO7rQ13VgcOItsaw08zKBY+e2NCWrFtd+d5dpVKy19v73rDwQUOTvf6k59tV8xxMPbAyHB8A6DuaBydzjun5dtW8F5g8t2+GTLseUvlAVE9U8/iHDE/2+OOeHQcAoLcNH5Ps/kc926aa90JJMvPwvjeFdqlU+SB+T+/dW81zMHpSZXQw0DcZnF+AW265pegSqJE9/zhZ83zS9kL31v/Nt3p+jJlHJKO6cfPoIoybXvkk9xN3dH+bnj4Ho3dOdj+sZ9v0ZRMmTMiFF16YCRP66B8VgF7VaO3AmCnJjLckj93W/W16+l5g5ITKhZW+qKk52fu45K7vJh3rurdNTx9/qTnZ+9hkyLCe1wcA0Num7Fe5T9mzD3dv/WqujU3Ys+9OmdgyMpnz9uSBHyTlcve26elzMKQ1mXNsUmqQITON1ieCxIg22C6DhyUHvKdy/7DeMOMtybQ+fi+OGYdVRpz1hlETk/3eXb9pCOph/PjxOeusszJ+fA8//g5AQ2jEdmD6wcn0N/XOvkfsmOx/Us8/JVxPI8b/rsaW2u+71JzMPT4Zu0vt9w0AUAulUjLnHcmOvXQv3R1nVoKsvjzV7I67V56D3qhxyPDkgJP71r3ptlcj9olA0AbbaeiI5A2nJTtMrd0+mwZV7kOyax3v+1GtUimZ9dZk97fU9pM1O+6eHHBKMrgXLloV6aWXXsqPfvSjvPTSS0WXAkABGrEdKJUqo89nHVkJhmpl3PTkwFMrFxf6utGTkjecmgzfoXb7HNJaCfB666IVAECtNDUn+5xQGd1WS1P2T/Y5vu/dTmVrJs5O9n1n5UP5tTJifPKG0ysfPmskjdgnAkEb1MCQ4ZVQaI8/roRk22PM5ORNH6jci6S/KJUqU0ge/L7tb/wHtVQ+BTT3xGTQkNrU15csWbIkn/rUp7JkyZKiSwGgAI3cDkw7IHnjmZUR6dujeUgy+0+S/U7qXx+4GbFj8sb3J9NqcO+MibOTQ85Kxk7b/n0BANRDU1Oy51HJ/icnQ0du375aRlVmkNrzjyv77S/Gz0jedFZlFN72KJWSXd+UHHxmbT/I1Vc0cp+Igcs92qBGSqVk6v7J+N2Sp+9Nnvlt9+/VkSSjJydT96vMO92Xh8O/lpE7VcK2ZfOTp+9L1jzX/W2HDK+Ei1P2T4a29lqJAEAvGjE+ecN7k+ULkiX3JS8v7/62g4clk/epvBdo2c6LM0VpHlwZ6T9xdvL03ZV7lXR1dnPjUrLjjMr7SVNFAgD91bjplQ8MLX2g8n5wbQ8GLQ0bk0zZt3I/tv764euhrcncE5IXFleuD76wuPvbNg2qvI+cdkDjjWKDRidogxobNrpygWXGoclzjyarllYuMq15Pil3/X69Ia3JqAnJyAnJTjMrIVUjaGquBGY775O8vCx5/rFk9bPJy88mG9e+ar1BycgdK49/h6mVaZH6w1QAAMBra2pKdt678vXy8uT5RZX3AaufTTa0v2q95soFhFETkjFTk5123/6ZAfqKURMqI/RnvrUStr20LFm9PGlbufl6w0ZX3guNmphM3LPy6W0AgP5u0NBkl4MqI/1XPpG88MTv3g8+l3Ru+P16zUN+f21s3PTKh43664fPX61UqnwQf/xuSfuq5LmHK++LX342Wffyq1dMWsdVnoPROycT9uhfMzoAv9cgXVnoe5oHJ5P2qnwlSVdX0rWx8r15UGV5IyuVKm8SRu9c+blcrjz+zs7KhbXmQbW9pxsA0PeMmvj7qSQ3ey/QVHkv1OjvBYYMr4xQm7p/5eeuzqRzY+XfzYMaJ1gEANiaUikZt2vlK6m8H+zcWHlP1NT8u/eDDRCsvZbhYyq3W3lFZ0flPXGpqfJe0IfOoTHo2kGdNDUlTUOLrqI4pVLlk0oD/f1DS0tLZs+enZYWH1ECGIgGcjvgvUDlQoqLKQDAQFUq9d8pIWuleVDlayAbyH0iGtcA/28NUF8zZszI9ddfX3QZABREOwAAAAxk+kQ0ogafrAUAAAAAAAB6h6ANoI4WLFiQuXPnZsGCBUWXAkABtAMAAMBApk9EIxK0AdRRuVzOxo0bUy6Xiy4FgAJoBwAAgIFMn4hG5B5tAAAAbGF4U3NePPLoosvotuFNzUWXADSQ/nYOTJwHAaAogjYAAAC2UCqV0tqsywgMTM6BAEB3mToSAAAAAAAAquCjOQB1NGPGjNxwww2ZOnVq0aUAUADtAAAAMJDpE9GIBG0AddTS0pKZM2cWXQYABdEOAAAAA5k+EY3I1JEAdbR06dJ89rOfzdKlS4suBYACaAcAAICBTJ+IRiRoA6ijVatW5brrrsuqVauKLgWAAmgHAACAgUyfiEYkaAMAAAAAAIAqCNoAAAAAAACgCoI2AAAAAAAAqIKgDaCOmpqactBBB6WpyekXYCDSDgAAAAOZPhGNyKsZoI66urpy5513pqurq+hSACiAdgAAABjI9IloRII2AAAAAAAAqIKgDQAAAAAAAKogaAMAAAAAAIAqCNoA6mj06NE5/vjjM3r06KJLAaAA2gEAAGAg0yeiEQ0qugCAgWTKlCm55JJLii4DgIJoBwAAgIFMn4hGZEQbQB2tX78+Tz75ZNavX190KQAUQDsAAAAMZPpENCJBG0AdLVq0KMccc0wWLVpUdCkAFEA7AAAADGT6RDQiQRsAAAAAAABUwT3aAAAAAP5AuVxOe1dn0WX0yPCm5pRKpaLLaAj+/gBAdwnaAAAAAP5Ae1dndrjlx0WX0SMvHnl0Wptd6qkFf38AoLtMHQkAAAAAAABV8DEXgDqaM2dOFi5cWHQZABREOwAAAAxk+kQ0IiPaAAAAAAAAoAqCNoA6Wrx4cU477bQsXry46FIAKIB2AAAAGMj0iWhEpo6kV3V2JGueT1Y/m7StTDauq/y+Y32ybEEyakIyfIekJPJlgGhvb8/999+f9vb2oksBoADaARh4OjdW+kQvP5u0v7h5n2j5wmTkK32iUrF19pZyOVm7qvL41zy3+eN/6p5Kn3DkTknz4ELLBHpRx4Zk9XOVa0PtqzY/Dzz7cOU80DK6gc+DXZXz/8vPVtqDVz/+JfdV2oGROyZNrtIyQOgT0Yicwqm5cjlZtSRZcn/y3KNJuXPLdTo3JvNvrvx7UEsyaU4yZd+kdWx9awUAAKi1cjlZ+VTlAuqKxyoXWf9Q58bktzdV/j14WLLz3snkfZPhY+pZae9Z93KlT/jMg8mGrVxH69yYPHJL5d+lUjJut2TKfsm46Y17sR0GknJXsuLxynnwhSe2vk7nxuTB/6r8e+iIZPLcytfQEfWqsne1raycB5fNTzrWbbm8c2Py0E8q/y41JzvNrJwHx0x2HgTobwRt1NRLzyQLf1z5hE53daxLnr678jV+RrLnUUnLyN6rEQAAoLesfCp5+CeVC6zdtXFt8uSdla+dZiV7/HEytLX3auxNG9qTR25Nlj+UpNy9bcrlSiC54rFk2JhKn3Dc9F4sEuhVzy2qBOnrXu7+NuvXJI//Mln8q2TS3snMw5PBLb1XY29a93Ly0P9UzmndVe5Mnn2o8jVix2T20cnonXuvRgBqS9BGTXR2JI/fnjx5V7rdmdqaFY8lv3o6mXVE5ROdPsEDAAD0B50bkkdvS5bcu337ee6R5MWnKmHbhD37V5/ouUcqozO2NoKtu9auSu69tjKqZebhyaChNSsP6GUb1yYP31KZFrda5XJlJOwLi5PZb0vG71a7+npbuZw889vKhw06N1S/nzXPJ3denezyhmS3Q5NmV28B+jynarbbxnXJfddXRrPVQueGZOH/S15eXvkkY3/qWMLrmTx5ci6++OJMnjy56FIAKIB2ABrThvZKOLT6udrsb+O6yrSSq59Ndj+87/eJyuXKBy8X/7p2+1z6QLJqaXLAexpnGjloZGtfSu75z0pYXgvr11SuNc08PNnloNrsszeVuyqj2JbeX6sdVkY5r1qa7Pfu/ju6D7ZGn4hG1FR0AfRvHeuTe/+zdiHbqy29P1n435VOGzSKMWPG5IQTTsiYMWOKLgWAAmgHoPFsWJvcfU3tQrZXe/KuysiIvt4neuwXtQ3ZXtH2QuW5Xd9W+30DtbPu5eSu79YuZHu1R3+WPHFH7fdbS+Vy5TYqNQvZXuWlZyrX3TrW137fUBR9IhqRoI2qlcvJgzcmLz/be8d45sG+/4YKemLlypX59re/nZUre3DTDgAahnYAGku5nDzwg0og1Fuevmf7p6PsTUt7uc/W/mJy//eSrs7eOwZQvc6O5N7rkvWre+8Yi25Lnn249/a/vZ64o3L9qre8/GxllHNf/9AFdJc+EY1I0EbVnvltZc7snjj4fclhH6l8767Hf5msfr5nx4G+atmyZbnooouybNmyoksBoADaAWgsT9+TrFrSs22q6RM9+vNK4NTXrHu5MuKuJ6p5/C8vr0yhBvQ9j9/e8w8bVHMeeOgnyYY+OLp19fOV61Y9Uc3jX/F45TocNAJ9IhqRoI2qrFvd8w5VkgxpTVpGVr53V7krWfDDpKur58cDAADoDe0vVkZZ9FQ1faKujmTB/+tboxnK5WTBf1fusd0T1Tz+pHIhe40PYEKf8tKyyhS3PVXNeWDj2so90PqSrt9dryr38HpVtefBR26tXI8DoO8RtNXBihUrMm/evOy+++5paWnJ1KlTc95556WtrS1nn312SqVSLr/88qLL7JGn7up5h2p7rH4uWbGofscDAAB4LU/8phKA1cuqJcnKJ+t3vNfz0jPJyifqd7xyV7K4n95WoPPKq7Lxbe9I14/+e4tl5XI5HZ+5MBuPPSHlxU/Uv7g66dyQLH2gch+vV+65t2Ft8sz8ytSDja5RXwOP/zJJHT8A8NwjfStwf35R79yfc1s6N1SuxwHQ9wjaetl9992XffbZJ5deemmWL1+evfbaKxs3bsyXvvSlnHrqqVm4cGGSZL/99iu20B7o3FjMcPUl99X/mAAAAH9o47pk+cL6H7cv9YmKqOW5R34f0vQnTWeekUzfJZ1XfC3l51dstqzr+u+n/MCDaTrzfSntOr2YAnvZM79NbrsiWfjfv5tq9XfBTLmzMhroF1f07ftv1UIjvgbaV/X8diK1MNDPg8/Mr1yXA6BvEbT1ohUrVuT444/P8uXLc/7552fZsmW55557snz58lx88cW56aabcuedd6ZUKmXu3LlFl9ttzz6cdKyv/3FXPpW0uUcm/Vxra2sOPfTQtLb2cI4IABqCdgAaw7IF9R3N9ornH+sb04ZtaC8mGCl39c97FJUGD86gC85P1q1L59//w6bfl59ekq6r/j2lPfdI03tOKq7AXvT0PcmCH732NYSNa5MH/6t//m27qxFfA888UMxxly1IOuo4w9K2tK1MXnyq/sftWNf4wTSNT5+IRiRo60Wf/OQns2TJkpx77rm57LLLMnLkyE3L5s2bl3333TcdHR2ZPn16Ro0aVWClPbOygDcSr3jx6eKODbUwffr0fP3rX8/06dOLLgWAAmgHoDEUNoVj+Xcjggq2amnP70lUK0Vc2K6F0szd03TaKSnffU+6bvphyp2d6bzksqRcTvMF56fU3Fx0iTX30jPJw7d0f/2F/923pgWstUZ7DRR1bahzY/Ly8mKO/WpFnouKvC4HtaBPRCMStPWShQsX5pprrsn48ePz+c9/fqvrHHjggUmSfffdd9PvfvrTn6ZUKm3x1ZemlizyDU1feDMF26OzszNr1qxJZ2dn0aUAUADtADSG1c8Wd+y+0Ccq9PE/m5TreE+oWmo64/Rkt93S+bWvp+vL/5Lyw4+k6az3pzR1StGl9Yqn7unZ+uWu5Ol7e6eWvqJRXgNdncnqAkPRvnAefLnA8+DqPvD4YXvoE9GIBG295Oqrr05XV1fOOOOMjBgxYqvrDBs2LMnmQdsrvvzlL+dXv/rVpq9vfvObvVpvd3VsSNoLnL6xyA4d1MJDDz2Ugw46KA899FDRpQBQAO0A9H/r25L1a4o7fpEXd/tCDR3rkrUvFXf87VEaNCiDLvh0smFjum68KaW956Tp3e8suqxesb6tck+9nlq2oJhbVdRLo7wG2l6o3GOvKH3h2lCRNbStTDr7wPSZUC19IhrRoKILaFS33FKZH+GII47Y5jpLllTm/Nha0LbXXnvlTW96U83qmTlzZpqatj9XHT9qSi774K+3ufzg9yVDXmN63aGtv/9+2Ee2vd6GtuQ339ry908+tiwnTTmom9VC7zvrrLN6tP6yZcuSJDfffHPuvbf7H9e86qqrenQc6Kuu/OSTaWpqTldnZ6ZM2aXocqAmetIWaAeg/5sybs9cdOZPtrrs9fpDyfb3iebf/0je+Zkju1lt7/jc6Tdl1wlb9mOT2vUJk20/B28/6oQ8tryHw6WqUB4yJLniy7XdaWtrMnhw0tGR0kFvSKkG/fRXmzVzVkobir8CP3f6kfn0O/+9x9t1dSRHHfbOLFp2Vy9U1TO98vdPevU1UK+//5xpf5QL3v2drS6rx3nw1h//Im//2GndrLZ3fPHP7soOIyZudVlvXxtLkgP2fWNeWL20m9VC79Mnor/q6vr9fOiHHXZYj16TryZo6yVPPlmZtH+XXbZ+EbGjoyO33357kq0HbbX2yglsu60f/pqLh7QmLSNfc5UkSampe+ttsV2pOUuXeiNB39He3t6j9detW7fpe0+29bqnUZRT3vTd65pG0ZPzuXYA+r/hmbDNZd3tDyXV94lSbir8nFDuKm1zWW/3CZPkxZWr6vMctAzN4Brurlwup/MLX0w6NibTpqbrO99N0+F/lNLOk2p2jGeWPZOsK35I2Ixxa6vetu3ltYW/xpPU/O+f9P5roF5//ymjXt7msnqcBzs7iu9LlLLte+rV4zz4woqVWbqiD/w/gd/RJ6IRPPts9cOVBW29pK2tLUmydu3W31xec801WbFiRUaOHJldd911i+WnnnpqVqxYkXHjxuWEE07I3/3d32X8+PFV1zNp0qSajGgbN3KH11y+oe21tx/aWnkjUe6qTCXR0/10lTsyefLk16kS6mf48NcOn/9QS0vLpu892dbrnkZRSmnTd69rGkVPzufaAej/dhg3ZpvLXq8/lGx/nyilzuLPCaWubS6qVZ/wtfY1ZuzoTN7Q+89BeciQ1PI2VF3fvyHl+x9I059+IE2HvCkd53winV/4Ypovuzil0rbDy57YedLOfWJE27ARQ6redvioocW/xlP7v3/S+6+Bev39R4/ZdjpUj/Ng06Di3xt1lTu2uay3r40lydjxOyRDi/9/Aq/QJ6K/6urq2jRIacKEbX+g7vWUyuX+ehvhvm2vvfbKwoULc/nll+ecc87ZbNmyZcty4IEHZtmyZTn00EPzi1/8YtOye++9N1dffXX+6I/+KCNGjMivfvWrfP7zn8+0adNy1113bToRdUdbW9um+8OtWbMmra2vM3a/Gzo7kp9+qfJmoBqHfaTyaZ11q5NfXNHz7UfvnBz03uqODb2hp/NJz58/PyeffHKuvfbazJkzp9vb7bnnnj0tDfqkn3whSTlJKTnq/KKrgdroSVugHYD+b+O65GeXV7/99vaJxk1P9j+5+uPXwv0/SJ5/tLptt/fxJ8lbPpoM3fqt0GuqrbMjO9zy45rsq7x0aTo+em5K03dJ8z98IaXm5nRefU26/u0bafrYR9L8rhNrcpwXjzw6rc3Ff6a6Y31y278knRt7tt3gYZXXSB94CDX9+yf1eQ3U6+/f9kLyq3+rfvvtPQ9MmpPMeXv1x6+FO7+dvFTl5FHb+/hLTckRn6wEjtBX6BPRX9UqQ6ntZOBsctRRRyVJLr744jzyyO/vAHznnXfmiCOOyIoVK5Ik++2332bb7b///rnkkkty3HHH5a1vfWv+8i//Mt/+9rczf/78XH311XWrf1uaByWt1Q+s224jqw+VoU+YNWtWbr/99syaNavoUgAogHYA+r/BLcmw0cUdvy/0iUYVWMOQ1vqEbLVU7upK56V/n3R1pfmCT6fUXJlyrumUk1OaNTNdV16V8jM1ut1DHzFoaDJxr55vt/PefSNkq7VGew0M3yFprvW8mj3QF86DRdYwYryQjf5Nn4hGJGjrJfPmzcu4cePy9NNPZ86cOdlnn30yc+bMHHzwwdltt91y5JGVm1d35/5sxx13XFpbW3PXXcXfDDgptlNV5LGhFgYPHpyxY8dm8OACeyUAFEY7AI2hyAusfaFPNNAff091XXt9ygsWpukD70tp2rRNvy81N6f5M59OujrT+YUvptEmHJp2QM/CgOYhyZT9eq2cQjXaa6DUlIzcqbjj94XzQJE19IWgEbaHPhGNSNDWS6ZMmZLbbrstxx57bFpaWvLEE09k7NixueKKK3LTTTdtGuXWnaDtFbWas317jd/ylnJ1USolY3cp5thQK0899VQ+/vGP56mnniq6FAAKoB2AxjB+t2KO2zQo2WFqMcd+tTGTixvNMq6g/mi1yk89la5vfDOl2Xum6aR3b7G8NH2XNL3vjJQf/G26vn9DARX2ntZxyT7HJ6Xm11+3aVCy7zuLHS3aWxr1NTCuoPPg4GF9I2gbO71ynaoIRbVBUCv6RDQiA4170ezZs3PjjTdu8fs1a9bkiSeeSFNTU/bee+/X3c8NN9yQtra2HHzwwb1RZo+N370yVcf6NfU97o67V+awhv5s9erVufXWW7e4dyMAA4N2ABrDhD2SR39auV9bvY87eFh9j7k1g4ZU7pG05L76Hrd5cDKpiukIi1SaNi2Db/rBa67TfPqpaT791DpVVF87zkgOODl5+H+SNSu2vs7ICcmeRyWjJ9W3tnpp1NfA5L2Tx3+ZlDvrfNy5fWPaxJaRletj1d6vslpDRyTjZ9T3mFBr+kQ0oj7QNA088+fPT7lczqxZszJ8+PDNlr3vfe/LbrvtlgMOOCAjRozIr371q1xyySXZb7/9ctpppxVU8eaamipvbB7/ZX2P26hTSAAAAP1L8+DKvaSerPPs/n2pTzRlv/oHbRP3qtz7i/5lh6nJGz+QvLQ0eWZ+smxBJZxpGpQceGoyamJxI4Oo3pDWZMKsZPnCOh60VLke1VdM3a/+QdvkuZXrcgD0LU7NBXjwwQeTbH3ayDlz5uR73/te3v/+9+ftb397rrzyynzoQx/KT3/60wwZMqTepW7T1APqewPqcdOTHaa97moAAAB1sctB9R1dttOsvjXiZ8T4yqi2ehk0NNn1TfU7HrVVKiVjpiR7/Uky5Hf/bwa3VF7TQrb+a7c313d02dT9+9b0ojtMq1yvqpehI5NpB9bveAB0n6CtAK8VtP3lX/5lHnzwwbz88svZuHFjFi9enL//+7/P6NF96J1EKm+IZ7+tPsdqHpLM/hNvvgEAgL5jSGuy5x/X51iDh1Wm1utrZh1Rvw9gznqrWwlAXzN8h2T3t9TnWMPGJLsfVp9jdVepVLk21lynz8XPPtqoXoC+StBWgNcK2vqT8bslk3v4EDa0JetWV753155/rENF45gwYUIuvPDCTJjQB+7eDEDdaQegsUzYs/LVE9X0iWa/LRky/PXXq7fBLZUPRaYHH4qs5vHvuHsy6fVvbw4UYOoBPZ+BqKfngVJTMueY+gVaPdEyqucfuqjmPDh538p1OGgE+kQ0IvdoK8Att9xSdAk1s8cfV94YPL+oe+v/5ls92//ub6nvdCTQ28aPH5+zzjqr6DIAKIh2ABrPnGOSjWuTlU92b/2e9on2ODLZaWbP66qX8btWgsCF/6976/f08Y+Zkux9rBlOoK8qlZJ9T0zu/o9k9bPd26ZH54FSsvc7KueCvmrSnGT9mmTRbd1bv6fnwR13r1x/g0ahT0QjMqKN7dLUlOxzfM8/xdkdM9+aTH9j7fcLRXrppZfyox/9KC+99FLRpQBQAO0ANJ6mQcm+76pcCK2p301JNvWAGu+3F0zeJ5nzjsqok1oaOz3Z/91J8+Da7heorUFDkwNPqX0Y1tSczD2hd6451dr0N1auY9XaxNmV625NruDSQPSJaERO02y3pubKJwxn/0lthvEPG5MceFqyyxu2f1/Q1yxZsiSf+tSnsmTJkqJLAaAA2gFoTM2DkrknVkafNdVg3pjWcclB700mz93+fdXLpL2Sg9+XjNhx+/fVNCiZefjvQrY+OFUcsKVBQ5MD3pPsdmhtQvdRE5ODz+zbI3r/0C5vSA48tXJda3s1D6lcZ5vzjsp1N2gk+kQ0IlNHUhOlUuVTjON2SR79WfLcI0m53LN9NA9Jpuyb7PZmn1gEAAD6l1KpMvps3G7Joz/t/vT6rzZoaDJ1/2T6myrhXX8zcqdK2PbEb5Kn76lMqdlT43ZNZh2RtI6tfX1A72pqTnY7pDLC99Fbk5VP9XwfQ4YnuxyUTD2wf47i2mFq8qb3J4//Kllyf9K5oWfbl0rJTrMqHzZoGdU7NQJQe/3wrTt9WcuoypD2dauTpQ8kzz6UtL+47fVLTZXO2M57JxP3Sgb5tCIAANCPDR+T7PvOZO1Lv+8TrX2NmZFKTZWRGzvvk0zcs/9/6PCVC+27HJQ893Cy9MHk5WVJV+e2t2kZlUzYI5m8b+X5A/q3kTsmB5yStL1QCZueezRZv3rb6zcNSkZPqpwDdprZ/0dwNQ+pBGW7HpIsX5A889tk9XNJuWvb2wzfoTJF5uS5ScvI+tUKQG0I2ugVLSOTGYdWvjauq7yhaF+ZdG6sdCSbhyQjxlemFemPn9QEAAB4LcNGJ7u/pfK1cV2y+tmkbWXS1VHpEw0akozYqdIv6u8XlbemeVAyaU7lq6uzcsF99XNJx/rKxeamQZULyyMnJEOGFV0t0Btax1Wm1N3jyGRDW/Lyc8naVa86D7Yko3ZKho/rn6PXXs+gIcmU/SpfnR3JmueTNSsq58GUKx+sGD42GTWhMqIZgP5LxEGvG9ySjJ1W+YKBrqWlJbNnz05LS0vRpQBQAO0ADEyDW5Kxu1S+BqKm5spMJiN3KroSoChDWpPxuxZdRXGafzdqb/SkoiuB4ukT0YgEbQB1NGPGjFx//fVFlwFAQbQDAADAQKZPRCNqwIHZAAAAAAAA0PsEbQB1tGDBgsydOzcLFiwouhQACqAdAAAABjJ9IhqRoA2gjsrlcjZu3JhyuVx0KQAUQDsAAAAMZPpENCL3aAMAAAD4A8ObmvPikUcXXUaPDG9qLrqEhuHvDwB0l6ANAAAA4A+USqW0NrtsMlD5+wMA3WXqSAAAAAAAAKiCj+YA1NGMGTNyww03ZOrUqUWXAkABtAMAAMBApk9EIxK0AdRRS0tLZs6cWXQZABREOwAAAAxk+kQ0IlNHAtTR0qVL89nPfjZLly4tuhQACqAdAAAABjJ9IhqRoA2gjlatWpXrrrsuq1atKroUAAqgHQAAAAYyfSIakaANAAAAAAAAqiBoAwAAAAAAgCoI2gAAAAAAAKAKgjaAOho/fnw+9KEPZfz48UWXAkABtAMAAMBApk9EIxK0AdRRqVTKkCFDUiqVii4FgAJoBwAAgIFMn4hGJGgDqKPnn38+X/7yl/P8888XXQoABdAOAAAAA5k+EY1I0AYAAAAAAABVELQBAAAAAABAFQRtAAAAAAAAUAVBG0AdjR49Oscff3xGjx5ddCkAFEA7AAAADGT6RDSiQUUXADCQTJkyJZdccknRZQBQEO0AAAAwkOkT0YiMaAOoo/Xr1+fJJ5/M+vXriy4FgAJoBwAAgIFMn4hGJGgDqKNFixblmGOOyaJFi4ouBYACaAcAAICBTJ+IRiRoAwAAAAAAgCoI2gAAAAAAAKAKgjYAAAAAAACogqANAAAAAAAAqjCo6AIABpI5c+Zk4cKFRZcBQEG0AwAAwECmT0QjMqINAAAAAAAAqiBoA6ijxYsX57TTTsvixYuLLgWAAmgHABioOjuSNc8nXZ2Vn7s6f/9vAAYOfSIakakjAeqovb09999/f9rb24suBYACaAcAGCjK5WTV0mT5guSl5UnbiqTc9fvlG9cmt34pGTE+GT0xmbR3MmpiUioVVzMAvU+fiEYkaAMAAACgJsrl5JnfJk/fnaxZ8Trrdiarn618Lbk/GTkhmXZgMnG2wA0A6D8EbQAAAABst/YXkwX/L1m1pLrtVz+bzL85WTY/2etPkpZRta0PAKA3uEcbAAAAANtl+cLk19+oPmR7tZVPJr+6Knnu0e3fFwBAbxO0AdTR5MmTc/HFF2fy5MlFlwJAAbQDADSipQ8kv70p6eqo3T47NyQP3lAJ8ABoHPpENCJTRwLU0ZgxY3LCCScUXQYABdEOANBonn04WfjfvbPvcrkyleSglmT8rr1zDADqS5+IRmREG0AdrVy5Mt/+9rezcuXKoksBoADaAQAaybrVPQ/ZDn5fcthHKt+7o1xOFvww2dDe8/oA6Hv0iWhEgjaAOlq2bFkuuuiiLFu2rOhSACiAdgCARlEuV0K2jvU9225Ia9IysvK9uza0Jw/f0rPjANA36RPRiARtdbBixYrMmzcvu+++e1paWjJ16tScd955aWtry9lnn51SqZTLL7+86DIBAAAAumXF48kLi+t3vGcfSl58un7Hq7WucvLI8uR/5ic/fCD56UPJcy8XXRUAUAvu0dbL7rvvvrz97W/P8uXL09ramr322ivPPPNMvvSlL+Wxxx7bNER2v/32K7ZQAAAAgG56+t5ijrnD1Pofd3t0lZPbH0l+/nDy/OrNl33/7mTWxOTovZOZE4qpDwDYfka09aIVK1bk+OOPz/Lly3P++edn2bJlueeee7J8+fJcfPHFuemmm3LnnXemVCpl7ty5RZcLAAAA8LraX0xWPlH/4z6/KFm/pv7HrVZnV/Kt25Pr7toyZHvFI8uTf/6f5NeP1bc2AKB2BG296JOf/GSWLFmSc889N5dddllGjhy5adm8efOy7777pqOjI9OnT8+oUaMKrBSol9bW1hx66KFpbe3BDQkAaBjaAQAawbOPFHPcclfy3KPFHLsa3787uefJ11+vq5xc8+tk/tLerwmgaPpENCJBWy9ZuHBhrrnmmowfPz6f//znt7rOgQcemCTZd999t1j2ve99L29+85vT2tqa0aNH59BDD838+fN7tWag902fPj1f//rXM3369KJLAaAA2gEAGsHLyws89rPFHbsnXliT/KIHgWQ5yY33JeVyb1UE0DfoE9GIBG295Oqrr05XV1fOOOOMjBgxYqvrDBs2LMmWQduXvvSlnHLKKTnssMNyww035Oqrr85RRx2VtWvX9nrdQO/q7OzMmjVr0tnZWXQpABRAOwBAI1hdYNhV5LF74pePVsKznli2Kln8fG9UA9B36BPRiARtveSWW25JkhxxxBHbXGfJkiVJNg/aHnvssVxwwQX54he/mEsuuSR//Md/nHe84x35m7/5m7zhDW/o3aKBXvfQQw/loIMOykMPPVR0KQAUQDsAQH/X1Zmse7m447e/WNyxe+K+p6rb7t5uTDUJ0J/pE9GIBhVdQKN68snKO6Nddtllq8s7Ojpy++23J9k8aLvyyiszePDgfOhDH6ppPTNnzkxTk1wVau2ss87q0frLli1Lktx888259957u73dVVdd1aPjQF915SefTFNTc7o6OzNlytbbSOhvetIWaAcA6O9ahozIv3x82xdHD35fMuQ1brsztPX33w/7yLbX29CW/OZbW/6+qyOZMmVKN6stzon/56EMHrr1GY5ey7f/4/s5713n9kJFAL1Hn4j+qqura9O/DzvssB69Jl9N0NZL2trakmSb0z1ec801WbFiRUaOHJldd9110+9/+ctfZo899si3vvWtXHTRRXn66aczc+bM/NVf/VVOP/30qut55QQG1FZ7e3uP1l+3bt2m7z3ZdulSd8WmMZR/N4FOOWWvaxpGT87n2gEA+ruWwcNfc/mQ1qRl5Ovvp9TUvfX+UGdnR79oFzs2rK8qaFuz+qV+8fgAXk2fiEbw7LPVz08taOslEydOzIsvvph77rknhxxyyGbLli1blgsuuCBJMnfu3JRKpc2WLV26NH/5l3+Ziy++OFOnTs2//uu/5r3vfW923HHHHHXUUVXVM2nSJCPaoBcMH/7ancw/1NLSsul7T7adPHlyj44DfVUppU3fva5pFD05n2sHAOjvSillY8f6DB40dKvLN7S99vZDWyshW7krWf8a625rP2s3rO4X7WLbC49n2MhxPd6uq21Zv3h8AK+mT0R/1dXVtWmQ0oQJE6reT6lcLvf03qx0wyc/+cn80z/9U6ZOnZqf/OQnmTVrVpLkzjvvzJlnnpnHH388GzduzDnnnJPLL79803azZs3Ko48+mu9973t55zvfmSQpl8vZb7/9MmbMmPzsZz/rdg1tbW0ZMaLy6ak1a9aktfU15m4AqtLT+aTnz5+fk08+Oddee23mzJnT7e323HPPnpYGfdJPvpDKXeFLyVHnF10N1EZP2gLtAACN4I5vJqur/ND3YR+pjGRbtzr5xRU9336HacmBp1R37Hr6zePJd37Vs22aSsnn3pWMHtY7NQH0Fn0i+qtaZSiGOPWSefPmZdy4cXn66aczZ86c7LPPPpk5c2YOPvjg7LbbbjnyyCOTbH5/tiQZO3Zskmw2cq1UKuWoo47Kb3/72/o9AKBXzJo1K7fffvum8B2AgUU7AEAjGFX9B7779bF7Yv9dktatD/rbpn2nCdmAxqdPRCMStPWSKVOm5Lbbbsuxxx6blpaWPPHEExk7dmyuuOKK3HTTTXnkkUeSbBm0vVaK/8r8tUD/NXjw4IwdOzaDBw8uuhQACqAdAKARjC5w9q7ROxd37J4Y3Jy8/9DKKLXuGDciefeBvVsTQF+gT0QjErT1otmzZ+fGG2/M6tWrs3r16txxxx358Ic/nLa2tjzxxBNpamrK3nvvvdk2J554YpLkv//7vzf9rqurKz/+8Y9z0EEH1bV+oPaeeuqpfPzjH89TTz1VdCkAFEA7AEAjmDAz2cYt2nrVkNZk/G71P2619piU/NnhydBBr73epNHJuUclI41mAwYAfSIakaCtAPPnz0+5XM7MmTO3uOHj8ccfn7e85S358Ic/nK997Wv5f//v/+XUU0/N/Pnz81d/9VcFVQzUyurVq3Prrbdm9erVRZcCQAG0AwA0guYhyaTu31anZibPTZqa63/c7bHX5OR/n5icsH9l1NqrzdgpOeuw5DPvSHao7pYwAP2OPhGNSNBWgAcffDDJltNGJpX7sd1www056aST8r/+1//KCSeckCeffDI333zzpvu6AQAAABRp6gFJ0+uM1Kql5iHJlC0vo/QLI1qSI/dK/n8nbP77Txyd7LdL0uzqHAD0a3V8S8QrXitoS5IxY8bkiiuuyBVXXFHPsgAAAAC6ZfiYZMahyaM/q8/xZr01GTridVfr05pKSSlJOZXvAEBj8JmZArxe0AYAAADQ1007MBm9c8+22dCWrFtd+d5dY6cnO+/Ts+MAANSLEW0FuOWWW4ouASjIhAkTcuGFF2bChAlFlwJAAbQDADSSUlOyz/HJXVcn617u3ja/+VbPjtE6Ntn7HUnJEDCAhqBPRCMStAHU0fjx43PWWWcVXQYABdEOANBoWkYmB56S3HNtsnZVbffdOi454D3JkOG13S8AxdEnohGZOhKgjl566aX86Ec/yksvvVR0KQAUQDsAQCMaNiZ5w+nJuF1rt8+dZiYHntb/78sGwOb0iWhEgjaAOlqyZEk+9alPZcmSJUWXAkABtAMANKqhrcl+7072OiYZNLT6/QweluxzXDL3xGTIsNrVB0DfoE9EIzJ1JAAAAADbrVRKdt67MhrtmfnJkvuS9pXd23bE+GTK/snE2cmgIb1aJgBATQnaAAAAAKiZQUOTaQckU/dPXl7+u69nk7YVSefGSiDXPDhpHZ+MmpCMmpSM3KnyewCA/kbQBgAAAEDNlUrJ6EmVLwCARuUebQB11NLSktmzZ6elpaXoUgAogHYAAAAYyPSJaERGtAHU0YwZM3L99dcXXQYABdEOAAAAA5k+EY3IiDYAAAAAAACogqANoI4WLFiQuXPnZsGCBUWXAkABtAMAAMBApk9EIxK0AdRRuVzOxo0bUy6Xiy4FgAJoBwAAgIFMn4hGJGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKjCoKILABhIZsyYkRtuuCFTp04tuhQACqAdAAAABjJ9IhqRoA2gjlpaWjJz5syiywCgINoBAABgINMnohGZOhKgjpYuXZrPfvazWbp0adGlAFAA7QAAADCQ6RPRiARtAHW0atWqXHfddVm1alXRpQBQAO0AAAAwkOkT0YgEbQAAAAAAAFAFQRsAAAAAAABUQdAGAAAAAAAAVRC0AdRRU1NTDjrooDQ1Of0CDETaAQAAYCDTJ6IReTUD1FFXV1fuvPPOdHV1FV0KAAXQDgAAAAOZPhGNSNAGAAAAAAAAVRC0AQAAAAAAQBUEbQAAAAAAAFAFQRtAHY0ePTrHH398Ro8eXXQpABRAOwAAAAxk+kQ0okFFFwAwkEyZMiWXXHJJ0WUAUBDtAAAAMJDpE9GIjGgDqKP169fnySefzPr164suBYACaAcAAICBTJ+IRiRoA6ijRYsW5ZhjjsmiRYuKLgWAAmgHAACAgUyfiEZk6kgAtlAuJxs6i66iZ4Y0J6VS7fZXLpfT3tW/noThTc0p1fJJGOD622ug1n9/5wEAAAAGsoHeL+5v10WS4q6NCdoA2MKGzuTCa4quomcuPjUZWsNWrb2rMzvc8uPa7bAOXjzy6LQ2a9prpb+9Bmr993ceAAAAYCAb6P3i/nZdJCnu2pipIwEAAAAAAKAKgjYAAAAAAACogsl1AOpozpw5WbhwYdFlAFAQ7QAAADCQ6RPRiIxoAwAAAAAAgCoI2gDqaPHixTnttNOyePHioksBoADaAQAAYCDTJ6IRCdoA6qi9vT33339/2tvbiy4FgAJoBwAAgIFMn4hGJGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA2gjiZPnpyLL744kydPLroUAAqgHQAAAAYyfSIa0aCiCwAYSMaMGZMTTjih6DIAKIh2AAAAGMj0iWhERrQB1NHKlSvz7W9/OytXriy6FAAKoB0AAAAGMn0iGpGgDaCOli1blosuuijLli0ruhQACqAdAAAABjJ9IhqRoK0OVqxYkXnz5mX33XdPS0tLpk6dmvPOOy9tbW05++yzUyqVcvnllxddJgD0qq7OJOXf/VB+rTUBAKDxdJW9HQaARiRo62X33Xdf9tlnn1x66aVZvnx59tprr2zcuDFf+tKXcuqpp2bhwoVJkv3226/YQgF6wZIFP80/vq+Uu2+6bJvr/OP7SvnBZcfVsar66rzyqmx82zvS9aP/3mJZuVxOx2cuzMZjT0h58RP1L65O2l9MHvlp8vN/3vz3938/eeGJpNzgVxkG+mvAeQAAGOhWr0t+Mj/5vz/Y/Pdf+u/k7ieSjs5CygKgTgZ6v3ggXBcRtPWiFStW5Pjjj8/y5ctz/vnnZ9myZbnnnnuyfPnyXHzxxbnpppty5513plQqZe7cuUWXC0AvaDrzjGT6Lum84mspP79is2Vd138/5QceTNOZ70tp1+nFFNjLnro7+eW/Jk/dlXSs23zZ84uSe69N7rsu6dhQTH31MNBfAwAAA9n8pZWA7cb7khfbNl/2+PPJN29PLvthsnJNIeUBQK8bCNdFBG296JOf/GSWLFmSc889N5dddllGjhy5adm8efOy7777pqOjI9OnT8+oUaMKrBSol9bW1hx66KFpbW0tuhTqpDR4cAZdcH6ybl06//4fNv2+/PSSdF317yntuUea3nNScQX2oifvSh659fXXe+GJ5L7rk66OXi+pEAP5NcCWtAMAMHAsfCb5158lG17nfe7yl5LLf5K8vLY+dQEUSZ9o4BkI10UEbb1k4cKFueaaazJ+/Ph8/vOf3+o6Bx54YJJk33333fS7t771rSmVSlv9+uhHP1qX2oHeM3369Hz961/P9OnTiy6FOirN3D1Np52S8t33pOumH6bc2ZnOSy5LyuU0X3B+Ss3NRZdYc20rk0d/2v31Vy1Jnry718op3EB8DbB12gEAGBg2dCTf+mXlvmzdsbItuf6u3q0JoC/QJxqYGv26yKCiC2hUV199dbq6unLGGWdkxIgRW11n2LBhSTYP2r7yla/k5Zdf3my9m266KRdddFGOO64x52iFgaSzszNr167NsGHD0tzPG5Ce6NjQnrWrV7z+ig2s6YzT0/WrO9L5ta+n6bHHU374kTR9+M9Smjql6NJ6xdL7q9jmvmT6QUmpQT8GNNBeA3/IeaBioLYDADDQ3PdU0ra+Z9s88HTy0tpk9LDeqQmgLxjIfaKB3i9u5OsigrZecssttyRJjjjiiG2us2TJkiSbB2177bXXFuv9f//f/5cdd9wxxxxzTI2rBOrtoYceysknn5xrr702c+bMKbqcuvn1dZ/Lr6/7XNFlFKo0aFAGXfDpdHziz9N1400p7T0nTe9+Z9Fl9YquzuSZ3/Z8u3WrK9NIjt+t5iX1CQPpNbA1zgMVA7UdAICB5leP9nybrnLym8eSo/eufT0AfcVA7hMN9H5xI18XEbT1kieffDJJsssuu2x1eUdHR26//fYkmwdtf+j555/Pj370o3z84x/PoEHV/7lmzpyZpqYGHSIABTrrrLN6tP6yZcuSJDfffHPuvffebm931VVX9eg426t58LC866IqeobbsPcRH87MN75nq8u+93dH1+QYs2bOTOfG2t3UoDxkSHLFl2u2vyRJa2syeHDS0ZHSQW9Iqcbn5VkzZ6W0YUNN91mNHUZMyhf/7M6qtp133l/nv+/9eo0rqk5/ew3U+u/vPNB9PWkL+ks7AABsn+P/6sEMbd2hx9t9+cr/zJ/+x6d6oSKA3tOofaKB3i/ub9dFkp5fG+nq6tr078MOO6xHr8lXE7T1kra2tiTJ2rVbf1Ffc801WbFiRUaOHJldd911m/u5+uqr09HRkTPPPHO76nnlBAbUVnt7e4/WX7du3abvPdl26dKlPTrO9ho0dHhN9zdm4sxM2/uomu7zDz2z7Jl0rO/Z3+M1tQzN4NrtLeVyOZ1f+GLSsTGZNjVd3/lumg7/o5R2nlSzYzyz7JlkXQ/np+kFnWOHVL1t+5q1dX+9b1M/ew3U+u/vPNB9PTmf95d2AADYPqWm6i65rd/Qod0H+p1G7RMN+H5xP7sukmzftZFnn3226uMK2nrJxIkT8+KLL+aee+7JIYccstmyZcuW5YILLkiSzJ07N6VSaZv7+eY3v5nZs2fnDW94w3bVM2nSJCPaoBcMH96zBrelpWXT955sO3ny5B4dZ3s1D+5/NwXYedLONR/R9nzN9pZ0ff+GlO9/IE1/+oE0HfKmdJzziXR+4Ytpvuzi12wHemLnSTv3iRFtw4YMTVe5K01V3GytNLij7q/3belvr4Fa//2dB7qvJ+fz/tIOAADbZ0P7CxkybGSPt2vqWqvdB/qdRu0TDfR+cX+7LpL0/NpIV1fXpkFKEyZMqPq4grZectRRR2XhwoW5+OKLc/TRR2fWrFlJkjvvvDNnnnlmVqyo3PRwv/322+Y+Hnroodx1113527/92+2u59FHH01ra+t27wfY3EMPPdSj9efPn58rr7wy73jHO3o0D/VFF13U09K2y/qO5MJr6nrI7fbIo49maA1btbbOjuxwy49rsq/y0qXpuvKqlPaYlaZTTk6puTlN7zsjXf/2jXR9/4Y0v+vEmhznkUcfSWtz32ja770ueWFxz7Zpak6+8f0vZMjwL/ROUT3U314Dtf77Ow90X0/agv7SDgAA2+fG+5KfzO/5dv/01x/Mbl/5YM3rAehNjdonGuj94v52XSTp+bWRtra2jBgxIknyi1/8ourjGuLUS+bNm5dx48bl6aefzpw5c7LPPvtk5syZOfjgg7PbbrvlyCOPTPLa92f75je/mVKplDPOOKNeZQO9bNasWbn99ts3he80vnJXVzov/fukqyvNF3w6pebmJKm8qZg1M11XXpXyM403ve+U/Xq+zYQ9kiG1nZWhTxiorwG2TjsAAAPDIbsnPf1s/s5jkl137I1qAPoOfaKBZyBcFxG09ZIpU6bktttuy7HHHpuWlpY88cQTGTt2bK644orcdNNNeeSRR5JsO2grl8v59re/nbe+9a2ZNm1aPUsHetHgwYMzduzYDB5cyxmO6cu6rr0+5QUL0/SB96X0qvN5qbk5zZ/5dNLVmc4vfDHlcrnAKmtv/K7JDlO7v/6gocn0N/VePUUaqK8Btk47AAADw7gRyVv26P76pSTH7ZfUaOYsgD5Ln2jgGQjXRQRtvWj27Nm58cYbs3r16qxevTp33HFHPvzhD6etrS1PPPFEmpqasvfee29125///Od58sknc+aZZ9a5aqA3PfXUU/n4xz+ep556quhSqIPyU0+l6xvfTGn2nmk66d1bLC9N3yVN7zsj5Qd/m67v31BAhb2n1JTMPTEZvfPrrztoaLLfu5LWsb1fV70N5NcAW6cdAICB450HJAdOf/31mkrJaW9K9nJrNmAA0CcaWAbKdZG+cSOXAWb+/Pkpl8uZNWvWNm/4+M1vfjPDhg3LySefXOfqgN60evXq3HrrrTnnnHOKLqUupuz11pz3rdf+NMrrLe/PStOmZfBNP3jNdZpPPzXNp59ap4rqa3BLcsB7kid+kyx9INnQtvnyUnNlushd35i0jiumxt420F8DifPAHxpo7QAADGRNTckZb0522zH5+cPJsy9vuc6ek5Kj5yQzJtS/PoAiDMQ+0UDuFw+U6yKCtgI8+OCDSbY9beS6dety7bXX5p3vfGdGjhxZz9IAoKaaByczDk12fVOy4vGk/cWkqzMZ2prsuHtj3pMNAABe0VRKDp2VvHlmsui5ZMnKZENHMmxIMnvnZEeXfQCg3xO0FeD1graWlpasWrWqjhUBQO9qak52mll0FQAAUIxSKZk5ofIFADQW92grwOsFbQAAAAAAAPR9RrQV4JZbbim6BKAgEyZMyIUXXpgJE3yMEWAg0g4AAAADmT4RjUjQBlBH48ePz1lnnVV0GQAURDsAAAAMZPpENCJTRwLU0UsvvZQf/ehHeemll4ouBYACaAcAAICBTJ+IRiRoA6ijJUuW5FOf+lSWLFlSdCkAFEA7AAAADGT6RDQiQRsAAAAAAABUQdAGAAAAAAAAVRC0AQAAAAAAQBUEbQB11NLSktmzZ6elpaXoUgAogHYAAAAYyPSJaESDii4AYCCZMWNGrr/++qLLAKAg2gEAAGAg0yeiERnRBgAAAAAAAFUQtAHU0YIFCzJ37twsWLCg6FIAKIB2AAAAGMj0iWhEgjaAOiqXy9m4cWPK5XLRpQBQAO0AAAAwkOkT0Yjcow2ALQxpTi4+tegqemZIc233N7ypOS8eeXRtd9rLhjfV+EkY4Prba6DWf3/nAQAAAAaygd4v7m/XRZLiro0J2gDYQqmUDB3gLUSpVEpr8wB/Ega4gf4acB4AAABgIBvo/eKBfl2kJ0wdCQAAAAAAAFUQRwLU0YwZM3LDDTdk6tSpRZcCQAG0AwAAwECmT0QjErQB1FFLS0tmzpxZdBkAFEQ7AAAADGT6RDQiU0cC1NHSpUvz2c9+NkuXLi26FAAKoB0AAAAGMn0iGpGgDaCOVq1aleuuuy6rVq0quhQACqAdAAAABjJ9IhqRoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqDii4AoD/bc889e7T+6NGj87nPfS5vfvObM2nSpF6qCoB66klboB0AAAAajT4RA12pXC6Xiy6C3tHW1pYRI0YkSdasWZPW1taCKwIAAAAAACherTIUU0cCAAAAAABAFQRtAAAAAAAAUAVBGwAAAAAAAFRB0AYAAAAAAABVELQBAAAAAABAFQRtAAAAAAAAUAVBGwAAAAAAAFRB0AYAAAAAAABVELQBAAAAAABAFQRtAAAAAAAAUAVBGwAAAAAAAFRB0AYAAAAAAABVELSRJOnq6sr/+T//J7vvvnuGDRuWadOm5ZOf/GTa2tqKLg0AAAAAAKBPGlR0AfQNX/jCF3LZZZfl3/7t33LggQfm4Ycfzp/+6Z9m/fr1ueKKK4ouDwAAAAAAoM8RtJEkuf3223P00UfnpJNOSpJMnz49p59+em655ZaCKwMAAAAAAOibTB1JkuSwww7L7bffngceeCBJ8vjjj+fmm2/OscceW3BlAAAAAAAAfZMRbSRJzj///Kxbty4HHHBASqVSOjo68qEPfSj/9//+36JLAwAAAAAA6JOMaCNJcu211+YrX/lK/u3f/i333HNP/vM//zM//OEP89nPfrbo0gAAAAAAAPqkUrlcLhddBL2jra0tI0aMSJKsWbMmra2t21x32rRpOeecc3LhhRdu+t03v/nNfPCDH8zq1avT0tLS6/UCAAAAAADUQ08ylNdiRBtJKi+opqbNXw7Nzc0pl8uRxQIAAAAAAGzJPdpIkrzzne/MZZddlt133z37779/Hn744Xz2s5/N29/+9gwbNqzo8gAAAAAAAPocQRtJki996UsZO3Zszj///DzzzDPZaaedctxxx+Wiiy4qujQAAAAAAIA+yT3aGlit5hd9tY6Ozmzo6MjwlqHbvS8AAAAAAIAiuEcbhbjzgYdy8T9/J7ff/duiSwEAAAAAACiUoI1u29jRkVt/dV/Wb9iY5iYvHQAAAAAAYGBrmLSkVCqlVColSf7rv/4rb3nLWzJq1KiMHz8+J598ch577LFN69544405/PDDM2bMmIwaNSonnnhiHn300W3ue/369fnHf/zHvPnNb86YMWPS0tKSPfbYIxdccEFWrFix1W3uuOOOXHjhhTnooIMyceLEDB06NJMnT84pp5ySO++8c5vHuvnmm/OOd7wjO+20UwYPHpxx48Zl9uzZ+eAHP5jbb7+9ymenNu564OG8vKYto0e25g377FFoLQAAAAAAAEVrmHu0vRKyXX755Tn33HOz8847Z8KECXnooYeydu3aTJ48Offee2++/e1v51Of+lQmTZqUiRMnblo+ceLEPPDAA9lxxx032++zzz6bt7/97bn33nvT1NSUqVOnZtSoUXnkkUeyfv36TJs2Lbfeemt22223zbbbfffd89hjj2Xs2LGZNGlShgwZkqeeeiovvPBCBg0alO9+97s56aSTNtvmK1/5Ss4555wkybhx47LLLrtk7dq1efrpp7NmzZp85CMfyb/8y790+zmp5T3aNnZ05NIrrsnLa9ryzrcdljftv1fV+wIAAAAAAChSrTKUhgvahg8fnn/+53/O+9///iTJypUrc8wxx+TOO+/Mcccdl//5n//Jv/zLv2xa/sILL+RP/uRPcvfdd+fCCy/M3/3d323aZ7lczhFHHJGf/exnOfbYY3P55Zdn+vTpSSpP+nnnnZcrr7wyhxxySH75y19uVs+///u/581vfnN23333Tb/r6urKD37wg7z//e/PoEGD8vTTT2/6I3Z0dGSnnXbKiy++mK985Sv58Ic/nObm5k113HbbbXnhhRfyrne9q9vPyatfJJ/7wtczZGhLT57SzWzYuDHr1m9IqVTKyNZhSUpV7wsAAAAAAKBIG9avy9+c/2dJkkuv+HY+8+H3VrWfhgvaPvGJT+RLX/rSZst+9KMf5e1vf/s2l//whz/MO97xjsydOzf333//pt/ffPPNOfbYY7P33nvnzjvvTEvL5kFVZ2dnDj744Nxzzz35xS9+kUMPPbRbtf7v//2/c9FFF+Xqq6/OaaedliRZvnx5Jk2alB122CErV67s2YPfhlcHbZ/6P1/KkCFDa7JfAAAAAACA/mzDhvX54l99MkllsNJff/rsqvYzqJZF9QV/9md/tsXvDjjggG4tf/zxxzf7/XXXXZck+cAHPrBFyJYkzc3NOeGEE3LPPffkpz/96RZB26OPPprvfve7uf/++/PCCy9k48aNSZLnnnsuSXLfffdtCtp23HHHtLS0ZNWqVfnxj3+co48+utuPuTtGtQ6vekSb0WwAAAAAAEAj2bC+edO/R4wYVvV+Gm5E29bm0SyXy2lqaurW8lc/HQcddFDuuuuu7LXXXtlhhx22etxnn302ixYtysc+9rF85Stf2fT7L3zhC/mLv/iLdHR0bLPmP/uzP8vXvva1TT//xV/8RS6++OIklfDvqKOOymGHHZbDDz88o0aNet3n4A/VYn5R92YDAAAAAAAaTa3u0dZwI9q29kS8EsJ1Z/mrrVq1KkmyYMGC1z1ue3v7pn/ffvvt+cxnPpPm5uZcdNFFOfHEEzN9+vS0tramVCrlyiuvzNlnn71phNsr/vZv/zZTpkzJl7/85dxzzz255557cskll2To0KF573vfm8suuyxjx4593Vpq6a4HHs7La9oyemRr3rDPHnU9NgAAAAAAQF/WcCPatvVwqlm+//7757777ssNN9yQ448/vtu1fPSjH80VV1yRefPmbRqh9mqXXnpp5s2blw984AO56qqrtrqPJUuW5LbbbsuPf/zj/Md//Efa2tpy1FFH5cc//nG36yiXy2lvb88/f/sHWb+ha5uB4mvsIavb1qZcLqdl6JAMGTy4h9sDAAAAAAD0PeVyORs3rE+SjB07Jp8866Sq9tNwI9pqac6cObnvvvvy29/+tkdB2+LFi5Mkhx122FaX//rXv37dfUyZMiWnn356Tj/99Jx//vnZZ5998pOf/CSLFy/Orrvu2q06SqVSWltbs2FjOavb2l9/g9ewbv2GrFu/Ybv2AQAAAAAA0NesaVtX9baCttdw8skn59vf/na++tWv5hOf+MSmuTpfz7BhlZvmLV++fItljz76aG688cYe1TFnzpyMHj06q1atyjPPPNPtoO0VI6u6iZ/RbAAAAAAAQOOrLkepELS9hhNPPDGHH354fvazn+Vtb3tbvvrVr2bvvffetLyrqyt33HFHvvGNb2TevHnZbbfdkiRvectb8oMf/CCf//znc+SRR2bGjBlJkvnz5+ekk05KU1PTFsdasGBBvvjFL+bss8/OG9/4xk3TPHZ2duaf/umfsmrVqrS0tGTOnDk9fhyf+MC7e7zNr+6Znx/8+PaMHtmaCz58WgYNau7xPgAAAAAAABqZe7S9zvIVK1bkxBNPzC9/+cskyS677JKJEydm7dq1eeyxx9LW1pYkWbhwYfbcc88kyerVq3PAAQdk0aJFGTx4cPbYY490dXVl4cKFmTRpUj7+8Y/ns5/97Gb3aLvvvvuy//77J0lGjhyZGTNmpLm5OU888UReeOGFJMlXvvKVfOxjH6vq+emJjR0dufSKa/Lymra8822H5U3779XrxwQAAAAAAOhvthxaxWbGjx+fn/3sZ7nqqqty9NFHp62tLXfddVcWL16c3XffPeedd15+9rOfZdasWZu2GTlyZH7xi1/kgx/8YHbYYYc8/PDDWbNmTT7ykY/knnvuyeTJk7c4zqxZs/L1r389p556aiZNmpTHH388999/f1paWvKe97wnt912W11CtiR54cWXk5QzemRr3rDPHnU5JgAAAAAAQH/TMCPaqK2NHR154cWXM3HHsUWXAgAAAAAA0CcJ2gAAAAAAAKAKpo4EAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKjCoKILAOjPHnrooR6t/9xzz+U//uM/csopp2SnnXbq9nZ77rlnT0sDAAAAAKCXGdEGUEfPP/98vvzlL+f5558vuhQAAAAAALaToA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNoA6Gj16dI4//viMHj266FIAAAAAANhOpXK5XC66CID+6qGHHqrLcfbcc8+6HAcAAAAAgO4zog2gjtavX58nn3wy69evL7oUAAAAAAC2k6ANoI4WLVqUY445JosWLSq6FAAAAAAAttOgoguAvqhcLqe9q7PoMnpkeFNzSqVSzfZXLicb+tdTkCHNSQ2fggGtXC6nvb296DJ6ZPjw4TX9PwAAAAAA8HoEbbAV7V2d2eGWHxddRo+8eOTRaW2u3X/pDZ3JhdfUbHd1cfGpyVBntZpob2/PiBEjii6jR9asWZPW1taiywAAAAAABhBTRwIAAAAAAEAVBG0AAAAAAABQBZOsAdTRnDlzsnDhwqLLAAAAAACgBoxoAwAAAAAAgCoI2gDqaPHixTnttNOyePHioksBAAAAAGA7CdoA6qi9vT33339/2tvbiy4FAAAAAIDtJGgDAAAAAACAKgjaAAAAAAAAoAqCNgAAAAAAAKiCoA2gjiZPnpyLL744kydPLroUAAAAAAC206CiCwAYSMaMGZMTTjih6DIAAAAAAKgBQRtAHa1cuTI//OEP8/a3vz1jx44tupy6mTZtWg488MDstNNOGTx4cNavX5+nn346d999d55//vlu7eMzn/lMdt5553z605/u5WoBAAAAALpH0AZQR8uWLctFF12U/fbbr+GDtiOOOCIf/ehHc+SRR2b8+PHbXO+pp57KzTffnK985St58MEHt7rOZz7zmVx66aWbfha2AQAAAAB9gXu01cGKFSsyb9687L777mlpacnUqVNz3nnnpa2tLWeffXZKpVIuv/zyossEqIn3vOc9WbBgQW655ZaccsoprxmyJZXRbh/96EfzwAMP5Lbbbsshhxyy2fI/DNm6OwIOAAAAAKC3GdHWy+677768/e1vz/Lly9Pa2pq99torzzzzTL70pS/lsccey8qVK5Mk++23X7GF9qK1LyVLH0iWL0w2tCUpJcN3SHbeJ9l5TjJoaNEV9q7OK69K13f/I82f/vM0HfO2zZaVy+V0XvAXKS9cmEGXfymlXacXU2QvWrLgp7nub4/IYadfmgOP/cxW1/nH95Uyfb9jc+JnbqxzddTSTjvtlK985Ss56aSTNvv9Cy+8kDvuuCN33313Hn/88WzcuDHDhg3LnnvumQMPPDAHHXRQWltbkySHHXZYfvGLX+SLX/xiPvvZz+bcc8/dLGT7X//rf+Xzn/98XR8XAAAAAMC2CNp60YoVK3L88cdn+fLlOf/88/O5z30uI0eOTJJccsklufDCCzNo0KCUSqXMnTu34Gprr1xOFv08efLOLZeteT555JbK8r3+JJk4u/711UvTmWek69d3pPOKr6V04AEp7fj70T1d138/5QceTNMHz2rIkI2B44ADDsgPf/jD7LTTTpt+9/Of/zyXX355vve976Wjo2Ob244YMSJnnnlmzj333Oy1115pamrK+eefn/e+972ZNGnSpvWEbAAAAABAX2PqyF70yU9+MkuWLMm5556byy67bFPIliTz5s3Lvvvum46OjkyfPj2jRo0qsNLaK5eTh3689ZDt1bo6kt/elDzz2/rUVYTS4MEZdMH5ybp16fz7f9j0+/LTS9J11b+ntOceaXrPSdveAQ2ltbU1hx566KYRXI3goIMOyq233ropZHv++efznve8J4cffnj+8z//8zVDtiRZs2ZN/vmf/zn77LNPLrjggqxbty5JhGwAAAAAQJ8naOslCxcuzDXXXJPx48dv8+LwgQcemCTZd999N/v94sWLc8IJJ2TkyJHZYYcd8v73vz8vvPBCr9dcS88+VJkusrsW/nfS/mLv1VO00szd03TaKSnffU+6bvphyp2d6bzksqRcTvMF56fU3Fx0idTJ9OnT8/Wvfz3Tp08vupSamD59en74wx9u+rDAz3/+8+y111659tpre7yvrq6uXHbZZVvcs3L58uX5h3/4h1qUCwAAAABQU4K2XnL11Venq6srZ5xxRkaMGLHVdYYNG5Zk86Bt9erVOeKII7JkyZJcffXV+epXv5rbbrstxx13XLq6uupSey08dU/P1i93JUvu751a+oqmM05PdtstnV/7erq+/C8pP/xIms56f0pTpxRdWl10bGjP2tUrtvo1kHR2dmbNmjXp7OwsupTtViqV8q//+q8ZN25ckuTWW2/NMccckxUrqv+bfuYzn8lnPrP5vfwmTpyY//t//+921QoAAAAA0Bvco62X3HLLLUmSI444YpvrLFmyJMnmQdtXv/rVLF26ND//+c8zbdq0JMmUKVPy5je/OTfccEPe+c53druGcrmc9vb2JMnw4cNTKpV6+jCq8vKzycvLer7dM79NZhyWNDfoq7I0aFAGXfDpdHziz9N1400p7T0nTe9+Z9Fl1c2vr/tcfn3d54ouo3APPfRQTj755Fx77bWZM2dO0eVsl4985CM58sgjkyRPPvlk3vnOd2bt2rVV7+8zn/lMLr300k0/f/GLX8zHPvaxtLS05FOf+lSuv/76/PKXv9zuugEAAAAAaqVBI43iPfnkk0mSXXbZZavLOzo6cvvttyfZPGi78cYbc9hhh20K2ZLkkEMOyW677Zb/+q//6lHQ1t7evmk03aRJk9LUVJ8BjG/Z69Sc/bYv9Hi7jnXJwfu9Jc+uWtwLVfVMeciQ5Iov137Hra3J4MFJR0dKB70hpRr+TWbNnJXShg0121/z4GF510WP1mx/ex/x4cx843u2uux7f3d0TY4xa+bMdG6sPuipxllnndWj9Zctq6TQN998c+69995ub3fVVVf16Djb6/VG0La0tOSiiy7a9PPZZ5+dl19+uerj/WHI9so92ZYuXZrLLrssTU1NueSSS3LYYYdtcx8zZ86s23kOAAAAAGgcEydOzF133VXVtoK2XtLW1pYk2xzdcc0112TFihUZOXJkdt11102/X7BgQd7zni3DiDlz5mTBggVV1/PKxf16WLvL+qq3fenF1Vn6zNIaVlOllqEZXONdlsvldH7hi0nHxmTa1HR957tpOvyPUtp5Uk32/8yyZ5J11T/3f2jQ0OE121eSjJk4M9P2Pqqm+/xDzyx7Jh3r23v1GH/olVGj3bVu3bpN33uy7dKlfeD/xauccsopm6aMvPrqq/M///M/Ve9rWyFbUhnV9qd/+qeZM2dODj300MydOzcPPLD1G0DW8zwHAAAAAJAI2nrNxIkT8+KLL+aee+7JIYccstmyZcuW5YILLkiSzJ07d7MpHV988cWMGTNmi/2NHTs2Dz/8cNX11HNE2+CWnk9RWS6XUyqV0jpqaCaXJvdCVT2sZ8iQPF/jfXZ9/4aU738gTX/6gTQd8qZ0nPOJdH7hi2m+7OKaTOu586Sdaz6irb/ZedLOdR/RNnx4zwLJlpaWTd97su3kyfX9f9HV1fWawdXHP/7xTf/+x3/8x6qP81oh2yt1XH755fnnf/7nTcf96Ec/utV91fM8BwAAAAA0jokTJ1a9raCtlxx11FFZuHBhLr744hx99NGZNWtWkuTOO+/MmWeemRUrViRJ9ttvv7rU8+ijj6a1tbUux9rQntx2RVLu7P42pVIpI3ZM7ltwR+p0K7nX1NbZkR1u+XHN9ldeujRdV16V0h6z0nTKySk1N6fpfWek69++ka7v35Dmd5243cd45NFH0lrDG9yt70guvKZmu6uLRx59NEPrfFZ76KGHerT+/Pnzc+WVV+Yd73hHj+7R9uppGuuhra1t09Szf2j8+PF54xvfmCS5//77c8cdd1R1jNcL2V7xrW99K5deemlGjBiRY489dpv7q+d5DgAAAAAgSXz0v5fMmzcv48aNy9NPP505c+Zkn332ycyZM3PwwQdnt912y5FHHplk8/uzJckOO+yQVatWbbG/lStXZuzYsfUofbsNGZ5M2KPn203ZL30iZKu1cldXOi/9+6SrK80XfDql5uYkqQRus2am68qrUn7GlHcDxaxZs3L77bdvCt/7owMPPHDTv6udMrK7IVuSrFmzJnfeeWeSZMqUKZkwYUJVxwQAAAAAqDVBWy+ZMmVKbrvtthx77LFpaWnJE088kbFjx+aKK67ITTfdlEceeSTJlkHb7Nmzt3ovtgULFmT27Nl1qb0WdjkoaerByKJhY5KJ/efh9UjXtdenvGBhmj7wvpSmTdv0+1Jzc5o/8+mkqzOdX/hiyuVygVVSL4MHD87YsWMzeHCt7wJYP68O2u6+++4eb9+TkG1rx3n18QEAAAAAiiRo60WzZ8/OjTfemNWrV2f16tW544478uEPfzhtbW154okn0tTUlL333nuzbY477rj84he/yJIlSzb97o477shjjz2W448/vt4PoWojd0z2OT5pan79dYeOSPY/KRk0pPfrqrfyU0+l6xvfTGn2nmk66d1bLC9N3yVN7zsj5Qd/m67v31BAhdTbU089lY9//ON56qmnii6latNeFRgvXLiwR9tWE7Il2ewDCFOnTu3RMQEAAAAAeot7tBVg/vz5KZfLmTVrVoYPH77Zsg9/+MP5p3/6p5x44on5m7/5m6xbty7z5s3LwQcfnBNP3P77eNXTjjOSA05JFv08WbV0y+WlpmTH3ZNZRyQtI+tfXz2Upk3L4Jt+8JrrNJ9+appPP7VOFdXflL3emvO+9dqj9V5veSNZvXp1br311pxzzjlFl1K1n//850mSlpaWPPvss93e7rjjjqsqZEsq98K76qqrsnbt2h6HewAAAAAAvUXQVoAHH3wwyZbTRibJqFGjcsstt+S8887LaaedlkGDBuW4447LF7/4xTQ19b8BiGMmJ284PVn9fLJ8YfLkb36/7LAPV0azAf3Ld77znXznO9/p8XY//OEPc/XVV+f000/vUciWJL/61a/yq1/9qsfHBAAAAADoTYK2ArxW0JYkM2bMyI033ljPknrdyB0rX0/emaScpCRkg4Gms7MzZ555Zq655pr84AevPdITAAAAAKA/6H9DpBrA6wVtAI2qs7NTyAYAAAAANAwj2gpwyy23FF0CUJAJEybkwgsvzIQJE4ouBQAAAACA7SRoA6ij8ePH56yzziq6DAAAAAAAasDUkQB19NJLL+VHP/pRXnrppaJLAQAAAABgOwnaAOpoyZIl+dSnPpUlS5YUXQoAAAAAANtJ0AYAAAAAAABVELQBAAAAAABAFQRtAAAAAAAAUAVBG0AdtbS0ZPbs2WlpaSm6FAAAAAAAttOgogsAGEhmzJiR66+/vugyAAAAAACoASPaAAAAAAAAoAqCNoA6WrBgQebOnZsFCxYUXQoAAAAAANtJ0AZQR+VyORs3bky5XC66FAAAAAAAtpN7tMFWDG9qzotHHl10GT0yvKm5pvsb0pxcfGpNd9nrhtT2KRjQhg8fnjVr1tRsf5de8d283NaeUa3Dc8FHTtvi51oYPnx4TfYDAAAAANBdgjbYilKplNbmgf3fo1RKhg7sp2BAK5VKaW1trdn+hgxtyZCNnRkytCWtra1b/AwAAAAA0B+ZOhIAAAAAAACqYLwKQB3NmDEjN9xwQ6ZOnVp0KQAAAAAAbCdBG0AdtbS0ZObMmUWXAQAAAABADZg6EqCOli5dms9+9rNZunRp0aUAAAAAALCdBG0AdbRq1apcd911WbVqVdGlAAAAAACwnQRtAAAAAAAAUAVBGwAAAAAAAFRB0AYAAAAAAABVELQB1NH48ePzoQ99KOPHjy+6FAAAAAAAtpOgDaCOSqVShgwZklKpVHQpAAAAAABsJ0EbQB09//zz+fKXv5znn3++6FIAAAAAANhOgjYAAAAAAACogqANAAAAAAAAqiBoAwAAAAAAgCoI2gDqaPTo0Tn++OMzevTooksBAAAAAGA7DSq6AICBZMqUKbnkkkuKLgMAAAAAgBowog2gjtavX58nn3wy69evL7oUAAAAAAC2k6ANoI4WLVqUY445JosWLSq6FAAAAAAAtpOpI2EryuVy2rs6iy6jR4Y3NadUKtVsf+VysqF/PQUZ0pzU8ClggCuXy2lvby+6jB4ZPnx4Tc8DAAAAAMBrE7TBVrR3dWaHW35cdBk98uKRR6e1uXb/pTd0JhdeU7Pd1cXFpyZDndWokfb29owYMaLoMnpkzZo1aW1tLboMAAAAABgwTB0JAAAAAAAAVRC0AQAAAAAAQBVMsgZQR3PmzMnChQuLLgMAAAAAgBowog0AAAAAAACqIGgDqKPFixfntNNOy+LFi4suBQAAAACA7SRoA6ij9vb23H///Wlvby+6FAAAAAAAtpOgDQAAAAAAAKogaAMAAAAAAIAqCNoAAAAAAACgCoI2gDqaPHlyLr744kyePLnoUgAAAAAA2E6CNoA6GjNmTE444YSMGTOm6FIoQFNTU4YPH56hQ4f2eNtBgwbl/e9/fy9UBQAAAABUS9AGUEcrV67Mt7/97axcubLoUqiDGTNmZN68efmP//iPPPbYY+ns7ExbW1vWrVuX9vb2/OpXv8rll1+e008/PS0tLdvcz6BBg/Ld73433/jGN/L3f//3dXwEAAAAAMBrEbQB1NGyZcty0UUXZdmyZUWXQi867rjj8sMf/jCLFi3KxRdfnPe85z3ZbbfdNltn2LBhedOb3pRzzjkn3/nOd7JkyZJccsklmTZt2mbrvRKynXTSSUmSj33sY9lzzz3r9lgAAAAAgG0TtNXBihUrMm/evOy+++5paWnJ1KlTc95556WtrS1nn312SqVSLr/88qLL7FVtK5PHf5mk/LtflJMN7UVWVD+dV16VjW97R7p+9N9bLCuXy+n4zIXZeOwJKS9+ov7F1cGSBT/NP76vlLtvumyb6/zj+0r5wWXH1bEq6B0777xzbrzxxvzXf/1XjjnmmM2WtbW15Te/+U3+53/+Jz/96U/z6KOPbrZ83LhxueCCC7JgwYKce+65KZVKW4Rs69atywknnJCHHnqobo8JAAAAANi2QUUX0Ojuu+++vP3tb8/y5cvT2tqavfbaK88880y+9KUv5bHHHts0fdx+++1XbKG95OXlyaLbkpVPbrnsF1ckO+2RzDw8Gdpa/9rqpenMM9L16zvSecXXUjrwgJR2HL9pWdf130/5gQfT9MGzUtp1enFFAtvt5JNPzte+9rXN7r/3+OOP51/+5V9y00035aGHHkpXV9dm24wePToHHXRQ3v/+9+eUU07J0KFD09ramn/6p3/KySefnNWrV+e44yoh9Csh249//ON6PiwAAAAA4DUY0daLVqxYkeOPPz7Lly/P+eefn2XLluWee+7J8uXLc/HFF+emm27KnXfemVKplLlz5xZdbs298ERy13e3HrIlSVdnsnxBcue3k7Wr6llZfZUGD86gC85P1q1L59//w6bfl59ekq6r/j2lPfdI03tOKq5AYLt96EMfyjXXXLMpZHvmmWdy0kknZffdd8+ll16aBQsWbBGyJclLL72Un/zkJ3n/+9+fKVOm5Mtf/vKmZYcffriQDQAAAAD6OEFbL/rkJz+ZJUuW5Nxzz81ll12WkSNHblo2b9687Lvvvuno6Mj06dMzatSoAiutvTUrkgd+kHR1vP66615O7r0+6dzQ+3UVpTRz9zSddkrKd9+Trpt+mHJnZzovuSwpl9N8wfkpNTcXXSJ10tramkMPPTStrQ08jHOAee9735uvfvWraWqqNKnf+c53MmfOnFx//fUpl8uvs/XvrVixIueee26OOuqotLf/fm7drq6uvO997xOyAQAAAEAfJGjrJQsXLsw111yT8ePH5/Of//xW1znwwAOTJPvuu++m370SzB188MEZOnRoSqVSXeqttSfvTDo3dn/99pXJ8ga/5VDTGacnu+2Wzq99PV1f/peUH34kTWe9P6WpU4ourS46NrRn7eoVW/0aSKZPn56vf/3rmT59etGlUAO77757vv71r2/6+ZJLLskZZ5yRVatWVbW/QYMG5WMf+1iGDx++6XdNTU1573vfu72lAgAAAAC9wD3aesnVV1+drq6unHHGGRkxYsRW1xk2bFiSzYO2RYsW5brrrstBBx2UIUOG5Pbbb69LvbW0YW3ybBWh2dP3JTvvk/TTbPF1lQYNyqALPp2OT/x5um68KaW956Tp3e8suqy6+fV1n8uvr/tc0WUUrrOzM2vXrs2wYcPSbCRjv9bU1JR/+7d/23Qu//rXv54LL7yw6v0NGjQo3/3ud3PSSZWpZNetW5d169ZlzJgxefe7351TTz0111xzTU1qBwAAAABqQ9DWS2655ZYkyRFHHLHNdZYsWZJk86Dtj/7oj7Js2bIkyV//9V/3y6Bt5ROV+6/11JrnkvWrk5bGmkVzc62tyeDBSUdHSge9IaWmgTOodO8jPpyZb3zPVpd97++OrnM1xXnooYdy8skn59prr82cOXOKLoftcPbZZ+ewww5LUvmQxHnnnVf1vrYWsp1wwgkZNWpUrr322iTJ5Zdfnptuuilr1qzZ/uIBAAAAgJoQtPWSJ598Mkmyyy67bHV5R0fHphDt1UFbUy8FLzNnzuy1ff+hP973rJx5xEVVbXvk4W/LU88vqHFFPVceMiS54su13We5nM4vfDHp2JhMm5qu73w3TYf/UUo7T6rJ/mfNnJXShtrd6K558LC866JHa7a/MRNnZtreR9Vsf1sza+bMdG5c26vH+ENnnXVWj9Z/JUi/+eabc++993Z7u6uuuqpHx+lr3vWnf57WEaOybPmyTJkyZYuf+6Kurq7XXP7nf/7nm/599tlnb3ZftZ7YVsj2yj3Zrr322px88skZP358zjjjjFxxxRXb3Fc9z/UAAAAA0CgmTpyYu+66q6ptBW29pK2tLUmydu3WL/pfc801WbFiRUaOHJldd9211+t55eJ+PTy3c/XHenrpk1n6/NIaVlOllqEZXONddn3/hpTvfyBNf/qBNB3ypnSc84l0fuGLab7s4prci++ZZc8k69bXoNKKQUOHv/5Kfcwzy55Jx/rqwo5q9TRcWbdu3abvPdl26dI+8P9iO3R1dm76vnTp0i1+7m8OP/zw7LXXXkmSn//85/n5z39e1X5eL2RLkosuuignn3xykuTjH//4awZt9TzXAwAAAACCtl4zceLEvPjii7nnnntyyCGHbLZs2bJlueCCC5Ikc+fOrUnI8nomTZpUt1EOqzsqF3rL5XKPHlv7+pcyaFhnJk+e3FuldVt5yJA8X8v9LV2ariuvSmmPWWk65eSUmpvT9L4z0vVv30jX929I87tO3O5j7Dxp55qPaOtvdp60c91HtA0f3rNAsqWlZdP3nmzbF/5fbI+m392Prqm5OZMnT97i576oq6trm8HVmWeeuenfX/nKV6raf3dCtiS5//7788tf/jJvfvObM3fu3MydOzcPPPDAVvdZz3M9AAAAADSKiRMnVr2toK2XHHXUUVm4cGEuvvjiHH300Zk1a1aS5M4778yZZ56ZFStWJEn222+/utTz6KOPprW1tS7HKpeT33wrWf1szwLEPQ4ZncX/v0W9VFXPtHV2ZIdbfvz6K3ZDuasrnZf+fdLVleYLPp3SKwHDKSenfPsv03XlVWl648HbPYXkI48+ktbm2v2XXt+RXHhNzXZXF488+miG1vms9tBDD/Vo/fnz5+fKK6/MO97xjh7do+2ii6qbjrWv+Nsvfzsvr2nLpImTsmTJki1+7ova2toyYsSIrS47+OCDkyQbN27MD37wgx7vu7sh2yv+8z//M29+85s3HXtbQVs9z/UAAAAAQOJj771k3rx5GTduXJ5++unMmTMn++yzT2bOnJmDDz44u+22W4488sgkm9+frVGUSsnU/Xu6UTKl8Z6KJEnXtdenvGBhmj7wvpSmTdv0+1Jzc5o/8+mkqzOdX/hiyuVygVVSL7Nmzcrtt9++KXyn/xk2bNimaSPnz5+/aTrQ7uppyJYkd99996Z/H3jggVVUDQAAAAD0BkFbL5kyZUpuu+22HHvssWlpackTTzyRsWPH5oorrshNN92URx55JEljBm1JMmlO5au79jwqaR3Xe/UUpfzUU+n6xjdTmr1nmk569xbLS9N3SdP7zkj5wd+m6/s3FFAh9TZ48OCMHTs2gwfX+i6A1Msee+yR5t+NTL333nt7tG01IdsfHqcnIyEBAAAAgN5l6sheNHv27Nx4441b/H7NmjV54okn0tTUlL333ruAynpfqZTs9SfJoCHJ069xHbqpuRKy7bxP/Wqrp9K0aRl802tPK9d8+qlpPv3UOlVUf1P2emvO+9Zrj9Z7veWN5Kmnnsrf/d3f5S/+4i8y7VUjHOk/Wlpa0t7enuHDh+eFF17o9nbVhmxJpd3YsGFDSqVSXe7rCQAAAAB0j6CtAPPnz0+5XM6sWbMyfPjwLZZfe+21SZIFCxZs9vP06dPzhje8oX6FbqdSU7LHHydT9k+W3p8sX5hsaP/98t3/KNl572TIlk8BNKzVq1fn1ltvzTnnnFN0KVTp17/+9ab7oDU1dX9geLlczvr165P0LGR7xfDhw9PZ2dmzYgEAAACAXiVoK8CDDz6YZNvTRr7nPe/Z6s8f+MAHctVVV/Vqbb2hdWwy64jK108u+90vS8n0gwstC2C7dXV1dXvdzs7OvP/978+6devy3e9+t0ch2yvbAwAAAAB9i6CtAK8XtJXLDTyNXilJAz88gNfS2dmZs88+u+gyAAAAAIAa6f6cV9TM6wVtAAAAAAAA9H1GtBXglltuKboEoCATJkzIhRdemAkTJhRdCgAAAAAA20nQBlBH48ePz1lnnVV0GQAAAAAA1ICpIwHq6KWXXsqPfvSjvPTSS0WXAgAAAADAdhK0AdTRkiVL8qlPfSpLliwpuhQAAAAAALaToA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNoA6amlpyezZs9PS0lJ0KQAAAAAAbKdBRRcAMJDMmDEj119/fdFlAAAAAABQA0a0AQAAAAAAQBUEbQB1tGDBgsydOzcLFiwouhQAAAAAALaToA2gjsrlcjZu3JhyuVx0KQAAAAAAbCf3aIOtGN7UnBePPLroMnpkeFNzTfc3pDm5+NSa7rLXDantU8AAN3z48KxZs6Zm+7v0iu/m5bb2jGodngs+ctoWP9fC8OHDa7IfAAAAAKB7BG2wFaVSKa3NA/u/R6mUDB3YTwEDXKlUSmtra832N2RoS4Zs7MyQoS1pbW3d4mcAAAAAoP8xdSQAAAAAAABUwXgVgDqaMWNGbrjhhkydOrXoUgAAAAAA2E6CNoA6amlpycyZM4suAwAAAACAGjB1JEAdLV26NJ/97GezdOnSoksBAAAAAGA7CdoA6mjVqlW57rrrsmrVqqJLAQAAAABgOwnaAAAAAAAAoAqCNgAAAAAAAKiCoA0AAAAAAACqIGgDqKOmpqYcdNBBaWpy+gUAAAAA6O9c6QWoo66urtx5553p6uoquhQAAAAAALaToA0AAAAAAACqIGgDAAAAAACAKgjaAAAAAAAAoAqCNoA6Gj16dI4//viMHj266FIAAAAAANhOg4ouAGAgmTJlSi655JKiywAAAAAAoAaMaAOoo/Xr1+fJJ5/M+vXriy4FAAAAAIDtJGgDqKNFixblmGOOyaJFi4ouBQAAAACA7WTqSNiKcrmc9q7OosvokeFNzSmVSjXbX7mcbOhfT0GGNCc1fApgQCuXy2lvby+6jB4ZPnx4Tc+DAAAAAPB6BG2wFe1dndnhlh8XXUaPvHjk0Wltrt1/6Q2dyYXX1Gx3dXHxqclQZzWoifb29owYMaLoMnpkzZo1aW1tLboMAAAAAAYQU0cCAAAAAABAFQRtAAAAAAAAUAWTrAHU0Zw5c7Jw4cKiywAAAAAAoAaMaAMAAAAAAIAqCNoA6mjx4sU57bTTsnjx4qJLAQAAAABgOwnaAOqovb09999/f9rb24suBQAAAACA7SRoAwAAAAAAgCoI2gAAAAAAAKAKgjYAAAAAAACogqANoI4m///Zu/O4qOvEj+PvmeEYGBBFTBBUPEARRfIq83a1vO0wj9SyrGzNUjO13SyrNU2zO9t1K4+1ct3SyvVq9adbZsd6pJnifYJQkXkAHjAzvz9cZyVQmYP5gryej4cPmPl+v5/v+zsbys57Pp9vbKymT5+u2NhYo6MAAAAAAAAAALwUYHQAAKhIKleurD59+hgdAyiXIiIidPLkSaNjAAAAAAAAAC4UbQDgR8ePH9fKlSvVvXt3RUZGGh0HKHXBwcFq0qSJWrRooaZNmyoiIkIWi0V5eXnas2ePNm/erM2bN+uXX3654jjVq1fXunXrtGrVKj322GN+Sg8AAAAAAABcGUUbAPhRZmampkyZotTUVIo2XNNSUlI0cuRIDR48WGFhYVfdf82aNXrrrbe0dOlS2e32QtsulmxJSUlKSkpSdna2pk6dWlrRAQAAAAAAgBLjHm1+kp2drQkTJqh+/fqyWq2qWbOmRo8erdzcXA0fPlwmk0lvvvmm0TFL1dlTkpz/feC80p4AgPKqdu3aWrVqlbZt26YRI0aUqGSTpC5dumjJkiU6cOCAevXq5Xr+0pJNkg4dOqT333+/VLIDAAAAAAAA7qJo84OtW7eqSZMmevHFF5WVlaVGjRopPz9fr7/+ugYMGKC0tDRJUmpqqrFBS4HDLmWlSZsWSl/+tfC275dKx49Izmu8dLPPmaf8m3vIsepfRbY5nU4VPD5R+T37yHnwkP/D+UH6zn/rtSEmbV4+87L7vDbEpE9n9rrsdgDlw4gRI/TDDz/olltucT13+vRpLViwQI888ojatGmjOnXqqHbt2kpJSdGQIUP0yiuvaO/eva79a9WqpX/+85+aN2+eEhMTi5RsHTt21OHDh/1+bQAAAAAAAEBxWDqylGVnZ6t3797KysrSuHHjNHnyZIWHh0uSZsyYoYkTJyogIEAmk0kpKSkGp/Wt/DPStk+lE+nFb/9pz4U/calSg86S6Rqtfc1DB8vxzbeyz35bpubNZKoW5drmWPKJnN9vl/m+YTLViTcuJAB4wWw2689//rMefPBB13NHjhzRCy+8oAULFignJ6fY47Zv3673339f48aNU5cuXTRhwgR16dJFknTPPfdo4MCBCg4OlkTJBgAAAAAAgLLpGq02yo5HH31U6enpGjVqlGbOnOkq2SRpwoQJatq0qQoKChQfH69KlSoZmNS37PnS1iWXL9kulb5V2r322p3ZZgoMVMD4cdLZs7K//KrreefRdDnm/U2mhg1kvvMO4wLCr2w2m9q0aSObzWZ0FMAnTCaT/vrXvxYq2f7617+qcePG+vOf/3zZku1STqdTq1evVteuXXXvvffq5MmTkuQq2Y4ePUrJBgAAAAAAgDKJoq0UpaWladGiRYqKitK0adOK3ad58+aSpKZNm7qe++ijj3THHXeodu3aCg0NVcOGDfXkk0+W6M3KsuLoFulkZsn3T98qncwotTiGMyXUl3lgfzk3b5Fj+Uo57XbZZ8yUnE5Zxo+TyWIxOiL8JD4+Xu+8847i4+ONjgL4xIQJEzR8+HBJUn5+vgYOHKgRI0bo9OnTHo23cuVK/fzzz4We++WXX5SeXoJPbgAAAAAAAAB+RtFWihYuXCiHw6HBgwcrLCys2H1CQkIkFS7aZs6cKYvFoqlTp2rlypX6/e9/rz//+c/q1q2bHA6HX7J7w+mQ0re5f5wnx5Qn5sGDpLp1ZX/7HTlm/UXO3XtkHna3TDXjjI7mFwXn83TmdHaxfyoSu92unJwc2e12o6MAXktOTtazzz4r6cJ/23fddZcWLVrk8XjVq1fXunXrVL9+fUlSQUGBpAv3MB0/frz3gQEAAAAAAAAf4x5tpWjt2rWSpE6dOl12n4uf0L+0aPvnP/+patWquR536NBB1apV0+DBg/Xll1+qffv2pZTYN44flc6ecv+4H3dLDX4nBVp9n6ksMAUEKGD8Yyp4ZIwcy5bL1DhZ5ttvNTqW33yzeLK+WTzZ6BiG27Vrl/r166ePPvpIycnJRscBPGY2mzV37lzX8o4vvviiPvroI4/Hu1iyJSUlSbpwT7bRo0dryZIlslgseuaZZ/Tpp58qLS3NJ/kBAAAAAAAAX6BoK0UX7yVTu3btYrcXFBRow4YNkgoXbZeWbBe1aNFCkpSR4dn6igkJCTKb/TOBsUPjwbq3y3S3j3M6pDatOunY8b2lkMrNLEFB0uxZvh/YZpMCA6WCAplatpDJh/+bJCYkynT+vM/GswSG6LYpvvvfonGnB5Vww53Fbvv4ha4+OUdiQoLs+Wd8MlZJDRs2zK39MzMvrKm6YsUKfffddyU+bt68eW6dp6y57d4xsoVVUmZWpuLi4oo8rgjK22twtRnU3bt3V8uWLSVJO3fu1DPPPOPxuYor2S7ek+3FF1/UE088oeDgYE2cOPGKP3P+/LcOAAAAAAAA147o6Ght2rTJo2Mp2kpRbm6uJOnMmeLf+F+0aJGys7MVHh6uOnXqXHGsdevWSZLrTUh3XXxz3x9O1/LsvjySlJ39izIyy8DN2qzBCvTxkE6nU/aXXpEK8qVaNeX44O8yd2gvU40Yn4x/LPOYdPacT8aSpIDgUJ+NJUmVoxNUq3EXn475W8cyj6ngXF6pnuO38vLcO9/Zs2ddX9051tOSvaxw/HepTIfdroyMjCKPK4Jr7TUYOXKk6/uJEyfq3DnP/v65UskmSc8995wefPBBRUZGasCAARo3bpx++eWXYsfy5791AAAAAAAAgETRVqqio6P166+/asuWLWrdunWhbZmZma77zaSkpMhkMl12nIyMDD311FPq1q2bUlNTPcoSExPjv0/5B7r/ZqvT6ZTJZFKwzaTY2NhSCOVmnqAg/ezjMR2fLJVz2/cy33uPzK1vVMHDj8j+0iuyzJx+xf/9S6pGTA2fz2grb2rE1PD7jLbQUPcKSavV6vrqzrFl4efCG2aLxfU1Nja2yOOKoLy9Bg6H47LFVe3atdWtWzdJF4qxFStWeHSOq5Vs0oUPq8ydO1fjxo2T1WrVPffco5dffrnY8fz6bx0AAAAAAACuGdHR0R4fS9FWirp06aK0tDRNnz5dXbt2VWJioiRp48aNGjp0qLKzsyXpiuVZTk6O+vbtq6CgIM2ZM8fjLHv37pXNZvP4eHfYC6Qv/yLlny35MSaTSVXjpbS920otlzty7QWqsna1z8ZzZmTIMWeeTA0SZe7fTyaLReYhg+WYO1+OT5bKcltfr8+xZ+8e2Sy++5E+VyBNXOSz4fxiz969Cvbz32q7du1ya/8dO3Zozpw56tGjh1v3aJsyZYq70cqUqbPe16mcXMVExyg9Pb3I44qgvL0Gubm5CgsLK3Zb+/btXYXW3Llzr7rMZHFKUrJd9O6772rcuHGSpI4dO162aPPnv3UAAAAAAACAJPGx71I0YcIEVa1aVUePHlVycrKaNGmihIQEtWrVSnXr1lXnzp0lFb4/26XOnDmj3r176+DBg/rXv/6lmBjfLDFY2iwBUo0m7h8Xl+rzKGWC0+GQ/cWXJYdDlvGPyXRxFkv/fjIlJsgxZ56cx1jurKJITEzUhg0bXMU7UB5dvG+oJH311VduH+9OySZJaWlp+vXXX4ucGwAAAAAAADAaRVspiouL0/r169WzZ09ZrVYdOnRIkZGRmj17tpYvX649e/ZIKr5oy8/PV79+/bRp0yatXLlSjRo18nd8r9RqIVkrlXz/qvFSVN1Si2Mox0dL5NyZJvM9Q2SqVcv1vMlikeXxxySHXfaXXpHT6TQwJfwlMDBQkZGRCgz09V0AAf9p1qyZ6/vNmze7day7JdtvzxMTE+PVVH4AAAAAAADAlyjaSllSUpKWLVum06dP6/Tp0/r222/14IMPKjc3V4cOHZLZbFbjxo0LHeNwODR48GD93//9nz799FO1atXKoPSeC7ZJ1/crWdkWWUtq0kcyXYP/NTqPHJFj/gKZkhrKfMftRbab4mvLPGSwnNt/kOOTpQYkhL8dOXJEI0eO1JEjR4yOAngsKipKknTy5EnXTLOS8LRkk6SDBw8WOT8AAAAAAABgNO7RZpAdO3bI6XQqMTFRoaGhhbY9/PDD+vDDD/XEE08oNDRU33zzjWtbvXr1VK1aNX/H9YgtUmo1WDqyRcr4Xso/U3h7aOSF5SLjmkpmiyERS52pVi0FLv/0ivtYBg2QZdAAPyXyv7hGHTX6vSvP1rva9mvJ6dOntW7dOj388MNGRwE89thjj6lq1apuHzdmzBiPSjZJmj9/vjZs2KAzZ86UyXvaAQAAAAAAoGKiaDPI9u3bJRW/bOTKlSslSS+88IJeeOGFQtvmzp2rYcOGlXo+XwmySfXbSXVbS8cPS1s//t+21vdKJpNx2QAAnrn475S7Jk2apNq1a6t169ZulWyStGHDBm3YsMGj8wIAAAAAAAClhaLNIFcq2g4dOuTnNKXPHCBF1ZNkkuS88JWSDQAqFrvdrqFDh6patWrKysoyOg4AAAAAAADgtWvwrljlw5WKNgAArlV2u52SDQAAAAAAANcMZrQZZO3atUZHAGCA6tWra+LEiapevbrRUQAAAAAAAAAAXqJoAwA/ioqKKlf3WQQAAAAAAAAAXB5LRwKAH508eVKrVq3SyZMnjY4CAAAAAAAAAPASRRsA+FF6errGjh2r9PR0o6MAAAAAAAAAALxE0QYAAAAAAAAAAAB4gKINAAAAAAAAAAAA8ABFGwAAAAAAAAAAAOABijYA8COr1aqkpCRZrVajowAAAAAAAAAAvBRgdAAAqEjq1aunJUuWGB0DAAAAAAAAAOADzGgDAAAAAAAAAAAAPEDRBgB+tHPnTqWkpGjnzp1GRwEAAAAAAAAAeImiDQD8yOl0Kj8/X06n0+goAAAAAAAAAAAvcY82oBihZot+7dzV6BhuCTVbfDpekEWaPsCnQ5a6IN++BECFFhoaqpycHJ+N9+Lsv+tUbp4q2UI1fsTAIo99ITQ01CfjAAAAAAAAACVF0QYUw2QyyWap2D8eJpMUXLFfAqBCM5lMstlsPhsvKNiqoHy7goKtstlsRR4DAAAAAAAA5RFLRwIAAAAAAAAAAAAeYL4KAPhRvXr1tHTpUtWsWdPoKAAAAAAAAAAAL1G0AYAfWa1WJSQkGB0DAAAAAAAAAOADLB0JAH6UkZGhSZMmKSMjw+goAAAAAAAAAAAvUbQBgB+dOHFCixcv1okTJ4yOAgAAAAAAAADwEkUbAAAAAAAAAAAA4AGKNgAAAAAAAAAAAMADFG0AAAAAAAAAAACAByjaAMCPzGazWrZsKbOZv34BAAAAAAAAoLzjnV4A8COHw6GNGzfK4XAYHQUAAAAAAAAA4CWKNgAAAAAAAAAAAMADFG0AAAAAAAAAAACAByjaAAAAAAAAAAAAAA9QtAGAH0VERKh3796KiIgwOgoAAAAAAAAAwEsBRgcAgIokLi5OM2bMMDoGAAAAAAAAAMAHmNEGAH507tw5HT58WOfOnTM6CgAAAAAAAADASxRtAOBH+/btU7du3bRv3z6jowAAAAAAAAAAvETRBgAAAAAAAAAAAHiAe7QBxXA6ncpz2I2O4ZZQs0Umk8ln4zmd0vny9RIoyCL58CUAUME5nU7l5eUZHaPEQkNDffrvAAAAAAAAAK6Oog0oRp7DriprVxsdwy2/du4qm8V3P9Ln7dLERT4bzi+mD5CC+VsNgI/k5eUpLCzM6BgllpOTI5vNZnQMAAAAAACACoWlIwEAAAAAAAAAAAAPMPcDAPwoOTlZaWlpRscAAAAAAAAAAPgAM9oAAAAAAAAAAAAAD1C0AYAfHTx4UAMHDtTBgweNjgIAAAAAAAAA8BJFGwD4UV5enrZt26a8vDyjowAAAAAAAAAAvETRBgAAAAAAAAAAAHiAog0AAAAAAAAAAADwAEUbAAAAAAAAAAAA4AGKNgDwo9jYWE2fPl2xsbFGRwEAAAAAAAAAeCnA6AAAUJFUrlxZffr0MToGAAAAAAAAAMAHKNoAwI+OHz+ulStXqnv37oqMjDQ6DgA/MZlMSkhIUGxsrIKDg3X+/Hn9+OOP2rVrl+x2e4nGaN26tXr16qUnn3yylNMCAAAAAACgpCjaAMCPMjMzNWXKFKWmplK0Ade4atWqafjw4erWrZuuv/56VapUqcg+eXl52rp1q9asWaO3335b6enpxY7VunVrrVq1SpUqVVJISIgee+yx0o4PAAAAAACAEuAebQAAAD5Uv359LViwQEePHtW0adPUoUOHYks2SQoNDdVNN92kp59+WocOHdKSJUvUtGnTQvtcWrJJUnJysoKCgkr9OgAAAAAAAHB1FG1+kJ2drQkTJqh+/fqyWq2qWbOmRo8erdzcXA0fPlwmk0lvvvmm0TFLjT1fytgubfmHJOd/n3RK2Qckp/NKR14b7HPmKf/mHnKs+leRbU6nUwWPT1R+zz5yHjzk/3B+kL7z33ptiEmbl8+87D6vDTHp05m9/JgKAHzPbDZrzJgx+v777zVkyBAFBwe7th05ckQff/yxXnjhBU2ePFlTp07VP/7xD+3fv9+1j8Vi0W233aaNGzfqmWeeUWBgYJGS7V//+pf69u2r8+fP+/36AAAAAAAAUBRLR5ayrVu3qnv37srKypLNZlOjRo107Ngxvf7669q/f7+OHz8uSUpNTTU2aClJ3ybtWy8VnC26besSKSRCSu4uVY7zfzZ/MQ8dLMc338o++22ZmjeTqVqUa5tjySdyfr9d5vuGyVQn3riQAACvRERE6OOPP1anTp1cz2VnZ+vdd9/VX//6Vx04cOCyx9aoUUP333+/HnzwQcXGxiowMFCTJ0/WwIEDVaNGDYWHh0v6X8l29mwx/6gCAAAAAADAEMxoK0XZ2dnq3bu3srKyNG7cOGVmZmrLli3KysrS9OnTtXz5cm3cuFEmk0kpKSlGx/W5Q99Ku1YXX7JddOaktOVD6ZfD/svlb6bAQAWMHyedPSv7y6+6nnceTZdj3t9kathA5jvvMC4g/Mpms6lNmzay2WxGRwHgI5UrV9batWsLlWyvvfaaateurSeeeOKKJZskHTt2TM8995zq1KmjZ599Vvn5+ZKkBg0aULIBAAAAAACUcRRtpejRRx9Venq6Ro0apZkzZ7reLJOkCRMmqGnTpiooKFB8fPxl791SXv1y8MJMtpJw2KXvP5XO5ZRuJiOZEurLPLC/nJu3yLF8pZx2u+wzZkpOpyzjx8lksRgdEX4SHx+vd955R/Hx8UZHAeADgYGBWr58uZo1ayZJ+umnn9S+fXuNGTNGeXl5bo2Vn5+vZ555Rg888IAcDofr+ZycHA0ZMoSSDQAAAAAAoAyiaCslaWlpWrRokaKiojRt2rRi92nevLkkqWnTpq7n1q9fry5duigmJkbBwcGKi4vTgAEDlJaW5pfcvnJ4s3v7289fuI/btcw8eJBUt67sb78jx6y/yLl7j8zD7pap5jW8buYlCs7n6czp7GL/VCR2u105OTmy2+1GRwHgA5MmTdJNN90kSfrxxx/Vvn17rV9fwk+aFKN169Z6/fXXZTb/71e0sLAw/elPf/I6KwAAAAAAAHyPe7SVkoULF8rhcGjw4MEKCwsrdp+QkBBJhYu2X3/9VU2aNNGIESN03XXXKT09XdOmTVPr1q31ww8/KC6u7Jcyeb9Kxw+5f1zGNin+Bsl8jda/poAABYx/TAWPjJFj2XKZGifLfPutRsfym28WT9Y3iycbHcNwu3btUr9+/fTRRx8pOTnZ6DgAvHD99dfrj3/8o6QLs9F69eql3bt3ezxe69attWrVKtcs9y+//FKpqakKCwvTiBEjtHjxYq1evdon2QEAAAAAAOAbFG2lZO3atZJU6H4tv5Weni6pcNHWp08f9enTp9B+LVu2VIMGDbR48WKNHj3aozwJCQmFPh1fmto2ulP33/yK28edy5FaNGmrn04e8n0oNzmDgqTZs3w/sM0mBQZKBQUytWwhkw//N0lMSJTp/HmfjWcJDNFtU/b6bLzGnR5Uwg13Frvt4xe6+uQciQkJsuef8clYJTVs2DC39s/MzJQkrVixQt99912Jj5s3b55b5ylrbrt3jGxhlZSZlam4uLgijyuCiv4alMfrv3T5xuK88sorCgi48KvU1KlTtWnTJo/P9duS7eI92YYNG6Y///nPkqQ33nhDSUlJcjqdxY7hz3/rAQAAAAAAriXR0dEev7dD0VZKDh8+LEmqXbt2sdsLCgq0YcMGSYWLtuJUrVpVklxv5nni4pv7/nC2dr7Hx546kauMYxk+TOMha7ACfTyk0+mU/aVXpIJ8qVZNOT74u8wd2stUI8Yn4x/LPCadPeeTsSQpIDjUZ2NJUuXoBNVq3MWnY/7WscxjKjjn3j2RvOXuPZgu3mPp7Nmzbh2bkVEGfi684PjvUpkOu10ZGRlFHlcEFf01uNauv3HjxurQoYMkaffu3Xr++ec9HutyJdvZs2c1e/ZsDRkyRG3atFGDBg3UuXNn/d///V+x4/jz33oAAAAAAABcQNFWSnJzcyVJZ84UP7tm0aJFys7OVnh4uOrUqVNku91ul8Ph0OHDh/WHP/xB0dHR6t+/v8d5YmJi/PYp96BQi8fHhlcOVawp1odpPOMMCtLPPh7T8clSObd9L/O998jc+kYVPPyI7C+9IsvM6TKZTF6PXyOmhs9ntJU3NWJq+H1GW2ioe4Wk1Wp1fXXn2NhY438uvGG2WFxfY2NjizyuCCr6a1Aer9/hcFy2vPr973/v+v6NN95Qfr5nHzK5UskmXfiQxiuvvKI2bdpIkkaOHHnZos2f/9YDAAAAAABcS6Kjoz0+lqKtlERHR+vXX3/Vli1b1Lp160LbMjMzNX78eElSSkpKsSVLhw4dXDPe6tevr7Vr16patWoe59m7d69sNpvHx7vjzElpw9vuHxcSIW3ZvkGmMvAeYa69QFXW+u4+OM6MDDnmzJOpQaLM/fvJZLHIPGSwHHPny/HJUllu6+v1Ofbs3SObxXc/0ucKpImLfDacX+zZu1fBfv5bbdeuXW7tv2PHDs2ZM0c9evRw6x5tU6ZMcTdamTJ11vs6lZOrmOgYpaenF3lcEVT016A8Xn9ubu5l77N6++23u/ZZsGCBR+NfrWS76NNPP9WxY8dUo0YN9erVS0FBQTpfzAcr/PlvPQAAAAAAAC4oA5XGtalLlwtL5E2fPl179uxxPb9x40Z16tRJ2dnZkqTU1NRij3/33Xf1zTffaOHChapUqZJuvvlmHTlypNRz+0JIhBRVz/3jYpuqTJRsvuZ0OGR/8WXJ4ZBl/GMyXZzF0b+fTIkJcsyZJ+cxlvuqKBITE7VhwwYlJiYaHQWAh2JjY12fctqwYYNOnTrl9hglLdmkC8tNr1mzRpIUFBSkJk2aeJEeAAAAAAAAvnQN1hplw4QJE1S1alUdPXpUycnJatKkiRISEtSqVSvVrVtXnTt3lnT5+7M1aNBAN9xwgwYOHKj/+7//0+nTpzVjxgx/XoJXardwb/9Aq1SjcelkMZrjoyVy7kyT+Z4hMtWq5XreZLHI8vhjksMu+0uvyOl0GpgS/hIYGKjIyEgFBvr6LoAA/KV58+au7zdv3uz28e6UbMWd59LzAwAAAAAAwFgUbaUkLi5O69evV8+ePWW1WnXo0CFFRkZq9uzZWr58uWuW2+WKtktVrlxZ9evX1759+0o7ts9UqSk17FKyfS2BUtPbpCD3bnVVLjiPHJFj/gKZkhrKfMftRbab4mvLPGSwnNt/kOOTpQYkhL8dOXJEI0eOLDczVAEUVb9+fdf327dvd+tYT0q2357n0vMDAAAAAADAWNyjrRQlJSVp2bJlRZ7PycnRoUOHZDab1bjx1adx/fTTT9q9e7duuOGG0ohZauJSpQCrtPdz6dzp4vcJv05q1O3C12uRqVYtBS7/9Ir7WAYNkGXQAD8l8r+4Rh01+r0rz9a72vZryenTp7Vu3To9/PDDRkcB4KGjR49q9erVCgkJcev+cg0bNvSoZJOkrKwsbdiwQWfOnNH+/fs9zg4AAAAAAADfomgzwI4dO+R0OpWYmKjQ0MLTuIYMGaL69esrNTVVlStX1t69e/XKK68oICBAY8eONSix56IbStclStn7payd0k97/7et5V1SpRjJZDIuHwAA7vrwww/14Ycfun3c3r17tXz5cg0aNMitkk2S0tLS1LZtW7fPCQAAAAAAgNJF0WaAi8s/Fbds5I033qi//e1veu2113T27FnVrFlTnTp10h//+EfVrl3b31F9wmyWrku48GfNS5KckkxSRA2jkwEA4D92u11Dhw7Vd999pzfeeKPEJRsAAAAAAADKLoo2A1ypaBs1apRGjRrl70gAAMAP7Ha7XnzxRaNjAAAAAAAAwEfMRgeoiK5UtAG4tlWvXl0TJ05U9erVjY4CAAAAAAAAAPASM9oMsHbtWqMjADBIVFSUhg0bZnQMAAAAAAAAAIAPMKMNAPzo5MmTWrVqlU6ePGl0FAAAAAAAAACAlyjaAMCP0tPTNXbsWKWnpxsdBQAAAAAAAADgJYo2AAAAAAAAAAAAwAMUbQAAAAAAAAAAAIAHKNoAAAAAAAAAAAAAD1C0AYAfWa1WJSUlyWq1Gh0FAAAAAAAAAOClAKMDAEBFUq9ePS1ZssToGAAAAAAAAAAAH2BGGwAAAAAAAAAAAOABijYA8KOdO3cqJSVFO3fuNDoKAAAAAAAAAMBLFG0A4EdOp1P5+flyOp1GRwEAAAAAAAAAeIl7tAHFCDVb9GvnrkbHcEuo2eLT8YIs0vQBPh2y1AX59iUAUMGFhoYqJyfHJ2O9OPvvOpWbp0q2UI0fMfCyz3kjNDTU6zEAAAAAAADgHoo2oBgmk0k2S8X+8TCZpOCK/RIAqOBMJpNsNptPxgoKtioo366gYKtrzOKeAwAAAAAAQPnC0pEAAAAAAAAAAACAB5ivAgB+VK9ePS1dulQ1a9Y0OgoAAAAAAAAAwEsUbQDgR1arVQkJCUbHAAAAAAAAAAD4AEtHAoAfZWRkaNKkScrIyDA6CgAAAAAAAADASxRtAOBHJ06c0OLFi3XixAmjowAAAAAAAAAAvETRBgAAAAAAAAAAAHiAog0AAAAAAAAAAADwAEUbAAAAAAAAAAAA4AGKNgDwo6ioKD3wwAOKiooyOgoAAAAAAAAAwEsUbQDgRyaTSUFBQTKZTEZHAQAAAAAAAAB4iaINAPzo559/1qxZs/Tzzz8bHQUAAAAAAAAA4CWKNgAAAAAAAAAAAMADFG0AAAAAAAAAAACAByjaAAAAAAAAAAAAAA9QtAGAH0VERKh3796KiIgwOgoAAAAAAAAAwEsBRgcAgIokLi5OM2bMMDoGAAAAAAAAAMAHmNEGAH507tw5HT58WOfOnTM6CgAAAAAAAADASxRtAOBH+/btU7du3bRv3z6jowAAAAAAAAAAvMTSkQAAACjC6XQqLy/P6BhuCQ0NlclkMjoGAAAAAACoQCjaAAAAUEReXp7CwsKMjuGWnJwc2Ww2o2MAAAAAAIAKhKUjAQAAAAAAAAAAAA9QtAEAAAAAAAAAAAAeYOlIAPCj5ORkpaWlGR0DAAAAAAAAAOADzGgDAAAAAAAAAAAAPEDRBgB+dPDgQQ0cOFAHDx40OgoAAAAAAAAAwEsUbQDgR3l5edq2bZvy8vKMjgIAAAAAAAAA8BJFGwAAAAAAAAAAAOABijYAAAAAAAAAAADAAxRtAAAAAAAAAAAAgAco2gDAj2JjYzV9+nTFxsYaHQUAAAAAAAAA4CWKNgDwo8qVK6tPnz6qXLmy0VEAoNxp06aN0REAAAAAAAAKCTA6AABUJMePH9fKlSvVvXt3RUZGGh0HAEpVYGCgfve736lVq1Zq3ry5kpKSZLPZ5HQ6dfr0aW3fvl2bNm3SN998o/Xr18vpdF52rJEjR2rWrFl65ZVX9Nhjj/nxKgAAAAAAAC6Pog0A/CgzM1NTpkxRamoqRRuAa1bNmjU1YsQI3X///apevfpl92vYsKHuvPNOSdL+/fs1e/ZszZkzR7/88kuh/S6WbJI0duxYrV69WitXriy9CwAAAAAAACghlo70g+zsbE2YMEH169eX1WpVzZo1NXr0aOXm5mr48OEymUx68803jY4JAADgFYvFoj/84Q/au3evnnzyySIl2+nTp3X06FGlp6frzJkzhbbVq1dPM2bM0L59+zRs2DDX85eWbJL0/PPPU7IBAAAAAIAygxltpWzr1q3q3r27srKyZLPZ1KhRIx07dkyvv/669u/fr+PHj0uSUlNTjQ0KAADghYSEBH3wwQdq0aKF67n8/HwtWbJES5Ys0ebNm3XgwAHX8pBms1kNGzZUy5YtNXDgQHXr1k3ShXtZzp07V3feeae++OILvfDCC67xnn/+eU2aNMm/FwYAAAAAAHAFFG2lKDs7W71791ZWVpbGjRunyZMnKzw8XJI0Y8YMTZw4UQEBATKZTEpJSTE4LQAAgGdSU1P1r3/9S9WqVZMk2e12vfrqq5o5c6aysrKKPcbhcGjnzp3auXOn5s+fr/r16+vpp5/W0KFDJUk9evRQjx49XPtTsgEAAAAAgLKIpSNL0aOPPqr09HSNGjVKM2fOdJVskjRhwgQ1bdpUBQUFio+PV6VKlQxMCsBfbDab2rRpI5vNZnQUAPCJhg0bavXq1a6SbdeuXWrTpo0ef/zxy5Zsxdm3b5/uvvtu9e7dWydPniy07dVXX6VkAwAAAAAAZRJFWylJS0vTokWLFBUVpWnTphW7T/PmzSVJTZs2vew43bt3l8lk0jPPPFMaMQH4WXx8vN555x3Fx8cbHQUAvBYcHKwlS5YoKipKkrRhwwbdeOON+vbbbz0es1atWoqIiCj0XKNGjbzKCQAAAAAAUFoo2krJwoUL5XA4NHjwYIWFhRW7T0hIiKTLF23/+Mc/tHXr1tKKCMAAdrtdOTk5stvtRkcBAK8999xzSkpKkvS/+9L+djaaO0aOHKlZs2a5Hp8+fVqSdPPNN+v+++/3LiwAAAAAAEApoGgrJWvXrpUkderU6bL7pKenSyq+aDt16pTGjBmjmTNnlk5AAIbYtWuXWrZsqV27dhkdBQC8kpqaqnHjxkmSzp07p7vuustVjHnityXb888/r/79+7sev/TSS6pevbrngQEAAAAAAEpBgNEBrlWHDx+WJNWuXbvY7QUFBdqwYYOk4ou2J598UomJiRo8eLCGDBnidZ6EhASZzcb3qnMePSyz2SKH3a64uOJfG6A8GTZsmFv7Z2ZmSpJWrFih7777rsTHzZs3z63zlDW33TtGtrBKyszKVFxcXJHHFUFFfw24/qLXW9ZfA4fDccXtY8eOlcVikSQ988wzSktL8/hcxZVsF+/J9u6772r48OGqVKmSHnjgAU2ZMuWy45SV33cAAAAAAED5Eh0drU2bNnl0LEVbKcnNzZUknTlzptjtixYtUnZ2tsLDw1WnTp1C2zZt2qS3335bmzdv9lmei2/uG80pp+trRkaGwWkA7+Xl5bm1/9mzZ11f3Tm2vP+8OP67VKbDbldGRkaRxxVBRX8NuP6i11ueX4OqVatqwIABkqRffvlFr776qsdjXalkk6Rnn31Ww4YNk8Vi0YgRIzRt2rTLLr9bVn7fAQAAAAAAFQdFWymJjo7Wr7/+qi1btqh169aFtmVmZmr8+PGSpJSUFJlMJtc2u92uESNGaNSoUUpOTvZZnpiYmDLxCW+TTK6vsbGxBqcBvBcaGurW/lar1fXVnWPL+8+L+b+zXswWi2JjY4s8rggq+mvA9Re93rL+GjgcjssWV4MHD1ZwcLAkae7cua4PEbjraiWbJB09elTLli1T3759FRcXp5tvvlkrV64sdryy8vsOAAAAAAAoX6Kjoz0+lqKtlHTp0kVpaWmaPn26unbtqsTEREnSxo0bNXToUGVnZ0u6cH+TS7355pv68ccf9cwzz/g0z969e2Wz2Xw6pifWvCTJeeFNxYv3qAPKM3fvtbZjxw7NmTNHPXr0cKtMv9JSaeXB1Fnv61ROrmKiY5Senl7kcUVQ0V8Drr/o9Zb11yA3N1dhYWHFbrv0Q0Tvv/++R+OXpGS79Bx9+/aVJN14442XLdrKyu87AAAAAACg4uAjv6VkwoQJqlq1qo4ePark5GQ1adJECQkJatWqlerWravOnTtLKnx/tuzsbD311FN6+umnVVBQoBMnTujEiROSLiwzd+LEiaveLwVA2ZaYmKgNGza4yncAKI+aN28u6cIS2T/88IPbx7tTsknSf/7znyLnBgAAAAAAKAso2kpJXFyc1q9fr549e8pqterQoUOKjIzU7NmztXz5cu3Zs0dS4aItPT1dp0+f1ogRI1SlShXXH0maPn26qlSpoiNHjhhyPQB8IzAwUJGRkQoMDDQ6CgB4JCQkRAkJCZKk77//XgUFBW4d727JJkmHDx/WL7/8Iqnw704AAAAAAABGY+nIUpSUlKRly5YVeT4nJ0eHDh2S2WxW48aNXc/Xr19f69atK7J/p06ddM8992jYsGFerRMKwHhHjhzRCy+8oCeeeEK1atUyOg4AuC08PNz1fVZWllvHelKyXfTjjz+qatWqqlSpklvnBAAAAAAAKE0UbQbYsWOHnE6nEhMTFRoa6no+LCxMHTt2LPaY+Pj4y24DUH6cPn1a69at08MPP2x0FADwSHZ2tmrUqCGr1arz58+7dexNN93k+t6dkk2SevXqJafTqTNnzrh1TgAAAAAAgNJE0WaA7du3S2LpIwAAUP44HA5lZmZ6dOw999wjk8mkgwcPulWySdLBgwc9OicAAAAAAEBpomgzgLtFm9PpLM04AAAAfmG32zV06FA5HA6jowAAAAAAAPiE2egAFREz2gAAQEVFyQYAAAAAAK4lzGgzwNq1a42OAMAg1atX18SJE1W9enWjowAAAAAAAAAAvETRBgB+FBUVpWHDhhkdAwAAAAAAAADgAywdCQB+dPLkSa1atUonT540OgoAAAAAAAAAwEsUbQDgR+np6Ro7dqzS09ONjgIAAAAAAAAA8BJFGwAAAAAAAAAAAOABijYAAAAAAAAAAADAAxRtAAAAAAAAAAAAgAco2gDAj6xWq5KSkmS1Wo2OAgAAAAAAAADwUoDRAQCgIqlXr56WLFlidAwAAAAAAAAAgA8wow0AAAAAAAAAAADwAEUbAPjRzp07lZKSop07dxodBQAAAAAAAADgJYo2APAjp9Op/Px8OZ1Oo6MAAAAAAAAAALzEPdoAAABQRGhoqHJycnw23ouz/65TuXmqZAvV+BEDizz2hdDQUJ+MAwAAAAAAUFIUbQAAACjCZDLJZrP5bLygYKuC8u0KCrbKZrMVeQwAAAAAAFAesXQkAAAAAAAAAAAA4AFmtAGAH9WrV09Lly5VzZo1jY4CAAAAAAAAAPASRRsA+JHValVCQoLRMQAAAAAAAAAAPsDSkQDgRxkZGZo0aZIyMjKMjgIAAAAAAAAA8BJFGwD40YkTJ7R48WKdOHHC6CgAAAAAAAAAAC9RtAEAAAAAAAAAAAAeoGgDAAAAAAAAAAAAPEDRBgAAAAAAAAAAAHiAog0A/MhsNqtly5Yym/nrFwAAAAAAAADKO97pBQA/cjgc2rhxoxwOh9FRAAAAAAAAAABeomgDAAAAAAAAAAAAPEDRBgAAAAAAAAAAAHiAog0AAAAAAAAAAADwAEUbAPhRRESEevfurYiICKOjAAAAAAAAAAC8FGB0AACoSOLi4jRjxgyjYwAAAAAAAAAAfIAZbQDgR+fOndPhw4d17tw5o6MAAAAAAAAAALxE0QYAfrRv3z5169ZN+/btMzoKAAAAAAAAAMBLLB0JAAAA/IbT6VReXp7RMdwSGhoqk8lkdAwAAAAAACoUijYAAADgN/Ly8hQWFmZ0DLfk5OTIZrMZHQMAAAAAgAqFpSMBAAAAAAAAAAAAD1C0AQAAAAAAAAAAAB5g6UgA8KPk5GSlpaUZHQMAAAAAAAAA4APMaAMAAAAAAAAAAAA8QNEGAH508OBBDRw4UAcPHjQ6CgAAAAAAAADASxRtAOBHeXl52rZtm/Ly8oyOAgAAAAAAAADwEkUbAAAAAAAAAAAA4AGKNgAAAAAAAAAAAMADFG0AAAAAAAAAAACAByjaAMCPYmNjNX36dMXGxhodBQAAAAAAAADgpQCjAwBARVK5cmX16dPH6BgAgHLIbDbL4XAYHQMAAAAAAFyCog0A/Oj48eNauXKlunfvrsjISKPjAAD8wGaz6frrr1ezZs0UGRmpgIAAnTt3TgcPHtTmzZu1e/fuqxZoZrNZ8+fPV3Z2tsaOHeun5AAAAAAA4Goo2gDAjzIzMzVlyhSlpqZStAHANSw0NFR33XWXRowYoWbNmslsvvyK7Tk5OVq6dKneeustbdiwocj2iyXbkCFDJEn5+fmaMGFCqWUHAAAAAAAlxz3a/CA7O1sTJkxQ/fr1ZbVaVbNmTY0ePVq5ubkaPny4TCaT3nzzTaNjAgAAwEuBgYF6+umnlZGRobffflstWrS4YskmSWFhYbrrrrv05ZdfauvWrerYsaNr229LtvPnz+vLL78szUsAAAAAAABuYEZbKdu6dau6d++urKws2Ww2NWrUSMeOHdPrr7+u/fv36/jx45Kk1NRUY4MCAADAK6mpqZo3b56aNm1a6Pnvv/9eX3/9tTZv3qzDhw+roKBANptNycnJat68uTp27KioqChJUtOmTbVu3TrNmjVLf/jDH/TWW28VKtnuvPNOLV261O/XBgAAAAAAikfRVoqys7PVu3dvZWVlady4cZo8ebLCw8MlSTNmzNDEiRMVEBAgk8mklJQUg9MCAADAU/3799d7772nwMBASReWd1ywYIHeeustbd68udhj/vnPf0qSgoKC1K9fP40ZM0YtW7aUJD388MMaPHiwKleuLImSDQAAAACAsoqlI0vRo48+qvT0dI0aNUozZ850lWySNGHCBDVt2lQFBQWKj49XpUqVDEwKwF9sNpvatGkjm81mdBQAgI8MGjRICxcudJVs27ZtU6tWrTR8+PDLlmyXOn/+vD744APdcMMNeuSRR5SbmytJlGwAAAAAAJQDFG2lJC0tTYsWLVJUVJSmTZtW7D7NmzeXpELLC/373/+WyWQq8oelJYFrQ3x8vN555x3Fx8cbHQUA4APt2rXT3/72N9d92N5++221bNlSW7dudXssp9Opt956S2vWrCn0fHp6ulatWuWLuAAAAAAAwMdYOrKULFy4UA6HQ4MHD1ZYWFix+4SEhEhSkft4SNKsWbPUrFkz12NmvwDXBrvdrjNnzigkJEQWi8XoOAAAL4SGhmru3LkKCLjwK/Wf//xnjRw50uPxzGaz5s+fr759+0q6ULyZTCbVrVtXTz/9tCZNmuST3AAAAAAAwHeY0VZK1q5dK0nq1KnTZfdJT0+XVHzR1qhRI914442uP02aNCmdoAD8ateuXWrZsqV27dpldBQAgJemTZumevXqSZK+/PJLjRo1yuOxLpZsQ4YMkXRhucjRo0fr/PnzkqSJEye6VkMAAAAAAABlBzPaSsnhw4clSbVr1y52e0FBgTZs2CCp+KLN1xISElxLGhlpzqOHZTZb5LDbFRdX/GsDlCfDhg1za//MzExJ0ooVK/Tdd9+V+Lh58+a5dZ6y5rZ7x8gWVkmZWZmKi4sr8rgiqOivAddf9Hor+mtQ1q/f4XBccXtcXJwefvhhSVJeXp7uvffeqx5zOcWVbBfvyRYREaE//elPCggI0HPPPaeePXtedpyy8vseAAAAAADlTXR0tDZt2uTRsRRtpeTiTezPnDlT7PZFixYpOztb4eHhqlOnTpHtAwYMUHZ2tqpWrao+ffrohRdeUFRUlMd5Lr65bzSnnK6vGRkZBqcBvJeXl+fW/mfPnnV9defY8v7z4rDbXV8zMjKKPK4IKvprwPUXvd6K/hqU9+t/8MEHXUsAz5w5U/v27fNonCuVbJL0wgsvaPjw4YqPj1e3bt1Ut25dHThwoNixysrvewAAAAAAVCQUbaUkOjpav/76q7Zs2aLWrVsX2paZmanx48dLklJSUmQymVzbIiIiNH78eLVv315hYWH6+uuvNW3aNH3zzTfatGmTrFarR3liYmLKxCecTTK5vsbGxhqcBvBeaGioW/tf/Bm2Wq1uHVvef17M/30z2myxKDY2tsjjiqCivwZcf9HrreivQVm/fofDcdniKiAgQA888ICkC6sU/OUvf/HoHFcr2S4d/4UXXpDZbNaIESM0ceLEYscrK7/vAQAAAABQ3kRHR3t8LEVbKenSpYvS0tI0ffp0de3aVYmJiZKkjRs3aujQocrOzpYkpaamFjru+uuv1/XXX+963LFjRzVu3Fh9+vTRwoULde+993qUZ+/evbLZbJ5djA+teUmS88KbahfvUQeUZ+7ea23Hjh2aM2eOevTooeTk5BIfN2XKFHejlSlTZ72vUzm5iomOUXp6epHHFUFFfw24/qLXW9Ffg7J+/bm5uQoLCyt2W0pKiusX8H/+858ezSQrScl20bvvvqvnn39eFotFN99882WLtrLy+x4AAAAAABUJH3ktJRMmTFDVqlV19OhRJScnq0mTJkpISFCrVq1Ut25dde7cWVLJ7s/Wq1cv2Ww2j9cHBVB2JCYmasOGDa7yHQBQ/jRv3tz1/eeff+728e6UbJKUnZ2tnTt3SpKSk5M9XuEAAAAAAAD4HkVbKYmLi9P69evVs2dPWa1WHTp0SJGRkZo9e7aWL1+uPXv2SCpZ0XbRpUtMAiifAgMDFRkZqcDAQKOjAAA81KxZM9f3mzdvdutYd0u2354nMDBQKSkpbiYGAAAAAAClhaUjS1FSUpKWLVtW5PmcnBwdOnRIZrNZjRs3vuo4S5cuVW5urlq1alUaMQH40ZEjR/TCCy/oiSeeUK1atYyOAwDwQI0aNVzfX/zwVEl4WrJJ0u7du13fx8TEuJEWAAAAAACUJoo2A+zYsUNOp1OJiYkKDQ0ttG3IkCGqW7eumjVrprCwMH399deaMWOGUlNTNXDgQIMSA/CV06dPa926dXr44YeNjgIA8ND777+vLVu2KCQkRKdOnSrxcQ888IBHJZskffXVV5o6darOnDnj9v1BAQAAAABA6aFoM8D27dslFb9sZHJysj744AO9+uqrOnPmjOLi4vTAAw9o8uTJCgoK8ndUAAAA/MY//vEPj45755131KFDB91xxx1ulWyS9MUXX+iLL77w6LwAAAAAAKD0ULQZ4EpF2x/+8Af94Q9/8HckAAAAlDK73a6hQ4fqlVde0caNG42OAwAAAAAAfMBsdICK6EpFGwAAAK5ddrudkg0AAAAAgGsIM9oMsHbtWqMjADBI9erVNXHiRFWvXt3oKAAAAAAAAAAAL1G0AYAfRUVFadiwYUbHAAAAAAAAAAD4AEtHAoAfnTx5UqtWrdLJkyeNjgIAAAAAAAAA8BJFGwD4UXp6usaOHav09HSjowAAAAAAAAAAvETRBgAAAAAAAAAAAHiAog0AAAAAAAAAAADwAEUbAAAAAAAAAAAA4AGKNgDwI6vVqqSkJFmtVqOjAAAAAAAAAAC8FGB0AACoSOrVq6clS5YYHQMAAAAAAAAA4APMaAMAAAAAAAAAAAA8QNEGAH60c+dOpaSkaOfOnUZHAQAAAAAAAAB4iaINAPzI6XQqPz9fTqfT6CgAAAAAAAAAAC9xjzYAAADgN0JDQ5WTk+Oz8V6c/Xedys1TJVuoxo8YWOSxL4SGhvpkHAAAAAAAUHIUbQAAAMBvmEwm2Ww2n40XFGxVUL5dQcFW2Wy2Io8BAAAAAED5xNKRAAAAAAAAAAAAgAeY0QYAflSvXj0tXbpUNWvWNDoKAAAAAAAAAMBLFG0A4EdWq1UJCQlGxwAAAAAAAAAA+ABLRwKAH2VkZGjSpEnKyMgwOgoAAAAAAAAAwEsUbQDgRydOnNDixYt14sQJo6MAAAAAAAAAALxE0QYAAAAAAAAAAAB4gKINAAAAAAAAAAAA8ABFGwAAAAAAAAAAAOABijYA8COz2ayWLVvKbOavXwAAAAAAAAAo73inFwD8yOFwaOPGjXI4HEZHAQAAAAAAAAB4iaINAAAAAAAAAAAA8ABFGwAAAAAAAAAAAOABijYAAAAAAAAAAADAAxRtAOBHERER6t27tyIiIoyOAgAAAAAAAADwUoDRAQCgIomLi9OMGTOMjgEAAAAAAAAA8AFmtAGAH507d06HDx/WuXPnjI4CAAAAAAAAAPASRRsA+NG+ffvUrVs37du3z+goAAAAAAAAAAAvUbQBAAAAAAAAAAAAHuAebQAAAACKcDqdysvLMzqGW0JDQ2UymYyOAQAAAACoQCjaAAAAABSRl5ensLAwo2O4JScnRzabzegYAAAAAIAKhKUjAQAAAAAAAAAAAA8wow0A/Cg5OVlpaWlGxwAAAAAAAAAA+AAz2gAAAAAAAAAAAAAPULQBgB8dPHhQAwcO1MGDB42OAgAAAAAAAADwEkUbAPhRXl6etm3bpry8PKOjAAAAAAAAAAC8RNEGAAAAAAAAAAAAeICiDQAAAAAAAAAAAPAARRsAAAAAAAAAAADgAYo2APCj2NhYTZ8+XbGxsUZHAQAAAAAAAAB4KcDoAABQkVSuXFl9+vQxOgYAAAAAAAAAwAeY0QYAfnT8+HG9//77On78uNFRAADwq4CAAMXGxqpevXqqXbu2wsPD3Tq+atWqeuyxx0opHQAAAAAAnmFGGwD4UWZmpqZMmaLU1FRFRkYaHQcAgFJjMpnUpUsX9e3bVy1atFBKSopCQkIK7bNv3z5t3rxZX3zxhd5//32dPHmy2LGqVq2qNWvWKDU1VXFxcRRuAAAAAIAygxltAAAAAHwmODhYY8aM0a5du/Svf/1LDz/8sG644YYiJZsk1a9fXwMGDNCsWbOUkZGhv/zlL0pISCi0z6UlmyQNGDBA1113nT8uBQAAAACAq6Jo84Ps7GxNmDBB9evXl9VqVc2aNTV69Gjl5uZq+PDhMplMevPNN42OCQAAAHjlhhtu0HfffadXXnlFiYmJhbbt2bNHH3/8sd577z39/e9/19dff60zZ864tttsNo0YMULff/+9Hn/8cZnN5iIl27Fjx9SxY0f99NNP/rwsAAAAAAAui6UjS9nWrVvVvXt3ZWVlyWazqVGjRjp27Jhef/117d+/33WfpotvHgAAAADl0eTJk/XUU0/JYrG4nluzZo3+8pe/aPXq1Tp16lSRYywWi5o2bap7771Xd999typVqiSr1aoXX3xR/fv3V0hIiBo3bizpfyXb3r17/XZNAAAAAABcDTPaSlF2drZ69+6trKwsjRs3TpmZmdqyZYuysrI0ffp0LV++XBs3bpTJZFJKSorRcQH4gc1mU5s2bWSz2YyOAgCAz8yaNUvPPPOMq2T7z3/+o5SUFHXt2lWLFy8utmSTJLvdri1btuiRRx5RbGysXnrpJTkcDklSy5YtKdkAAAAAAGUeRVspevTRR5Wenq5Ro0Zp5syZCg8Pd22bMGGCmjZtqoKCAsXHx6tSpUoGJgXgL/Hx8XrnnXcUHx9vdBQAAHxi2rRpGjlypCTJ4XDoySef1E033aTt27e7NU5OTo4ef/xx9erVS+fPn3c9n5+fr1tvvZWSDQAAAABQJlG0lZK0tDQtWrRIUVFRmjZtWrH7NG/eXJLUtGnTIts+/vhj3XTTTbLZbIqIiFCbNm20Y8eOUs0MoPTZ7Xbl5OTIbrcbHQUAAK917dpVTzzxhKQLJdvQoUM1depUj/+dq1q1qqZOnaqgoCDXc4GBgRozZowv4gIAAAAA4HMUbaVk4cKFcjgcGjx4sMLCwordJyQkRFLRou31119X//791bZtWy1dulQLFy5Uly5dCt0sHkD5tGvXLrVs2VK7du0yOgoAAF4JDw/XO++843o8duxYffDBBx6PV7VqVa1Zs8Z17+Iff/xRJ0+elCTddddduvXWW72JCwAAAABAqQgwOsC1au3atZKkTp06XXaf9PR0SYWLtv3792v8+PF65ZVXNGrUKNfzPXr0KKWkAAAAgPueeuop1apVS5K0Zs0avf766x6P9duS7eI92Vq1aqX33ntP0oX7wK1YsaLQspIAAAAAABiNoq2UHD58WJJUu3btYrcXFBRow4YNkgoXbXPmzFFgYKAeeOABn+ZJSEiQ2Wz8BMY5jx6W2WyRw25XXFzxrw1QngwbNsyt/TMzMyVJK1as0HfffVfi4+bNm+fWecqa2+4dI1tYJWVmZSouLq7I44qgor8GXH/R663orwHXX/av3+FwXHZbSEiI7r//fknS2bNnXd974nIl2969e7V3714NGjRIPXv2VI0aNXT77bfr73//+2XHKiu/8wIAAAAAypfo6Ght2rTJo2Mp2kpJbm6uJF12ucdFixYpOztb4eHhqlOnjuv5r776Sg0aNNB7772nKVOm6OjRo0pISNDTTz+tQYMGeZzn4pv7RnPK6fqakZFhcBrAe3l5eW7tf/bsWddXd44t7z8vjv/eq8dhtysjI6PI44qgor8GXH/R663orwHXX76vf9CgQapSpYqkC0umX/yQmbuuVLJdNH36dPXs2VOS9PDDD1+xaCsrv/MCAAAAACoOirZSEh0drV9//VVbtmxR69atC23LzMzU+PHjJUkpKSkymUyFtmVkZOgPf/iDpk+frpo1a+rdd9/VXXfdpWrVqqlLly4e5YmJiSkTn+41yeT6Ghsba3AawHuhoaFu7W+1Wl1f3Tm2vP+8mC0W19fY2NgijyuCiv4acP1Fr7eivwZcf9m/fofDcdni6tIPgL311lsejV+Skk2S1q9frx9++EGNGzdW27ZtVbNmTR09erTYMcvK77wAAAAAgPIlOjra42Mp2kpJly5dlJaWpunTp6tr165KTEyUJG3cuFFDhw5Vdna2JLneWLjI4XAoJydHCxYscN3w/Xe/+5127typP/3pTx4XbXv37pXNZvP4enxlzUuSnBfeVLp4jzqgPNu1a5db++fn52v48OEKDw9XYGBgiY+bMmWKu9HKlKmz3tepnFzFRMcoPT29yOOKoKK/Blx/0eut6K8B11/2rz83N1dhYWHFbmvRooWkCzOuPVlao6Ql20WffvqpGjduLElq3rz5ZYu2svI7LwAAAACg4uDjnqVkwoQJqlq1qo4ePark5GQ1adJECQkJatWqlerWravOnTtLKnx/NkmKjIyUpEKFmslkUpcuXfTDDz/47wIAlIrAwEBFRka6VbIBAFCW1KtXT5UrV5Ykbd682e3j3S3Zfnue5s2bu31OAAAAAABKC0VbKYmLi9P69evVs2dPWa1WHTp0SJGRkZo9e7aWL1+uPXv2SCpatCUnJ192zIv3dgJQfh05ckQjR47UkSNHjI4CAIBHGjZs6Pp+27Ztbh3rSckmSVu3bnV9n5SU5NY5AQAAAAAoTRRtpSgpKUnLli3T6dOndfr0aX377bd68MEHlZubq0OHDslsNruWwLmob9++kqR//etfruccDodWr16tli1b+jU/AN87ffq01q1bp9OnTxsdBQAAjxQUFOjAgQPKzMxUVlZWiY+LiIjwqGSTpF9//VU//fSTDh8+rF9//dXT6AAAAAAA+Bz3aDPAjh075HQ6lZiYqNDQ0ELbevfurXbt2unBBx/UL7/8olq1aumdd97Rjh07tHr1aoMSAwAAABd89tlnqlevntvH5eTkaOfOnUpNTXWrZJOkEydOqHr16m6fEwAAAACA0kbRZoDt27dLKrpspHThfmxLly7VxIkT9cc//lGnTp1S06ZNtWLFCtd93QAAAIDyxm636+6779bPP/+sWbNmlbhkAwAAAACgLKNoM8CVijZJqly5smbPnq3Zs2f7MxYAAABQqux2u8aMGWN0DAAAAAAAfIZ7tBngakUbgGtX9erVNXHiRJa/AgAAAAAAAIBrADPaDLB27VqjIwAwSFRUlIYNG2Z0DAAAAAAAAACADzCjDQD86OTJk1q1apVOnjxpdBQAAAAAAAAAgJco2gDAj9LT0zV27Filp6cbHQUAAAAAAAAA4CWKNgAAAAAAAAAAAMADFG0AAAAAAAAAAACAByjaAAAAAAAAAAAAAA9QtAGAH1mtViUlJclqtRodBQAAAAAAAADgpQCjAwBARVKvXj0tWbLE6BgAAAAAAAAAAB9gRhsAAAAAAAAAAADgAYo2APCjnTt3KiUlRTt37jQ6CgAAAAAAAADASxRtAOBHTqdT+fn5cjqdRkcBAAAAAAAAAHiJog0AAAAAAAAAAADwQIDRAQAAAACUPaGhocrJyfHZeC/O/rtO5eapki1U40cMLPLYF0JDQ30yDgAAAAAAJUXRBgAAAKAIk8kkm83ms/GCgq0KyrcrKNgqm81W5DEAAAAAAOURRRsA+FG9evW0dOlS1axZ0+goAAAAAAAAAAAvUbQBgB9ZrVYlJCQYHQMAAAAAAAAA4ANmowMAQEWSkZGhSZMmKSMjw+goAAAAAAAAAAAvUbQBgB+dOHFCixcv1okTJ4yOAgAAAAAAAADwEkUbAAAAAAAAAAAA4AGKNgAAAAAAAAAAAMADFG0AAAAAAAAAAACAByjaAMCPoqKi9MADDygqKsroKAAAAAAAAAAAL1G0AYAfmUwmBQUFyWQyGR0FAAAAAAAAAOAlijYA8KOff/5Zs2bN0s8//2x0FAAAAAAAAACAlyjaAAAAAAAAAAAAAA9QtAEAAAAAAAAAAAAeoGgDAAAAAAAAAAAAPEDRBgB+FBERod69eysiIsLoKAAAAAAAAAAALwUYHQAAKpK4uDjNmDHD6BgAAAAAAAAAAB9gRhsA+NG5c+d0+PBhnTt3zugoAAAAAAAAAAAvUbQBgB/t27dP3bp10759+4yOAgAAAAAAAADwEktHAsVwOp3Kc9iNjuGWULNFJpPJZ+M5ndL58vUSKMgi+fAlAAAAFZjT6VReXp7RMdwSGhrq098HAQAAAABXR9EGFCPPYVeVtauNjuGWXzt3lc3iux/p83Zp4iKfDecX0wdIwfytBgAAfCAvL09hYWFGx3BLTk6ObDab0TEAAAAAoEJh6UgAAAAAAAAAAADAAxRtAAAAAAAAAAAAgAdYZA0A/Cg5OVlpaWlGxwAAAAAAAAAA+AAz2gAAAAAAAAAAAAAPULQBgB8dPHhQAwcO1MGDB42OAgAAAAAAAADwEkUbAPhRXl6etm3bpry8PKOjAAAAAAAAAAC8RNEGAAAAAAAAAAAAeICiDQAAAAAAAAAAAPAARRsAAAAAAAAAAADgAYo2APCj2NhYTZ8+XbGxsUZHAQAAAAAAAAB4iaINAPyocuXK6tOnjypXrmx0FAAAUM7UrFnT6AgAAAAAgN8IMDoAAFQkx48f18qVK9W9e3dFRkYaHQcAAJSyuLg4tWrVSi1atFCTJk0UHh4uk8mk3NxcpaWlafPmzfrPf/6jffv2XXGc66+/XmvWrNH8+fP12GOP+Sk9AAAAAOBqKNoAwI8yMzM1ZcoUpaamUrQBAHCNslgs6tOnj37/+9+ra9eul92ve/furu//85//6K233tKiRYt09uzZQvtdLNkiIyM1duxY7du3T2+99Vap5QcAAAAAlBxLR/pBdna2JkyYoPr168tqtapmzZoaPXq0cnNzNXz4cJlMJr355ptGxyxVTqd0MlOS8+ITRqYBAAAASkf79u21a9cuLVmy5Iol22+1atVK8+bN0+HDh9WvXz/X85eWbJL0xRdfaP78+T7PDQAAAADwDEVbKdu6dauaNGmiF198UVlZWWrUqJHy8/P1+uuva8CAAUpLS5MkpaamGhu0lBSckw5vkr56V9r4fuFtmxZKWWkXSrhrmX3OPOXf3EOOVf8qss3pdKrg8YnK79lHzoOH/B/OD9J3/luvDTFp8/KZl93ntSEmfTqzlx9TAQAA+JbVatVrr72mzz//XPXr13c9v3fvXk2ZMkV9+/ZVrVq1ZLVaFRwcrOjoaHXr1k1PPvmktmzZ4tr/uuuu04cffqhFixapY8eORUq2Hj16KDc31+/XBwAAAAAoHktHlqLs7Gz17t1bWVlZGjdunCZPnqzw8HBJ0owZMzRx4kQFBATIZDIpJSXF4LS+d/a09N1HUu4vxW8/kXHhz097pOSekuUa/a/RPHSwHN98K/vst2Vq3kymalGubY4ln8j5/XaZ7xsmU51440ICAADAY5UqVdI///lPtW/f3vXchg0b9Oyzz2rNmjVyFvPJsh9//FGfffaZPvvsM02dOlU33HCD/vjHP6pPnz6SpP79++uOO+6QxWKRRMkGAAAAAGUVM9pK0aOPPqr09HSNGjVKM2fOdJVskjRhwgQ1bdpUBQUFio+PV6VKlQxM6nv5Z69csl3qp73SzpXX7sw2U2CgAsaPk86elf3lV13PO4+myzHvbzI1bCDznXcYFxB+ZbPZ1KZNG9lsNqOjAAAAHwgNDdXy5ctdJVteXp7GjBmj9u3ba/Xq1cWWbMX59ttv1bdvXw0aNEgnTpyQJFfJ9vXXX1OyAQAAAEAZRdFWStLS0rRo0SJFRUVp2rRpxe7TvHlzSVLTpk1dz3Xs2FEmk6nYPw899JBfsvvCkU0lK9ku+nG3dPxw6eUxmimhvswD+8u5eYscy1fKabfLPmOm5HTKMn6cTP99EwXXvvj4eL3zzjuKj483OgoAAPCBv/zlL2rbtq2kCytatGvXTq+99pocDodH4+3evbvIc06nU2fOnPEqJwAAAACgdFyji/UZb+HChXI4HBo8eLDCwsKK3SckJERS4aLtrbfe0qlTpwrtt3z5ck2ZMkW9epWPe1g57FLGdvePS98qVY33dZqywzx4kBxffyv72+/IvP+AnLv3yPzg/TLVjDM6ml8UnM/TmdPZRscwnN1u15kzZxQSEuL6lDoAACifevfuraFDh0qSTp48qa5du2rr1q0ej3f99ddrzZo1qly5siTp7Nmzslqtuummm/Too4/q1Vdf9T40AAAAAMCnKNpKydq1ayVJnTp1uuw+6enpkgoXbY0aNSqy3/PPP69q1aqpW7duPk5ZOo4fks57sKrNz/ul82ekoBCfRyoTTAEBChj/mAoeGSPHsuUyNU6W+fZbjY7lN98snqxvFk82Oobhdu3apX79+umjjz5ScnKy0XEAAICHKlWqpNmzZ7seP/rooz4p2SIjIyVduCfb888/r88++0ySNHXqVC1dulQHDhzwKjcAAAAAwLco2krJ4cMX1kGsXbt2sdsLCgq0YcMGSYWLtt/6+eeftWrVKo0cOVIBAZ7/z5WQkCCz2T8rhXZqMkT3/O4F9w90Su1v7KL0X3b5PpS7UYKCpNmzfD+wzSYFBkoFBTK1bCGTD/83SUxIlOn8eZ+NZwkM0W1T9vpsvMadHlTCDXcWu+3jF7r65ByJCQmy5/t3WaVhw4a5tX9mZqYkacWKFfruu+9KfNy8efPcOk9Zc9u9Y2QLq6TMrEzFxcUVeVwRVPTXgOsver0V/TXg+ivW9Uvl7zW42tKPw4YNU0xMjCRp2bJl+tvf/ubxuYor2S7ek+21117T6NGjFRISotGjR2v06NGXHcefv/MDAAAAwLUkOjpamzZt8uhYirZScvFG5Ze7l8KiRYuUnZ2t8PBw1alT57LjLFy4UAUFBa4laTx18c19fzhR84THx/74Y5YyfszwXRhPWYMV6OMhnU6n7C+9IhXkS7VqyvHB32Xu0F6mGjE+Gf9Y5jHp7DmfjCVJAcGhPhtLkipHJ6hW4y4+HfO3jmUeU8G5vFI9x2/l5bl3vrNnz7q+unNsRkYZ+LnwgsNud33NyMgo8rgiqOivAddf9Hor+mvA9Ves65euvddg5MiRru8nTJjg8ThXKtkk6ZlnntEDDzyg0NBQ3XPPPfrjH//o2vZb/vydHwAAAABwAUVbKYmOjtavv/6qLVu2qHXr1oW2ZWZmavz48ZKklJQUmUymy46zYMECJSUlqUWLFl7liYmJ8dunW+0Wz4oOh8OuoDApNiDWx4nc5wwK0s8+HtPxyVI5t30v8733yNz6RhU8/IjsL70iy8zpV/xvoKRqxNTw+Yy28qZGTA2/z2gLDXWvkLRara6v7hwbG2v8z4U3zP+9H53ZYlFsbGyRxxVBRX8NuP6i11vRXwOuv2Jdv1T+XgOHw3HZ4qp9+/Zq0KCBJGndunVKS0vz6BxXK9kk6cSJE/rggw90//33KyIiQv3799fcuXOLHc+fv/MDAAAAwLUkOjra42Mp2kpJly5dlJaWpunTp6tr165KTEyUJG3cuFFDhw5Vdna2JCk1NfWyY+zatUubNm3S1KlTvc6zd+9e2Ww2r8cpCYdd+vKv7t+nrXoDi3bv+6F0Qrkp116gKmtX+2w8Z0aGHHPmydQgUeb+/WSyWGQeMliOufPl+GSpLLf19foce/bukc3iux/pcwXSxEU+G84v9uzdq2A//622a5d7S53u2LFDc+bMUY8ePdy6R9uUKVPcjVamTJ31vk7l5ComOkbp6elFHlcEFf014PqLXm9Ffw24/op1/VL5ew1yc3MVFhZW7LZ27dq5vvd0eeeSlGyXnuP+++93nftyRZs/f+cHAAAAAFzAxx1LyYQJE1S1alUdPXpUycnJatKkiRISEtSqVSvVrVtXnTt3lnTl+7MtWLBAJpNJgwcP9ldsnzBbpNgU94+LS/V5lDLB6XDI/uLLksMhy/jHZLr46e3+/WRKTJBjzjw5j7HMT0WRmJioDRs2uMp3AABQ/jRv3tz1/TfffOP28e6UbJK0efNmFRQUFDk3AAAAAMB4FG2lJC4uTuvXr1fPnj1ltVp16NAhRUZGavbs2Vq+fLn27Nkj6fJFm9Pp1Pvvv6+OHTuqVq1a/ozuE7VbSLaoku8fnSRFlr/LLBHHR0vk3Jkm8z1DZLrkf0uTxSLL449JDrvsL70ip9NpYEr4S2BgoCIjIxUY6Ou7AAIAAH+5uCrFqVOntHfvXreOdbdkky7c2/WHHy6s/JCcnKzg4GDPggMAAAAAfI6irRQlJSVp2bJlOn36tE6fPq1vv/1WDz74oHJzc3Xo0CGZzWY1bty42GO/+OILHT58WEOHDvVzat8ICJaa9ZPCql193+oNpUa3SD64TVmZ4zxyRI75C2RKaijzHbcX2W6Kry3zkMFybv9Bjk+WGpAQ/nbkyBGNHDlSR44cMToKAADwUNWqVSVJ6enpbn1YypOS7aKjR49KkiwWi8LDwz1IDQAAAAAoDdyjzQA7duyQ0+lUYmKiQkNDi91nwYIFCgkJUb9+/fyczneCw6QWg6RjP0jpW6W844W3V6l5YbnI6xKvzZJNkky1ailw+adX3McyaIAsgwb4KZH/xTXqqNHvXfkNqKttv5acPn1a69at08MPP2x0FAAA4KHu3bsrNDRU58+fd+u4Bx980KOSTZKee+45vfHGGzp79qxOnjzpdmYAAAAAQOmgaDPA9u3bJV1+2cizZ8/qo48+0q233lruP60aECTVaibVvF46/ZN0PlcymaWQCCm0itHpAAAAAPd99dVXHh03atQoRUREKDY21q2STZI2bdrk0TkBAAAAAKWLos0AVyvarFarTpw44cdEpc9kkipVNzoFAAAAYBy73a6hQ4cqODhYeXl5RscBAAAAAPgA92gzwNWKNgAAAADXJrvdTskGAAAAANcQZrQZYO3atUZHAGCQ6tWra+LEiapenSmeAAAAAAAAAFDeUbQBgB9FRUVp2LBhRscAAAAAAAAAAPgAS0cCgB+dPHlSq1at0smTJ42OAgAAAAAAAADwEkUbAPhRenq6xo4dq/T0dKOjAAAAAAAAAAC8RNEGAAAAAAAAAAAAeICiDQAAAAAAAAAAAPAARRsAAAAAAAAAAADgAYo2APAjq9WqpKQkWa1Wo6MAAAAAAAAAALwUYHQAAKhI6tWrpyVLlhgdAwAAAAAAAADgA8xoAwAAAAAAAAAAADxA0QYAfrRz506lpKRo586dRkcBAAAAAAAAAHiJog0A/MjpdCo/P19Op9PoKAAAAAAAAAAAL3GPNqAYoWaLfu3c1egYbgk1W3w6XpBFmj7Ap0OWuiDfvgQAAKACCw0NVU5Ojs/Ge3H233UqN0+VbKEaP2Jgkce+EBoa6pNxAAAAAAAlR9EGFMNkMslmqdg/HiaTFFyxXwIAAFCBmUwm2Ww2n40XFGxVUL5dQcFW2Wy2Io8BAAAAAOUTS0cCAAAAAAAAAAAAHmC+CgD4Ub169bR06VLVrFnT6CgAAAAAAAAAAC9RtAGAH1mtViUkJBgdAwAAAAAAAADgAywdCQB+lJGRoUmTJikjI8PoKAAAAAAAAAAAL1G0AYAfnThxQosXL9aJEyeMjgIAAAAAAAAA8BJFGwAAAAAAAAAAAOABijYAAAAAAAAAAADAAxRtAAAAAAAAAAAAgAcCjA4AAOVZw4YN3do/IiJCkydP1k033aSYmJhSSgUAAAAAAAAA8AeKNgDwo5iYGD3zzDNGxwAAAAAAAAAA+ABLRwIAAAAAAAAAAAAeoGgDAAAAAAAAAAAAPEDRBgAAAAAAAAAAAHiAog0AAAAAAAAAAADwAEUbAAAAAAAAAAAA4AGKNgAAAAAAAAAAAMADFG0AAAAAAAAAAACAByjaAAAAAAAAAAAAAA9QtAEAAAAAAAAAAAAeoGgDAAAAAAAAAAAAPEDRBgAAAAAAAAAAAHiAog0AAAAAAAAAAADwAEUbJEkOh0PPPfec6tevr5CQENWqVUuPPvqocnNzjY4GAJe1YsUKpaamKjg4WPHx8Xr55ZeNjuQ3X3zxhfr27avatWvLZDJpypQpRkfyqxdffFGtW7dWlSpVVLlyZbVt21arVq0yOpZfLViwQM2bN1eVKlUUEhKipKQkvfzyy3I6nUZHM8TatWtlsVhUv359o6P4xTPPPCOTyVTkz759+4yO5lfZ2dn6/e9/rxo1aig4OFh16tTR22+/bXQsv4iPjy/2v4Hk5GSjowEAAABAhRJgdACUDS+99JJmzpypuXPnqnnz5tq9e7fuvfdenTt3TrNnzzY6HgAUsWnTJvXt21ePP/64Fi5cqG+//VYPPfSQQkND9dBDDxkdr9Tl5OSoUaNGuuuuuzRmzBij4/jd2rVrdd9996lly5YKDQ3VO++8o169eunzzz9XmzZtjI7nF9ddd52eeuopNWjQQMHBwVq/fr1Gjhwpi8Wi0aNHGx3Pr7KysnTPPffo5ptv1t69e42O4zfx8fH6+uuvCz1XrVo1g9L4X05Ojtq3b6/Y2FgtXLhQtWvXVmZmpux2u9HR/GLjxo2FrjUnJ0cpKSkaOHCggakAAAAAoOKhaIMkacOGDeratavuuOMOSRfeuBk0aJDWrl1rcDIAKN7LL7+sli1batq0aZKkpKQk7dixQy+88EKFKNp69OihHj16SJImTpxocBr/W7lyZaHHM2bM0KpVq7RkyZIKU7TdcssthR7XrVtXn3zyif79739XqKLN4XBoyJAhevjhh3X27NkKVbRZLBZFR0cbHcMwL774ovLy8rRs2TIFBwdLuvA7bEXx21L17bffVn5+vu6//36DEgEAAABAxUTRBklS27ZtNXPmTH3//fdKSUnRgQMHtGLFClfxBgAldfBopvILCs8mKPjvJ+4L7HbtOZhe5PGlwkKtqlE96qrn2bBhg4YPH17ouW7dumnmzJlKT09XXFycN5fhsV9+PaVfTpwq8rw7r0G9WjVksZTP1Z3zCwp08GhWkefduf6oyAhFRoS7dV6Hw6FTp07JZrN5mNx30rN+Vt6Zc4WeK+56L/caBAcGqHace+WJ0+nUxo0btWHDBk2aNMmb+F47lZOnrJ+PF3nenf8GatW4TtbgoBKd709/+pNMJpMmTpyoZ5991sv03nM6ndp/+Jgcv1nC053rrxxu03VRVa56rkv/rmvSpImeeuop3XTTTb64DK/8mP2rTp4uuvx4SV8Ds8mkerVryGQyXfE8ixcvVtu2bTV27Fh9/PHHioiIUO/evfXss88qNDTUh1fknrPnzuvIsZ+KPO/OfwPR1SJVKcy9a5g9e7Z69+6tmJgYD5MDAAAAADxhclbUG3lUALm5uQoLC5N0YSmZK7356HQ69fzzz7vu91FQUKAHHnhAs2fPvuqbHABwqQ2bftA//+8rj441SXpgUC/VrVXjqvsGBQXpzTff1IMPPuh6bseOHWrcuLH+85//qGXLlh5l8NaJUzl6dc5HOnvuvEfHN2+cqDt7dnTrmPj4eN1///2GFyzShX9PPvh0jbbvPujR8bZQq8bc10/hNvfeYJ4yZYpmzpypH374wbCS9aJd+49o3kee3y+uX/cOapHSoET7njx5UrGxsTp//rwcDocmT56sp556yuNz+8K58/l6be5HOn7itEfH16kZowcG9pTZfPWyed26dbrrrrv03XffKTo6Ws8884zee+89w+9Tturz/+jf32z16FiLxaxH7rld0dUir7jfihUrdPLkSTVq1EinTp3S7NmztXDhQq1atUpdu3b16Ny+kvXzcb0xf4nsdodHx3e8MVXdOrS66n4hISFyOp3q16+fxowZo2PHjmnUqFFq166d3n//fY/O7QsOh0N/XbhMh9KLfuigJKpWrqRH771DwUGBJT5m06ZNatmypVatWlVktisAAAAAoHSVz4/Lw+c++ugjvfXWW5o7d662bNmiDz/8UCtXriwTb9oCKF9aN09W/dqxHh3btmVKiUq2sqxypTD17erZ0oWVK4WpdxfjZ6N4w2Qy6dZb2incFuLR8bd3a+92yfbWW29p6tSp+uijjwwv2SSpYb1auiE1yaNjGyXUVvMmiSXePzw8XFu3btWmTZv05ptv6uWXX9a7777r0bl9JTgoUAN6dvLogzrBQYG6s2fHEpVs2dnZGjJkiObOnVvmlk/s0ra5Yq6r6tGxt7RvddWSTbqwfOygQYPUtGlTtWvXTu+9957atWunF1980aPz+lJ0tUjd0s6zDzvEXFdVXdo2L9G+DodDkZGRmjt3rlq0aKE+ffro5Zdf1gcffKDjx4vOqvQXs9ms/r06uVWUXWQymTw6dvbs2apTp45uvvlmt88JAAAAAPAORRskSePGjdPo0aM1dOhQNWnSRP369dPUqVM1Y8YMnT171uh4AMoRs8mkO3t0KPGybxdVj6qim9u3KPH+MTExysoqPFvgxx9/dG0zUmqj+kppWNetY0yS+vfq5PbrVhbZQqzq172D28e1aNJAyQnxbh0zc+ZMjR8/XkuXLlWXLl3cPmdp6dHpRlWtXMmtY8JCQ3T7Le3dKqjMZrPq16+vlJQUPfTQQ5owYYKefPJJd+P6XO24aHW8sanbx/XuclOJlw394YcfdOzYMfXq1UsBAQEKCAjQc889p/379ysgIEAffPCB2+f3lQCLRQN6dXJ7Cdi6tWLUtmUTj8/bunVrHTp0yOPjfaltyyaqU9O9v4sDLBYN7NVJARZLifaPiYlRYmKiAgP/V0olJydLkg4fPuzWuX0tMiJcvX/n/gcnOt6Yqtqx1d065tSpU1q4cKEefPBBVqIAAAAAAANQtEHShWUmf/vpcYvFIqfTKVYXBeCuiEphuvXmtiXe32I2a0DvzgoMKPmtQ9u0aaPPPvus0HOrVq1S7dq1DZ/VZDKZdOvNbRXuxv112rVKUV0335Quyxq4OaurSkS4ev2utVvnePrpp/Xss89qxYoVZapkky7MzOrfy71ZXbd3b68wD2cCXuRwOMrMB2R+16a5alQv+ayu5MR4NW9c8tl8LVu21Pbt27V161bXn4ceekg1a9bU1q1b1bNnT09i+0x0tUh1a3/15Q8vCg4K1J09OsrsRVGyZcsW1axZ0+PjfclsNqt/z45uzcy6pUNLVS/BbL6L2rVrp3379qmgoMD13O7duyVdWFLXaM2bJKqRGx8eqFG9qn7Xppnb53nvvfd0/vx53XvvvW4fCwAAAADwHkUbJEm33nqrZs6cqY8//liHDh3SZ599pkmTJql79+4KCfHuTT8AFZM7s7q6tmuhGm4uszZ27Fj95z//0ZNPPqldu3Zp/vz5euONN/TEE094EtfnQkOsurOEs7qiq0XqZjeXWcvJyXGVC+fPn1dWVpa2bt1q+L2pLtWz042qWuXqs7pMkvr37OjWbL4xY8boxRdf1IIFC9SgQQNlZWUpKytLJ0+e9CKxb9WOra6ON6aWaN+WKQ3VqH5tt8afPHmy1qxZowMHDmj37t16++23NX36dN1zzz0epPW9AItFA3qWbHZSmC1Et93Szq1i0mazqXHjxoX+XHfddQoKClLjxo0VERHhTXyfaNOyierWKlmB3qdrG1Up4Ww+SXrssce0du1aHThwQFu3btXDDz+s1atXa8yYMR6m9b0qEeHq06VkS+nWrVVDbVq4N5vv8ccf188//6yRI0dq165dWrdunR5//HHdfffdqlKliieRfcpkMun2bu0UFnr136UvzILsXOLZfJeaPXu2br31VlWv7t5MOAAAAACAb1C0QZL0+uuv6+6779a4cePUsGFDPfDAA+rWrZvmz59vdDQA5ditN7dVpavM6oqPi1b7Viluj92yZUt98sknWrZsmZo2baqnn35azz//vB566CFP4/pcYt2auvH6Rlfcx2Ixa0CvTgoIcO/N1U2bNun666/X9ddfr8zMTM2aNUvXX3+97r//fm8i+1RQCe/V1f6Gpm4vMffaa6/p7Nmzuu222xQTE+P6M3r0aG8i+9zv2jRTbPWoK+4TGRGuXp1vdHvsU6dO6aGHHlJycrJuvPFG/eUvf9G0adP08ssvexrX56pXi9QtHa5eIt/RrX2Jyojy5sJSulef1ZWcGK9myQlujZ2Zmam7775bSUlJuvnmm7V7926tWbNGvXv39iayzzVrnKDkxPgr7hMcFKj+Pd2fzde0aVOtWLFC3333nVJTU3Xvvffqtttu05///GcvEvtWWGiIbu/e/qr7devQStWj3C8Hv/nmG33//fcaMWKEJ/EAAAAAAD5gcrIu4DUrNzdXYWFhki7MfLDZbF6PmXfmrI6fOK24mGpejwWgYthzMF1z/rGi2G1BQYEafe8dbt/Lqjw5fz5fr89fouzjxc+06t6xlTrckOrfUH72r/WbtParLcVui64WqVF33+Z20Vie/Jj9q96Yt0QFdnuRbSaTSSPu6q34uGgDkvmHw+nUO39frgNHjhW7vVXThrq929WLiPJs8w979OHyfxe7LcwWorH33SlbqNW/ofwoJ++MXp3zkXJyzxS7vX/PjmrmxrKh5dHilV9o4/e7it1Wr3YNDR/Q06tlQwEAAAAAxmFGG9yyfuN2vfm3j7V87TdGRwFQTiTWiVPrZsnFbuvdufU1XbJJ/5vVVdwbqPFx0WrX0v3ZfOXN725qptjoorO6LBazBvbufE2XbJJUPaqKunUs/l5dHW5oek2XbNKFWV2Xu1dXZOVw9ezs3r35yqNmyQlqnFin2G39une4pks26cKsrn6XWUq3SYM6ut7N2XzlUa/ONyqyctGlQa3BQV7fmw8AAAAAYKxrpmgzmUyupan++c9/ql27dqpUqZKioqLUr18/7d+/37XvsmXL1KFDB1WuXFmVKlVS3759tXfv3suOfe7cOb322mu66aabVLlyZVmtVjVo0EDjx49XdnZ2scd8++23mjhxolq2bKno6GgFBwcrNjZW/fv318aNGy97rhUrVqhHjx667rrrFBgYqKpVqyopKUn33XefNmzY4OGr4xu5Z87qq80/SNI1/6YgAN/q3vEGVYssfL+kpPq11SKlgUGJ/KtmjevU6abrCz0XdHGpNPM180/xZVks5gv36vpNoXZLu5aKrhZpUCr/uql5Y9WvHVvouZjrqqpL2+YGJfKvypXCdOvNbQs9ZzKZNKBnp6suq3gtMJlMuu2WdgqzFV4e84bUJDWsV8ugVP7VsF4ttWrasNBz4bYQ3ermvfnKq+DgIPUvZindvl3bqHKlMINSAQAAAAB84Zp7d2/WrFnq06ePDhw4oPr16ysvL0+LFy9Whw4d9PPPP+vVV19V7969tXfvXtWtW1cFBQVaunSp2rdvr59//rnIeD/++KNat26tMWPG6Ntvv1XlypWVmJiow4cPa+bMmWrevLkOHDhQ5LjBgwdrxowZOnDggKKiopScnKxz587pww8/1E033aTFixcXOeatt95Sz549tXLlSjkcDqWkpKh69epKT0/X3LlztWDBglJ5zUrqy43bde58vmKuq6pGCbUNzQKgfAkKDFD/Xv+b1WULteqObu0rxJurF3Vu3Uxx0f9bdrfP725S5DU+m+9S10VVUfcON7ge16kZo7YtmxiYyL/MJpP69egga3CQpEvuzWe5tmfzXSq1UX01afC/WV0db2yq2hXogzu2UGuhWV1VK1dSj07u35uvPOv5m1nM/bp3kC3k2p7Nd6n4uGh1uKGp63GTBnWV2qi+gYkAAAAAAL5wzRVtEyZM0Pz585WRkaEtW7YoPT1dLVu2VEZGhu677z798Y9/1Pz583Xs2DFt2bJFR48eVfPmzZWVlaWXXnqp0FhOp1MDBgzQd999p549e2r//v06dOiQvv/+e2VnZ+u+++7TkSNHNGTIkCI5nn76ae3du1e//PKLfvjhB23ZskU//fSTlixZIqvVqvvvv185OTmu/QsKCjRp0iRJFwq3H3/8UZs3b9bOnTt16tQpff7557rllltK98W7gktns3Vp07xCvTkOwDdqxlynzjc1kyTd3q19kZkd17qLxUpggEWNEmqreZNr+35ExWndPFn1a8cqOChQd1aQ2XyXqlwpTH27tpEkdWvfqsLM5rvIZDLp1lvaKTwsVDWqV9Xv2lSM2XyXalivlm5ITZLJZFL/XhVjNt+lgv87k9dkMumG1CQ1qCCz+S7VpW1zxVxXVeFhobr1lrb8Tg0AAAAA1wCT0+l0Gh3CFy7+n9RHHnlEr7/+eqFtq1atUvfu3S+7feXKlerRo4dSUlK0bds21/MrVqxQz5491bhxY23cuFFWa+FP3NrtdrVq1UpbtmzRl19+qTZt2pQo61NPPaUpU6Zo4cKFGjhwoCQpKytLMTExqlKlio4fP+7exV9Gbm6uwsIuLEUz+aV3FBTs+SeGz50/r3Pn82U2mxUWWrHeHAfgO06nU/n5BQqqYG8uX+p8foECLBaZzRXzzVWHwyG73aHAwACjoxjC6XTqfH6BggIDKuwb7AUFBTKZzLJYKlbRepHT6VR+QYGCAivy34P5CgyouD8DdrtDTqdDAQEV8+9BAAAAACiLwsNC9Mg9t3t07DX3/+7uv//+Is81a9asRNt/uwTkxeUd77nnniIlmyRZLBb16dNHW7Zs0b///e8iRdvevXv197//Xdu2bdMvv/yi/Px8SdJPP/0kSdq6dauraKtWrZqsVqtOnDih1atXq2vXriW+5pI4lZunoHy71+M4HA6dysn1QSIAFdnZ8+eNjgCDnTl3zugIhjrHz0CFd/Zcxf5voKJf/wUV++9BAAAAALhWXHNFW7169Yo8V61atStuv+666ySp0FKOkvT9999LkubOnatPPvmk2PP9+OOPkqSMjIxCz7/00kt64oknVFBQcNmsv/zyi+t7i8Wi0aNHa/r06br55pvVrFkzdenSRW3btlWHDh1UqZJ39/GpZAv1eEYbs9kAAAAAAAAAAMC1KjzM8+7jmivabDZbkecuXZbmatsvdeLECUnSzp07r3revLw81/cbNmzQ448/LovFoilTpqhv376Kj4+XzWaTyWTSnDlzNHz4cNcMt4umTp2quLg4zZo1S1u2bNGWLVs0Y8YMBQcH66677tLMmTMVGenZ/VzGjxhY7LVfTe6Zs5rxl4WSpMF9uyg5Md6j8wMAAAAAAAAAAFxrrrmizZcu3t9s6dKl6t27d4mPW7BggSRp3LhxevLJJ4tsv3Qm26XMZrNGjRqlUaNGKT09XevXr9fq1av1j3/8Q3PnztXRo0e1evXqEucIDQ1VTk6O/vz+p3p17sce3Qfj0tlsn67eoE9Xb3B7DAAAAAAAAAAAgLKKe7SVkuTkZG3dulU//PCDW0XbwYMHJUlt27Ytdvs333xz1THi4uI0aNAgDRo0SOPGjVOTJk20Zs0aHTx4UHXq1ClRDpPJJJvNpvP5Tp3Ozbv6AVfAvdkAAAAAAAAAAAAKo2i7gn79+un999/XX//6Vz3yyCOuGW5XExJyYS3PrKysItv27t2rZcuWuZUjOTlZEREROnHihI4dO1biou0iT9cW5d5sAAAAAAAAAADgWsc92kpJ37591aFDB33++ee6+eab9de//lWNGzd2bXc4HPr22281f/58TZgwQXXr1pUktWvXTp9++qmmTZumzp07q169epKkHTt26I477pDZbC5yrp07d+qVV17R8OHDdcMNN7iWebTb7XrjjTd04sQJWa1WJScnu30dnkx35N5sAAAAAAAAAAAAV2ZyOp1Oo0P4wsVi6nKX4+n27Oxs9e3bV1999ZUkqXbt2oqOjtaZM2e0f/9+5eZeWE4xLS1NDRs2lCSdPn1azZo10759+xQYGKgGDRrI4XAoLS1NMTExGjlypCZNmqR77rlH8+bNkyRt3bpV119/vSQpPDxc9erVk8Vi0aFDh1z3dHvrrbf0+9//3qPXx12ffbFR677+TjHXVdWjw2736P5uAAAAAAAAAAAA17KiU6tQSFRUlD7//HPNmzdPXbt2VW5urjZt2qSDBw+qfv36Gj16tD7//HMlJia6jgkPD9eXX36p++67T1WqVNHu3buVk5OjESNGaMuWLYqNjS1ynsTERL3zzjsaMGCAYmJidODAAW3btk1Wq1V33nmn1q9f77eSLffMWX21+QdJUpc2zSnZAAAAAAAAAAAAinHNzGiD7/xy4pQ++Wy9cvLOMpsNAAAAAAAAAADgMijacFlnz52XNTjI6BgAAAAAAAAAAABlEkUbAAAAAAAAAAAA4AHu0QYAAAAAAAAAAAB4gKINAAAAAAAAAAAA8ABFGwAAAAAAAAAAAOABijYAAAAAAAAAAADAAxRtAAAAAAAAAAAAgAco2gAAAAAAAAAAAAAPULQBAAAAAAAAAAAAHqBoAwAAAAAAAAAAADxA0QYAAAAAAAAAAAB4gKINAAAAAAAAAAAA8ABFGwAAAAAAAAAAAOABijYAAAAAAAAAAADAAxRtAAAAAAAAAAAAgAco2gAAAAAAAAAAAAAPULQBAAAAAAAAAAAAHqBoAwAAAAAAAAAAADxA0QYAAAAAAAAAAAB4gKINAAAAAAAAAAAA8ABFGwAAAAAAAAAAAOABijYAAAAAAAAAAADAAxRtAAAAAAAAAAAAgAco2gAAAAAAAAAAAAAPULQBAAAAAAAAAAAAHqBoAwAAwP+3Z8cCAAAAAIP8reewuzQCAAAAYBBtAAAAAAAAMIg2AAAAAAAAGEQbAAAAAAAADKINAAAAAAAABtEGAAAAAAAAg2gDAAAAAACAQbQBAAAAAADAINoAAAAAAABgEG0AAAAAAAAwiDYAAAAAAAAYRBsAAAAAAAAMog0AAAAAAAAG0QYAAAAAAACDaAMAAAAAAIBBtAEAAAAAAMAQRhNoLgyZZYkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABtoAAAn8CAYAAABsxTVgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wc1Z3v/7+re5ImKGeNpJGYUU6AEAiThAEHTE72FRh72Yt3f8bgC5bYXV8v3vvduxgjzJqL7zXGxjissWzAGCODAwJbkkFIKOccJmpGmpEmz3R3/f44CjNoRuoqdVV1eD0fj3kIpkJ/pru66pzzOcGybdsWAAAAAAAAAAAAAEdCQQcAAAAAAAAAAAAApCISbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcyAo6ACQn25Y6okFH4UxOWLKsoKMAAAAAkA4yvU5k27ZaYqn1BuSHwrKoFCZMpl8DmX4PAAAA8SPRhh51RKVHFwcdhTNP3CXlckUDAAAASIBMrxO1xKIasPRPiTmZT+qvvlYFYSqFiZLp10Cm3wMAAED8mDoSAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLT5oK6uTgsXLlRpaany8vI0evRoPfTQQ2pubtZ9990ny7L07LPPBh0mPNZ4SKraLFVskA7tkCLtQUcEwE/RDunQTnMPqNwsHa2SbDvoqOCn9iapepu5Bqq3Sq0NQUcEvzXVSlVbzDVQs13qbAs6IsBfrQ3m/lexwdwP25uCjgjwV0ezVHO8LFC1RWqpDzoiwF+RdtMeUrHBtI80Hgo6IgB+O1bzkfbRjqAjgp/smHRkv1S5UarYKB3eJ8ViQUeVGFlBB5Du1q1bp0996lOqrq5WQUGBpkyZosrKSj3zzDPavXu3jhw5IkmaNWtWsIF6pHzLu3rlP+bpss89qQuv/1qP+3z3bksls67XTV97w+fovGfbpjHh4FrpWFX3beFsacQUacxFUn7/QMID4IO2Y9L+1aYg+dEEe9FQqfh8aeQ0ybKCiQ/eO1ol7V8l1e4yhcquBo+XxlwoDRwbTGzwnm1Lh7ZLB9ZKRyu6bwtlScMnS2MvkgoGBhMf4Icj+6UDH0p1e7r/3gpJQ0rNd6DfiGBi80Om14kkKfrCi4r98lcKP/xVhT55Xbdttm0ruuCfZG/dqqxnn5E1riSYID10rEY6sNp0svhoWWBgiSkLDB4XSGi+yPTPn3uA1NIgHVhlEszRzu7b+o6QRp9vykTUiYD0ZNtS9Zbj7aPV3beFs6URU6Uxs2kfTWeRDql8rVS+3rSTdZVbJI2aIY25QMrKDSa+RCDR5qG6ujrdcMMNqq6u1iOPPKLHHntMRUVFkqRvf/vbevTRR5WVlSXLsjRjxoyAo0WixWLS1j+YxvWeRDvNzaV6mzTrFql/sb/xAfDesWpp7StSZ2vP2xsPmfvE4b3StOulUNjf+OC9yk3Slj9I6mX0Yt0e81N6hVQyx9fQ4APblrb/2TzvexKLmJ58NdulGTdJg0i4Ig3t+0Da9deet9kx05O5dpc0+TrT8QTpKXTPfMXeX6noc8/LuvACWUMGn9wWe/U12Rs2KvR3X0jLJEvNNmnTm5Id7Xn7kX3mZ/yl5icdZfLnD6mhXFr3m95n9TlWJW2uMp0ypnzCdMIAkD5iMWnLWybR1pNop1S+rkv76Chfw4MPOpqlta9KjTU9b29vlPasMB1Uz79dyi30N75E4fHloQcffFDl5eV64IEHtGjRopNJNklauHChZs6cqUgkopKSEvXt2zfASOGFHUt7T7J1FWk3N5umOu9jAuCflgZp7cu9J9m6OrTDJNyQXg7tMhWK3pJsXe36q5k6A+ll1197T7J1Fe2Q1v/m9N6dQKqr2NB7kq0r+3gDTO0u72NCMKzsbGUteERqa1P0O/958vf2wXLFXvyprEkTFbrjtuAC9MjhfdLGJb0n2bra8zcz8jMdZernD9POsfbV+JbOqNosbX/H+5gA+Gv7270n2bqKtEnraB9NO9FO87n2lmTrqqnOdFZP1elESbR5ZOvWrVq8eLEGDx6sxx9/vMd9LrzwQknSzJkzu/1+7969uvHGG1VUVKQBAwbo85//vA4fPux5zEicpjrTGyNe0Q5p93LPwgEQgD1/c7b+UtUWM8Ug0oMdMx0unNj5l9On0kHqam0wU4bGKxaRdi3zLBzAd9EOc19zYsc7rF+azqyyUoU+e6fsD9cotuRN2dGoot9eJNm2wgsekRVOr6H9tm2u6Xg63Jywa1n6rt+ZaZ8/jF3LzPMgXuVrpWaav4C00VQrVcTR8fCESLu0e4V38cB/VZvNFNrxaqpN3U7ITB3pkZdeekmxWEzz589XYWHP4x379OkjqXuirbGxUfPmzdPAgQP10ksvqbW1VQsXLtRnPvMZrVixQqFQauZGIx0tam3MnC4J8fRe/6ja3WaO2jwGNwIpr6PFTAXnVPm69F6jJpMc3nv6vONnE2k302WMmu5NTPBXuYvKwZH9UvMR1mtDeqjeHt8Ihq5aj5r75+Dx3sQUtEyrE/UkNP9zir23UtHnf6jQ7j2yt+9Q6P6/lzU6/ebRbyh3njCIRUznqzEXeBNT0DLp8+9Jpt0DWo+evjZnPMrXSRM/nvBwAATAVfvoLqmtUcorOvu+SG627WwgygkV6836tam2bieJNo8sXWq6sc+bN6/XfcrLyyV1T7T94Ac/UEVFhf76179qzJgxkqTi4mJdeumlev3113XzzTd7F7SH3n/lMb3/ymNBh+GbeIZEn8Y2Days0QOkvkM74psi6KNqtps1alirLfVVbXV3XPUWEm3pwlVZQFL1Vum8jyU2FiAI5/IdSNdEW6bViXpiZWUpa8HDinzlq4q9sUTWtKkK3Xpz0GF5osrtdyCNE22Z9Pn3JNPuATXb5GhE5wlVW0m0AenAtl0+C21z/xh7UcJDgs+a6txNBdpSb5ZV8Ksjum3bamlpkSTl5+fLcpnhI9Hmkf3790uSxo7teVX7SCSiFSvMWNiuibY33nhDl1122ckkmyTNnTtX48eP1+9+9ztXibbZs2erutrZoh/h7D665d93On6t3kybd7/KLr6jx22/+da1CXmNCWVlisazGJLHssO5ev4ru10d+73/fF4v/fXfEhwRAL/dOvdruvHirzo+LhaRpk6aocbWI4kPCr76p9t/rUnFcx0ft2X9Lt30yFWJDwi++9GD+xQOOS9q//gH/6UX73rUg4gAfz3++b9oxMDzHB/3zh//pk9+6U4PInIu0+tEdk6O9Nz3EnKubgoKpOxsKRKRddFsWQmctWVC2QRZHcmxsMdXb3xRs8Zf4/i4vTsrdWtxcvS+9OQa8PDzlxJ7DWT6PeBc/bcrv6nrzv97x8dF2qSSseMVcTLnJICkk5OVpx884G4B3v/znef0y2X/X4Ijgt+mj71Kj9zyc1fH3vPZ+7Rm9x8SHFHPYrGYqqrMWi6zZs3S2rVrXZ2HRJtHmpubJUmtrT0XcBYvXqy6ujoVFRVp3LhxJ3+/ZcsW3XHH6QWvqVOnassWd13iqqurVVFR4eiYrNx8V6/Vm/7DyzRmmvNKhhOVVZWKtLd4+hrxcNOodsKxxqOOPysAyaf+aL3rY8srDqqptSFxwSAQra3unkdtHW08B9JELBZT2EXbYWPTMa4BpIX2DncLTbW0NifNdyDj60R5ucpOzJlOsm1b0aeeliKd0pjRiv3ilwpdeYWskYnpslxZVSm1OZyz1CMtrc2ujuvs7Eia70CirwGvP38psddAxt8DztGxY0ddH1teflDRWCSB0QDwW3Y4x/WxR2kfTQtD850N/OmqtvZQINdATY2DBeU+gkSbR4YPH676+nqtWbNGc+d279FeVVWlBQsWSJJmzJjRbThifX29+vfvf9r5Bg4cqO3bXSz4czwWp8LZfVy9VpBGjhiZND23DjdWalDRSMfHtUXrNWrUKA8iAuCn9liDq+Oa2hrUf2Ch+qkgsQHBd8fa3BXOjrZU8RxIE3XHDmjEwFLHx7VEjnANIC00tFRKmur4uMb2Q0nzHcj0OpGdk6PahJzplNhrr8tev0GhL96r0NxLFPnyVxR96mmFFz3hepqerkaOGJk0I9oa2w+5Oq6+uTJpvgOJvga8/vylxF4DmX4POFetUXezdBxurNTwEcMSHA2AINQ3VWtAofN26bYY7aPpwM42zyPbtuN+zp/YN5bd4ts10HVE27Bh7p8/JNo8cs0112jr1q164okndO2112rChAmSpFWrVumee+5RXZ2ZoHTWrFmex7J69WrHx7RHpEcXexCMh3bs3KncJLmid6+Q9r7n7JhQlvTDV/+3svP+tzdBAfBNtENa9pwUcdiZdspl/XXwfx70Jij46miltOoXzo/7/MPX6mv/tzzxAcF3+z6Qdv3V2TFWSHr2F19XbsHXvQkK8NGhndKG3zo/bsG35uvfR8xPfEAuZHqdqDka0YClf0rMySTZFRWKvfCirIkTFLrzdlnhsEJ3z1fsxz9R7LXXFb7lpnN+jR07d6ggnByVwqZa6f2fOD/u9i9dqq98NznKAom8Bvz4/KXEXgOZfg84V52t0rLvSzGHa1df9ImRKv+35PgOADg3u5dLe993dkwoS3rh1ceVnfe4N0HBVx8uluoPxt+ZxrIs9R0hrVz/todRddfc3KzCwkJJ0vLly12fJ7GTYeOkhQsXatCgQTp48KCmTp2q6dOnq6ysTHPmzNH48eN19dVXS+q+PpskDRgwQA0NDaed78iRIxo4cKAfoSMBRs2QnHbIGz5Jys7zJh4A/grnSCOcd+JX8cyz74PU0HeEVDTU2TG5RdLg8d7EA/+NnCaFws6OGVom5TKgFWli8HnmvuZE0TCpr/NOz0gBdiym6JPfkWIxhRc8LCtsbpChO2+XNaFMsRdelF1ZFXCUiVU4ROrvsCN2dh9p2ARv4glSJn7+OH49T3Z2jGWZ9hQA6WHUTElO20cn0z6aTty0cxXPSngYviDR5pHi4mItW7ZM119/vfLy8rRv3z4NHDhQzz33nJYsWaIdO3ZIOj3RNnny5B7XYtuyZYsmT3ZYQkFg8oqksnnx79+nn3Te5d7FA8B/4+dK+Q76R5x3mZQ/wLt44C/LkiZ/QgrHubCJFZKmflIKUTJLGzn50kQHy7DkFkplV3kWDuC7UEia8klzf4tHOFuafJ3zzmpIDbGXX5W9ZatC994ta8yYk7+3wmGFv/awFIsq+tTTsm07wCgTb9K1UlZunDtb5jtzDkt+J61M/fwhlV4u5fWNf/8J80yZCEB6yCuSJlwV//59+kmll3kWDgIwdKLpUBqvweeZZGsqojnHQ5MnT9Ybb7yhxsZGNTY2auXKlbr//vvV3Nysffv2KRQKadq0ad2O+cxnPqPly5ervPzUMPmVK1dq9+7duuGGG/z+E3AOxlwQX4NZ/kDpgjvowQ6km+w+5rtdOOTs+46/VCq52PuY4K++w6Tzb5OyztIbL5QlzbhJGjjWn7jgn1HTpUnX6Ky9OPv0ky6401REgXQyaKy5v50tcZCVJ51/u7lvIv3YBw4o9pOfyZo8SaHbbj1tu1UyVqG758veuEmx114PIELvFA425cHs/DPvFwpL0z8jDTnPn7j8lMmfP0w7x4V3xtcBsewqafQFnocEwGdjLpRKrzj7fgUDTZ0oh/bRtGJZ0tTrpWETz77vkFJTHkrVDsiWTZch361cuVKXXHKJJk6cqG3btnXbduzYMU2fPl2DBw/Wv/3bv6mtrU0LFy7UkCFD9N577ynk05WWinORP3GXkmYu8q4aD0nl66SqLVIscur3hYOl4vNNlj4rJ7DwAHgs2ilVbzP3gcaa7ttGTJVGn880WemuvVmq3CiVr5faG7tssKSSOWYqBSc9fZF6muqOlwU2m3vCCQUDzbQYI6Y6GPEApKC2Y+YeWLHBrNlzQm6RuQeOnJ6cnc4yvU6U6DXa/FB/9bVJs0ZbVx0tp8oCbce6bxt7kZlaK79/IKGdUaZfA5l+D0ikSIdUvVUqX2vKRV2NmmHKQ06nXQeQWnptHx1yvE402SzDgfRk29LhveYaqNvTfdugEtNGPnhc/LNhJFLXNdqamppUUOCuYpKEj9/0t3HjRkmnTxspSX379tXSpUv10EMP6bOf/ayysrL0mc98Rk8//bRvSTYkVtFQMw1O2ZXSih+axoWcfOnie5kaB8gE4WwzqmXkNKntqPTBfx2/DxRIUz8VdHTwQ26BNO4SaewcqbVeWv3LU8+CUqYNzgiFg83IttIrpBXPm88/O1+65IuUBZAZ8vqa+934udKy5059Bz7231O3xyrgRE6+mb1g7EVSS7303o9PbSu7Mri4AL9k5ZiOFaNmSK0N0qpfnKoTTb4u6OgA+KHX9tHPUyfKBJZl1qQfPN50Rn7/xVPXwPm3Bx1dYpBoC8CZEm2SdN555+mNN97wMyT4ICvXTAkimew8DxEgs1iW1Kd/l/sA94CMEwpJBYO4BjJZVs6pzz9EWQAZKJTV/TtAkg2ZxjpeFpAlydZZpxYG0o1lmXWpKQ8DmYv2UeQWdL8G0kUa/Smp42yJNgAAAAAAAAAAACQ/RrQFYOnSpUGHAAAAAAAAAAAAgHPEiDYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXsoIOAMkpJyw9cVfQUTiTEw46AgAAAADpItPrRPmhsOqvvjZxJ/RBfohKYSJl+jWQ6fcAAAAQPxJt6JFlSblcHQAAAAAyVKbXiSzLUkE4g98AZPw1kOn3AAAAED+mjgQAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcyAo6ACQn25Y6okFH4UxOWLKsoKMAAAAAkA4yvU5k27ZaYqn1BuSHwrKoFCZMpl8DmX4PAAAA8SPRhh51RKVHFwcdhTNP3CXlckUDAAAASIBMrxO1xKIasPRPiTmZT+qvvlYFYSqFiZLp10Cm3wMAAED8mDoSAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLT5oK6uTgsXLlRpaany8vI0evRoPfTQQ2pubtZ9990ny7L07LPPBh0m4ItYTLLtoKNAUGzbXAOZjOsfXAOZjc+fsoBtS3aGPwuBjJfB90AAlAVgPv9MLw8js6XjNZAVdADpbt26dfrUpz6l6upqFRQUaMqUKaqsrNQzzzyj3bt368iRI5KkWbNmBRuoR8q3vKtX/mOeLvvck7rw+q/1uM9377ZUMut63fS1N3yODn6wbamhXCpfJ9XtkaKdkhWS+g6XimdKQydKYe5EaS0WlQ7tNNfA0SrJjkqhLGnQOKl4ljRwjGRZQUfprcZD5u+v2SFF2szvOlqkg2ukEVOlrNxAw4PHbFs6vNdcA0cOSLGI+X1Hq7kmhpwnhcKBhgiPRTul6m1SxTqpo9n8rr1J2vR78yzsNzK974O2LR2tNN+B2t1StMOUBYqGSKNmScMnSeHsoKP0VnuzVLnR/LQek2RLOQXSiCnSqJlSfv+gI4SXqBNJ0RdeVOyXv1L44a8q9Mnrum2zbVvRBf8ke+tWZT37jKxxJcEE6SHbNmWA8nWmTHBqg3k+DC1L77JApn/+3AMgmfpf5UapcpPU0iBTFsiXhk025cGCgUFHCK81HzHPgeqtUmerJMuUAUdOl0ZOM9dDOot0SNVbpPIN3etEm9+SRs8y7YRIb22NUsUGqWpTl2ugWdq1zNwH8/oGG9+5onnbQ3V1dbrhhhtUXV2tRx55RI899piKiookSd/+9rf16KOPKisrS5ZlacaMGQFHCyReR6u04bcm0daVHTMNbkcrpZ1/lWbeLPUbEUiI8FjjIWn9b8zDtKtYRKrdaX76jjDXQG5BICF6KhqRtrwl1Ww7fZsdk7YvNQWKaddLQ0r9jw/ea2uU1v1Gajp0+jY7Km18XerTX5p1i1QwyPfw4IP6g9KG149Xpj+ieov5GVQiTb8hPZPukXZpw++kI/u6/96OScdqpGN/kHb9VZpxkzSgOJAQPXdwrbTjndN7rnc0S/tXmZ+xF0mlV6R3whWZLXTPfMXeX6noc8/LuvACWUMGn9wWe/U12Rs2KvR3X0jLJEt7sykPH6vuefumN6S8ImnmraYDQjrK5M8fkKSKjdK2P5vyf1cdLdLBD81P8fnSxHmmMxLSSywm7Vhqkmzd2FJLvSkL71khTbrWJNzS0eG90sY3TN3go6o2mZ8hpdK0T0vhHP/jg7dsW9r/gbR7eQ8j2Wxp30pp3wfS+LnSuLmpWyfi9u2hBx98UOXl5XrggQe0aNGik0k2SVq4cKFmzpypSCSikpIS9e2b4ilb4CMi7dKaX52eZPuojmbpw8VmpBPSS1Ot+Ww/mmT7qGNV0oe/NInZdBKLShte6znJ1lW0U1r/WzPqD+mlvUla/VLPSbauWhvMfi31voQFH9WXS2tf7jnJ1tXhfdKaX5uRXukk2mH+ro8m2T6qs1Va+2vzfqWb/aul7W+ffXqo/auO75eGU6gAkmRlZytrwSNSW5ui3/nPk7+3D5Yr9uJPZU2aqNAdtwUXoEc6Wkw5t7ck2wltjWa/plp/4vJbpn7+gCSVr5e2/uH0JNtp+601nTQpC6QX2zaf62lJto+IRc1+FRt8CctXdXulta/2nGTrqnaX6aR6YgYYpI89fzOdzM94f7NP7ZeqSLR5ZOvWrVq8eLEGDx6sxx9/vMd9LrzwQknSzJkzT/7uRGJuzpw5ys3NlZWqKVxkvB3vxl9RjEVMb//YWQqeSB22bUYwnK0gdUJLvbT9z97G5LcDq03jeVxsadMS0xiD9LHlD1Lbsfj27WyTNv6OinU6iXaaUd3xPtuOVUu7lnsbk992LT974/IJsah5v6Kd3sbkp2M10s5349+/fB2dLpDerLJShT57p+wP1yi25E3Z0aii314k2bbCCx6RFU6/uRO3/Tn+jjQnRgCna1kgEz9/oPmwuQ/Eq2qLVLXZu3jgv6pNZgaLeG39k5liMl1E2k09N961SesPSnvf9zQk+Kz+oLT3vfj33/+Bg7a0JEOizSMvvfSSYrGY5s+fr8LCwh736dOnj6TuibZdu3bplVde0fDhw3XRRRf5EqsfIh0tam2s6/EH6aej1VlBQpLaG826LUgPR/ZLLQ4Lh4d2mBFA6SAWkw6uc3hMxMzZj/TQUv+RNVji0HjITKmL9FCz/ewj2T6qcpNZuyAdRDrM3+NE5/F1C9PF2Xou93jM2oSHgSRCnUgKzf+cNH68os//ULHvfV/29h0KfeHzskan39yxbY1mmnQnWo6YcnS6yqTPvyfcAzJP+XrFnWA4eQxlgbRh29IBp5+nLVWs9yScQFRudj5rR8UGRrWlk4Mu7mlujkkGrNHmkaVLl0qS5s2b1+s+5eVmfpyuibYrrrhCVVVmDr1vfvObWrFihYdR+uf9Vx7T+688FnQY8EnVZnej0yrWScMmJDwcBMBN46JtmwLV+EsTHo7vDu81yWOnytdLY+ek7nzUOMVt5ah8vdR/VGJjQTDKXVwD0Q6zOHrxzLPvm+yqt7qbCrNinTRyasLD8V2k3bwHTtUfNL3fWbMxPVEnkqysLGUteFiRr3xVsTeWyJo2VaFbbw46LE9UbnQ3Oq18vVm7Mx1l0uffE+4BmSXa6bzTkXR8Ddtqqe/wxMcEfx2rPvsyAj2p3CSdd7kUToNWezf14o4W6dAuafikxMcDf7U3mylBnarbbWYHykuxlbbS4CubnPbvN93Qxo4d2+P2SCRyMonWNdEWCiV+kOHs2bNVXR3nvD3HhbP76JZ/T9zcNdPm3a+yi+/ocdtvvnVtQl5jQlmZok67jvvsO/et0sCiEaqqqlJxcfqMWPyov7/uaV02pefP+0z2bavTjcWzEh8QfPftL67Q0H493//O5Fc/+b2evfN+DyLy1w1zHtRtly50fFzbMansvElq60iToX0Z7Gu3/Jemjb3S8XEf/GWLPnn/dR5EBL/94IFdysnKc3zcs0++qJ+/+z89iMhf98z7d3185hccH3foQKuKi8sSH5DPSobO0Df/2+9dHXvPHf+oD3b8LsERJY9UKg9nep3IzsmRnvteQs7VTUGBlJ0tRSKyLpotK4F14AllE2R1JMfQ4Ac+87xml37K8XGbV+3T9V++zIOInPPkGvDw85cSew1k+j3AS6n0LHBrxIDz9Pi9f3F17Jc+/4iWbVmc4IjgtyunzdcXr3nC8XGRdmnOrMtV0+BwipQkEw5l6UcP7nN17Lcee1Yvr/hWYgOC7yYVX6p/uv1Xro699dOf14Z9SxMcUc9isVMLal922WVau9bdkDoSbR5pbm6WJLW29lzAWbx4serq6lRUVKRx48Z5Gkt1dbUqKiocHZOVm5/QGPoPL9OYadck9JwfVVlVqUh7ci9wFI1GT/7r9DNJJZGO2Nl36kFWKDet35dMEla2q+NiEaXFNdDe6n6RocO19Wpw0+0NSSUWdTcsMaSstPgOQMoK5bg6rrMjPcoIne3uygLZ4fQoC/TPLnF9bHNja1q8B71JpfJwxteJ8nJdluh6Z9u2ok89LUU6pTGjFfvFLxW68gpZI0ck5PyVVZVSW5yLBHss1ulusbWwlZM8340EXwNef/5SYq+BjL8HeCiVngVu5dlDXB/b0tyWtu9LJmkpcZ/0rj9yVBVVqX0N5OUUuD62oy3CdyANjCpy34m88VhzINdATU2N62NJtHlk+PDhqq+v15o1azR37txu26qqqrRgwQJJ0owZM2R5PEfY8OHOx5uHs/t4EIm3Ro4YmfQ9t8LHF3gOh8MaNSp95waLhdxVbFo6jqb1+5JJWjuPSRrp+LiI2tLiGrCy3E0oHrNj6jewQAX9Uv89yHQR210DR3ukKS2+A5Ba2o+qsM8A5weGOtPiGrBD7kYTtLSnR1kgv8g0Tdu27bisn93HSov3oDepVB7O9DqRnZOj2oSc6ZTYa6/LXr9BoS/eq9DcSxT58lcUfepphRc9kZB68cgRI5NmRFtEba6Oa+08ljTfjURfA15//lJir4FMvwd4KZWeBW6dS1kgK09p+75kEheTW5y8Xgr65mpUKPWvgc5Iu7Kzcp0fmBXhO5AGcgvC7o/N9+/5EIvFTi7lNWzYMNfnIdHmkWuuuUZbt27VE088oWuvvVYTJpiFp1atWqV77rlHdXVmsdtZs2Z5Hsvq1asdH9MekR5NsVHqO3buVG6SX9HLvi+1N0kjRow4uUZfOjq8V1r7ivPjzr+qWOX/K33fl0yya7m0733nx33p0Vv1rz+6NfEB+aylXvrbj5wfN/S8kPbt35P4gOC7yk3SlrecH/eJOy/Ql57iPpgOtrzlbl2Obzz1D3pq1D8kPiCfNVRIq19yftyEOQNU/o3U/w7YtvTeC1JLvbOGtXCO9Nqff6wsdwMiU0IqlYczvU7UHI1owNI/JeZkkuyKCsVeeFHWxAkK3Xm7rHBYobvnK/bjnyj22usK33LTOb/Gjp07VJAki9rUbJc2upgF9vLPTFL5t5Lju5HIa8CPz19K7DWQ6fcAL6XSs8At25Y++JnUeMhZWSAUln75xveU3ceDqXvhq44WaflzUiwa/zGWZanvMGnjtlXeBeajDa9Lh3Y4P+6J739N/3fI1xIfEHwVi0krfmDu905k95H+uPxXCvn0PGtublZhYaEkafny5a7Pk/gFwSBJWrhwoQYNGqSDBw9q6tSpmj59usrKyjRnzhyNHz9eV199taTu67MB6WJgidSnv/Pjivk6pI3iGZIcdkrNLZSGnOdJOL7LH2C+B07xHUgfwyY678FohaWR072JB/5zs+Ro4RCpn/PBwEmp30ipcLDz49JlqVbLcve3jJiqtE6yIXPZsZiiT35HisUUXvCwrOOjWUJ33i5rQpliL7wou7Iq4CgTa0ip5HjWLEsaNcOTcAKViZ8/4LYsMGySaWRG6svJl4ZOdH7cqFkJDyUwbr4D/UdJRe5nXkUSCYXclWtGzZBvSbZEItHmkeLiYi1btkzXX3+98vLytG/fPg0cOFDPPfeclixZoh07TDqfRBvSkWVJ533M2THDJ0sFg7yJB/7L6+v8YTpurum9ly7GXyJZDp6y/UZKg7xdshM+CmdL4y52dszo801lDOmh73DTyOrE+EvNMzQdWJY03mFZYEip1Nf9TB1JZ8RUqU+/+PfPypXGXOhdPECQYi+/KnvLVoXuvVvWmDEnf2+Fwwp/7WEpFlX0qadl2+7WNUtGobA0fu7Z9+tq1AxTjk43mfj5A5I0fJKUPzD+/cPZ0tiLvIsH/iuZYz7XeBUMNNdNuhgwWhow5uz7nWRJ4y71LBwEoHim6Vgfr+z81O18SaLNQ5MnT9Ybb7yhxsZGNTY2auXKlbr//vvV3Nysffv2KRQKadq0aUGHCXhi+GSp9PL49h04Vpr8CW/jgf8mXh1/I3PJJek3mqt/sTT1U/El2woHSzNvdpaYQ/IbM1safUF8+w6bJJVd4W088N/UT5semfGYcLU0tMzbePw2tMz8XfHoXyxN+7S38fgtO0+adVt8FctwjjTzFim/v+dhAb6zDxxQ7Cc/kzV5kkK3nT5FuFUyVqG758veuEmx114PIELvFM+SSuLseDOk1JSf000mf/5AOEc6/9b4EuihLGnGTe5mBEDyKhwszbgxvtE5ffqZsqOTxFyysyzz9xfF05nOkiZfJw0a63lY8FFOgTTr1vhG6mblSbNukfKKvI/LC5ZNlyHfrVy5UpdccokmTpyobdu2nbb95ZdfliT96le/0q9//Wv9+te/liSVlJRo9uzZvsSYinORP3GXkn4u8hPzkOcWSpen/vIrcanZJu15X2quO31bdh+TXEm3kUw4xY5J+z6QDq6VOppP354/0DQ+jJzqf2x+OXJA2rPCrFf0UeFsacQUqfQKM5IB6ce2pYoN0v5VUmvD6dtzC00ybuxF6TOSCd1FI+YeULFRirSdvr1oqOm1OdTh6LdUcmiXtOdvUtOh07dl5UmjppvRb0myrFLCtTVKO/9i1qewY6dvHzTOJNoLM2SKnFQqD2d6nSjRa7T5of7qa5NmjbauKjdL+1ZKLUdO35ZTYEa1l8xJvk5XmX4NZPo9wEup9CxIhPZmaddfzNqNPa3XNbBEKr3MzIiA9HSsWtq1TDqy//RtobDpeFl6hZTrdMrhFBHpkHYvN2tYRztO3953hHTepczyk85aGqRdf5Vqd5p2km4ss5RM6RVmVKffuq7R1tTUpIICd1/EFHj8pp+NGzdK6n3ayDvuuKPH/7/33nv14osvehobkGjDJpk5qY9WSLV7pINrpFjEJBUu/1JqzrmL+FkhadwlJolQu1Pa8gcp2mkSTDNvMdMIpHtyYeAY89NYKx3aLu1ffeo7cNn9JNjSnWWZDgWjZkhH9pmK1cF1x6+BPOlj95t5y5G+wllS2ZVmWsia7dL2t0/dBy+40zSopPt9cGipqTgdq5Jqd0sHPuxeFkinXrs9ySuSpn/GNLJVb5V2r5BinaaX+yWfd7euLYDUMnKq6VxVf1A6vNd0wDnhsvvpdAiku9wCM9NB2VXHywLLj5cHc6SL7zFrfCO99R0uXXCH1HzEdEjf94EpD4dzpI/9dyknzdfly8oxo7bPu8z8/TveOVUnuvAuksyZIL+/Gd3Y1mjug3veO1UnmvuF9Jg6m6adAJwt0Wbbdo8/JNmQqizLTAlVdoWZRkkyD1OSbJnjRA+tE0mlrFyTfEr3xuWuioaYQmXX7wBJtsxhWcdHrVzV5RrIIsmWScLZ0shp3e+D/UZkzn3QssxalKWXd78PpnuSravcAmnsbCn7xDWQQ5INyCSWZcq/ZVdKOnHvt0iyAZkkJ9+sx5rVpSxAki2zFAw0HfBOlIezctI/ydZVVo7phNq1TkSSLbPkFZlR/F3rROmQZJNItAXibIk2AAAAAAAAAAAAJD/GkwRg6dKlQYcAAAAAAAAAAACAc8SINgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABdItAEAAAAAAAAAAAAukGgDAAAAAAAAAAAAXCDRBgAAAAAAAAAAALhAog0AAAAAAAAAAABwgUQbAAAAAAAAAAAA4AKJNgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABeygg4AySknLD1xV9BROJMTDjoCAAAAAOki0+tE+aGw6q++NnEn9EF+iEphImX6NZDp9wAAABA/Em3okWVJuVwdAAAAADJUpteJLMtSQTiD3wBk/DWQ6fcAAAAQP6aOBAAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4kBV0AEhOti11RIOOwpmcsGRZQUcBAAAAIB1kep3Itm21xFLrDcgPhWVRKUyYTL8GMv0eAAAA4keiDT3qiEqPLg46CmeeuEvK5YoGAAAAkACZXidqiUU1YOmfEnMyn9Rffa0KwlQKEyXTr4FMvwcAAID4MXUkAAAAAAAAAAAA4AKJNgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABdItAEAAAAAAAAAAAAukGgDAAAAAAAAAAAAXCDRBgAAAAAAAAAAALhAog0AAAAAAAAAAABwgUQbAAAAAAAAAAAA4AKJNgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABdItAEAAAAAAAAAAAAukGjzSV1dnRYuXKjS0lLl5eVp9OjReuihh9Tc3Kz77rtPlmXp2WefDTrMhCvf8q6+e7elD5cs6nWf795t6beLPuNjVPCbbUuH90rb35Y628zvop1SpCPYuAC/2LZ0tFLa8c6p70CkQ+poDTYu+CcWkw7tlLb9uft9MBYJNi74J9IuHVzb5R7QLh05YO4PyAxtx6Q973W/Bprqgo0J/qBOJEVfeFGd131asbf+eNo227YV+dqj6rz+Rtl79/kfnE/smFS725QFdOLeb5vyQLrL9M+fewBOaG+S9q7sXhZorA02JsBPnW3SgTXdvwP15dSJMklLg7R7RfdroKU+0JASJivoADLBunXr9KlPfUrV1dUqKCjQlClTVFlZqWeeeUa7d+/WkSNHJEmzZs0KNlDAA5WbpL3vS60N3X8faZeWfV8aNUM67zIpzN0Iaapur7R7mdR4qPvvox3S8u9LwyZJE66SsvsEEh48ZtvSwTXS/lWmYt1VpF1a9pw0+nxp3CWSRfentBTtkHYuk6o2dW9MjXZKa34l5Q+Uxl8qDZ8UXIzwVmuDtONd08CuLo0I0U7p/RelAaOlsiulvsODiQ/wQ+ie+Yq9v1LR556XdeEFsoYMPrkt9uprsjdsVOjvviBrXElwQXrEtqWK9dK+D0zC/aOWPScVzzTPglDY//j8kMmfPyBJbY2m02Xtzu4JhWintPInUv9RUumVUv+RwcUIeCnSLu38i1S1pXtn02in9OEvpcLBpm1wSGlwMcJbzYdNnejw3u6/j3ZKf/uRNLBEmnClVDgkiOgSgyYdj9XV1emGG25QdXW1HnnkEVVVVWnNmjWqrq7WE088oSVLlmjVqlWyLEszZswIOlwgoXavkLa8dXqS7YRoh3RgtbT2ZfPfQLqp3Cite/X0JNsJsahUtVla9ZLU3uxvbPCebUvb/mQq1R9Nsp3Q2Srt+Zu04XVzPSC9RNqlD38lla/tfcRCyxFp0xumARbpp6lW+uAXUu0udUuydVV/UFr9S+nIfl9DA3xlZWcra8EjUlubot/5z5O/tw+WK/biT2VNmqjQHbcFF6BHbFva+a4ZxdZTkk2SIm3SvpXS+t+k70j3TP38AUlqPiKt+i/p0I7eR+00VEhrFh/vlAOkmY4WafVLUsWG3p9zTXXS+tfMDCBIP0erTLvXR5NsXR3ZZ/ZpqPAtrIQj0eaxBx98UOXl5XrggQe0aNEiFRUVndy2cOFCzZw5U5FIRCUlJerbt2+AkQKJVblR2vtefPs2lEub3/I2HsBvRw5IW/6oXhtWu2o5YhJysZjnYcFH+1aaykQ8aneZhjikD9uWNv5OOlYd3/67/irVbPM2Jvirs1Va+6rU2XL2fWMRaf1vTWMckK6sslKFPnun7A/XKLbkTdnRqKLfXiTZtsILHpEVTr/hXAfXSgc+jG/fw/uOTyuZpjLx8wciHdK6V3rvdNdVLGrKjkwliXRi29KG38Y/Xfr2t6W6Pd7GBH+1N0nrfmM6Fp1NtMPs21vnpGRHos1DW7du1eLFizV48GA9/vjjPe5z4YUXSpJmzpx58ncvv/yybrvtNo0dO1b5+fmaNGmSvv71r6upKY4nc5KKdLSotbGuxx+kHztm1iBx4tAO1ilBetn3vuJKsp3QWCMdpkCZNqIdZrpIJ8rXM7IxnRyrNo2mTux5j/UJ0knlJqm9Mf79ox3xN8gjNVEnkkLzPyeNH6/o8z9U7Hvfl719h0Jf+Lys0cVBh5Zwsejx8qADlZuk1qPexJMMMunz7wn3gMxTvcXZdzoWcV6HAJLZkQPORyjF22kfqaF8fXwdD0+ItKXuyEZWRfLQSy+9pFgspvnz56uwsLDHffr0MYvydE20LVq0SGPGjNF//Md/qLi4WOvWrdO//du/6S9/+Yv++te/KhRKvfzo+688pvdfeSzoMOCTw3vd9T4oXydNuibh4QC+az5sCpROla9jTvJ0Ub3NTBvohB0zo4HHXeJNTPBXuYvKQfNhM8p7wOjExwN/2ba5pztVvUUqu0LKyk14SEgC1IkkKytLWQseVuQrX1XsjSWypk1V6Nabgw7LE4d2mumynKpYL5Vekfh4kkEmff494R6QWdyWBWq2mzW8c/ITHRHgPzffgaNV0rEaqe+whIcDn8Wi8c/y01XlRrN2bTg78TF5iUSbh5YuXSpJmjdvXq/7lJeXS+qeaPvd736nIUNOrfx35ZVXasiQIZo/f76WL1+uK65IvVL3tHn3q+ziO3rc9ptvXetzNPBarctRObW7SbQhPbid6uDwPikakcI8nVOe2/UVaneRaEsX5/IsJNGW+poPuxuVEu2UjhyUhtLpIi1RJzquoEDKzpYiEVkXzZaVgh1J41HntiywO30TbZIy5vPvCfeAzNJ2zN2sPXbUrNs6fHLiYwL8ZNvun4V1u0m0pYNjNVKHi1l7OttMwnXgmMTH5CWa8jy0f79Z0Xzs2LE9bo9EIlqxYoWk7om2rkm2E2bPni1JqqhwviLg7NmzVV0d5wIhx4Wz++iWf9/p+LV60394mcZM8zaDMqGsTNHOVk9f41x9575VGlg0QlVVVSouvijocDzzj5/+v7p4wo2Oj2uoa1RxMaXJdJYp34HbLl2oG+Y86OrY6VNm6VgL08ekun++/WVNLHaeMduxdY9uLU7n1rXM8cJDBxSynDce/uzFl/Tjuxd4EFHyyIRnQdnIi/T1O3/j6tiv/ONXtWLrywmOKHmk0uef6XUiOydHeu57CTnXyXPatqJPPS1FOqUxoxX7xS8VuvIKWSNHJOT8E8omyOroSMi5ztX/uOmnmjnuasfHle+vVnHxbA8ici7R14DXn7+U2Gsg0+8BXkqlZ4FbY4ZM1f+a/wdXxz76yNf19oafJDgiJJNM+A7kZufruS/vcHXs/3v2eb10578lOCL4bUbJ1Xr45p+6OvaL9/x3fbj7zQRH1LNYLHbyvy+77DKtXetu7koSbR5qbjYp29bWngs5ixcvVl1dnYqKijRu3Lgznuudd96RJE2e7DwJUV1d7ThBl5WbemPUK6sqFWl3MTeHj6LR6Ml/3SRNU8XRY0dcHdfW0ZLW7wsy5ztQd7jG9bH7DuxWazyrZSOpNTa7W2ClufVYWn83MklHZ5vyXMz5U99Ql/bXQCY8C/Llvgtu9aHKtH1fpNT6/DO+TpSXq0TP2BN77XXZ6zco9MV7FZp7iSJf/oqiTz2t8KInZFnWOZ+/sqpSanM4d7NHjjXVuzqupa0peb4bCb4GvP78pcReAxl/D/BQKj0L3LI6ClwfW1Ob3mUBZMZ3IBQKuz72SH1t2r4vmWRQros1VY6rqikP5BqoqXHfnkeizUPDhw9XfX291qxZo7lz53bbVlVVpQULTG/lGTNmnLFQWVFRoW984xv65Cc/qVmzZrmKw6lwdh/HxwRt5IiRSd9zKxwOn/x31KhRAUfjndqmva6OKz+yNa3fF2TOd6C+/aCr42oa9mng4H6S+iU2IPiu5tguSZ9wfFxVw460/m5kkoN1m1U20nnv1COt+9P+GsiEZ0Esp1ltHc3Ky4m/kc22bVmWpaZoVdq+L1Jqff6ZXieyc3JUm5AzHT9fRYViL7woa+IEhe68XVY4rNDd8xX78U8Ue+11hW+56ZxfY+SIkUkzou1Qo7v5siqPbEua70YirwE/Pn8psddApt8DvJRKzwK3ssIRNbU1qDCvf9zHnCgLHItUpu37AiMTvgOSdLB2q0YPcT5o5Ehb+teJMkFH6Igi0Q5lhXMcHReLRdWqOt+ugVgspqqqKknSsGHuO0ySaPPQNddco61bt+qJJ57QtddeqwkTJkiSVq1apXvuuUd1dWZqsDMlz5qamnTTTTcpJydHL7zwgqs4Vq9e7fiY9oj06GJXLxeYHTt3KjfJr+hl35fam6QRI0acXJ8vHXW2mb81FnF23PyHrtL/+D/p+74gc74Ddkxa8UMzL78Tl91UovJ/T9/3JZO0NphrwKn/8b/v1DdfuDPh8cB/VVukzb93dkxWrvSzNxYpnL3Im6CSRKY8C7b+SapYH//+lmVp4Fjpw03LvAsqCaTS55/pdaLmaEQDlv4pIeeyYzFFn/yOFIspvOBhWccbGEN33i57xd8Ue+FFhS6ec85TCO7YuUMFSbLYbXuTtPwHplzoxJf+52f0zz9Iju9Goq4Bvz5/KbHXQKbfA7yUSs+Cc7HjHenAh/Hvb1mW+o2Q/rbW3ZSTSB2Z8h0oXydt+7OzY3IKpFf+/JzOYUAcksjGN6Sabc6OGTYxrI3bVnkTUA+am5tVWFgoSVq+fLnr82TOqrMBWLhwoQYNGqSDBw9q6tSpmj59usrKyjRnzhyNHz9eV19t5mvvuj5bV62trbrhhhu0d+9e/fGPf9SIEYmbtxzwUnaeNGKqs2P69JMGj/cmHsBvVkgafb6zY8LZ0ohp3sQD//XpLw0pdXZM3xFSX+eD0JGkhk0wlUQnRk039wKkh9GzJDmcCW30BV5EAgQv9vKrsrdsVejeu2WNObWyvRUOK/y1h6VYVNGnnpZt2wFGmVi5hdKwic6OKRgsDRjtTTxBysTPH5Ck4lmmbugEZQGkk+FTpKw8Z8cUzxJJtjTi5p7mtD0tWZBo81BxcbGWLVum66+/Xnl5edq3b58GDhyo5557TkuWLNGOHWZByJ4SbZ2dnbr99tu1evVqvfnmm5oyZYrf4QPnZMKVUt84R9uGc6QZN0kh7khII2MudJBosaTpN0g5qTc7Dc5g8nVS/oD49s0pkKZ/RkrQ8iRIAqEsaebN5t949C+Wxl/maUjwWeEQadLH499/zGxpyHnexQMExT5wQLGf/EzW5EkK3XbradutkrEK3T1f9sZNir32egARemfix03yLB7ZedKMG9OvLJDJnz+QP8DUCeI1aqY0bJJ38QB+y8o5/myLM3E2qEQqmeNpSPBZ/5FS6eXx7z/+UmngmLPvl4xSYEB5aps8ebLeeOON037f1NSkffv2KRQKadq07kMYYrGY5s+fr7ffflu///3vNWdO6t5hiqdcpYd+fuZeaWfbjtQUzpEuuNMMET58hiXb8vqahsiiob6FBvjCCpnk2bY/S5Ube98vO0+a9hlToER6ycmXLvystOG30tHK3vcrGCTNvMWM7EV66TdCuvAucw20N/W+35AyadqnpCSZ7QwJVDzLNCxsf7v3KbUtSxo31/wgPWV6ncgaM0bZS357xn3Cn7tL4c/d5VNE/snOM8+Bja9L9WdYwjd/gKkTFQz0LTTfZPLnf0Km3wMy3chpZnTO1j9K0c5edrKksbOl0ivSL9kODBwjXXC7tOF16UxLSA6fLE3+BKPZ0lHJxVIoW9r5F8mO9ryPFTIJuTGz/Y0tkajOB2Tz5s2ybVsTJkxQfn5+t21f/vKX9etf/1r/9E//pPz8fL3//vsnt5133nkaMmSI3+ECrmTlSuffJh2tksrXS3W7Tz1UrbA07XrTc5uHKNJVKCxN+YQ09iLzHTi0/VRjuxWSJl0rDZ/EVHHpLLdAmv05qaHczE9/5MCp+2AoLM242SRZqVCnr34jpI/9d+nQTnMNNJxYgsEyU0UWz6KzSbobNV0aWiZVbjIdL5oPH99gSeMukUbNkPKKAg0RgIdy+pgOiEerzHPg8N7uDY0zb5EGj3M+vRyA1DF8slkqo2qzVLFRaqo9vsEyDdDFM0wnZCBdDRgtXfYl0yZSvr5LR1RLKp5p6kSFcY4AR2oac4Fp/6rcZH5ajpjfW5Y0/mPSyOmm/SSVUZQLyMaNZnhDT9NGvvnmm5Kkb33rW5o7d263nyVLlvgaJ5AI/UZIUz8pXflls1aBZCqcwyaQZENmKBgoTZwnXf4PXb4D+azHlCksy1Qspt/Q/T6Y3ed4wxpJtrQXCptKxezPnvr8cwvMVEIk2TJDdp7pqT73i92vgfM+RpINyASWZaZOmvZpUxY4uX6jZToekmQD0l9Wrlmr6JJ7u5cFSi8jyYbMEM6SRkyVLvpv3b8Dk64hyZYpcvLN1KCX/l2XtrEC0/kw1ZNsEiPaAnOmRNu+fft8jgYAAAAAAAAAAABO0W8qIGdKtAEAAAAAAAAAACD5MaItIEuXLg06BAAAAAAAAAAAAJwDRrQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4kBV0AEhOOWHpibuCjsKZnHDQEQAAAABIF5leJ8oPhVV/9bWJO6EP8kNUChMp06+BTL8HAACA+JFoQ48sS8rl6gAAAACQoTK9TmRZlgrCGfwGIOOvgUy/BwAAgPgxdSQAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgQlbQASA52bbUEQ06CmdywpJlBR0FAAAAgHSQ6XUi27bVEkutNyA/FJZFpTBhMv0ayPR7AAAAiB+JNvSoIyo9ujjoKJx54i4plysaAAAAQAJkep2oJRbVgKV/SszJfFJ/9bUqCFMpTJRMvwYy/R4AAADix9SRAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAAAAAAAAAAAAcIFEGwAAAAAAAAAAAOACiTYAAAAAAAAAAADABRJtAAAAAAAAAAAAgAsk2gAAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKLNB3V1dVq4cKFKS0uVl5en0aNH66GHHlJzc7Puu+8+WZalZ599Nugw4bGOFikWNf8di0q2HWw8gN8iHd2/Ayf+O1PYttRUK8Uix/8/Fmw88F8sIh2r7nIN8BzIOJ1tHykLZNh9wI5JjYf4DmSy6EfLApFg4wH8FouasoBO3P+4DyLD2LbUWEtZAJnLtqXmw6fKQ5lWH5BoH4XUejQ9vwMk2jy2bt06TZ8+XU8++aSqq6s1ZcoUdXZ26plnntFdd92lrVu3SpJmzZoVbKAeKd/yrr57t6UPlyzqdZ/v3m3pt4s+42NU/mqolDYtkZY9J3W2mt91tkp/+5G0f7VpdAPSWVOdtO3P0rL/1/07sPwH0u4VUntTsPF5LdIhHVgjvfdj6f2fnPrOd7RIG16X6g8GGx+813ZM2rXMPAc++HmXa6BZ2r5Uaj4SbHzw3rFqafObp98HV/xQ2rdS6mgNNj6vdbSav3PFD6WVP+3+Hdj85vFGZ6S15iPmfvfR8vCy58z9se1YsPF5jTqRFH3hRXVe92nF3vrjadts21bka4+q8/obZe/d539wPmhvknYvN+XfD37efdu2P5vycjrL9M+fe4B59u9fbdpBVv6ke1lg0xLpaGWw8QFei3ZKFRulD35m2gZOlIc6WqR1r0p1e9I/4dRQcbx99Pvdy4PvvUD7aCawY1LNdunDxdKK57t/B1b/UqreJsVSPOmWFXQA6ayurk433HCDqqur9cgjj+ixxx5TUVGRJOnb3/62Hn30UWVlZcmyLM2YMSPgaJFoti3tfV/as6Ln7a0N0s53pfK10qzbpIKBfkYH+KNqs7TlDz33UOlolva+Jx1cK826Reo/yv/4vNZ6VFr7itTSSyLl0A7zM/YiqfQKybL8jQ/eO7JfWv9bM4qjJwfXSBXrpamfloZN9Dc2+GP/KmnnX3rediIJe3CddP6tUuEQX0PzRVOttPZVqb2x5+1Vm81P2VXS2Nm+hgaf1GyXNv++55HsnceTsAfXSjNvkgaO9T8++CN0z3zF3l+p6HPPy7rwAllDBp/cFnv1NdkbNir0d1+QNa4kuCA90lAhrfuNFOmlAbF8nVSxQZryCWnEVF9D800mf/4wnS3WvWLqRj2p3mp+xn9MGncJdSKkn45m8xzorXNZ3R7zM3K6NOlaKZRmw2Js27T97Plbz9tb6o+3j66Tzr9Nyh/gZ3TwQ7RT2viGVLe75+0N5eZnUIk0/UYpK8fX8BImzb66yeXBBx9UeXm5HnjgAS1atOhkkk2SFi5cqJkzZyoSiaikpER9+/YNMFJ4Yf+q3pNsXbUeldb8WmrrpQEKSFU1281IhbMNA4+0mWRU4yF/4vJLR4v5bveWZOsq3vsFUsvRStM7sbck2wmx6PFC5x5/4oJ/Dq7tPcnWVXuj9OGvTSecdNLaYP6u3pJsXe1817xfSC91e8z97WzTRUc7TAPU0Sp/4oL/rOxsZS14RGprU/Q7/3ny9/bBcsVe/KmsSRMVuuO24AL0SOMhae3LvSfZTrBjptxcs8OfuPyWqZ8/TDvHml/3nmTras8KUy8C0kmkw7R3xDODQ+VGafuf029k2/4Pek+yddXaIH34q/Sf9SjTxGLSxt/1nmTr6vA+acNvU3epGRJtHtm6dasWL16swYMH6/HHH+9xnwsvvFCSNHPmzJO/W7Zsma655hqNGDFCubm5Ki4u7jbFJFLDiR7q8WpvlHY72B9IdtFOadufHOzfYabNSSd7/uas0Xzv+2audqQH25a2/tFBAdHp/kh6Hc3Sjnfj37+zJb6kXCrZ8Rfzd8W9/7vmfUN6iEXNqPZ416CKRcx9MN0al3CKVVaq0GfvlP3hGsWWvCk7GlX024sk21Z4wSOywuGgQ0y4bX825eK49/+js/1TSSZ+/jDtIvF0uOm6f7pPJ4zMcmC1s07FFRvMSOh00XrUefuok/2R/A5td9ap+Mh+qWqLd/F4iakjPfLSSy8pFotp/vz5Kiws7HGfPn36SOqeaKuvr9f06dP1pS99SUOHDlV5ebkef/xxzZ07V5s2bVJxcbEv8SdapKNFrY1pPvF8F+Ub5Hhh65rtZtqknHwvIgL8VbPd+fzaRytNAbRoqDcx+SnS4a5gUL5emnh14uOB/45WOF9vpb1Jqt0tDZvgTUzwV8UmyXaYOK3dZXp+5xWdfd9k19Yo1e1ydowdlSo3SSUXexMT/FW7y3nitKnWlAfScTppKfPqRD0Jzf+cYu+tVPT5Hyq0e4/s7TsUuv/vZY1OzXrumRyrcb7uVGebKUePnOZNTEHLpM+/J5l2D+hoMdezI7ZJNJx3mSchAb6KRc317FT5OmlAmtwW3fz9NduOt4/2SXg4CED5OnfHjJyWelMJk2jzyNKlSyVJ8+bN63Wf8vJySd0TbTfeeKNuvPHGbvtddNFFmjhxol555RU99NBDHkTrvfdfeUzvv/JY0GH4pnKj82NiUbPw45gLEh8P4LfKTS6P2yhN/HhiYwnCoR1nny6wJ1WbpQlXSRbjzVNexTl8B0i0pQc3ZQHbNkn6cWmQaKra4m5kUsVGEm3p4lzKAumaaMu0OlFPrKwsZS14WJGvfFWxN5bImjZVoVtvDjosT1S5/Q5sSt9EWyZ9/j3JtHtA9TbnnY4kUxYg0YZ0cGS/u2kQD+0wHS+y8xIfk9/cto/WbJVG0z6a8lrq3Y3QbKwxHfBSrSM+iTaP7N+/X5I0dmzPK3pHIhGtWGEW5OmaaOvJoEGDJElZWe4+rtmzZ6u6Oo7JgLsIZ/fRLf++09Xr9WTavPtVdvEdPW77zbeuTchrTCgrU7SzNSHnOhfhULZ+9OBeV8c+8+Rz+uWy/y/BESWX79y3SgOLRqiqqkrFxRcFHQ488tTfrdSgvs5byX778h/0zL33eRCRv26+5GHdfMnDjo+LtEuTyqapub0h8UHBVwtvW6wpoz/m+LgNq7frhofSINsM/fAre5UVznZ+3Pd+pp/c9s8eROSvez/+Lc2bfrfj4xoPd6i4eLwHESWPTCkL/e97lmrUIOc9B/70+2W67u8/50FEzmV6ncjOyZGe+15CztVNQYGUnS1FIrIumi0rlLgeRhPKJsjqcNHbyQMP3fCCzj/vOsfH7dpSrpuLL/EgIuc8uQY8/PylxF4DmX4POFefveJf9ckL7nd8XEezNHZMiaKxiAdRJYdMKQtkuqtnfF6fv/o/HB9nx6RLL7pKVfUOp4dIMtnhXD3/lTgW5urBf377+1q8/N8THBH8NnXM5Vpw60uujv3c7V/Uuj0O1qQ5B7FY7OR/X3bZZVq71t3i4STaPNLcbOZJaW3tuYCzePFi1dXVqaioSOPGjTttezQaVSwW0/79+/XP//zPGj58uO68805XsVRXV6uiwln6OCs3sfMX9h9epjHTrknoOT+qsqpSkXYHC4F4JDuc4/rYpuZmx59VqolGoyf/Tfe/NZNFuzyknGhva0+L66Kp0f3qvdXV1TrWwmJtqa6j3V0DTzQSS4vvANxrbmlJi2ugtcVtI5+VFn//mWRKWSgadVcW6OjoTJr3JePrRHm5ct5d4Mxs21b0qaelSKc0ZrRiv/ilQldeIWvkiIScv7KqUmprT8i5zlVbu7s4YtEkKgsk+Brw+vOXEnsNZPw94Bw1N7lfeLWqskqdbqYISRGZUhbIdEfHHnV9bG1trSpqUvvayMlyPySvqbmJ70YaGFFwxPWxR44cCeQaqKmpcX0siTaPDB8+XPX19VqzZo3mzp3bbVtVVZUWLFggSZoxY4asHiYcvfLKK0+OeCstLdXSpUs1ZMgQ17E4Fc5OvYlwR44YmTQ9txpbj6ioz0DHx0XUrFGj0nSunOPCxxe5DofDaf+3ZrLG1loN7T/a8XFt0aNpcV1EQu4qle2dreo3sEBFA9JgjogM19JZ7+q4xva6tPgOQGportHgvs4XV+i0m9LiGuiwG10d19BckxZ//5lkSlmoqc3dOkStnfVJ875kep3IzslRbULOdErstddlr9+g0BfvVWjuJYp8+SuKPvW0woue6LFe7NTIESOTZkRbW6TB1XGNbclTFkj0NeD15y8l9hrI9HvAueqUu86Hja1HNHS4u/avVJEpZYFMZ2c5XLj+uJgdU26hpVFZqX9tNLU1qDCvv+PjMqF9NBOE8szIZNu2437On9g3nBvx7RqIxWKqqqqSJA0bNsz1eUi0eeSaa67R1q1b9cQTT+jaa6/VhAlm2pRVq1bpnnvuUV2dqXjOmjWrx+N/9KMfqaGhQXv37tWTTz6p6667TitWrNCYMWMcx7J69WrHx7RHpEcXOz4sUDt27lRuklzR29+RDn7o7BjLkp79r28or+gb3gSVJJZ938xRPWLEiJPrFCL9HFwrbX/b+XELHr9H/3vUPYkPyGcdrdLy75u5xZ0Yd0EfHTi435ug4KvDe6W1rzg/7o4vXa6HnuHemA52LZf2ve/8uCd/9Ii+1/+RxAfks5Z66W8/cn7cRdcVq/x/pfd3IFPKQpWbpC1vOT/uy9+4Tf/6o9sSH5ALmV4nao5GNGBp4qbssSsqFHvhRVkTJyh05+2ywmGF7p6v2I9/othrryt8y03n/Bo7du5QQTg5KoUNFdJqF7MlffruC/Slp5Lj3pDIa8CPz19K7DWQ6feAc9XWKK34gfM1W6deNlDl30iO74BXMqUskOmiEWn5c5LT3PfQ0pC273K50GeS2b5UOrjG2TFWSPq/Lz2m3MLMWdMyXdm29MHPpMZD8XemsSxL+QOlv65eogT1wTmr5uZmFRYWSpKWL1/u+jyJnQwbJy1cuFCDBg3SwYMHNXXqVE2fPl1lZWWaM2eOxo8fr6uvvlpS7+uzTZw4URdffLE++9nP6u2331ZjY6O+/e1v+/kn4BwUn3nZvR4NKZXyihIfCxCEEVMkp0sTFQ6R+o30Jh6/5fSRhk1yflzxrISHgoAMLJH69Hd2THaeNGyiF9EgCMUzJDmsGAwqkfL7exBMAPIHmL/HEUsaNcOLaBCEYRPNfc2J/AHSwJ6XuEaKs2MxRZ/8jhSLKbzgYVnHR3OE7rxd1oQyxV54UXZlVcBRJla/kaZ860Q425Sj000mfv4w7RuDS50fN8pFewqQjMJZ0shpzo9Lp3YBt+2juYWJjwX+syx313PxLPmWZEskEm0eKS4u1rJly3T99dcrLy9P+/bt08CBA/Xcc89pyZIl2rFjh6TeE21d9e/fX6Wlpdq1K7UXwcwkBQOlMbPj3z8rTzrvcu/iAfyWlSuVXRn//lZYmnh1aj5IezP+UinHwbIOo2ZIfd2PUEeSsSxp4sflKNFSNs9UxpAe8vpK4y6Jf/9wjlTq4L6ZCkqvNH9XvMZdYt43pIdwtrmvxc2SJqRZWQCnxF5+VfaWrQrde7esLrO0WOGwwl97WIpFFX3qadlOh74kMcuSJswzPfPjVXalKUenm0z8/GGUXm7aO+I1ZrZpTwHSxdiLnHXAHFLqorNaEisYJI2+MP79s/LMfQPpY/gUZ53q+w6TRk33Lh4vkWjz0OTJk/XGG2+osbFRjY2NWrlype6//341Nzdr3759CoVCmjbt7F0bDh06pO3bt+u8887zIWokStmV8fXEyu4jnX8bhUmkn+JZUukVZ98vFJam3yANcL6kW1Lr0086/3Ypp+Ds+w6fIk30dl10BGDwOGna9SaRfDYTr5ZGTvU+Jvhr/KXSmDgqllm50qxbpKI0W46kaIj5u+JpNB5zoXm/kF5GTjX3t7OxwuZ+OXic9zHBf/aBA4r95GeyJk9S6LZbT9tulYxV6O75sjduUuy11wOI0DsDx0jTbzTl3bMpvSK9RjGckMmfP0w7x/m3mXaPsxk101lnTSAV5OSbdoF4km2Dxx+vP6ZZp6MJV8Y3a8WJ9tH8Ad7HBP+Es6SZt8SXbCsaJs261fkMWcnCsuky5LuVK1fqkksu0cSJE7Vt27Zu2+6++26VlpZq1qxZ6t+/v3bu3Kmnn35aVVVVWrVqlUpLXYy7dyEV5yJ/4i4lzVzkJ9i2VLvTrFdVf7D7tqw8M4R8zAWZ1Xv7xFzkuYXS5f8QdDTww5EDZk7u2t2SujxxQlnS8MmmcbVwcGDhea69ydwDKjacPjd7/1GmQWXYpPQrTOOUxkPSgQ+lmm2nr9s3dIL5DvRnnee0Vrvb3AeO7Ov++6xcacRUafQF6TNlZE9aGsxzoHKTFO3ovm1giTT6fGlIBvUny8SyUEOFuQ/W7pLs2Knfh8LmGTjmQqloaHDx9SbT60SJXqPND/VXX5s0a7R11VRnvgPVW6VYpPu2IaXmOTDQ+XLsnsv0ayDT7wGJ1HZMOnC8LBBp675twBhp9CxpSFnm1IkysSyQ6TpbpYPrpIr15rPvqmiYaRcYMVUKpemQGNuWDu2UyntoH80+3j46OsPaRzNNtFOq2CiVr5NajnTf1qe/+Q4Uz3A2I0qidF2jrampSQUFcfSY70ESPn7T38aNGyX1PG3kJZdcop/+9Kf67ne/q7a2No0ePVrz5s3Tv/zLv2jsWBYsSDWWZRpRh06Qmo9Iq35hCpXZedJlX0rdDD3gxMAx5qftmPT+T813ICtP+tjfO1+7JRXlFpqpD8bPlerLpY2/kyLtprfW7M8FHR38UDRUmvopqewq6WiFtPlNcw3k5Eszbgw6OvhhyHnmp6Ve+uC/Tt0HL78/mIqE3/L7m1FNpZeZ++CmJae+AxfcHnR08EP/UeanvUl678VT34FL7zPrmgLprnCwNOUTZrROQ4W0/jents28ObCwAN/k9ZUmXCWd97HjZYE3jteJ8qUL7ww6OsB72X1Mm0DJxVJDubTht6faBebcnf5JZsuShk0wP82HpVUv0T6aacLZZrDJ6POlo1XSuldOfQcuvS89vgMk2gJwpkTbAw88oAceeMDvkOCDgoFmuGxEZiQPDxFkmry+p74D4azMSLJ1Fcoyc62Hs01hIp4phJBecvqYXusnrgEna7YgPeQP6H4fzIQkW1fhHDMlDt+BzJVb2P07QJINmSY77/gIXktmpoc0aFQCnAhnm2mCT9aJKAsgw4RCpiNy13aBdEgwOFEwiPbRTGZZUv+R6fkd4JEWgDMl2gAAAAAAAAAAAJAaGNEWgKVLlwYdAgAAAAAAAAAAAM4RI9oAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuECiDQAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALJNoAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcyAo6ACSnnLD0xF1BR+FMTjjoCAAAAACki0yvE+WHwqq/+trEndAH+SEqhYmU6ddApt8DAABA/Ei0oUeWJeVydQAAAADIUJleJ7IsSwXhDH4DkPHXQKbfAwAAQPyYOhIAAAAAAAAAAABwgUQbAAAAAAAAAAAA4AKJNgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABdItAEAAAAAAAAAAAAukGgDAAAAAAAAAAAAXCDRBgAAAAAAAAAAALhAog0AAAAAAAAAAABwgUQbAAAAAAAAAAAA4AKJNgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABdItAEAAAAAAAAAAAAukGgDAAAAAAAAAAAAXCDRBgAAAAAAAAAAALhAog0AAAAAAAAAAABwgUQbAAAAAAAAAAAA4EJW0AEAQDKybVstsWjQYTiSHwrLsqygwwCQJrgPAgAAAJkt1eoE1AcABIVEGwD0oCUW1YClfwo6DEfqr75WBWFu6wASg/sgAAAAkNlSrU5AfQBAUJg6EgAAAAAAAAAAAHCBRBsAAAAAAAAAAADgAok2AAAAAAAAAAAAwAUSbQAAAAAAAAAAAIALrA4JeMi2pbZj0rEaqemQ1Nlufh9plw6skfoOk4qGSOGcYOP0UqRdajxk3oO2Y1Jn26nf1+6SioZJuYWSZQUbJwAAgBfsmNR8RGqskZrqupeFKjaYslDhYCkUDjZOL3U0m7LgsZru5eF9K6Wi4VLfoVJ2n2BjBAB4J9ohNdaa50BrQ/dnYc0O0zaS1zd92wVsW2qpN2WBxtruf3/5evP3Fw5J77IAAKQ7Em2AB9qbpIqNpvGkvfH07dFOacfS4/9jSYNKpNGzpEHjJCsNxpnGoiaJVr5Oqj/Y8z7RTmn9a+a/+/SXimdKI6fRyAIAANJD82HTeFa12TSkfVS0U9r6R/PfoSxp2ESpeJbUd3h6NDRGOqTqLaY82FR3+vZop7Rr2an/7zvC/P3DJkphaqkAkPLsmHR4r3RwnXR4nyT79H2indLG181/5xZJo2aYn9wCHwP1UEu9eQ5WbT6VXOsq2ilt+5P571BYGjrBPAv7jUyPsgAAZBKqMEACRdqlnX+RKjeZQmVcbFP4PLxX6tNPmni1NPg8T8P0jG1L1VulXX81ycZ4tTaY9233CpNwHP8xKZztVZQAAADeaT0qbfuzKdvFKxYxjXBVm03CafK1UtFQ72L0Uiwq7V9lRqtFO+M/7liVtKVK2vmuNP5S09BIIyMApKba3aZzcevR+I9pb5T2rJD2vmc64ZZdKWXlehejl9oape1vmw7I8YpFTXtK9VYz2n3SNVK/Ed7FCABILBJtQIIc3itt+WPPI9ji1XpUWvcbacRUacI8KTsvcfF5rb3Z9MRyUpD8qFhE2r/aFMqnfFLqPypx8QEAAHjJts1sBjvfdZZg+qhjVdIHP5fGXSKVXJxa00g11Uqb3zJTY7nV2WoaJw/tkCZ/Qsrvn7DwAAAe62wzCbaqLe7PYcfM87RurzTlOjPzT6qwbdNpZsc7PY9mj1djjbTqF1LJRdK4SxnpDQCpIA0mqQOCt3+VtPaVc0uydVW1WVr1X856fwWpqU5a+dNzS7J11VIvffhLqXJzYs4HAADgpVhM2vKW6XR0Lkm2E+yYtOdv0rpXzRSMqaBut/TBf51bkq2r+oPSBz+TGioScz4AgLdaj5qOIueSZOuqvdG0s+xfnZjzec22zYj2LW+dW5Lt1AmlfR9Ia3+doPMBADxFog04R/s+MNMeJtqJZFPbscSfO5GaD0sfLjaL3CeSbUtb3jTTcAIAACSrE2WWKg86CB3Zb5JtiUjeealut7T+t2Z2gkSKtEtrX5aOVib2vACAxGo7ZtovWhsSf+6d75p2l2Rm22bd1Yr1iT93Q4W05tep0/EGADIViTbgHNTsMOuReaWtUVr7qhRNcKNFonS2SWteNlP8eGXLH0yPZgAAgGS0e7lZT8UrDeWmd3yyaqqVNvzOwfrEDkU7TXm4LUEzRwAAEisa8f4+veuvpv0lWe37QKrc6N35j1VLm94wCT0AQHJill/ApY7ja5I5MeduKafAHPvBz+M7prlO2vs3qfQK5zF6bcc7zqfLdPwe2KZx6ZJ7pXCOqzABAAA8cbTKeS97N+XBmu3S0AnSsInOY/RSLGrWZHMyks3N3x9pMyMFZt0qWZa7WAEA3tjzN9Nu4YSbZ8G2P0kDiqWcfOcxeqmpVtqzwtkxbv7+uj1m9PzIac5jBAB4jxFtgEvb3nY+kiunQMorMv86sW+VachJJicKeU65eQ9aj0o7lzl/LQAAAK/EIsdHmjnsXe62PLjtz1JHi7NjvLZ/lfM12dz+/Yf3SlVMKQ4ASeVolXkWOOXmWdDZKm1/2/lreSkWMx1OnI7qdvss3PEOI7wBIFmRaPNBXV2dFi5cqNLSUuXl5Wn06NF66KGH1NzcrPvuu0+WZenZZ58NOkw40FQrHfJz2gJb2vuej68XB6c9ts5VxTqpvcnf10yE6AsvqvO6Tyv21h9P22bbtiJfe1Sd198oe+8+/4MD4JvmI9L2d6T3X5Taj69p2dkmNR4KNCxfcB9Euqrebtaq9Utnq3RwrX+vdzaRDv/XzNnzN++mqAQAOLf3PTnucHIuarab9phkUbvLeYeTcxFplw6s9u/1Eok6AYBoxAza+PBXZkSvZDoSVm5M/jWp40GizWPr1q3T9OnT9eSTT6q6ulpTpkxRZ2ennnnmGd11113autUs6DBr1qxgA4Uj5ev8f826PWZkVzI4WiUd87EwKZm5yCs2+PuaiRC6Z75UMlbR556XXdt9Po3Yq6/J3rBRoXvuljWuJJgAAXgq0iGt/6303gvSwQ+lpjqdbIyIRaSVP5XW/Cr5RqkkEvdBpKsgyoMVG8x0jcmgeqsU7fD3Ndsapbq9/r4mAKBnrQ2mncJv5ev9f83eVKzz/zUrN6dmgzR1AiCz1WyXlj8nbX5Tqj9was1JOyZt+YO07DmpakuwMZ4rEm0eqqur0w033KDq6mo98sgjqqqq0po1a1RdXa0nnnhCS5Ys0apVq2RZlmbMmBF0uIhTpCO4L36yJJqCKthWbEi9XsxWdrayFjwitbUp+p3/PPl7+2C5Yi/+VNakiQrdcVtwAQLwTKTDJNFqd555vyMHpNUvpW+yjfsg0tGxGulYANN6dzSb3vPJIKjyYBAJTgDA6YJqn6jabMrZQWs+Ysrxfou0mQbrVEOdAMhclZukjb878xJMkTZp8+9Tu6xPos1DDz74oMrLy/XAAw9o0aJFKioqOrlt4cKFmjlzpiKRiEpKStS3b98AI4UTx6qD6z10ZH8wr/tR9QHF0d5kCrOpxiorVeizd8r+cI1iS96UHY0q+u1Fkm0rvOARWeFw0CEC8MD2P5tnRjxa6qVNS7yNJ0jcB5Fu6gNoWDshiEa9j+polZoCmvq2/mDqdbwCgHQU1PMo2hl/GdtLmV4WcIM6AZB5GmulrafPGNurbW+bmdRSEYk2j2zdulWLFy/W4MGD9fjjj/e4z4UXXihJmjlzZq/n+dSnPiXLsvTNb37TizDhQpAFuqba4KcL6mgJdvFdP+c/T6TQ/M9J48cr+vwPFfve92Vv36HQFz4va3Rx0KEB8EB7k1S9zdkxR/Yn15oTicZ9EOnE7ym0u0qGslCQMcQiqdnxCgDSSSwabLk1GZ6FmV4WcIs6AZBZDq5x2EnOTq51qZ0g0eaRl156SbFYTPPnz1dhYWGP+/Tp00dS74m2X/3qV1q3bp1XIcKlxoB670qmMBt0w0KQf78UbGH2XFhZWcpa8LDU0anYG0tkTZuq0K03Bx0WAI9UbHQ34iKZ1pxINO6DSCdBNnA1JkHHq6Ab+FK1PAgA6aL5cLDPomR4DgTZNtJ8xP91UhOFOgGQOTrbzLrOTtVsT82lNbKCDiBdLV26VJI0b968XvcpLy+X1HOi7dixY/rqV7+qRYsW6e677z6nWGbPnq3q6iQYV58mFt62WFNGf6zHbXPulnIKej82t+DUv5d96cyv09EsffDz039/+02f0+YDy+KMNvEunXSb7v/kd3vcdra/X4r/Pejt7//1S6/p+59/IM5o3bNzcqTnvpfYkxYUSNnZUiQi66LZskKJ7eswoWyCrI7kLm1/575VGlg0QlVVVSouvijocALBe5AZHr75Z5pR0nsZoDfL/7hR13zhUx5E5Bz3QW9wD0iP9+D//uNm5ef263FbosqDvZWF7Kg0eeI0Nbc1xB9wgn3uisf0iQv+e4/b/CgPP/Yv/643P/x+nNECyeeFB/crFAorFo2quHhs0OEAjk0dc4UW3PqLHrf50S7wzh+X61P/8Nk4o/XG03+/WgMKh/e4zeuygGzpgpkX63BjRfwBu5RqdYJUqA9I6VEePheZ/vdnigmjLta/3PGK4+PsqHTjtfO1af9fPIjqdLHYqV7Sl112mdaudTekjkSbR/bvN4tYjR3bc6E5EoloxYoVknpOtH3961/XhAkTNH/+/HNOtFVXV6uiwvuHb6aIRexet+UUSHlFvW4+yQrFt19PGuqPBfp5No5s6nVbvH+/5P496OyI+vP35+UqO4Gns21b0aeeliKd0pjRiv3ilwpdeYWskSMS9hqVVZVSW3vCzueFaDR68t9MvS/xHmSImLv1BbKtvOS5LrgPeoJ7QHq8ByGr92+HH+XBukOHdaQxuI507W29N2D58fe3NLWm7LUDSJIt++S/XMtIRcV9j/W6zY92gWgk+O+Opd7L+348Cw/XHVFFHW0jH5UK9QEpPcrD5yLT//5MMaqo1fWxzY1tgVwbNTXuh0yTaPNIc3OzJKm1tecLavHixaqrq1NRUZHGjRvXbdvq1av1/PPP68MPP0xILMOH99zDBu6EztB22tF85mNzC0xByo5J7WfZt7dz9etfpFGjRp35YA8V9u29W9bZ/n4p/vegt3NlZYd9+fvtnBwlcsr52Guvy16/QaEv3qvQ3EsU+fJXFH3qaYUXPSHLshLyGiNHjEz6nlvh44sbh8P+fI7JiPcgM8Tk7rvYEWtJmuuC+6A3uAekx3sQjXVIyu9xW6LKg2c6z+Ahg9Snr7uEfiLk5PXe5OZHebhPQV7KXjuAJFmyTv7LtYxU1K9/79khP9oFQlkK/LsTsyO9bvOjLDBw8AApl7aRj0qF+oCUHuXhc5Hpf3+myC/KdX9sYY5v10YsFlNVVZUkadiwYa7PY9m23fvwHLg2ZcoUbd26Vc8++6y+/OUvd9tWVVWlCy+8UFVVVfrYxz6m5cuXn9wWjUY1Z84czZs3T4sWLZIkWZalxx57TN/85jf9/BPQi82/l6q2uDv2si+Z3kptjdLy59ydY+4XpYJB7o5NhCMHpDW/cn/8ub4HYy+Syq50//rxao5GNGDpnxJyLruiQpF/eEBWyViF//MpWeGwoi8tVuzHP1HoH7+k8C03JeR16q++VgXh5O4/sez7UnuTlFsoXf4PQUcTDN6DzHDgQ2nHO86PK5kjlV6R+Hjc4D7oDe4B6fEevPei1Fzn7thzLQuFs6WrvmIa6IKyf7W08113xyaiPDztM9LwSe6OBZLBn5+SZEuypGseCToawLnmw9J7P3Z//Lk+C0ZMkaZ+2v3rJ8Kq/5KOVrk79lz/fiskXfWg5EexN9XqBKlQH5DSozx8LjL9788U0U5p2XNSpM3ZceFs6fJ/lLJyvInro5qbm1VYWChJampqUkHBWeY/7kWA1bP0ds0110iSnnjiCe3YsePk71etWqV58+aprs7UzGfNmtXtuGeffVY1NTUk1ZJYUYADBMPZUv7A4F5fkvq6T+ynxes7Zcdiij75HSkWU3jBw7KO99oJ3Xm7rAllir3wouxKl6VzAElrxFTT09apUafPJp3yuA8iHQVZHikaGmySTQq+PBb06wNApssfYNonghJku8zJGAJ8FhUO9ifJlkjUCYDME86WRk51ftyIqf4l2RKJRJtHFi5cqEGDBungwYOaOnWqpk+frrKyMs2ZM0fjx4/X1VdfLan7+mx1dXX6xje+oX/9139VJBJRQ0ODGhoaJEltbW1qaGjotjgfghFow8owKUGza7mWlWsK1UFJhgK1E7GXX5W9ZatC994ta8yYk7+3wmGFv/awFIsq+tTTYnAxkF6y86TiWc6OGT5Z6tPPk3ACxX0Q6SjIxrUgXzsZYsjKlfr0D+71AQCmw0fR0OBePxk6XATdNpRqqBMAman4fGcdM0JZ0ugLvIvHSyTaPFJcXKxly5bp+uuvV15envbt26eBAwfqueee05IlS06OcuuaaCsvL1djY6O+9KUvacCAASd/JDMybsCAATpw4EAgfw9O6TtMyu4TzGsPGnf2ffwQVBz5A1KrEdo+cECxn/xM1uRJCt1262nbrZKxCt09X/bGTYq99noAEQLwUukV0uDz4tu33yhp8nXexhME7oNIV4MDLJMF+donZOVI/YuDee1BJcF3PAMASIPGB/O62X2SI9E2sCS451EylAWcoE4AZK78/tKMm6RQHMtLW2Fp+g1SQcCzubmVYgONU8vkyZP1xhtvnPb7pqYm7du3T6FQSNOmTTv5+9LSUr3zzukLusybN0/33nuvvvCFL2j48BQbzpOGQlnSqOnSvg/8fV0rLI2advb9/FA8Szq4JpjXTaWGFWvMGGUv+e0Z9wl/7i6FP3eXTxEB8FMoZAqUu5dJ5evM/OSn7RM20yJMmBfs9Dte4T6IdJU/wDSwHdnn7+v26W9eNxkUz5IayoN5XQBA8EZNk/askGyfJ14aNcPdFO2JllckDS6Vanf6+7q5heZ1Uwl1AiCzDSqRLrhL2vYnqam2530KBkuTPi4NGO1raAmVBI+mzLN582bZtq0JEyYoPz//5O8LCwt11VVX9XhMSUlJr9vgv1Ez/U+0DZsg5bhbizHhCgZKA8dIR3wcYBnKMo3RAJBKQiGp7Epp3CVS1RbpyH6pbq9kR6VwjvSxv5dy8s9+HgDJp3iW/4m24pnJ0+loaJm5f3W0+PeaBYOCG0kHAOgup0AaNlGq3urv646a4e/rnUnxLP8TbaNmmDoGAKSS/iOliz8vHa2SqjZJlZtNu0goSzr/dqn/qOSp57jFrTkAGzdulNR92kiklj79zByzfgllSeMv9e/14nHe5ZJ8vAGWXGzWPAKAVJSVK40+X5p5s5RzfPrhrBySbEAqG3KeqRD6pU8/k2hLFqGwdN5l/r5m2ZWpXwEHgHQy/lJ/R5eNPj+5lpMYOMbfkea5ham7dhEAWJZJuE2+7lS7SHaeNKA4Pcr4JNoC4DTRZtu2vvnNb3oYEdwou9y/Al7p5WaKomTSb4RUcpE/r1U0TCqZ489rAQAAxMOypCmf9K+BcconzUjYZDJyupkKxg8jpkqDA1oPCADQs/wBpr3CD336+fda8bIsacp1/j2fJ19HB2QASFYk2gLAiLb0EM4xDR6Wg29RR7PU1mj+jdeA0cnbY2ncpVLhEGfHOH0PwtnS1E/Gt2gmAACAn/IHmFFWTrgpD465MDnXK7Cs441+feI/xs3fn9fXrGUJAEg+o893/oxy+iywQtKUTyVfhxPJPKMmftzZMW6ehaNm0OEEAJIZa7QFYOnSpUGHgAQZMFqa+mlp0xJJ9tn3/+Dnzs5fNMxMM5asw2fDx+fRXf2S1NoQ3zFO3gMrLM242XkyDwAAwC+jz5fam6R9K+Pb32l5cNgk58k8P+X1lc6/TfrwV1K04+z7O/37cwqkC+6gBz8AJCsrZNotPvyV1FgT3zGOngWWaXcZkMRrdI6cKrU3SruXx7e/02fhkFLnyTwAgL8Y0Qaco+GTpOmfMUmhROo/yjQqZOUm9ryJllsgzf6sVDg4secNZ0vn3yoNGpvY8wIAACTaeZd5s57uiGmmcdHJDApB6DtcuvAuZyPb4pHX15Qzk20KdQBAd1m5pv2iX4LXLrXC0owbTLtLsht3iTcdY4ZNkqbfwCw/AJDsGNEGJMCwiVLBQGnLW9KxOHtw9cYKSePmmjXJUqUglVsoXTTf9N468OG5n2/AaGnKJ6Q+/c/9XAAAAF6zLJNo6zdS2vIH06v9XGTlShOvloZPSd6ZDT6q7zDpki9I2/4k1e469/ONnCaVXcVINgBIFdl50oV3mhHee9+X7Ni5na/vMDNdZKI79Xpp7EWm88mWt6TWo+d2rnCONOEqsx5qqpQFACCTkWgDEqRwiDR7vnRgtbR/ldTZ6vwcA8aY9SeKUnCqxHC2iX3oBGnnu9LRKufnyC2Sxl0sjZpJQRIAAKSeQSXS3C+YzkcVG6VYxNnxVsh04Cq70nRkSjW5BdKMm6SabdLuFfFPLd5V4WCp9ArWoQGAVBQKm44nQ0qlHe9I9QednyO7j0lYjZkthZJ8RHdPBoyWLrlX2v03qWK9FO10eAJLGlpmkmx5fb2IEADgBRJtQAKFQmYk2pgLpEM7pfL10rEqKRbt/ZjcQlOIKp4lFQzyLVTP9B9lRrcdq5HK10l1u6WOlt73D2WZudZHzZQGn5eaBWkAAIATsnLNOirjPyZVbZEqN0lNtTrjer75A8zotVHTUzPB1pVlScMnm6mujuw35cEjB868fltWnklSjj7fjAqkwxUApLaioWZK4aY6k2w6tNOsZ9qbUFjqO0IqnmnaR0Ip3lp5YjTa+LldygKHJPsMZYE+/c0UmaNmSnlFfkUKAEiUFH90AckplGUaGIZPNkm25sNS4yGps81MnxDKkvL7S0XDTM/fdNR3mJn+0bZNgfpYjdR2zPTsDoXNtBJFw8yUm8m+7ggAAIBT2Xmm89WYC0xv9sZak3A7kXAKZZlOVn2HJf+avG5YlkmeDSox5cGWeqmxxnTAikVNeTC30Pz9ef1IrgFAOiocbDqfTPy41N5sngMtDaZdwAodbxcYap6HqbJ0hhNZuaYTyejzTVmgqc6UBSLt5tkYzjZtIkXDmCoZAFIdiTbAY6GwKTgWDQ06kmBYlumNRY8sAACQqcLZUv+R5icTWZZpSCwYGHQkAICg5BZIuRk8LXA4W+o3wvwAANIP40gAAAAAAAAAAAAAF0i0AQAAAAAAAAAAAC6QaAMAAAAAAAAAAABcINEGAAAAAAAAAAAAuJAVdAAAkIzyQ2HVX31t0GE4kh8KBx0CgDTCfRAAAADIbKlWJ6A+ACAoJNoAoAeWZakgzC0SQObiPggAAABkNuoEABAfpo4EAAAAAAAAAAAAXCDRBgAAAAAAAAAAALhAog0AAAAAAAAAAABwgUQbAAAAAAAAAAAA4AKJNgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABdItAEAAAAAAAAAAAAukGgDAAAAAAAAAAAAXCDRBgAAAAAAAAAAALhAog0AAAAAAAAAAABwgUQbAAAAAAAAAAAA4AKJNgAAAAAAAAAAAMAFEm0AAAAAAAAAAACACyTaAAAAAAAAAAAAABdItAEAAAAAAAAAAAAukGgDAAAAAAAAAAAAXCDRBgAAAAAAAAAAALiQFXQAAAAg+di2rZZYNOgwHMkPhWVZVtBhpA2uAQAAAABAJqNejHiRaAMAAKdpiUU1YOmfgg7Dkfqrr1VBmKJNonANAAAAAAAyGfVixIupIwEAAAAAAAAAAAAXSLQBAAAAAAAAAAAALpBoAwAAAAAAAAAAAFwg0QYAAAAAAAAAAAC4QKINAOA525baGqVY1Px/LCp1tAYbk98iHVJj7an3wI6Z9wVAZrBtqfVo9/tgpD3YmPzW2SY1HuI+CAAAgMwU7ZSaurQLxGKmTJwpbFtqacjsOhHSV1bQAQAA0lNHi1S5Sao/IB2rkTq7JNY6W6W/fk/K6ysVDZMGj5eGT5LC2cHFm2h2TKrbI9XskI5VSy1Hum/vaJHe/T9S0VCp/yhp5HQpv38goQLwSFujVLlRaiiXjh2SIm2ntnW2mntAn/5S32HSkDJpaJkUCgcWbsLFotKhHVLtLvMcaG3ovr2jRfrL96S+Q6X+xeY+mFcUSKgAAABAwtm2dGS/VL1NaqyWmg9372jW2SK984xpF+g3wpSHCwcHF68XWo8erxNVmE53XRNrJ+pE+QNM29DQCdKQ89KrToTMQaINAJBQzYelvSulmu2SHT3zvm3HzE/tTmnnu9KIaVLJHCm3wJdQPRHtlA6skSrWmUb2M+7bYRrgG8qlfSulQSXS2DnSwDF+RArAK8eqzX2wbtfZR2y1Npifmu1STr40coZUcpGUletHpN6ItEv7VkmVG0wy7Yz7tklHDpifve9JQ0qlkoulvsP9iRUAAABItFhUKl8vla+VWurPsm9EOlppfg58aDqgjb3IJJxSWUOFaeeo23P2fVvqzU/NNim3UBo1UxpzoZSV432cQKKQaAMAJEQsJh1YJe3+29kTbD2JtEsHP5Sqt0gTPy4NmyhZVuLj9FJDhbTlrbMXpHtzeJ/5GTVDKrsytRvagUwUjUh7Vkj7V0tyMSViR4u0732parM0+Tpp8LiEh+i5uj3S1j9K7U3Oj7Vt6dBO6dAu07gw/lIpTG0FAAAAKaSxVtryphm95caJzrjDJpq2kZz8xMbntWiHtGuZdHCtu+Pbm0ydqmqTNPkTdERG6qDqCgA4Z+3N0vrXpGNV536uzlZp0xtmqrGpn5RCKfCksm0zEmPP3xJzvooN0uG90sxbpaIhiTknAG+1NEjrf2NG9Z6r9kZp3StS8fnSxHmSlQKrKtsxafs7ptfuuZ9M2v+BVLdbmnWLmV4TAAAASHYH10g73k3Mums1282sDzNukgYUn/v5/NB8WFr3m9OnjHej9ai05ldm1p/Sy1OvIzYyTwpU2wEAyay9Sfrwl4lJsnVVs80U0KKRxJ430Wxb2vFO4pJsJ7Q1Hn9fqxN7XgCJ13xEWv1SYpJsXZWvlTb9PvkXSLdjJs6EJNm6aD4srXrJvL8AAABAMtv7vrR9aWLL7p2t0tqXpcP7E3dOrzTWSqt/mZgkW1f7PzAzZpxtSn4gaCTaAACuRdqlNb92P1Xi2RzZb0a3JXOBau97pteaFyLtplBNIzOQvNqbzH2wo9mb89dsk7a97c25E2Xb2yZOL3Q0m/fXzVSUAAAAgB8OrpV2L/fm3LGImTnjaII7NydS61Fp7a9NYtALlRulXX/x5txAoqTAhFwAgGS18y/ORnDMuVvKKTANpx/8PL5jandJFeul4lmuQvRUQ7nzkWxO34PONmnz76XZ/00K0T0GSCq2fXw9ssb4j3FzH6xYLw0qkYaWuQrTU4d2mPiccPoetDea93nmLUwZAwAAgOTSVGemi3TCaXk4FjHtAhd/XgpnuwrTM7YtbX7TrDcdLzd1ov2rpYHjpEFj3cUJeI0mOwCAK4f3mbXEnMgpkPKKzL9O7PxL4qcfOFfRTmnzW86Pc/MeHKuWDqx2/loAvFW1Rarb4+wYt/fBbX9yVnn1Q0eLtO3Pzo9z8x7U7ZGqtzh/LQAAAMArsZi05S3Jjjo7zk15uKXeu1Fz56J8remE7ITbOtHWt8zMP0AyItHmg7q6Oi1cuFClpaXKy8vT6NGj9dBDD6m5uVn33XefLMvSs88+G3SYABA323bXuOpWtFPakWTTBOxf7W/yb88Kqd2jqem8Fn3hRXVe92nF3vrjadts21bka4+q8/obZe/d539wPmqsNddNpMP8fyya3NOiJkq6fv7RTmnnO/69XkdL4teCPFd7/uZv8m/HO+Z9BwAAAJJB1SZ/11U/8GHi14U+F51t0q5l/r1eW6O0b6V/r5dI6VovdiraYTqsnmgXiXae+u9UR6LNY+vWrdP06dP15JNPqrq6WlOmTFFnZ6eeeeYZ3XXXXdq6daskadasWcEGCgAOHN7r/wiz2l2mUJUMYlHnU6Ul4jUrN/r7mokSume+VDJW0eeel11b121b7NXXZG/YqNA9d8saVxJMgB6r3S2tfkla+RNp57umYCmZ+es/+LlUvTXQ8DyXrp9/9TZTsfRT1ebk6cEZaTfx+Kmzzbu14AAAAAAnbNuszea3cp/bIs6karP/HeEqNkrRiL+vmQjpWi+OV0eLtH2p9Nfvm2lQT7SLRNqlZf/PdOZP1c7lJ5Bo81BdXZ1uuOEGVVdX65FHHlFVVZXWrFmj6upqPfHEE1qyZIlWrVoly7I0Y8aMoMMFgLiVrwvgRW3/k1u9qdsttTf5/7rl6yU75v/rnisrO1tZCx6R2toU/c5/nvy9fbBcsRd/KmvSRIXuuC24AD20b6VZuLqhouftjTXSpiVmpE66jm5Lx8/ftoO5D0Y7Te+/ZFC1JZjRZQfXpe93BQAAAKnjaIXUVOv/61ZuOpWkCFJQdaLOVunQdv9f91ylY704Xq0N0qr/kg6u6fnajXaaa2nVz6XmI35Hlzgk2jz04IMPqry8XA888IAWLVqkoqKik9sWLlyomTNnKhKJqKSkRH379g0wUgCIX6RDqtsbzGvXJElhKqg42hulo1XBvPa5sspKFfrsnbI/XKPYkjdlR6OKfnuRZNsKL3hEVjgcdIgJV7kp/mk0Dnwo7f/A23iClG6ff+tRkyQNQqbfBxtrzPsPAAAABKlmRzCvG+2QDu8P5rW7aqo168YFIVnqRE6lW704HpF2ae0r8dXh2hqlda9IHa3ex+UFEm0e2bp1qxYvXqzBgwfr8ccf73GfCy+8UJI0c+bMk7979913ZVnWaT9MLQkgWTQekhTQaIKW+uSYNu1YQA3sQb/2uQrN/5w0fryiz/9Qse99X/b2HQp94fOyRhcHHVrCxaLO56rf815yXN9eSafPv9HHdRhOe+1DwY/osu3gEo1SsK8NAAAASP6uzZZMr50MMdAukjoqNjhLyLYeTZ7ZrJwi0eaRl156SbFYTPPnz1dhYWGP+/Tp00dS90TbCd/73vf03nvvnfz52c9+5mm8ABCvoBs4gy5Qdbb5vz5dV0E28J8rKytLWQseljo6FXtjiaxpUxW69eagw/JE7S6pw+H84rGI/2te+SmdPv8g70PRjuB6jp7QciSYaSNPCPo5AAAAgMxmx453Qg5I0O0yUrBl8o7mYJbzSIR0qhefjW27W1OwfL0US8FlU7KCDiBdLV26VJI0b968XvcpLy+X1HOibcqUKbrkkku8CQ4AzkHgDbz10sAxwb1+kEk2Kfj3/5wVFEjZ2VIkIuui2bJC6dnnp2aby+O2S6MvSGwsSSVNPv+WhoBfv14qGBjg6zcE99pSGtwHAQAAkNLam0xHyaAkQ3m4NQnahnJ7HtuS/NKkXnw2jTXu2tDaG6VjlVL/FBvkR6LNI/v3m8lyx44d2+P2SCSiFStWSOo50ZZIs2fPVnV1Cg+BAJBU7rv2KV0+9a4et825W8op6P3Y3IJT/172pTO/Tkez9MHPT//9//z6v+rP616IM9rEmzDqYv3LHa/0uO1sf78U/3vQ29+/ccNm3fLoJ+KM1j07J0d67nuJPadtK/rU01KkUxozWrFf/FKhK6+QNXJEQs4/oWyCrI4kWBVa0j/d/rImFTvvMLN1427dvOBKDyJyLtHXgNefv+TfNfDIzT/X9JKretzmx33w/r//B63a+UZ8wXpgzoQb9P/79P/reZsP98G3//SOrv/yPXFGCwDJ54UH9ysUCisWjaq4uOc2AwBA8ho+YLy+de9fe92eqDpBb+XhqsoaFRdfGGe03vj6na+pbOTsHrf5USf6b5+9Wxv3vxtfsOeAerF700vm6ZGb3c3S9/n5f681u99KcEQ9i3UZPnfZZZdp7dq1rs5Dos0jzc1mvqjW1p5X71u8eLHq6upUVFSkcePGnbb9rrvuUl1dnQYNGqQbb7xR3/rWtzR48GBXsVRXV6uiosLVsQDwUU1Njb1uyymQ8orOfg4rFN9+PamvPxzoPa1/du8dF+L9+yX370Fbe5s/f39errITfMrYa6/LXr9BoS/eq9DcSxT58lcUfepphRc9Icuyzvn8lVWVUltyLHLW3NL79+RM2tpbkueZneBrwOvPX/LvGmhp7X1eUD/ug3WHawO9TuoG1va6zY/7YEtLc/J8TwDABfv4gse2bO5nAJCC7La8M273uk7Q2dkZ+POjra3nNm/JnzrRodqalGwbSad68dkM7VPp+tiaQ1WBXOM1Ne7nRCXR5pHhw4ervr5ea9as0dy5c7ttq6qq0oIFCyRJM2bM6PYl6tevnxYsWKArrrhChYWFeu+99/T444/r/fff1+rVq5WXd+YbeW+xAEDCZPU+P8LZ1qTKLTAFKTsmtZ9l397OldsnS6NGjTpLkN7JL8rtdVs8a3LF+x70dq6I3ebL32/n5Kj3pnQX56uoUOyFF2VNnKDQnbfLCocVunu+Yj/+iWKvva7wLTed82uMHDEyKXptSVJ9i7sCYV3TgUCv764SeQ348flL/l0DMav31/DjPtinIDvQ6ySvoPcqhB/3QTvUmTTfEwBww5J18l/uZwCQegrz+pxxe6LqBL2dpyPaHPjzI6q2Xrf5USfKL8pNubaRdKsXn00kq1ExO6aQFf/UmLZty7IsRcLHfLvGY7H/P3t3HidFfed//F3dc1/AcM3AcDPDDSMgiuIBARURUfEMGqMmur/12g0BN9kcm91sDAnGjTFuyGE0JlG8g6CuJEQDqIgO9zkcA8wFDDAw90x31++PEpiRAbprurv6eD0fj3mgU/2t/kx3dXV96131/fpUUVEhSerZs6ft9RimaZrBKgqnPfLII/rFL36hPn366K9//asKCgokSWvXrtVdd92lPXv2qKWlRQ8++KCefvrpc67rrbfe0vXXX69nn31W99xzTzjKB4CzqtgibXnHXttJD1hXKzXWSKsW2VvHxXdLGd3ttQ0Gn1d6/ynrXzs6+hr0HScVnH36z6Cp83rUZcXyoKzL9Pnk/cY8mcW7lPC/v5DR15pkz/R65X30GzL37VfComc6PFTCsSnTlO6OjGuIag5La54PvN0FN0td+we9HFuCtQ2E6/2XwrcNlHwi7Tr7SDHnFIz94OX/LCWl2WsbDM310j+esd++o6/B4Mul/hPsPz8AOO2vT0gyJRnS1LlOVwMAsGPlr6y52uzo6PFwzjBp5Ax7zx0su1ZJJR/ba9vhPpEhTX5Ecgd7GJ520C/umHWvSUf2BtamS19p3K2hqac9dXV1ysiwJvyrra1Vevp55kI4i9icaS8CzJ8/X127dtWBAwc0YsQIjRo1Svn5+ZowYYIGDhyoKVOmSPJvfrbrrrtO6enp+vTTT0NdNgCcV6b9izs6zJUgpXV17vklyeWWMno49/xZUXiTsu/V12Vu3SbX3XeeOpiUJMPtlvub35B8XnmfeFKxdO1PZvfAJ+5N6yJlx+A0LbH4/mc5uB9MyXI2ZJOs57c7xEswRON+EAAAALHFyXMjTj73SU72idK7hidkC6ZY7Bf7o88FgbfJKwx6GWFB0BYieXl5WrlypWbMmKGUlBSVlJQoOztbixYt0rJly7Rz505J/gVtJwVrnFYA6Ij0bCkx8FFsg6JTruSKgG+uzr2ce+5OwZsfNyzM/fvle/4FGcOGyjX7pjOWG/37yXXnHJmbNsv35hIHKgyd4VdLieceUeQUV4J1RWKsfdXH6vuf2dMa6sQJnRzc/7TWyaGRagy3s516AAAAQHL2vEDnCBh1uFOuJIf6r06+9nbEar/YH10HSL39jz+UO0LqkR+6ekIpMu4hjFHDhg3T0qVLz/h9bW2tSkpK5HK5NHLkyPOuZ8mSJaqrq9OECYyRA8B5hkvKHSntd+Am216jwv+c7ek1Str/WfifN7uvlNo5/M/bEUbfvkpc9pdzPsZ9x21y33FbmCoKn7Qu0rjbpPWvWUNinE1iijTmpti8SydW3//EFKnnEKlyW/ifu/fo8D9ne3qPkg5uD//z9iyQEs4+VSYAAAAQFrkjpN2rrXnGwim9W2T0HZMzpG4Dpard4X/uSDk35K9Y7Rf7wzCkoV+yLpo/sO7cj+09WhoyNXovQCZoc8CWLVtkmqYKCgqUltZ27J8777xTAwcO1NixY5WRkaGPPvpIP/nJT1RYWKjbb7/doYoBoK28MeEP2hJTrROskSCjmzUsYHVpeJ+3d2F4nw8dl9FNmniPVLlDKl0n1Rw6vcwwpPzJUq8RBAfRKK8w/EFbWrbUpU94n/NsuvS1wuT6Y+F93mgdRgQAAACxJTlD6j5YOrQzvM+bNyZygoi8MeEP2rJ6Rt9IP/HOcElDvmRdtF+63upH+zynl+eOtLalaH9fI2AArvizadMmSe0PGzlixAi98cYb+spXvqLp06fr2Wef1de//nW9//77SkpKCnepANCutC7hv5W77zhreL1I0T/MNxmndZG6DwrvcyI43EnW3T8T7pKueOj0/FqJaVLfsYRs0apTr/APn9jvwsjpVBuG1C/M+8FOvSNn6EwAAACg34Xhfb6kdOtOukjRdYCU0T28zxnuPgiCJ6unNcXGla3OiySlSyOuif6QTSJoc8S5grZvfetb2rRpk06cOKGWlhbt3btXP/vZz9SpU6dwlwkA5zTkS1JCmOZqy+ge/gPY8+k2UMoZFr7nG36N5HKH7/kQfIZhDTl4cm6vSAlMYI9hSMOvCt/nMruf1Ov8I46HVa+R1pC24eBKsDplfG4AAAAQKTrlWhcFh8uwq6SECLoPwzCscxXhmr+6+2CpR4SMdAT7XAmxeV6EoM0B5wraACBaJGdIQ6YE1qa5zpqrqrnO/zaGSxoxPTJDpiFTrKtvAmHnNeg7PjImOwbQVnpXadCkwNrY2Qe4E61OdaR1QgxDGna1VV8g7LwGgy6V0rMDex4AAAAg1AZNskagCYSd4+Gc4ZE5yk1WT6n/RYG1sfP3J6ZIQ6dFXp8IOCmCBuGKHytWrHC6BAAIipxh1pxT/s7X9skfA3+O4VdLmT0CbxcOianSmBukopclb4t/bQJ9Dbr2lwZfFmhlAMKl73ip5rBUudW/xwe6DzBc0qjrpdQIHdwgtZM0aqa04U3/J4IP9DXIGW69zgAAAECkcSda5wU+fUlqafCvTaDHw1m50tCpAZcWNgMmSrWHpcO7/Ht8oH+/K0EaPUtKDvBCZyCcuKMNAGCbYUj5V0h9QjFUwud3SkTS+OPt6ZQrFc625uEKtq79rYPJSLybD4DFMKwLAkIxlKzhtkK2bgOCv+5g6jbQqtMIwb4qZxhDRgIAACCypXeVxt5yet6pYOqUK10wO7KGjPwil0sadZ01tGPQ151gBZld+gR/3UAwEbQBADrEMKSCK60521xBuk86KV0qvFHqPSo46wu1LnnS+DuCOwlw33HSmBsDH5INQPi53NKIa6WBlwZvfoLUTtK4W6UeIeishkKPwVa9wbrzznBZr+eIa7nYAAAAAJEvs4c0/stSp17BW2evkdIFt1jDJkY6V4J18V3/iyQF6SK59Gxp/O3WRchApGPoSABAhxmG1OcCqesAaeu7UnWp/XXlDJeGTLaGZYwmmd2lCXdKez+WStb4P4TaF6V1sSYTZk42ILoYhjRwonUV59Z3rGF17eozVho8KTR3yoZS597SxXdLu1ZJB4rsryezhzR8urVfBQAAAKJFWmcrGNpfJO1eJfk89taTnGnN0RzpI1t8kctlTX3RfbB1bqjuiM0VGVK/C6WBl0hu0gtECTZVAEDQpHWWxt0mHTsgla6zxuc2zfO3cydaAVvemMidj80fLrc06FLrTrzSjVL5Rqm53r+2nfOkPoVS93zu3gCi2cnQvWqvVLpeOrLXv3YJydYVq3mFgU+mHkncSdKQKdbfUbZBKt8seZr8a9t1gNWu24Dg3RkIAAAAhJPhkvqNt4ZAL98klW6Qmmr8a5uVYx0P9xwS3aPbdMqVLrpbqtpl9YmO7vevXWKq1GuUlDdaSu0cygqB4CNoAwAElWFI2X2tn6Za6+62EwelmoNSc4Pk81pBUkqmlNnTOpDskmedZI4VKVnW3SgDJ7b9++uPSV6PdeCdkGyFilk9raEl0rOdrhpAsBguqfsg66fhuFRdZu0DThyUPI2Sz2ftB1M7W/uAzJ7WfjCaO9NflJ4tFUyWBk2SjpWe/vsbqj//HnBJCSmn//7OvYM37CQAAADgtOR0acDFUr8J0vFy6USldUxcd1TytUhyWfOuZXT//LxAbnCno3CayyX1KLB+6qtP94lqDrXqEyVYF2yf6hPkcQcbohebLgAgZJIzpJ5DrZ945HJL2f2sHwDxKbWT9ZM73OlKnOFOtO5Qi7ZhbwAAAIBgcLmsi+q65DldiXPSOls/GuFwIUAIMSgLAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGBDgtMFAACAyJPmcuvYlGlOlxGQNJfb6RJiCtsAAAAAACCe0S+GvwjaAADAGQzDULqbw4R4xjYAAAAAAIhn9IvhL4aOBAAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbCBoAwAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbCBoAwAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbCBoAwAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbCBoAwAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbCBoAwAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbCBoAwAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbCBoAwAAAAAAAAAAAGwgaAMAAAAAAAAAAABsIGgDAAAAAAAAAAAAbEhwugAAAIBY1dIoVZdKJw5KNQelxhqpuc5a1twg7VopZfaUuuRJSWnO1goAAAAAABBMpinVHJJOVFjnRmqrpOZ6a1lzvbTlXSmrp5SVY/0YhrP12kXQBgAAEGQnDkql66XKbZLP0/5jTK9Ussb6b8Ml9SiQ+hRKnXpH74ElAAAAAACAp0mq2GqdG6k70v5jTJ9Usdn6kaS0bCmvUModLiWmhKvS4CBoAwAACJLmemnH36SDOwJrZ/qkg9utn+z+0vCrpJSskJQIAAAAAAAQEqZpndvY8TdrlJ9A1B+Vdq6Q9qyWCiZLuSOi50JkgjYAAIAgOFQsbXtPamno2HqOlkgfPScNmSz1GhWMygAAAAAAAEKruV7atlw6XNyx9XiapK3vSod2SsOulpLTg1NfKLmcLgAAACDaHVgnbfxLx0O2k7zN0tb/k3avsq4GAwAAAAAAiFSNNdKnL3U8ZGutao/06YtSw/HgrTNUCNoAAAA6oHSDNSRCKOz92PoBAAAAAACIRM11UtEr1tCPwdZQLRW9LDXVBn/dwUTQBgAAYFN1ubT9r6F9jj2rpcO7QvscAAAAAAAAgTJNafOy0IRsJzUclza+Zc1vH6mYow0AAMAGb4s1ZrgCHNpxwp1SUrp1xdcnf/SvzbblUufeUmJqwGUCAAAAAACERNkG6ej+wNrYOS9yvMyatqPvuMBrDAfuaAuDqqoqzZ8/X4MHD1ZKSor69OmjRx99VHV1dbrvvvtkGIaefvppp8sEAAAB2PuxvSu2ktKllEzrX38110k73w/8uSKNxysdr5dONEjeCL4SDQAAAAAAnFtjjVT8QeDt7JwXkaRdK62hJCMRd7SF2Pr16zV9+nRVVlYqPT1dw4cPV3l5uZ566int3r1bR49aZ+gKCwudLRQAAPjN02xdSRVOlVulwZdJyRnhfd6OMk2ppEpavVNat/90wJacIF04ULo0X8rt7GiJAAAAAAAgQKXrrdF+wsXnsc7FFEwO33P6izvaQqiqqkozZ85UZWWl5s6dq4qKChUVFamyslILFizQsmXLtHbtWhmGodGjRztdLgAA8FPlNsnbHN7nNE2pbGN4n7OjPF7pTx9KP39P+rSk7V1sTR5p1U5pwTJp2Xrr7wMAAAAAAJHP55HKN4X/ecu3hDfc8xdBWwg98sgjKi0t1UMPPaSFCxcqMzPz1LL58+drzJgx8ng86t+/v7KyshysFAAABKLcocCrbFP0BFI+U3rhQytgO5/lW6Sl60NdEQAAAAAACIaqPVJzffif19MoHSoO//OeD0FbiGzbtk2LFy9Wt27d9Pjjj7f7mHHjrJn7xowZc8ayN954Q5dcconS09PVqVMnXXrppdqyZUtIawYAAOfnbZFOHHLmuZtqrJ9osHaPtCGACZH/tlXa49DrCgAAAAAA/Fdd5txzH3fwuc+GoC1EXnzxRfl8Ps2ZM0cZGe1PppKamirpzKDtqaee0q233qpJkyZpyZIlevHFFzV16lQ1NDSEvG4AAHBuNYclOXhX2YmDzj13IFbtDE8bAAAAAAAQXk6em4jE8yIJThcQq1asWCFJmjz57DPzlZaWSmobtO3evVvz5s3Tk08+qYceeujU76+99toQVQoAAAJR6/BdVzWHpB75ztZwPqVHpQNHA2+34YBU1ySlJwe/JgAAAAAAEBy1h519btOUDMO5Gr6IoC1E9u3bJ0nq169fu8s9Ho9Wr14tqW3Q9uyzzyoxMVFf//rXg1bL+PHjVVlZGbT1AQAQz2aMf1C3TPpWu8sm3CklpZ+7fXL66X8nPXD2xzXXSZ/88czfL3rmt/rzbf/hX7EO6TNmli768i8Dbuf1SRdffq2OlTk0CR4AAGHw7CP75HK55fN6lZfX/jkDAACASPbcv5Seddn5zo109LyIzysN7D9ILd4mP6s9O5/Pd+q/J02apHXr1tlaD0FbiNTV1UnSWYd7XLx4saqqqpSZmakBAwac+v2HH36oIUOG6I9//KN++MMf6sCBA8rPz9f3vvc93XHHHbZqqaysVFlZBA5cCgBAFKodUnvWZUnpUkqmf+sxXP4/trX6uoaI/17PGnj21+h8jhyrVkWE/30AAHSE+fkY1KbMiP9OBwAA+CKXce4Zyfw9N2L3vIgkVVZUqrGl3l7jszh40P6YlARtIZKTk6Njx46pqKhIEydObLOsoqJC8+bNkySNHj1aRqt7HCsqKlRWVqZvfetbWrBggfr06aPf/e53+vKXv6zu3btr6tSptmoBAADBkZyWeNZlzXV+tE+3DiZNn9R0jsefbV1JKQnq3bv3+Z/IQWmJgU9iZ5qmDMNQVppbrgj/+wAA6AhDxql/I/07HQAAoD0tniYlJrQ/78P5zo109LyIJHXr2VWm2cWPSs/N5/OpoqJCktSzZ0/b6zFM0wz8TAjO65FHHtEvfvEL9enTR3/9619VUFAgSVq7dq3uuusu7dmzRy0tLXrwwQf19NNPn2pXUFCg4uJivfHGG7rhhhskWSeeCgsL1blzZ33wwQdO/DkAAOBzh3dLG96w337SA9YVW4010qpFgbcfdpXUe7T95w+HFq/0/del+ubA2vXuIn1zemSNsw4AQLD99QlJpiRDmjrX6WoAAAAC99Hvpboj9tp29LxIaifp0iDNvFVXV6eMjAxJUm1trdLTzzMfyFmc+x4/2DZ//nx17dpVBw4c0IgRIzRq1Cjl5+drwoQJGjhwoKZMmSKp7fxskpSdnS1Jbe5cMwxDU6dO1ebNm8P3BwAAgHZl2b/AKSgyHX5+fyS6pYsHBd5uUgEhGwAAAAAAkc7JcyOReF6EoC1E8vLytHLlSs2YMUMpKSkqKSlRdna2Fi1apGXLlmnnzp2SzgzaRowYcdZ1NjY2hrRmAABwfskZ557UN5RcbimjmzPPHagrhkpZqf4/vldnaVz/UFUDAAAAAACCJdPB2aqcvgC6PQRtITRs2DAtXbpUNTU1qqmp0Zo1a3T//ferrq5OJSUlcrlcGjlyZJs2s2bNkiS99957p37n8/m0fPlyXXjhhWGtHwAAtK/nEGeet/tgK2yLBp3SpH+aLGWmnP+xPbOk+ydLScweDAAAAABAxOuR79yIND0cOidzLpzOcMCWLVtkmqYKCgqUlpbWZtnMmTN12WWX6f7779eRI0fUt29f/fa3v9WWLVu0fPlyhyoGAACt5RVKB4qced5o0quL9K9XS+9tlj4rseZuay0tSZowULpqpJTW/hzKAAAAAAAgwqRkSt0GS4eLw/u8XQdIaZ3D+5z+IGhzwKZNmySdOWykZM3HtmTJEj322GP69re/rRMnTmjMmDF6++23T83rBgAAnJWeLWX3k47uC99zZnSTOueF7/mCJTtDuv1i6foLpI0HpJfWnF72HzdyFxsAAAAAANGozwXhD9r6FIb3+fzF0JEOOFfQJkmdO3fWokWLdPjwYTU1NemTTz7R1VdfHc4SAQDAeRRMlowwDuM4dKpzwzIEQ1qydPFg6eSfYIiQDQAAAACAaJXdV+pREL7n6zZI6jowfM8XCII2B5wvaAMAAJEvo5s06JLwPFefcdF5NxsAAAAAAIhdQ6dKiamhf56EZGnYtMi9AJnriB2wYsUKp0sAAABB0PdC6ej+wIaQbK5r++/5ZPaUBk8KvDYAAAAAAIBQSkqTRkyXNrwhmaZ/bQI9LyJJw6+WkjMCry9cCNoAAABscrmk0bOkda9Jx8v8a/PJH/1ff3o36YLZkjvRXn0AAAAAAACh1G2gNHy6tOUdSX6EbYGcF5GkYVeHd4hKOxg6EgAAoAMSkqSxs62xwoOpc540/jbr6jAAAAAAAIBIlTtcGn19cC8UdiVII6+Teo8K3jpDhTvaAAAAOsidJI25QarYLO34u+Rttr8uV4I0aJLUd6xkcEkUAAAAAACIAj3ypcyvStveC2yKjfZ0zpOGXyOldQ5GZaFH0AYAABAEhiH1GiVl95dK1kgVWyRvi//tXQlSzyFS/4uk9OyQlQkAAAAAABASqZ2kC26WKrdK+z+Tag4F1j6ju3Xhce5I6zxLtCBoAwAACKKUTGnoVGnw5daBZdVeqeag1FR75mOT0qTMnlJ2Pyl3hJSUGv56AQAAAAAAgsUwrHMcOcOlE5XW6D/HK6XaKsn0fuGxLimjm5SVY7Xp1Cu6AraTCNoAAABCICFJyiu0fiSpqc4K23xeyeWSktKl5IzoPIAEAAAAAAA4F8OQOuVaP5J1PqT+2OnRf9wJUloXa4SfaBcDfwIAAEDkS063fgAAAAAAAOKNy23dvRaLXE4XAAAAAAAAAAAAAEQjgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwAaCNgAAAAAAAAAAAMAGgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwAaCNgAAAAAAAAAAAMAGgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwAaCNgAAAAAAAAAAAMAGgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwAaCNgAAAAAAAAAAAMAGgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwAaCNgAAAAAAAAAAAMAGgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwAaCNgAAAAAAAAAAAMAGgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwAaCNgAAAAAAAAAAAMAGgjYAAAAAAAAAAADABoI2AAAAAAAAAAAAwIYEpwtAZDJNqdnrdBWBSXJLhuF0FQAAIBZwLCSZpql6X3S9CGkutwwOCAEgKOL9e4BjAQAA4C+CNrSr2Ss9ttjpKgKz4DYpmS0aAAAEAcdCUr3Pqy4rlgdvhWFwbMo0pbs5IASAYIj37wGOBQAAgL8YOhIAAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaAtDKqqqjR//nwNHjxYKSkp6tOnjx599FHV1dXpvvvuk2EYevrpp50uMyRKt76vn99p6LNlC8/6mJ/faegvC68LY1UAACCcTFPaWSn9+SPJPPk7SQeOOFlVeHAsJHmffU4tV10r37vvnbHMNE15vvmYWmZcL3NvSfiLA4Aw8TRLpRukjX9Rmy/D5jonqwqPeP8e4FgAAIDYl+B0AbFu/fr1mj59uiorK5Wenq7hw4ervLxcTz31lHbv3q2jR49KkgoLC50tFAAAIAS2V0ivfyodOnHmsifelfp1lW6ZIOVlh782hIfrrjnyfbxG3kW/kTFurIzu3U4t873+psyNm+S696syBvR3rkgACBHTlPZ8KO3/TPI2n7l85SIpZ7g0ZIqUkBT++sKB7wEAABDruKMthKqqqjRz5kxVVlZq7ty5qqioUFFRkSorK7VgwQItW7ZMa9eulWEYGj16tNPlAgAABNW6fdKv/95+yHbSviPSL5ZLew+Hry6El5GYqIR5c6XGRnl/9j+nfm8eKJXvuT/IGDpErltmO1cgAISIaUpb3pb2ftR+yCZJpk+q2CwVvWzd9RaL+B4AAACxjqAthB555BGVlpbqoYce0sKFC5WZmXlq2fz58zVmzBh5PB71799fWVlZDlYKAAAQXKVHpT9+KPnM8z+2ySP99gPpREPo64IzjPzBct1+q8zPiuRb9o5Mr1fenyyUTFPueXNluN1OlwgAQbf3I6lym3+PPVEpbXkntPU4ie8BAAAQyxg6MkS2bdumxYsXq1u3bnr88cfbfcy4ceO0YcMGjRkz5tTvrrzySn3wwQftPv6BBx7Qr371q5DUG2qe5no11FQ5XQYAAAiT97dJXp//j69rkj7aJV09KnQ1OYljIck15w75Ploj729+K9fuPTJ37JTr/q/J6JPndGkAEHTeZmu4yEAcLpbqjkjpXUNTk9Pi/XuAYwEAAGIXQVuIvPjii/L5fJozZ44yMjLafUxqaqoktQnannnmGZ040XZ8pWXLlumHP/yhrrsueifG/fi17+vj177vdBkAACAMahuldfsDb/dhsTR1hOSOwTEXOBaSjIQEJcz7hjwP/4t8S5fJGDlCrptucLosAAiJyh2SpynwdqXrpSFfCno5ESHevwc4FgAAIHYRtIXIihUrJEmTJ08+62NKS0sltQ3ahg8ffsbj/vu//1vdu3fXNddcE+Qqw2fk5PuVf9Et7S5748fTwlwNAAAIpd2HArub7aTjDdLB41KvLsGvyWkcC30uPV1KTJQ8HhkXjpfhisFUFQAkHS2x1+7IvqCWEXni+HuAYwEAAGIXQVuI7NtnHR3369ev3eUej0erV6+W1DZo+6LDhw/r3Xff1T//8z8rIcHe2zV+/HhVVlYG1MadmKobf1hs6/na0zknX31HTg3a+tpTkJ8vbwuTuwAA4LR+427Rhbc+aavt9Jk36kjJ2iBXFDiOhSQzKUla9Mvgrc805X3iScnTIvXtI9+fX5Lristl9MoN2nMU5BfIaG4O2voAwK5/nfUHjRkwJeB2ZfsrlZc3PgQVBS7evwc4FgAAIPb5fKevEp40aZLWrVtnaz0EbSFSV1cnSWpoaP8AZ/HixaqqqlJmZqYGDBhw1vW8+OKL8ng8uuuuu2zXUllZqbKysoDaJCSn2X4+p5RXlMvTVO90GQAAxL3U3qW225Yf2KuqAI9bQoFjIUkpyUoM3trke3OJzA0b5brnbrkmXizPgw/L+8STci9cIMMwgvIc5RXlUqONsdoAIMiOnzhiq11dw4mA++8hE+ffAxwLAAAQXw4ePGi7LUFbiOTk5OjYsWMqKirSxIkT2yyrqKjQvHnzJEmjR48+5wHlCy+8oGHDhmn8ePtXtOXk5ATcxp2Yavv5nNIrtxdXbgEAEAGMuv0yfb6Ah4Nqrq9WmqtWvXv3DlFl/uNYyLqT4XCw1lVWJt+zz8kYUiDXrTfLcLvlunOOfL9/Xr43l8h946ygPE+v3F7c0QYgIpRVb7XVbt/hjRHxPSjxPcCxAAAAsc/n86miokKS1LNnT9vrIWgLkalTp2rbtm1asGCBpk2bpoKCAknS2rVrddddd6mqqkqSVFhYeNZ1bN++XZ9++ql+9KMfdaiWTz/9NOA2TR7pscUdetqw21lcrGS2aAAAIsJv3pe2BHhB/lVjO+uZvbtCUk+gOBaS6rwedVmxvMPrMX0+eX/6M8nnk3veN2S43ZIk1603y1z9oXzPPifXRROCMnTYzuKdSndzQAjAeS0N0spfST5vYO3+5b9v1vefvTk0RQUo3r8HOBYAACD21dXVKSMjQ5K0atUq2+uJn1lnw2z+/Pnq2rWrDhw4oBEjRmjUqFHKz8/XhAkTNHDgQE2ZYo3Vfq752V544QUZhqE5c+aEq2wAAICguGJoYI9PcEmXFoSmFjjL9+rrMrduk+vuO2X07Xvq94bbLfc3vyH5vPI+8aRM03SwSgAIrsRUKXdkYG069ZKyAh+QJuLxPQAAAGIdQVuI5OXlaeXKlZoxY4ZSUlJUUlKi7OxsLVq0SMuWLdPOnTslnT1oM01Tf/rTn3TllVeqb6sDUQAAgGhQkCPNLPTvsYakOy+RumeGsiI4wdy/X77nX5AxbKhcs286Y7nRv59cd86RuWmzfG8ucaBCAAidgiulzn6OApmSKY2aKQVpqrKIwfcAAACIB4bJJUNhV1tbq6ysLBmGoZqaGqWlnTnB7gcffKArr7xSzz77rO65556w1xiNQyQsuE0MkQAAQIRZvVNass46tmhPRop0x8XSiMiYjuYUjoWCN2RYOB2bMo2hIwFEFG+ztPU96eD2sz+mc28rZEvOCF9d/oj37wGOBQAAiH2th46sra1Venq6rfXw9euALVu2yDRNFRQUtBuySdawkampqbr55sgYmx0AAMCOSwuk8QOkT0ukT/dKJxqsq/Wz06WLB0mj+0gJbqerBAAgNNxJ0qjrpEGTpLL10pESydMkuROlrFwpr1Dq1PGpyQAAAOAggjYHbNq0SdLZh41sbGzUq6++qhtuuEGZmYyhBAAAoltyonRpvvUDAEA8Suss5V8p8VUIAAAQewjaHHC+oC0lJUXV1dVhrAgAAAAAAAAAAACBcjldQDw6X9AGAAAAAAAAAACAyMcdbQ5YsWKF0yUAAAAAAAAAAACgg7ijDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALDBME3TdLoIRB7TlJq9TlcRmCS3ZBhOVwEAAGIBx0KSaZqq90XXi5DmcsvggBAAgiLevwc4FgAAIPbV1dUpIyNDklRbW6v09HRb60kIZlGIHYYhJbN1AACAOMWxkGQYhtLdcf4iAEAci/fvAY4FAACAvxg6EgAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA0AAAAAAAAAAACwgaANAAAAAAAAAAAAsIGgDQAAAAAAAAAAALCBoA2SJJ/Pp//8z//U4MGDlZqaqr59++qRRx5RXV2d06UBAAAAAAAAAABEpASnC0BkeOKJJ7Rw4UL9/ve/17hx47Rjxw7dc889ampq0qJFi5wuDwAAAAAAAAAAIOIQtEGStHr1ak2bNk2zZ8+WJPXv31933HGHVqxY4XBlAAAAAAAAAAAAkYmhIyFJmjRpklavXq2NGzdKkvbs2aO3335bM2bMcLgyAAAAAAAAAACAyMQdbZAkzZ07V42NjRo7dqwMw5DH49HXv/51/dd//ZfTpQEAAAAAAAAAAEQk7miDJOnVV1/VM888o9///vcqKirSK6+8onfeeUff+c53nC4NAAAAAAAAAAAgIhmmaZpOFwHn9e3bVw8++KAee+yxU7974YUXdO+996qmpkYpKSkOVgcAAAAAAAAAABA8dXV1ysjIkCTV1tYqPT3d1nq4ow2SrA3K5Wq7ObjdbpmmKbJYAAAAAAAAAACAMzFHGyRJN9xwgxYuXKjBgwfrggsu0I4dO/Sd73xH06dPV2pqqtPlAQAAAAAAAAAARByCNkiSnnrqKWVnZ2vu3LkqLy9Xjx49dN111+mHP/yh06UBAAAAAAAAAABEJOZoAwAAAAAAAAAAQFxhjjY4Yl/ZQb369gc6Un3C6VIAAAAAAAAAAAAcRdCGgPx11Wf6dNMOvf/ReqdLAQAAAAAAAAAAcFTMBG2GYcgwDEnSW2+9pcsuu0xZWVnq1q2bbr75Zu3evfvUY5cuXaorrrhCnTt3VlZWlmbNmqXi4uKzrrupqUk///nPdckll6hz585KSUnRkCFDNG/ePFVVVbXbZs2aNXrsscd04YUXKicnR8nJyerdu7duvfVWrV279qzP9fbbb+vaa69Vjx49lJiYqK5du2rYsGG69957tXr1apuvTnDsK61UcUmpXC5DkycWOloLAAAAAAAAAACA02JmjraTIdvTTz+thx56SL169VLPnj21fft2NTQ0qHfv3lq3bp3+9Kc/6V//9V+Vm5urnJycU8tzcnK0ceNGde/evc16Dx48qOnTp2vdunVyuVzq06ePsrKytHPnTjU1Nalv3776+9//roEDB7ZpN3jwYO3evVvZ2dnKzc1VUlKS9u/fryNHjighIUEvvfSSZs+e3abNM888owcffFCS1LVrV/Xr108NDQ06cOCAamtr9cADD+hXv/pVCF/Fc/vd4rdVXFKqC0cP1ezplztWBwAAAAAAAAAAQEcwR9tZzJ8/X88//7zKyspUVFSk0tJSXXjhhSorK9O9996rb3/723r++edVXl6uoqIiHThwQOPGjVNlZaWeeOKJNusyTVO33Xab1q1bpxkzZmj37t0qKSnRxo0bVVVVpXvvvVf79+/XnXfeeUYd3/ve91RcXKwjR45o8+bNKioq0qFDh/T6668rJSVFX/va11RbW3vq8R6PR9/5znckWYHbwYMH9dlnn2nr1q06ceKEPvjgA1199dWhffHOgbvZAAAAAAAAAAAA2oq5O9oefvhhPfXUU22Wvfvuu5o+ffpZl7/zzju69tprNXr0aG3YsOHU799++23NmDFDI0eO1Nq1a5WSktKmndfr1YQJE1RUVKRVq1bp0ksv9avW7373u/rhD3+oF198UbfffrskqbKyUrm5uerSpYuOHj0a2B9/Hr94/nXV1DZ0aB31DY3yeL1KTExQanJykCoDAAAAAAAAAAAIv+amRv1g7tckST9d9Cd98/4v21pPQjCLigRf+9rXzvjd2LFj/Vq+Z8+eNr9/7bXXJEl33333GSGbJLndbl1//fUqKirS+++/f0bQVlxcrJdeekkbNmzQkSNH1NLSIkk6dOiQJGn9+vWngrbu3bsrJSVF1dXVWr58uaZNm+b333w+NbUNOlFbF5R1tbR41NLiCcq6AAAAAAAAAAAAnNDc3HTqv2s7cLNSzAVtgwYNOuN3redda295jx49JKnNUI6StHHjRknS73//e7355pvtPt/BgwclSWVlZW1+/8QTT+jf/u3f5PGcPZQ6cuTIqf92u9169NFHtWDBAl111VUaO3aspk6dqkmTJumKK65QVlbWWddzPpkZqbbbStzNBgAAAAAAAAAAYktzk/vUf2d0IEeJuaEjz/bn2Fmen5+vXbt2+fX8d999t5577jlJ0urVqzVp0iS53W794Ac/0KxZs9S/f3+lp6fLMAw9++yzuu+++9q0kSSfz6dnnnlGv/zlL7V9+/ZTv09OTtaXv/xlLVy4UNnZ2X7VEyz7Siv1v39aIpfL0De/fpuyO9sP/AAAAAAAAAAAACJBXV2dMjIyJFk3YqWnp9taT8zd0RZMJ1/gJUuWaObMmX63e+GFFyRJc+fO1b//+7+fsbz1nWytuVwuPfTQQ3rooYdUWlqqlStXavny5Xr55Zf1+9//XgcOHNDy5csD/js6MkdbfUOjJOuOu1/96S1b6wAAAAAAAAAAAIgkpmnq+0/8VpL0u1fe1SNfnW1rPQRt5zBixAitX79emzdvDiho27t3ryRp0qRJ7S7/+OOPz7uOvLw83XHHHbrjjjs0d+5cjRo1Sn/961+1d+9eDRgwwO9apODM0cbcbAAAAAAAAAAAIBbV1jXabkvQdg4333yz/vSnP+nXv/61Hn744VN3uJ1Paqo1lmdlZeUZy4qLi7V06dKA6hgxYoQ6deqk6upqlZeXBxy02Z2jjbnZAAAAAAAAAABArLObo0gEbec0a9YsXXHFFfrggw901VVX6de//rVGjhx5arnP59OaNWv0/PPPa/78+Ro4cKAk6bLLLtNf/vIXPf7445oyZYoGDRokSdqyZYtmz54tl8t1xnNt3bpVTz75pO677z5ddNFFp+aM83q9+sUvfqHq6mqlpKRoxIgRAf8dD999U8BtWs/N9q/33szcbAAAAAAAAAAAAF9gmKZpOl1EMJwMps7259hdXlVVpVmzZunDDz+UJPXr1085OTlqaGjQ7t27VVdnDcm4bds2DR06VJJUU1OjsWPHateuXUpMTNSQIUPk8/m0bds25ebm6p//+Z/1ne98R3fffbeee+45SdL69et1wQUXSJIyMzM1aNAgud1ulZSUnJrT7ZlnntH/+3//z9brE6jfLX5bxSWlunD0UM2efnlYnhMAAAAAAAAAACCanHlrFdro1q2bPvjgAz333HOaNm2a6urq9Omnn2rv3r0aPHiwHn30UX3wwQcqKCg41SYzM1OrVq3Svffeqy5dumjHjh2qra3VAw88oKKiIvXu3fuM5ykoKNBvf/tb3XbbbcrNzdWePXu0YcMGpaSk6JZbbtHKlSvDFrKVVh5WcUmpXC5DkycWhuU5AQAAAAAAAAAAok3M3NGG4DFNU1t37dPhI9W68uJCp8sBAAAAAAAAAACISARtAAAAAAAAAAAAgA0MHQkAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYkOB0AQAARCLTlJq9TlcRmCS3ZBjBWZdpmqr3RdcLkOZyywjWC4C43wbifR8AAAAAIL7RJ6JfDP8RtAEA0I5mr/TYYqerCMyC26TkIH2z1/u86rJieXBWFibHpkxTuptDm2CJ920g3vcBAAAAAOIbfSL6xfAfQ0cCAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0hUFVVZXmz5+vwYMHKyUlRX369NGjjz6quro63XfffTIMQ08//bTTZSKEvM1S2SZpx9+lbculXaukE5VOVwWEj88rHdwh7fz8M1D8D+nofsk0na4s9Eq3vq+f32nos2ULz/qYn99p6C8LrwtjVeHlffY5tVx1rXzvvnfGMtM05fnmY2qZcb3MvSXhLy5MTFM6UiIVf2B9Bna+Lx0qlnw+pysLvXh//9kHWExTOl4h7Vr5+Wfg71L5Fsnb4nRlAMLF0ySVbpB2rJC2L5d2r5JqDztdFcKp8YRUskba/ldp+9+kfWulplqnq0I4nai0zodsW26dHynbZJ0vAeJF3VFpz4fWfnDHCml/kdTS4HRVoUefiH7xSU21Uskn1nHA9r9axwWNNU5XFRwJThcQ69avX6/p06ersrJS6enpGj58uMrLy/XUU09p9+7dOnr0qCSpsLDQ2UIREt4WqwNZvtnqWLZW8rGUlSsNulTq2t+R8oCQM33WF+iBdVJzXdtl+z6R0rKlARdLucOdqQ/h4bprjnwfr5F30W9kjBsro3u3U8t8r78pc+Mmue79qowB/Z0rMkRMUyrfZH0OGqrbLtv/qZScKfUdK/UdLxmGIyWGXDy//7Ac3iXt+UiqOXjmsuK/S71HSwMvkVz0TICY5GmyQvaKdsL1vR9LnfOsPlGXPs7Uh9CrOyrt+od0eLekL1xot2ul1CNfGny5lNrJkfIQBkf2SrtXt3/BcfH7Uq+R0qBJkjsx7KUBYXGi0trfHd135rJdH0g9h0r5l0tJ6eGvDeER7/3i+urPjwV2WecKW9u9Suo2WBp8mZSe7Uh5QcEdbSFUVVWlmTNnqrKyUnPnzlVFRYWKiopUWVmpBQsWaNmyZVq7dq0Mw9Do0aOdLhdB5mmSPlss7f/szJDtpBMV0rrXrKu4gFjj80obl1hfmF8M2U6qPyptedt6DGKXkZiohHlzpcZGeX/2P6d+bx4ole+5P8gYOkSuW2Y7V2CImKZ159q2984M2U5qqrHuctvy9pkHm7EiXt9/WPYXSRvebD9kk6SWRiuILnqVK9qBWNRcL336klS6/ux3sFaXSkWvSJXbw1oawuR4hbT2z9aJtS+GbJJ1/HNwh7T2T9zhGKvKNknrXj/7qD6eJuu8yWcvn/3cCRDNjpRY34XthWySde6kYou1r2w4HtbSEEbx3C+uOWx9zx/a2f55D9OUDhdbn4FoHgGOoC2EHnnkEZWWluqhhx7SwoULlZmZeWrZ/PnzNWbMGHk8HvXv319ZWVkOVopgM00rYPBr52BaJ2GPlIS6KiC8dq74vEPth70fW0MJIXYZ+YPluv1WmZ8VybfsHZler7w/WSiZptzz5spwu50uMej2fyYd+My/x1Zus65wjFXx+P7DGh515wr/HltdKm1+J7T1AAgv02cF7f6EJ6bPuuikuizkZSGMGmuk9a9LnsbzP7a53gpjmutDXxfC50iJdb6jvZD1i05USBvfio/pBRA/aqukjX+RfJ7zP7bhuLT+NYZWj2Xx2C9urrO2a3+GSPU0WscC0TqsNEFbiGzbtk2LFy9Wt27d9Pjjj7f7mHHjxkmSxowZ0+b3e/fu1fXXX6/MzEx16dJFX/nKV3TkyJGQ14zgqS47+5Uq7TKtIZWAWNF4QirdGFibvR9ZV3LFKk9zvRpqqtr9iReuOXdIAwfK+5vfyvfLX8ncsVOur35FRp88p0sLOm+LNURwIPYXxfbJpXh6/9sTb/sA07TmnwjE4WLpxFnufAMQfY7slY6X+/9402cdDyJ2HFgX2NxDTTVSWYB9CES2PR/Kr5DtpKMl0nECd8SQfZ8EFpzVHZUOxvAd3vHWJ2pPvPWLSzcGFpy11FvHD9GImRBC5MUXX5TP59OcOXOUkZHR7mNSU1MltQ3aampqNHnyZGVnZ+vFF19UQ0OD5s+fr+uuu06rV6+Wy0U2Gg1KbewQjpdJNYekzB7BrwcIt9KNCqhDJVlfvId3Sz0LQlKS4z5+7fv6+LXvO12Go4yEBCXM+4Y8D/+LfEuXyRg5Qq6bbnC6rJA4uMMaEi8Qpteaz63/RaGpyWnx9P63J972AcfL7Q0BVrpeGn510MsB4IAD6wNvc6TEmsMjrXNwa0H4eT3WcU2gSjdI/SdIBqc+ol7NocDC9pMOrLfmbgSiXXO91S8MVOl6qdeooJcTEeKtT9SeeOoX+3xSmY3Rq8o2SgMnRt8c3lFWbvRYscIaJ2fy5MlnfUxpaamktkHbr3/9a5WVlekf//iH+vbtK0nKy8vTJZdcoiVLluiGG27wuwbTNFVfb10an5aWJsMwAv0zYINp+j9c3hcd3kXQhthwuNhmu12xG7SNnHy/8i+6pd1lb/x4WpircVB6upSYKHk8Mi4cLyNGLyCx+z1waFfsBm2S4ub9b0+87QM68j0ggjYg6nk91h1tdhzeJfUbH9x6EH7HywK7m+2kphoroMnKCX5NCK9DHTgWME2JU1iIdkdK7I3ac+KgNfRuSub5Hxtt4q1PdFZx0i+uOWhvGMiWBqm6XMruG/ya2hOsDIWgLUT27bPGDezXr1+7yz0ej1avXi2pbdC2dOlSTZo06VTIJkkTJ07UwIED9dZbbwUUtNXX15+6my43N5e74cIkKSFFv37I3hnWX/3yd/rzrfF9ZQdiw5Nf+1RdMgLvHf/fsr/pmvvvDkFFgXMnpurGH9rsHbajc06++o6cGrT1tacgP19eO2c02mEmJUmLfhmUdZ1ap2nK+8STkqdF6ttHvj+/JNcVl8volRuU9RfkF8hobg7KujrqWze/qiF5FwfcbufWPbop7/IQVBS4YG8DoX7/peBuA/G+D+ioe6cu1OUjbw+4XVO9T3l5YepRAQiZTmnd9fP77Y3788SCn+v1j34a5IoQbhfmz9CDMxbZanvLTV/Wlv3/CHJFCLc5V/ynpl1wb8DtfB5pYP/BavEGODwEEGGmFt6rO6/8T1ttr7xsmkqrtgW5osDRJ6Jf3BGj+k/W3BtesNX2nru+rs92h2cSb5/Pp4qKCklSYWGh1q2zdwxL0BYidXV1kqSGhvY/2IsXL1ZVVZUyMzM1YMCAU7/funWrbrnlzGR/xIgR2rp1q+16Tm4sCD1XB8a4OFZdpbIyBiRH9GtsqpfaHzX3nE7UVkfMZyAhOc3pEgJWXlEuT1OQJvlKSVZicNZ0iu/NJTI3bJTrnrvlmnixPA8+LO8TT8q9cEFQ7rouryiXGpuCUGnH1dafsNWurqEmYj4Dwd4GQv3+S8HdBuJ+H9BB1SfszS/c3NIYOZ8BALZVp9ifxf7I0UPsB2JAnywbYwZ+rqKylG0gBhw9bn/Opf0H9spn+oJYDRB+h/MqbbctLStRWZXz+0H6RIr7fnFHdEsptd228lCZI8cCBw/anzScoC1EcnJydOzYMRUVFWnixIltllVUVGjevHmSpNGjR7f5EB07dkydO3c+Y33Z2dnascPGwL6f44628Cqt2q68bkMDblfdWKrevXuHoCIgvCqqdyq368CA21XVlkTMZ8CdmOp0CQHrldsrqHe02Zhe6ezrKyuT79nnZAwpkOvWm2W43XLdOUe+3z8v35tL5L5xVoefo1dur4i4akuSDtXssdXu4PFdEfMZCOY2EI73XwruNhDv+4COOtqw31a7siPbI+YzAMA+Q4aqTpSqW1bgEy0dby5jPxADGlQln+kL+EJUj7dZLe7jbAMxoLrR3gnWA1XblRvEOzsAp9R6rKDNNM2AApS6xmolppkRsR+kT0S/uCNaXNXyeFuU4A4sqvSZPjXqSNg+A63vaOvZs6ft9RC0hcjUqVO1bds2LViwQNOmTVNBgTXp0Nq1a3XXXXepqsq6sqewsDAs9RQXFys9PT0szwXpwDppx98Ca5OYKr30f7+QO+EXoSkKCKMje6V1rwXWxjCkJ56bq19mzg1NUQFq8kiPLXa6isDsLC5WcpC+2eu8HnVZsTwo6zJ9Pnl/+jPJ55N73jdkuN2SJNetN8tc/aF8zz4n10UTOjxUws7inUp3R8ahTf0x6cPfBd7ukf+cre/9bnbwC7IhWNtAuN5/KbjbQLzvAzrK0yyt/F/J2xJYu5n3jNUDT9i/8hFA5Ni7Rtq9MrA2yZnSWx88pw4MEoIIsu61wOfq6z08SduKN4SmIISV1yOtWhT4XH1Tbxuqe37MsQCin2lKa16Qag8FdpfS0Es7a+93bE76HWT0iegXd9TGJdKhnYG16THIpQ3b1oSmoHbU1dWdmn5r1apVttfD4WuIzJ8/X127dtWBAwc0YsQIjRo1Svn5+ZowYYIGDhyoKVOmSGo7P5skdenSRdXV1Wes7+jRo8rOzg5H6QiC3OGSOymwNr1HSxGyDwQ6LLu/lNYlsDbd82Nzsl9Ivldfl7l1m1x33ymj1Rykhtst9ze/Ifm88j7xpEzTdLDK4ErrInUdcP7HtZbRQ+rUKzT1OCke339ICUlSr5GBtUlMlXoOCU09AMKv90jJ5Q6sTV6hCNliSJ8LwtMGkcmdYJ3nCERCsnU+BYgFhmFjn2ZIeWPO/zBEn3jtF8fTsQCHsCGSl5enlStXasaMGUpJSVFJSYmys7O1aNEiLVu2TDt3WlHuF4O2YcOGtTsX29atWzVs2LCw1I6OS0iWRs/0v5PYOU8aMPH8jwOihWFIo6/3P3BO6yINDe18uHCIuX+/fM+/IGPYULlm33TGcqN/P7nunCNz02b53lziQIWhM/xq/8PjxBRp1HXWZyeWxPP7D2nwZVKWnyNvGO7PvzeCPTkkAMckpUsjZ/j/+K79pX7jQ1YOHNBtoNR3nP+PH3iJ1TdG7Bgw0f/31HBJo2Za51OAWNFrpJQTwOncoVOldO6ziDnx3C/u0kcacLH/j+93YeAXLUcKw4y1mDQK1NbWKisrS4ZhqKamRmlppyeWXLhwob797W9rz549ysuzjkbWrFmjiy++WK+//rpuvPFGv5+n9W2PtbW1DB3pgCN7pU1LJc855p/sNsjqgCYEeAccEA1qDknr35Caas7+mKwcacyNUnKE7aKicYiEBbcpIoeODJdjU6ZFzPAIJzWesD4DtecY1D21k1R4k5TeNXx1+SPet4F43wcES0ujtOkt6ei+sz8mMdUK2br0CV9dAMLnULG05e1zDyXbc4g0/BrC9lhkmtKe1dLej8/+GMOQBk2S+k2IvYuOYA0nvXmZVLX77I9JSLZCtq79w1YWEDY+nzW9TNk5RsU13FbI1ntU+OryB30i+sXBYJpSySfS7lWSzpFEDZhoXXQT7mOBYGUokfOKx5EtW7bINE0VFBS0Cdkk6f7779cvfvELzZo1Sz/4wQ/U2Nio+fPna8KECZo1KzgTIiJ8ug6QJj0gVW6VSje0PdGaO8IaGiUrh84EYldmD+nS+6wTLKXrpeqy08u6D7Y+A9n9+AwgdqVkSRfdJR0psT4DR/dJPu/p5aNmWp+FQIfWAqJFYop0wc3S8XLrM3B41+mT7YZLGjpNyhkS+JDbAKJHj3ypywNSxVbrJGPdkdPLeo+Weo/x/+5XRJ+TIVqvUdb7X7FVaqo9udC6yr33aIaQj2UJSdKYG6QTldaxwKFiydtsLTNc0pAvWXf8cPExYpXLJQ2bJvUda50brNx2eu7C1vvIpLRzrweIVoYhDbhIyh0mlW2Uyre0vSC//0XWsUBqJ+dqDAaGjnTApk2bJJ05bKQkZWVlacWKFcrNzdXtt9+ur33ta7rkkku0dOlSuVy8XdEoIckKEy6+2xo+RZKSM6QR06VOuQQMiH2uBKvjNP6Otp+BMTdYVyzyGUCsM1zW0EmFN0lT/rX1AusKfkI2xDrDkDr3tu7gn/zo6e+CpDTrql1CNiD2JaZYJxgn3tP2eHDYVYRs8SK1kzT4cumyf2q1DaRLgy4lZIsHhmGd/xgxXZr8SNtjgbwxhGyID+ldpSFTpCsebPUZSLdCBkI2xIOULCtYvuyBVr80rCkHoj1kk7ijzRHnCtokadCgQVq6dGk4S0KYECgg3vEZACQZOudwCUCs47sAiG/sA8A2ALYBxDs+A4h7MXhehFukHHC+oA0AAAAAAAAAAACRjzvaHLBixQqnSwAAAAAAAAAAAEAHcUcbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGBDgtMFAAAQiZLc0oLbnK4iMEnu4K0rzeXWsSnTgrfCMEhzBfEFQNxvA/G+DwAAAAAQ3+gT0S+G/wjaAABoh2FIyXH8LWkYhtLdcfwCIO63gXjfBwAAAACIb/SJ6BfDfwwdCQAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYkOB0AQAARCLTlJq9TlcRmCS3ZBjBWZdpmqr3RdcLkOZyywjWC4C43wbifR8AAAAAIL7RJ6JfDP8RtAEA0I5mr/TYYqerCMyC26TkIH2z1/u86rJieXBWFibHpkxTuptDm2CJ920g3vcBAAAAAOIbfSL6xfAfQ0cCAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0hUFVVZXmz5+vwYMHKyUlRX369NGjjz6quro63XfffTIMQ08//bTTZSLEPM2Sz2v9t+mTTNPZesLNNKX6Y9LxCqm2SvK2OF1R+DXXSScOWj9NdU5XAyDcfD6p7oikk/v/OPseACA110s1hz4/Fqh1uho4ofGEdKLS2g5aGp2uJvw8TW37RIg/TXVsA/HMNKX66lbbQBweD7c0fH4sUCk11jhdTfj5vFaf6HiF9e/JbQFA/GiuU0yeF0lwuoBYt379ek2fPl2VlZVKT0/X8OHDVV5erqeeekq7d+/W0aNHJUmFhYXOFoqQqTkkla6XKredDpea66U1f5DyCqWcYVJCkpMVhlZLo1SxxXoN6o+d/n1CspQ7UsobI6VnO1ZeyJmmdKTE+vur9qjNF0jX/tY20G2gZHDZQ8wq3fq+XvvRZE2646caN+Ob7T7m53ca6l84Q7O+uTTM1YWH99nn5HvpZbm/8S9yXXNVm2Wmaco7799kbtumhKefkjGgvzNFhlBTnVS+SSrdIDV9oTO9a6W1H0zJcqa2cIj39599AExTOrZfOrBeqtrV9qRidl+pd6HUfbDk4lggZvk80sEd1vHg8YrTvzfcUs8h1vFg515OVRceJyqtz8DBbadPqjbXS5+8YP39PYdK7kQnK0QomT6rL1S63uobndRcL61/w9oGuvaXDMOZ+hB6nmbrnEjpeqn28OnfN9dJ25Zb20Bmd6eqCz3TlKpLrb//UHHbkLlznvX398iXXG6nKgy9xhqpbKP109zqwuPkDKn3aOsnOcO5+hBa9InoF5umdGRvq/Ojrax7Vcq7QOo2ILrPjxK0hVBVVZVmzpypyspKzZ07V9///veVmZkpSfrJT36ixx57TAkJCTIMQ6NHj3a4WoTCvk+l4vfbX1Z7WNq+XNr/mXTBbCm1U1hLC4vaw9K61888sSxZV7Me+EwqXScNu0rqNTL89YWazyNteVc6uL395UdKrJ/ug6WRMzi5gNjlumuOfB+vkXfRb2SMGyuje7dTy3yvvylz4ya57v1qTB5MVpdZJ5A8Z7lroWSN9T0waqbUfVB4awuXeH7/AZ/XOt4r39z+8qP7rZ/s/tLo62P74qt41VxnfQ+cqDxzmemVKrdaP/0nSIMui72gwTSlvR9Jez5sf/mJg9LW/5P2F0mFN0kpmeGtD6HnbZE2LZWqdre/vGq39dNzqDTiGsnFWaqY01BtnReoP9r+8rIN1k/+lVK/8eGsLDxMn7RjhXVyuT3VpdZP5zxpzA1SYko4qwuPI/ukjX+RvM1nLmuqtb4j9n1q/f3ZfcNeHhAW8dwv9nqkre9YF561J1bOj0ZxRhj5HnnkEZWWluqhhx7SwoULT4VskjR//nyNGTNGHo9H/fv3V1ZWDF/KHqf2F509ZGut/qhU9HLsDSVYXy199nL7IVtrpk/a+q5UeZYwKlqZprTlnbOHbK0d3iVtessaVg6IRUZiohLmzZUaG+X92f+c+r15oFS+5/4gY+gQuW6Z7VyBIXLioHVl1tlCtpN8HqvjeXRfeOoKt3h9/wHTtK7SP1vI1trREmnjmwyfFGs8zVLRa+2HbF9U8om0e3Xoawq3kjVnD9laqz0srXslPofTjGU+n9XPOVvI1trB7Vb/KR6HEoxlTXVS0StnD9laK35fOlAU8pLCyjTPHbK1Vl0qrX899qbZqC6TNrzefsjWmrdZWv+adLw8PHUB4Rav/WLTlLa8ffaQrbXDu6yLc6J1aGmCthDZtm2bFi9erG7duunxxx9v9zHjxo2TJI0ZM+bU704GcxMmTFBycrKMWLukMU401foXsp3UcFzavTJk5Thi5wpr7HF/bXvPOhkRKw4V+/clclLVHutqZiBWGfmD5br9VpmfFcm37B2ZXq+8P1komabc8+bKcMfWOCmmae3X/O0omz7rDthYDdzj7f0HJCs8q/AjZDv1+P3WcEqIHSWfSLWHAnj8x1LN4fM/LlrUH5N2r/L/8XVH/QvlED0qt545PNS5HNxh9aMQO3avtM53+Gvn+7E1h+nxMv9CtlOPL4+tsNE0rQur/b2QyOe1+kQE7ohV8dgvPrTT+vFX1W6pYlvo6gklgrYQefHFF+Xz+TRnzhxlZLQ/yHBqaqqktkHbrl279NprryknJ0cXXnhhWGpF8JVtDDx9r9weO1dwNlQH1qGSrKuXYiloCuRguiNtED08zfVqqKlq9ydeuObcIQ0cKO9vfivfL38lc8dOub76FRl98pwuLehOVEo1BwNr01QT+L4zmsTT+98e9gHx58D6wNuUrufkUqzweaVyG8FpLB0P2vlbKrbE3t0c8czONlBmow0iU0ujNS9bIExfbF10YudYoGxj7BwLHN1vXXQRiPqj0rEDoakHzqNPFH/94ng6FmD06xBZsWKFJGny5MlnfUxpaamktkHb5ZdfrooKa4bs//iP/9Dq1TE4fkgcKNsUeBufxzoI7XNB8OsJN3+GSGq33SZrEuBo11AtHdsfeLsTldawORkxPAl0PPv4te/r49e+73QZjjISEpQw7xvyPPwv8i1dJmPkCLluusHpskLC7gmC8k1Sj8HBrSVSxNP73x72AfGlqc5ecF53RDpRIXXqFfyaEF5Vu6Xm+sDbVW6VCiZL7ijvqZs+qXxL4O08TdYdTbnDg18TwqvmsH/Dpn7R0f1Wfyq1c7ArQrhVbrM3JHLZJmngJcGvJ9xaGgO7i+OkhuPW+YTsfsGvKdzsXHAiWX0i5mqLTfSJ4qtfXF9tLzg/XiHVVkkZ3c7/2EgS5YfvkWvfPmuilX792v9m9Hg8p0K01kGbyxWamwzz8/NDtm605XYl6HePlNhq+z8/+ZUWr/xhcAtywP1XP6VLht0UcLvykmPKyxsVgorCa1jeJXrs5pdttb1j9r1at+e9IFcUOX5231plZ+aqoqJCeXmRfdeuOzFVN/4weGPXjJx8v/IvuqXdZW/8eFpQnqMgP1/eQMZsPQczKUla9MugrKuN9HQpMVHyeGRcOF5GEL+bCvILZDRHxhi08296ScP7Tgq43fo123Xdw1NDUFHgQrINhPD9l4K7DcT7PiCUoum7wK6BORfoe7e/ZavtfXc9pI93vBncghB214x9QLdf/t2A23lbpAtGXqijtRUhqCp80lM665f/ZO/qu//67kItWfM/wS0IYTd20NV6ZObvbLWdec2t2l7KOKLR7vbLvqtrxj0QcLumGqlf3/7y+jwhqCp8emUX6EdfWWGr7cMPzNcHm/8c5IrC73u3L9XAnMKA261a8ZmueWBW8AuKINFyPEyfiH5xRwzvM0nzZ79kq+3tN35V6/f+NcgVtc/Xag6PSZMmad26dbbWQ9AWInV1dZKkhob2P9iLFy9WVVWVMjMzNWDAgJDXc/IuOYReYkKy7bb1dQ0qKysLYjXOaGpsstnSiIm/v2dagGMjtFJ9rDomXoOz8Xq9p/6N9L8zITktqOvrnJOvviNDG6CUV5TL02Tj8vn2pCQrMThrOsU0TXmfeFLytEh9+8j355fkuuJyGb1yg7L+8opyyfb+J7haWuydGPD5FDmfjSBvA6F+/6XgbgNxvw8IoWj6LrCrU4L9y7CPVx+P2dclntTm259k6NChwzp4LLq3gc7p9k/u1NfW8xmIAQOyq223PXr0KNtADKivt3+iu6K8Qi1e508Sd0Syr6vttidO1MTEZ8DjsXFLoyRPS+weI54ULcfD9IkU9/3ijsjNqLbd9phD50cPHgxwDpBWCNpCJCcnR8eOHVNRUZEmTpzYZllFRYXmzZsnSRo9erQMwwh5Pbm5udzRFkZ1jdVKT+kccDuvq0G9e/cOfkFh1mTW2GpX01AVE39/Qqp1JYRpmn5/vk8+1p3ijYnX4Gzcn0/s6na7I/7vdCemOl1CwHrl9grqHW2Hg7Km03xvLpG5YaNc99wt18SL5XnwYXmfeFLuhQuC8l3YK7dXRFy1JUkNnmpb7eqajkbMZyPY20Co338puNtAvO8DQimavgvsSkyzJlcJ5FjgJFeyJ2Zfl3jiS7A3+bLX51F6pyT1TovubcDtSlCLp1GJCSkBt/W6Y6NPFO/cyYFfdHRyn5mYarINxACPYe9Ed11jtXrkRP98Cslp1ve/nWMBI7E5Jj4D9c32LkJuaKmOib//XKLleJg+Ef3ijnCnWIGynfOjCSm+sH02fD7fqZuUevbsaXs9BG0hMnXqVG3btk0LFizQtGnTVFBQIElau3at7rrrLlVVWZM8FhYWhqWe4uJipaenh+W5IG3/q43JHg3pqT98W7/O+nYoSgqrE5XSJ38MvN2lMwer9EelwS8ozExTWvMHqfaw/1+QhmEotbP090/+ojBk745Z+SupqdYK/0/OUxmpmjzSY4udriIwO4uLlRykb/Y6r0ddViwPzsokmWVl8j37nIwhBXLderMMt1uuO+fI9/vn5Xtzidw3dnxokJ3FO5UeIZPaHN4tbXgj8HY3fe0SPfzzyPhsBHMbCMf7LwV3G4j3fUAoRdN3QUes/bN0vDywL/XkDOmdlS/K5Q5RUQgbT5O1rXtbAmuXOyRBu/famNQnAm1+25pzLhCGW/rdq48rKe3x0BSFsDFN6cPfWvNN+cswDGV0lz5e/7eY7hPFi4bj0urfSjIDazdkYmeVfic2jg+KXpGO7gtsY05Mkd742++ifq5OyZqnb/OywNt95dGrNO9/Y2MbOJtoOR6mT0S/uCNMU/r4eamuKvDzo++vXRK2Y4G6ujplZGRIklatWmV7PdziFCLz589X165ddeDAAY0YMUKjRo1Sfn6+JkyYoIEDB2rKlCmS2s7PhtiRVxh4m+6DpJSsoJfiiKwcKSvAO54Nl9R7dGjqCTfDsLcN5I0RHUrEJNPnk/enP5N8PrnnfUPG51fvuW69WUZBvnzPPiezPLaGOO42IPB9ekKylDM0NPU4KR7ff0CydyzQe7QI2WJEQrKUMzzwdnkXBL8Wp/Sx8bf0HCIlBXeUKjjEdp+okD5RrEjtJHUbGHi7PoVBL8Uxdj4DvUYpJkI2SepREPg+PSld6p4fmnoAJ8Vjv9gw7O3To/VYgKAtRPLy8rRy5UrNmDFDKSkpKikpUXZ2thYtWqRly5Zp507rKkWCttiU0c0KTfzlTpIGXRq6epxQcIV1Raq/BlwsJcfQTZe5w63A0V/p3WInaAS+yPfq6zK3bpPr7jtl9D09b5Hhdsv9zW9IPq+8Tzwp0wzwctcIZrikgsmBtRl8ueQO9sR4ESAe339AsgKDznn+Pz6ti71gApFrwEXWCUN/dc+XuvQJXT3hlpUTWNiYmCINnHj+xyF69B5t9XP8lZVj9aMQOwZPss53+CuvUEq3P7VZxOk2SMru7//jU7KkvuNDVk7YudxS/pWBtSm4kouOEJvitV+cO0LKDGA0xozu0Xt+lKAthIYNG6alS5eqpqZGNTU1WrNmje6//37V1dWppKRELpdLI0eOdLpMhEjBl/zrWCYkS4U3WTuSWNI5Txo9078DpL7jpAEx1ql2J0qFN/r3ZZLeVbpgtrUtALHG3L9fvudfkDFsqFyzbzpjudG/n1x3zpG5abN8by5xoMLQ6ZEvDb9akh9XYg2+LLALNKJFPL//gMstjZkldep1/semdbGOBaJwGgycQ0qWdMHN/oVt3QZKI6+Nzqt3z8YwpOFX+XdnQmKqVDjb+iwgdiQkW/s2f4KTzJ5W/ykWLzqKZxndrffVn75u7nCpYEroawonl8s6L+LPRRQnvzNi6QJkyXpfh/j5vg75kpQzLLT1AE6I536xO9E6753Z4/yPTe9mPTYhgAs0IolhxlpMGgXWrFmjiy++WEOGDNH27dvPWP7qq69Kkl5++WW98soreuWVVyRJ/fv31/jx/l/a0np80draWuZoc4BpWvMSHFhnzVvWmjvRCuL6jY/tDmXtYWnfWungDsnnbbusSx+pz1jrZHSs8jRLpeuk0g1S44m2y5IzrKs0+oy1ruCNByfHIU/OkC77J6erObdoHIt8wW2K2DnawuHYlGkRMQ75Fx0vl/Z9Kh0utr4XWus6wLpqtWs/Z2o7l3jfBuJ9HxBK0fRdEAzeFmvu3tL1Z85VlJT2+bHAOCmJkC1mNdZI+z+Vyjdbc7e1lt7VupOx12jrhGwsMn3W335gndU3aM2dJPUaaV14l9rJmfoQei2N0oEiqWyjtf9vLSXLutgo74LoPbGG86s/Zh0PV249c+7KrBxrP5gzPLYuNmjN5z19LFB/rO2yxFSp9yhrPxjIXdDR5tgBaxuo2qO28/YZ1lQqfcdLXQIYCSDaRcvxMH0i+sXB4mm2jgXL1lvHxq0lZ0i9x0h9xzpzE0KwMpTIesXjxKZNmySdfdjIW265pd3/v/vuu/Xcc8+FtDYEl2FYt8jmjpBOHJSKXrY61wkp0qSvx8cdTBndpRHXWsMFHN0vbV9uvQaJadK425yuLvQSkqT+F0n9LpSOHpA2Lfn870+RLv06QyIA8aBTL2n09dbBZHVp2wnBL5jtXF0AwsOdaB0H9B1vnWTa+JdWx4MPcCwQD1IyreGEB02SjuyTtr7z+fFgqnTxV2P3xPJJJ+di7jXKuvhw3autPgP3E67Eg8QUaeAlVr/o2H5p09JWfaKvWdsIYltaF2nYNCn/culIibTtvdP7wQl3Ol1d6LncVpDWZ6zVH9jw5un94GUPSK44ODvbpY/103BcWvOHz//+ZOniuwOf2xpA9ElIsoZV7//5+dF1r5xedun9sXHBWQz8CdHnfEGbaZrt/hCyRbesnqeHwXAnxEfI1lpSmpQz9PRrEAs70EAYLuuOlVN/fwIn1oB4k5L5+VAoJ0+oxviJVQBtGYaU3bft8SDHAvHFnSj1GNzqeNAd+yFba4Yhdcr9Qp+IkC2uuNzW3fyt+0SEbPElIdmaw7T1fjCeGIYVNrU5FoiDkK211E6t/v5EQjYg3pw8P9r6vEisnCOOkT8jupwvaAMAAAAAAAAAAEDki7PrJiLDihUrnC4BAAAAAAAAAAAAHcQdbQAAAAAAAAAAAIANBG0AAAAAAAAAAACADQRtAAAAAAAAAAAAgA0EbQAAAAAAAAAAAIANBG0AAAAAAAAAAACADQRtAAAAAAAAAAAAgA0EbQAAAAAAAAAAAIANBG0AAAAAAAAAAACADQRtAAAAAAAAAAAAgA0EbQAAAAAAAAAAAIANBG0AAAAAAAAAAACADQlOFwAAQCRKcksLbnO6isAkuYO3rjSXW8emTAveCsMgzRXEFwBxvw3E+z4AAAAAQHyjT0S/GP4jaAMAoB2GISXH8bekYRhKd8fxC4C43wbifR8AAAAAIL7RJ6JfDP8xdCQAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGADQRsAAAAAAAAAAABgA0EbAAAAAAAAAAAAYANBGwAAAAAAAAAAAGBDgtMFAAAQiUxTavY6XUVgktySYQRnXaZpqt4XXS9AmsstI1gvAOJ+G4j3fQAAAACA+EafiH4x/EfQBgBAO5q90mOLna4iMAtuk5KD9M1e7/Oqy4rlwVlZmBybMk3pbg5tgiXet4F43wcAAAAAiG/0iegXw38MHQkAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAGAAAAAAAAAAAA2EDQBgAAAAAAAAAAANhA0AYAAAAAAAAAAADYQNAWJlVVVZo/f74GDx6slJQU9enTR48++qjq6up03333yTAMPf30006XiRAwTel4hbTlHam53vpdc720/zOppdHZ2hAePp90qFha/8bpbaClQTq4XfJ5na0NoVe69X39/E5Dny1beNbH/PxOQ39ZeF0Yqwov77PPqeWqa+V7970zlpmmKc83H1PLjOtl7i0Jf3Fh0nhC2r1KWvsnSebnvzSl+mNOVhUe8f7+sw+AJJk+6fBuacObrY4HG6SKrZLP42hpQFiYpnSsVNq8rO1n4MA6ydPsbG0ID5/X6v+se61tn+hQsdVfQuxrabTOg3z6UqttoNE6X2Ka526L2NBQLRV/0PbcWPE/rN8jttEnol8stT0/2vq8yMEdsXF+NMHpAuLB+vXrNX36dFVWVio9PV3Dhw9XeXm5nnrqKe3evVtHjx6VJBUWFjpbKIKu/pi0eal04mDb35s+aeffpV0rpX4XSgMvkQzDmRoRWlV7pG3Lpaaatr/3eaVNS6WkdGnol6QeBc7UB4SD66458n28Rt5Fv5ExbqyM7t1OLfO9/qbMjZvkuverMgb0d67IEPG2SNuXSxXbdPpAspUPfyd1HywNv0ZKTAl7eWERz+8/IElH90tb37UC99ZMr7TlbeuYsGCylDvcmfqAUKs9LG1+2/q3NdMr7fibtOsf0oCJVr+IPlFsOrjTeq+b69r+3ueVNv5FSs6Uhk2Tug10pj6ElmlKez6U9q098+ISn8e6EC0rRxo5Q0rr4kyNCC1Pk7T1/6RDO9v+3vRJ+z6xfnoOkYZdLSUkOVMjEGrx3i+u2v35+dHaM5dteuvz86NTpR754a8tWLijLcSqqqo0c+ZMVVZWau7cuaqoqFBRUZEqKyu1YMECLVu2TGvXrpVhGBo9erTT5SKI6o5Ia/98ZsjWms8j7f3IOgnLFVyx5+AO6yqNL4ZsrTXXSRuXSOWbw1cXEG5GYqIS5s2VGhvl/dn/nPq9eaBUvuf+IGPoELlume1cgSHibZHWvWrdsdJeyHbS4V3Wlb2xepdzvL7/gGTdxbbu1TNDttZaGqzA7cC68NUFhMuJg9Z33BdDtta8LVbYVvx+2MpCGJVvljYtOTNka62pxuo3HdwRvroQHqYpbXvPOu9xrju4T1Ra50/qjoSvNoSHp1n67OUzQ7YvOrhDKnqZu5wRu+K5X1y5XVr/Zvsh20nNddbFN+VbwlZW0BG0hdgjjzyi0tJSPfTQQ1q4cKEyMzNPLZs/f77GjBkjj8ej/v37Kysry8FKEUw+r7T+devEiT/KNkql60NaEsKs7oh10uxcJ9db2/beuUNZINoZ+YPluv1WmZ8VybfsHZler7w/WSiZptzz5spwu50uMeh2/l2qLvPvsXVVn+8zYlQ8vv9Aw3Hr6kzTzyHRdqzwf58BRANvs9Un8jT59/j9n0kVUXxyBWc6cdC6i8UvpnUsRNASW0rXS+Wb/HtsS4O1z4iF4cNw2rb3pBo/z3WcqLQuRAdiVTz2i2urrOmU/D4/+n9SzaGQlhQyBG0htG3bNi1evFjdunXT448/3u5jxo0bJ0kaM2bMqd+9+uqrmj17tvr166e0tDQNHTpU//7v/67a2nPEvogoh4qtkyuB2P8Zd7XFkgPrAusgmD7pwGehqwfO8zTXq6Gmqt2feOGac4c0cKC8v/mtfL/8lcwdO+X66ldk9MlzurSga64L/Eqsqj2xfXIpnt7/9rAPiD+l6wOcf82U9n8aqmqA8Kvcfu67mNqz71P6RLFk/2fy+8SaZPWfDqwPVTUIN9PG91rDcelwcWjqQfg1HA/8TtXK7eceCQDRjT5R/PWLS9dZw4X7y/R9fvwQhZijLYRefPFF+Xw+zZkzRxkZGe0+JjU1VVLboG3hwoXq27evfvSjHykvL0/r16/XD37wA33wwQf6xz/+IZeLfDTS2bk7raFaOrKXceljgaf586HiAnRwh5R/pZSUFvSSEAE+fu37+vi17ztdhqOMhAQlzPuGPA//i3xLl8kYOUKum25wuqyQKNsc2MHkSaUbpCFTgl9PJIin97897APii9djb1jow7ukxhopJfP8jwUimWnaC0xqD0vHy6XOvYNeEsKsud7eUJAVW6TBlzFPUyw4sjfwC5Ala9/Rc2jQy4EDyjYqoLBdsh5fulEaPCkUFcFp9Iniq1/sabJ5fnT75+dHU4NeUkgRtIXQihUrJEmTJ08+62NKS0sltQ3a3nrrLXXv3v3U/19xxRXq3r275syZo1WrVunyyy8PuJb8/HwCujAxZOh3j5TI5Qr8dt//+ren9NqHPwlBVZHjZ/etVXZmrioqKpSXd6HT5YTE4Nzx+s5tbwbczueVZk27U5v2vR/0miJFNL3/7sRU3fjD4F1OOXLy/cq/6JZ2l73x42lBeY6C/Hx5/R2z9jzMpCRp0S+Dsq420tOlxETJ45Fx4XgZQfxuKsgvkNEcGYP6/+usP2jMgMATs5XvbtKXvjI9BBUFLiTbQAjffym420C87wNCKZq+C+zq2324/nPOewG3M03p9pn369NdMTyWLOLiM5CcmKZFD55nQp6zeOzBx7Xs0xAcgyCsRvWfrLk3vBBwO2+zNPXSWdpVEaWXs+OU2Zc8ppkTHg643dH9XuXl9QtBRZEjHr4HJOlbt7ymIb0vCrjdu69+pB/f3v5xc6yIlm2APhH94g7V0fsiffuW1wJu5/NKM7/0ZW3Z/48QVNXO8/lOj/U/adIkrVtnb/JsgrYQ2rdvnySpX7/2DxA8Ho9Wr14tqW3Q1jpkO2n8+PGSpLIyexM3VFRU2GqHwCUnptoK2STrTii773G08Hq9p/6N1b81N32E7bb1tU0x+7pI0fX+JyQH99bCzjn56jtyalDX+UXlFeXyNNUHZ2UpyUoMzppOMU1T3ieelDwtUt8+8v35JbmuuFxGr9ygrL+8olxq9HMimBAzTHuHWIlGSuR8NoK8DYT6/ZeCuw3E/T4ghKLpu8Cuzon9bbdtqGuO2dcFlnj4DHTJ7Gm7bUuTL2Zfl3gyqGuj7bZ1JxrZBmKAp9neOLAul1tVh46qKQouHrIrHr4HJMkte7emupQU06+LFD3bAH0ixX2/uCN6Z9rfjzt1fvTgQT8nlWwHQVsI1dVZA9I3NLS/US1evFhVVVXKzMzUgAEDzrmuv//975KkYcOG2aolNzeXO9rCxJAhn89rK2xLSJJ6947tcVLcn0/s6Xa7Y/ZvTc+yf29zWkZyzL4uUnS9/+7EKLtHXVKv3F5BvaPtcFDWdJrvzSUyN2yU65675Zp4sTwPPizvE0/KvXCBDMPo8Pp75faKiKu2JMk0ApmY6bQWX0PEfDaCvQ2E+v2XgrsNxPs+IJSi6bvArqzO9k9KpKYnxezrAks8fAaSE+1/BhKSjZh9XeJJWmaK7bbpWSlsAzEgIcne8Z3X51G3HtlBriayxMP3gCR5Ze+43KfmmH5dpOjZBugT0S/uiPQOHAuE8/yoz+c7dZNSz572LxYjaAuhnJwcHTt2TEVFRZo4cWKbZRUVFZo3b54kafTo0ef8IJWVlem73/2urrnmGhUWFtqqpbi4WOnp6bbaInBFL0tH9wfe7vs/fUQ/7/dI8AuKICt/JTXVWuHvyaFTY423xfo7PQFePOJKkJb87Y9KtP89FPGi6f1v8kiPLXa6isDsLC5WcpC+2eu8HnVZsTw4K5NklpXJ9+xzMoYUyHXrzTLcbrnunCPf75+X780lct84q8PPsbN4p9LdkXFos2+tVPxB4O2umDFapT+NjM9GMLeBcLz/UnC3gXjfB4RSNH0X2OXzSqsWWXMUBcJwSYuX/VrJHLbHtHj4DEjSJ3+UTlQG3u6n//tt/Tr328EvCGHV0mht674Arz1KSJb+9uFf5A720AoIuyP7pHWvBN6u+4CEmN43SvHzPbB7tbT3o8DbXXvrRD30P7H7ukjRsw3QJ6Jf3BHeZukfv7L+DYQrQVq64s9hOz9aV1enjIwMSdKqVatsr4dbnEJo6lTrVtgFCxZo587T49OvXbtWkydPVlVVlSSdMzyrra3VrFmzlJSUpGeffTak9SJ48goDb5OWLXXpG/RS4AB3opQ7MvB2OcMU0yEb4pfp88n7059JPp/c874h4/Or91y33iyjIF++Z5+TWR5bQxznjpTsjCLcuzDopTguHt9/wOWWeo0OvF2PAhGyIWbY6RNl9ZQ6BW/kJDgoMUXKGRp4u14jRcgWI7L7SmldAm9nZ9+ByNR7tBToDTqGy2oHxJp47Be7k6zv9UDlDo/O86MEbSE0f/58de3aVQcOHNCIESM0atQo5efna8KECRo4cKCmTJkiqe38bK01NDRo5syZ2rt3r9577z3l5tLjiBbdBlvBWSD6XRj4AQgiV59C6woMfxluqe/YkJUDOMr36usyt26T6+47ZfQ9fUWB4XbL/c1vSD6vvE88KdO0N49DJEpKDfwke498Ka1zSMpxVDy+/4Ak5Y2xOpd+M6S+40JWDhB2PYdIKZmBtel3YWhqgTP6jLP6Of5yJRCyxBLDkPpNCKxNWrbUbVBo6kH4pWRKOcMDa5MzXErOCE09gJPitV/c54LAzo+63FabaETQFkJ5eXlauXKlZsyYoZSUFJWUlCg7O1uLFi3SsmXLTt3l1l7Q1tLSoptvvlmffvqp3nnnHQ0fHuA3ExzlckmFN0lJfl6R3GecvYQfkSutizRqpnU11nkZ0ojpUkb3kJcFhJ25f798z78gY9hQuWbfdMZyo38/ue6cI3PTZvneXOJAhaFTcKWU3c+/x2b1lIZPD2k5jojn9x9IyZTGzPL/7tbhV3MnD2KLO1EqnO3/FckDLpZ62rgDCpErs7vVz5EfF5Qabqv/ZOcOKESuXiOlPn5eUJqUbp1HcXGmMqYMnSp19nOapc550tAvhbYewAnx3C9O6yKNui6A86PXRu/5UcOMtZg0StTW1iorK0uGYaimpkZpaacni/b5fLr99tu1ZMkSvf3226fufAtU6/FFa2trmaPNAY0npC3vSMcOtL88IdnqUPYdHz93s50chzo5Q7rsn5yuJvSO7pe2L5fqj7W/PLWTNORLUreB4a3LKdH0/kfjWOQLblPEztEWDsemTIuIcchb83mkne9LZZsk03vmcsOwTioOnSYlBHLnSxjE+zYQ7/uAUIqm74JgqC6Xtr0r1R1tf3lypjRkinVXK+JDvH0G6o9ZfaLj5e0vT0yVBl4SvVcv4/yq9kg7/iY1HG9/eVoX61gom6kUYpJpWvMXl6w5+zzmXfpYoWxKVnhrc0q8fQ94W6Ttf5Mqt0qm78zlhkvKHWEdD8XL0LHRsg3QJ6JfHCxH90vb3pMaqttfntpJGjJV6jYgrGVJCl6GElmveBzZsmWLTNNUQUFBm5BNkh588EG98sor+rd/+zelpaXp448/PrVs0KBB6t49SmPdOJSSJY27Tao9LJVulMo2WidaXW5r55EzNH4OIuJVdl9p4r3WF0rFZungDuvA0pUgjb5e6jogfkJWIB65EqyrOAdeIpVvsvYFR/edXn7p/YEPqwUgunTuJV18j1RdaoXuB7d/fizw+d0bXQdy9T5iW1oX6cIvSycOWv2h8k2nPwPDrpJ6DJEi7FwQgqzbQKlrf+lIiVSxRTpUfLpPNOZGq89Enyh2GYbUf4I1vULlDunQTut42PRJrkRpwhwpo5vTVSKU3InSiGukwZOsY6G9H1vnxgy3NHCi1GsUc9QCsS67r3TJfdb+v3yz1Sc6qXC2dZwQ7ccCdOkcsmnTJkntDxv5zjvvSJJ+/OMfa+LEiW1+li1bFtY6ERwZ3a3b35NSrf9PTJV6jyJkixeGIXXtJ42cISV9nqsnplgdzmj/EgHgn6Q0qf9F0thbdHr4JIOQDYgXhmFdrT/y2lbHAqlS98GEbIgfWT2lYdPafgZyRxCyxQvDZfV/Rs1s2yfq2o8+UbxwJ1nnQS6Y3WobSCZkiyfJGVawdvLcWFKqNcoTIRsQHwzDCtRGXac250W6xchNCBzSOuRcQVtJSUmYqwEAAAAAAAAAAECguH7SIecK2gAAAAAAAAAAABD5uKPNIStWrHC6BAAAAAAAAAAAAHQAd7QBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANhC0AQAAAAAAAAAAADYQtAEAAAAAAAAAAAA2ELQBAAAAAAAAAAAANiQ4XQAAAJEoyS0tuM3pKgKT5A7eutJcbh2bMi14KwyDNFcQXwDE/TYQ7/sAAAAAAPGNPhH9YviPoA0AgHYYhpQcx9+ShmEo3R3HLwDifhuI930AAAAAgPhGn4h+MfzH0JEAAAAAAAAAAACADQRtAAAAAAAAAAAAgA0EbQAAAAAAAAAAAIANBG0AAAAAAAAAAACADQRtAAAAAAAAAAAAgA0EbQAAAAAAAAAAAIANBG0AAAAAAAAAAACADQRtAAAAAAAAAAAAgA0EbQAAAAAAAAAAAIANBG0AAAAAAAAAAACADQRtAAAAAAAAAAAAgA0EbQAAAAAAAAAAAIANBG0AAAAAAAAAAAD4/+zdeXxV9Z3/8fe5N/sGhC2BhDUJ+yIqSsWqFKy7traiBWurHe1Mrc6UgtNOp+3MdH4OFevUWqe0HZdqa+nUtWJttagFKgiyQ9gJkJAEAoQkN+u99/z+OLJEErj35Nx77vJ6Ph55oDnL93Nv7j3ne76f7wIbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGBDitsBAAAQi0xTag+4HUV40rySYThzLtM01RyMrzcgy+OV4dQbgKT/DCT7NQAAAABAcuOZiOdihI5EGwAAXWgPSA8tcTuK8CycLaU7dGdvDgbUZ9lbzpwsSo7PmKVsL1UbpyT7ZyDZrwEAAAAAkhvPRDwXI3RMHQkAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2qKgrq5OCxYsUElJiTIyMlRcXKwHH3xQPp9P99xzjwzD0BNPPOF2mIgg05SOH5QCHdb/Bzqk9mZ3Y4q21kaparPkb7f+Pxiw3hckj8bDnb8DLSfcjSdaKre9qx/PNfTh0kXd7vPjuYZeXXRDFKOKrsBTz6jj6usUfPPPZ20zTVP+bz6kjutvkrmvIvrBRVFzvVS1SdLJa1+SXAOT/e/PNeC0Np90iLoAkpi/TaredsZ3wJ9c3wHTlI4dkAIfvf5Ah9TR4m5MiK6AX6rdefo7EPBb9wIkj/Zm6dCW5K0LBINS3d7O18GT7wWSg79dqinvfB00g+7GFA08E/FcfFLQLx3epU7tIgG/mxE5J8XtABLdhg0bdO2116qmpkbZ2dkaO3asDh06pMcff1x79uzRsWPHJEmTJ092N1BEhBmUKjdKlesl37HTv/e3ScsXSwPLpGFTpZz+7sUYaSeqpYoPpLrdnSvQHS3SB89LQ6ZIBWMlw3AvRkRW7XbpwIfWZ+Ekf5u08hdSvxHS0KlSnyL34kPkee6co+Cq1Qos/oWMC6fI6N/v1LbgS6/I3LRZnru/JGP4MPeCjKBjB6T9H0hHK87etva30pCLpAElUQ8rapL97w+podb6Dhze1bkhoaNFWv0rqXiKNGg8dQEkrpZ6qz5cvc1qXDipo1X62y+lwZOkIRdKHq9rIUZUMGg9D1VukJqPn/69v01a/jNp4BjrmSg737UQEWHtzdZ94NAW63N/kr9VWrFYGjRBGnqxlJrhXoyIrKYj1nWwdqdknpFc7WiRVj0jFV9gXQsTtS4Q6JD2r7U63bU1nv79yetg4Vhp2CVSRq57MSKyWhs+qgtsPd0BWfroOvgLqeijuoA31b0YEVnJ/lzc0SrtX2NdBz/e0WrFYut5cOjFUlqWO/E5gRFtEVRXV6cbb7xRNTU1mjdvnqqrq7Vu3TrV1NRo4cKFWrp0qdasWSPDMDRx4kS3w4XDggFp8x+kHX/pnGQ7yQxYvVjW/KbrxtdEULNdWvuCdGRX173UGmulrX+Utr+VXL3YkoVpSjvfkTa/3jnJdqa6vdKHS6zRjkhcRmqqUubPk1pbFfjRf5/6vXmwUsFnfiVj9Ch5Pn+rewFG0MF10rrfdX+dr6+UNr0i7VmRuNfBZP77Qzq8/hdqXAABAABJREFUW1r7G6l2R9e9dZuOSOV/suoDwSTozYvkc6Ja+uDXVqNCsIveui0npN1/ldb/PjFHNQQ6pI0vWXXCM5NsJwUDUvUWac2vpeOV0Y8PkddSbz3z7l/bOcl2UnuzVLHaem5sbTx7O+Lf0QrrM1BT3jnJdpLvqLT9bWnza4k5wrGjxXoe2Luyc5LtpEC71RHhg+elxiNRDw9R0HjYqgtUbuicZDuprdF6Hlz3f11fJ5EYkvm5uLXReiasWN31bAYdLVYSbu0L8T37FYm2CHrggQdUWVmp+++/X4sWLVJu7umuKQsWLNCkSZPk9/s1bNgw5eXluRgpIqH8zx8NhT2PQIe08RWrt3ciObZf2vpGaEPgqzZJu5dHPiZEV8VqayTbeZlWI+uRPREPCS4ySkvkuf02mR+uU3DpH2UGAgr8cJFkmvLOnyfDm3jd+Gu2SzuWhbbvvlVWUi5RJePfH1J9ldXpKJRGs5ptVkM8kEia66UNL4Y2PeLxg9b3JZE6XZimtOWN0DoV+tukDS9JTXURDwtR1NEqrX/RSradj++o9RlIxIRzMmuotdo7ukoufNzhXVL5WxEPKaqCAWnjq913PD1Tu8/qdEHCObG0NljXwXbf+fc9ccj6vtD5LHEl43Oxv936DnQ1COXjmo9b+8ZrwplEW4SUl5dryZIl6tevnx5++OEu97nwwgslSZMmTTr1u+XLl2vmzJkqLCxUenq6ioqKNHv2bJWXl0clbjij8bA1HDxUQb/VeyVRmKa0673w5pk+sIYKZSJpb5H2vR/eMbveTazGpY/ztzerpbGuy59k4ZlzhzRihAK/+KWCP/2ZzB075fnSF2UUJ97cocGgdR0Mx56Vid24lEx//64k4zVg9/Kue653p3J91yNegHhVsSq8hoKj+6zOaoniRJU1s0WoAu3h1x8R2yo3hnddbzoS3nM0Yt+eFV2P5u1O9ZbEGtV1ZLc1g0Wo2n3W6E8kjv1rQkuynVRfaS29kqiS8Zno45LtufjQFskXxp+3+dhHa9vHIdZoi5AXXnhBwWBQc+bMUU5OTpf7ZGZmSuqcaDt+/LgmTJig++67TwMGDFBlZaUefvhhTZs2TVu2bFFRUWJ+6RJN5cbwjzm6z+r1mtXb6Wiir6HGSjaGwzStC+nIyyITE6Krekv40340H5eOH5Dyh0YmJretevF7WvXi99wOw1VGSopS5n9D/q//o4KvL5Uxfpw8n73F7bAiom5P11PDnEug3RrVUzQ5IiG5Lpn+/l1JtmtA05HwGpZOqtwolV3peDhA1HW0WtOkhatyg9R3mNPRuOPghvCPObxLavNJ6dmOh4MoM4NS1Ybwj6vcYNWFEnWtrmTSXG+1c4SrcoM0ZpbT0bijckP4x1RvkUqms1ZXIvC3S4dsdB6o3CANKHM8nJiQbM9EXUmm52LTtHcdrNooDb1IMuJsiBiJtghZtsyaK+qqq67qdp/KSqv14cxE20033aSbbrqp034XX3yxRo0apRdffFEPPvhgBKKF0+w8VEvW+iXDL3E2FjfYfv3bSbQliprtNo8rT9xE2/ir7lXpJZ/vctvL/5UgT5KhyM6WUlMlv1/GxRfJ8MRZzSlEtXa/A9sTN9EmKWn+/l1JtmtAzQ6bx5WTaENiOLLb3lpDR/ZYDXMpac7HFE3BgHR4Z/jHmUHruOILnI8J0XXikL0ZS3xHrSlEc/s7HxOiq7YHdYFESLS1+axpgcPlb7MSlImaaEkmR/dZnSnDdeyANQouLQE7nSTbM1G3kuS5uOmINUItXC0nrCl3ew92PqZIItEWIfv3W3N+DB3adYux3+/XypUrJXVOtHWlb9++kqSUFPt/rtLSUnkS9Esba1K96frF1+0tNvU/j/9Sv3nv+84G5IKvXvuELh11S9jH1dU0qKhorPMBxZAf3bNG+bmFqq6uVlHRxW6HEzEnX2e43njtbV39lS85H5AN3tRMfeYHYcx3dB69C0o1ZPxMx87XlbLSUgVCWQgmBGZamrT4p46c69Q5TVOBRx+T/B3SkGIFf/Nbea74pIxB4X9WulJWWiajPTbmXvznz/2fRhdNC/u48k27dcs3r3Q+IBuc/gxE+u8vOfsZSPZrQE99eeYjumL8HWEf19LoV1HRMOcDiiHJUhdIdtdd9A+6bfq3wz/QlC6aPE11DTZaZ2NIbmZf/eQ+G9N8SPrhf/63Xl61yOGIEG0XlVyn+2/4ua1jP3fzHdp6gEW8490Xrvi+rr7gK2EfF2iXhg8dqY5AWwSiip7ifmP0H3PtLTo37x+/pXc2PedwRLEjWepCn5r0Jd151Q9sHXv5Jz6lqqM2s9UO4pmI5+KemDD0Ss37zPO2jv3iF76idXvedDiirgXPWBhx+vTpWr9+va3zkGiLEJ/PmoC3paXrL/aSJUtUV1en3NxcDR8+/KztgUBAwWBQ+/fv17e+9S0VFBTotttusx1PdXUIK6/CEV6P/a9V/YnjqqqqcjAadzQ12VtsrcPfnhCv/1wCgcCpfxP5tbZ32HsoampujJn3JSU9y+0Qwnao+pD8bc3OnCwjXU7PVhJ85TWZGzfJ8+W75Jl2qfxf+7oCjz4m76KFMhyYH+hQ9SGpNTYeyJtbwpiI/wytbS0x8x1w+jMQ6b+/5OxnIOmvAT3U0Fhv67hAwB8734EISZa6QLI7PvKo7WOrDh1U3Yn4/mzkZtq/Fh0/cZTvRgIY0rvW9rE1tdV8BhLAiYZ628ceqNyvoJ1hwTHE25Fn+9ijR48k9HcgWepCx4rtrzt2qLpSVUfcf294JlLSPxf3xIBM+/mIw0dqXLk+1Nbar7+QaIuQgoICHT9+XOvWrdO0aZ17tFdXV2v+/PmSpIkTJ3b5JbriiitOjXgrKSnRsmXL1L+//bkTCgsLGdEWRUdOHFD/XkPCPq45UKfBg+NsXGwXGtrtXZTqGg4kxOs/F6/Xe+rfRH6tdY0HVJA/LOzjGltrY+Z98aZmuh1C2AYVDnJ0RJuT65CbVVUKPvWMjFFl8tz2ORlerzxz5yj49LMKvvKavJ+5ucdlDCocFBO9tiSpvuWQreOO+api5jvg5GcgGn9/ydnPQLJfA3rK12Hv03P4REXMfAciJVnqAsmuxbQxT46k5rYGZfdKU3pOfH82DMOjhuajysvqG/axLcFjfDcSgN9jdb40TTPkhsOT+5ppzXwGEoDPb68ucOTEARUWFjgcTfSlpgXV4W9VakpGyMec/A60GycS+juQLHWhVh23dVy7v1Xp2dLgNPffG56JeC7uiWCq1QHZTl0g4G2M2vUhGAyeGqQ0cOBA2+ch0RYhM2fOVHl5uRYuXKhZs2aprMyaXHnNmjW68847VVdn9WqYPHlyl8f/7//+r+rr67Vv3z498sgjuvrqq7Vy5UoNGRJ+8kaSdu3apezsBJzcN0btWyXtWRHeMd5U6ZlXFiolfWFkgoqi1gZpxS8kmeEdd8OXpui+RysjElOsWP4zqa3JSn6fXKcxEdVulza/Hv5x//7kV/Vo/ledD8iGNr/00BK3owjPzl27lO7Qnd0X8KvPMntTnXycGQwq8MiPpGBQ3vnfkPHRg5Xnts/JXPk3BZ96Rp5LpvZ4qoSdu3Yq2xsbVZuGWukDG7O93LPgGj30s9i4Njj1GYjW319y9jOQ7NeAnmr3Sct/LplhdkafcdtoVf5XbHwHIiVZ6gLJLhiQVv7C+luHY9Slear4l72RCSrKdv1V2v9BeMekZki/+9NP5U1xdvpquGPNb6QTh0LvnW8YhvoOkzaVh/nBQUzyt1n3vEBHeMddesMQVf5HYtwft74hVW8LfX/DMJTVR3rr/f+TQwNbYlKy1IVMU/rbL631psIxdHKGdu9zf9pIiWciiefinlr3f9Kx/eHVBXoXSWs2vxfBqDrz+XzKycmRJK1YEWaD/hkY4hQhCxYsUN++fXXw4EGNGzdOEyZMUGlpqaZOnaoRI0ZoxowZkrpfn23UqFG65JJLdPvtt+svf/mLGhsb9cMf/jCaLwE9MGiCZHjDO6ZgrJSSHpl4oi0jT+o/MrxjUtKlgtGRiQfR1780/IV784dK2fmRiQfuCv7+JZnbyuW5a66MMzqMGF6vvN/8hhQMKPDoYzLNMLPzMSxvoJQXZv04s5fUd1hEwnFVMv79Yd0DBpaFd4wnRSpM7KVakUQ8XmnwxPCPK5rseCiuKZooKcyG4kETpBhpF4ID7Hyeiy5wPAy4JCXdaucIh+GVBo+PTDxusPN5HjxJCZ1kSyaGYe86WGzjGMS+ZH0utlUXsHFMLCDRFiFFRUVavny5rr/+emVkZKiiokL5+flavHixli5dqp07d0rqPtF2pt69e6ukpES7d++OdNhwSHq2NDqMtT2z8qWS6ZGLxw2jPiWl54S4syGNu9Ya1YfE4PFK46+TjBDvMqmZ0uhZkY0J7jAPHFDw2edkjBktz62fPWu7MWyoPHPnyNy8RcFXXnMhwsgZ++nQO1B4vNK4ML4z8SKZ//6QSq+0Ot+Eauw11mgWIFEMvVjqFUani5GXS9nhz7QYszJ7S2VXhr5/zgBp+LTz74f4UTBGGhBGp4tB46V+IyIXD6KvZLrV3hGqMTPD77AZy3oVSkOnhr5/nyFSMcnmhFJ8gdSnOPT9h10i5cX/zKn4mGR+Lu5fEl5nyoGjrJ94ZJiJliaNA01NTcrLy5NhGGpsbFRW1rkXljx8+LBGjhypL37xi/rpT0OfQuPMYY9NTU1MHemCyo3Sjret4eLdyRkgXfDZMJJScaT5uLT+Ramlvvt9TjYux+tFNFwnp0hIz5Euj40ZEiOqbq+0+Q/nni4kPdf6DuTYX4YyIuJxioSFsxWTU0dGy/EZs2JmeoSTGmqkDS9b0+h1JyVdmnizlG9vduiISfbPQLJfA5zSckLa8KLkO8dyVYbHSrIly2i2ZKsLJLuOVmnjK1L9eWbGGjndalxLxFEM+9dKu9499z69CqVJn5HSzv1ojDgU9Etb37Smlj+XQROsjncsLZ942pqk9S9JTYe738cwrL+/nZHAsc40pT3LpYrzzIjad5g04SYpJS0qYbkq2epC/nZp82vS0Ypz7zfsEqs+EEt1AZ6JeC52QjAgbX9LOrTl3PsVjLE6LHuiHLpTOZTYeceTyNatW2WapsrKys5Kss2dO1clJSWaPHmyevfurV27dumxxx5TSkqK/umf/smliGFX0SSr4bRyo3Ux8bee3tZrsDUcfEBp9C8g0ZLVR7r0i1LNdungho9VrA1p+CVWRTqc3u6IL/1GSJ+4R6raLFVt7LxOSXZfq3dXwdjkeJhAcsorkKZ92VqboXKD1PyxZEPJ5Vbv7UTquQucKbOXNPVOqXaH9R1oqOm8fdhUa4qkzF6uhAdEXGqGNOU2qW6P9R04tr/z9qJJ1vQ4sdbhyElDL5L6Dbde/6GtUqD99LY+xdbr719idcBD4vGkSOOvt577KjdIR3Z17ohaMMb6DPQaFFuNy3BOeo409QvS4V3SwfXSiUOdtw+5yLoWZvVxJ75IMwyp5JPW6M7KjVJNuZWAPqnfCOs70HdY4s1uAUtKmjT5s9LRfVbb2NF9nbcPmmB9BvIGuhEdEHkerzTm01bbx8EN0uGdkhk8vX1AmfUd6FMc33WBBG3ej22bN2+W1PW0kZdeeql+9atf6cc//rFaW1tVXFysq666St/+9rc1dOjQaIcKB2T1saZMKZkurfi51N5s9dS8+A63I4sOb5r1UDVogjWiY9WvpI6P3oORCTZdJrqWniONmGb1zlrxs9PfgUu/FN83UCBUqRnSkClWYrmtSVqx+PS2YZe4FxcQLd5U66Fq0HipzSetevajukC21fAEJDqPx+pcN6BUam+R3n/69HcgWabOzu5rTS1f8klp5S8+qg9mSxfOdjsyRINhWB1Q84dI/jZp5f+e/g6Mv97t6BANnhQrqVow5uy6QDhTzMazvAJpbIE06ipp5S9PXwcnnz2LHBKQ4ZH6jbR+Olqkv51RFxj7abejAyLPMKTeRdaPv0169yent028yb24nESizQXnSrTdf//9uv/++6MdEqLAk3K6d1Iy9lIyDCvhcnIqEBIsycfj6fwd4DOAZGMYUkauJEOS+dG/QJJJz6YugOSWlpnc3wFv6hn1wSR8/bCmzE7m7wCoC3jTuA4mu9QkrwsAKelKyHaRJGzud9+5Em0AAAAAAAAAAACID4xoc8GyZcvcDgEAAAAAAAAAAAA9xIg2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAAAAAAAAAG0i0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAAAAAAAAAG1LcDgAAgFiU5pUWznY7ivCkeZ07V5bHq+MzZjl3wijI8jj4BiDpPwPJfg0AAAAAkNx4JuK5GKEj0QYAQBcMQ0pP4rukYRjK9ibxG4Ck/wwk+zUAAAAAQHLjmYjnYoSOqSMBAAAAAAAAAAAAG0i0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAAAAAAAAAG0i0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAAAAAAAAAG1LcDgCxyTRNNQcDbocRliyPV4ZhuB0GAAAAkBDi7ZmA5wEAToq3a6DEdRAAALeQaEOXmoMB9Vn2ltthhOX4jFnK9vKRBgAAAJwQb88EPA8AcFK8XQMlroMAALiFqSMBAAAAAAAAAAAAG0i0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALAhxe0AACCR+Y5JJ6qlxlqpqU5qb7Z+394ibX9byiuwfrL7SobhbqyR0NEqnTgkNdRa78Gp198sbX5dyhso5Q6UehVK3lR3YwUAOC8YkBqqrftAQ63UeuL0vaCjRdqzQsotkHoXSmnZ7sYaKc3HrbpAQ63kO/KxusBb1uvvVSBl90vMugAAAEhu/vYz2gVqOrcLbHrVahPJHSj1GiSlpLkbaySYptR42GoTaaix2onOrA/ufNdqG+lVKGX2djNSAD1Bog0AHBbwS7U7pMoNVuNiV8yAtf2k3IFS0WSpYHRiJJxOVFuvr3a71cj6cWbQ2la73fr/lAxp0HjrPcjqHcVAAQAR0dooVW2UqjZL7b6u9wkGpH2rrP82PFL/Eqn4Aql3UfwnnIJ+6fAu615YX9X1PmZAqtwoaaP1/zn9PqoLjE3MRiYAAJBcmo5YdaHqbVKg4+ztZtCqLx3eZf2/N1UqHCcVTZJy+kc11IjoaLVee+UGqflY1/uYAenA2tP/32eIVR/sP1LyeKMRJQCnkGgDAAcd2WP1Tm9rCu+4xlqp/E/S7r9Ko2dKA0dFJr5Ia220Xn/d3vCO87dalcsDa61KdckVNDICQDwK+qW970v7P7B674bKDEqHd1o/vQdLY6+RsvpELs5IOlph3dNbG8M7rqnOGu2+e4U0aoZUMCb+E44AACD5tDdLO5ad7lgbqkCHlZSq3GDVg8pmSGmZkYgwskxTOrTZGqkWaA/v2OMHrJ/M3lZ9uE9RJCIEEAkk2gDAAf42acdfrN5KPdHRIm3+gzUibvSs+KpUHtoq7VxmvRc9UblRqttnVSrzhzgTGwAg8hpqpa1vSL6jPTtPfZW06lmp5HKpeEr8JJv87dKud6WqTT08T6v1PtbukMZcLaUn6JSaAAAg8RzeLW3/8+mpEe2qKZeO7ZfGfNoa3RUvWhulbW9asfdES7304W+tunDJJyUvLfhAzPO4HQAAxLt2n7R2Sc+TbGc6vFP68IXwe8O7wTStNXa2/bHnSbaTWhuk9b+XasLsAQcAcMfRCmntCz1Psp0U9Es737FGSZtBZ84ZSR0t0vr/63mS7Ux1e6z3tOWEc+cEAACIlAPrpE2v9DzJdlJ7s7TxZengemfOF2m+o9Ka3/Q8yXamg+ukDS9aHboAxDYSbQDQAx2t0rrfS02HnT+375i07nfdr20TK/b+7fQaO04yg9KWpVLtTufPDQBwzrEDViNI0O/8uas2Sdv/Et40lNHmb5fWv2itT+q0lnrpwyXx0fEGAAAkr8oN1gw3kbDjLx+taxvDmuulD38ntUWgznb8oFXX7mqdOwCxg0QbANhkmtLWP1oL/EZK83Fp8+ux28B4eKe07/0IFmBKW5da69YAAGJPW5O06VUpGIhcGVUbrcabWFX+J6mhJnLnb22QNr0mBeNgZB8AAEg+xyutdWYjaftb1vTisSjolza+EtlO0scPWrM9AIhdzPAKADZVb7OmdQrH1LlSWrZVAfvg+dCOOX7QamAsviDsECOqvTn8yrSd1x8MWHOcX/QFyUP3EACIGaYplf85/GmD7dwLdv9V6jfcWhg+ltTutNZSC4ed199QLR1YKw2bGn6MAAAAkRJot57Xw2GnLiRZ5VzyRcmbGl55kbb3fckXZudgO+9B1SZpQJnUd1jYIQKIAposo6Curk4LFixQSUmJMjIyVFxcrAcffFA+n0/33HOPDMPQE0884XaYAMLQ5rM3LUJatpSRa/0bjl3vWT3aY8nOd8Kfe93u62+okQ5+GN4xAIDIqimX6vaGf5yde0Ggw0rqxZKOVqt3dbjs3gv3rrSmlQaAeGaap2friNVZOwCEbs9Ka6rrcNitCzUft5auiCWNh6X9H4R/nN33YNufrOQmgNhDoi3CNmzYoAkTJuiRRx5RTU2Nxo4dq46ODj3++OOaPXu2ysvLJUmTJ092N9AICTz1jDquvk7BN89uGTFNU/5vPqSO62+Sua8i+sEBPVC1Mfwe/D0R9MfWAsAtJ6wG1mjavzayU5MBAEJnmlLF6uiWeexAZNZBs+vQFqmjJXrlBQPSwXXRK89JPBMAaKqz1tx89yenp1dr91md95qPuxtbNHAdRCLqaI3+2mmVG6LbFnM++9dEt9NAW6NUsz165QEIHYm2CKqrq9ONN96ompoazZs3T9XV1Vq3bp1qamq0cOFCLV26VGvWrJFhGJo4caLb4UaE58450rChCiz+hcwjncdRB196ReamzfLcOVfG8GHuBAjYEAxYQ/aj7dDm2Fn81o3X3+6TjuyOfrkAgLPVV0q+o9EvN9qNOd0xTXfWjaveKvnjsBczzwRA8jJNK5m26hmpcv3ZIzEOfCj97X+lPSsSe4Qb10EkouqtVqfgaAp0WOXGgnafNY14tB3ckNjXSyBekWiLoAceeECVlZW6//77tWjRIuXm5p7atmDBAk2aNEl+v1/Dhg1TXl6ei5FGjpGaqpT586TWVgV+9N+nfm8erFTwmV/JGD1Kns/f6l6AgA1HK6S2puiX29EaG4km03Qn0Sa5Vy4AoLOqze6UW7s9NhJNxw+GP02SEwId1nsQb3gmAJKTaUo73raSaeezb5W0e3nkY3IL10EkomRvF6jeJpkuzLrTdFhqrI1+uQDOjURbhJSXl2vJkiXq16+fHn744S73ufDCCyVJkyZN6vY81157rQzD0Pe///1IhBkVRmmJPLffJvPDdQou/aPMQECBHy6STFPe+fNkeL1uhwiEpb4yOcs+qflYdKfKOlN9lWQG3SkbAHCaW/ejoN9at9NtyV4XsINnAiD5HNkT3kjk/R9Y0wQnKq6DSCQdLe7MbiBZU9HGwvSR9VXJWTaArqW4HUCieuGFFxQMBjVnzhzl5OR0uU9mZqak7hNtv/vd77Rhw4ZIhRhVnjl3KPj+agV+8Ut59uyVuWOnPPd+RUZxkduhAWFzs+dQQwz0WnIzhqBf8h2Tcvq5FwMAJLv2Fqm1wb3yG2ul/CHulS+5ey+MhbqAXTwTAMml0sYa05Xr3b/GRxLXQSSKhsMul099EECMYURbhCxbtkySdNVVV3W7T2Wl1R21q0RbQ0OD/vEf/1GLFi2KTIBRZqSkKGX+N6T2DgVfXypj/Dh5PnuL22EBtjQeca/spiPuz8Xd5HKFutHl8gEg2TW5eB+U3L0Pn+TmvdB3TApEeT0Up/BMACSP5uPSsf3hH3dktzvT9EcL10EkimRvF2hvkdoa3Svf7dcP4GyMaIuQ/futGuXQoUO73O73+7Vy5UpJXSfa/uVf/kVlZWWaM2eO5s6d2+N4SktL5fGEnlc109KkxT/tcbmdZGdLqamS3y/j4otkhBFPKMpKy2S0x8CiHefwo3vWKD+3UNXV1SoqutjtcFyRCO/BUw/sl8fT9bQeU+dKadndH5ueffrf6fd1v1+7T/rg+bN/HwxII4aVqCPQGkbEzvryp36oKyZ8octtTr1+qfv34J+/+S/6y6ZnQ4wWiD0nryHBQEBFRV3XE4BYdlHJdbr/hp93ue189wGp5/fCN19/S9fc++UQo42MJ/9+m7LSu15jOdJ1AZnS+DET1dhyLPSAbYq3Z4J4eB6QEqM+3BPJ/vqTxeThM/WPNz8T9nGmKV37qVu1s2q180GFG0skroES10FxHUiE13/rJxboxqkPdLktGu0Cj/zXY3pl1aMhRuu8/r2G6pEvr+x2e6Trgwf2HdLni6aGGC0Qe2KpXSQYPL1GzfTp07V+vY0h+SLRFjE+n0+S1NLS9UJGS5YsUV1dnXJzczV8+PBO29auXatf/OIX+vDDEFYMDlF1dXV4B2SkK9Wx0iXTNBV49DHJ3yENKVbwN7+V54pPyhhU6FgZh6oPSa0xMEnzOQQCgVP/VlUl54TK8f4eGIbRbZJNsipSGbkhnMcT2n5dqa2tVYuL3Txbz/E9i8brb2xsisvPDnCSKfPUv3yWEY9K+p3odluo9wHJ/r2gvd3v+nfHMNytCxyuPaJjjVFYrC7Ongni4XlAiv/6cE8l++tPFiPy7T+vNNQ3xsZnw+FroMR18KRkvw4kwuv3NTV3uy0adaFmX7Or753Rfu6eZRF/D0wjbj87gBS77SK1tfbnZSXRFiEFBQU6fvy41q1bp2nTpnXaVl1drfnz50uSJk6cKMMwTm0LBAK67777dP/992vcuHGOxVNYWBj2iDYnZ+UJvvKazI2b5PnyXfJMu1T+r31dgUcfk3fRwk6vvycGFQ6K+Z5b3o8WN/Z6vRo8eLDL0bgjEd6DDn+rUlMyutzW7jv3senZVkXKDEpt59j3XOfpP6CvAsFeIUQaGSlp3V9LnHr95zpXZnZG3H52AEkyZJz6l88y4lFOXla32853H5B6fi/0prj/3fEH2iR13cASjbpA3/59lJnXfbLPKfH2TBAPzwNSYtSHeyLZX3+ySMuyP0orPTs2PhtOXwMlroMnJft1IBFef0ZWWrfbotEukJGZ5up71yf33G0yka4PBs2OuP3sAFJstYsEg8FTg5QGDhxo+zwk2iJk5syZKi8v18KFCzVr1iyVlZVJktasWaM777xTdXV1kqTJkyd3Ou6JJ55QbW2tvv/97zsaz65du5SdfZ55fM7gC/jVZ9lbjpRtVlUp+NQzMkaVyXPb52R4vfLMnaPg088q+Mpr8n7mZkfK2blrp7K9sf2RXv4za775wsLCU2v0JZtEeA/ef1ryHe16W5dTPJ1h+n1Wb6U2n7RicfhlZ+RK+w9UhH+gg/avkXa91/W2SL9+SfrJ4oXKH7rQ3sFADHj7UUmm5PF64/Y6iOTWVCeteqbrbee7D0g9vxd89vZr9NDP3P3ufPC81NDNgLJI3wtTM6Qdu7fJob5q5xRvzwTx8DwgJUZ9uCeS/fUni2DAusa1dz/opUuZvaQVH/4xKte483HyGihxHTxTsl8HEuH1V2+Vtv6x623RaBf47n/O15Nj5ts72AHBoPTu41Kwm3VzI/0ejJo4JG4/O4AUW+0iPp9POTk5kqQVK1bYPo+zi2ThlAULFqhv3746ePCgxo0bpwkTJqi0tFRTp07ViBEjNGPGDEmd12erq6vTv/7rv+q73/2u/H6/6uvrVV9fL0lqbW1VfX19pzlD44EZDCrwyI+kYFDe+d+Q8VGvHc9tn5NRVqrgU8/IPBTmtJaAy/Lsd27osdwC98o+FYOLrz8WygeAZJedL3lcbMOLhXuh23WBWGiADgfPBEDy8XilwRPDP27wpPi7xoWC6yASTZ7L9TG32wU8Himnv3vlu1kXBdA1Em0RUlRUpOXLl+v6669XRkaGKioqlJ+fr8WLF2vp0qXauXOnpM6JtsrKSjU2Nuq+++5Tnz59Tv1I0sKFC9WnTx8dOHDAlddjV/D3L8ncVi7PXXNlDBly6veG1yvvN78hBQMKPPqYTNN0MUogPG428MVCZcrNGDJ7Wz35AQDuMTzu3gti4V6Y7HWBcPFMACSnoguk9JzQ98/sZS85Fw+4DiLRZPWRvE4vYhgib5pVvttc7XgVh/VBINGRaIugMWPG6PXXX1djY6MaGxu1evVq3XvvvfL5fKqoqJDH49H48eNP7V9SUqJ33nnnrB9Juuuuu/TOO++ooCAGuvCGyDxwQMFnn5MxZrQ8t372rO3GsKHyzJ0jc/MWBV95zYUIAXsGlEhyqZflgFJ3yj1TSrqUP8ydsgeUuVMuAKAzt67HOf2tThdu6z/CSji6Id7uhTwTAMkrPVuafKuU1v3Snqf3zbX2TcROdVwHkYgMj9TfpfaJAaWxMfLVrTqZN1XqO8ydsgF0L/Ynbk5AW7dulWmaKisrU1bW6RpnTk6Orrzyyi6PGTZsWLfbYpUxZIhSl756zn28d8yW947ZUYoIcEZGntRvhFS3J7rl9hkiZfeNbpndKZosHatwodwE7eEKAPGmcJy0e3n361JEStHk2GhYScuWBo6SasqjW25eYfyNaOOZAEhuuf2li+dIe1ZKtTskM9B5uydFKhgjjbwsvNFv8YTrIBJV8WSpZlv0yy2aHP0yu9KnWMrKl5qPRbfcgrFWB2gAsYURbS7YvHmzpM7TRgKIL8UXuFDm5OiX2Z1+I6yFe6NdZiyMYgAAWCMOCsZEt0xvWvTLPBc3GnliqS4AAKHK7CWNv066/D5p1KdOTzeXki5d/lVp7KcTN8kGJLK8wuhPYZhXIPUqjG6Z3TEMd+pmsZJoBNAZiTYXhJtoM01T3//+9yMYEYBw5Q+V+pdEubwYmDbyJI/HekiOWnkpUumV0SsPAHB+Iy+TUqI4xVfpFVJKWvTKO5/eg6Ob+OsV5fIAwGlpWVaHxZMjMbypiTlVJJAsDEMaNSOaBUa3HSIUgydZU5tHS9Eka6QwgNhDos0FjGgD4p9hSKNnRefB0Jsqjbk6NqbKOlP/EmvKgmgYOV3Kzo9OWQCA0KTnRK9xJX+oNDgGpw8eNSO0tYd6ypNijfhwa104AACArvQeLA25KDplDb0odkazneTxSuOujU4dLSNPKrki8uUAsIdHNRcsW7ZMpmnq+uuvdzsUAD2Qni2N+XR4x7T7pNZG699QjZ5lTbcSi0ZdFd50jnZef/4waciUcCMDAERDwZjwO12Eey9Iy/4oyRRjHU4kKTXzo8aVMGKzcy8su4oOJwAAIDaNvCy8KSTt1IXyBkojLgs/tmjIHSCVXB7eMeG+Bx6vNQVvLM3uAKCzFLcDAIB4NqDUSraV/ym0/T94Przzl10lFUZp1JgdqZnSlM9LHy6RWhvOv3+4r7/XYGniTfTgB4BYZRhWEszfJtXtCe2YcO4FqZnSlM9ZPXhjVd/h0rjrpC1vSDLPv3+498KRl1vTBAEAAMQib6p0wa1Wu4Dv6Pn3D7culN1Pmnyr5I3hVuwhF0kdLVLFB6HtH857YHikCTdKvYvsxQYgOmi6BIAeGjxBGn+9Na2TUwyvlcAbcqFz54yUzF7SRXc4Py95vxHSlFvpsQUAsc7jtTpFFI5z9ryZvaSLbo/uuhd2FYyx3gNvqnPnNDzW1JTDL3HunAAAAJGQliVdeLvVWdZJvYuki2ZHZ6runjAMq3NUyeWSHJyFISVdmvxZa+kOALEthvsCAED8KBgj5RVIW9+UTlT17Fx5BdLYa6Scfs7EFg0ZudLUOdLeVdL+1ZIZQo/+7njTpLIrpUETYnOaMADA2U6uT9FvhLT9batHb08UTZZKPhlfnS0GlEq5X5K2/Uk6fqBn58rpb72fuQMcCQ0AACDi0jKtpNj+tdLelVIwYP9cnhRrSsohF8bPDDeGIQ27ROpTbLUNNR/r2fn6jbCWEsnIdSY+AJFFog0AHJLVx6pUVm2WDnwYfqUqs7dUPMVqXPTESUXyTJ4UqWS6NKBE2rdKOrJHIU2hdebxBWOkEdNie4owAED3Bo6yGhf2rZIObZEC7eEdnz/MGsHVpzgi4UVcZi9rSuXqrVYjk68uvOMz8qTiC6z6gMcbmRgBAAAixfBIw6ZK/Uda9cHaHZIZDON4rzSwTBo+LX7Xp+01SLrki9KBtVLlBqmtKbzjcwdKQy+SBo6m8zEQT0i0AYCDDI+1jsrgidLxg1L1FulETfdJt6w+1gi2wrFW42IiVKLyCqRJt1hrtlVtst6Hhlop6D9739QMqxLZb4Q15VhqRtTDBQA4LC3LmvKwZLpUs106vEtqrJXam8/e15Nijd7qU2TdO7P6RD9epxmGNGi8dV87UWUlHE9US75j6rIDSmbvj+oCY6z13uKl1zYAAEB3svtaS2yUXmnVhY5VWO0CXXXCSkm3RvH3HWbVodKyoxxsBHhTpOGXSkOnWusY15Rb9eGWE2fvaxjW+9VrkDWzT15BYrQNAcmGRBsARIBhSPlDrB9J8rdbiwIHOiSZ1hou2X2tCmWiysiTRk63/tsMSs3HrUbWYNDqpZ+Ra+1DBRIAEpM3zUqeDZ5oTSnc1mQ1LgQD1sjt1AwpKz9xR24ZhrWuyMmF6wPtUtMZdQFPqtVTm04mAAAgUaVnW7MVDL/Eqg+21Ft1wpPtAunZVqejRG0X8His6cUHlFr/395itY0EOyQZ1jTp2X2dXecXgDtItAFAFKSkSb0K3Y7CPYbHqjxm93U7EgCAGwzjow4WSbzGhDfJ6wIAACC5GYY1e0EizGBgV1qm9QMg8TAxCQAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbUtwOALEpy+PV8Rmz3A4jLFker9shAAAAAAkj3p4JeB4A4KR4uwZKXAcBAHALiTZ0yTAMZXv5eAAAAADJimcCAMmMayAAAAgVU0cCAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGxIcTsAxCbTNNUcDLgdRliyPF4ZhuF2GAAAAACABMBzcXLj7w8AAEJFog1dag4G1GfZW26HEZbjM2Yp28tHGgAAAADQczwXJzf+/gAAIFRMHQkAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABlZIBSLMNKWWE1LjYSnQYf0u0CEdPyjlDpRS0tyNLxo6Wq3X33LijPfAL7U2SOm5kmG4Gx8AAAAQSYEOqfGI1Hys8zOB76iUlZ/49WHTlFrqz34mqq+ScvtL3iR4JgKSnb9daqy1rgVntgs010uZvZLgOhiUfMekprrO18ET1VJOf8lLCy0AxDUu40AEmEGpbp9Utcl6ePS3dt7ub5M+XGL9d1a+NKBUKpokZeRFP9ZI8R2TKjdKdXusivTH+VulFT+XUjOlPsXS4ElS/pDEr1wDAAAgObT5pEObpdrtVkLNNDtv97dJ7z9tJZl6FUqDJljPBR6vO/E6LRiQjuyRDm2S6g9JgfbO2/1t0toXJBlSdr40oEwaPFHKyHUlXAAR0HLCahc5vMvqaPBx/lbpb7+UUjKk3oOta0C/4ZKRIPNvBfzS4R3SoS1SQ83pBNtJ/jZpza+t15vTTxo4Who0XkrLcideAIB9JNoAB5mmVLlB2v+B1NoY2jHNx6SK1VLFB1L/kVLJJ60HzXjVUCvt/qt0bH9o+3e0SId3Wj9ZfaTh06SCMSTcAAAAEJ9aG636cO0OqwPe+QTarbrzsf1W4+qQC6UhF8Vvws0MSgfWSQfWSm1NoRxgJSL3vS9VrJL6l0qlV1gjXADEJ98xadd7Ut1eSeZ5d5e/1eqkW7fH6oA89GKpaHL8tgsE/dK+1Vb7UEfL+fc3g9aI38bD0t6V0sAxUsnlUnp2xEMFADiERBvgkOZ6adubUn2lzROY0pHd0tEKaeR0aciU+OrFFQxI+1ZZScNQGhS60nxc2vqG1et3zNVSeo6zMQIAAACRYppS9RZp57vWKAU72pul3cul2p3S2GusaRXjie+otPVNqaHa3vGmaXXAO7rPSrYNnhS/De1AMjqZaN+zwko22dHaIO34i9VZYew1UlZvR0OMuBPVVtuQ76i944MB615St0ca9Slp4CiugwAQD+KoGR+IXXV7pVXP9CDJdoagX9r1rrT+JWsO83jQ3mxN+7LvfftJtjPV7ZXef8aaYgYAAACIdcGAtGWptO1P9pNsZ2qslT54Tqre1vNzRUvtTmn1r+wn2c4U6JC2vy1tetWaeg1A7PO3W+0Yu961n2Q7U32ltPpZa1mOeFG5UVrzG/tJtjN1tEhbXpfK/+xMOwsAILJItAE9dGSPtPEVZyqSZzpWIa1/8ey1DGJNe4v04e+s+cad5G+V1v3OmeQlAAAAECnBgLTpNWtWBieZQWu2h6rNzp43Emq2S5v/YL0XTjqyW9r4svPPWgCcFWi32i+OVTh83g7rGnBkj7PnjYQD66TtbymkqTLDcWiztOUNkm0AEOtItAE9cKJa2vxa5Co8J6qkTX84e+H0WBEMSBteknx1ETq/3+oR5+ti0WQAAAAgFmx/y5riK1LK//zROkcx6tgBKyHodOPyqfPvt6ajjNVnIiDZmabVbnGiKkLnD1rtLiccGC0bKbU7pJ3LInj+7daadwCA2MUabYBNgQ5p6x/D67U5da6Uli21+6QPng/tmKP7pKpNUtEke3FGUsXq8KeGCfc9CLRb85tfdHt8rVkHAACAxHd4t3RoS3jHhP1MYFpTUk77kpSaaSfKyPG3Sdv+GF7HQzvPRLXbpf4jpYIx9uIEEDlVG612i3CEex0IBqz2l0u+KHljrCWzrUkqfyu8Y+xcBw98KPUbKeUPCT9GAEDk0WwN2LT3b1JzmCOt0rKljFzr33DseldqORHeMZHWeFjatyr84+y8BycOWZVKAAAAIFZ0tEjb/xz+cXbqw+0+acc74ZcVabv+KrU2hneM3WeiHX+R2nzhHQMgslpO2BtpZec60HxM2rsy/LIiyTStJJu/Nbzj7F4Ht71prYUHAIg9JNqioK6uTgsWLFBJSYkyMjJUXFysBx98UD6fT/fcc48Mw9ATTzzhdpgREXjqGXVcfZ2Cb579BGqapvzffEgd198kc19F9IPrgdZG6cDa6JUX6LASe7Fk91+jO0f43r85s7A8AAAA4IT9a6T25uiVV7NNaqiNXnnn4ztmjWSJlo5WqcJGR79YkKjPxeFqqJV2LLOS1JL1fNd0xN2YoiVRPwN7/2a1V0TLgbXhJ/cjqb4yslMHf1xrg3RwffTKAwCEjkRbhG3YsEETJkzQI488opqaGo0dO1YdHR16/PHHNXv2bJWXl0uSJk+e7G6gEeK5c440bKgCi38h80jnhbyCL70ic9Nmee6cK2P4MHcCtKlqY/TXCKjdIbW3RLfM7jTXS0croltmoEOq3hbdMgEAAICuBP1S1ebolxvNxNb5VG6IfpmHtsbnaI5EfS4O1Ylq6YNfSx88Jx1cd3r5hUCHtOpZae1vrRlTElkifgbaW6xpXaPJNK2lNWKFG9fBqg3R7fQMAAgNibYIqqur04033qiamhrNmzdP1dXVWrdunWpqarRw4UItXbpUa9askWEYmjhxotvhRoSRmqqU+fOk1lYFfvTfp35vHqxU8JlfyRg9Sp7P3+pegDYEA+48VAf9UnWY6z9EStUGd8qt3MAi6AAAAHBf7c7To3KiqXqbNbLLbYF2qXqrO+XWlEe/3J5KxOfiUB2tkD5ccu61vesrrWRbfVXUwoq6RPwMVG8Jb816p1Rtcqfcj2vzSYd3Rb/c1kapLsw18QAAkUeiLYIeeOABVVZW6v7779eiRYuUm5t7atuCBQs0adIk+f1+DRs2THl5eS5GGllGaYk8t98m88N1Ci79o8xAQIEfLpJMU97582R4vW6HGJbGWmuNBDfU7XWn3I874lIcvqPWVAkAAACAm9yqlwf90vGD7pR9pvpD7k3rHivPROFKtOfiUDQflza9an1uzyfQLm14ObamBXRaon0GjkRxysQztftiYwTk0Qr3RpbF63UQABIZibYIKS8v15IlS9SvXz89/PDDXe5z4YUXSpImTZp06nfvvvuuDMM46yfep5b0zLlDGjFCgV/8UsGf/kzmjp3yfOmLMoqL3A4tbA01LpZd6/6ILn+7tQixW9x8/wEAAADJ3TppYwys0+bmWnGx8PrtSqTn4lAcWBfe+l3+VqkyhqZHjYRE+QyYprvJrlhoF2h0s20oBl4/AKAzEm0R8sILLygYDGrOnDnKycnpcp/MzExJnRNtJ/30pz/V+++/f+rnueeei2i8kWakpChl/jek9g4FX18qY/w4eT57i9th2eLmQ2WgXWqpd698yf2eY/H8YA0AAID4529zt07u5vPISW42MLc1WVO2xaNEei4+H7/N6UUPxci0gJGSKJ+B5uNW+4RbYuE66GYMTXWJ/T0BgHiU4nYAiWrZsmWSpKuuuqrbfSorKyV1nWgbO3asLr300sgE55bsbCk1VfL7ZVx8kQxPfOZ53Z7KorVByurjbvlucvv9BwAAQHJzvT4cA1Opu10nb22Q0rPdjcG2BHkuPp8Th+wlYtqbrc6VvQY5H1PMSIDPgNvXobYkvw6aAWsKzYzEXYUGAOIOibYI2b9/vyRp6NChXW73+/1auXKlpK4TbU4rLS2VJ4zKm5mWJi3+qWPlm6apwKOPSf4OaUixgr/5rTxXfFLGoELHyigrLZPRHvkuVd/+/EsqGzy1y21T50pp53jgO/kwmJ4tTb/v3OW0+6QPnj/793fO+aI2ViwLMVrnXT52tu65+tEut53v9Uuhvwfdvf7XX3tD19x3b4jRAkDseeqB/fJ4vAoGAioq6rqeAACIXUMHTNC/feGPXW6LRn14754Kfb5oeojRRsa/z/mzhvQf2+W2aDwTfeaWW7WzanWI0drHc7F9F5der69dv9jWsbM/P0db9r/ncEThc/rvL0X+MxCtv/+k4Z/SP938bJfbonEdfP/91brpG7eGGG1kPH7vBuVl9etym1PXwe5evyRd9onLVVu/L8RoASC2xFK7SDB4esHN6dOna/369bbOQ6ItQnw+ay6LlpaWLrcvWbJEdXV1ys3N1fDhw8/aPnv2bNXV1alv37666aab9F//9V/q16/rG3goqqurwzsgI12ptks7W/CV12Ru3CTPl++SZ9ql8n/t6wo8+pi8ixbKMAxHyjhUfUhqjfyK3L6Wpm63pWVLGbnnP4fhCW2/rtQcrlZVVZW9gx1QN7D7uSNDff2S/fegsemEq68fAHrKlHnqX65nABB/UgPdTy8Rjfpwa1uz6/eP1tbmbrdF5Zmopio67wHPxbYNzq20fWzlof2uf8YlOf73lyL/GYjW378gu/s2pmhcB5ubm1z/jLR3dP8+R+M6WFl1QIfrY+B7AgA2xGq7SG2t/XmBSbRFSEFBgY4fP65169Zp2rRpnbZVV1dr/vz5kqSJEyd2qkz16tVL8+fP1yc/+Unl5OTo/fff18MPP6xVq1Zp7dq1ysjIsBVPYWFh2CPajtgqqYtzVVUp+NQzMkaVyXPb52R4vfLMnaPg088q+Mpr8n7mZkfKGVQ4KCo9tzqC3S8I0H6etQLSs62KlBk8/7oC3Z0rPdvQ4MGDzxNl5KRkmN1uO9/rl0J/D7o7l18trr5+AOgpQ8apf7meAUD8ycrqvuk9GvXhlo4G1+8frYHu50yLyjNRjjcq7wHPxfb5gjUKBP3yesJrdmr3t6rdc9z1z7jk7N9fis5nIFp///Ss7tuXonEdbDd9rn9GmtvrJXUdg1PXwe7OEzSDyumdrtRs978nAGBHLLWLBIPBU4OUBg4caPs8hmma3beaw7YHHnhAP/nJT1RcXKy3335bZWVlkqQ1a9bozjvv1N69e9XR0aGvfe1reuKJJ855rj/84Q+66aab9NRTT+nLX/5yyDH4fD7l5ORIkpqampSdHfok9r6AX32WvRXy/t0xg0EFvjFf5q7dSvmfn8gYMsT6fSCgwIPfkLn/gFIWP+nINAnHZ8xStjfyueOK1dLu5faOnX6f1VuptVFaYWMWDcMrXfWA5PHaK98J7T7pr/9j//ievgdjr5EGjbdfPgC47e1HJZmSDGnmPLejAQDY8df/Ca0xuSs9rQ8XXyiN6n4p8KjYvdx6LrKjp68/JV264n7JoQFg58Rzcc9selU6vCu8YwaNt575YoFTf38pep+BaP39g37pncetRJEdPb0OlFwuDbvEXtlO2fqmVL3F3rE9ff1Z+dIn7rZXNgDEglhqF+lJDuVM8bfiapxYsGCB+vbtq4MHD2rcuHGaMGGCSktLNXXqVI0YMUIzZsyQFNr6bDfccIOys7O1du3aSIftuODvX5K5rVyeu+aeqkhKkuH1yvvNb0jBgAKPPqZ4yvfm2k9s97zsfu4m2SRrCoR0m1MbOCHPxfcfAAAAkNytk8ZCfdjNGHIHRCfJ5qREfC4ORfGFYR5gSEUXRCQU1yXaZ8CTIuX0d6/83AL3yj4p2e8DAIDOSLRFSFFRkZYvX67rr79eGRkZqqioUH5+vhYvXqylS5dq586dkkJLtJ3k1Jzt0WIeOKDgs8/JGDNanls/e9Z2Y9hQeebOkbl5i4KvvOZChPb0KrQqlW7oU+xOuR/nVhxpWVJWX3fKBgAAAE7qM+T8+0Ss7CL3yj6p12Br2jM3uPne25Goz8Wh6FMklXwy9P1HfyoxEwiJ+hnId6ldwJMi9YqBRJub7TOx0jYEADgtNuYTSFBjxozR66+/ftbvm5qaVFFRIY/Ho/Hjzz8H3muvvSafz6epU6dGIsyIMYYMUerSV8+5j/eO2fLeMTtKETkjJV0qGCMd2hz9sgeHnpeNqKJJUs226Jc7aKIUxlKDAAAAQEQUjpP2LJeCgeiW22+ElJEX3TK7kp4tDSiVandEt1zDkAZPiG6ZPZWoz8WhGjZV8qZKu96zphvsijdNGjUjcZcISNTPwOBJ0n4XJl4qHGu1y7gtp5/Uu0iqr4xuud40aeDo6JYJADg/Em0u2Lp1q0zTVFlZmbKysjptmzt3rkaMGKEpU6YoJydH77//vn74wx9q8uTJuv32212KGB9XNDn6iba+w6SsPtEtszu9BlnTRDQ5uTL0+RhS0cQolgcAAAB0Iy3Tauis3hrdcosmR7e8cymaHP1EW/9SKT0numWi54ovsDqrVm+zvjONhyWZ1qjIUTOkgrFSSprbUSJcWX2k/GHSsYrolhtr18FoJ9oGjeP7AgCxiLEhLti82crQdDVt5Lhx4/Tyyy/ri1/8oq699lo99dRT+ru/+zu9++67SkvjThor8gZK/UZGt8zh06Jb3rkYhjTiE9Etc9D42Oi9CwAAAEjWSJ1orp+cVyj1HR698s6nd1F0py8zDGnYJdErD85KzZCGTJEuudMaESlZSwMUTSZpEM9GXBrd8vqNtNZpjBUDSqXsftErz5sqDbkoeuUBAEJHos0F50q0fetb39LmzZvV0NCgjo4O7du3Tz/60Y/Uq1evaIeJ8xgzK3rTFRRfKPUeHJ2yQjWgNHrTFaTnSmVXRqcsAAAAIBTZfaPX+czjlcZdYyWbYoVhSGM+Hb31q4ddkpjrdwHxrHeRVDwlOmWlpFvtMLEk2tfm0iukTJoHASAmkWhzwbkSbYgf6TnSqE+Fd0y7T2pttP4NVVYfqWR6eOVEy6gZVi/EcNh5D8ZeHRtzsAMAAABnGnKxNdIsHHbqwyMusxJ7sSart9XwGw47rz+nf2zN8AHgtJLp4S9zYec6MOpTsTl1bF5B+KNt7bz+/KHWungAgNjEGm0uWLZsmdshwCGFY6Xm49K+90Pb/4Pnwzt/WrY0+VZreoBYlJYlXfA56cMlkr8ttGPCfQ9GfSq2psgBAAAATvJ4pEm3SB/+1nouCEW49eHBE6WhF4cdWtQUTZaa66WDH4a2f7ivPyNPmvzZ6E7TCSB03jSr3WLtC6EnjsK9DgyfZrW/xKoRl0ktJ6Sa8tD2D/f15/SXJtwYW6OaAQCdMaIN6KERn4jMlDEZudKFs61eorEsd4A05fNSaqbz5x71KWvhbAAAACBWpWdb9fZIjDgrmiyNnhXbjauGYU3zHol1g7L6WO9tRq7z5wbgnKze1nc1PQLf1Ui1uTjJMKSx10oFEUgG5g78qM0lw/lzAwCcQ6IN6CHDsCp9E25yLtnUv1S6eK6Une/M+SItr0CaOlfKH+LM+dJzrZFyJNkAAAAQD9JzpIu/IA0a78z5vGnW+mejPhXbSbaTDMOaQnLcdVKKQ43BBWOki77AekRAvMjOt9oF+pc6c77UTGniTVZ7SzxcBz0eady1UtkM59auLJpsJTDDXbIDABB9TB0JOGRgmdSnSNqxTKrdbu8cadlS2VXSwFHxUZE8U2Yv6YLPS1Ubpd0rJH9r+OcwDGnQBOshnTXZAAAAEE9S0qWx10gDyqTtb0utDfbO02+ENHqmNWViPDEMa2q3/CHS9r9IR3bZO096rrUW9ACHGusBRE96tpUcq90u7XxHam+2d56Bo+2tCe82w5CGTLGu49v/LB07YO88WX2s0cxOdWYGAEQeiTbAQWlZ0oQbpJHTrYTToS1SR8v5j+tdZPVUGlAa32sPGIb1OgrHWRXryg1SQ+35j0vLloomWUk2poUBAABAPOs3QrrsK1LdPqlyvXS04vzHeNOsOnTRJCmnX8RDjKj0HGnSzZLvmFS5UareEtp6zvlDrWeJfiOtkSEA4pNhWCNSB5RJh3dZ7QL1lec/LjXTGhU8eFLsL6FxPlm9pSm3SY2HrddfvU0K+s9zkGHdP4onS/nD4q/zNQAkOxJtQARk9bZGZY28XGo+aiWbGg9bo7yCQcmbImX2lvIGWvNtx1svrfPxplpJs0ETpDaf1FhjvQctDVbl0uO1KtEnX39WHyqRAAAASByGR+o/0vrpaLWeBRpqpObjHzW2GtYIuNz+1jTs2X3ju8NdV7LzpVFXSaWftJJuDTVS02Gpo00yP3omyuoj5RZIeQMis+YzAPd4vFLBaOunvVlqrP2oXaBeCvithHpKhrXue16Bdc0wEizJnjtAGnO1NTqvqc56/U1HJH+7JNOaYjK770dtIwOY2QcA4hmJNiCCPB4pp7/1k6zSs6X0kVbPVAAAACDZpGZY038l6xRgHq+VUMxN4mciINmlZUl9h1s/yciTYiUT8wrcjgQAECkJ1lcEAAAAAAAAAAAAiA4SbQAAAAAAAAAAAIANJNoAAAAAAAAAAAAAG0i0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsSHE7AMSmLI9Xx2fMcjuMsGR5vG6HAAAAAABIEDwXJzf+/gAAIFQk2tAlwzCU7eXjAQAAAABITjwXJzf+/gAAIFRMHQkAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAQMSZpvVz8r8BAAASQYrbAQAAAAAAACDxtLdIh3dKDdVSQ63kOyqZwY+2+aTVv5JyB0q9CqUBZVJqhrvxAgAA2EGiDQAAAAAAAI5pqJEOrpdqt0vBQPf7NR62fg5tlnYskwrGSMVTpNz+0YsVAACgp0i0AQAAAAAAoMcC7dLu5VaSLVxBv5VwO7RFGnqRNOIyyUurFQAAiANUWQAAAAAAANAjDTXS5j9ILSd6eCJT2r9GOrJHmnijlMPoNgAAEOM8bgcAAAAAAACA+HX8oPThEgeSbGdoPiatXSKdqHbunAAAAJFAog0AAAAAAAC2nKiWNrwkBTqcP7e/VVr/otRU5/y5AQAAnEKiDQAAAAAAAGHzt1vTRUYiyXaqjFarjKA/cmUAAAD0BGu0AQAAAAAAIGy7/yq1NoR3zNS5Ulq21O6TPng+tGN8R6W970sll4cfIwAAQKQxoi0K6urqtGDBApWUlCgjI0PFxcV68MEH5fP5dM8998gwDD3xxBNuhxlRQVM6cFTaWiltq5IOh1kRBwAAAAAAseNEtVS5Ifzj0rKljFzr33BUfBD/U0g2tkg7qqUtldKeWqkj4HZEAADACYxoi7ANGzbo2muvVU1NjbKzszV27FgdOnRIjz/+uPbs2aNjx45JkiZPnuxuoBHS1iG9v0dauVM60th528gB0mWl0uShksdwJz4AAAAAABC+g+uiXKApVa6XRs+KcrkO2HdE+usOaeMBqyPySdnp0iUjpcvLpD5hJh4BAEDsINEWQXV1dbrxxhtVU1OjefPm6Xvf+55yc3MlST/84Q/10EMPKSUlRYZhaOLEiS5H67z6Zunn70iH6rvevuew9bPpoDT3E1KKN6rhAQAAAAAAG9p9Uu2O6JdbvU0q+aSUkh79su1atk16bX3X23xt1vZVu6WvXCGNGBDd2AAAgDOYOjKCHnjgAVVWVur+++/XokWLTiXZJGnBggWaNGmS/H6/hg0bpry8PBcjdV5zu/SzZd0n2c604YD06/c79+oCAAAAAACxqWaHZAajX26gQzq8O/rl2rV8R/dJtjM1t0uL35EOHY98TAAAwHkk2iKkvLxcS5YsUb9+/fTwww93uc+FF14oSZo0adJZ215++WV94hOfUHZ2tnr16qXLLrtMW7dujWjMTnpvu1RzIvT91++XdtVELh4AAAAAAOCMBhef3xuq3Ss7HL426dUQkmwntfmllz+MXDwAACBySLRFyAsvvKBgMKg5c+YoJyeny30yMzMlnZ1oe/zxx3Xbbbdp+vTpeu211/TCCy9o5syZamlpiXjcTggEpfd3hX/cip3OxwIAAAAAAJzV6GKirbHWvbLD8cFeyR8I75hdteF1WgYAALGBNdoiZNmyZZKkq666qtt9KisrJXVOtO3Zs0fz58/XY489pvvvv//U76+77roIReq87dVSQ2v4x22psnp8ZcfRXOsAAAAAACSTYFDyHXOv/KY698oOxwd77B23Zq904wXOxgIAACKLRFuE7N+/X5I0dOjQLrf7/X6tXLlSUudE21NPPaXU1FT93d/9naPxlJaWyuOJzgDGEZfM1ZTP/lfYx5mmdPEnPqUGN1ZUBgAgSp56YL88Hq+CgYCKirquJwAAAMSq9NQsLf5a91PSTJ0rpWWf4/js0/9Ov6/7/dp90gfPn/37jvagioqGhBite276/lalZfYK+7inf/2y/v7Gr0cgIgAAYkMstYsEg6cXnZ0+fbrWrw9j3uczkGiLEJ/PJ0ndTve4ZMkS1dXVKTc3V8OHDz/1+7/97W8aNWqUnn/+ef3gBz/QwYMHVVpaqu9+97u64447bMdTXR29Sczz6+ttH3v4cK2OVlU5FwwAADHGlHnq3yrueQAAIM5knCuLJivJlpF7/vMYntD2O4upuKhDmUHT1nHNzc1x8foAALArVttFamvtz09Noi1CCgoKdPz4ca1bt07Tpk3rtK26ulrz58+XJE2cOFGGYXTaVlVVpW9961tauHChiouL9b//+7/6whe+oP79+2vmzJm24iksLIzaiLY0Nds6zgwGlJcpZQwe7HBEAADEDkPGqX8Hc88DAABxxmN4FTSD8hhdtzG0+859fHq2lWQzg1LbOfbt7jxt/ua4qEO1NFQrPbt3+Ae218fF6wMAwK5YahcJBoOnBikNHDjQ9nkM0zTtdbHBOT3wwAP6yU9+ouLiYr399tsqKyuTJK1Zs0Z33nmn9u7dq46ODn3ta1/TE088ceq4srIy7dq1Sy+//LJuueUWSZJpmpo8ebJ69+6t9957L+QYfD6fcnJyJElNTU3Kzj53rzOnBILSv70iNXQ9mK9bE4qke66ISEgAAMSMtx+VZEoypJnz3I4GAAAgfO8/ZX+dtun3WSPZWhulFYvDP75XoXTxHHtlR9M75dKr68I/7ls3SAPDn3ESAIC4EUvtIk7lUKIzxCkJLViwQH379tXBgwc1btw4TZgwQaWlpZo6dapGjBihGTNmSOq8Ppsk5efnS1KnkWuGYWjmzJnasmVL9F5AD3g90rSS8I+bXuZ8LAAAAAAAwFm5BS6Wbb+zeVRNHSGleMM7pnQgSTYAAOIRibYIKSoq0vLly3X99dcrIyNDFRUVys/P1+LFi7V06VLt3GktHPzxRNu4ceO6PWdra2tEY3bSlaOlgjAqh1OGSmUuVtQBAAAAAEBo8lx8fs8rdK/scGSnSzdfEPr+6SnSZy6MXDwAACBySLRF0JgxY/T666+rsbFRjY2NWr16te699175fD5VVFTI4/Fo/PjxnY65+eabJUl//vOfT/0uGAzqrbfe0sUXXxzV+HsiM0366gxpUO/z7zt5iPSFadIZS9UBAAAAAIAYVTBKMsIcreUEb6o0wMYMOm65fJR0UwjJtqw06b6rpEF9Ih8TAABwXorbASSjrVu3yjRNlZWVKSsrq9O2G2+8UZdffrnuvfdeHT16VEOGDNEvf/lLbd26VW+99ZZLEdvTO0t68Gpp1R5pxU7pSGPn7SMHWNNFThoieUiyAQAAAAAQF9KypYFlUk15dMstHCelpEe3zJ6aMVYa3l/66w5p00FrXfuTstOlS0dabSN97C0JAwAAYgCJNhds3rxZ0tnTRkrWemyvvfaaHnroIX37299WQ0ODJk2apDfeeOPUum7xJD1VumK09MlR0sFj0o/ePL3t67PciwsAAAAAANhXPCW6iTbDkIomR688Jw3vb/00tkj/+tLp33//M1KqCyMDAQCAs0i0ueBciTZJ6t27txYvXqzFixdHM6yIMgxpSF/JkGTK+hcAAAAAAMSnXoVW4qtyQ3TKGzpVyukXnbIiJTezc7sISTYAABIDa7S54HyJNgAAAAAAgFhX8kkps1d4x7T7pNZG699QZfeVRkwLrxwAAIBoYUSbC5YtW+Z2CAAAAAAAAD2SkiZNuFH6cIkU6AjtmA+eD7OMDKsMDy1YAAAgRjGiDQAAAAAAALbkFUiTPyt5U50/d0qGdMGt8T9lJAAASGwk2gAAAAAAAGBbn2LpwtnhTyN5Ltn50kWzrbXgAAAAYhmJNgAAAAAAAPRIXoF06V1S8ZQensiQhk6Vpn5RyunvSGgAAAARxQzXAAAAAAAA6DFvmjRqhlQ4Tjq4TqrdLgUDoR3rSZEKx0rFF5BgAwAA8YVEGwAAAAAAAByTN1Aad61UeqV0eKfUUCM11Eq+OskMWvt4vFJ2P2vfvEJpQKmUmuFq2AAAALaQaAMAAAAAAIDj0jKlokmSJp3+XTAgyZA8LGYCAAASBIk2AAAAAAAARIXH63YEAAAAzqL/EAAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYkOJ2AEAsMk2pPeB2FOFJ80qG4dz5TNNUczC+3oQsj1eGk28CACSxZL8PUBcAAADJLtnrQ8leHwYAhI5EG9CF9oD00BK3owjPwtlSuoPf6OZgQH2WveXcCaPg+IxZyvZyWQMAJyT7fYC6AAAASHbJXh9K9vowACB0TB0JAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNoAAAAAAAAAAAAAG0i0AQAAAAAAAAAAADaQaAMAAAAAAAAAAABsINEGAAAAAAAAAAAA2ECiDQAAAAAAAAAAALCBRBsAAAAAAAAAAABgA4k2AAAAAAAAAAAAwAYSbQAAAAAAAAAAAIANJNqioK6uTgsWLFBJSYkyMjJUXFysBx98UD6fT/fcc48Mw9ATTzzhdpgAAAAAAAAAAAAIA4m2CNuwYYMmTJigRx55RDU1NRo7dqw6Ojr0+OOPa/bs2SovL5ckTZ482d1AI6ixVXpri7Twdcn86HempNV7pHa/m5FFXuW2d/XjuYY+XLqo231+PNfQq4tuiGJU0RV46hl1XH2dgm/++axtpmnK/82H1HH9TTL3VUQ/OACIkoZaadufpBU/V6ebYX2lZJrnOjL+Jft9gLoAAAAImlL5IemX73VuF3lxrVRzws3IoiPZ60PJXh8GAEnyt0kH10sfPKdON8MD66SOVjcjc0aK2wEksrq6Ot14442qqanRvHnz9L3vfU+5ubmSpB/+8Id66KGHlJKSIsMwNHHiRJejdZ5pWgm2P22RAsGzt7+wSnp1nfSFadL4oujHh+jw3DlHwVWrFVj8CxkXTpHRv9+pbcGXXpG5abM8d39JxvBh7gUJABHS0SJtfl06tr/r7Wt/K+UVSBNvljJyoxtbtHAfAAAAyaz2hPTUX6XahrO3Ld9h/UweYrWNpNFKl5CoDwNIdoc2SzuWSYGOs7ftXCbt/qtUdqVUNDnakTmHEW0R9MADD6iyslL333+/Fi1adCrJJkkLFizQpEmT5Pf7NWzYMOXl5bkYaWS8uk56Y1PXSbaTmtul/31P2tBNAyTin5GaqpT586TWVgV+9N+nfm8erFTwmV/JGD1Kns/f6l6AABAhHa3S2iXdJ9lOaqiR1v5Gam2MTlzRxn0AAAAkq5oT0o//3HWS7UwbDkg/WyZ1BKITF6KL+jCAZHZwvTXDT1dJtpOCfmn729L+NdGLy2kk2iKkvLxcS5YsUb9+/fTwww93uc+FF14oSZo0adKp31155ZUyDKPLn69+9atRid0JGw9I724PbV9T0vN/k442RTQkuMgoLZHn9ttkfrhOwaV/lBkIKPDDRZJpyjt/ngyv1+0QAcBx29+SfHWh7dvaKG1ZGtl43MR9AAAAJJtg0OpY3Nwe2v57j0ivb4hoSHAR9WEAyaihRtrxl9D33/WeVF8VuXgiiUHpEfLCCy8oGAxqzpw5ysnJ6XKfzMxMSZ0TbU8++aQaGjp3dVq6dKl+8IMf6IYb4meu6vdCTLKd5A9K7++WbpgckXBc529vVktjiK2tCcoz5w4F31+twC9+Kc+evTJ37JTn3q/IKGbeUACJp7VBqt0Z3jH1ldZabnkDIxOT25L9PkBdAACA5LK9WjoS5owFq3ZL106UMlIjE5Pbkr0+lOz1YQDJ5+B6G8esk3oPdj6WSCPRFiHLli2TJF111VXd7lNZWSmpc6Jt7NixZ+33n//5n+rfv7+uueYah6OMjOp6qydWuFbtlq6ZIKUkYCeeVS9+T6te/J7bYbjKSElRyvxvyP/1f1Tw9aUyxo+T57O3uB0WAERE1SadXtw3nOM2SnlXOx5OTEj2+wB1AQAAksuKMDtdSVKbX1q7T5pe5nw8sSDZ60PJXh8GkFzaW6TaMAfjSNLhXVJbk5Te9dilmEWiLUL277cWZBk6dGiX2/1+v1auXCmpc6Lt444cOaI333xT//AP/6CUFPt/rtLSUnk80ZkpdOhFt+niz/8o7OOa2qTxUy5X09F9EYgqPN7UTH3mB7scO9/4q+5V6SWf73Lby/81y5EyykpLFehoceRckmSmpUmLf+rY+SRJ2dlSaqrk98u4+CIZDn8my0rLZLSHOC8HAETQvFue14RhV4Z93N/e3qJZd8dGx5pkvw9QFwAAAD1xw3fWKyO3f9jHPfLkb3X7778ZgYjCl+z1oWSvDwNAT4wafKm+9fnfh32cGZRu+fRcbd7/rvNBdSEYDJ767+nTp2v9ehvD8ESiLWJ8Pp8kqaWl65v7kiVLVFdXp9zcXA0fPrzb87zwwgvy+/268847exRPdXV1j44PR9+x9m/ox0406UiV+xOxpqRnOXq+3gWlGjJ+pqPn/LhD1Yfkb2t27oQZ6XJytgrTNBV49DHJ3yENKVbwN7+V54pPyhhU6FgZh6oPSa1tjp0PAOwyg/YemFOMdFXFwH1QUtLfB6gLAACAnvCkZto6riNgxEx9MOnrQ0leHwaAnhica/9a3NTY4sq9sLa21vaxJNoipKCgQMePH9e6des0bdq0Ttuqq6s1f/58SdLEiRNlGEa353nuuec0ZswYXXTRRT2Kp7CwMGoj2rLTwy/HNE0ZhqHeuRlKG+z+JKxemxViNw0qHOT4iDYbM4B2K/jKazI3bpLny3fJM+1S+b/2dQUefUzeRQvP+R0Ix6DCQfTcAhATgrL3cNsW8GlwDNwHJe4D1AUAAEBP+NsalZYR/rxXKUZHzNQHk70+lOz1YQDoicwc+10VMrJTonYvDAaDpwYpDRw40PZ5SLRFyMyZM1VeXq6FCxdq1qxZKiuzJthes2aN7rzzTtXVWYu/Tp48udtzbN++XWvXrtX/+3//r8fx7Nq1S9nZ2T0+TyhOtEj/9rIUDGNtGsMwNCBP2rHpfTlUt+iRNr/00BK3owjPzl27lO7gN9oX8KvPsrccOZdZVaXgU8/IGFUmz22fk+H1yjN3joJPP6vgK6/J+5mbHSln566dyvZyWQPgvoPrpR1/Cf+4T31msu5dVOl8QDYk+32AugAAAOiJ366SVu0J/7gfzJ+riY/PdT4gG5K9PpTs9WEA6ImgX1q+WAq370NKuvTme0vkTYtMXB/n8/mUk2N1jFmxYoXt80RniFMSWrBggfr27auDBw9q3LhxmjBhgkpLSzV16lSNGDFCM2bMkHTu9dmee+45GYahOXPmRCtsR/TKlCYWh3/c9DLFRJINzjKDQQUe+ZEUDMo7/xsyvF5JsiqWZaUKPvWMzEPRm9oUAKKhcJzkDbPzlmFIgydGJh43cR8AAADJ6LKy8I/pnSWNi43BbHAQ9WEAyciTIg2eEP5xheMVtSSbk0i0RUhRUZGWL1+u66+/XhkZGaqoqFB+fr4WL16spUuXaufOnZK6T7SZpqlf//rXuvLKKzVkyJBohu6IGWMlbxifrt5Z0sXdL1WHOBb8/Usyt5XLc9dcGWd8lg2vV95vfkMKBhR49DGZZhhDIAEgxqWkSUMuDO+YwvFSRm5k4nET9wEAAJCMivOlsYPCO2bmuPDaUhAfqA8DSFZFk6WUjND396ZJxRdELJyI4vYdQWPGjNHrr7+uxsZGNTY2avXq1br33nvl8/lUUVEhj8ej8ePHd3nsX//6V+3fv1933nlnlKN2xpC+0pxpkieEEWo56dK9V0qZcZipxrmZBw4o+OxzMsaMlufWz5613Rg2VJ65c2Ru3qLgK6+5ECEARM6Iy6SBo0PbN3+oNPpTkY3HDdwHAABAMrvzMivhFoorRkuXlUY2HkQf9WEAySwjT5p0S2gz/nhSpIk3S1m9Ix1VZBgm3SWibvXq1br00ks1atQobd++vct9vvKVr+g3v/mNamtrlZtrr3v7mfOLNjU1RW2NtjPtqJZeXScdqu96++hC6XMXS/1irAd/PM5DvnC2YnaNtmg5PmMWc5EDiCmmKe1bJR38UOpoPXu7N82aLrLkcsnjjX5855Ls9wHqAgAAwAltHdIr66Q1+yR/4OztvTKtkWyxuJxGsteHkr0+DABOaTws7Vgm1XezJH2vQVLZVVKvwujGJTmXQ+HK64LNmzdL6n7ayNbWVv3+97/XLbfcYjvJFitGFUrzr5Mq6qQP90kNrdYot3650iUjpf7x/fIAADgnw5BGTJOGXiTV7pSO75f87VaCrfcgqWCsNc0kAAAAElN6qjT7EumGydIHe6XKY1K735rVZ9xgaXwR00UCABJb7gDpotulpiPSoS1Sa6P1+/RcqXCslDfQ3ficQKLNBedLtGVkZKi+vj6KEUWWYUjD+1s/AAAkI2+qNGic9QMAAIDkk50uXTXG7SgAAHBPTn9r5Foios+MC86XaAMAAAAAAAAAAEDsY0SbC5YtW+Z2CAAAAAAAAAAAAOghRrQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYYJimabodBCLD5/MpJydHktTU1KTs7GyXI4ofpim1B9yOIjxpXskwnDufaZpqDsbXm5Dl8cpw8k0AgCSW7PcB6gIAACDZJXt9KNnrwwCQDJzKoaQ4GRSQKAxDSk/yb4dhGMr2JvmbAABJLNnvA9QFAABAskv2+lCy14cBAKFj6kgAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINkqRgMKh///d/V0lJiTIzMzVkyBA98MAD8vl8bocGAAAAAAAAAAAQk1LcDgCx4dFHH9WiRYv09NNP68ILL9SOHTv05S9/WW1tbVq8eLHb4QEAAAAAAAAAAMQcEm2QJK1cuVKzZs3SrbfeKkkaNmyY7rjjDi1btszlyAAAAAAAAAAAAGITU0dCkjR9+nStXLlSmzZtkiTt3btXb7zxhq6//nqXIwMAAAAAAAAAAIhNjGiDJGnevHlqbW3VlClTZBiG/H6//u7v/k7/8R//4XZoAAAAAAAAAAAAMYkRbZAk/f73v9eTTz6pp59+WuvWrdP//d//6Y9//KO+853vuB0aAAAAAAAAAABATDJM0zTdDgKR4fP5lJOTI0lqampSdnZ2t/sOGTJEX/va1/TQQw+d+t1zzz2nu+++W42NjcrIyIh4vAAAAAAAAAAAANEQTg7lXBjRBknWB8rj6fxx8Hq9Mk1T5GIBAAAAAAAAAADOxhptkCTdcsstWrRokUpKSnTBBRdox44d+s53vqNrr71WmZmZbocHAAAAAAAAAAAQc0i0QZL0+OOPKz8/X/PmzdOhQ4c0YMAA3XDDDfrBD37gdmgAAAAAAAAAAAAxiTXaEphT84ue6eTHxTCMHp8LAAAAAAAAAADADazRBlds3Vmhx595Sdv3HHA7FAAAAAAAAAAAAFeRaEPIgqapt1d+qOrDR3Xg0GG3wwEAAAAAAAAAAHBVwiTaDMM4NZ3hH/7wB11++eXKy8tTv3799LnPfU579uw5te/rr7+uK664Qr1791ZeXp5uvvlm7dq1q9tzt7W16cc//rE+8YlPqHfv3srIyNCoUaM0f/581dXVdXnM6tWr9dBDD+niiy9WQUGB0tPTNXjwYN12221as2ZNt2W98cYbuu666zRgwAClpqaqb9++GjNmjO6++26tXLnS5rvjjG07K1Rz5JjS01I1/aLxrsYCAAAAAAAAAADgtoRZo+1kku2JJ57Q/fffr0GDBmngwIHavn27WlpaNHjwYK1fv16//vWv9U//9E8qLCxUQUHBqe0FBQXatGmT+vfv3+m8tbW1uvbaa7V+/Xp5PB4VFxcrLy9PO3fuVFtbm4YMGaJ33nlHI0aM6HRcSUmJ9uzZo/z8fBUWFiotLU0HDhzQ0aNHlZKSot/+9re69dZbOx3z5JNP6mtf+5okqW/fvho6dKhaWlp08OBBNTU16b777tPPfvazkN8TJ9doC5qmHn/6RdUcOaYZn5iiqy+/yPa5AAAAAAAAAAAA3MQabd1YsGCBnn32WVVVVWndunWqrKzUxRdfrKqqKt1999369re/rWeffVaHDh3SunXrdPDgQV144YWqqanRo48+2ulcpmlq9uzZWr9+va6//nrt2bNHFRUV2rRpk+rq6nT33XfrwIEDmjt37llxfPe739WuXbt09OhRbdmyRevWrdPhw4f10ksvKSMjQ1/5ylfU1NR0an+/36/vfOc7kqyEW21trT788ENt27ZNDQ0Neu+99/TpT386sm/eOTCaDQAAAAAAAAAAoLOEG9H29a9/XY8//ninbW+++aauvfbabrf/8Y9/1HXXXaeJEydq48aNp37/xhtv6Prrr9f48eO1Zs0aZWRkdDouEAho6tSpWrdunVasWKHLLrsspFj/9V//VT/4wQ/0wgsv6Pbbb5ck1dTUqLCwUH369NGxY8fCe/HdODMb+71Hf6m09IzzHNG9puZmBYOm0tNSlZ6W5kh8AAAAAAAAAAAAbmhva9W/zfuKJOmRxb/WN+/9gq3zpDgZVCz4yle+ctbvpkyZEtL2vXv3dvr9iy++KEm66667zkqySZLX69VNN92kdevW6d133z0r0bZr1y799re/1caNG3X06FF1dHRIkg4fPixJ2rBhw6lEW//+/ZWRkaH6+nq99dZbmjVrVsivORQNvmaldQR6fJ629g61tXc4EBEAAAAAAAAAAIA72tvbTv13U1OL7fMkXKJt5MiRZ/3uzHXXuto+YMAASeo0laMkbdq0SZL09NNP65VXXumyvNraWklSVVVVp98/+uij+ud//mf5/f5uYz169Oip//Z6vXrwwQe1cOFCXX311ZoyZYpmzpyp6dOn64orrlBeXl635wlFXnaW7RFtjGYDAAAAAAAAAACJpL3Ne+q/c3IybZ8n4aaO7O7l2NleWlqq3bt3h1T+XXfdpWeeeUaStHLlSk2fPl1er1f/9m//pptvvlnDhg1Tdna2DMPQU089pXvuuafTMZIUDAb15JNP6qc//am2b99+6vfp6en6whe+oEWLFik/Pz+keCRnFvLbsmOfnn/lLaWnpeqhr96hrEz7008CAAAAAAAAAADEAidyKBKJtnNuv+CCC7Rhwwa99tpruvHGG0OO5atf/aoWL16sBQsWaOHChWdtf+SRR7RgwYKzEm1nqqys1PLly/XWW2/pd7/7nXw+n2bOnKm33nor5DhM01Rzc7P+59evqq09eOo1hoPRbAAAAAAAAAAAINGYpqmOj6aPzM/vrQe+dKut8yTc1JFOGjdunDZs2KAtW7aElWjbt2+fJGn69Oldbl+1atV5z1FUVKQ77rhDd9xxh+bNm6cJEybo7bff1r59+zR8+PCQ4jAMQ9nZ2WrvMNXoaw45/q6wNhsAAAAAAAAAAEhETb5W28eSaDuHz33uc/r1r3+tn//85/r6179+agjh+WRmWnN51tTUnLVt165dev3118OKY9y4cerVq5fq6+t16NChkBNtJ+XanFuU0WwAAAAAAAAAACDR2c2jSCTazunmm2/WFVdcoffee09XX321fv7zn2v8+PGntgeDQa1evVrPPvusFixYoBEjRkiSLr/8cr366qt6+OGHNWPGDI0cOVKStHXrVt16663yeDxnlbVt2zY99thjuueee3TJJZecmuYxEAjoJz/5ierr65WRkaFx48aF/Tq+ftdnwz6GtdkAAAAAAAAAAADOjTXazrO9rq5ON998s/72t79JkoYOHaqCggK1tLRoz5498vl8kqTy8nKNHj1aktTY2KgpU6Zo9+7dSk1N1ahRoxQMBlVeXq7CwkL9wz/8g77zne90WqNtw4YNuuCCCyRJubm5GjlypLxeryoqKnT06FFJ0pNPPqm///u/t/X+hCNomnr86RdVc+SYZnxiiq6+/KKIlwkAAAAAAAAAABBvzh5ahU769eun9957T88884xmzZoln8+ntWvXat++fSopKdGDDz6o9957T2VlZaeOyc3N1YoVK3T33XerT58+2rFjh5qamnTfffdp3bp1Gjx48FnllJWV6Ze//KVmz56twsJC7d27Vxs3blRGRoY+//nPa/ny5VFJsknSodo6Ha47rvS0VE2/aPz5DwAAAAAAAAAAAEhCCTOiDc46erxBNUeOaVzZMLdDAQAAAAAAAAAAiEkk2gAAAAAAAAAAAAAbmDoSAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAAADYQKINAAAAAAAAAAAAsIFEGwAAAAAAAAAAAGADiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGxIcTsAAAAAAAAAAIhX27dvD3nfw4cP63e/+51uu+02DRgwIOTjRo8ebSc0AEAUMKINAAAAAAAAAKLgyJEj+ulPf6ojR464HQoAwCEk2gAAAAAAAAAAAAAbSLQBAAAAAAAAAAAANpBoAwAAAAAAAAAAAGwg0QYAAAAAAAAAUdCrVy/deOON6tWrl9uhAAAcYpimabodBAAAAAAAAADEo+3bt0e8jNGjR0e8DACAPYxoAwAAAAAAAIAoaGtr0/79+9XW1uZ2KAAAh5BoAwAAAAAAAIAo2L17t6655hrt3r3b7VAAAA4h0QYAAAAAAAAAAADYkOJ2AIhNpmmqORhwO4ywZHm8MgzDkXOZptQeXy9faV7JoZcPAAAAIMnxTMRzcbLj7891AB99D5qb3Q4jZFlZWVwDAbiCRBu61BwMqM+yt9wOIyzHZ8xStteZj3R7QHpoiSOnipqFs6V0vtEAAAAAHMAzEc/FyY6/P9cBSM3NzcrJyXE7jJA1NTUpOzvb7TAAJCGmjgQAAAAAAAAAAABsoI8HAAAAAAAAAETBuHHjVF5e7nYYAAAHMaINAAAAAAAAAAAAsIFEGwAAAAAAAABEwb59+3T77bdr3759bocCAHAIiTYAAAAAAAAAiILm5mZt3LhRzc3NbocCAHAIiTYAAAAAAAAAAADABhJtAAAAAAAAAAAAgA0k2gAAAAAAAAAAAAAbSLQBAAAA+P/s3Xl8VPW9//H3mclGFgghLCFhJyh7lE0UtfoTKyq4KxastLbaqi11Adtb77WLrUXQtlbaol6LrVbpVasoYtWiLWJF9i1BFsOSkAABErIvM+f3xzEhQAIzw5lzkpnX8/HII8mc7XPmrN/zOd/vFwAAAA7IzMzUnDlzlJmZ6XYoAACbxLgdAAAAAAAAAABEg9TUVE2ZMsXtMAAANqJGGwAAAAAAAAA44PDhw3rppZd0+PBht0NxXGZmpkaPHq3zzz9fo0ePVs+ePYOafvz48Zo5c2aYogOA0FGjDQAAAAAAAAAcUFRUpEcffVQ5OTlKS0tzO5ywSk1N1e23367LL79co0aNUvfu3U8ap7i4WGvWrNF7772nF154QWVlZS3Oa/z48frHP/6hlJQUxcbGat68eeEOHwACRo02AAAAAAAAAIAt+vfvr+eee06FhYX6zW9+oyuvvLLFJJsk9ejRQ1dddZV++9vfat++fXr22WfVt2/f48ZpnmSTpIkTJ8rj4bE2gLaDM5IDSkpKNHv2bA0cOFAJCQnq1auXZs6cqcrKSt1xxx0yDENPP/2022GGhe/5haq//Er5333vpGGmaarhwYdUf9UUmfm7nA/OAQW5H+m30w2tWdL6Wza/nW7ozXlXOxiV8xpqpT1rpXWvSp+9KK1ZJG3/SKo64nZkAJxgmlJZkZT7D2n1K9JnL0nr/y4V50n+BrejgxP8funADmnjm9Kqv0qrXpY2vyMd3mPtH4h8DXVSwfpj9wKrX5E+XyZVHnI7MsAZ/gbrurf+79Z1cPUr1nWxrMjtyMKPMhHlYkky/VLJTmnTW8fuBTa9LR3aFR33AtG+D3AeiB6GYejee+/Vxo0bdccddygxMbFp2KFDh/Tee+9p/vz5euKJJzR//ny99957OnTo2A1hYmKivvWtb2nTpk367ne/K8MwTkqyvffee7rmmmvk9/sdXz8AaA1NR4bZ+vXrNWnSJBUXFyspKUlDhgzRvn379NRTT2nnzp1N7THn5OS4G2iYeG6bJv+nK+Vb8KyMUefK6JreNMz/+hsyN26S55szZPTr616QCBvTL+1cIe1Zc/LD9CN7pd2rpfT+0pArpLjElucBoH2rKJFyl0pH9588rGSndewPuFDKHO58bHDGgW3S5x9KteXHf15WKBXnSklp0uArpNTgumdAO2GaUv5/pN2rJF/98cNKC6S9a6W0vtLQK6T4ZFdCBMKucJO0499SffXxn5cWSPs2SR27S0MmScnpLU+P9i/ay8UlX0hbP5Bqjh7/eZmk/VulxM7S2ROltN6uhOeIaN8HEB06deqkV199VZdddlnTZ2VlZVq4cKGeeeYZ5ebmtjrt0KFDdeedd+r2229Xp06dlJycrN///ve6/fbbNWTIkJOSbDU1NWFfHwAIBjXawqikpESTJ09WcXGxHnjgARUVFWnt2rUqLi7WnDlztGTJEq1atUqGYWjEiBFuhxsWRmysYmY9INXUyPfkb5o+N/cWyL/wzzLOPkuem25wL0CEjWlatRV2rTx1jZWSL6w3GmsrnYsNgDOO7pdWv9xykq1RXZWU9w/rXIHIs2+TtHHxyUm25ioPS2sXSYd3OxcXnGGaUt570hefnJxka+7wLmnVSyc/gAUiwa6V1nXuxCRbc4FcL9G+RXO5uHirVZPzVOf4qiNWjeeDO52Ly2nRvA/gZElJSbrggguUlJTkdii2SU1N1bJly45Lsv3+979Xr1699IMf/OCUSTZJ2rJli2bOnKlevXrpj3/8Y9Pn48aNI8kGoF0g0RZG3//+91VQUKB7771X8+bNa7owSNLs2bM1cuRINTQ0qG/fvurYsaOLkYaXkT1Qnqk3y1yzVv4lS2X6fPI9Pk8yTXlnPSDD63U7RITBrpXW24mBqC61mhOLhiZDgGjRUCutf936HYgdy60abogcZUVS7smtI7XI75M2vCnVnCIhh/Zn71or2RqImnJp/RvcCyCylOy0rm+BCPa6ifYnGsvF5QelLUslBXBuN/1Ws5KR3L1ANO4DaFnfvn313HPPndQPWXsVFxend955R+eee64k6eDBg/p//+//6Z577lF5eXA3+OXl5frud7+r73//+8c1DXnkyBHddNNNJNkAtFkk2sIkLy9PixYtUnp6uh577LEWxxk1apQkaeTIkcd9np+frylTpiglJUWdO3fW17/+9ePaK26PPNNulfr3l+/Z5+Sf/0eZn2+TZ8bXZfTKcjs0RzTUVam6vKTFn0jkb7CaiwxG2T7rB0BkKMqV6oKsqbprVXhigTv2rFZAD9Ya+eqkwg1hCwcO8/utJqKDUXGAmo2ILMFe1+oqretnpIq2MlFLoq1cvHeNZPoCH9/fYPXnGcmibR84EecBi8/nU0VFhXy+IA6QNuyRRx7R+PHjJUn79+/XhRdeqGXLloU8v/Hjx+sXv/iFPJ5jj607d+6sBx988IxjBYBwoY+2MHn55Zfl9/s1bdo0JSe33OFEhw4dJB2faCsvL9cll1yitLQ0vfzyy6qurtbs2bN19dVXa8WKFcddZNoTIyZGMbPuV8P3fiD/20tkDBsqz/XXuh2WYz597RF9+tojbofhmP3bTt08TmsK1kupmbaHA8BhphnaQ5LSAqtPN/qoaf9qK6UD24OfrnCj1G+85OGF7nav5ItTNxnamoL1Upe+dkcDOK/ioHVdC1bBeikrRzIMuyNyX7SViVoSTeXi+hqpOC/46fZtlgZMkLyx9sfUFkTTPtASzgOWrVu36sYbb9Srr76qoUOHuh3OGRk9erQeeughSVJdXZ0mTZqkzz//POT5jR8/Xv/4xz+aWgX79NNPNWrUKMXGxupHP/qR3njjDa1du9aW2AHATiTawqTxzY1LLrmk1XEKCqySV/NE2zPPPKPCwkL9+9//Vu/eVk/AWVlZOv/887V48WJde+21AcdgmqaqqqokSYmJiTLcLq0lJUmxsVJDg4wxo2W006RhKIZdcqeyx93U4rC//2qiw9GE35E9oU13OMTpALQtdVVSZYgVsY/sIdEWCUoLrCaggtW476R0sz8mOIt7AUS7w3tDm67ykFRfJcVFTrc9TaKtTNSqKCkXl+2zmoYOVkOtVH4gwl/AjJJ9oCWcByLP7373O3m/bPb0Zz/7mdatWxfyvE5MsjX2yTZr1iz97Gc/U0xMjH73u9/pggsusCV2AJDsy6GQaAuT3butdm/69OnT4vCGhgatWLFC0vGJtrffflsTJkxoSrJJ1oWmf//+euutt4JKtFVVVTXVpsvIyAiqNpwZFyctmB/w+Kedn2nK98SvpYZ6qXcv+f/6ijwXXySjZ4ZtyxiUPUhGXZ0t8/LGdtB1j4bwKn4rUntkq/ewy04/4hkYlJ0tXyjVyMLgu1f+XuMGTQl6urIjFcrKOjsMEQFwUtdOfTT3GytCmvbRnz+mJavsu/7AHROG3KRvXf7rkKadcvV12r6PdkTbu29OnKeLhk4Nerr6Wr+ysnqffkSgjbtqzD266YIfhTTtuLEX6GCZ++2oUiaiXHwmxmRfpXuuWhDStFNvnqbNu/9lc0TBs3v7S+HfB+ze/pwHAjdjxoyAxy0qKpIkvfPOO0ElphYuXBhkVGeueT9pJxo9erTOO+88SdLmzZs1Z86ckJfTWpKtpqZGjz32mKZOnaohQ4bo/PPP1znnnNPq95adnd1uWwMD4A6/3990Xs7JyQn5hQESbWFSWWl1TFNd3fLFfdGiRSopKVFKSor69evX9Hlubq5uuunkt3uGDh2q3NzQG+xv3FkClhAvO1tq8L+xWOaGjfJ843Z5xp+nhnu+J98Tv5Z33hzbatrtK9on1djTe3hMfKIt83HSvqJ9aqitcjsMSdLh0oMhTVdVfVSFhYU2RwPAaZVl9ZKsBwnBnuP3HyjkPBAB9qWFWJVD0p6CL1RYxD7Q3h06ciCk6aprKzgHICLs7xt858ON181du7ertDK0+2k7USZS1JeLz0TP5NCrKO8tzG8b1wKbt78U/n3A7u3PeSBwjbUhAlFTU9P0O5jp2sRx0cx3v/vdpr9/85vfqKGhIaT5nCrJJlmVFX77299qwYIFTcu98847W5xX0M8/AaCZ/fv3hzwtibYw6dGjh44cOaK1a9c2dQjaqKioSLNmzZIkjRgx4ribqSNHjig1NfWk+aWlpZ1RG8eh1Gizq2hnFhbK//xCGWcNkufmG2V4vfJMnyb/n16Q/43F8l53jS3L6ZnR09Yabe1Nz4yebaZGW2Hp5pCm27l/jTIzI7mNECB6FB3eqYy0AQGP3/hw8UDVNs4DEeBw7S75/A3yeoK71TxadUj+2Ar2gQhQWLolpOl2FK1m+yMiHKi0ym7BvHRiGIaKDu9UUmqcktpAu3mUiSgXn4mjDQWqb6hRbExCUNNV15arxihpE9cCO7e/5Mw+YPf25zwQuMTEwJOSCQkJTb+Dmc6N46J5TY/mDMPQjTfeKEkqLS3Vyy+/HNL8T5dka/TSSy9p7ty56tixo2666aZWE23BPv8EgObnue7du4c8HxJtYXLZZZcpLy9Pc+bM0cSJEzVo0CBJ0qpVq3TbbbeppKREklUd0Qnbt29XUlLgDf1X+hrUedn7Z7xc0++Xb+6Tkt8v76z7ZXzZbrPn5htlrvhE/ucXyjNurC3NJGzbvk1JXnt26doG6aFFtszKMdu2b1d8GzmiffXSxwusDrCD8d3/nqz/emZyeIIC4Kg9a6RtHwY+vmEY6tRT+mTde+ELCo7a8KZ0MMiWhoZ/pYvy/2dneAKCo/w+6eNnpLrK4Ka7/f5L9cD8gvAEBThs1V+lsn3B1VC5+IYBKvhl2zgGKBNRLj5Tm9+RioNsmCf7vBTt/PG28AQUJLu2v+TcPmD39uc8ELitW7cGPG59fb3uuOMOpaSkKDY28HqTjz76aCihnZHKysqmbmmay87OVseOHSVJH374YVA18xoFmmRrjOOjjz7SlClTlJqaqgEDBmjnzpPLDcE+/wSA5ue5jz/+OOT5kOIPk9mzZ6tLly7au3evhg4dquHDhys7O1tjx45V//79demll0o6vn82SercubNKS0tPmt/hw4eVlpbmROi28r/6uszcPHluny6jWb9zhtcr74P3S36ffE/8WqZpuhgl7OaNlbLOCW6ajt2l1KzwxAPAeRlDpWBfgO0zJjyxwB19RgU3vidGyhp5+vHQPni8Uu8g94GkLlKXfqcfD2gvgr2uxXawrp+IPNFaLu49SjKCeOrk8Uq9csIWjquidR9Ay2JjY5WWlhZUkq2tGT16dNPfa9asCXr6YJJsLS1n1KggbzQBIMxItIVJVlaWli9frquuukoJCQnatWuX0tLStGDBAi1ZskTbtllvaJ2YaBs8eHCLfbHl5uZq8ODBjsRuF3PPHvlf+IuMwWfLc8P1Jw03+vaRZ/o0mZs2y//GYhciRDj1Gy91HRjYuAkp0ohrJZu6JQDQBsQmSCOvsxLvgeh3ntQtO7wxwVmpWdJZ/y+wcQ2PNGKy1KFTeGOCs/qMkXoEePsal2SdM4J5IAu0dd2yretbILyxUs511vUTkSWay8Udu0uDLw9wZEMaeqX10kWkieZ9AC3bs2eP7r77bu3ZE3pfhm4bOPDYA5+NGzcGNW0oSTZJ2rBhQ9Pf2dkUHgG0LW2jPYEINXjwYL399tsnfV5RUaFdu3bJ4/Fo2LBhxw27+uqr9V//9V8qKChQVpZVvWflypXauXOn5s6d60jcdjF691bskjdPOY731lvkvfUWhyJyXtaQr2jmi6d+I+10w9srj0caPkXa/pFUsEEyfS2P17mXNOwqKf7klggAtHOpPaVRU6UtS6TKwy2PExMv9b9A6n2us7HBGb3Osbbxtg+l1rrKSOgoDblCSuvd8nC0X4YhDZ0kxadIe9dYzUm2pFOmNOxKEq2ITAMmSLGJ0hcrpIbalsdJ6mIlGDqG3iVEmxbNZSKJcnHPYZI3Tvr8n603JxyfIg2eKKX3dzY2p0T7PiBxHjhReXm5PvzwQ91zzz1uhxKy4uJirVy5Uh06dFBxcXHA040cOTKkJFvjMjds2KCamhrt378/5NgBIBxItLlgy5YtMk1TgwYNOqnT0zvvvFO/+93vdM011+inP/2pampqNHv2bI0dO1bXXGNP58iAUzwe6axLrTd5922SSr6Qyook0281ETZ2mpTc1e0oAYRTx+7Sed+QjuyVCjdKB7ZZ5wDDK519mdTjLOvhCyJXxhCp+yDpwHapKFc6vPvL64BXGnGN1KUvtZgimeGRsi+yarcVbZYO7pTK9h27Fxh9a+QmF4BGvc+VModJxVul/Z9b18TGYyDneuvFM1p2QCTrPkjqOkA6uEMq2mKVCxuNuNZKsHm4FwDalWeeeUbPPPNM0NNt27ZNn376qSZOnBhUkk2yKiLk5OQEvUwAcAK3Mi7YtGmTpJObjZSkjh07atmyZcrIyNDUqVP1rW99S+eff77efvttebjzRDsVlyj1HWc9TIv7Mrccm0CSDYgWhmHVVhp+9bFzQFwHKXM4SbZo4YmxmhA854Zm14EO1oM1kmzRIa6DlWwbPfX4ewGSbIgW3jgpc4R07k3HHwNpvUmyITp4vFL3s6zkshr3eUPqNpAkGxBNqqurdc011+jnP/95UEk2AGjrqNHmglMl2iRpwIABLTY5CQAAAAAAAADtVXV1tf7nf/7H7TAAwFa8N+SC0yXaAAAAAAAAAESe7t2766GHHlL37lTtB4BIQY02FyxbtsztEAAAAAAAAAA4LD09XTNmzHA7DACAjajRBgAAAAAAAAAOKCsr07vvvquysjK3QwEA2IREGwAAAAAAAAA4oKCgQPfdd58KCgrcDgUAYBMSbQAAAAAAAAAAAEAISLQBAAAAAAAAAAAAISDRBgAAAAAAAAAAAISARBsAAAAAAAAAOCAhIUGDBw9WQkKC26EAAGwS43YAAAAAAAAAABANBgwYoNdff93tMAAANqJGGwAAAAAAAAAAABACEm0AAAAAAAAA4IDc3FyNGDFCubm5bocCALAJiTYAAAAAAAAAcIBpmqqvr5dpmm6HAgCwCX20oUWJHq+OXDrR7TCCkujx2javOK805xbbZueIOPtWHwAAAECUo0xEuTjasf05D0BKTExURUWFLfOau+AVHa2sUsekRM26a2qrn52JxMTEM54HAISCRBtaZBiGkrzRu3sYhhQfvasPAAAAIMpRJqJcHO3Y/pwH8OVxkJRky7zi4hMUV+9TXHxC0zxb+gwA2iOajgQAAAAAAAAAAABCwHspAAAAAAAAAOCAAQMGaPHixerVq5fboQAAbEKiDQAAAAAAAAAckJCQoOzsbLfDAADYiKYjAQAAAAAAAMABhYWFevjhh1VYWOh2KAAAm5BoAwAAAAAAAAAHlJaW6rXXXlNpaanboQAAbEKiDQAAAAAAAAAAAAgBiTYAAAAAAAAAAAAgBCTaAAAAAAAAAAAAgBCQaAMAAAAAAAAAB6Snp+vb3/620tPT3Q4FAGATEm0AAAAAAAAA4ADDMBQXFyfDMNwOBQBgExJtAAAAAAAAAOCAgwcPav78+Tp48KDboQAAbEKiDQAAAAAAAAAAAAgBiTYAAAAAAAAAAAAgBCTaAAAAAAAAAAAAgBCQaAMAAAAAAAAAB3Tq1EmTJ09Wp06d3A4FAGCTGLcDAAAAAAAAAIBokJWVpccff9ztMAAANqJGGwAAAAAAAAA4oLa2Vrt371Ztba3boQAAbEKiDQAAAAAAAAAcsGPHDl1xxRXasWOH26EAAGxC05FokWmaqvL73A4jKIkerwzDsGVepinVta/VV5xXsmn1AQAAAEQ5ykSUi6Md25/zAGCapqqqqtwOIyiJiYlcBwAXkGhDi6r8PnVe9r7bYQTlyKUTleS1Z5eu80kPLbJlVo6Zc4sUzxENAAAAwAaUiSgXRzu2P+cBoKqqSsnJyW6HEZSKigolJSW5HQYQdWg6EgAAAAAAAAAAAAgBiTYAAAAAAAAAAAAgBFSmBgAAAAAAAAAHDB06VHl5eW6HAQCwETXaAAAAAAAAAAAAgBCQaAMAAAAAAAAAB+Tn52vq1KnKz893OxQAgE1ItAEAAAAAAACAA6qqqrRhwwZVVVW5HQoAwCYk2gAAAAAAAAAAAIAQkGgDAAAAAAAAAAAAQkCiDQAAAAAAAAAAAAgBiTYAAAAAAAAAcEBmZqbmzJmjzMxMt0MBANiERBsAAAAAAAAAOCA1NVVTpkxRamqq26GgHRo5cqTbIQBoQYzbAQAAAAAAAABANDh8+LCWLl2qSZMmKS0tze1wEGZer1cTJkzQ6NGjNXr0aJ111lnq0KGD/H6/ysvLtXHjRq1Zs0b/+c9/tHHjxlPO6+6779b8+fM1a9YszZs3z6E1ABAIEm0AAAAAAAAA4ICioiI9+uijysnJIdEWwXr06KFvfetbuuuuu5SVldXqeOPGjdO3v/1tSdLq1av1+9//Xq+88oqqq6uPG68xySZJc+fO1aeffqqPP/44fCsAICg0HemAkpISzZ49WwMHDlRCQoJ69eqlmTNnqrKyUnfccYcMw9DTTz/tdphh4Xt+oeovv1L+d987aZhpmmp48CHVXzVFZv4u54NzQEHuR/rtdENrlrT+lslvpxt6c97VDkYFN5h+6dAuqXCTVLhRKsmX/D63o4KTGuqkA9ukgg3Svs1SWZFkmm5H5RzTlEoLJV+99b+v4djfiA5+n1Sy89h29zdE1zEAqb5G2r+12T4QZddB05QO72l2L7Az+r6DqlKpKNe6FhbnSTXlbkcEJ1AmolzcyO+zykFqvP6bVjkpGkT7PsB5ANHE4/HogQceUH5+vn7+85+flGSrr69XaWmpysrK5PcffxIcPXq0nn/+eW3fvl2TJk1q+rx5kk2SfvGLX5BkA9oYarSF2fr16zVp0iQVFxcrKSlJQ4YM0b59+/TUU09p586dOnz4sCQpJyfH3UDDxHPbNPk/XSnfgmdljDpXRtf0pmH+19+QuXGTPN+cIaNfX/eCBMKooU7au04qXH/yw6T4ZClzhNTrXCk2wZXw4IDqMmn3aqloi+SrO35YcjepV47Uc7hkGK6EF3Z+v7Rvo3UcVB469nlDjbT8j1LPYVLv0VJCinsxIrzqqqU9a6z9oK7q2Of1NdInz0lZOdaPN9atCBFulYek3auk4q1WgrVRfbW06q/WdbD7WZF7HvTVf3kvsMG6JjQXlyj1HCH1HiXFdXAnPicc2mWdBw7lH/+5YUhdB0p9xkideroSGuCIaC8X19dIe9daLxnUVhw/bMWzUmaO1OscKSbOlfAcEe37ABAtBgwYoL/85S8aP35802c+n09vv/223nzzTa1Zs0a5ublqaLBuihMTE5WTk6OxY8dq2rRpGj16tCQpMzNT77zzjhYuXKiNGzfqySefbJrfL37xCz388MPOrhiA06JGWxiVlJRo8uTJKi4u1gMPPKCioiKtXbtWxcXFmjNnjpYsWaJVq1bJMAyNGDHC7XDDwoiNVcysB6SaGvme/E3T5+beAvkX/lnG2WfJc9MN7gUIhFFdpbRmkbRzectvbNdWSF98Iq1+mTe6I1VZkfTZi1LBupOTbJJUcUDKe0/atPj4h8+Rwlcvbfi7tPWD45NsjRpqrQevn70olR90Pj6EX3WptOoladenxyfZmoaXSdv/Ja39P+shHCLPoV3WMb5vc8vnubJ90ua3rfNEJNZwrK+29u8d/z45ySZZx8WuT6XVf7WOl0i0a6W07tWTk2yStc0PbJdWvSzt2+R8bIBTorlcXFNulXe++OTkJFvj8J3LrXJTXaXz8TklmvcBIFrk5OTok08+aUqy+f1+PfXUU+rfv7+uvfZa/elPf9LGjRubkmySVFVVpU8++US/+c1vNGbMGI0ZM0bvvvtu0/AZM2aQZAPaCRJtYfT9739fBQUFuvfeezVv3jylpBx7XX/27NkaOXKkGhoa1LdvX3Xs2NHFSMPLyB4oz9SbZa5ZK/+SpTJ9PvkenyeZpryzHpDh9bodImA7X720/nWpfP/px608JK17zUo6IHJUHbG2a3316cc9sF3KfS+yHjKbprT5nZYfrJ6ortJ6CFtzNPxxwTn11dYxEEjyoGyftOGN6GtGL9IdLba2ayDNxBZusJJRkcTvkza8ae3fpxPMNaM9Kdgg7VgewIimlPsP63oIRKpoLBc31FrntpZeuDpR+X5p/d8ju2nxaNwH0LKkpCRdcMEFSkpKcjsU2GTIkCH64IMP1K1bN0nStm3bdOGFF2rmzJnas2dPwPNZvXq1Jk2apG9+85sn9dE2d+5ckmxAG0bTkWGSl5enRYsWKT09XY899liL44waNUobNmzQyJEjmz4rKCjQr371K3322WfasGGD6urqZEbAk1fPtFvl/89K+Z59Tp6dX8j8fJs8d35LRq/WOwONJA11VaouL3E7DDioKFc6GkCSrVFlidWUSp8x4YsJzvriE6t5xEAV51pN5nTKCF9MTjqyVzoYxAPTukopf6U0eGL4YoKz9qy1kgeBKi2w+jHsMTh8McFZ2/8dXG3d3ausZkQ7dApbSI7a/7m1Xweq6ojVxGT/88MXk5N8dcEnT7d/JHUdIBm8DhqRKBNFX7m4cKNVzgnU0WKrHJU18vTjtlfRtg+ciPOApW/fvnruuefcDgM26dChg9544w116dJFkrRixQpdddVVKitroTmDIObZocPx7YpnZETIwwIgQpFoC5OXX35Zfr9f06ZNU3JycovjNJ4wmyfaduzYoddee01jxoxRXFycVqxY4Ui84WbExChm1v1q+N4P5H97iYxhQ+W5/lq3w3LMp689ok9fe8TtMOAQ05QK1gc/XcEGq6+qSO2jJprUVUr7twU/XcH6yEm07V0X/DTFuVL2RVJMvP3xwFl+n/VwLVh715FoixSVh6Qjgb+826Rgg3UeiASh3AsUbpT6jpM8EVCpoXhr8LX1q8us5kbT+4clJLiMMlF0lYtDLhOtt/qxjtQyUTTtAy3hPGDx+Xyqrq5Whw4d5KUmY7v3i1/8QtnZ2ZKkdevWadKkSSovD71/kLvvvlvz589v+r+mpkYJCQmaPn26/va3v+mtt94645gB2I9EW5gsW7ZMknTJJZe0Ok5BgfWKa/NE20UXXaSioiJJ0k9+8pOISbRJkpKSpNhYqaFBxpjRMjzR86rqsEvuVPa4m1oc9vdfUX0j0lSWSBUh9DdVXWo1L5WaaXtIcNiB7ZIZQhN4+7dKgy9v/w9YG+qkkh3BT+erlw7skHoOtT8mOOvI3tD6WSnbZ50LO6TaHRGcVpwX4nS5kZFoa7ymB6u2wjp+uvS1OyLnhboPFOWSaItUlIm+FCXl4rJ9LfdNeToVB63yVHJX+2NqM6JkH2gJ5wHL1q1bdeONN+rVV1/V0KEUftqzsWPHaubMmZKshNitt95qa5LtF7/4hbZt26YXXnhBkrRgwQJ9+OGHqqhoodNLAK4i0RYmu3fvliT16dOnxeENDQ1NSbTmiTZPmG6wsrOzg5q3GRcnLZh/+hEDnZ9pyvfEr6WGeql3L/n/+oo8F18ko6d9VTcGZQ+SUVdny7y8sR103aP2dRKR2iNbvYddZtv8WjIoO1u+dtCxx5N3rFJaSoaKioqUlRWZ7SQO7X2hZl3/ckjT3v61b2vNzqU2RwSnXT/+QU0Z94Ogp/P7pKFnj1B59WH7g3JQesdemvfN/4Q07SP/9QstXfMHmyOC084ffIPu/OpvQ5r2iolTtLNorc0RwWnfuGyuLh52a9DTVR1tUFZWX/sDctjAjFF6+JY3Q5r2u9+aqU+2vmZzRM577Ov/UkbagKCn++j9TzTpOzeHIaK2o73cD1Mmolx8JkYPvFL3Xv1MSNNeP2Wqcvd+bHNEwbN7+0vh3wfs3v6cBwI3Y8aMgMdtfMH+nXfe0bp1gTcFsnDhwiCjaluu+8YPlJTcUUXFRcrKymr1s7bE7/efcviDDz7Y9Lz14Ycf1ueffx7yslpKsjX2yXbTTTfp6quvVkZGhm677Tb94Q+tl5mDfQYMRLvmx/mECROCOi83R6ItTCorrde4T+y4stGiRYtUUlKilJQU9evXL+zxNF7EA5YQr1gbl+9/Y7HMDRvl+cbt8ow/Tw33fE++J34t77w5MmxqE2Jf0T6pJsj2aVoRE59oy3yctK9onxpqq9wO47R8Pl/T78LCQpejCY+uCUF0znaCg4cOROz3Ek2OlAXRMdUJCgr3qqK61L5gXFBXGfpNfWnpYY6BCHCoW+h9b+zfX8w+EAHKy0Prk8Lnj4z7gxRP6NXTSw4djIjvoLYuiI5Km6mqroyI9T+V9nI/TJlIUV8uPhN9Ug+EPO2Bg/vbxrFh8/aXwr8P2L39OQ8Erqoq8GXW1NQ0/Q5mujZxXJwB/5fXP3+z619Ln7UXGRkZuu666yRJxcXFeuqpp0Ke16mSbJL04x//WFdffXXTuKdKtAX9DBhAk/37Q3+mS6ItTHr06KEjR45o7dq1Gj9+/HHDioqKNGvWLEnSiBEjbLuhPpWMjIyga7SF0PJdy/MqLJT/+YUyzhokz803yvB65Zk+Tf4/vSD/G4vlve4aW5bTM6OnrTXa2pueGT3bRY22xvbHvV6vMjMjs41EM87aDqZpBnx8N47r91ZG7PcSTWr9pSFNV1F9RKlpyeqkJHsDclisN1Y1dZVKiAt+PWpVxjEQARq8VnMpwZwHJcnv98mbUM8+EAEqGw6FNF3J0T0Rsf09CXXy+33yBNEWcOPx4vNWRMR3UFq1T1LwzWEdrd0fEet/Ku3lfpgyEeXiM+GLsV4+DqVMpLjqNnFs2Ln9JWf2Abu3P+eBwCUmBp6UTEhIaPodzHRt4bg4E54vr3+eZte/lj5rS/x+f6uJq69//euKibEerT/77LOqr68PaRmnS7JJ0saNG/Xxxx9rwoQJGjZsmMaNG6eVK1e2OL9gnwED0a75cd69e/eQ50OiLUwuu+wy5eXlac6cOZo4caIGDRokSVq1apVuu+02lZRYb3rn5OQ4Es/27duVlBT4A89KX4M6L3v/jJdr+v3yzX1S8vvlnXW/jMYL6M03ylzxifzPL5Rn3FhbmknYtn2bkrz27NK1DdJDi2yZlWO2bd+u+HZwRC//o9X/SEZGRlM/hZFo7d+kw3sCf7hsGIY69pA+3fBBGKOCU3z11r7eEOTLpEMv7Ky9/703PEE5LO99qXBDcNPEJUpvLHuu3fdRB8k0pU8XSpWHgnuZqPsgr7ZsC62ZBrQttZXSxwsk89St7Zzk4uuyVfDLyLg/WP93qWRn4OMbhqGkLtJHqxbLgffwwu7ADmnjG8FPN/tX0/WLjOm2x9OWtJf7YcpElIvP1GcvSkeLgysTpfWR1ud+GsaoAmfX9pec2wfs3v6cBwK3devWgMfdsmWLnn/+eV155ZVB9dH26KOPhhJam/HL+S/paEWlMnocu/619FlbUllZqeTk5BaHXXDBBU1/v/jiiyHNP5AkW6O//OUvmjBhgiTp/PPPbzXRFuwzYCDaNT/OP/449KarSW+HyezZs9WlSxft3btXQ4cO1fDhw5Wdna2xY8eqf//+uvTSSyUd3z9bJPK/+rrM3Dx5bp8uo3fvps8Nr1feB++X/D75nvi1TNN0MUrAflk5zkyDtskbK2UMC366zAi6JISyP2eOEEm2CGEYnAejXXyS1C07uGk83tDOnW1Vr5zgp8nKUUQk2SQpvb8UnxLcNCndpU72dVUFtBnRWi4O6V4ggu6Hm4vWfQAtGzRokFasWNH0Uj7ap1GjRkmSSktLtW3btqCnDybJJkmfffbZScsG0HaQaAuTrKwsLV++XFdddZUSEhK0a9cupaWlacGCBVqyZEnTCTiSE23mnj3yv/AXGYPPlueG608abvTtI8/0aTI3bZb/jcUuRAiET9dsqftZgY+fPkDqMSR88cB5/cdLSWmBjz/wQimxc/jicVpKV6nveUGM313qMzZ88cB5mSOktN6nH69Rz+FSWp/wxQPnZX9Fim/5BeAWnT1Rimt/LVS1Kq2v1DOIxGFaH+u4iRQejzR0kmQEWOL0xkpDvhremAA3RHO5uMcQK+keqO5nW+WoSBPN+wBaFhsbq7S0NMXG2t0LIJzSpUsX9ezZU5K0du3aoKcPNskmWTUha2utZnOcaiENQODaRnsCEWrw4MF6++23T/q8oqJCu3btksfj0bBhEfTa7gmM3r0Vu+TNU47jvfUWeW+9xaGInJc15Cua+eKp30g73XC0T4ZhPVySIe0/TQsSXQdKw66yHkghcsQmSOfeLK17Xao4TV/w/S+IzCTTgAskmdKullu0aNIxQ8q5ToqJcyQsOMTjlUZcK21aLB3adepxew63kiyRUpMHloQU6zy4/jWpuuwUIxrS2ZcFl5RqDwzD2q9lSPs2nXrcLn2l4VMir1ZvWm9p5DXSxrckf0Pr48UmSCOvk1K6ORcbnBPtZaJoLhd7PNLwydLmJdLBHacet8dgK9keifcC0bwPNIr288CJ9uzZo1/96lf64Q9/qN69g3gzDW1Gampq09/79u0LatpQkmySVF9fr5KSEmVmZqpjx45BLRNA+JFoc8GWLVtkmqYGDRrUYqenr776qiQpNzf3uP/79u2r0aNHOxcogDPiibESaD2HSnvXSyVfSGpWdujSz2pOJb1f4G97o32JT5bG3Crt/1wqWC8dLT5+eM9h1j7QsYcb0YWfYVg19boOlPaus74H03dseKee1vp3H2QdL4g8MXHSyOutfqoK1kuHdx8/vFu2lHWO1LlXZD5Yg1Wzd9ztUtEWax+oPHT88F7nWOeBpC5uRBd+Hq80+HLrAXLBOutBc/NWwdL6fHkvMCByX7hJHyCd/02pYKO0b6NUV3VsWEKKlJkjZQ6T4uhKBIhI3lhpxBSpJN86D5748k3XgdZ5MK0P9wKIHuXl5frwww91zz33uB0KQrRnzx6dffbZSkhIUHl5ecDTeTweXXvttU3/B5pka3TVVVfJ7/eroqIimHABOIDHWi7YtMl6pbW1ZiNvuummFv+//fbbtXDhwrDGBsBehmEl1Lr0sx4s/edPUn21FJconXOD29HBCd5YK6HWc5hVo+OzF7/cB5KkIVe4HZ0zOmVYP2ddKn3yv8eOgTFfczsyOMHjsRJq3bKl2grp0xeOHQMjrnE7OjghJu5YQq26TFr10rF94Kz/53Z04WcYVs2utN4n3wuce9Ppp48ECR2lgROsZpWXL5Dqq6TYROmCb/OyERANDI/UdYD1U1spLf/DsWEjr3UtLAAIWX19vT7//POgp/P7/brmmmu0ePFirVy5MqgkmyRt2LAh6GUCcAaJNhecLtFG57dAZIpLPNYkFA+VolOHTs32gSh8Yzc2gWMg2sUnR/cxEO0MQ0pMje59INrvBTzeYzX3PJ7o/A6AaBefJMmQ1dJHFF4HAKC6ulpXXnml6uvr3Q4FgI0o2rjgdIk2AAAAAAAAAEDkIckGRB5qtLlg2bJlbocAAAAAAAAAwGHdu3fXQw89pO7du7sdCgDAJiTaAAAAAAAAAMAB6enpmjFjhtthAABsRNORAAAAAAAAAOCAsrIyvfvuuyorK3M7FACATUi0AQAAAAAAAIADCgoKdN9996mgoMDtUAAANiHRBgAAAAAAAAAAAISARBsAAAAAAAAAAAAQAhJtAAAAAAAAAAAAQAhItAEAAAAAAACAAxISEjR48GAlJCS4HQoAwCYxbgcAAAAAAAAAANFgwIABev31190OAwBgI2q0AQAAAAAAAAAAACEg0QYAAAAAAAAADsjNzdWIESOUm5vrdigAAJuQaAMAAAAAAAAAB5imqfr6epmm6XYoAACb0EcbWpTo8erIpRPdDiMoiR6vbfOK80pzbrFtdo6Is2/1AQAAAEQ5ykSUi6Md25/zAJCYmKiKigrb5jd3wSs6WlmljkmJmnXX1JP+t0NiYqIt8wEQHBJtaJFhGEryRu/uYRhSfPSuPgAAAIAoR5mIcnG0Y/tzHgAMw1BSUpJt84uLT1BcvU9x8QlKSko66X8A7RdNRwIAAAAAAAAAAAAh4L0UAAAAAAAAAHDAgAEDtHjxYvXq1cvtUAAANiHRBgAAAAAAAAAOSEhIUHZ2ttthAABsRNORAAAAAAAAAOCAwsJCPfzwwyosLHQ7FACATUi0AQAAAAAAAIADSktL9dprr6m0tNTtUAAANiHRBgAAAAAAAAAAAISARBsAAAAAAAAAAAAQAhJtAAAAAAAAAAAAQAhItAEAAAAAAACAAzwej8aMGSOPh8eyABApOKMDAAAAAAAAgAP8fr9WrVolv9/vdigAAJuQaAMAAAAAAAAAAABCQKINAAAAAAAAAAAACAGJNgAAAAAAAAAAACAEJNoAAAAAAAAAwAGdOnXS5MmT1alTJ7dDAQDYJMbtAAAAAAAAAAAgGmRlZenxxx93OwwAgI2o0QYAAAAAAAAADqitrdXu3btVW1vrdigAAJuQaAMAAAAAAAAAB+zYsUNXXHGFduzY4XYoAACb0HQkWmSapqr8PrfDCEqixyvDMGyZl2lKde1r9RXnlWxafQAAAABRjjIR5eJox/bnPABEO9M0VVVV5XYYQUlMTOQ6CFeQaEOLqvw+dV72vtthBOXIpROV5LVnl67zSQ8tsmVWjplzixTPEQ0AAADABpSJKBdHO7Y/5wEg2lVVVSk5OdntMIJSUVGhpKQkt8NAFKLpSAAAAAAAAAAAACAEJNoAAAAAAAAAAACAEFCZGgAAAAAAAAAcMHToUOXl5bkdBgDARtRoAwAAAAAAAAAAAEJAog0AAAAAAAAAHJCfn6+pU6cqPz/f7VAAADYh0QYAAAAAAAAADqiqqtKGDRtUVVXldigAAJuQaAMAAAAAAAAAAABCQKINAAAAAAAAAAAACAGJNgAAAAAAAAAAACAEJNoAAAAAAAAAwAGZmZmaM2eOMjMz3Q4FAGCTGLcDAAAAAAAAAIBokJqaqilTprgdBgDARiTaAAAAAAAAAMABhw8f1tKlSzVp0iSlpaW5HQ7giNjYWA0fPlw5OTnq3LmzYmJiVFNTo507d2rNmjUqKio67Tw8Ho8WLlyojRs3at68eQ5EDQSORBsAAAAAAAAAOKCoqEiPPvqocnJySLQhosXHx+vmm2/Wt7/9bY0bN05xcXGtjltUVKTXXntNf/jDH5Sbm3vScI/HoxdeeEHTp0+XJPn9fj355JNhix0IFn20OaSkpESzZ8/WwIEDlZCQoF69emnmzJmqrKzUHXfcIcMw9PTTT7sdJoAwM023IwDcxTEA9gGwD0S3xu3PfgBEMY5/AIhoMTEx+tGPfqSCggL9+c9/1oUXXnjKJJskZWRk6N5779WWLVv0z3/+UyNGjGgadmKSra6uTjt27AjrOgDBItHmgPXr12v48OGaO3euiouLNWTIENXX1+upp57SLbfcory8PElSTk6Ou4GGge/5haq//Er5333vpGGmaarhwYdUf9UUmfm7nA/OAQW5H+m30w2tWdJ6debfTjf05ryrHYwKTqs5Ku38WFr+R6mu0vqstlLa/m+putTV0ABH1FVLu1dJn/xvs2OgQsp7X6o46G5scEbVEWnbh9K/5h9/HvziE2tfQGQzTam0QNr0trTsN8f2gboqqXCj5KtzNTw4wO+T9n8urVnUbPtXSutek0p2Sqbf3fgQXpSJKBdLVrln+7+lf/+h2YemVU6qKXcrKudE+z7AeQCIHsOHD9fKlSv1y1/+Uunp6U2fb9++XS+++KLuu+8+3Xjjjbruuut022236fHHH9c///lPVVVVNY176aWXavXq1fqf//kfxcXFnZRku+mmm7R48WLH1w04FZqODLOSkhJNnjxZxcXFeuCBB/TII48oJSVFkvT444/roYceUkxMjAzDOC5THyk8t02T/9OV8i14Vsaoc2V0PXaC9b/+hsyNm+T55gwZ/fq6FyQQJqYp7f5M2vGxTn5r88thuz+T+p0n9b9AMgw3ogTCqzhPyv2H5G84eVjhBusnY6g0+HLJ43U+PoSXaUrb/yXtWd3SQCvRlv+plP0Vqfe5TkcHJ9TXSJvekg7vPnmY6Zfy3pN2LJdGTJE693I+PoRfRYm04e9SddnJww7lWz/JXaWc66SEjs7HBzghmsvFpil9scK63rck/1Np10ppwASpz9jILRNF8z4AIHrcfPPN+stf/tJUe62hoUGLFi3S/Pnz9Z///OeU03bq1Elf//rX9b3vfU/Z2dmKjY3VT3/6U91zzz3q1q2bJJJsaNuo0RZm3//+91VQUKB7771X8+bNa0qySdLs2bM1cuRINTQ0qG/fvurYMfJKlkZsrGJmPSDV1Mj35G+aPjf3Fsi/8M8yzj5LnptucC9AIIy++MR6eHi6plHyP7UeRAORpihX2ryk5STbceNtsWq6UKMhspimtPWDVpJszcfzS9uWWbUeEVl8ddK6/2s5ydZcfbW09lXpyF5n4oJzKg9Lq19pOcnWXMVBafXL1HBF5IrmcvH2j1pPsjUyTavclH/qZ7DtWjTvAzhZUlKSLrjgAiUlJbkdCmCbr33ta3r55ZebkmybN2/Weeedp+nTp582ySZJZWVl+t3vfqehQ4fq5z//uRoarAcJJNnQXpBoC6O8vDwtWrRI6enpeuyxx1ocZ9SoUZKkkSNHNn326quv6oYbblCfPn2UmJios88+Wz/+8Y9VUdE+S55G9kB5pt4sc81a+Zcslenzyff4PMk05Z31gAwvVRgQeY4UBFdQ3LNaKvkifPEATqs5KuW+G/j4B7dLe9eHLRy44MA2q8ZioLb/Szq6P3zxwHk7lge+TU2ftHGx5KsPb0xwjmlaL1E01AQ2fk25VQMaiFTRWC4u+ULasybw8b/4xGpqOFJF4z6AlvXt21fPPfec+vbt63YogC0uvvhivfDCC/J4rFTDc889p1GjRmnNmiAuAl+qr6/XT37yE73//vvHfZ6Xl6e33nrLlniBcKDpyDB6+eWX5ff7NW3aNCUnJ7c4TocOHSQdn2ibN2+eevfurV/+8pfKysrS+vXr9dOf/lT/+te/9O9//7vppNWeeKbdKv9/Vsr37HPy7PxC5ufb5LnzWzJ6ZbkdmiMa6qpUXV7idhhwUMG64KfZu05K729/LIAbCjYGX0OtYJ3U65zIbTIo2uwN4TxYsF4a8lXbQ4ELGuqkfZuDm6a+2urHq+ew8MQEZ5UVShUHgpvmUL7Vp2Ni5/DEBHdRJoq+cnEo9wJ710mpkfl1SIq+feBEnAcsPp9P1dXV6tChg7wkWNHOJScna+HChYqJsdIMf/jDH3T33XeHPD+Px6MXXnhBkyZNkmT1Y2kYhkaOHKnvfe97euqpp2yJG7AbibYwWrZsmSTpkksuaXWcggLrda3miba33npLXbt2bfr/4osvVteuXTVt2jR9/PHHuuiii8IUcfgYMTGKmXW/Gr73A/nfXiJj2FB5rr/W7bAc8+lrj+jT1x5xOww4pLZSOrA9+OkO5VudhHdItTsiwFl+n7RvY/DTVR2xmo5L621/THBWRUlob6QX50nZF0uxCfbHBGcV54VWO61gA4m2SFEQRI3W5go3WP02IvJQJoqucnF1qVW+CdaB7VZ5Kj5CW9SLpn2gJZwHLFu3btWNN96oV199VUOHDnU7HOCMzJkzp6l25kcffaR77rkn5Hk1JtmmT58uyWou8qc//al+8YtfSJIee+wxLVmyRDt37jzjuAG7kWgLo927rQ4p+vTp0+LwhoYGrVixQtLxibbmSbZGo0ePliQVFhaGFEt2dnZQNeHMuDhpwfyQltWqpCQpNlZqaJAxZrQMm2vmDcoeJKOuzpZ5eWM76LpHQ8iUtGLYJXcqe9xNLQ77+68m2rKMQdnZ8tVX2zKvcHryjlVKS8lQUVGRsrLGuB1OWJyVeZ5+dNOrIU174+TbtSH/nzZHhLYkGo6B1KQe+s23T9MxVysevOcRvbfuf22OCE4bN2iKvnvl74Oezt8gfeX8Sdp9YFMYooKTbrvkUf2/kTOCnu7gnmplZWXbH1AbEg3XAUn6+bT31avr4KCne/vVj/TElw9XIlV72QcoE1EuPhM5/S7TD65ZGPR0pl+adOkN2la40v6ggo0lHNtfCus+YPf25zwQuBkzZgQ8blFRkSTpnXfe0bp1gVf9XLhwYZBRtS3XfeMHSkruqKLiImVlZbX6WSQ7cX3b+vr7/adupqZ///76zne+I0mqqKjQN7/5TZmmGdKyWkqyNfbJ1qNHD33ve99TYmKiHnnkEX39619vdT7BPgMHmu/nEyZMCOq83ByJtjCqrKyUJFVXt3yBX7RokUpKSpSSkqJ+/fqdcl4ffvihJGnw4OALq9Kxi3jAEuIVG9KSWmaapnxP/FpqqJd695L/r6/Ic/FFMnpm2LaMfUX7pJpaW+YVE59oy3wapfbIVu9hl9k6zxPtK9qnhtqqsC7DDj6fr+l3qInjti4jqTzkacvLKiP2e4ElGo4Bf5f4kKetqqyN2O8lmlRkhH49KjtylH0gAtTXBtl27JdivfERv/2j4TogSZ4Qi5qmz4jo70VqP/sAZSJFfbn4TAzoUhnytEdLy9vGsWHz9pfCvw/Yvf05DwSuqirwZdbU1DT9Dma6NnFcnAH/l9c/f7PrX0ufRbIT17e9r/9dd93VlNR67LHHlJ8fQlVmnTrJJkk//OEPdeuttyo9PV0333yz7r//fpWUtNwMbdDPwIFm9u8PveN4Em1h1KNHDx05ckRr167V+PHjjxtWVFSkWbNmSZJGjBgh4xQd0hQWFuq///u/dcUVVygnJyekWDIyMoKu0XYwpCW1zP/GYpkbNsrzjdvlGX+eGu75nnxP/FreeXNOue7B6JnR09Yabe1Nz4ye7aJGW2P7416vV5mZmS5HEx7xSaG3sR6f6InY7wWWaDgGEuNDb/fPG2dG7PcSTUJp+rGx7f0OybHsAxHA9IR2T1ZZWxrx2z8argOSVNMQ2otHdWZVRH8vUvvZBygTUS4+E3EdQl+fhKSYNnFs2L39pfDvA3Zvf84DgUtMDDwpmZCQ0PQ7mOnawnFxJjxfXv88za5/LX0WyU5c37a+/n6/v9XEVXx8vO644w5JUm1trZ555pmQlnG6JJtkJbKff/55zZ49u2m5c+bMaXF+wT4DB5rv5927dw95PiTawuiyyy5TXl6e5syZo4kTJ2rQoEGSpFWrVum2225ryryfKnlWUVGha665RnFxcXr++edDjmX79u1KSgq8kfNKX4M6L3s/5OU1ZxYWyv/8QhlnDZLn5htleL3yTJ8m/59ekP+NxfJed40ty9m2fZuSvPbs0rUN0kOLbJmVY7Zt3674dnBEL/+jVFthXfga+yiMNKZf+vhZqTbI50uxHaR/fPw3edrBdkToouEYkKTVrwTfR5dhSM+/OkfxyS3fMKP9aKiz9nVfEM95DMNQYpr02caPZNOzRriotFBa/XLw0501Nk0F/x2550Ypeq4Du1ZKO5YHP93XvzdJP/xj5H4vUvvZBygTUS4+E74G6eMFUrD5joQUafnqd2S0gWekdm5/yZl9wO7tz3kgcFu3bg143C1btuj555/XlVdeGVQfbY8++mgoobUZv5z/ko5WVCqjx7HrX0ufRbIT17etr39lZaWSk5NbHDZmzBh16dJFkvT666+3WsPsVAJJsjVasGCBZs+eLUm64oorWk20BfsMHGi+n3/88cchz6cN3LpErtmzZ6tLly7au3evhg4dquHDhys7O1tjx45V//79demll0o6vn+25qqrqzV58mTl5+frvffeU0aGfc1JOMX0++Wb+6Tk98s7634ZjW9q3HyjjEHZ8j+/UOY+qvQishgeKavlw/qUMoeLJBsiRq+c4Kfpmi3Ft3wPj3YmJk7KGBL8dFk5IskWITr1lJJP7nb4tLJybA8FLuk5TDKCrOQfmyB1Pys88QBuisZysTdG6jk8+OkyR6pNJNnsFo37AFo3aNAgrVixoumFfKA9Gj16dNPfjV0eBSOYJJskffHFF9q7d68k6dxzz7WtJjhglwi8fWk7srKytHz5cl111VVKSEjQrl27lJaWpgULFmjJkiXatm2bpJYTbfX19brxxhu1evVqLV26VEOGhPC0qg3wv/q6zNw8eW6fLqN376bPDa9X3gfvl/w++Z74dcgdZQJtVeaI4BIGsR2krHPCFw/gtK7ZUkq3wMf3eKW+48IXD5zXe7QUE0R3fR06ST0Df6EXbZxhSP0vCG6artlSx9Bb6kAbE5ck9Q7y3qbvedbDeSDSRGu5uNc5VjknUPEpVjkqEkXrPoCWxcbGKi0tTbGxdvcCCDhn1KhRTX+vXr06qGmDTbKduJyOHTtq4MCBQUYMhBeJtjAbPHiw3n77bZWXl6u8vFwrV67UnXfeqcrKSu3atUsej0fDhg07bhq/369p06bpn//8p958802NHTvWpejPjLlnj/wv/EXG4LPlueH6k4YbffvIM32azE2b5X/j1CdSoL2JS5TOuUGKDaC59ZgEKed6q5kUIFJ4vNZ+nZgW2LjDJ/OAPdIkpko510neuNOPG58i5dwQXGIObV+3gdKgSwMbNzVLGjYpvPHAeQMvkrqfHdi4vUdZP0CkieZycUKKdT8YE0DfrXGJ0jnXW78jTTTvA2jZnj17dPfdd2vPnj1uhwKErHmfcp9//nnA04WaZJOOb6I1KysriGiB8ON9QZds2bJFpmlq0KBBJ3V8es899+j//u//9MMf/lCJiYn69NNPm4YNGDBAXbuG0A6PC4zevRW75M1TjuO99RZ5b73FoYiclzXkK5r54qnfSDvdcLRfyV2lsV+z+ic5sN3qu605w5DSB0oDL5SSAkhGAO1NfLI05lbrGCjKlfwNJ4+T1lsaMMFqZg6RJzXr2D5Q8sXJww2v1H2Q9TCelw0iU+9zpQ4dpS/+I5XvP3l4bIJVe6H/+TSfHIkMjzTsKutFij1rW+6/NrGz1Gfsl01N0gJQRIr2MlG0l4s7ZUhjviwTHdwh6YRNbXikbtnWvUCHTq6EGHbRvg9InAdOVF5erg8//FD33HOP26EAIVu0aJHWrVunDh06qLo68A4577///pCSbJK0YsUKPfXUU6qpqWmTfdohulGcdcmmTZsktdxs5NKlSyVJv/rVr/SrX/3quGF/+tOfNGPGjLDHB8AeHVKtmjq1lVJxrvTFJ5Kv3qrhMf4bPFhG5IvtIA2+XMq+WCrOk7b/69gxMHaalNTF7QgRbsldrbfZq8uk4q1S/qeS/8t94IJvReab6zhe14FS+gDpaLF0cKe0Z7WVeI+JlyZ8h6YCI51hSH3GSL1GWQn3LUu+vA7ESiOutV64IMEGRLakNGnkNVJNuXU/uOPfx4ZNuEuKT3IvNgBAaBYsWBDSdPPnz9fll1+uiy++OKgkmyQtWbJES5YsCWm5QLhRrHXJqRJtu3btcjgaAOEWn2Q9ZNqzxnq4FBNHkg3RJSZeysqxkiyNxwBJtujSoZPUb5xUsE6q/XIfIMkWPQzDqtXQKUMq2izVVliJFpJs0cPjsZoT/Tz+y+tAvNSlj9tRAXBSQorUd6xVu02mJIMkGwBEm+rqal1zzTUaPXq0li9f7nY4gG3oo80lp0q0AQAAAAAAAAAQaaqrq0myIeLwDqlLli1b5nYIAAAAAAAAABzUvXt3PfTQQ+revbvboQAAbEKiDQAAAAAAAAAckJ6erhkzZrgdBgDARjQdCQAAAAAAAAAOKCsr07vvvquysjK3QwEA2IREGwAAAAAAAAA4oKCgQPfdd58KCgrcDgUAYBMSbQAAAAAAAAAAAEAISLQBAAAAAAAAAAAAISDRBgAAAAAAAAAAAISARBsAAAAAAAAAOCAhIUGDBw9WQkKC26EAAGwS43YAAAAAAAAAABANBgwYoNdff93tMAAANqJGGwAAAAAAAAAAABACEm0AAAAAAAAA4IDc3FyNGDFCubm5bocCALAJiTYAAAAAAAAAcIBpmqqvr5dpmm6HAgCwCX20oUWJHq+OXDrR7TCCkujx2javOK805xbbZueIOPtWHwAAAECUo0xEuTjasf05DwDRLjExURUVFbbNb+6CV3S0skodkxI1666pJ/1vh8TERFvmAwSLRBtaZBiGkrzRu3sYhhQfvasPAAAAIMpRJqJcHO3Y/pwHgGhnGIaSkpJsm19cfILi6n2Ki09QUlLSSf8D7RlNRwIAAAAAAAAAAAAh4L0UAAAAAAAAAHDAgAEDtHjxYvXq1cvtUAAANiHRBgAAAAAAAAAOSEhIUHZ2ttthAABsRNORAAAAAAAAAOCAwsJCPfzwwyosLHQ7FACATUi0AQAAAAAAAIADSktL9dprr6m0tNTtUAAANiHRBgAAAAAAAAAAAISARBsAAAAAAAAAAAAQAhJtAAAAAAAAAAAAQAhItAEAAAAAAACAAzwej8aMGSOPh8eyABApOKMDAAAAAAAAgAP8fr9WrVolv9/vdigAAJuQaAMAAAAAAAAAAABCQKINAAAAAAAAAAAACAGJNgAAAAAAAAAAACAEJNoAAAAAAAAAwAGdOnXS5MmT1alTJ7dDAQDYJMbtAAAAAAAAAAAgGmRlZenxxx93OwwAgI2o0QYAAAAAAAAADqitrdXu3btVW1vrdigAAJuQaAMAAAAAAAAAB+zYsUNXXHGFduzY4XYoAACbkGgDAAAAAAAAAAAAQkAfbWiRaZqq8vvcDiMoiR6vDMOwZV6mKdW1r9VXnFeyafUBAAAARDnKRJSLox3bn/MAAJimqaqqKrfDCEpiYiL3Ai4g0YYWVfl96rzsfbfDCMqRSycqyWvPLl3nkx5aZMusHDPnFimeIxoAAACADSgTUS6Odmx/zgMAUFVVpeTkZLfDCEpFRYWSkpLcDiPq0HQkAAAAAAAAAAAAEALe8QAAAAAAAAAABwwdOlR5eXluhwEAsBE12gAAAAAAAAAAAIAQkGgDAAAAAAAAAAfk5+dr6tSpys/PdzsUAIBNSLQBAAAAAAAAgAOqqqq0YcMGVVVVuR0KAMAmJNoAAAAAAAAAAACAEJBoAwAAAAAAAAAAAEJAog0AAAAAAAAAAAAIAYk2AAAAAAAAAHBAZmam5syZo8zMTLdDAQDYJMbtAAAAAAAAAAAgGqSmpmrKlCluhwEAsBE12gAAAAAAAADAAYcPH9ZLL72kw4cPux0KABd06tRJ3bp1U+fOnRUTE1w9qC5dumjGjBnhCQxnhBptAAAAAAAAAOCAoqIiPfroo8rJyVFaWprb4QAIswkTJmjy5MkaPXq0zj33XKWmpjYNq62t1aZNm7R69Wp99NFH+vvf/666uroW59OlSxd98MEHysnJUdeuXTV37lyH1gCBINEGAAAAAAAAAABgg7i4OH3zm9/U3XffreHDh7c6Xnx8vEaPHq3Ro0frO9/5jg4cOKDnnntOv/vd71RcXNw0XvMkmyT94Ac/0DPPPKOysrJwrwoCRNORDigpKdHs2bM1cOBAJSQkqFevXpo5c6YqKyt1xx13yDAMPf30026HGRa+5xeq/vIr5X/3vZOGmaaphgcfUv1VU2Tm73I+OAcU5H6k3043tGbJvFbH+e10Q2/Ou9rBqJxnmlLJF9LWD6T6GuszX73U0PILGkDEMU2ptFD6/MNjx0BDnVRX5W5cTqqtlHatbLb+tVJZkbsxwVkVB6Xt/z7+GKimTBA1TFM6tEva+s9m9wJ11rkgWlSXSV98cvx5sOKguzHBWWVF0rYT7gVqK92NyQmUiSgXN6o8JO1YLsn88gNTqip1MSAHRfs+wHkAQDQZNWqUVq9erT/84Q8nJdkKCwv1/vvva/HixVq6dKny8vLk9/ubhnfr1k3/9V//pdzcXN12222STk6y7du3T1/5yldIsrUx1GgLs/Xr12vSpEkqLi5WUlKShgwZon379umpp57Szp07m9pjbjxQIo3ntmnyf7pSvgXPyhh1royu6U3D/K+/IXPjJnm+OUNGv77uBYmw2rdJyv/05IepDbXS8j9KPYdLAy+UvJyNEKFKvrAeKJz4MNVXJy1fIHU/Sxp0iRTXwZ34wq220nqoeGCbZB67d5SvXlr1ktSxuzTwIimtj3sxIrzKiqTt/5JKC47/3FcnrXhOSu9vHQOJqa6EBwcU51kJpqojx3/eUGfdC2QMlbIvkrxx7sQXblWl1nmwZOfxn/vqpU9fkFKzpOyLpU4ZroQHBxzebb1oUL7/+M99ddLHC6Rug6zzYHySO/Eh/KK9XFx+QNr2kXRkz8nDPnlO6tLXOgaSujgdmXOifR8AgGjx8MMP65FHHjmu77UVK1boj3/8oz744IPjaqk1Sk5O1nnnnac77rhDN9xwg2JjY9W5c2f9+c9/1te+9jX17NlTI0aMkHQsybZ9+3bH1gmBoUZbGJWUlGjy5MkqLi7WAw88oKKiIq1du1bFxcWaM2eOlixZolWrVskwjKaDJdIYsbGKmfWAVFMj35O/afrc3Fsg/8I/yzj7LHluusG9ABFWOz+Wcv/Reo0FX520d4207v+sv4FIU7hJWv966zUWTJ9UnCut/qtUW+FsbE6oLrOSafu3Hp9ka+7ofmnda1LxVmdjgzMO7ZLWLDo5ydbEtJIPq16iZk+kyl8pbV5ycpKtka9eKlgvrflbZNZuqzho7d8nJtmaKy2wjpNDuxwLCw4q3iqtffXkJFsj029dJ1e9RC3fSBbN5eIjBdLql1tOsjU6tEta9bJ09ORnjxEjmvcBnCwpKUkXXHCBkpJ4wwKIJPPnz9fPf/7zpiTb2rVrNXr0aE2YMEEvvvhii0k2SaqoqNAHH3ygW2+9Vb1799aLL77YNOyKK64gydZOkGgLo+9///sqKCjQvffeq3nz5iklJaVp2OzZszVy5Eg1NDSob9++6tixo4uRhpeRPVCeqTfLXLNW/iVLZfp88j0+TzJNeWc9IMPrdTtEhEHhlzXZAlFaKG1eGt54AKcd3iPlndwyTIuqjlgJOX8ryaj2yNdgrVPN0dOPa/qlLe9IZfvCHxecU3lI2vim5G84/bj11dK6163fiBzFW6WdywMb92ixtOktq4nJSFFfbb1IEMh+7W+wjpfKw+GPC84p3Wdd3xTAfl1z9Mt7gQDOmWiforFcXF0mbfi79VLF6TTUWPcCkdycajTuA2hZ37599dxzz6lv375uhwLAJnPmzNHdd98tSfL7/XrkkUc0btw4rVmzJqj5FBcX67bbbtP06dPV0HDsxrCurk5XXHEFSbY2jERbmOTl5WnRokVKT0/XY4891uI4o0aNkiSNHDmy6bPly5frsssuU0ZGhuLj45WVlaVbbrlFeXl5jsQdLp5pt0r9+8v37HPyz/+jzM+3yTPj6zJ6ZbkdmiMa6qpUXV7S4k8kMv1S/n+Cm+bgdmozILLk/0cBPVhrVH7g1DUe2psD26xES6BMv1XzBZFjz5rAHqw1qi2X9m0OXzxwlmlK+Z8EN82hXZFVm6FwU3C1lX311nGDyLFrZes1ultSeUjavy188bgt2spELYm2cvHetcHVVq6vsmo5R7Jo2wdOxHnA4vP5VFFRIZ/P53YoAGxw5ZVXavbs2ZKs4/vrX/+6fvaznx2XKAtGly5d9OCDDx7X/GRcXJy+8Y1v2BIvwoNekcLk5Zdflt/v17Rp05ScnNziOB06WB3yNE+0HTlyRMOHD9ddd92lbt26qaCgQI899pjGjx+vzZs3Kyurfd58GTExipl1vxq+9wP5314iY9hQea6/1u2wHPPpa4/o09cecTsMx5TkB1aL5UQFG6SzL7M/HsBplYekI3uDn65gg9Qt2/543BDKQ5KSL6w3nzt0sj0cOKyhVirKDX66gvVS79GSYdgeEhx2ZG9otbMK1kVGX2WmKRVuCH664lyrv7qYePtjgrOqy0J7gaZgvZQxxPZw2oRoKxO1JJrKxb760F6g2bdJ6nee5InQyl3RtA+0hPOAZevWrbrxxhv16quvaujQoW6HA+AMpKam6plnnmn6f+bMmXrppZdCnl+XLl30wQcfKCcnR5J04MABdezYUQkJCZo5c6Zef/11ffzxx2caNsKARFuYLFu2TJJ0ySWXtDpOQYHVYUnzRNuUKVM0ZcqU48YbM2aMzjrrLL322muaOXNmGKJ1SFKSFBsrNTTIGDNahid6KlQOu+ROZY+7qcVhf//VRIejCb+SL0Kb7uBOEm2IDKEeA4d3WU0uetv51bmuOsRmIE3pUL6UlWN3RHDa4b2hNX9WXWYlqpPT7Y8Jzgq1hu7BEM+fbU3lodD62/LVW8dPt4H2xwRnHcoPbbqyfVZzo7Ed7I2nLYi2MlGroqRcXLovtL43ayuslh4i4aWLVkXJPtASzgMAIs3PfvYzZWZmSpKWLl2q+fPnhzyvE5NsjX2yTZ48WU888YQ8Ho+eeeYZDR06VGYktbkfIdr5o7y2a/fu3ZKkPn36tDi8oaFBK1askHR8oq0lXbp0kaTjqosGKzs7W54gbt7MuDhpQegnhpPmZ5ryPfFrqaFe6t1L/r++Is/FF8noad/d86DsQTLq6myZlze2g6571L42b1N7ZKv3sPBmkAZlZ8vXRjq3+e6Vv9e4QVNOP+IJSg9VKCvr7DBE1HY8eccqpaVkqKioSFlZY9wOB2Fyw/mzNXns90OadsSQc1RW1b7bUe3aqY/mfmNFSNP+/KePackq+64/cMeEITfpW5f/OqRpJ195nbbvW2VzRHDaNyfO00VDpwY9XV21X1lZvcMQkbOye47Rj2/+e0jTfv/u+/Rx7v/ZHFHbES33QleNuUc3XfCjkKYdO/oCHSzbbXNEwaNMRLn4TIzJvkr3XLUgpGlvuXGaNu/+l80RBc/u7S+Ffx+we/tzHgjcjBkzAh63qKhIkvTOO+9o3bp1AU+3cOHCIKNqW677xg+UlNxRRcVFTS12tfRZJDtxfVn/tr/+fn/r7YCnpKQ0NedYUVGhO++8M+TltJZk2759u37zm9/o5ptv1rhx4zR48GBddtllev/991udV7B5gGjXfBtPmDAhqPNycyTawqSy0urBt7q65Yv7okWLVFJSopSUFPXr1++k4T6fT36/X7t379aPfvQj9ejRQzfffHPI8TRexAOWEK/YkJd2Mv8bi2Vu2CjPN26XZ/x5arjne/I98Wt5582RYVP7UPuK9kk1Ibwy14KY+ERb5uOkfUX71FBb5XYYkqSyoyG0FSWpprZShYWFNkfTtjS2we7z+SJ+XaNZyaH9IU+bv2eHqoPp1KcNqikPokOaExwsKebYiADF6aFUabQU7NvNPhABjpSG1tdKbX11RGz/RHUPedqi/YUR8R20JlruhQ72C/1eYM/eL3S43P0OCykTKerLxWciq2Pox3dh0Z62cX6weftL4d8H7N7+nAcCV1UV+DJramqafgczXZs4Ls6A/8t7AH+ze4CWPotkJ64v69++1/+2225r6jLqL3/5S1PrdcE6VZJNshJBc+bM0euvvy5Juvvuu0+ZaAs6D4Am+/eHfg9Poi1MevTooSNHjmjt2rUaP378ccOKioo0a9YsSdKIESNavJm6+OKLm2q8DRw4UMuWLVPXrl1DjicjIyPoGm121acwCwvlf36hjLMGyXPzjTK8XnmmT5P/Ty/I/8Ziea+7xpbl9MzoaWuNtvamZ0bPNlOj7UBFaO0+FRzKa6puHam8Xm/T70hf12h2uHZPSNMVH8lXWnonSe27kzKP4dWRimJ1Tu4R8DSmacowDJXWFXBsRIDyBivR1rhdA1VTVykztpJ9IAKUVIbWbt7eg1siYvv74ypVU1ephLikgKdpPF4qfEUR8R20JlruhUrrrM5agz0PHqkoVlKnOHXo6P53Q5mIcvGZqPLvl9/vkyfIztbqG2pV7yltE+cHO7e/5Mw+YPf25zwQuMTEwJOSCQkJTb+Dma4tHBdnwvPlPYCn2T1AS59FshPXl/Vv++vv9/tbTVxNnz696e8//OEPIc3/dEm2RosXL1ZhYaEyMzM1efJkdezYUUePHm1xnsHmAaJd823cvXvoL0ySaAuTyy67THl5eZozZ44mTpyoQYMGSZJWrVql2267TSUl1lu+jQfRif73f/9XpaWlys/P19y5c3X55ZdrxYoV6t07tKZ0tm/frqSkwAv6lb4GdV7WemY8UKbfL9/cJyW/X95Z98toPIHefKPMFZ/I//xCecaNtaWZhG3btynJpo6NahukhxbZMivHbNu+XfFt5Iiur5GW/zH4/nmm/+Aruu/p0N7+aC+W/9HqdyAjIyPkN13Q9pl+6ZP/Db5/nguv66eCX0TGfvHFJ9ZPoAzDUFIX6Z+fviabXuiGy9b+TTq8J7iNOWBMknb81+dhighO8tVb17xg++e5/s6xuvvXkXEezHtfKtwQ+PiGYSitj7Rm8/LwBdUGRMu9kGlKny6UKg8Fdx4cdXkP7fmJ+81GSpSJJMrFZ2r934Pvs7PXiHht3bEpPAEFya7tLzm3D9i9/TkPBG7r1q0Bj1tfX6877rhDKSkpio0NvN7ko48+GkpobcYv57+koxWVyuhx7B6gpc8i2Ynry/q3/fWvrKxsqrXWXExMjM455xxJ1nP3TZuCv3YFmmSTrNYg3njjDd1zzz3yer0699xz9dFHH7U432DzANGu+Tb++OOPQ54Pqc0wmT17trp06aK9e/dq6NChGj58uLKzszV27Fj1799fl156qaTW+2c766yzNG7cOE2dOlX//Oc/VV5erscff9zJVbCF/9XXZebmyXP7dBnNkoSG1yvvg/dLfp98T/yaDhwjTGyC1HNocNN06CSl9w9PPIDTDI+UdU5w03hjgz9u2rLMEVKQLzCr9yiRZIsgvc4NcgJD6pUTjkjgBm+slDk8uGnik6Vu2eGJxw29ciQFeU4L+rhBm2UYwW9Pj9e6fiLyRGu5uPeo4KfpFeQ9dHsRrfsAWhYbG6u0tLSgkmwA2pYhQ4Y01U5dvXp10NMHk2RrtGbNmqa/R40K4SKLsCLRFiZZWVlavny5rrrqKiUkJGjXrl1KS0vTggULtGTJEm3btk1S64m25lJTUzVw4EDt2LEj3GHbytyzR/4X/iJj8Nny3HD9ScONvn3kmT5N5qbN8r+x2IUIEU7ZF0sdA2w1zhsnjbjWSk4AkaL3uVLXAB8YGx5pxBSpHbbM0qr4ZGnY1Qr4IXOPIVLPIB/Ko23rOlDqMzrw8c++TEoOvZVstEH9J0ipAfZp7omRRlxj/Y4UyV2t/TpQfcZIXQeELx44L3OEdX0LiGFdN+NPfmEa7Vw0l4vTekv9xp9+vEbZX5E6nXmlvjYnmvcBtGzPnj26++67tWdPaF0OAHDf4MGDm/5ev359UNOGkmSTpHXr1jX9PWRIoDeZcEoEFWXbnsGDB+vtt98+6fOKigrt2rVLHo9Hw4YNO+18Dhw4oM8//1zjxo0LR5hhY/Turdglb55yHO+tt8h76y0OReS8rCFf0cwXT/1G2umGt1feOOncm6TNS6SSU3TZltBRGnmdlMLDVUQYwyMNv1ra+oG07xQtCMR2sB6sdenjXGxO6ZYtjbxW2vLOqZuP63WuNOgr1GaLRAMvtq4H+Z9aTaq2xBNjJSN6nv6WCO2MN0Y653ppy1LpwCnKjPEp1ssGkfhwNWukVUtp6wetN6lteKR+5wX3MBrtg2FIQ6+wWnvYu7b18WLipaFXRm6iNZrLRBLl4v7nW7Wcd358insBrzToEikrx9HQHBPt+4DEeeBE5eXl+vDDD3XPPfe4HQqAEBmGoUOHDikhIUGHDh0KeLq0tLSQkmySdOTIEdXU1Ki6ulp1baA/VhyPRJsLtmzZItM0NWjQoJM6PZ0+fboGDhyonJwcpaamavv27fr1r3+tmJgY3XfffS5FDIQmJl7KuV46WiwVbLDa56+rsoYZXisJkT5Aon9ORCqPVxryVanvWKlgvbR/m1Rbbg0zPNLgy6XuZ1kPHyJV1wHShXdJxVutvoqO7v9ygGHV3sgaIXVIdTNChJNhWA/YMkdIhRulolypuvTLYR6r9nPGUOshNCKTN86qqVZ+0DoPHtwh1VVawwyvNOxKq/ZjsE3Ntic9h1nrWLTFevGiwuqqWYZhJdcyR1CLKZIZHumsS62a7gUbpf1bpZqjx4adfZnU42zrWAEikWFY98I9h0qFm61zYdXhY8OzL5YyhklxEdSyAwAg8r3yyit65ZVXgp6uurpaJSVWgSCYJJsk7d69Wx06cMFsq3i87YLGzhFbajbyvPPO0zvvvKNvfOMbmjRpkubOnasLL7xQ69ev18CBA50OFbBFxx5WsuGiu489SIrrYNV2IcmGaJDY2XpL98K7mh0DidbD10hOsjXyxlkPksfedmz945Ok7ItIskWL+GQr4XbBt44/BnqPIskWLVK6SoMnShd99/h7ge5nRXaSrVFsgrW/nzej2fonWccFSbbo0CHVuu5NuPP482DmCJJsiA5xSVK/cdL539SxpsW/fPGKJBsAIFpUV1drypQpevHFF4NKsqHto0abC06VaLv33nt17733Oh0SAAAAAAAAAAAIo+rqat12221uhwGbUZfEBadKtAEAAAAAAACITN27d9dDDz2k7t27ux0KAMAm1GhzwbJly9wOAQAAAAAAAIDD0tPTNWPGDLfDAADYiBptAAAAAAAAAOCAsrIyvfvuuyorK3M7FACATUi0AQAAAAAAAIADCgoKdN9996mgoMDtUAAANiHRBgAAAAAAAAAAAISARBsAAAAAAAAAAAAQAhJtAAAAAAAAAAAAQAhItAEAAAAAAACAAxISEjR48GAlJCS4HQoAwCYxbgcAAAAAAAAAANFgwIABev31190OAwBgI2q0AQAAAAAAAAAAACEg0QYAAAAAAAAADsjNzdWIESOUm5vrdigAAJuQaAMAAAAAAAAAB5imqfr6epmm6XYoAACbkGgDAAAAAAAAAAAAQhDjdgBomxI9Xh25dKLbYQQl0eO1bV5xXmnOLbbNzhFx9q0+AAAAgChHmYhycbRj+3MeAIDExERVVFTYNr+5C17R0coqdUxK1Ky7pp70vx0SExNtmQ+CQ6INLTIMQ0ne6N09DEOKj97VBwAAABDlKBNRLo52bH/OAwBgGIaSkpJsm19cfILi6n2Ki09QUlLSSf+j/eJyCQAAAAAAAAAOGDBggBYvXqxevXq5HQoAwCYk2gAAAAAAAADAAQkJCcrOznY7DACAjTxuBwAAAAAAAAAA0aCwsFAPP/ywCgsL3Q4FAGATEm0AAAAAAAAA4IDS0lK99tprKi0tdTsUAIBNSLQBAAAAAAAAAAAAISDRBgAAAAAAAAAAAISARBsAAAAAAAAAAAAQAhJtAAAAAAAAAOCA9PR0ffvb31Z6errboQAAbEKiDQAAAAAAAAAcYBiG4uLiZBiG26EAAGxCog0AAAAAAAAAHHDw4EHNnz9fBw8edDsUAIBNSLQBAAAAAAAAAAAAISDRBgAAAAAAAAAAAISARBsAAAAAAAAAAAAQAhJtAAAAAAAAAOCATp06afLkyerUqZPboQAAbBLjdgAAAAAAAAAAEA2ysrL0+OOPux0GAMBG1GgDAAAAAAAAAAfU1tZq9+7dqq2tdTsUAIBNSLQBAAAAAAAAgAN27NihK664Qjt27HA7FACATWg6EgBwEtM0VeX3uR1GUBI9XhmG4XYYACIE50EAAAAAQDQzTVNVVVVuhxGUxMREV8rFJNoAACep8vvUedn7bocRlCOXTlSSl8saAHtwHgQAAAAARLOqqiolJye7HUZQKioqlJSU5PhyaToSAAAAAAAAAAAACAGJNgAAAAAAAAAAACAEtC0DAAAAAAAAAA4YOnSo8vLy3A4DAGAjarQBAAAAAAAAAAAAISDRBgAAAAAAAAAOyM/P19SpU5Wfn+92KAAAm9B0JICwqToilXwhHd0vlRdL1Uclf4M1rLZSWv93qWN3qXMvKTVLMgx347Wbr046uFMqK5bK90sVJVJDjTWstkJa9Vdr/TtmSF0HSjFx7sYLAABgJ9OUjhZLh3d/eT+437oHkqzfn/yvlNJNSukupfeTkru6G2841FVa94NHi63voOqIdY8oWffDa//PWv/UnlKXfpLH6268AIDwq6qq0oYNG1RVVeV2KAAAm5BoA2Ar05RKdkoF66VDu041ojVeyU7r38Q0KStH6jms/Secqo5Ie9dJRVukhtrWxyvbZ/1oneSNlTKGWt9BcrpTkQIAANjP1yAV51n3g+X7Wx+v6oj1s/9zace/rRevsnKkboMkTztve6V0n1Swzlo309/KSKaVhDy8W9otKS5JyhwhZY2U4pOdjBYAAADAmSDRBsA21aVS7j+kI3uDn7bqsLRtmbR7lTTkq1KXvnZHF35+n7RrpZT/6SkeqLTCV289jCrcIPUZK/UfL3k4QwMAgHambJ+05V3r3i5YpQXWT8fu0pBJ7fPlo/oaaduH1gtXwaqrlPL/I+1ZIw36itRzeOS1+AAAAABEIh7jArBF4SYrUearP7P51JZL61613uY969L2k2yqPCxteluqOHBm8zFNK1l3cIc0/OrIbEIJAABEHtMv7fjYemlK5pnN6+h+aeVfpAEXSH3GtJ9k0+E90pZ3jjWPGSpfnZT3nlUbbtiVVk03AAAAAG1XO2+QA0BbkP+plPePM0+yNVe40erDzc55hkv5AWn1y2eeZGuu8pC0+hWprMi+eQIAAISD3y9tfkfa/ZnOOMnWyPRZzUlu+9B6EamtO7BdWvfamSfZmju8W1q9SKopt2+eAAD3ZWZmas6cOcrMzHQ7FACATUi0ATgju1dLOz8Oz7wP75Y2LraaZGyrKg9bndjXV9s/74Zaq3Zf+UH75w0AAGAH05Ty3pX2bw3P/PeulXYsD8+87XIoX9r0lpUctFvVl/eadVX2zxsA4I7U1FRNmTJFqampbocCAO1O165ts/mvdtIoG4C2qHSftP2j8C7jUL7VlGL/88O7nFD4fdZDlXAk2Ro11EqbFkvjvi55Y8O3HAAAgFAUbpSKcsO7jN2fSak9pa4Dw7ucUNRWSJuWBN8/bzCqDltNSY64pv00owkAaN3hw4e1dOlSTZo0SWlpaW6HAwBhl56ertGjR2vUqFEaOnSokpOTZRiGKioqlJubqzVr1mj16tU6cODUzYWdc845+uCDD/TYY49p3rx5DkUfGBJtAELiq5dylwY/3djpVj8TdZXSZy8GNk3+p9aDlZRuwS8vnHatlCqCrG0WyvpXHZF2rpAGfSXoEAEAAMKmuiz4l65CuReSpLz3pdRMKbZDcMsLJ9O04mqoCW66UL6DgzusWoM9BgcfJwCgbSkqKtKjjz6qnJwcEm0AIpbH49FXv/pV3X333bryyivl8Zy+ccV3331X8+fP1zvvvCO///g32RqTbGlpaZo7d64KCwv18ssvhyv8oNF0pANKSko0e/ZsDRw4UAkJCerVq5dmzpypyspK3XHHHTIMQ08//bTbYQJB2bXSSgAFKy5JSkgJrlN30y/l/qNt9c9RedhKAAYrlPWXpD2rpaP7g18eALQllYclf4P1dzhrfwBwxuf/DL4/3VDvheoqpe3/Dm6acDuwXSrZGfx0oX4Hn//Tau0AAAAAaMvOP/98bd68We+8846uvvrqgJJsknTFFVforbfe0tatW3XxxRc3fd48ySZJy5cv1+LFi8MSe6hItIXZ+vXrNXz4cM2dO1fFxcUaMmSI6uvr9dRTT+mWW25RXl6eJCknJ8fdQIEg+OqlgvXOLrN8v1Ra6OwyT6VgnfMPifeudXZ5dvE9v1D1l18p/7vvnTTMNE01PPiQ6q+aIjN/l/PBAQg7f4O0b7NVa+M/z0v1X9b8qKuy+h06sL1tvUgRDpwHEYkqD0slXzi7zOLcttVX2Z41zi6vvkbat8XZZQIAAACBSkhI0BNPPKHly5dr8OBjTTHs2bNHTz75pL72ta9p8ODBSk9PV3p6us466yxNnTpV8+bNU35+ftP42dnZ+uijj/S73/1O559//klJtkmTJqmystLx9TsVEm1hVFJSosmTJ6u4uFgPPPCAioqKtHbtWhUXF2vOnDlasmSJVq1aJcMwNGLECLfDBQK2f9uxB6VOcjq515qGOncecuz/XKoLY39w4eK5bZrUt498C56VebDkuGH+19+QuXGTPLdNl9GvrzsBAgib+mormZb7rnS0+OThh3dLG9+UNr99rKZbJOI8iEhUsMH5Zfp9VuK+LSg/IJW58BJYwfrIfzkBAAAA7U/Hjh31j3/8Q/fff39TDbaVK1dqypQp6tevnx544AG9/PLL2rp1qw4dOqRDhw5p27ZtWrRokWbNmqWBAwfqyiuv1IoVK5rmee+99+pf//pXm0+ySSTawur73/++CgoKdO+992revHlKSUlpGjZ79myNHDlSDQ0N6tu3rzp27OhipEBwilx6wHFgm5XkctvBHZLPhTj8DdKBz51f7pkyYmMVM+sBqaZGvid/0/S5ubdA/oV/lnH2WfLcdIN7AQIIC1+9tP7vgdVG3v+5tOXdyH14zHkQkcY0pWKXalYVtZEaXW7FUXW45RcXAADtR1JSki644AIlJQXZhjAAtFGJiYl65513dNFFF0mSampqNGvWLJ1//vl66623TupvrSV+v19Lly7VhRdeqJkzZ6q62qptEBMTI0n65JNP2mySTSLRFjZ5eXlatGiR0tPT9dhjj7U4zqhRoyRJI0eObHU+kyZNkmEY+slPfhKOMIGgmaZ7hXvTbzUh6bayouhc9pkwsgfKM/VmmWvWyr9kqUyfT77H50mmKe+sB2R4vW6HCMBmBRuksn2Bj79/q3TI4WbonMR5EJGk6og7rRtIUuWhttFPGfeDAIBQ9e3bV88995z69u3rdigAYItnn31WF1xwgSSrlb8JEyZo3rx5ASXYTmSappYvX666uuNrOZSUlLTZJJtEoi1sXn75Zfn9fk2bNk3JycktjtOhQwdJrSfa/va3v2n9+vXhChEISdWR4Du9t9PRNpBoczPZ1xYSjaHyTLtV6t9fvmefk3/+H2V+vk2eGV+X0SvL7dAA2Mw0pcIQmpXbu972UNoUzoOIFG7fj5QfcHf5pt/dGNz+/gEAZ8bn86miokI+n8/tUADgjF133XX62te+JkkqKyvTZZddpjVrQu/M+JxzztEHH3ygTp06SZLq660H0VOmTNGtt9565gGHCYm2MFm2bJkk6ZJLLml1nIKCAkktJ9qOHj2qH/zgB5o3b154AgRCVFFy+nEieflux1B5yHq40x4ZMTGKmXW/VFcv/9tLZAwbKs/117odFoAwKC20XswI1qF8qbbC/njaCs6DiBRu349VHHR3+dVl7vYr6fb3DwA4M1u3btWYMWO0detWt0MBgDPSuXNn/eEPf2j6/+6779aGDaF35tyYZGveJ9uMGTOahj/99NPq2rVryPMPpxi3A4hUu3fvliT16dOnxeENDQ1NHfu1lGj78Y9/rEGDBmnatGmaPn36GceTnZ3d1AkhcCYmDLlJ37r81y0OGztdijtNE+PxScd+T7ir9fHqKqXPXjz58zdff0tf/dZ3A4w2PBb+oKDVYaf7Ds50/U1TGtA/W3UN1QFGGxozLk5aMN/+GSclSbGxUkODjDGjZdh4XhqUPUhGXRvoxO80nrxjldJSMlRUVKSsrDFuh+O4aF//aDH+7Ot11xVPhTTtxK9M1hfF62yOKHicB8Mn2s8DkbD+0y7+mSae880Wh9l1LyS1fj/06M8e05LVYTg+A9S76xD9bNp7LQ5z4n54W95O3ZB1cYDRAm3P89/fLY/HK7/Pp6yslp+ZAO1N8wfBp1NUZLUB/M4772jdusDvexcuXBhkVG3Ldd/4gZKSO6qouEhZWVmtfhbJTlxf1j+61l9qf9/B6Zp+/Pa3v63u3btLkt544w399a9/DXlZLSXZGvtkmzx5sqZOnaq0tDR997vf1c9+9rNW5xNsHqT5Ok6YMCGo83JzJNrCpLG90MZO+060aNEilZSUKCUlRf369Ttu2OrVq/Xss8+eURXLEzVexIEzVZpR2uqwuCQpISWw+RiewMdtrqa6RoWFhcFP6JBAv4NQ11+yjueaujC3SZwQr1ibZ2mapnxP/FpqqJd695L/r6/Ic/FFMnpm2DL/fUX7pJo20GnLaTQ2D+Lz+dr0vhwu0b7+0aK0ewjV2b5UcvBg29g3OA+GTbSfByJh/U/VN4IT90JHjx519btLMFt/i9aJ++H2vO8AkmTKbPrNvoxIUVVVFfC4NTU1Tb+Dma69Hy/+L++B/M2uYy19FslOXF/WP7rWX4qs78Dj8eg73/lO0/8PPvhgyPM6VZJNkmbNmqWbbrpJXq9Xd955p375y1+qoaHlJibOJA+yf3/obbSTaAuTHj166MiRI1q7dq3Gjx9/3LCioiLNmjVLkjRixAgZhtE0zOfz6a677tK9996roUOH2hZPRkYGNdpgiw7J8a0OCyT3E59kPVQw/VLtKcZvbV6eWFOZmZmnX1AY1dZXKT42scVhp/sOznT9/aZf6d3SZJqpgQUbIjMuTna3yuR/Y7HMDRvl+cbt8ow/Tw33fE++J34t77w5x50HQ9Uzo2e7qMnh9Xqbfru9L7sh2tc/asQGn+wxTVOGYSgm0d8m9g3Og+ET7eeBSFj/2PjWyxV23Qudal7xibGufnepnVvPjjlxP+wz69rtvgNIkiGj6Tf7MiJFYmLLzwhakpCQ0PQ7mOna+/Hi+fIeyNPsHqilzyLZievL+kfX+kvt7zvw+/2tJq4mTpzYVIFo6dKl2rlzZ0jLOF2STbK64Fq8eLGuu+46ZWZm6qqrrtKbb77Z4vyCzYM0X8fG2nmhINEWJpdddpny8vI0Z84cTZw4UYMGDZIkrVq1SrfddptKSqyG9XNyco6b7umnn9b+/fv1k5/8xNZ4tm/frqSk07RhAgSg4qD06QstD2upaZsTTbjLenO3tlL6eEHwy5/xnZv1k+dvDn5CG332F+loKy84nO47ONP1T+7i0d69e4KfMEiVvgZ1Xva+bfMzCwvlf36hjLMGyXPzjTK8XnmmT5P/Ty/I/8Ziea+75oyXsW37NiV52/5lbfkfrT6oMjIymvrqjCbRvv7RwvRLK56VasoDn8YwDHXuJW3M+yx8gQWB82D4RPt5IBLWf98WKXdpy8PCfS8kSU/M/5m69Gm9uZhw8/ukj56yfp/IifvhcRcPU8Hj7XPfASTpgyckmdZDxfZ6HgROFEx/a1u2bNHzzz+vK6+8MqiX7B999NFQQmszfjn/JR2tqFRGj2P3QC19FslOXF/WP7rWX2p/30FlZaWSk5NbHHbxxceaMn/++edDmn8gSbbmy7juuuualt1aoi3YPEjzdfz444+DXYUmVHEKk9mzZ6tLly7au3evhg4dquHDhys7O1tjx45V//79demll0o6vn+2kpIS/fd//7f+53/+Rw0NDSotLVVpaakkqzp5aWnpadtFBcItsYvkcfEZXsce7i27UYqLMXQM/cUK15h+v3xzn5T8fnln3S+j8W2dm2+UMShb/ucXytxH87ZAJDE8UubJXdCeVlaO7aG0CZwHEWncvh9xe/ker5TsYh/sKe3wfhAAcMygQYO0YsWKppfyAaA9GjVqVNPf//nPf4KePpgk24nLaL7stoJEW5hkZWVp+fLluuqqq5SQkKBdu3YpLS1NCxYs0JIlS7Rt2zZJxyfaCgoKVF5errvuukudO3du+pGkOXPmqHPnztqzJ/w1WYBT8XhcfLhhSCndXFp2M53cTLS1gURjsPyvvi4zN0+e26fL6N276XPD65X3wfslv0++J34t0zRdjBKA3XqdIyWlBz5+l75S1+ywheMqzoOINElpkjfOnWV3SJViE9xZdnMd7elaMbRlt8P7QQDAMbGxsUpLS1NsrN09AgOAc8455xxJVr9mwfYvF2ySTZIOHTqk3bt3H7fstoREWxgNHjxYb7/9tsrLy1VeXq6VK1fqzjvvVGVlpXbt2iWPx6Nhw4Y1jT9w4EB9+OGHJ/1I0u23364PP/xQPXpQqoL7egxxZ7np/dvGg5Wu2e7U6jM8UveznV/umTD37JH/hb/IGHy2PDdcf9Jwo28feaZPk7lps/xvLHYhQgDhEhMvnXODlBxAsi2tjzR8ivUyR6ThPIhIZHikHi7dk2S4dB96Irfi6NBJSu3pzrIBAPbYs2eP7r77bl6mB9CudenSRZKakl+BCiXJ1qhxWSkpKW3uZYW234lDBNqyZYtM09SgQYOO6/Q0OTlZX/nKV1qcpm/fvq0OA5zWY7C0/V+Sr87Z5fbKcXZ5rYlNsL6DfZucXW63bCm+nXW1aPTurdglLbeZ3Mh76y3y3nqLQxEBcFJCijT6Vqlgg1S4QaouO354cleruciew6ym2CIR50FEqqwcqXCjs8s0DClzhLPLbE3HHlYTjuWt9NsbLpkjrUQnAKD9Ki8v14cffqh77rnH7VAAIGRXX321OnTooPLyIDpnl/TDH/4wpCSbJP30pz9Vamqqampq2lwXWyTaXLBpk/V0vnmzkUB7EhMnZQ6X9qxxbpmJaVJaX+eWdzq9znE+0dbrXGeXBwB2iImX+o6V+oyRygql9X+XGmql2A7SuK9bD84BtD8p3aTULKnUwT7bu50lxbfcF7vjDMO6N8td6twyvbHWiwkAAACA25YuDe1GeMaMGercubMSEhKCSrJJ0rJly0JaphNItLkg2EQb/XWgLep/vrR/m1Qb3EsLIRtyedt6GJvSTeo1StrrULKx53ApNdOZZQFAOBiG9VDeG2sl2jzetnVeBxC8sy+TVv5FMn3hX1ZMvDToK+FfTjAyhkhFm6Uje51ZXvbFUlzi6ccDAAAA2qrq6mpdc8018ng8QSXZ2joanXABNdoQCWLipSFfDX66ukqpptz6Haheo6yHs23NwAlSYufgpgll/eNT2t6DJQAAgOR0acD5wU0Tyr2QJJ11adupzdbIMKz7YW+Q3UOE8h107m01GwkAAAC0d9XV1RGVZJOo0eaKtlzFEQhGl75S33HSrpWBT/PZi8Eto1NPK6HVFnljpWFXS2sWBd5fXbDr74mRhl9tJTYBAADamt5jpNJCqeSLwMYP9l5Ismr29xgS/HRO6JAqDf6qtPntwKcJ9juIT5GGXkEtYACIFN27d9dDDz2k7t27ux0KAMAm1GgDcEYGTLBqnIVDxx5SzvXBvyXspI7dpXOul7xx9s/bEyONvJYmIwEAQNvl8UjDJ4evL90eg6XBE9t2kqnH2VayLRziU6Rzb5ISOoZn/gAA56Wnp2vGjBlKT093OxQAgE1ItAE4I4ZhNWs48ELJsPGM0nWgdO7NUmyCffMMl9QsadTNUodO9s2z8aFKl772zRMAACAcvLFSzrVSxjB759tnjDT0SnvvMcMlc7g0fIq9rRCkdJdGT5WS0uybJwDAfWVlZXr33XdVVlbmdigAAJu0gyILgLbOMKwmJMdOl5K7ntm8YhKsByojrpFiwlBLLFw69pDG3S5l5Zz5vHoOl8bPoCYbAABoPzwxVvOGI6+T4pLObF4dUqVRU6Xsi9t2TbYTdR8knTdD6tLvzOZjeKxWI8Z8zd4XuQAAbUNBQYHuu+8+FRQUuB0KAMAm9NEGwDYp3axkW9EWae96qeJA4NPGJUqZI6Ssc6T4M3w445aYOOnsy6SModKeNdKBbZLpD2xaw5C6Zku9zpU6Z4U3TgAAgHDpOkBK/YZUsEEqXC/VlAc+bWKa9dJS5vC23XT4qSSkWE2fH9wpFayTDu8OfFpvrJQxxLofTOoSvhgBAAAA2ItEGwBbebxWwqzncOlokfWQoXy/dHS/VF/dbLwYKaWr1SRO515WU5Eer3tx26lThjT8aqm2Utq/VTpabK1/1eHjx+uQatWE69jD6tsjPtmVcAEAAGwVmyD1Gyf1HSMdypcO7bHuB8v3S776Y+PFxFv3gh27W7XAOvdqXzXYWmMYUreB1k/lYevlq8b7wdry48dLSrfWv1NPqftZ9jY9CQAAAMAZJNoAhIVhWA8MOvW0/jdNyV8v+XxWQs0b0z762zgT8UlS71HH/vc3SL4G629vjJVsBAAAiFSGR0ofYP1I1v2gr17yN94PxkZGYu1UktKkfucd+99Xb90TGh7rXjBSXjQDAAAAohmPeQE4wjAkb5wUzc8SPCTXAABAFDOM9tUHbzh4Y9tvs5gAAHskJCRo8ODBSkhIcDsUAIBNeOQLAAAAAAAAAA4YMGCAXn/9dbfDAADYKMIbbgMAAAAAAAAAAADCg0QbAAAAAAAAADggNzdXI0aMUG5urtuhAABsQqINAAAAAAAAABxgmqbq6+tlmqbboQAAbEIfbQCAkyR6vDpy6US3wwhKosfrdggAIgjnQQAAAABANEtMTFRFRYVt85u74BUdraxSx6REzbpr6kn/2yExMdGW+QSLRBsA4CSGYSjJyyUCQPTiPAgAAAAAiGaGYSgpKcm2+cXFJyiu3qe4+AQlJSWd9H97RtORAAAAAAAAAAAAQAh4TRcAAAAAAAAAHDBgwAAtXrxYvXr1cjsUAIBNSLQBAAAAAAAAgAMSEhKUnZ3tdhgAABvRdCQAAAAAAAAAOKCwsFAPP/ywCgsL3Q4FAGATEm0AAAAAAAAA4IDS0lK99tprKi0tdTsUAIBNSLQBAAAAAAAAAAAAISDRBgAAAAAAAAAAAISARBsAAAAAAAAAAAAQAhJtAAAAAAAAAOAAj8ejMWPGyOPhsSwARArO6AAAAAAAAADgAL/fr1WrVsnv97sdCgDAJiTaAAAAAAAAAAAAgBCQaAMAAAAAAAAAAABCQKINAAAAAAAAAAAACAGJNgAAAAAAAABwQKdOnTR58mR16tTJ7VAAADaJcTsAAAAAAAAAAIgGWVlZevzxx90OAwBgI2q0AQAAAAAAAIADamtrtXv3btXW1rodCgDAJiTaAAAAAAAAAMABO3bs0BVXXKEdO3a4HQoAwCYk2gAAAAAAAAAAAIAQ0EcbAABAC0zTVJXf53YYAUv0eGUYhtthRIz2tv0l9gEAAAAAANxAog0AAKAFVX6fOi973+0wAnbk0olK8nJrZ5f2tv0l9gEAAAAAANxA05EAAAAAAAAAAABACHjlFQAAAAAAAAAcMHToUOXl5bkdBgDARtRoAwAAAAAAAAAAAEJAog0AAAAAAAAAHJCfn6+pU6cqPz/f7VAAADah6UgAAMLIVy+VH5CO7peqj0j1NdbnDbVS8VapY3epQ6pkGK6GGTamKVUdkcr3W99D8/Xfu85a/+SukjfW3TgBhE9DbbPzYNnx54ED26SU7lJCxwg+D/qlykPW+leUHL/+BRuOnQc9XnfjBAAAzqiqqtKGDRtUVVXldigAAJuQaAMAwGamKR3aJRWslw59Yf1/Il+9tPlt6++4RKnncClrpPWwORJUlUqFG6R9m6X66pOH++qlz/9p/W14pPQBUq8cqXPvyH3YDkQTv18q2WGdBw/vaXkcX720cbH1d0JHKXOEdS6MT3IszLCqKLHWvyhX8tWdPNxXL2193/rbEyN1GyRl5UidMjgPAgAAAEB7QqINAAAbHdolbf1Aqi4NfJq6KmnXSmnXZ1KPwdKgr1jJt/aottJKoB3YFvg0pl86uN36SUqTzp4ode4VvhgBhNf+rdK2j6TaisCnqTkq7fxY+uITK+E28CIpJi5sIYZVdal1HTi0K/Bp/A1Sca7107G7dPbl1m8AAAAAQNtHog0AABs01FoPlvdtOoOZmNZD1sO7rGRTt2ybgnOAaVoP1z//57Fm0UJReVhas0jKOkfKvlDyttMH7UA0qquUtgaZaD+R6bdqgZV8IQ25QkrrbVt4YWeaVuw7/m3VVgvV0f3SqhelvuOkfuNpUhIAAAAA2jqP2wEAANDe1VZIq/56hkm2ZuqqpI1vSjtXtNzsZFtjmtL2f0mbl5xZkq25gnXS6kXWdwGg7as8LK188cySbM3VHJXW/s3qy7E98PulLUutlw3OJMnWyDSl/E+lda9JDS00OwkAANqvzMxMzZkzR5mZmW6HAgCwCYk2AADOQG2lVQOr8pD9887/j5Vsa8tMU9r2obRntf3zLt9vfbd1LfTxBqDtqDpiHau15fbP+/N/SnvX2j9fO5l+acs7Vo1kux3ZI61/zZ7kHQAAaBtSU1M1ZcoUpaamuh0KAMAmJNoAAAiR3ydt+Lv1kDlcdn1qX025cNi7LrwPwSsPWbX72kPNPiAaNdRZta7qKsO3jM+XWU1JtlU7V1hN54ZLaaGU+2745g8AAJx1+PBhvfTSSzp8+LDboQAAbEIfbQAAhGjXZ9LR4uCmGTtdikuyHkp/9mJg03z+oZTWR0roGHyM4VR1xOqLKBihrH9pgZXM6z0q+BgBhNeOf0vVpcFNE8p5IO896bwZUmxCsBGGV1mRdS0IRijrv/9zq9/O7mcHHyMAAGhbioqK9OijjyonJ0dpaWluhwMAsAE12gAACEHFQatpx2DFJUkJKdbvQPnqrIfMbalWl2laNSz8DcFNF8r6S9KO5eGtOQggeIf3SAXrg58ulPNAbYXVTG1b4m+QcpdKCvLcHOp5cOs/6bcSAAAAANoiEm0OKCkp0ezZszVw4EAlJCSoV69emjlzpiorK3XHHXfIMAw9/fTTbocJAAhC/kqrXx6nHNpl1ZxoKw7vtpozc4q/IfhaI22F7/mFqr/8Svnffe+kYaZpquHBh1R/1RSZ+bucD84hDXVWQmbVX61+DSWr773ivOCTte1RpO4DX3zi7PKKtkhVpc4u81SKt0qVDrb4VF/d9vurAwAAAIBoRKItzNavX6/hw4dr7ty5Ki4u1pAhQ1RfX6+nnnpKt9xyi/Ly8iRJOTk57gYKAAhYbaV0YJvzyw2l5ki4uBFLcZ5UX+P8cs+U57ZpUt8+8i14VubBkuOG+V9/Q+bGTfLcNl1Gv77uBBhmBeul5X+Utn4gle1TU+0f0ydtXiJ9/Ix0cKebEYZfJO4DFSVWs65OK1zv/DJb48Z5sHCT1T8oAAAAAKDtINEWRiUlJZo8ebKKi4v1wAMPqKioSGvXrlVxcbHmzJmjJUuWaNWqVTIMQyNGjHA7XABAgPZtdrY2W6P9n1u1gNxWU+5OYsTfIBXlOr/cM2XExipm1gNSTY18T/6m6XNzb4H8C/8s4+yz5LnpBvcCDKNdK60Em6+u9XHqqqQNb1j7d6SKxH2gcIM7y923uW3Ugjy6P/g+Ou1QVykd3OH8cgEAgH2SkpJ0wQUXKCkpyHak/z97dx5nVX3fj/91Z1gGZlhEVFAQREBZBIzRuEWDxUTFJanGLGo2szUxmtRKuiRN2toYDElaa9IfaWpsTUppNU2sqG36JYshiYEQEoOouIAOgskoKAyCDHN/f0ylIoPOHO7MBeb5fDzmMXDO+Zzz/lzu3HuY1/18PgDstQRtXejKK69MY2NjrrjiisyZMycDBgzYsW/WrFmZOnVqWlpaMnr06AwcOLCKlQLQGetXV+e65e3Js904XePurH8inV6TqGLXfrw6191TpXFjU/P2i1P+xdK0Lrgr5e3bs/36OUm5nNprrk6ptrbaJVbcM6vb1tbrkHKy/M79ex2+/e058EyVfha3bUk2/q46136par4WVeuxBwAqY/To0fn617+e0aNHV7sUACpE0NZFVqxYkfnz52fo0KG57rrr2j3muOOOS5JMnTp1x7Yf/OAHKZVKu3yZWhJg71Aut41kqJZqjKDYpYYe3v+iai55RzJmTLb/w9fT+pX/L+UHH0rNe96V0sgR1S6tSzz+i84d37p975oetSvsL8+BlheS5qerd/2NVXwNelE1Xwc37sOvgwBAsn379mzatCnbt5sPGmB/IWjrIvPmzUtra2suueSSNDQ0tHtMv379kuwctL3oK1/5Sn7605/u+Lrlllu6tF4AOub5Z5OWrdW7fjV/ufuiav6Se+umtjXy9kWlXr3S65o/TF7YltY7FqQ0eVJqfv/N1S6rSzz/bNL0aOfbPfmbZPu2ytezt9hfngObqjyirKe/Dm5ssk4bAOzLHnjggRx//PF54IEHql0KABXSq9oF7K8WLlyYJJk+ffpuj2lsbFtBvr2gbeLEiTnxxBMrVs+4ceNSUyNXBdhTRw5/TT79ttvb3XfCpUmfV5lmv2/9/30/9UO7P+6F5uTn39x1++KfLst5V53bwWq7xufe9f0cOmRcu/te7THoaP+T3T8Gp538e1nzdNcv6FXu0yeZ+5XKnrS+PundO2lpSen416ZUwffm8ePGp/TCKyyG1o2OHzczH505t9PtWrYmrz/hjXn8d9VfjK9L/v2T/eI5cNyRZ+dj5/1Du/u643VwwXf+O2+8/H0drLZrfPUPlqd/30Ht7qvU6+Du+l/enkw4anKat2zoeMEAe5GbrlydmpratG7fnhEjRlW7HKiI97znPR0+du3atUmSO++8M7/85S873O7mm2/uZFV7l7e89+OpbxiYtevWZsSIEbvdtj97eX/1v2f1P/EY7I39b21t3fHnU089tVOvyy8laOsiq1e3LeAzalT7N40tLS1ZtGhRkvaDtkp78U0cgD1zYN8jd7uvT31SN2C3u3dSqun4sS9Vbi1lzZoqL9RW3n0w0NHHoGj/k+SZp9d3z2NQ1ze9K3i6crmc7V/8ctKyLTl8ZFr/5V9Tc/ppKR06vCLnf3Ltk8mWKg63fIlJw4vX8dyGzdV/jicV//dP9p/nwLihG3e7rzteB1taWqv+HKkp7f7Z0R2vg02/fTrPmEMS2EeV/3ex33LKVX89h0rZvHlzh4/dsmXLju+dabev/7y0/u9Uma3bt+/oS3vb9mcv76/+96z+Jx6Dvb3/Tz1VfOoSQVsXaW5um9fq+eefb3f//Pnz09TUlAEDBuSII47YZf/b3va2NDU15cADD8z555+fz3/+8xk6dGjheoYPH25EG0AFDD6g/REMSdvog1fTt77tl6vl1leeAnF35yrVlHPYYYe9+oW6UDm7n7Ps1R6Djvb/lc51wJDBOSxd/xiU+/RJJWfIa/3O7Sn/6tepee+7U3PSiWn56Mey/YtfTu2c2SmVSnt8/kOHH7rXjGir6188omoY1K/qz/Gk8v/+yf7zHBgwqP1p0ZPueR2s7VWq+nNke+sLSfq3u69Sr4OvdJ6hBx2YfgNrX71QgL1QKaUd36v9eg6V0r9/+/cF7amrq9vxvTPt9vWfl5ra2h3fX+xLe9v2Zy/vr/73rP4nHoO9sf+tra07Bikdcsghhc8jaOsiw4YNy/r167N06dKcdNJJO+1bu3ZtrrnmmiTJlClTdvrFyqBBg3LNNdfktNNOS0NDQ37605/muuuuy89+9rMsWbJkx5txZ61cuTL19a8yjw8Ar2rLxuTHu5kRr70pvl7u1A+1jWDY2rz787yS171+WhrnNHa+YQUt/ffkmdXt73u1x2BP+58ki36+ML2LvR12SvP2lhyw8HsVOVd5zZq03nRzSkeNT83FF6VUW5uaSy9J6zf+Ka3fuT21b7lgj6/x0MqHUl+7d9zavbA5uWdu2xR3ndG3IfnJ0u9lb/hsUCX//ZP96znw3Lrd/6x3x+vg+Re+KbP+vrqvgz+7OdnU1P6+rn4drO2dPLDyNyntBT8nAEX8zxeTlNt+qfbikhqwr+vMemvLly/PTTfdlHPOOSeTJk3qcLtrr722SGl7jc995Vt5blNzhg8bvuNnv71t+7OX91f/e1b/E4/B3tj/5ubmNDS0fZj0xz/+ceHz+O9ZF5kxY0aSZPbs2XnooYd2bF+8eHGmT5+epqa2/5lPmzZtp3bHHntsrr/++px77rl5wxvekD/5kz/Jt771rSxfvjzz5s3rtvoBaF/fhqRPxz90WHEDi3+4Zr+ood/gdEvIVknl1tZs/8KXktbW1F7zhym9+Imtiy9Kafy4tN50c8pP7l9TPA36S98AAIwbSURBVPfpnxxyVOfbHTY1e0XIVmn723OgYWiqGvLsDa+DA6pYw4CDq/v4AwB7Zvz48Vm0aFHGjx9f7VIAqBD/Resis2bNyoEHHpgnnngikyZNyjHHHJNx48blhBNOyJgxY3LGGWck6dj6bOeee27q6+uzZMmSri4bgFdRKlX3F6w9/RfMe0P/O6v11m+nfP+K1Lz70pQOP3zH9lJtbWr/6A+T1u3Z/sUvp1wuV7HKyjv8uKTUiZntetclh03punqqaX97DtT0agvbqmXAsOpd+0XVfC2q5mswALDnevfunSFDhqR370qvCAxAtQjausiIESNyzz33ZObMmamrq8uqVasyZMiQzJ07NwsWLNgxyq0jQduLKrF2BwB7buiY6ly3tk8yaC+YsvuAw5OaKi0NdOCuy5ru1cqPP57Wf7olpQlHp+bC399lf2n0qNRceknK9/0mrd+5vQoVdp2BhySTz07SgduX2t7J1Le0rV21v9lfnwMHVul1sO+ApOHA6lz7par5WlSt9yAAoDIef/zxfOQjH8njjz9e7VIAqJC9YyGP/dSECRNyxx137LJ906ZNWbVqVWpqajJ58uRXPc/tt9+e5ubmnHDCCV1RJgCdNHxi8vCPku3buvm6k5Jefbr3mu3p0y855Ohk7fLuvW7vumLTEVZT6fDD03vBd1/xmNp3vC2173hbN1XUvQ45OulVlzy4MNn8TPvHDByeTDizbTq8/dH++hwYMSVZdW+Sbh6EN2Lq3jFtYv8DkiGjk2dWde91+w1Ohozq3msCAJW1cePGfP/7389HP/rRapcCQIUI2qpg+fLlKZfLGT9+fPr333mhn0svvTRjxozJa17zmjQ0NOSnP/1prr/++kybNi1vf/vbq1QxAC/Vq28ybGKy5lfde90RHR8E3eVGTOv+oO3QyW0jn9i3HDg6Oem9yfonkrX3J+tWJOXtSU3v5LVv3zenAyWpG5gcdGTyu4e775qlmuTQY7rveq9m5LTuD9pGTGubwhgAAIC9x17wedCe57777kvS/rSRkyZNyn/8x3/kXe96V84+++zcdNNN+cAHPpAf/OAH6dNnLxjGAECS5IgT26Zy7C7DJ1V3TaSXGzQ8Obgb1+7u3S8ZdXz3XY/KKpWSIYcnk85qGxGZJL37Ctn2dUee0r2jy0Ydv3dNLzr0yGTwiO67Xr/BbSMJAQAA2LsI2qrglYK2P/mTP8l9992X5557Ltu2bctjjz2WL33pSxk0aFB3lwnAK6gbkIyf3j3X6tvQfdfqjKN/ry0A65ZrzUj67EW/YAeShoOSMSd3z7XqD0zGnNQ91+qoUimZ+KakppvmCJn4pu79gAcAAAAdI2irglcK2gDYdxw6OTlobOfavNCcbNnY9r1D/vcXub3rOl1el+tTn0x4Y+fadLr/SYZN2PfWZoOeYtQJyaBDO9ems68DNbXJpLO7L9DqjP4HJOPf0Lk2RV4HD39tcsDIzl0HANg7HXLIIfnkJz+ZQw4xvQPA/mIv/O/q/m/hwoXVLgGACiiVkskzk1/elmxo7Fibn3+zc9eY+MbkwCM6X1t3OXhcctQZyYMdfGvrbP+HjGoLGoG9U01NMvUtyS/mJ81NHWvTmdeBUk1yzPnJwGHF6usOI6YlWzYlq37WseM7+zp4yNHJuNM6XRYAsJcaOnRo3vOe91S7DAAqyIg2ANgDtb2TY38/GTK6suct1SSTzkkOPaay5+0KI1+THH1mklJlz3vQ2LZf4O+No1iA/9OnX3Lc2yofhtX0Sqa+OTnoyMqetysceUoy5pTKn/fQY5LJ53TvWngAQNd69tlnc/fdd+fZZ5+tdikAVIj/sgHAHqrt0xa2jTu9MqFQw0HJCZcmwyfu+bm6y4ipyfHvTOqH7Pm5anolR/1eMuWCpFbIBvuEPv2S1749GX1i22jfPTV4RHLiu5OhY/b8XN2hVGpbQ+7Yt7at4bmnetW1fdhiwhuFbACwv2lsbMwnPvGJNDZ2cFoUAPZ6fn0FABVQqklGHZ8MPTJ56PvJ0491/hy9+7WNDht9QtuaRPuaQcOTE97VNn3aE79MWrZ28gSltpEr496Q9B/cBQUCXaqmVzL21OTgsclDP+j4lLov1behbd23kcdWJrDrbgeOSk58b/LIj5Mn70u2b+tc+1LN/04VeXrSt75ragQAAKCyBG0AUEH1Q5JjL0w2b0jW/Cp56sFky3O7P76mNhk4PDnsmOTgo/b9EVy1vZIjT01Gvy5Z90DbL5qfW5eUW3ffpt+gtl8sHzal7c/Avm3gsLbRbZt+lzT+Kvndw8nWTbs/vqZXMviw5LCpbWH7vvhBg5fq1adt7cojT0nWLk+eXJ5s+m1SLu++Tf8hbaOYDz1GwAYAALCv2cd/nQcAe6f+g9tGJIw7PXlhc7Lxt8nm9UlrS9uIhV59kwEHJ/UH7vu/VG5Pbe+28PCwY5LW7cmmprZfNLe80Ba61fRqCyUHHJL0rqt2tUBXaDgoOXpG29fW5mTjuuT5Z9teE0o1baN4Bxzc9lqwP06P2Ktv2yjlka9pG9m2qaktfGx5oW1/ba+294ABB7cdCwAAwL5J0AYAXaxP/+TA0W1fPVFNbTLwkLYvoGfqW5/0PbLaVVRPbe+26XUHDa92JQBAtdXV1WXChAmpq/OJQ4D9haANAAAAAKAbHHnkkfn2t79d7TIAqKD9cJIWAAAAAAAA6HqCNgAAAACAbnD//fdnypQpuf/++6tdCgAVImgDAAAAAOgG5XI527ZtS7lcrnYpAFSINdoAANrRv6Y26884s9pldFj/mtpql7Bf2df+/RPPAQAAAKgGQRsAQDtKpVLqa90q9VT+/QEAAICOMHUkAAAAAAAAFOBjugAAAAAA3eDII4/M7bffnpEjR1a7FAAqRNAGAAAAANAN6urqMm7cuGqXAUAFmToSAAAAAKAbrFmzJp/61KeyZs2aapcCQIUI2gAAAAAAusGGDRty2223ZcOGDdUuBYAKEbQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAusHQoUPzgQ98IEOHDq12KQBUiKANAAAAAKAblEql9OnTJ6VSqdqlAFAhgjYAAAAAgG7wu9/9Ll/5ylfyu9/9rtqlAFAhgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAABANxg0aFDOO++8DBo0qNqlAFAhvapdAAAAAABATzBixIhcf/311S4DgAoyog0AAAAAoBts3bo1q1evztatW6tdCgAVImgDAAAAAOgGDz/8cM4666w8/PDD1S4FgAoRtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoIBe1S4AAAAAAKAnmDRpUlasWFHtMgCoICPaAAAAAAAAoABBGwAAXW77tmTT75LW7W1/b239vz8DAEBP8dhjj+Xtb397HnvssWqXAkCFmDoSAICKK5eT9U8k61Ykz61Lmpvatr1o2+bkBzckDQclg4YnwycnAw+pXr0AANAdNm/enF/96lfZvHlztUsBoEIEbQAAVExra/Lkr5PHlyabn3mVY7e3hXDPrUue+GUycHgy6rjk4KOSUql76gUAAADYE4I2AAAqovnpZPldbcFZEc+tTe67Ixl6fzLhjUnfhsrWBwAAAFBp1mgDAGCPrbkvufefi4dsL9X0aPLTbyRPW7YCAAAA2MsJ2gAA2COP/yJZ8V9tU0FWSsvWZNl/JL9dWblzAgBAtR122GGZPXt2DjvssGqXAkCFCNoAACjsyeXJQ9/vmnOXW9umknzm8a45PwAAdLfBgwfn/PPPz+DBg6tdCgAVImgDAKCQzRuSB77XuTYnXJqc+qG27x1R3t627lvL1k6XBwAAe51nnnkm3/rWt/LMM89UuxQAKkTQBgBAp5XL/ztdZEvn2vWpT+oGtH3vqK0bk4d+0LnrAADA3mjt2rW59tprs3bt2mqXAkCFCNq6QVNTU2bNmpWxY8emrq4uI0eOzFVXXZXm5uZcfvnlKZVKufHGG6tdJgBAhz31YLL+ie673pP3Jc+t677rVVprOVnxZPI/y5O7fp388IGkaWO1qwIAAAD2VK9qF7C/W7ZsWc4+++ysW7cu9fX1mThxYp588snccMMNeeSRR3YME582bVp1CwUA6IQnflmda046u/uvuydaW5MfPZjc81Dy9Kad933nF8nRhyZnTkrGHFyd+gAAAIA9Y0RbF2pqasp5552XdevW5eqrr87atWuzdOnSrFu3LrNnz86CBQuyePHilEqlTJkypdrlAgB0yMbfJs+u6f7rPvVg8sLz3X/dolq2J9+4J/nO0l1DtiQpp22U21f+X/KLVd1dHQAAAFAJgrYudOWVV6axsTFXXHFF5syZkwEDBuzYN2vWrEydOjUtLS0ZPXp0Bg4cWMVKAQA67qmHqnPd1pak6ZHqXLuIf/t5cl/jqx+3vTX51k+Sh/bhqTEBAOiY+vr6nHLKKamv78SixQDs1QRtXWTFihWZP39+hg4dmuuuu67dY4477rgkydSpU3fZ9x//8R85+eSTU19fn0GDBuWUU07J8uXLu7RmAICO2FjFQOi5p6p37c5Y92zy80c7fnxrObnzV11XDwAAe4fRo0fn61//ekaPHl3tUgCoEEFbF5k3b15aW1tzySWXpKGhod1j+vXrl2TXoO2GG27IxRdfnFNPPTW333575s2blxkzZuT55/ehuZIAgP1SuVzdsGvjPhK0LSow6m9VU9L4TOVrAQBg77F9+/Zs2rQp27dvr3YpAFRIr2oXsL9auHBhkmT69Om7PaaxsW0uoZcGbY888kiuueaafPnLX84VV1yxY/s555zTRZUCAHRcy9ZkWxU/+7N5ffWu3Rm/fLxgu9XJiCGVrQUAgL3HAw88kIsuuii33nprJk2aVO1yAKgAQVsXWb16dZJk1KhR7e5vaWnJokWLkuwctN10003p3bt3PvCBD1S0nnHjxqWmxgBGAGDPDOp/cP72g0t3u/+ES5M+r7DcRN/6//t+6od2f9wLzcnPv7nr9o3PNmfEiKM6WG31XHjd6pRqajvd7h9u/pf8wXmzuqAiANg73HTl6tTU1KZ1+/aMGNH+70xgX/Oe97ynw8euXbs2SXLnnXfml7/8ZYfb3XzzzZ2sau/ylvd+PPUNA7N23dqMGDFit9v2Zy/vr/73rP4nHoO9sf+tra07/nzqqad26nX5pQRtXaS5uTlJdjvd4/z589PU1JQBAwbkiCOO2LH9Jz/5SY466qh885vfzLXXXpsnnngi48aNy5//+Z/nHe94R+F6XnwTBwDYE831L7zi/j71Sd2AVz9PqaZjx73c9u0tWbNmTecbdrPtLdvSq0/ng7aNz67fJ/oHAEWVU97x3Xse+4vNmzd3+NgtW7bs+N6Zdvv6z0vr/06V2bp9+46+tLdtf/by/up/z+p/4jHY2/v/1FPF16oQtHWRYcOGZf369Vm6dGlOOumknfatXbs211xzTZJkypQpKZVKO+1bs2ZN/uRP/iSzZ8/OyJEj84//+I955zvfmYMOOigzZswoVM/w4cONaAMA9ljv2rq0lltTU2r/vuKF5ldu37e+LWQrtyZbX+HY3Z3n+W0bc9hhh3Ww2urZ1PRIBh/a+amAypuf2if6BwBFlVLa8d17HvuL/v37d/jYurq6Hd87025f/3mpqa3d8f3FvrS3bX/28v7qf8/qf+Ix2Bv739raumOQ0iGHHFL4PIK2LjJjxoysWLEis2fPzplnnpnx48cnSRYvXpzLLrssTU1NSZJp06bt1K61tTWbNm3KLbfckje/+c1Jkt/7vd/L/fffn7/6q78qHLStXLky9fWvMI8TAEAH/eSmZPMz7e9rb7rHlzr1Q20j2bY2Jz+e2/lrH33siB3r3O7NfvxQcuvizrXpXZvcectfpn/fv+yaogBgL/A/X0xSbvul2r7wng4d8cADD3T42OXLl+emm27KOeec06k12q699toipe01PveVb+W5Tc0ZPmz4jp/99rbtz17eX/3vWf1PPAZ7Y/+bm5vT0NCQJPnxj39c+DyGOHWRWbNm5cADD8wTTzyRSZMm5Zhjjsm4ceNywgknZMyYMTnjjDOS7Lw+W5IMGTIkSXYK1EqlUmbMmJHf/OY33dcBAIDdGFj8Q1779LU747VHJH07+ZG214xO+vftknIAANhLjB8/PosWLdrxoXwA9n2Cti4yYsSI3HPPPZk5c2bq6uqyatWqDBkyJHPnzs2CBQvy0EMPJdk1aHulT7K8OIczAEA1Da7ijBaDDq3etTujrndy2SlJ6dUPTZIcPDA5/9guLQkAgL1A7969M2TIkPTu3bvapQBQIYK2LjRhwoTccccd2bhxYzZu3Jh77703H/zgB9Pc3JxVq1alpqYmkydP3qnNBRdckCT57//+7x3bWltb873vfS/HH398t9YPANCeQ45OaqowAXm/QcmQw7v/ukVNHpG897S2KSFfyYghyUdnJPVGswEA7Pcef/zxfOQjH8njjz9e7VIAqBBrtFXB8uXLUy6XM378+F0WPT3vvPPy+te/Ph/84Afz9NNP5/DDD8/Xv/71LF++PN/73veqVDEAwP/pXZcMm5A8eV/3XvewqUlpH/uY2JSRyZ9fkPzskWTRymTD5v/bN35Ycur4ZNJhSe0+1i8AAIrZuHFjvv/97+ejH/1otUsBoEL8l74K7ruv7bdSL582Mmlbj+3222/PhRdemD/90z/N+eefn9WrV+fOO+/csa4bAEC1HX5c94ZeveuSQ4/pvutV0oB+yZmTkz9/887bP/J7bUGckA0AAAD2XUa0VcErBW1JMnjw4MydOzdz587tzrIAADqsYWhyxInJoz/pnusd9XtJn37dc62uUlNqW7OtnI6v3QYAAADs3Xx+tgpeLWgDANgXjH5dMuDgzrV5oTnZsrHte0cdNK5tXTgAAACAvY0RbVWwcOHCapcAALDHamqTKRckS+YlWzd1rM3Pv9m5azQcnEx8U1IyBAwAgP3AIYcckk9+8pM55JBDql0KABViRBsAAIX1G5S85uKk74DKn3vAwclrLmxbnw0AAPYHQ4cOzXve854MHTq02qUAUCGCNgAA9kj9kOT4dyZDDq/cOYdNTI57W9KnvnLnBACAanv22Wdz991359lnn612KQBUiKANAIA9VjcgOfatydFnJrW9i5+nT30y9c3J5HOSXn0rVh4AAOwVGhsb84lPfCKNjY3VLgWACrFGGwAAFVEqJSOmJoeMT55cnjQuS57f0LG2Aw5ORhybDDt6z4I6AAAAgO4kaAMAoKJ690tGvTY5/LjkubXJs+uSjU8lzU8n27e1BXK1fZKGocnAYcnA4W1/LpWqXTkAAABA5wjaAADoEqVSMujQti8AAACA/ZE12gAAAAAAukFdXV0mTJiQurq6apcCQIUY0QYAAAAA0A2OPPLIfPvb3652GQBUkBFtAAAAAAAAUICgDQAAAACgG9x///2ZMmVK7r///mqXAkCFCNoAAAAAALpBuVzOtm3bUi6Xq10KABUiaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAACuhV7QIAAAAAAHqCI488MrfffntGjhxZ7VIAqBBBGwAAAABAN6irq8u4ceOqXQYAFWTqSAAAAACAbrBmzZp86lOfypo1a6pdCgAVImgDAAAAAOgGGzZsyG233ZYNGzZUuxQAKkTQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAOgGNTU1Of7441NT49eyAPsLr+gAAAAAAN2gtbU1ixcvTmtra7VLAaBCBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAACAbjBo0KCcd955GTRoULVLAaBCelW7AAAAAACAnmDEiBG5/vrrq10GABVkRBsAAAAAQDfYunVrVq9ena1bt1a7FAAqRNAGAAAAANANHn744Zx11ll5+OGHq10KABVi6kjaVS6Xs7l1e7XL6JT+NbUplUoVOVe5nLywb3U/fWqTCnUfAKDH3w/19PthgJ7O+4B7AQDoKEEb7drcuj0HLPxetcvolPVnnJn62so8pV/YnnxyfkVO1W1mvy3p6ycaAKiQnn4/1NPvhwF6Ou8D7gUAoKNMHQkAAAAAAAAFCNoAAAAAAACgAIOpAQAAAAC6waRJk7JixYpqlwFABRnRBgAAAAAAAAUI2gAAAAAAusFjjz2Wt7/97XnssceqXQoAFSJoAwAAAADoBps3b86vfvWrbN68udqlAFAhgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAABANzjssMMye/bsHHbYYdUuBYAK6VXtAgAAAAAAeoLBgwfn/PPPr3YZAFSQEW0AAAAAAN3gmWeeybe+9a0888wz1S4FgAoRtAEAAAAAdIO1a9fm2muvzdq1a6tdCgAVImjrBk1NTZk1a1bGjh2burq6jBw5MldddVWam5tz+eWXp1Qq5cYbb6x2mQAAdKHW1qT8v38uv+KRALB/2t4Sb4YAwH5H0NbFli1blmOOOSZf+MIXsm7dukycODHbtm3LDTfckLe97W1ZsWJFkmTatGnVLbSLbL/p5mx74zlpvfu/d9lXLpfT8kefzLaZ56f82KruL64bNN7/g/ztpaX8YsGc3R7zt5eW8t0553ZjVQBAd3r2+eS/7kv+4js7b//K/yTLHk+2t1alrG7T0++Hevr9MEC5nDy7Nll+Z/LDv9t53/3/lTz3VHXq6k49/b2gp98LALD/E7R1oaamppx33nlZt25drr766qxduzZLly7NunXrMnv27CxYsCCLFy9OqVTKlClTql1ul6i57JJk9Khsn/sPKf+uaad9rd/+Tsq/vi81l12a0hGjq1MgAEAX+tXjyV99N7nr122B20utfCq5+Z7kS3cnz26uTn10PffDQE/Wuj1Z8d/J4m8la+9v+/tLPXlf8vNbkgcXJuX9+IMn3gsAYP8maOtCV155ZRobG3PFFVdkzpw5GTBgwI59s2bNytSpU9PS0pLRo0dn4MCBVay065R6906va65OtmzJ9i/9zY7t5Sca03rzP6d09FGpeeuF1SsQAKCL/PqJtiCtZfsrH7dmfXLj/yTNW7unLrqX+2GgpyqX20asPXnfqx/7xNL/Ddv20+kkvRfwUvX19TnllFNSX19f7VIAqBBBWxdZsWJF5s+fn6FDh+a6665r95jjjjsuSTJ16tQd297whjekVCq1+/XhD3+4W2qvtNK4sal5+8Up/2JpWhfclfL27dl+/ZykXE7tNVenVFtb7RIBACpqy7bkWz/p+PIzv9uYfHdpl5ZEFbkfBnqi3z6UrLu/48c3LkueXtVV1VSf9wJeNHr06Hz961/P6NGjq10KABXSq9oF7K/mzZuX1tbWXHLJJWloaGj3mH79+iXZOWj76le/mueee26n4xYsWJBrr7025567785VXXPJO9L603uz/R++nppHHk35wYdS88H3pzRyRLVL6xYtL2zO8xubXv1AAGC/sOSxZGtL59osXZ1c8Jqkvm/X1FRtPf1+qKffDwM9zxO/7HybxmXJ0CMqXspeo6e/F/T0e4EXbd++Pc8//3z69euXWgErwH5B0NZFFi5cmCSZPn36bo9pbGxMsnPQNnHixF2O++u//uscdNBBOeussypcZfcp9eqVXtf8YVo+9vG03rEgpcmTUvP7b652Wd3mZ7d9Jj+77TPVLgMA6CY/Wdn5Ni3b2wK604+ufD17g55+P9TT74eBnqX5mWRDY+fbNT2SbNmY1A149WP3RT39vaCn3wu86IEHHshFF12UW2+9NZMmTap2OQBUgKCti6xevTpJMmrUqHb3t7S0ZNGiRUl2Dtpe7ne/+13uvvvufOQjH0mvXsX/ucaNG5eamo7PFFru0yeZ+5XC12tXfX3Su3fS0pLS8a9NqRP1dMT4ceNTeuGFipyrtne/vOXaAr8h243J0z+Yca97a7v7/uPzZ1bkGuPHjcv2bc9X5FwAwJ55y7UPp7Z3XafbfeHvbs4l3/1UF1TUeT39fqin3w8D7IlpY87Mx8//RqG2M2dclAfX/KzCFXVel7wPJF36XlDp94Gefi/QGe95z3s6fOzatWuTJHfeeWd++cuOD/28+eabO1nV3uUt7/146hsGZu26tRkxYsRut+3PXt5f/e9Z/U88Bntj/1tbW3f8+dRTT+3U6/JLCdq6SHNzc5Lk+efbf3OfP39+mpqaMmDAgBxxxO7nRZg3b15aWlpy2WWX7VE9L76Jd1hd3/TeoyvurFwuZ/sXv5y0bEsOH5nWf/nX1Jx+WkqHDq/YNZ5c+2SyZWtFztWrb/+KnOdFg4eNy+GTZ1T0nC/35Non07J1c5deAwDomFJtsTupLVu3Zc2aNRWuppgefz/Uw++HAfbEmCEbC7fdsP7ZveO9sMLvA0nXvxdU+n2gx98LdMLmzR2/5pYtW3Z870y7veLnYg+0bt++4/uLfWlv2/7s5f3V/57V/8RjsLf3/6mnnircVtDWRYYNG5b169dn6dKlOemkk3bat3bt2lxzzTVJkilTpqRUKu32PLfccksmTJiQ1772tXtUz/Dhwzs9ou13e3TFnbV+5/aUf/Xr1Lz33ak56cS0fPRj2f7FL6d2zuxX7H9nHDr80IqOaNvXHDr8UCPaAGAv8ULzM6kbcFCn2/Uqb8lhhx3WBRV1Xk+/H+rp98MAe6LIW0i5XE6pVErf+tJe8V5Y6feBpOvfCyr9PtDT7wU6o3//joeSdXV1O753pt3e8HOxJ2r+dz26mtraHX1pb9v+7OX91f+e1f/EY7A39r+1tXXHIKVDDjmk8HkEbV1kxowZWbFiRWbPnp0zzzwz48ePT5IsXrw4l112WZqa2hZ/nTZt2m7P8cADD2TJkiX53Oc+t8f1rFy5MvX19R0+vnl7Sw5Y+L09vm6SlNesSetNN6d01PjUXHxRSrW1qbn0krR+45/S+p3bU/uWCypynYdWPpT62so8pbe2JJ+cX5FTdZuHVq5MXz/RALBXuG1Jcs+DnW/39S98LCP+8WOVL6iAnn4/1NPvhwH2RGtrsuhrydZNHW9TKpXSf0iyaOl/p0KfP9gjlXwfSLrnvaDS7wM9/V6gMx544IEOH7t8+fLcdNNNOeecczq1Rtu1115bpLS9xue+8q08t6k5w4cNT2Nj42637c9e3l/971n9TzwGe2P/m5ub09DQkCT58Y9/XPg8lV0UgB1mzZqVAw88ME888UQmTZqUY445JuPGjcsJJ5yQMWPG5Iwzzkjyyuuz3XLLLSmVSrnkkku6q+yKK7e2ZvsXvpS0tqb2mj9M6cWU+uKLUho/Lq033Zzyk52c1hIAYC93yrjOtxk9NBkxpPK1UF3uh4GeqKYmOWxK59uNmJq9ImSrNO8FvNT48eOzaNGiHR/KB2DfJ2jrIiNGjMg999yTmTNnpq6uLqtWrcqQIUMyd+7cLFiwIA899FCS3Qdt5XI53/rWt/KGN7whhx9+eHeWXlGtt3475ftXpObdl6b0kn6UamtT+0d/mLRuz/YvfjnlcrmKVQIAVNawQcmJR3b8+JpSMnNal5VDFbkfBnqqEdOSuoEdP77/kOTQyV1WTlV5L+ClevfunSFDhqR370qvAghAtQjautCECRNyxx13ZOPGjdm4cWPuvffefPCDH0xzc3NWrVqVmpqaTJ7c/l3kj370o6xevTqXXXZZN1ddOeXHH0/rP92S0oSjU3Ph7++yvzR6VGouvSTl+36T1u/cXoUKAQC6zkXHJ1NGvvpxtTXJpScn44pPB89eyv0w0JP16Z8ce1HSd8CrH9tvcHLshUmvvl1eVrfzXsDLPf744/nIRz6Sxx9/vNqlAFAhJvCvguXLl6dcLmf8+PG7XfT0lltuSb9+/XLRRRd1c3WVUzr88PRe8N1XPKb2HW9L7Tve1k0Vdb8RE9+Qq775yp9Ie7X9AMC+qVdt8p5Tk3seavtq2rjz/lKSiYclMyYlRxxUlRK7RU++H3I/DPR09UOSEy5JHvtZsnZ5sn3bzvt79U2GT06OeF1bMLc/8l7Qs+8F2rNx48Z8//vfz0c/+tFqlwJAhQjaquC+++5LsvtpI7ds2ZJbb701b37zmzNgQAc++gUAwF6ppiY5/ejk9UclK9cla9Yn27Yn/fu0hWwHNlS7QgDoWn0bkqNnJGNPS367Mtm6sW0dtrqByUFjk1qz5wEA+zhBWxW8WtBWV1eXDRs2dGNFAAB0pZpSctTwti8A6Il69UkOnVTtKgAAKs8abVXwakEbAAAAAAAAez8j2qpg4cKF1S4BAAAAAOhmhxxySD75yU/mkEMOqXYpAFSIoA0AAAAAoBsMHTo073nPe6pdBgAVZOpIAAAAAIBu8Oyzz+buu+/Os88+W+1SAKgQQRsAAAAAQDdobGzMJz7xiTQ2Nla7FAAqRNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAA6AZ1dXWZMGFC6urqql0KABXSq9oFAAAAAAD0BEceeWS+/e1vV7sMACrIiDYAAAAAAAAoQNAGAAAAANAN7r///kyZMiX3339/tUsBoEIEbQAAAAAA3aBcLmfbtm0pl8vVLgWACrFGG+3qX1Ob9WecWe0yOqV/TW3FztWnNpn9toqdrlv0qVz3AQB6/P1QT78fBujpvA+4FwCAjhK00a5SqZT62p779CiVkr49t/sAAD3+fqin3w8D9HTeB9wLAEBHmToSAAAAAAAACvC5FAAAAACAbnDkkUfm9ttvz8iRI6tdCgAVImgDAAAAAOgGdXV1GTduXLXLAKCCTB0JAAAAANAN1qxZk0996lNZs2ZNtUsBoEIEbQAAAAAA3WDDhg257bbbsmHDhmqXAkCFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAJ6VbsAAAAAAIB91dFHH93hYwcNGpTPfOYzOfnkkzN8+PAurAqA7iJoAwAAAADoBsOHD89nP/vZapcBQAWZOhIAAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaSJK0trbmL//yLzN27Nj069cvhx9+eK688so0NzdXuzQAAAAAgF3ceeedmTZtWvr27ZvRo0fnS1/6UrVL6lY/+tGPcsEFF2TUqFEplUq59tprq11St/nCF76Qk046KQcccEAGDx6cU089NXfffXe1y+pWt9xyS4477rgccMAB6devXyZMmJAvfelLKZfL1S6tKhYuXJja2tqMHTu226/dq9uvyF7pi1/8YubMmZNvfOMbOe644/Lggw/mve99b7Zu3Zq5c+dWuzwAAAAAgB2WLFmSCy64IH/0R3+UefPm5d57782HP/zh9O/fPx/+8IerXV632LRpUyZOnJh3vvOd+fjHP17tcrrVwoUL8773vS/HH398+vfvn69//es599xz88Mf/jCnnHJKtcvrFgcffHA+/elP56ijjkrfvn1zzz335CMf+Uhqa2tz1VVXVbu8brVu3bq8+93vzhvf+MasXLmy268vaCNJsmjRopx55pm58MILkySjR4/OO97xjixcuLDKlQEAAAAA7OxLX/pSjj/++Fx33XVJkgkTJmT58uX5/Oc/32OCtnPOOSfnnHNOkuSTn/xklavpXnfddddOf7/++utz991359vf/naPCdre9KY37fT3MWPG5Dvf+U5+8IMf9KigrbW1NZdeemk++tGPZsuWLVUJ2kwdSZLk1FNPzaJFi/LrX/86SfLoo4/mzjvvzMyZM6tcGQAAAACwr9j8/JZs2vz8Tl8vTmVXLpdfcdumzc9n8/NbOnSdRYsW5ayzztpp21lnnZXVq1ensbGxsp3qhBe2tezS//b6u7v+b9r8fLZvb61a/XuqtZ3+dLb/W7e+0PnrtrbmueeeS319fUX7U8SWrS/s8WPQ2ekfy+Vyfv7zn2fRokWZPn16xfvUGS0t2/e4/9taWjp8vb/6q79KqVSqathcKvfUCTt7gObm5jQ0NCRpG0b8Si8y5XI5f/3Xf53PfvazKZVKaWlpyQc+8IHMnTs3pVKpu0oGAAAAAPZh3//pL/NfP1pcuP3Zbzghp79u2qse16dPn9x444354Ac/uGPb8uXLM3ny5Pz85z/P8ccfX7iGPdG0/tnc8I3b8sK2jgcFLzXsoCG54l1vSa9etZ1qN3r06Lz//e/Ppz71qULXrZRyuZybb707Dz76RKH2pSQfuuT8jB4xrFPtrr322syZMye/+c1vMmLEiELXrpRfP/Bo/uW7/1O4/QlTj87vn3Vah4599tlnc9hhh+WFF15Ia2trPvOZz+TTn/504WtXwuYtW/O3N92aZzc2F2rfUN8vn3jfW1Pfv+5Vj/3+97+fd77znfnlL3+ZYcOG5bOf/Wy++c1v5uGHH+7QtTqTobwSI9pIktx666356le/mm984xtZunRp/v3f/z133XVX1V+YAQAAAIB9x+mvm5pRhx1SqO3oEcPy+uOnVLii7jX0gEGZecZJhdrW1tbk7eed0emQbW9SKpVy4dmnp3+/voXan37itE6HbF/96lfzuc99LrfeemvVQ7YkmXL0mBw7aWyhtkMGD+jU82fAgAFZtmxZlixZkhtvvDFf+tKX8o//+I+Frl0p/ev65q3nvKFw+4vOPr1DIVtTU1MuvfTSfOMb38iwYZ17zlSaoI0kydVXX52rrroql112WY455phcdNFF+dznPpfrr78+W7Z0bLg2AAAAANCz1dTU5OKZ09Ond69OtevTp3cunvmG1NR07FfWw4cPz7p163ba9tRTT+3YV00nTD06Rx95eKfbven1x2fYQUO6oKLuNbChf97yptd3ut3wgw/MjFOP61SbOXPm5Jprrsntt9+eGTNmdPqaXeX8Gadk0IDOjY4qlUq5eOb09O3Tu8NtampqMnbs2EyZMiUf/vCHM2vWrPzZn/1ZZ8utuLGjD8spx03udLvO/Oz85je/yZNPPplzzz03vXr1Sq9evfKXf/mXeeSRR9KrV6/8y7/8S6evX5SgjSRtQyRf/iZWW1ubcrnc6flgAQAAAICe68ADBubcTo7qOv/3Ts6QwQM7fPwpp5yS//qv/9pp2913351Ro0ZVfVRTqVTKhWed1qlRXUeMHJ5Tjz+mC6vqXsccNSbHThrX4eNra2vytnOnp1dtx0fz/fmf/3n+4i/+InfeeedeFbIlSb+6vnnrzDd0qs3pr5va6dF8L9fa2rrXDJw56/QTcvCBgzt8/IGDB3ZqNN/xxx+f++67L8uWLdvx9eEPfzgjR47MsmXLMnPmzAJVF9O5jxWw33rzm9+cOXPmZOzYsTn22GPz4IMP5lOf+lTOPvvs9OvXr9rlAQAAAAD7kOOnHp37H16dBx55/FWPnThuVI47Znynzv+JT3wiJ598cv7sz/4sl112We6999783d/9Xb785S8XLbmiBjT0z++/6bR88zvfe9Vj+/bpnbd2YjTfizZt2rRjLaoXXngh69aty7Jly9LQ0JCxY4tNXVhJF5x5Sh59/MkOrdX1ptNO6NRovo9//OOZO3du5s2bl6OOOmrH6MZ+/fpl0KBBhWuupLGjDsspr52cRUt+86rHFhnN95nPfCavf/3rM2bMmGzbti0/+tGPMnv27Lz3ve8tWnJF9e7dKxefOz1fveU7aW195cE8pVIpF5/budF89fX1mTx551FzBx98cPr06bPL9q5WKhuutN/qzEJ+zc3N+exnP5vbbrstTz75ZA4++OCce+65ufbaazNkyL4/XBkAAAAA6F4bN23O39x0a5qf3/0Im4b+/fLx912UhvrOf9h/wYIF+dM//dM88MADGTZsWK666qr84R/+4Z6UXHH/tuD7Wfqbla94zEXnnJ7XHnNUp8/9gx/8INOnT99l++mnn54f/OAHnT5fV3hk9ZP5h3+94xWPOWLk8HzgHeemplTq8HlLuzn23e9+d26++ebOlNiltm1ryd/907fz26c37PaYXrW1ueLdb+n0tKGf+MQn8p//+Z9Zs2ZN6urqMmbMmLzvfe/Lhz/84dR2YmRgV/t/P1ma792z5BWPmX7StLzptBP2+Fqf/exn881vfnNHAP1qOpOhvBJB236sUk+Sl2pp2Z4XWlrSv67YYpYAAAAAQM/xm4ceyzf/Y/ejut71+2/MxHGju6+gbrZl6wv5m5tuzYbnNrW7f+K40bnsLWfuNjjaH9zx/36aHy+5r919ffv0zsffd1EOGDSgm6vqPmvWNeUrt/zHbkd1zZx+Yl5/wpRurqr7bG9tzdxv3Z7Hn/xtu/sPPeTAfOSyN3dq2tBKqVSGYo02OmXxrx/I7L//lyz6xasPdwUAAAAAerbJ44/IcZPbnxbytVOO2q9DtiSp69snb535hrQXozX075ffP+v1+3XIliRvOv34HHzgAe3uO3/GKft1yJYkhw0bmhmntD8t5JjDD80p+9HafO2pranJxTOnp3fvXVcy61Vbm7ede0ZVQrZKErTRYdtaWvL9ny7L1he2pbaT8wUDAAAAAD3TeTNOzuCBDTttGzJoQM4746QqVdS9jjz80Jx6/K4jli48+7Q09O/8lJn7mt69euVt503f5XfKk8aPzmsmj6tSVd3r9BOn5fBDD9lpW98+vXPxzDd0asrMfdXQIYMyc/qJu2w/6/QTcsjQ9kPYfcl+k5aUSqUdyf9//ud/5vWvf30GDhyYoUOH5qKLLsojjzyy49g77rgjp59+egYPHpyBAwfmggsuyMqVu58nd+vWrfnbv/3bnHzyyRk8eHDq6upy1FFH5ZprrklTU1O7be6999588pOfzPHHH59hw4alb9++Oeyww3LxxRdn8eLFu73WnXfemXPOOScHH3xwevfunQMPPDATJkzI+973vixatKjgo1MZS379YJ7b1JxBA+oLzRkMAAAAAPQ8dX375OKXjOoqJbn43Onp27dPNcvqVm887bU7BQonTD06E8aOqmJF3euwQ4Zmxqn/N6qrob5ffv9Np+33o/leVFtTk4vPfUP6vGRU1wVnnrJLAL0/e920CTlqzMgdfz9y1KE5+bWTq1hR5ew3QduLvvKVr+T888/Po48+mrFjx2bz5s257bbbcvrpp+d3v/td/uZv/ibnnXdeVq5cmTFjxqSlpSW33357TjvttPzud7/b5XxPPfVUTjrppHz84x/Pvffem8GDB2f8+PFZvXp15syZk+OOOy6PPvroLu0uueSSXH/99Xn00UczdOjQTJo0KVu3bs2///u/5+STT85tt922S5uvfvWrmTlzZu666660trZmypQpOeSQQ9LY2JhvfOMbueWWW7rkMeuIF0ezJcn0k45Nr1779lBOAAAAAKD7jDn80B3rUJ32uqkZPWJYlSvqXr179crbzm0b1TVk8IDM7CGj+V7q9NdNzajD2kZ1XXT26anvX1flirrX0AMGZeYZbaO6Jo8/IsdO6hmj+V5UKpVy4dmnp3+/vunbp3fees7+M5qvVC6X21+Bbx/zYvLdv3///P3f/33e9a53JUmeeeaZnHXWWVm8eHHOPffc/L//9//y//1//9+O/U8//XTe9KY35Re/+EU++clP5vOf//yOc5bL5UyfPj0//OEPM3PmzNx4440ZPXp0kraF8a666qrcdNNNOemkk/KTn/xkp3r++Z//OSeffHLGjh27Y1tra2u++93v5l3veld69eqVJ554YsdCey0tLTn44IOzfv36fPWrX80HP/jB1P7vvKTlcjn33HNPnn766bzlLW/p8GPy0oX8PvPFr6dP3+IvXC9s25YtW19IqVTKgPp+SbuzCgMAAAAAtK9cLmfL1hdS17dPjxnJ9HJbX3ghtbW1+/yaVEW1trbmhW3bUte3b7VLqYoXfwb69u2z34RMnbWtpSXlcjl9eveudil5YeuW/MXV70+SfGHut/JHH3xnofPsd0Hbxz72sdxwww077bv77rtz9tln73b/XXfdlXPOOSdTpkzJr371qx3b77zzzsycOTOTJ0/O4sWLU1e3c1C1ffv2nHDCCVm6dGl+/OMf55RTTulQrZ/+9Kdz7bXXZt68eXn729+eJFm3bl2GDx+eAw44IM8880znOr8bLw3aPvGXN6RPn5754gUAAAAAAPBSL7ywNV/+8yuTtA1W+uwfXl7oPL1e/ZB9y/vf//5dtr3mNa/p0P6XTwH54vSO7373u3cJ2ZKktrY2559/fpYuXZof/OAHuwRtK1euzL/+67/mV7/6VZ5++uls27YtSfLb3/42SbJs2bIdQdtBBx2Uurq6bNiwId/73vdy5plndrjPHTGwvn/hEW1GswEAAAAAAPuTF7b+38jShoZ+hc+z341o27RpU+rr63faVy6XU1NT06H9L304jj/++CxZsiQTJ07MAQcckPY89dRTefjhh/MHf/AH+epXv7pj+xe/+MX88R//cVpaWnZb8/vf//78wz/8w46///Ef/3Fmz56dpC38mzFjRk499dScfvrpGThw4Ks+Bi/30hFt7fW7I7a1tOQLc+fnuU3NefMbT82Jx07s9DkAAAAAAAD2JpXIUJL9cERbew/ES+f7fbX9L7Vhw4Ykyf333/+q1928efOOPy9atCh/9Ed/lNra2lx77bW54IILMnr06NTX16dUKuWmm27K5ZdfvmOE24s+97nPZcSIEfnKV76SpUuXZunSpbn++uvTt2/fvPOd78ycOXMyZMiQV62lkpb8+sE8t6k5gwbU57XHHNWt1wYAAAAAANib7Xcj2nbXnSL7jz322Cxbtiy33357zjvvvA7X8uEPfzhz587NrFmzdoxQe6kvfOELmTVrVt797nfn5ptvbvccjY2Nueeee/K9730v//Zv/5bm5ubMmDEj3/ve9zpcR7lczubNm/P33/putr7QWmCB0XI2Nj+fcrmcur599orFCQEAAAAAAPZUuVzOthe2JkmGDBmcK99zYaHz7Hcj2ipp0qRJWbZsWX7zm990Kmh77LHHkiSnnnpqu/t/9rOfveo5RowYkXe84x15xzvekauvvjrHHHNM/ud//iePPfZYjjjiiA7VUSqVUl9fnxe2lbOxefOrN3gFW7a+kC1bX9ijcwAAAAAAAOxtNjVvKdxW0PYKLrroonzrW9/K1772tXzsYx/bMVfnq+nXr23RvHXr1u2yb+XKlbnjjjs6VcekSZMyaNCgbNiwIU8++WSHg7YXDSi0iJ/RbAAAAAAAwP6vWI7SRtD2Ci644IKcfvrp+eEPf5g3vvGN+drXvpbJkyfv2N/a2pp77703//RP/5RZs2ZlzJgxSZLXv/71+e53v5vrrrsuZ5xxRo488sgkyfLly3PhhRempqZml2vdf//9+fKXv5zLL788r3vd63ZM87h9+/b83d/9XTZs2JC6urpMmjSp0/342Lt/v9Ntfrp0eb77vUUZNKA+13zw7enVq7bT5wAAAAAAANifWaPtVfY3NTXlggsuyE9+8pMkyahRozJs2LA8//zzeeSRR9Lc3JwkWbFiRY4++ugkycaNG/Oa17wmDz/8cHr37p2jjjoqra2tWbFiRYYPH56PfOQj+dSnPrXTGm3Lli3LsccemyQZMGBAjjzyyNTW1mbVqlV5+umnkyRf/epX8wd/8AeFHp/O2NbSki/MnZ/nNjXnzW88NSceO7HLrwkAAAAAALCv2XVoFTsZOnRofvjDH+bmm2/OmWeemebm5ixZsiSPPfZYxo4dm6uuuio//OEPM378+B1tBgwYkB//+Md53/velwMOOCAPPvhgNm3alA996ENZunRpDjvssF2uM378+Hz961/P2972tgwfPjyPPvpofvWrX6Wuri5vfetbc88993RLyJYkT69/Lkk5gwbU57XHHNUt1wQAAAAAANjX7Dcj2qisbS0teXr9cxl20JBqlwIAAAAAALBXErQBAAAAAABAAaaOBAAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBWzdoamrKrFmzMnbs2NTV1WXkyJG56qqr0tzcnMsvvzylUik33nhjtcsEAAAAAACgE3pVu4D93bJly3L22Wdn3bp1qa+vz8SJE/Pkk0/mhhtuyCOPPJJnnnkmSTJt2rTqFgoAAAAAAECnlMrlcrnaReyvmpqacuyxx6axsTFXX311PvOZz2TAgAFJkuuvvz6f/OQn06tXr2zfvj0bNmzIwIEDq1wxAAAAAAAAHSVo60LvfOc7M2/evFxxxRX5u7/7u132T5s2Lb/61a9yxBFH5NFHH61ChQAAAAAAABRljbYusmLFisyfPz9Dhw7Ndddd1+4xxx13XJJk6tSpO21/7LHHcv7552fAgAE54IAD8q53vStPP/10l9cMAAAAAABAxwnausi8efPS2tqaSy65JA0NDe0e069fvyQ7B20bN27M9OnT09jYmHnz5uVrX/ta7rnnnpx77rlpbW3tltoBAAAAAAB4db2qXcD+auHChUmS6dOn7/aYxsbGJDsHbV/72teyZs2a/OhHP8rhhx+eJBkxYkROPvnk3H777Xnzm9/c4RrK5XI2b96cJOnfv39KpVJnuwEAAAAAAMBuCNq6yOrVq5Mko0aNand/S0tLFi1alGTnoO2OO+7IqaeeuiNkS5KTTjopY8aMyX/+5392KmjbvHnzjtF0w4cPT02NAYwAAAAAAAAvNWzYsCxZsqRQW0FbF2lubk6SPP/88+3unz9/fpqamjJgwIAcccQRO7bff//9eetb37rL8ZMmTcr9999fuJ61a9cWbgsAAAAAAMCuBG1dZNiwYVm/fn2WLl2ak046aad9a9euzTXXXJMkmTJlyk5TOq5fvz6DBw/e5XxDhgzJgw8+WLgeI9oAAAAAAAB2NWzYsMJtBW1dZMaMGVmxYkVmz56dM888M+PHj0+SLF68OJdddlmampqSJNOmTeuWelauXJn6+vpuuRYAAAAAAEBPYIhTF5k1a1YOPPDAPPHEE5k0aVKOOeaYjBs3LieccELGjBmTM844I8nO67MlyQEHHJANGzbscr5nnnkmQ4YM6Y7SAQAAAAAA6ABBWxcZMWJE7rnnnsycOTN1dXVZtWpVhgwZkrlz52bBggV56KGHkuwatE2YMKHdtdjuv//+TJgwoVtqBwAAAAAA4NWZOrILTZgwIXfccccu2zdt2pRVq1alpqYmkydP3mnfueeemz/90z9NY2NjRowYkSS5995788gjj+QLX/hCt9QNAAAAAADAqyuVy+VytYvoae69996ceOKJOeqoo/LAAw/stO+5557LMccck6FDh+Yv/uIvsmXLlsyaNSsHHXRQfvrTn6ampuODEJubm9PQ0JCkLdyzRhsAAAAAAEDlmDqyCu67774ku04bmSQDBw7MwoULM3z48Lz97W/P+9///px88sm54447OhWyAQAAAAAA0LVMHVkFrxS0JcmRRx7Z7pSTAAAAAAAA7D0MkaqCVwvaAAAAAAAA2PtZo20/Zo02AAAAAACArmNEGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNDWDZqamjJr1qyMHTs2dXV1GTlyZK666qo0Nzfn8ssvT6lUyo033ljtMgEAAAAAAOiEXtUuYH+3bNmynH322Vm3bl3q6+szceLEPPnkk7nhhhvyyCOP5JlnnkmSTJs2rbqFAgAAAAAA0ClGtHWhpqamnHfeeVm3bl2uvvrqrF27NkuXLs26desye/bsLFiwIIsXL06pVMqUKVOqXS4AAAAAAACdIGjrQldeeWUaGxtzxRVXZM6cORkwYMCOfbNmzcrUqVPT0tKS0aNHZ+DAgVWsFAAAAAAAgM4StHWRFStWZP78+Rk6dGiuu+66do857rjjkiRTp07dse3FYO6EE05I3759UyqVuqVeAAAAAAAAOkfQ1kXmzZuX1tbWXHLJJWloaGj3mH79+iXZOWh7+OGHc9ttt2XYsGE5/vjju6VWAAAAAAAAOk/Q1kUWLlyYJJk+ffpuj2lsbEyyc9B22mmnZe3atbn99tszY8aMri0SAAAAAACAwnpVu4D91erVq5Mko0aNand/S0tLFi1alGTnoK2mpmuyz3HjxnXZuQEAAAAAAPZVw4YNy5IlSwq1FbR1kebm5iTJ888/3+7++fPnp6mpKQMGDMgRRxzR5fWsXbu2y68BAAAAAADQkwjausiwYcOyfv36LF26NCeddNJO+9auXZtrrrkmSTJlypSUSqUur2f48OFGtAEAAAAAALzMsGHDCrcVtHWRGTNmZMWKFZk9e3bOPPPMjB8/PkmyePHiXHbZZWlqakqSTJs2rVvqWblyZerr67vlWgAAAAAAAD2BIU5dZNasWTnwwAPzxBNPZNKkSTnmmGMybty4nHDCCRkzZkzOOOOMJDuvzwYAAAAAAMC+Q9DWRUaMGJF77rknM2fOTF1dXVatWpUhQ4Zk7ty5WbBgQR566KEkgjYAAAAAAIB9lakju9CECRNyxx137LJ906ZNWbVqVWpqajJ58uQqVAYAAAAAAMCeErRVwfLly1MulzN+/Pj0799/l/233nprkuT+++/f6e+jR4/Oa1/72u4rFAAAAAAAgN0StFXBfffdl2T300a+9a1vbffv7373u3PzzTd3aW0AAAAAAAB0jKCtCl4taCuXy91ZDgAAAAAAAAXUVLuAnujVgjYAAAAAAAD2fqWy4VP7rebm5jQ0NCRJNm3alPr6+ipXBAAAAAAAsP8wog0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEFbN2lqasqsWbMyduzY1NXVZeTIkbnqqqvS3Nycyy+/PKVSKTfeeGO1ywQAAAAAAKCDelW7gJ5g2bJlOfvss7Nu3brU19dn4sSJefLJJ3PDDTfkkUceyTPPPJMkmTZtWnULBQAAAAAAoMOMaOtiTU1NOe+887Ju3bpcffXVWbt2bZYuXZp169Zl9uzZWbBgQRYvXpxSqZQpU6ZUu1wAAAAAAAA6SNDWxa688so0NjbmiiuuyJw5czJgwIAd+2bNmpWpU6empaUlo0ePzsCBA6tYKQAAAAAAAJ0haOtCK1asyPz58zN06NBcd9117R5z3HHHJUmmTp26Y9utt96aCy+8MKNGjUr//v1z9NFH58/+7M+yadOmbqkbAAAAAACAVydo60Lz5s1La2trLrnkkjQ0NLR7TL9+/ZLsHLTNmTMntbW1+dznPpe77rorf/AHf5C///u/z1lnnZXW1tZuqR0AAAAAAIBX1qvaBezPFi5cmCSZPn36bo9pbGxMsnPQ9p//+Z856KCDdvz99NNPz0EHHZRLLrkkP/7xj3Paaad1UcUAAAAAAAB0lKCtC61evTpJMmrUqHb3t7S0ZNGiRUl2DtpeGrK96LWvfW2SZM2aNYVqGTduXGpqDGAEAAAAAAB4qWHDhmXJkiWF2graulBzc3OS5Pnnn293//z589PU1JQBAwbkiCOOeMVzff/730+STJgwoVAta9euLdQOAAAAAACA9gnautCwYcOyfv36LF26NCeddNJO+9auXZtrrrkmSTJlypSUSqXdnmfNmjX59Kc/nbPOOivTpk0rVMvw4cONaAMAAAAAAHiZYcOGFW4raOtCM2bMyIoVKzJ79uyceeaZGT9+fJJk8eLFueyyy9LU1JQkrxiebdq0KRdccEH69OmTm266qXAtK1euTH19feH2AAAAAAAA7MwQpy40a9asHHjggXniiScyadKkHHPMMRk3blxOOOGEjBkzJmeccUaSnddne6nnn38+5513Xh577LH893//d4YPH96d5QMAAAAAAPAKBG1daMSIEbnnnnsyc+bM1NXVZdWqVRkyZEjmzp2bBQsW5KGHHkrSftC2bdu2XHTRRVmyZEnuuuuuTJw4sbvLBwAAAAAA4BWUyuVyudpF9ESbNm3KwIEDUyqVsnHjxvTv33/HvtbW1rz97W/P7bffnjvvvHPHyLfOam5uTkNDw47rmToSAAAAAACgcqzRViXLly9PuVzO+PHjdwrZkuSjH/1o/v3f/z1//Md/nP79++dnP/vZjn1HHnlkDjrooO4uFwAAAAAAgJcxdWSV3HfffUnanzbyrrvuSpJ8/vOfz0knnbTT14IFC7q1TgAAAAAAANpnRFuVvFLQtmrVqm6uBgAAAAAAgM4yoq1KXiloAwAAAAAAYO9XKpfL5WoXQddobm5OQ0NDkmTTpk2pr6+vckUAAAAAAAD7DyPaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgrZu0NTUlFmzZmXs2LGpq6vLyJEjc9VVV6W5uTmXX355SqVSbrzxxmqXCQAAAAAAQCf0qnYB+7tly5bl7LPPzrp161JfX5+JEyfmySefzA033JBHHnkkzzzzTJJk2rRp1S0UAAAAAACATjGirQs1NTXlvPPOy7p163L11Vdn7dq1Wbp0adatW5fZs2dnwYIFWbx4cUqlUqZMmVLtcgEAAAAAAOgEQVsXuvLKK9PY2Jgrrrgic+bMyYABA3bsmzVrVqZOnZqWlpaMHj06AwcOrGKlAAAAAAAAdJagrYusWLEi8+fPz9ChQ3Pddde1e8xxxx2XJJk6deqObffcc09mzJiR4cOHp2/fvhkxYkTe9ra3ZcWKFd1SNwAAAAAAAB1jjbYuMm/evLS2tuaSSy5JQ0NDu8f069cvyc5B2/r163PMMcfkQx/6UA4++OA0Njbmuuuuy0knnZTf/OY3GTFiRLfUDwAAAAAAwCsTtHWRhQsXJkmmT5++22MaGxuT7By0nX/++Tn//PN3Ou7444/PUUcdldtuuy1XXXVVoXrGjRuXmhoDGAEAAAAAAF5q2LBhWbJkSaG2grYusnr16iTJqFGj2t3f0tKSRYsWJdk5aGvPgQcemCTp1av4P9fatWsLtwUAAAAAAGBXgrYu0tzcnCR5/vnn290/f/78NDU1ZcCAATniiCN22b99+/a0trZm9erV+ZM/+ZMMGzYsF198ceF6hg8fbkQbAAAAAADAywwbNqxwW0FbFxk2bFjWr1+fpUuX5qSTTtpp39q1a3PNNdckSaZMmZJSqbRL+9NPP33HiLexY8dm4cKFOeiggwrXs3LlytTX1xduDwAAAAAAwM4MceoiM2bMSJLMnj07Dz300I7tixcvzvTp09PU1JQkmTZtWrvt//Ef/zE/+9nPMm/evAwcODBvfOMb8/jjj3d53QAAAAAAAHRMqVwul6tdxP6osbEx06ZNy9NPP51evXrl6KOPzpYtW/Lwww/n7LPPTmtra/7rv/4rX/va1/KBD3zgFc+1YcOGjB49OpdeemluvPHGDtfQ3NychoaGJMmmTZuMaAMAAAAAAKggI9q6yIgRI3LPPfdk5syZqaury6pVqzJkyJDMnTs3CxYs2DHKberUqa96rsGDB2fs2LF5+OGHu7psAAAAAAAAOsgabV1owoQJueOOO3bZvmnTpqxatSo1NTWZPHnyq57nt7/9bR588MG87nWv64oyAQAAAAAAKEDQVgXLly9PuVzO+PHj079//532XXrppRk7dmymTZuWwYMHZ+XKlfnyl7+cXr165ROf+ESVKgYAAAAAAODlBG1VcN999yVpf9rIE088Mf/8z/+cv/3bv82WLVsycuTITJ8+PX/6p3+aUaNGdXepAAAAAAAA7IagrQpeKWi74oorcsUVV3R3SQAAAAAAAHRSTbUL6IleKWgDAAAAAABg31Aql8vlahdB12hubk5DQ0OSZNOmTamvr69yRQAAAAAAAPsPI9oAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAAAAgAIEbQAAAAAAAFCAoA0AAAAAAAAKELQBAAAAAABAAYI2AAAAAAAAKEDQBgAAAAAAAAUI2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0dYOmpqbMmjUrY8eOTV1dXUaOHJmrrroqzc3Nufzyy1MqlXLjjTdWu0wAAAAAAAA6oVe1C9jfLVu2LGeffXbWrVuX+vr6TJw4MU8++WRuuOGGPPLII3nmmWeSJNOmTatuoQAAAAAAAHSKEW1dqKmpKeedd17WrVuXq6++OmvXrs3SpUuzbt26zJ49OwsWLMjixYtTKpUyZcqUapcLAAAAAABAJwjautCVV16ZxsbGXHHFFZkzZ04GDBiwY9+sWbMyderUtLS0ZPTo0Rk4cGAVKwUAAAAAAKCzBG1dZMWKFZk/f36GDh2a6667rt1jjjvuuCTJ1KlTd3ues88+O6VSKZ/97Ge7okwAAAAAAAAKErR1kXnz5qW1tTWXXHJJGhoa2j2mX79+SXYftP3bv/1bli1b1lUlAgAAAAAAsAcEbV1k4cKFSZLp06fv9pjGxsYk7Qdtzz33XD7+8Y9nzpw5XVMgAAAAAAAAe6RXtQvYX61evTpJMmrUqHb3t7S0ZNGiRUnaD9r+7M/+LOPHj88ll1ySSy+9dI/rGTduXGpq5KoAAAAAAAAvNWzYsCxZsqRQW0FbF2lubk6SPP/88+3unz9/fpqamjJgwIAcccQRO+1bsmRJ/uEf/iG/+MUvKlbP2rVrK3YuAAAAAAAABG1dZtiwYVm/fn2WLl2ak046aad9a9euzTXXXJMkmTJlSkql0o5927dvz4c+9KFcccUVmTRpUsXqGT58uBFtAAAAAAAALzNs2LDCbQVtXWTGjBlZsWJFZs+enTPPPDPjx49PkixevDiXXXZZmpqakiTTpk3bqd2NN96Yp556Kp/97GcrWs/KlStTX19f0XMCAAAAAAD0ZIY4dZFZs2blwAMPzBNPPJFJkyblmGOOybhx43LCCSdkzJgxOeOMM5LsvD5bU1NTPv3pT+fP//zP09LSkg0bNmTDhg1Jki1btmTDhg1pbW2tRncAAAAAAAB4GUFbFxkxYkTuueeezJw5M3V1dVm1alWGDBmSuXPnZsGCBXnooYeS7By0NTY2ZuPGjfnQhz6UAw44YMdXksyePTsHHHBAHn/88ar0BwAAAAAAgJ2VyuVyudpF9DSbNm3KwIEDUyqVsnHjxvTv33/H9iVLluxy/PTp0/Pud78773nPe3LiiSemrq6uQ9dpbm5OQ0PDjnObOhIAAAAAAKByrNFWBcuXL0+5XM748eN3hGxJ0tDQkDe84Q3tthk9evRu9wEAAAAAAND9TB1ZBffdd1+SnaeNBAAAAAAAYN9iRFsVdDZoM7snAAAAAADA3seItiowog0AAAAAAGDfVyobLrXfam5uTkNDQ5Jk06ZNqa+vr3JFAAAAAAAA+w8j2gAAAAAAAKAAQRsAAAAAAAAUIGgDAAAAAACAAgRtAAAAAAAAUICgDQAAAAAAAAoQtAEAAAAAAEABgjYAAAAAAAAoQNAGAAAAAAAABQjaAAAAAAAAoABBGwAAAAAAABQgaAMAAAAAAIACBG0AAAAAAABQgKANAAAAAAAAChC0AQAAAAAAQAGCNgAAAAAAAChA0AYAAAAAAAAFCNoAAAAAAACgAEEbAAAAAAAAFCBoAwAAAPj/27v3OC/rOv//zxlOwwwgiigIKKKgAiKCuolnA03JU2JpqC0pHsq0QnDdtbUt08Wlmxupu5iHXHOR1jRNXTddzNSy5awiecBQENAGJZwZVGDm94df5ycBwlzMMIj3++3Gjflcx9cHqD969L4uAAAoQGgDAAAAAACAAoQ2AAAAAAAAKEBoAwAAAAAAgAKENgAAAAAAAChAaAMAAAAAAIAChDYAAAAAAAAoQGgDAAAAAACAAoQ2AAAAAAAAKEBoAwAAAAAAgAKENgAAAAAAAChAaAMAAAAAAIACWjb3AGyd6urqUlNT09xjNEh5eXlKSkqaewwAAAAAAOBTQmhjvWpqatKuXbvmHqNBqqqqUlFR0dxjAAAAAAAAnxIeHQkAAAAAAAAFCG0AAAAAAABQgNAGAAAAAAAABQhtAAAAAAAAUIDQBgAAAAAAAAUIbQAAAAAAAFCA0AYAAAAAAAAFCG0AAAAAAABQgNAGAAAAAAAABQhtAAAAAAAAUIDQxidGaal/rgAAAAAAwNajZXMPwLZvt912y+DBg7P33nunbdu2qaury4oVK/LMM89kxowZWbZs2Uav0bdv3/ziF7/ImWeemRkzZmyBqQEAAAAAAD6e0EaT2HvvvXPhhRfmjDPOSOfOnT/22Jdeeim33XZbbr755vz5z39eZ3/fvn0zderU7Lzzznn00UdzxBFH5Jlnnmmq0QEAAAAAADaJZ/FtAZWVlRk3blz23HPPlJWVpUePHrnkkktSXV2dc845JyUlJbn++uube8xGsddee+XXv/515s2bl4svvnijkS1JevfunauvvjqLFi3KTTfdlI4dO9bv+2hkSz6Icq+99lpTjQ8AAAAAALDJrGhrYrNnz85xxx2XpUuXpqKiIn379s3ixYszceLEzJ8/P2+99VaSZODAgc076GYqLS3Nt7/97Xz/+99PWVlZ/faampo8/vjjmT59eubMmZPly5enpKQkXbp0yaBBg3LggQdmyJAhKS0tTevWrTN69OgMHz48559/fl555ZW1Itu0adNyzDHHZPny5c30LQEAAAAAAP5/JXV1dXXNPcS2qrKyMvvvv38WLVqUMWPG5Morr0z79u2TJNdee20uu+yytGzZMmvWrMny5cvToUOHRr1/dXV12rVrlySpqqpKRUVFoXM3pm3btvmv//qvDB8+vH7bK6+8kokTJ+b222/faBjr2bNnzj///FxwwQVrrWarqqqqn2FTIltDvyMAAAAAAMDmENqa0Je//OVMnjw5F110UX784x+vs3/gwIGZM2dOdt9997zyyiuNfv8tEdratGmTBx54IEOHDk2S1NbW5rrrrst3vvOdrFy5skHz7rLLLrnpppvWCnbJpq9kE9oAAAAAAIAtyTvamsi8efMyZcqU7LjjjrnmmmvWe8zgwYOTJPvtt1/9tt/85jcpKSlZ59fW+mjJW265pT6yrVixIkOHDs2ll17a4MiWJIsXL864cePyzjvvrLX9rrvu8rhIAAAAAABgq+MdbU1k8uTJqa2tzciRIze4Mqxt27ZJ1g5tH7rhhhsyaNCg+s9b40qtESNGZOTIkUk+WE12zDHH5A9/+EPh6/Xt2zdTp06tf7zmh77//e/nvvvuy/z58zdrXgAAAAAAgMYktDWRqVOnJkmOOuqoDR6zaNGiJOsPbX379s1nPvOZphmuEey444658cYb6z+PHj26USLbzjvvnOSDx0XOmTMn5557bsrLy3PrrbfmyCOPjCedAgAAAAAAWwuhrYm8+uqrSZLddtttvftXr16dp556Ksn6Q1tj6927d0pLN/1JobW1tR+7/1vf+lY6d+6cJLnnnnty1113FZ5tfZHtmGOOyapVq3L00UenV69eOfzww/O5z30u//3f/73B6zT0OwIAAAAAAHTp0iXTp08vdK7Q1kSqq6uTZIPvKpsyZUoqKyvTvn377L777uvs/9KXvpTKysp06tQpJ554Yv75n/85O+64Y+F5lixZUvjcv9a6deucc845SZJVq1blG9/4RuFrbSiyffhOtjFjxuTee+9Nklx44YUfG9oa8zsCAAAAAABsjNDWRLp06ZK33347M2fOzMEHH7zWviVLlmTs2LFJkgEDBqSkpKR+33bbbZexY8fm8MMPT7t27fL73/8+11xzTZ5++ulMnz49ZWVlhebp2rVrg1e0bShcnXLKKfVh7J577snixYsLzbSxyJYkv/rVr/Laa69l1113zfDhw7PbbrvVrxb8aw39jgAAAAAAAF26dCl8rtDWRIYOHZp58+Zl/PjxGTZsWPr06ZPkg5h01llnpbKyMkkycODAtc7bf//9s//++9d/PvLII9O/f/+ceOKJmTx5ckaNGlVonpdeeikVFRWbfHx1dXXatWu33n3HHnts/c+TJk0qNM+mRLYkWbNmTW6++eZ873vfS2lpaT772c/m1ltvXe81G/odAQAAAAAANoflP01k3Lhx6dSpUxYuXJh+/fpl3333Te/evXPQQQelV69eOfroo5Ns2vvZPv/5z6eioqLw80Eb2+DBg5N88NjI3/3udw0+f1Mj24cef/zxde4NAAAAAADQ3IS2JtK9e/c88cQTGT58eMrKyrJgwYLssMMOmTRpUh588MG8+OKLSTYttH3oo4+YbC5lZWXp169fkmTu3Ll57733GnR+QyNbksyaNav+5wMOOKDhQwMAAAAAADQBj45sQvvss08eeOCBdbZXVVVlwYIFKS0tTf/+/Td6nfvvvz/V1dU56KCDmmLMBtlpp53SokWLJKmPhZuqSGRLknfeeSeLFy/OLrvskq5duxaaGwAAAAAAoLEJbc1g7ty5qaurS58+fVJeXr7WvjPPPDO9evXKoEGD0q5du/z+97/Ptddem4EDB+b0009vpon/fytWrMg//MM/pG3btnnuuec2+bySkpJMmTKlwZHtQxMnTkx5eXmWLVtWZGwAAAAAAIBGJ7Q1g2effTbJ+h8b2a9fv/znf/5n/vVf/zUrV65M9+7dM3r06Fx55ZVp3br1lh51HcuXL8/VV1/d4PPq6upyxhlnZOrUqVmwYEGDIluSjB8/vsH3BAAAAAAAaEpCWzP4uNB2+eWX5/LLL9/SI20Rzz33XI444ogsWbKkQZENAAAAAABgayS0NYOPC23bunnz5jX3CAAAAAAAAI1CaGsGU6dObe4RAAAAAAAA2EylzT0AAAAAAAAAfBIJbQAAAAAAAFCA0AYAAAAAAAAFCG0AAAAAAABQgNAGAAAAAAAABQhtAAAAAAAAUIDQBgAAAAAAAAUIbQAAAAAAAFCA0AYAAAAAAAAFCG0AAAAAAABQgNAGAAAAAAAABbRs7gHYOpWXl6eqqqrRrvcvk+7KiuqadKgoz9jzT1/nc2MoLy9vlOsAAAAAAABsCqGN9SopKUlFRUWjXa91m7K0XrUmrduUpaKiYp3PAAAAAAAAnzQeHQkAAAAAAAAFCG0AAAAAAABQgNAGAAAAAAAABQhtAAAAAAAAUIDQBgAAAAAAAAUIbQAAAAAAAFCA0AYAAAAAAAAFCG0AAAAAAABQgNAGAAAAAAAABQhtAAAAAAAAUIDQBgAAAAAAAAUIbQAAAAAAAFCA0AYAAAAAAAAFCG0AAAAAAABQgNAGAAAAAAAABQhtAAAAAAAAUIDQBgAAAAAAAAUIbQAAAAAAAFBAy+YeALZGdXV1qampae4xGqS8vDwlJSXNPQYAAAAAAHxqCG2wHjU1NWnXrl1zj9EgVVVVqaioaO4xAAAAAADgU8OjIwEAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAACmjZ3APAp0WHDh2y/fbbp2XLlnn33XezdOnSrFmzZpPP/8IXvpBXX301M2bMaMIpAQAAAACATSW0QRPZfvvtc+aZZ+awww7L4MGD06tXr7X219TUZPbs2ZkxY0buueee/OY3v9ngtUaMGJHJkyfnnXfeybBhw8Q2AAAAAADYCnh0JDSyvn375tZbb83rr7+eiRMn5rTTTlsnsiVJeXl5hgwZkm984xt57LHHMnfu3Hzta19Lq1at1jruw8jWsmXLbL/99hk5cuSW+ioAAAAAAMDHENq2gMrKyowbNy577rlnysrK0qNHj1xyySWprq7OOeeck5KSklx//fXNPSabqWXLlrniiisya9asjBo1Km3btq3fV11dnSeffDKTJ0/Oz372s/zyl7/Myy+/vNb5ffv2zQ033JBp06Zl4MCBSdaObElyyy23ZMyYMVvsOwEAAAAAABvm0ZFNbPbs2TnuuOOydOnSVFRUpG/fvlm8eHEmTpyY+fPn56233kqS+rDCJ1OPHj3yy1/+MoMGDarftnz58tx22225/fbb8+yzz6a2tnad8zp27Jhjjz02F154YY444ogkyX777Zf/+7//y5QpU3L66aevFdlGjx6durq6LfOlAAAAAACAj2VFWxOqrKzMCSeckKVLl2bMmDFZsmRJZs6cmaVLl2b8+PF58MEHM23atJSUlGTAgAHNPS4F7b777nnyySfrI9vq1avzgx/8IN26dcu3v/3tzJkzZ72RLfkgxk2ZMiVHHnlkDjjggMyZMydJ0qpVq5x55pkiGwAAAAAAbMWEtiZ08cUXZ9GiRbnooosyYcKEtG/fvn7fuHHjst9++2X16tXp2bNnOnTo0IyTUtTOO++cRx99NLvuumuS5OWXX85nPvOZXHHFFampqWnQtWbMmJEDDzwwv/jFL9bZLrIBAAAAAMDWR2hrIvPmzcuUKVOy44475pprrlnvMYMHD07ywaMC/9q9996bIUOGpKKiItttt10OOeSQzJ07t0lnpuFuuumm9OrVK0kyd+7cHHLIIZkxY0bh65100kk56aST1tq2//77Z8iQIZs1JwAAAAAA0PiEtiYyefLk1NbWZuTIkWnXrt16j2nbtm2SdUPbxIkT88UvfjGHHnpo7r///kyePDlDhw7NypUrm3xuNt3IkSNz4oknJkmWLl2aYcOG5c033yx8vREjRmTy5Mn1j4ucPn16kqS0tDS33npr/b8XAAAAAABg69CyuQfYVk2dOjVJctRRR23wmEWLFiVZO7TNnz8/Y8eOzXXXXZeLLrqofvvxxx/fRJNSRHl5eX70ox/Vf77ggguyZMmSwtf768h2yy235Pzzz89vf/vbDBkyJH369MnYsWPzve99b7NnBwAAAAAAGofQ1kReffXVJMluu+223v2rV6/OU089lWTt0HbrrbemVatWGT16dKPO07t375SWNt8CxlNGfTMV7TpkydIl6d69+zqftza1tbUfu//LX/5yOnXqlCT5+c9/nvvuu6/wvdYX2T58J9uoUaMyd+7ctGzZMhdccEGuueaarFq1ar3Xae6/YwAAAAAA+CTq0qVL/VPmGkpoayLV1dVJssHHPU6ZMiWVlZVp3759dt999/rtv/vd77LXXnvlZz/7Wa666qosXLgwvXv3zj/+4z/mjDPOKDzP5qy2agy1a9bU//7666+v8/mT5utf/3r9z//8z/9c+DofF9mS5MUXX8y9996b0047LV27ds0pp5ySn//85+u9VnP/HQMAAAAAwKeN0NZEunTpkrfffjszZ87MwQcfvNa+JUuWZOzYsUmSAQMGpKSkZK19r7/+ei6//PKMHz8+PXr0yC233JIvf/nL6dy5c4YOHVponq5duzbraqfSFi3qf+/Wrds6n7c2tbW1GwxXe++9dwYOHJgkefrppzNr1qxC99hYZPvQjTfemNNOOy1JcsYZZ2wwtDX33zEAAAAAAHwSdenSpfC5QlsTGTp0aObNm5fx48dn2LBh6dOnT5Jk2rRpOeuss1JZWZkk9cHmQ7W1tamqqsodd9yRk08+OUny2c9+Ns8//3y+//3vFw5tL730UioqKgp/n8119Q13ZkVVdbp26ZpFixat83lrU11dnXbt2q1334EHHlj/c9FHRm5qZEuSxx9/PH/5y1+y3Xbb5YADDtjgNZv77xgAAAAAAD5tLH9pIuPGjUunTp2ycOHC9OvXL/vuu2969+6dgw46KL169crRRx+dZO33syXJDjvskCRrBbWSkpIMHTo0zz333Jb7AmzQ4MGD638u8szWhkS2JKmrq8uMGTOSJN27d89OO+1UYGoAAAAAAKCxCW1NpHv37nniiScyfPjwlJWVZcGCBdlhhx0yadKkPPjgg3nxxReTrBva+vXrt8Frvvvuu006M5tm7733rv95zpw5DTq3oZHtQ7Nnz67/eZ999mnQPQEAAAAAgKbh0ZFNaJ999skDDzywzvaqqqosWLAgpaWl6d+//1r7TjrppNx666359a9/nS984QtJPnic5COPPLLWIwtpPsuWLctrr72WsrKyLF++fJPPO+WUUwpFtuSDd/ctXrw47777bmpra4uODgAAAAAANCKhrRnMnTs3dXV16dOnT8rLy9fad8IJJ+Swww7Leeedl2XLlmXXXXfNzTffnLlz5+aRRx5ppon5qJEjRxY678UXX8zbb7+dzp07NyiyJcmECRMyYcKEQvcFAAAAAACahtDWDJ599tkk6z42MvngfWz3339/Lrvssvz93/99VqxYkf322y8PPfRQ/Xvd+GSaO3dujjrqqPzt3/5txo0bt8mRDQAAAAAA2DoJbc3g40JbknTs2DGTJk3KpEmTtuRYbAFz587N2LFjm3sMAAAAAACgEZQ29wCfRhsLbQAAAAAAAGz9rGhrBlOnTm3uEQAAAAAAANhMVrQBAAAAAABAAUIbAAAAAAAAFCC0AQAAAAAAQAFCGwAAAAAAABQgtAEAAAAAAEABQhsAAAAAAAAUILQBAAAAAABAAUIbAAAAAAAAFCC0AQAAAAAAQAFCGwAAAAAAABQgtAEAAAAAAEABLZt7ANgalZeXp6qqqtGu9y+T7sqK6pp0qCjP2PNPX+dzYygvL2+U6wAAAAAAAJtGaIP1KCkpSUVFRaNdr3WbsrRetSat25SloqJinc8AAAAAAMAnj0dHAgAAAAAAQAFCGwAAAAAAABQgtAEAAAAAAEABQhsAAAAAAAAUILQBAAAAAABAAUIbAAAAAAAAFCC0AQAAAAAAQAFCGwAAAAAAABQgtAEAAAAAAEABQhsAAAAAAAAUILQBAAAAAABAAUIbAAAAAAAAFCC0AQAAAAAAQAFCGwAAAAAAABQgtAEAAAAAAEABQhsAAAAAAAAUILQBAAAAAABAAS2bewBg61RXV5eamprmHqNBysvLU1JS0txjAAAAAADwKSG0AetVU1OTdu3aNfcYDVJVVZWKiormHgMAAAAAgE8Jj44EAAAAAACAAoQ2AAAAAAAAKEBoAwAAAAAAgAKENgAAAAAAAChAaAMAAAAAAIAChDYAAAAAAAAoQGgDAAAAAACAAoQ2AAAAAAAAKEBoAwAAAAAAgAKENgAAAAAAAChAaAM+MXr06NHcIwAAAAAAQL2WzT0AsO1q0aJFBg0alMGDB2fw4MHp2bNn2rRpk1WrVqWysjIzZ87MjBkz8n//939ZsWLFx15rwoQJOeecczJ06NDMmDFjC30DAAAAAADYMKENaHRdu3bN6NGjc95556Vbt24bPO6LX/xikqSmpiaTJ0/OjTfemJkzZ65z3IQJEzJmzJgkya9//evsscceWb58eZPMDgAAAAAAm8qjI7eAysrKjBs3LnvuuWfKysrSo0ePXHLJJamurs4555yTkpKSXH/99c09Jmy21q1b56qrrsqrr76af/qnf/rYyPZR5eXlOeecczJjxow8+OCDa5330chWW1ubSy+9VGQDAAAAAGCrYEVbE5s9e3aOO+64LF26NBUVFenbt28WL16ciRMnZv78+XnrrbeSJAMHDmzeQWEz7b///vmP//iP9O/fv37bmjVr8sADD+TRRx/NjBkz8vzzz6empiatWrVKz549M3jw4AwZMiSnn356OnbsmCQ5/vjj89xzz+Wb3/xm9t1337Ui27nnnpvbbrutOb4eAAAAAACsQ2hrQpWVlTnhhBOydOnSjBkzJldeeWXat2+fJLn22mtz2WWXpWXLlikpKcmAAQOaeVoo7thjj80999yT8vLyJMn777+f6667Ltdff30WLVq0zvGrVq3K888/n+effz533HFHxowZk5EjR+a73/1udtlll3Ts2DE//elP648X2QAAAAAA2Bp5dGQTuvjii7No0aJcdNFFmTBhQn1kS5Jx48Zlv/32y+rVq9OzZ8906NChGSeF4o4++ujcd9999ZFt5syZOeCAA/J3f/d3641s61NTU5Of/OQn6devX26//fa19tXV1YlsAAAAAABslYS2JjJv3rxMmTIlO+64Y6655pr1HjN48OAkyX777Ve/7cgjj0xJScl6f11wwQVbZHbYVD169Mi9996bNm3aJEnuvvvuHHzwwXn22WcLXW/58uWprKxca1tJSUlWrly52bMCAAAAAEBj8+jIJjJ58uTU1tZm5MiRadeu3XqPadu2bZK1Q9uNN96YFStWrHXcgw8+mKuuuiqf//znm25gKODmm2+uX415//3354wzzsjq1asLX2/ChAlrvZOttPSD/y/A9ddfn8ceeyxvvPHG5g8NAAAAAACNxIq2JjJ16tQkyVFHHbXBYz58rN5HQ1vfvn3zmc98Zq1fs2fPTufOnfO5z32uaYeGBhg1alSOOeaYJMnChQtz1llnNWpkO/fcczNlypQkSadOnXL99ddv/tAAAAAAANCIrGhrIq+++mqSZLfddlvv/tWrV+epp55KsnZo+2t//vOf8/DDD+drX/taWrYs/tfVu3fv+tVBzeGUUd9MRbsOWbJ0Sbp3777O523dJ/H719bWbnBfSUlJLr/88vrP55133jorMRtifZHttttuy69+9ascddRR2WmnnTJixIj06dMnL7744gav09z/zgEAAAAA+OTp0qVLpk+fXuhcoa2JVFdXJ8kG3y01ZcqUVFZWpn379tl99903eJ3Jkydn9erVOeusszZrniVLlmzW+Zurds2a+t9ff/31dT5v67a17z906ND07t07SfK///u/efjhhwtfa0ORLUkqKyszfvz4/PCHP0ySXHDBBfn2t7+9wWs1979zAAAAAAA+XYS2JtKlS5e8/fbbmTlzZg4++OC19i1ZsiRjx45NkgwYMCAlJSUbvM4dd9yRffbZJwcccMBmzdO1a9dmXelT2qJF/e/dunVb5/O27pP4/WtrazcYrs4777z6n2+44YbC9/i4yPah2267LVdddVXatm2bUaNG5bLLLsuqVavWe73m/ncOAAAAAMAnT5cuXQqfK7Q1kaFDh2bevHkZP358hg0blj59+iRJpk2blrPOOiuVlZVJkoEDB27wGn/84x8zffr0XH311Zs9z0svvZSKiorNvk5RV99wZ1ZUVadrl65ZtGjROp+3dZ/E719dXZ127dqtd99hhx2WJHnrrbdy//33F7r+pkS2JHn77bdz33335fTTT0/Hjh3Tv3//zJo1a73XbO5/5wAAAAAAfLpY+tFExo0bl06dOmXhwoXp169f9t133/Tu3TsHHXRQevXqlaOPPjrJx7+f7Y477khJSUlGjhy5pcaGjerWrVt23nnnJMn06dOz5v89BrMhNjWyfejpp5+u/3nw4MENvh8AAAAAADQFoa2JdO/ePU888USGDx+esrKyLFiwIDvssEMmTZqUBx98MC+++GKSDYe2urq63HnnnTnyyCOz6667bsnR4WN9dBXmjBkzGnx+QyPbX99n0KBBDb4nAAAAAAA0BY+ObEL77LNPHnjggXW2V1VVZcGCBSktLU3//v3Xe+5vf/vbvPrqq7nyyiubekxokE6dOtX/vHDhwgadWySy/fV9tt9++wbdEwAAAAAAmorQ1gzmzp2burq69OnTJ+Xl5es95o477kjbtm0zYsSILTwdfLyHH344Rx55ZMrKyjJv3rxNPq9r1645++yzkzQssiXJG2+8keHDh2flypVZsmRJobkBAAAAAKCxCW3N4Nlnn02y4cdGvvvuu7n77rtz8sknp3379ltyNNioN998M2+++WaDz1uyZEmOPvroPProo7n88ss3ObIlH/xn4qGHHmrwPQEAAAAAoCkJbc1gY6GtrKwsy5cv34ITwZbx3HPPpXfv3nnnnXeaexQAAAAAANhspc09wKfRxkIbbMtENgAAAAAAthVWtDWDqVOnNvcIAAAAAAAAbCYr2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoICWzT0AsHUqLy9PVVVVo13vXybdlRXVNelQUZ6x55++zufGUF5e3ijXAQAAAACATSG0AetVUlKSioqKRrte6zZlab1qTVq3KUtFRcU6nwEAAAAA4JPGoyMBAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2kiS1NbW5nvf+1723HPPtG3bNrvuumsuvvjiVFdXN/do6/Xd7343JSUl6/x6+eWXm3u0LaaysjIXXnhhdtlll7Rp0ya77757fvKTnzT3WFtMz5491/tvoF+/fs09GgAAAAAAnxItm3sAtg4//OEPM2HChNx2220ZPHhwXnjhhYwaNSrvvfdeJk2a1NzjrVfPnj3z+9//fq1tnTt3bqZptqyqqqocfvjh6datWyZPnpzddtstS5YsyZo1a5p7tC1m2rRpa33fqqqqDBgwIKeffnozTgUAAAAAwKeJ0EaS5KmnnsqwYcNy6qmnJvkgYp1xxhmZOnVqM0+2YS1atEiXLl2ae4xm8S//8i+pqanJAw88kDZt2iT54O/s0+Svo+pPfvKTrFq1Kueee24zTQQAAAAAwKeN0EaS5NBDD82ECRPyzDPPZMCAAXnllVfy0EMP1Ye3TfWXFVV5Y9nydbav/n8rj1avWZMX/7Ronc8ftVu3ndOmdauN3mvRokXp3r17kmTffffNd77znQwZMqRB8za22trazH91cer+antDvv/227VL5x06fux9fvGLX+TQQw/Nt771rdx7773ZbrvtcsIJJ+Sf/umfUl5e3lhfp5Clf34rK6pq1tm+qX8GLUpL02vXrikpKWnQfSdNmpQTTjghXbt23YzpAQAAAABg05XU1dX9dRNgG1FdXZ127dol+eCxehUVFRs8tq6uLj/4wQ/q3322evXqjB49OpMmTWpQ8Kh597386y13Z0VVsXe79dm9R0ad9rmN3vOhhx7KX/7yl/Tt2zcrVqzIpEmTMnny5Dz88MMZNmxYoXs3lvsffSq/mzG30LmtWrXMJaNOzY7bb/exx7Vt2zZ1dXUZMWJEvvnNb2bx4sW56KKLcthhh+XOO+8sdO/GsnDJm/m3O+5LbcH/ajn28ANz1MH7N+ic6dOn58ADD8zDDz+cY489ttB9AQAAAACgoYS2bVhDQtt//dd/5ZJLLsn48eMzcODAvPDCC/nWt76Vs88+Oz/4wQ8adN+XFizKLVMeavC85WVt8s1zTkuHdsVWZB155JFp3bp1fv3rXxc6v7G8v2p1fvzTX+TPb/2lweeecuyh+ZuBfTd6XJs2bdKpU6e8+uqradXqg9V/d999d0477bQsW7YsO+ywQ4Pv3ZgefXJGHn1qRoPP23WXnXP+yBPSorS0QeeNHj06//u//5v58+c3eCUcAAAAAAAU1bD/NZtt1pgxY3LJJZfkrLPOyr777psRI0bk6quvzrXXXpt33323Qdfq3bN7hgzu3+AZTjn2sMKRLUkOPvjgLFiwoPD5jaV1q5b50uePTmlpw4LPXr165KD99tmkY7t27Zo+ffrUR7Yk6devX5Lk1VdfbdB9m8JRB++f7l07b/zAj2jdqmW++PkjGxzZVqxYkcmTJ+e8884T2QAAAAAA2KKENpJ8sPqt9K8CR4sWLVJXV5ciix6PO+Kgjb5n7KP277dn9t27V4Pv81EzZ85Mjx49NusajaV71845esigTT6+vG2bnHrcEZscig477LC8/PLLWb16df22F154IUnSs2fPBs3aFFq0KM2Xhh+VVi1bbPI5w48+eKOPzFyfn/3sZ3n//fczatSoBp8LAAAAAACbQ2gjSXLyySdnwoQJuffee7NgwYL8z//8T6644oocd9xxadu2bYOv16pVy3zphKM2aVXXdu0rcuLQQxp0/W9/+9uZOnVqXnnllcyePTtf//rX88gjj+Sb3/xmg2dtKkcdvH96bOKqroau5rv00kvz5z//OV/72tfyxz/+MY899lguvfTSnH322dl+++2LjtyoOnfqmOOP+swmHbv3HrvmoP32LnSfSZMm5eSTT87OO+9c6HwAAAAAAChKaCNJMnHixJx99tkZM2ZM9t5774wePTqf+9zncvvttxe+ZvcunfPZQwZv9LjThh+ZtmVtGnTtJUuW5Oyzz84+++yTY445Ji+88EIeffTRnHDCCUXHbXQtSkvzxc9vfFXXoP69s+9eDVvNt99+++Whhx7KrFmzMnDgwIwaNSqnnHJK/u3f/m1zRm50n9m/b/rs3v1jjylv2yanfu7wQo99fPrpp/PMM8/k/PPPLzoiAAAAAAAUVlJX5LmAfCJUV1enXbt2SZKqqqpUVFRs9jVrVr6bt5a/s8nv31pTW5tJd96f1xa/ud79hx6wbz7/2YM3e66t2dOzns8vf/3kevd17NAu3/zqiJS1ab2Fp9pyVrxTnetuvTsr331vvfvPPHlY+u+1+xaeCgAAAAAANp8VbTTIE9OezfX/cW8enPr0Jh3forQ0Xxx+VFq1arnOvp06bZ9jjziwsUfc6vzNwH3SZ/d13x1Xkg9W823LkS1JOrSvyCnHHLrefYP69xHZAAAAAAD4xNpmQltJSUn9o+d+9atf5bDDDkuHDh2y4447ZsSIEZk/f379sQ888ECOOOKIdOzYMR06dMhJJ52Ul156aYPXfu+99/KjH/0oQ4YMSceOHVNWVpa99torY8eOTWVl5XrP+cMf/pDLLrssBx54YLp06ZI2bdqkW7du+eIXv5hp06Zt8F4PPfRQjj/++Oy0005p1apVOnXqlH322Sdf/epX89RTTxX802kc1Svfze9mPJck6dm9yyaft+MO22X4X72rq0Vpab50wlFp1XLdALetKSkpyYjjDk/5Xz0e85AD980eu+7STFNtWQP22SMD++651raOHdrlxKFDmmkiAAAAAADYfNvMoyM/jGzXX399Lrroouyyyy7Zeeed88c//jErV65Mt27dMmvWrNx555351re+la5du6ZLly71+7t06ZJnnnkmnTuv/UjEN954I8cdd1xmzZqV0tLS9OjRIx06dMiLL76Y9957L7vuumsee+yx9Oq19ju29txzz8yfPz877LBDunbtmtatW+e1117LsmXL0rJly9x111059dRT1zrnxhtvzNe//vUkSadOnbLbbrtl5cqVWbhwYaqqqnL++efn3//93zf5z6SxHx35P7+dlsd+Pytdd+qUi//2Cw16p1ZdXV1+evfDeeGVhUmSYw8/MEcdvP9mzfNJ88wfX8l/3vdokmTnHbfPRV855VMRGj9U8+57+dGtd+cv71SnJMnoMz6fXp+S0AgAAAAAwLZpm1nR9qFx48bl9ttvz+uvv56ZM2dm0aJFOfDAA/P666/nq1/9av7+7/8+t99+exYvXpyZM2dm4cKFGTx4cJYuXZof/vCHa12rrq4uX/rSlzJr1qwMHz488+fPz4IFC/LMM8+ksrIyX/3qV/Paa6/lzDPPXGeOf/zHf8xLL72UZcuW5bnnnsvMmTPz5ptv5p577klZWVnOPffcVFVV1R+/evXqXHHFFUk+CG5vvPFGZsyYkeeffz4rVqzI448/nmOPPbZp//A+xkdXsw09ZHCDIlvyQQg99bgjUt62TXbrtnMO/5v9mmLMrdqAvXtl/357frCa7/OfjtV8H1Ve1ianHX9kkuSwgwaIbAAAAAAAfOJtcyvavvGNb2TixIlr7Xv44Ydz3HHHbXD/f//3f+f444/PgAEDMmfOnPrtDz30UIYPH57+/ftn2rRpKSsrW+u8NWvW5KCDDsrMmTPz5JNP5pBDDtmkWb/zne/kqquuyuTJk3P66acnSZYuXZquXbtm++23z1tvvdWwL78BH13RduUPb07rNmUbOWPD3nv//bz3/qqUlpamXXnbwtdZtXp1WpSWprR0m2u8m6Suri6rVq9O61atmnuUZvP+qlVp1bJlg2MtAAAAAAA0hfbt2uYbX/lCoXO3uSU155577jrbBg0atEn7X3nllbW2/+IXv0iSfOUrX1knsiVJixYtcuKJJ2bmzJn5zW9+s05oe+mll3LXXXdlzpw5WbZsWVatWpUkefPNN5Mks2fPrg9tnTt3TllZWZYvX55HHnkkw4YN2+TvvClWVNek9ao1m32d2trarKiqboSJPt3efe/95h6hWX3avz8AAAAAANuGbS607bHHHuts++h719a3f6eddkqStR7lmCTPPPNMkuS2227LL3/5y/Xe74033kiSvP7662tt/+EPf5i/+7u/y+rVqzc467Jly+p/btGiRS655JKMHz8+xxxzTAYNGpShQ4fm0EMPzRFHHJEOHTps8DqbokNFeeEVbY21mg0AAAAAAGBr075d8faxzYW2ioqKdbZ99BF1G9v/UcuXL0+SPP/88xu9b01NTf3PTz31VC699NK0aNEiV111VU466aT07NkzFRUVKSkpya233ppzzjmnfoXbh66++up07949N9xwQ2bOnJmZM2fm2muvTZs2bfLlL385EyZMyA477LDRWdZn7Pmnr/e7b0z1yndz7b9PTpKMPGlo+vXpWej+AAAAAAAA25ptLrQ1pg/fb3b//ffnhBNO2OTz7rjjjiTJmDFj8g//8A/r7P/oSraPKi0tzUUXXZSLLrooixYtyhNPPJFHHnkkP//5z3Pbbbdl4cKFeeSRRzZ5jvLy8lRVVeXf7rwv/3rbvYXeifXR1Wz3PfJU7nvkqQZfAwAAAAAAYGvlHW1NpF+/fpk9e3aee+65BoW2P/3pT0mSQw89dL37n3766Y1eo3v37jnjjDNyxhlnZMyYMdl3333z6KOP5k9/+lN23333TZqjpKQkFRUVeX9VXd6prtn4CR/Du9kAAAAAAADWJrR9jBEjRuTOO+/MTTfdlG984xv1K9w2pm3bD57luXTp0nX2vfTSS3nggQcaNEe/fv2y3XbbZfny5Vm8ePEmh7YPFX22qHezAQAAAAAA2zrvaGsiJ510Uo444og8/vjjOeaYY3LTTTelf//+9ftra2vzhz/8IbfffnvGjRuXXr16JUkOO+yw3Hfffbnmmmty9NFHZ4899kiSzJ07N6eeempKS0vXudfzzz+f6667Luecc07+5m/+pv4xj2vWrMmPf/zjLF++PGVlZenXr1+Dv0eR5Y7ezQYAAAAAAPDxSurq6uqae4jG8GGY2tDXKbq/srIyJ510Un73u98lSXbbbbd06dIlK1euzPz581Nd/cHjFOfNm5e99947SfLOO+9k0KBBefnll9OqVavstddeqa2tzbx589K1a9d87WtfyxVXXJGvfOUr+elPf5okmT17dvbff/8kSfv27bPHHnukRYsWWbBgQf073W688cZceOGFhf58Gup/fjstj/1+Vrru1CkX/+0XCr3fDQAAAAAAYFu27tIq1rLjjjvm8ccfz09/+tMMGzYs1dXVmT59ev70pz9lzz33zCWXXJLHH388ffr0qT+nffv2efLJJ/PVr34122+/fV544YVUVVXl/PPPz8yZM9OtW7d17tOnT5/cfPPN+dKXvpSuXbvmlVdeyZw5c1JWVpbTTjstTzzxxBaLbNUr383vZjyXJBl6yGCRDQAAAAAAYD22mRVtNJ5ly1fkl//zRKpq3rWaDQAAAAAAYAOENjbo3ffeT1mb1s09BgAAAAAAwFZJaAMAAAAAAIACvKMNAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAoQ2gAAAAAAAKAAoQ0AAAAAAAAKENoAAAAAAACgAKENAAAAAAAAChDaAAAAAAAAoAChDQAAAAAAAAr4/wDqSK0StVaCPQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "execution_count": 19, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } diff --git a/docs/source/example_grover_hash.ipynb b/docs/source/example_grover_hash.ipynb index c22230ae..440e7dfb 100644 --- a/docs/source/example_grover_hash.ipynb +++ b/docs/source/example_grover_hash.ipynb @@ -17,11 +17,11 @@ "metadata": {}, "outputs": [], "source": [ - "from qlasskit import qlassf, Qint4, Qint8, Qlist\n", + "from qlasskit import qlassf, Qint, Qint8, Qlist\n", "\n", "\n", "@qlassf\n", - "def hash_simp(m: Qlist[Qint4, 2]) -> Qint8:\n", + "def hash_simp(m: Qlist[Qint[4], 2]) -> Qint[8]:\n", " hv = 0\n", " for i in m:\n", " hv = ((hv << 4) ^ (hv >> 1) ^ i) & 0xFF\n", @@ -118,7 +118,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHtCAYAAABlFmhpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaTElEQVR4nO3deVxU1f8/8NedBUQ2DfCDC+ISSrmk5q65lEJqmZYtlntqi2Zli5kLWmmLS9pq5d6qn1/mxwwTF4RUCE1xaTHcQcQFZVVhlvfvD75zdQQUEBjmzuv5ePgozr0zc86ZM3dec7ejiIiAiIiIiDRF5+gKEBEREVH5Y8gjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINMji6As7OarUiNTUV3t7eUBTF0dUhIiIijRMRZGdno06dOtDpit9fx5B3i1JTUxEUFOToahAREZGLSU5ORr169YpdzpB3i7y9vQEUdLSPj4+Da0NERERal5WVhaCgIDWDFIch7xbZDtH6+Pgw5BEREVGludlpYrzwgoiIiEiDGPKIiIiINIghj4iIiEiDGPKIiDRkxowZUBTF7l9oaKi6PC0tDUOHDkVgYCA8PT3Rpk0b/Pjjj+rybdu2FXq87d+uXbsc0SQiKiNeeEFEpDHNmjXD5s2b1b8Nhqub+mHDhiEjIwPr1q2Dv78/vvvuOzz22GPYvXs3Wrdujc6dO+P06dN2zzdt2jRs2bIFbdu2rbQ2ENGtY8gjItIYg8GAwMDAIpft3LkTn3/+Odq3bw8AmDp1Kj788EP88ccfaN26Ndzc3OweazKZ8L///Q8vvPACb/hO5GR4uJaISGOSkpJQp04dNGrUCE899RROnjypLuvcuTNWrVqFCxcuwGq14ocffsCVK1fQo0ePIp9r3bp1SE9Px8iRIyup9kRUXhQREUdXwpllZWXB19cXmZmZvE8eETnchg0bkJOTg6ZNm+L06dOYOXMmTp06hYMHD8Lb2xsZGRl4/PHHERUVBYPBgOrVq+O///0vwsLCiny+vn37AgAiIyMrsxlEdAMlzR48XEtEpCF9+vRR/79ly5bo0KEDgoODsXr1ajz99NOYNm0aMjIysHnzZvj7+2Pt2rV47LHH8Ntvv6FFixZ2z5WSkoKNGzdi9erVld0MIioHDHlERBpWo0YNNGnSBIcPH8aRI0fwySef4ODBg2jWrBkA4K677sJvv/2GTz/9FIsWLbJ77LJly+Dn54f+/fs7oupEdIt4Th4RkYbl5OTgyJEjqF27Ni5dugQA0OnsN/16vR5Wq9WuTESwbNkyDBs2DEajsdLqS0TlhyGPiEhDXn31VcTExOD48ePYuXMnBg4cCL1ej8GDByM0NBS33347nnnmGSQkJODIkSOYN28eNm3ahAEDBtg9z9atW3Hs2DGMHj3aMQ0holvGw7VERBqSkpKCwYMHIz09HQEBAejatSvi4+MREBAAoOACijfeeAMPPvggcnJycPvtt2PFihXqBRY2S5YsQefOne1upExEzoVX194iXl1LRERElamk2YOHa4mIiIg0iCGPiIiISIMY8oiIiIg0iCGPiIiISIMY8oiIiIg0qEqHvJ9++gm9e/eGn58fqlWrhoYNG2Lw4MFITk62Wy8rKwsTJ05EcHAw3N3d0aBBA7z22mvIyckp8nmtVis+/vhjtGjRAh4eHggICMDgwYNx9OjRymgWERERUYWrkrdQERE8++yz+PLLL9G4cWOEh4fD29sbqampiImJwbfffouuXbsCAHJzc9G1a1ckJiYiLCwMrVu3xt69exEVFYV27dohNjYW1apVs3v+MWPGYPHixWjWrBn69euH1NRUrF69Gl5eXoiPj0dISEiJ68pbqBAREVFlKnH2kCpowYIFAkCef/55MZvNhZabTCb1/6dPny4AZNKkSXbrTJo0SQDI7Nmz7cq3bt0qAKRbt26Sl5enlkdGRgoACQsLK1VdMzMzBYBkZmaW6nFEREREZVHS7FHl9uRdvnwZdevWRc2aNXHo0CEYDMVPyiEiqFevHrKyspCWlgZPT091WW5uLgIDA1GrVi0cOXJELX/yySfx/fffIyYmBt26dbN7vp49e2Lbtm04ceIE6tevX6L6ck8eERERVSanvRlyVFQULl68iAEDBsBisWDNmjV47733sGjRIhw+fNhu3aSkJKSmpqJLly52AQ8APD090aVLFxw9etTuHL5t27apy64XHh4OAIiJiamAlhERERFVnio3d+0ff/wBANDr9WjZsiX+/fdfdZlOp8PLL7+MuXPnAigIeQCKPYcuJCQEGzduRFJSEoKCgpCbm4vTp0+jefPm0Ov1Ra5/7fMWJS8vD3l5eerfWVlZAACTyQSTyaTWU6/Xw2KxwGq12tVfr9fDbDbj2h2oer0eOp2u2HLb89rY9m6azeYSlRuNRlitVlgsFrVMURQYDIZiy4urO9vENrFNbBPbxDaxTY5vU0lUuZB39uxZAMD8+fPRpk0bJCQk4I477sDevXsxduxYzJs3D40bN8Zzzz2HzMxMAICvr2+Rz2XbhWlbr7TrF+Xdd9/FzJkzC5VHRUWhevXqAID69eujdevW2L9/P06ePKmu07RpU4SGhiIhIQHnzp1Ty1u1aoXg4GDExsYiOztbLe/UqRNq1aqFqKgouze0Z8+e8PDwQGRkpF0d+vbti8uXLyM6OlotMxgM6NevH86fP4+4uDi13NvbG/feey+Sk5ORmJiolgcEBKBz585ISkrCoUOH1HK2iW1im9gmtoltYpuqRptsO8Rupsqdkzd27Fh89dVX8PDwwOHDh1GnTh112cGDB3HXXXehYcOGOHz4ML777js89dRTmDJlCt55551CzzVlyhTMnj0ba9aswcCBA5Gamoq6deuiS5cu2L59e6H1N23ahLCwMEyYMAELFy4ssn5F7ckLCgrC+fPn1ZDoqr8q2Ca2iW1im9gmtoltqvg2XbhwAX5+fjc9J6/K7cmz7WVr27atXcADgObNm6NRo0Y4fPgwMjIy1HWL2/NmO5RqW6+06xfF3d0d7u7uhcqNRiOMRqNdmV6vL/KwcHEXkxRXfv3zlqVcp9NBpyt8CmZx5cXVnW1im0pbzjaxTQDbVFwdS1vONrFNQPF1L/R6JVqrEjVt2hQAUKNGjSKX28ovX75803Porj9nz9PTE7Vr18axY8fsknRx6xMRERE5qyoX8nr27AkA+PvvvwstM5lMOHz4MDw9PREQEICQkBDUqVMHO3bsQG5urt26ubm52LFjBxo2bIigoCC1vHv37uqy623cuBEACt1ahYiIiMjZVLmQ17hxY4SFheHw4cNYvHix3bL33nsPGRkZGDhwIAwGAxRFwejRo5GTk4O3337bbt23334bOTk5GDNmjF352LFjAQDTpk1Dfn6+Wr5hwwZs27YNYWFhCA4OrqDWEREREVWOKnfhBQAcOXIEnTt3xtmzZ9GvXz+EhoZi79692Lp1K4KDgxEfH4/AwEAABXvsunTpgn379iEsLAxt2rTBnj171GnNYmJi4OHhYff8109rdvr0aaxatQpeXl6Ii4tDkyZNSlxX3gyZiIiIKlNJs0eVDHkAkJycjOnTp+PXX39Feno6AgMD0b9/f0yfPh21atWyWzczMxMzZszAjz/+iLS0NNSuXRuPPvooIiIi4O3tXei5rVYrPvnkE3z55Zc4fPgwvLy80KtXL8yaNQuNGzcuVT0Z8ojIkcYscHQNgK9ecnQNiFyL04c8Z8GQR0SOxJBH5HqcdlozIiIiIrp1DHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGuQUIe/999+HoihQFAXx8fF2y2bMmKEuK+rf8ePHi3zOjRs3onv37vD29oaPjw969uyJLVu2VEJriIiIiCqewdEVuJmDBw8iIiICnp6eyM3NLXa94cOHo0GDBoXKa9SoUajsm2++wdChQxEQEIARI0YAAFatWoXevXtj9erVGDRoUDnVnoiIiMgxqnTIM5lMGD58OFq1aoWQkBB88803xa47YsQI9OjR46bPefHiRbzwwgvw9/fHnj17UK9ePQDApEmT0Lp1azz33HMIDw+Ht7d3eTWDiIiIqNJV6cO1s2bNwp9//omlS5dCr9eXy3P+97//RUZGBl544QU14AFAvXr1MH78eJw/fx4//fRTubwWERERkaNU2ZC3Z88ezJo1CxEREbjzzjtvun5sbCzef/99zJkzB2vXrkVOTk6R623btg0AEBYWVmhZeHg4ACAmJqbsFSciIiKqAqrk4dq8vDwMGzYMrVq1wuuvv16ix0RERNj9XaNGDSxcuBDDhg2zK09KSgIAhISEFHoOW5ltneLqlpeXp/6dlZUFoODQsslkAgDodDro9XpYLBZYrVZ1XVu52WyGiKjler0eOp2u2HLb89oYDAVvm9lsLlG50WiE1WqFxWJRyxRFgcFgKLa8uLqzTWwT21S12lQVfqubTCa+T2wT21TJbSqJKhnypk+fjqSkJPzxxx83PUx71113YenSpejRowdq166NtLQ0rF+/HtOnT8eIESNQo0YN9O/fX10/MzMTAODr61vouXx8fOzWKcq7776LmTNnFiqPiopC9erVAQD169dH69atsX//fpw8eVJdp2nTpggNDUVCQgLOnTunlrdq1QrBwcGIjY1Fdna2Wt6pUyfUqlULUVFRdm9oz5494eHhgcjISLs69O3bF5cvX0Z0dLRaZjAY0K9fP5w/fx5xcXFqube3N+69914kJycjMTFRLQ8ICEDnzp2RlJSEQ4cOqeVsE9vENlXNNgG14GiRkZF8n9gmtqkS2/THH3+gJBS5NsZWAXFxcejatStmzJiBadOmqeUjRozAihUrEBcXh44dO970ebZs2YLevXujefPm2L9/v1repEkTJCUlwWQyqSncxmQywc3NDS1btsS+ffuKfN6i9uQFBQXh/Pnzakh01V8VbBPbxDZVfpue+cjxe/I+G8c9eWwT21SZbbpw4QL8/PyQmZmpZo+iVKk9eWazGcOHD0fLli3xxhtv3NJz3XfffWjcuDEOHDiArKwstRNse/AyMzPh5+dn9xjbodei9vLZuLu7w93dvVC50WiE0Wi0K9Pr9UXuibw+XN6s/PrnLUu5TqeDTlf4y6C48uLqzjaxTaUtZ5sqvk2Odm0f8X1im0pbzjaVX5sKvV6J1qokOTk5SEpKQmJiItzc3OxuarxixQoABbtTFUXB2rVrb/p8/v7+AIBLly6pZTc67+5G5+sREREROZMq9bPQ3d0dTz/9dJHLYmNjkZSUhP79+yMgIKDIGx9fKzc3F3/++Sc8PT3VsAcA3bt3x/fff4+oqKhCh303btyorkNERETkzKrcOXnFKeqcvOzsbJw+fRpNmjSxW/fy5ct4+umn8f3332PkyJFYunSpuuzixYto2LAhjEYj9u7dq94rLyUlBa1btwYAHD16tMQ3Q87KyoKvr+9Nj4sTEVWEMQscXQPgq5ccXQMi11LS7FGl9uSVVnp6OkJDQ9GuXTvccccdCAwMxJkzZ7B582akpKSgRYsWmDNnjt1jatasiU8++QRDhw5FmzZt8PjjjwMomNYsPT0dq1at4mwXRERE5PScOuTddttteP7555GQkIDIyEhcvHgRHh4euOOOOzBhwgSMHz8eHh4ehR43ZMgQ+Pv7Y/bs2Vi2bBkURcHdd9+NqVOnolevXg5oCREREVH5cprDtVUVD9cSkSPxcC2R6ylp9qhSV9cSERERUflgyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg0qc8iLjY3FyZMnb7hOcnIyYmNjy/oSRERERFRGZQ55PXv2xPLly2+4zsqVK9GzZ8+yvgQRERERlVGZQ56I3HQdq9UKRVHK+hJEREREVEYVek5eUlISfH19K/IliIiIiKgIhtKsPGrUKLu/165di+PHjxdaz2KxqOfj9enT55YqSERERESlV6qQd+05eIqiIDExEYmJiUWuqygK2rVrhw8//PBW6kdEREREZVCqkHfs2DEABefjNWrUCC+99BJefPHFQuvp9XrUrFkTnp6e5VNLIiIiIiqVUoW84OBg9f+XLVuG1q1b25URERERUdVQqpB3reHDh5dnPYiIiIioHJU55NkkJCRg165dyMjIgMViKbRcURRMmzbtVl+GiIiIiEqhzCHvwoULGDBgAHbs2HHDe+Yx5BERERFVvjKHvIkTJ2L79u3o0aMHhg8fjnr16sFguOUdg0RERERUDsqcytavX4/27dtjy5YtnNWCiIiIqIop84wXly9fRrdu3RjwiIiIiKqgMoe8Vq1aFTnbBRERERE5XplDXkREBNatW4f4+PjyrA8RERERlYMyn5OXlpaGfv36oXv37njqqafQpk0b+Pj4FLnusGHDylxBIiIiIio9RW50/5Mb0Ol0UBTF7vYp15+fJyJQFKXI++dpRVZWFnx9fZGZmVlsyCUiqihjFji6BsBXLzm6BkSupaTZo8x78pYtW1bWhxIRERFRBeO0ZkREREQaVOYLL4iIiIio6irznryTJ0+WeN369euX9WWIiIiIqAzKHPIaNGhQohshK4oCs9lc1pchIiIiojIoc8gbNmxYkSEvMzMT+/btw7Fjx9C9e3c0aNDgVupHRERERGVQ5pC3fPnyYpeJCObNm4cPPvgAS5YsKetLEBEREVEZVciFF4qi4NVXX0WzZs3w2muvVcRLEBEREdENVOjVtW3btsXWrVsr8iWIiIiIqAgVGvKOHDnCiy6IiIiIHKDM5+QVx2q14tSpU1i+fDn+97//4b777ivvlyAiIiKimyhzyLPNXVscEUHNmjUxb968sr4EEREREZVRmUNet27digx5Op0ONWvWRLt27TBy5EjUqlXrlipIRERERKVX5pC3bdu2cqwGEREREZUnzl1LREREpEHlcuHFjh07kJiYiKysLPj4+KBVq1bo0qVLeTw1EREREZXBLe3J27lzJ5o2bYpu3bphwoQJmDJlCiZMmIBu3bohNDQUcXFxpX7OK1euYOLEiejWrRvq1KmDatWqITAwEF26dMGyZctgMpkKPSYrKwsTJ05EcHAw3N3d0aBBA7z22mvIyckp8jWsVis+/vhjtGjRAh4eHggICMDgwYNx9OjRUteXiIiIqCpSRETK8sA///wTHTp0wKVLl9C7d2/07NkTtWvXRlpaGqKjoxEVFQUvLy/Ex8fjzjvvLPHznj9/HkFBQWjfvj2aNGmCgIAAXLx4ERs2bMCJEycQFhaGDRs2QKcryKe5ubno2rUrEhMTERYWhtatW2Pv3r2IiopCu3btEBsbi2rVqtm9xpgxY7B48WI0a9YM/fr1Q2pqKlavXq3WNyQkpMT1zcrKgq+vLzIzM+Hj41PixxERlYcxCxxdA+CrlxxdAyLXUtLsUebDtW+99Rby8/MRGRmJ+++/327ZpEmT8Ouvv6J///5466238MMPP5T4eW+77TZkZmbCzc3NrtxsNqN3796IiorChg0b0K9fPwDABx98gMTEREyaNAnvvfeeuv4bb7yB999/Hx9++CEmT56slkdHR2Px4sXo1q0bNm3apL7Ok08+ib59+2L8+PHYuHFjqfuDiIiIqCop8+Habdu2YdCgQYUCns3999+PQYMGITo6unQV0ukKBTwAMBgMGDhwIADg8OHDAAruxbd48WJ4eXlh2rRpdutPmzYNXl5eWLx4sV35V199BQB4++237V6nT58+6NGjB6KionDy5MlS1ZmIiIioqilzyMvMzETDhg1vuE7Dhg2RmZlZ1pewY7Va8euvvwIAmjdvDgBISkpCamoqunTpAk9PT7v1PT090aVLFxw9ehTJyclq+bZt29Rl1wsPDwcAxMTElEudiYiIiBylzIdr69Spg/j4+Buu8/vvv6NOnTplev78/HzMnj0bIoL09HRs2bIF//zzD0aOHKlOlZaUlAQAxZ5DFxISgo0bNyIpKQlBQUHIzc3F6dOn0bx5c+j1+iLXv/Z5i5KXl4e8vDz176ysLACAyWRSLwrR6XTQ6/WwWCywWq3qurZys9mMa0+F1Ov10Ol0xZZff7GJwVDwtl0/L3Bx5UajEVarFRaLRS1TFAUGg6HY8uLqzjaxTWxT1WpTVbgTlslk4vvENrFNldymkihzyOvfvz8+/vhjTJs2DVOmTLG7uOHKlSt49913ER0djQkTJpTp+fPz8zFz5kz1b0VR8Oqrr+Ldd99Vy2x7CX19fYt8DtvJiLb1Srt+Ud599127etlERUWhevXqAID69eujdevW2L9/v92h36ZNmyI0NBQJCQk4d+6cWt6qVSsEBwcjNjYW2dnZanmnTp1Qq1YtREVF2b2hPXv2hIeHByIjI+3q0LdvX1y+fNnuELnBYEC/fv1w/vx5u6udvb29ce+99yI5ORmJiYlqeUBAADp37oykpCQcOnRILWeb2Ca2qWq2CXD8rEKRkZF8n9gmtqkS2/THH3+gJMp8dW16ejo6dOiAY8eOwc/PD+3bt8d//vMfnDlzBrt27cK5c+fQqFEjJCQk4LbbbivLSwAoOEybmpqKn3/+GW+++SaaNWuGyMhI+Pj44LvvvsNTTz2FKVOm4J133in02ClTpmD27NlYs2YNBg4ciNTUVNStWxddunTB9u3bC62/adMmhIWFYcKECVi4cGGR9SlqT15QUBDOnz+vhkRX/VXBNrFNbFPlt+mZjxy/J++zcdyTxzaxTZXZpgsXLsDPz6/irq718/NDfHw8Xn/9dfzwww92CbdatWoYOXIk3n///VsKeEBBg+rVq4fnnnsO/v7+eOyxxzBr1iy8//776h654va82Q6l2tYr7fpFcXd3h7u7e6Fyo9EIo9FoV6bX64s8LGwbGCUtv/55y1Ku0+nU286UpLy4urNNbFNpy9mmim+To13bR3yf2KbSlrNN5demQuuVaK1i+Pv7Y+nSpfjiiy/wzz//qDNehIaGFtsZtyIsLAzA1Xlzb3YO3fXn7Hl6eqJ27do4duwYLBZLoY672Tl+RERERM6i1Pv5Z82ahTfffNNud6bRaESLFi3QpUsXtGjRAiKCKVOm2N23rjykpqaqrwcUhLE6depgx44dyM3NtVs3NzcXO3bsQMOGDREUFKSWd+/eXV12Pdv98bp161au9SYiIiKqbKUKeZs3b8b06dPh5+d3wz11bm5u8PPzw5QpU0p9n7y//voLly5dKlR+6dIlTJw4EUDByY5AwbHs0aNHIycnB2+//bbd+m+//TZycnIwZswYu/KxY8cCKLiPXn5+vlq+YcMGbNu2DWFhYQgODi5VnYmIiIiqmlJdeDFs2DBERkbi1KlTRZ6Xdq28vDzUq1cPffr0wcqVK0tcoRkzZmD+/Pno2rUrGjRoAB8fH5w6dQobNmxAeno67rnnHmzcuBEeHh4ACvbYdenSBfv27UNYWBjatGmDPXv2qNOaxcTEqOvaXD+t2enTp7Fq1Sp4eXkhLi4OTZo0KXF9Oa0ZETkSpzUjcj0VMq3Zzp070atXr5sGPKDgAoVevXoVeVj0Rh544AGkpqZi586diIuLQ05ODnx9fdGyZUs88cQTGDVqlN0Jh56enoiJicGMGTPw448/Ijo6GrVr18Yrr7yCiIiIQgEPAL744gu0aNECX375JRYuXAgvLy8MHDgQs2bNQuPGjUtVXyIiIqKqqFQhLzU1FY0aNSrx+g0bNsT//ve/UlWobdu2aNu2bake4+vriw8//BAffvhhidbX6XSYMGFCme/hR0RERFTVleqcvKLuH3MjtrugExEREVHlKlUCq1OnDg4ePFji9Q8ePIi6deuWulJEREREdGtKFfLuuecebN26FcePH7/pusePH8fWrVt5OxIiIiIiByhVyBs3bhxMJhMGDRqE8+fPF7teeno6Hn30UZjNZjz33HO3XEkiIiIiKp1SXXjRpk0bvPTSS1iwYAHuvPNOPPvss+jZsyfq1asHADh16hS2bNmCL7/8EufOncPEiRPRpk2bCqk4ERERERWv1NOazZs3D9WqVcOcOXMwa9YszJo1y265iECv12Py5Ml45513yq2iRERERFRypQ55iqJg9uzZePrpp7Fs2TLs3LkTaWlpAIDAwEB06dIFI0aM4P3miIiIiByo1CHPpnHjxtxTR0RERFRF8SZ2RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQVUy5H3zzTd45pln0LZtW7i7u0NRFCxfvrzIdWfMmAFFUYr9d/z48SIft3HjRnTv3h3e3t7w8fFBz549sWXLloprFBEREVElMji6AkWZOnUqTpw4AX9/f9SuXRsnTpy46WOGDx+OBg0aFCqvUaNGobJvvvkGQ4cORUBAAEaMGAEAWLVqFXr37o3Vq1dj0KBBt9gCIiIiIseqkiFv8eLFCAkJQXBwMN577z1Mnjz5po8ZMWIEevTocdP1Ll68iBdeeAH+/v7Ys2cP6tWrBwCYNGkSWrdujeeeew7h4eHw9va+1WYQEREROUyVPFzbq1cvBAcHV8hz//e//0VGRgZeeOEFNeABQL169TB+/HicP38eP/30U4W8NhEREVFlqZIhryxiY2Px/vvvY86cOVi7di1ycnKKXG/btm0AgLCwsELLwsPDAQAxMTEVVk8iIiKiylAlD9eWRUREhN3fNWrUwMKFCzFs2DC78qSkJABASEhIoeewldnWKUpeXh7y8vLUv7OysgAAJpMJJpMJAKDT6aDX62GxWGC1WtV1beVmsxkiopbr9XrodLpiy23Pa2MwFLxtZrO5ROVGoxFWqxUWi0UtUxQFBoOh2PLi6s42sU1sU9VqU1X4rW4ymfg+sU1sUyW3qSScPuTdddddWLp0KXr06IHatWsjLS0N69evx/Tp0zFixAjUqFED/fv3V9fPzMwEAPj6+hZ6Lh8fH7t1ivLuu+9i5syZhcqjoqJQvXp1AED9+vXRunVr7N+/HydPnlTXadq0KUJDQ5GQkIBz586p5a1atUJwcDBiY2ORnZ2tlnfq1Am1atVCVFSU3Rvas2dPeHh4IDIy0q4Offv2xeXLlxEdHa2WGQwG9OvXD+fPn0dcXJxa7u3tjXvvvRfJyclITExUywMCAtC5c2ckJSXh0KFDajnbxDaxTVWzTUAtOFpkZCTfJ7aJbarENv3xxx8oCUWujbFVkO3Ci2XLlqlXwpbEli1b0Lt3bzRv3hz79+9Xy5s0aYKkpCSYTCY1hduYTCa4ubmhZcuW2LdvX5HPW9SevKCgIJw/f14Nia76q4JtYpvYpspv0zMfOX5P3mfjuCePbWKbKrNNFy5cgJ+fHzIzM9XsURSn35NXnPvuuw+NGzfGgQMHkJWVpXaCbQ9eZmYm/Pz87B5jO/Ra1F4+G3d3d7i7uxcqNxqNMBqNdmV6vf7/DqfYuz5c3qz8+uctS7lOp4NOV/jLoLjy4urONrFNpS1nmyq+TY52bR/xfWKbSlvONpVfmwq9XonWclL+/v4AgEuXLqllNzrv7kbn6xERERE5E82GvNzcXPz555/w9PRUwx4AdO/eHUDBOXTX27hxo906RERERM7KqUNednY2/v3330Llly9fxpgxY5CdnY3HHnvMbrfmY489Bl9fX3z88cdISUlRy1NSUvDJJ5/A398fAwcOrJT6ExEREVWUKnmCx+LFi7F9+3YAwIEDB9Qy2z3uunbtitGjRyM9PR2hoaFo164d7rjjDgQGBuLMmTPYvHkzUlJS0KJFC8yZM8fuuWvWrIlPPvkEQ4cORZs2bfD4448DKJjWLD09HatWreJsF0REROT0qmTI2759O1asWGFXtmPHDuzYsUP9e/To0bjtttvw/PPPIyEhAZGRkbh48SI8PDxwxx13YMKECRg/fjw8PDwKPf+QIUPg7++P2bNnY9myZVAUBXfffTemTp2KXr16VXj7iIiIiCpalb+FSlWXlZUFX1/fm17GTERUEcYscHQNgK9ecnQNiFxLSbOHU5+TR0RERERFY8gjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPI07deoUhgwZAj8/P3h4eKBFixbYvXu3o6tFRERVRIMGDaAoSqF/48aNc3TV6BYx5GnYxYsX0aVLFxiNRmzYsAF//fUX5s2bh5o1azq6apVqxowZhTZeoaGhjq5WpWM/sA/IHsdDgV27duH06dPqv02bNgEAHn30UQfXrPJodSwYHF0Bqjjvv/8+goKCsGzZMrWsYcOGDqyR4zRr1gybN29W/zYYXHPosx/YB2SP4wEICAiw+/u9995D48aN0b17dwfVyDG0OBacvwVUrHXr1iE8PByPPvooYmJiULduXTz//PMYM2aMo6tW6QwGAwIDAx1dDYdjP7APyB7Hg738/Hx88803mDhxIhRFcXR1KpUWxwIP12rY0aNH8fnnnyMkJAQbN27Ec889hwkTJmDFihWOrlqlS0pKQp06ddCoUSM89dRTOHnypKOr5BDsB/YB2eN4sLd27VpkZGRgxIgRjq5KpdPiWFBERBxdCWeWlZUFX19fZGZmwsfHx9HVsePm5oa2bdti586datmECROwa9cuxMXFObBmlWvDhg3IyclB06ZNcfr0acycOROnTp3CwYMH4e3t7ejqVRr2gzb7YMwCR9cA+OolR9egbLQ4Hm5VeHg43Nzc8PPPPzu6KpXK2cZCSbMHQ94tqsohLzg4GL1798bixYvVss8//xzvvPMOTp065cCaOVZGRgaCg4Mxf/58PP30046ujsOwH7TRBwx55UcL4+FWnDhxAo0aNcKaNWvw0EMPObo6DlXVx0JJswcP12pYly5dcOjQIbuyf//9F8HBwQ6qUdVQo0YNNGnSBIcPH3Z0VRyK/cA+IHuuPh6WLVuGWrVqoV+/fo6uisNpZSww5GnYyy+/jPj4eMyePRuHDx/Gd999hy+//NLl732Uk5ODI0eOoHbt2o6uikOxH9gHZM+Vx4PVasWyZcswfPhwTVxVequ0MhYY8jSsXbt2+Omnn/D999+jefPmePvtt7FgwQI89dRTjq5apXr11VcRExOD48ePY+fOnRg4cCD0ej0GDx7s6KpVKvYD+4DscTxctXnzZpw8eRKjRo1ydFUcQqtjwaXj+q5duxAREYGdO3fCZDKhRYsWmDhxIh577DFHV63cPPDAA3jggQccXQ2HSklJweDBg5Geno6AgAB07doV8fHxhe4NpXXsB/YB2eN4uCosLAyufIq+VseCy154ER0djfDwcFSrVg1PPPEEvL298eOPP+LEiROYO3cuXnnllRI9T1W+8IKItI8XXhC5Hl5dewNmsxmhoaFISUlBfHw8WrVqBQDIzMxE+/btcfz48RJfoMCQR0SOxJBH13L0eOBYqBwlzR4uebh269atOHLkCEaOHKkGPADw9fXFm2++iREjRmDFihWYPn264yp5HUd/cIGq8eFlPxRwdD+wDwpUhX6gAhwPZMOxcJVLXnixbds2AAXnIFwvPDwcABATE1OZVSIiIiIqVy65Jy8pKQkAEBISUmhZYGAgvLy81HWul5eXh7y8PPXvzMxMAMCFCxdgMpkAADqdDnq9HhaLBVarVV3XVm42m+1OcNXr9dDpdMWWm0wm5F8x3kKLy0dWFsq1TdeyXbJvNptvWF4V+uHChfJtk43RaITVaoXFYlHLFEWBwWAoVO7ofkhPL1lbS9MmW3lxY+z6ckf3AXC1H8qrTWX5POVfcfxv9fR0U4Vs9651s89T/hXHz7OakWGtkO2eTUk+T47+XGRmFrS7IrZ7Jf08OboPgIKxUBHbPVv5hQsXAOCmF8u45Dl5YWFh2LRpE5KSknD77bcXWl63bl3k5OSoAe5aM2bMwMyZMyujmkRERETFSk5ORr169Ypd7pJ78m7F5MmTMXHiRPVvq9WKCxcuwM/PD4ri+F+SxcnKykJQUBCSk5Nd9gIR9kEB9kMB9kMB9gP7wIb9UMAZ+kFEkJ2djTp16txwPZcMeb6+vgBQ5J46oOANrlmzZpHL3N3d4e7ubldWo0aNcq1fRfLx8amyg7aysA8KsB8KsB8KsB/YBzbshwJVvR9sWeZGHH8yhwPYzsUr6ry7tLQ05OTkFHm+HhEREZGzcMmQ1717dwBAVFRUoWUbN260W4eIiIjIGblkyLvvvvvQqFEjfPfdd0hMTFTLMzMzMXv2bLi5uWHYsGGOq2AFcHd3R0RERKFDza6EfVCA/VCA/VCA/cA+sGE/FNBSP7jk1bVA+U1rRkRERFQVuWzIA4CEhARERERg586dMJlMaNGiBSZOnIjHH3/c0VUjIiIiuiUuHfKIiIiItMolz8kjIiIi0jqGPCIiIiINYsgjIiIi0iCGPCIiIiINYshzESIC2zU2rnytDfuB6MZsnwur1aqWXfv/5Do4Fgo483cGr64lckFZWVnw9vbG/v374ebmBjc3N2RnZyMgIAB169Z1dPUqDfvhxrKysqr03J3ljeOheK42Fm7GarVCp6v6+8kY8jTuzJkzSEtLQ2xsLIxGI1JSUgAALVu2hKenJ+rUqYOGDRuiRo0ajq1oBWM/XLV69Wp8+OGHOHToEKxWK7KyslC9enXUqFEDRqMRoaGhCA8PxxNPPIHAwEBHV7fCsB/s5eXl4eOPP0ZGRgYSEhLg7u4Os9kMk8mEO++8E126dEGTJk1Qv359+Pn5ASjYs6EoioNrXj44Hq5y9bEgIkhLS0O1atWwe/dueHp6wmQy4cqVK2jcuDFuv/12dV3bns2qGvgY8jSuc+fOiI+Ph6+vL3Jzc2GxWNRdzu7u7qhfvz5atWqFfv36oVu3bmjQoAGsVisURdHMBxZgP1xr6tSp2LVrF3r37o2cnBxcuXIFOp0OR44cQUxMDM6ePQsA8PT0xJAhQzB69Gi0adOG/aDRfrD5+uuv8cwzz6BWrVrw8vKCl5cXUlJScObMGVgsFgCAv78/evXqhaeeegr9+vVzcI3LF8fDVa4+Fr7++mtMnz4dycnJAAqCnF6vh6IoEBGEhIRgwIABGDFiBJo0aeLg2t4YQ56G5eXlYeXKlWjbti0uXbqEOnXqIC8vD3/++ScuXLiAf//9F3Fxcdi9ezd0Oh3Cw8Px5ptvol27do6uerliP9ycyWSC0WgEAMTHx2PVqlVYtmwZsrKy0KpVK7z11lt44IEHHFzLiufK/ZCWloYzZ87grrvuwoULF2A0GuHt7Y2kpCTs27cP+/btw+7du7F9+3bk5uYiLCwM06dPR+fOnQFoa0+OjauOB1cfC/Pnz8dff/2F+++/H+fOnYNOp4OiKDhw4AB27NiBv//+G3l5eQCA+++/H6+99hq6desGvV5f9Q7jCrmsS5cuSVpammzYsEFGjRolNWvWFEVR5I033pBz586JiIjFYnFwLSueK/eD2WxW///6NppMJpk3b54EBweLwWCQiIgIycrKEhERq9VaqfWsaOyHkjl58qR899138tBDD4miKFK3bl1Zs2aNo6tV7jgebs5VxkJR9u/fLx988IG0atVKFEWRgIAA+fjjjx1drSIx5GmYbUOVl5enbqisVmuRG6KzZ8/KN998ow7ayZMnV2pdK5Ktvde23RX74XrF9YHFYrH7kouNjZXw8HDR6/UyZ86cyqxihbrZF7Kr9INNcf1htVoLBZ3Lly/LypUrJSQkRNzd3WXu3LmSn5+viZBjNptd+nMhwrFw7fflte01mUx265nNZvn222+lefPmoiiKPPvss3L27Fm753A0hjwNsn24cnNzS/3Y9PR0GT9+vOj1ehk2bJhcvny5vKvnMNd+6K7dWBe1MdJyP1yvqA339c6cOSOjR48Wo9EoH3zwgVNvwK9X3Jd6UbTcDyVx/Q+Df/75R8LDw8XHx0fWr1/vwJqVv+J+BF3LlceDK4yFG/0QvnabefToUXnmmWdEURQZN25cZVbxphjyNMgWYMaOHSsBAQGybds2EbnxRuvaZTk5OTJ16lRRFEUWLFhQOZWuINe3NyMj46bra7EfRK6G3KysLNm7d6/897//lZSUlBI/Pi8vTwYNGiRdunSRixcvVlAtK5bts/Hbb7/Jv//+a7fs+j0115ZfO4600A/Fsf2YsfXDzbYZIiIpKSny4IMPyn/+8x85ePBg5VS0Auzdu1ciIiJk8uTJkpiYWOx61/eJVseDK4+F65Xkh3BGRoZMnTpVDAaDjB8/Xq5cuVJJtbsxhjwNCwoKEkVR5J577pHdu3eX+vFvv/22vPzyy0V+8TkTs9ks8+fPl+HDh0u3bt2kc+fO8uabb8r69evlxIkT6gaquD06WukHkYIvsjZt2oi3t7coiiI1a9aUN998U7Kzs2/4uGv75eeff3b6vggMDBQvLy95+OGH5bvvvivyy/n48eOSk5NjV6a1frj29IU1a9ZI3759pVGjRjJixAiJiYkp8fOcOHFCXnvtNTl69GhFVbVCrVq1Sj0X1/bviy++sFvn2tNebLQ0HjgWrvbBmTNn5Ndff5XPP/+81O14/fXXpWvXrur53I7GkKcxtkG6efNmURRFevbsKYqiiLu7uyxZsqTQekWxbchyc3ML7e1wFrb2HT16VAYPHiyKooinp6fUqFHDbkN+xx13yMyZM4v8ktdCP4hc7YsDBw5I8+bNxcPDQx588EEZPHiweHp6iru7u3z00Uc3fI5rA7Azf5GJiCQkJIiiKOLm5qaOg6CgIHnmmWdk06ZN6i/wnj17StOmTYvc4yfi/P1wrXfeeUftC29vb9HpdKIoinz44Yc3fezNznOtqmx13bNnjwQFBUlISIisW7dO5s6dK7Vq1ZLbb79dcnJyZPXq1fLoo4/K0KFDZf78+YW+vLU2HlxxLFwrNjZWbr/9drvviSFDhkhqauoNH3ftD4DY2NgqMx4Y8jTGNtAefvhhCQkJka1bt8q7774rOp1O6tWrJ0uXLlXXddYPYUnY+uG5554TNzc3ef311+XAgQOSmZkp69evl65du4qbm5u6R6tWrVry3XffObjWFcPWFyNGjBBvb29Zvny5uuzvv/+W5s2bi16vL/Lwiu0kYq2wWq2SlpYm3bp1k7CwMPnxxx9l6NCh6heZoihy1113yeuvvy4Gg0GGDBmiPraqnEhdXmyf/507d4qXl5d07txZ/v77b/nrr7/ks88+kxo1akjt2rUlLi5OROzbn5eXZ3fOrzNuS2ztGTZsmDRs2FB++eUXddnSpUtFURSZMmWKKIoi/v7+4ufnJwaDQQYMGCCnT592VLUrhKuPBVudExMT5fbbbxdfX18ZN26cTJgwQerWrSuKosjUqVNvug2oim1nyNMgi8Uibm5udieArly5UqpVq6beGiQvL8+BNawcFotFvLy8ZNiwYYXaGx0dLT4+PjJixAh5+umnRVEUady4cZkOazsDi8UiNWvWlLFjx6qHIG19sn79elEURUaPHm33mAsXLsiDDz4ozZo1q/T6VrSoqCjx9vaWGTNmiEjB+ZdLly6Vzp07q2FPp9NJaGiofPnll3LkyBEH17j82b6wBg8eLMHBwRIbG2u3/NdffxVFUWTAgAF264uIbNiwQSZPnuz0PwJsn4vRo0fbHZpfvHixeqrLt99+K0ePHpWoqCgJCwvTzDm613L1sWBrz9ChQ+W2226TH374QV124cIF6d27tyiKIps3by702GPHjlWZQ7NFYcjTENuviJUrV4pOp5P/9//+n1puNptlzZo10qRJE3Fzc5Px48erv0a1tofCJioqSvR6vXoo8vp2durUSd544w0REVm3bp0oiiIPPPCApgKwbUxs2rRJatasKZ988kmR6z3yyCNiMBhk7969atnvv/8u9erVk1GjRolI4dsHOLslS5aIh4eH/Pzzz3blly9fljp16oi7u7vdIZsVK1Y4qKYVx2q1qudd2c7LNJlMkp+fLyIFX3rVqlWTLVu2qI/JyMiQRx55RNzd3R1S5/Jg+1xs2LBBbrvtNvnss8/UZWazWd2DFx8fb/e4o0ePire3twwaNKhS61sZXHUs2FgsFvHz85NnnnlGDfy2Uzfi4uLEzc1NHnroIbvvhwsXLshDDz0kTZs2dUidS6IK3ZaZbpVtDr3FixejXbt2aN26NYCCu4/r9XoMHDgQixcvRkhICD799FO8/PLLOHv2bNW6O3c5slgssFqt6h3rdTqdOiVPamoq3N3dERMTAwAICwvDq6++il9++QXHjx93VJXLne2u86dOnUJ+fj6CgoIAXB0rNlOnToXFYsGKFSvUsri4OJw6dQovvfQSgKo7N2NZWK1WDBs2DH379sWLL76Iw4cPq8syMzNx+vRpjBs3Drt378b48eMBAK1atVIfqxX79u3DlStXcNttt8HLywsAYDAY1M/MuHHjYDQasWjRIvUxhw4dwu+//46RI0cCAMxmc+VX/BbZPhd//fUX8vLy7OYiTUlJQWRkJJo3b44OHTqo2xEAaNiwIRo0aIC0tDRkZmY6pO4VxVXHgvzfpF8xMTEQEdxxxx3w9PQEUDDlJQB07NgRo0aNwrp16xAbG6s+NikpCbt370bXrl0BVM32a2erTdDr9Thz5gx+++033HfffQgODgZg/+V8zz334KeffsKAAQOwatUqDBo0CDt37oSIaOrLCwCaN2+O2267DQsXLkR8fDzy8/Oh1+sBAFu3bsUff/yBXr16ASj4MIeHh0NRFCQmJjqw1hXD29sbly5dUidWv3ZMWK1WtGrVCg899BCWLFmC5ORkpKenY8OGDWjUqBFatGgBEdFUyNPpdDAYDHj77bdhsVgwevRopKenAwAWLFgAvV6Pzp07o02bNvjoo49gtVrRsmVL9bFaYbVakZmZiRo1agCA+iPIpkOHDujTpw8iIyPxxx9/ALga/p999lkAzt0fISEhuPvuu9GxY0e1TK/Xo2vXrnjnnXcA2E/RdezYMeh0Onh4eMDX19chda4orjoWbO/t2bNnkZubizp16gAo/GNu0qRJUBQFS5YsUYNhXFwcUlNT8eKLLwKoou134F5EqgBHjx6V5557TqKjo0Wk+BNB//33X3nwwQdFURS5++67Zd++fZVYy8phMplk4sSJoiiKdOzYUd577z1ZsmSJLFy4UGrUqCEBAQF294n7/vvvxdvbW7755hsR0dZh7NOnT8ukSZNueJPS6OhoURRFPvjgA9m2bZt4e3vL22+/LSLaO1R7rS1btoi7u7vMnj1bRApuPdSxY0dJTk4WkauHbKriSdW3Ki0tTR555BG7C7JsbOM/Ojpa9Hq9jB8/XnJycqR3797SqFEjEXH+PsnOzpYDBw6IiH1b0tPT7dazLfv555/F09NT3n//fRHRzhW1IhwLmzZtEoPBUOTtYmzbv6efflr0er3s2bNHMjMzJTw8XBo3biwiVbf9DHkaVZIBl5+fL9OnTxd3d3fx8vIqdE8wLTCZTDJ9+nSpW7euGAwGu1unfP/993brvfnmm6LT6dQTiKvqh7ai5OfnS9euXcXPz0+GDBkiiqKo521qtS9sX16TJ0+WunXrSkREhCiKItOmTXNwzSrPyZMni71FkC3E9OnTR2rVqiULFy6U//znPzJz5kwR0Xb4v15+fr48++yz4uHhIWfOnBER7X0uXHksnD9/XubOnStRUVHFrrN3715RFEVeeukl2bRpk/j4+FT5H8KKyP/tdySXYrVaodPpkJWVhVdffRV//fUXtm/fDovFoh7SdHbyf4dZMjIykJCQgP379yMnJwfVqlXDI488gpCQEHXd6OhojB49Gk2aNMGGDRvU/tEKq9UKRVHUQxPFWb16NZ544gkYjUZ07NgRMTExmuuLopw/fx4DBgzAzp07UatWLSxfvhz333+/S7T9RmyfofXr12PgwIEICAhAWloaTp06hdq1a9sdytS6devWYezYsQgLC8PKlStdbmxwLBR46KGHsGXLFoSFhWHt2rVITU1FYGBglW0/Qx4BALKzs+Ht7a2pkHe9G30IR4wYgZ07d+Kzzz5Dr169NN0PxbH1T/v27bF792588803ePLJJ12mL44cOYJFixbBzc0Nr7zyCm677bYqu+GubJcuXcIjjzyCjRs34p577nGZ8G+TmpqK8PBwuLu744svvsDdd9/tMp+L62l1LJT0h/DmzZvRp08fWCwWdOvWDdu2bavS7WfIc3ElHdjO7Nov6qK+tE0mEyIjI+Hl5YX77rvPEVWsUFJwWkaJN0J79+7FF198gU8++QQGg6GCa1e1ZGdn48qVKwgICHB0VSqUbbNfms/9unXr8MYbb+Ddd9/FQw89BLPZ7FLjY9++fTCbzbj77rsdXZVyxbFQcrYw9/DDD2Pt2rX49ttvMXjw4CrdfoY8Io2xBdnMzEzodDp4e3vbLQNKt0En7bJdQVnSPVKHDx9G48aNOX40iGOh5P7++298//33iIiIqPJ7cxnyiHDjQ7nOxnYY6Y033sCePXvw0EMPoWvXrmjRokWhW6dofS8uXWUb44mJidi6dStGjx4NHx8fdbnZbIaiKEV+aWnp81FWWuoDjgXXwZBHpEFWqxVubm7q4YXGjRvjnnvuQc+ePdG5c2c0bNjQbl2dTofTp09j6tSpuOOOO/Dqq686sPZUEWzv8yOPPIKffvoJOp0O999/P8aOHYv+/fvbrWs2m6HT6dQfBfHx8dDpdGjTpk2VPSxFJcexcGuq8jl412PII9IQ26/s6Oho3Hfffejfvz+aNWuG//f//h+SkpJgNBrRsmVL9OjRA927d0eHDh3U888iIyPx4IMP4tlnn8Wnn37qVBsyKhkRQXBwMHJzc+Hj44MTJ04AADw9PfHEE09g9OjR6NChg91jTp48iQEDBiAnJwf//vuvI6pNFYBjwTVwC06kIbbDKP/88w8AYODAgZg1axY2bdqEH3/8EYMHD0ZycjLmzZuHIUOGYPDgwZg9ezZ27NiByMhIiAief/55RzaBKlBiYiJycnIQHh6OY8eOYfXq1Xj88cfh5uaGJUuWoFOnTmjQoAEiIiJw5MgRAEBycjIOHTqkXpRUFaduotLjWHARFXYHPiJyCIvFIh9//LFUq1ZN9uzZY7fsypUrkpSUJF999ZX069dPPD09RVEUqVOnjhiNRrnzzjtFRHs3eS0prbd73bp1oiiKTJ8+3a48JSVFFi1aJL169bK7aXi7du2kV69eoiiKOjOElmaCuRktjweOBdfAw7VEGvTHH39g48aNGD58OOrWrVvkOrm5ufjnn38QGxuLL7/8EocOHcK8efPw8ssvV+lbAlDZHTp0CFOnTsXIkSPRt29fWCwW6HQ6uxPpDx48iDVr1uDnn39W5yht1qwZDhw4wJPuNYRjoXSc9fQVhjwX5ao38rye1vuhJBvivLw8jBw5Ej/88APOnDmDgIAAl9mA29p56dIl7NixA61atUJAQIDTbtBLIiMjA25ubqhevbpaJiKwWq2FPgtTp07F7NmzMWfOHLzyyiuaD/+uNh44FrRPe6OWCrGdN7F27VosWbIEeXl5mg42xXGlfrBarQBufD882zoHDx5EdHQ07rnnHvULzRUCHnC1Dz799FM88MADmDNnjno1oVbVqFHD7ksdgN3tMmz3SxMRXLx4EQAwdOhQACW/h1pVdbN9Gq42Hlx5LNyMbaxkZ2fj66+/Vi9MsY0RZ6HNkUt2bL+2nn76aYwZMwa9e/fGwYMHHVyryudK/VCSLyXbOikpKcjKysLIkSMBON9G7FbYvqiys7MRFBSEuXPn4uGHH8bZs2cdXDPHsfXJ7t27sWTJEtx9992oVauWJsL/zerP8WBPq2OhJNs4W8j77LPPMHz4cLz++utIS0tzvsBf6WcBkkOYzWZZsGCB9OjRQxRFkT59+sjp06cdXa1Kx34o7PTp0/Lzzz9r+iTzm8nIyJC4uDgZO3asuLm5yRNPPCFms9nR1XKoixcvyssvvyyrV68WERGTyeTgGt2auLg42bx5s/z++++Sl5dXaLnValUvJOB4sKeFsVDW7duiRYuka9euYjQapV27dnLw4MFyrlnFYshzYmX9oK1evVrq1asnw4cPL98KOQj7gcrTqlWrZOjQoY6uBpWTzMxM+eKLL8THx0cURRE/Pz+ZOHGi5Obmql/8NwoAHA/aMnXqVNm9e3eh8mvHwLWB//Lly5KUlCSzZs2SOnXqSI8ePeTKlSuVVt9bxQsvnIwUcUK81WqFiNzwHAkRgcViUQ9ZRkZGws/Pr9DNLp0F+6H8FNWXzsh2cvyuXbtQs2ZNBAUFwd3dvUzPpfULckrCdkjL6Q5P/R/bePjggw8wffp0NGvWDB06dMCePXuQkJCAVatW4ZFHHsHGjRtx4MABeHh4oGfPnmjevDksFgsURVHb7urjwdnHgm0bt2nTJvTp0wc//PADBg0aVGi9K1euQK/Xw2g0Fvk8mzdvxk8//YRPP/20oqtcbhjynJDFYsHgwYPx8MMPo3///nYnzl6/cdIy9gNdz2KxwM3NDSEhIejXrx/uv/9+tGzZEn5+foWuBLSFgEuXLuGff/5B/fr14e/v76CaU0WwWq1o1KgRGjZsiPXr18PT0xMnTpxA27ZtMWDAAFitVixfvlw9/6pDhw6YP38+OnXq5OCaU3m6dhq3/fv348cff0TLli0BAJcvX8Zvv/2GpUuXwmAwwNfXF+3bt0evXr1Qt25d55/j2yH7D6lMbLuTf/jhB/UGlUFBQfL8889LTExMofXNZrPk5+eLiEhCQoKsWbPG7hCFs2I/0PVs7+XatWvVQ3J6vV4MBoN07NhR3nnnHfn999/l4sWLhd73devWSevWreWbb75xRNWpAtje42+//VaMRqN8++23dsvbtWsnbm5ucu+998qiRYtk8+bN8sorr4iiKNK2bVs5deqUI6pNFchsNovRaJQXXnhBcnNz1fJnn31WPDw8RFEU8fLyEp1OJ56envLMM89IZmam3XM443cGQ54TsQ2wxx9/XBRFka5du4pOp1ODTsuWLWXmzJlFnhg6cuRIURRFDh06VNnVLnfsB7qebUy88cYboiiKLFy4UL7++mt57LHHpH79+uoGvG/fvrJo0SL5888/1Q39hAkTRFEUdbw444ac7NnOp3rsscekRYsW8ueff6rLDh06JK1bt5a77rpLUlJS1PKLFy/KoEGDRFEUSUhIqPQ6U8WwfZ6XL18uOp1OVq1aJSIi+fn5smzZMlEURTp37ixr166V2NhY+emnn+SBBx4QRVHkmWeecarz74rCkOdkcnNzpUePHlKvXj0REcnOzpZPP/1UOnTooIYcRVGkZ8+e8umnn0pmZqacPXtW2rZtq6kpq9gPdL28vDwZPny4uLm5qXtuMzMzZfv27fLee+/J/fffL35+fqIoigQGBsqoUaPko48+kpCQEI4JDcrOzpb27dtL//791fEgIvLdd9+JoiiydOlSESkIhLYrZ9evXy+KosiKFSscUmcqf7bAf88990jHjh3l3LlzIiLy559/Sps2baRTp06F9tzu27dP7rjjDqlevbocP3680utcnhjynMyRI0ckNDRUmjdvXmhZUlKSTJs2TRo1aqSGHF9fX+nUqZMoiiJz5swREee8/P167Ae6XnZ2tgwfPlz+85//yNmzZwvNq3nmzBn55Zdf5I033pCOHTuKh4eHGI1GURRF5s2bJyIcE1oKuadOnZJ77rlHHnzwQREp+LK3WCyyYsUK8ff3twt+trHyxRdfiLu7u3qrEFeem1VLYyEtLU09yrNixQpJT0+X6OhoMRqN8sMPP4iIFLpFzsKFC0VRFNmyZYsjqlxueOGFk8nMzMRnn32GmjVrYuzYsdDpdDCbzdDr9XYnhu7cuRMrVqzA6tWrkZmZCQA4d+4c/Pz8NHE1Jfvh1mn1isETJ04gMDAQ7u7uxV4VePLkScTExOCdd95BUlISx4RGHTlyBADQuHFj9eR7i8WCc+fOITAw0G66MrPZjMmTJ2PBggVIS0vjeNCQ33//Hffeey8uX74MAGjatCn8/f1x8OBBnDhxAj4+Puq6tu3i/Pnz8eabb2L16tXo37+/044FhjwnYtsg5ebmwmw2w9fXt9Byq9VqdxXhrl27cN9996FDhw7YtGmTJuZgZD+Unm2eybVr1yI9PR1Dhgwp8+1FqqqbbYSl4MiFeqXcP//8g969e+P2229HdHS0y40JwPXmai2Kra2JiYkYNmwYAgICsGXLFpfqA8A1xsKuXbvw1VdfYfXq1cjKysKdd96J3377DTVr1rRbz2QyYdKkSfj000+Rmprq1IFfG++ci7B90Dw9PQsFG9tyW7AxmUwAgPj4eOTk5KhTVmkh07Mfrtbftnfy2rKiuMKUbjfbAF9/S52NGzfi1KlTePrppwE4/5goC1ebq7UotnGzfPlyJCcnY/z48QBcbzxoeSzY5i1v164dvvzyS2RkZOB///sfHn30UVy6dEldz9YHf/31FzZv3owuXbrAz8/Pqadxc/53z0XMnTtXDSwlmXfPaDQiJycHP/30EwDgiSeeAOD8k0qzHwrYNjhjxozBr7/+aldWHIvFgunTp6N79+7Yvn27Ohejq1EUBWazGVarFc2aNcPgwYMBOP+YuJHiAgvnai0YDzt37sTSpUsRHh6OAQMGANDWeChJYNXyWLD9yLVarWrge/DBBxEREYG6deuq69m2oStWrMDx48cxbtw4AE4e+Cvv9D8qq+joaDEYDPLjjz+W6nEWi0W2bNkiixYtEhHnP6mc/VDAdkJ0dHS0KIoiRqNRPvroo1I9h9amdCvre5qWliYi2jzBPj8/v9C8zMWdTK+1uVpLMx7MZrNs27ZNZs+erd5GR0vj4fpbgNzsggqtjYXiFPcex8XFibe3t/Tr108T44Ahr4qzWCySn58vw4YNEy8vL5kzZ456VZjFYtHUFVA3wn64yrbhefjhh6V69eri7+8vvr6+MmfOHLl8+bLdOteyWq12G+tffvlF4uPjK6fSFaCo9/za22GU9rFaEhsbKw888IBUr15dQkJCZMaMGXLhwgURuXnbnXWu1lsZD1pj64vNmzeLl5eXvPbaa/L7778XWs/WN9nZ2UU+j7OOhWuVJvBbLBaJiYmRiIgItb+cPegx5DmJlJQU6dGjh7i7u8ukSZOKvBO31r+4RNgPNiaTSYxGo7z44ovqLSEURZFx48Y5/c07S8NsNsujjz4q33//vd1d7G3LnH0DXRq2ti5evFgCAgJEURS5/fbb1dvE9OvXr9gv8+s5azDieChga+eoUaNEURTR6/WiKIq0atVKPvjgAzly5Ii6blZWlrRr107WrVsnIgXb0Gv7yRnHQnkEfq18jzDkORGz2SzPPvusKIoiTZo0kUWLFtl9WG2u/eXi7Icmi+LK/WDb8Cxbtkx0Op2sWbNGRAoO3bZr1050Op088cQT8s8//4hI8b9CnX0DVl5T22mNxWKRBg0aSNOmTWXr1q1isVhk//798tRTT4miKDJ9+vQiH5Odne2UX+Y2HA9Fmzx5siiKIg888ID07dtXnb5LURS59957Ze3atTJ79mxRFEUWL14sIs4Z6orCwF+AIc9J2D54KSkp8vrrr4vBYBCDwSD33nuvzJ07VzZv3mw3Rc+1tLRnx9X7wbZh6tixo3To0EEOHz6sLvv999/l7rvvVjfqJ06ccFQ1KxyntrN37Vyter1elixZYrc8PT1dmjZtKoGBgfL333+LyNUfPgkJCTJ8+HDZvn175Va6HHE8FO3KlSvy5JNPSr9+/eTSpUuSkJAgU6ZMkfbt26v9YzAYxM/PT7766itHV7dcMPDbY8hzUvv375exY8dKrVq1RFEUqVWrltx9990SHh4uL7/8snzwwQfy6quvygsvvCCjRo1S5+vTGlfsB9vd22fMmFHo1+i5c+fUQzTNmjWTyMhIMZvNmjyMzantrrKNg8GDB0urVq3UuVptszyIFJyDqSiKvPbaayJyte1z584VRVFk3759duXOhuPBnq0t8fHx4u3tLWPGjFGXZWRkyNatW9U9vLZ/wcHB8txzzzn1D2IGfnsMeU7m2vMlsrKy5LfffpP58+fLwIEDJTAwUAwGg3h6eoq7u7vUrFlTmjZtKg8//LAcO3bMsRUvZ67YD7b2vvXWW+Lt7S2bNm0SkasbNdt/jx07pm6877zzTtmxY4djKlzBOLWdvUuXLsm9994r7dq1KxT+be3s1q2b1K1bV/0SO3XqlPTp00dCQ0NFxLlDDsdD8RYtWiQGg0Hmz58vIlff5+nTp4vBYJAJEybI8OHDxdPTUxo1auTIqpYLBv6rGPI0wGQyqbubDx06JHFxcZKeni5JSUmaOb+iJFylHx599FF56KGH1NtjFLcxWrBggVSvXl30er18+OGHcunSpcqsZoXLyMiQ2bNny+eff66GGpPJVKg/duzYIWPHjpUaNWqoG/fz58+LiHY25CIiFy9elN69e0vHjh1FpOjzMW2HsGzn5m3cuFG8vLxk9uzZIuLcIYfj4cZefvllCQwMtNtLVbduXenatat6eHLv3r2yZ88eEXHuscDAfxVDnsZpeaNVGlrrh3PnzhW7zPYFl5mZKe+8845Uq1ZN3N3d1Ym4tcDWxpycHMnIyChy+fUb6YSEBPH29pZevXrZPYdWmM1mmTFjhowfP16ysrKKXCc/P1+aN28uoaGhcvLkSZk+fbooiiJnz54VEef9nHA8FM/2np46dUqaNWsm7dq1ExGRxMREURRFpk2b5sjqVQgG/qsMN79dMjkzZ52KpbxprR/8/f2LXWabhsjHxwdTpkxBp06dEBYWpt7pXQtzUV47tV1xy23rmEwmGI1GzU1tdz29Xo+IiAikpqbC29u70HKLxQKj0Yjx48dj3LhxmDNnDv7++2+0b9/e6eco5Xgonm3bV6dOHcydOxf9+/fHW2+9hb/++gteXl7o2bMnAKhTdzn7ttJqtcLX1xcTJkywm5bt2lkvbHObd+7cGZ07d8bo0aPVuc1t05g562ehEEenTCIqmetvAH0ztptEm0wm+eWXXzTzy7S0/SBScE5Oz549RVEUze+xuRGLxSJ5eXkSEhIi1apVE0VR5OuvvxYR5711BsdD6Xz88cfqvRMHDBhQ4ptka5Ft3Hz00UeiKIp8++23IuK8n4WiaCSqEmnbtm3bMHnyZPz8888AUKJfmTqdDoqiwGAwoG/fvk7/Cx0oWz8AQPXq1TF16lR8/vnn0Ol06l5NLSnJ+6soCtzc3DBu3Djk5eXBzc0NTz75JADnnKuV46Hk5P/2VA4dOhTPP/88mjdvjrZt26JmzZoAtHG0g3ObF8HRKZOIbuxWp3TTyi90Tm1XvNKeJJ6SkiK9evWSl19+WUScc88Fx0PRSjoWTp06Jenp6SKijfMRObd50RQRjZ6IQKQxp06dwpAhQxAXF4eXXnoJb775Jnx8fNTlto+yFn6R3wj7oYCIFGqj1WqFiJR4T0Rubi48PT2d+hwkjofyGQvOzGq1wmKxYPTo0VizZg0iIiLw4osvwmg0auZcwzJzWLwkolIry5RuzriX5mZceWq7a3HqpgIcD6UbC1rdy8m5zQvjnjwiJ2GxWKDX63Hq1Cl89NFHmD9/PgCgW7du6Nu3L1q1aoXQ0FDUrVu30GPz8vLg7u5e2VWuEOyHq3tuVq1ahcGDBwMA6tWrhwcffBCPP/44unXrZre+xWKB1WqF0WjErl27kJKSgvDwcFSvXt0R1S9Xrj4ebnUsJCcn4/7779fEWAAK2jd+/Hh88cUXCAkJwcSJE9G7d280atTIbj2z2axecXvt/2sNQx6Rkzpw4AA++eQTrF27FufOnUNAQACCgoLg7++PO++8E7Vr18bZs2eRl5eH3NxchIeH47HHHnN0tcudK/aD7Yv9iSeewOrVq9GlSxfs3LlTPTTZokULPPLII3jkkUfQrFkzu8eOGjUKy5cvxz///IMmTZo4ovoVytXGA8fCVa4e+IvCkEfkZKTgJubQ6XTIzs7Gvn37sGvXLvz222+Ii4vD+fPn4e7uDrPZjOrVq6NWrVpo1qwZ5s2bhwYNGji6+uXG1fvh0qVL6NevHw4fPozk5GTk5ORg5cqVWLlyJRISEtT1evTogUGDBmHIkCHIy8tD3759cenSJfz5559FnsvlrFx5PHAsFM3VAn9RGPKINMBsNkNEYDQa8e+//+LChQto0qQJLly4gIYNG7rEydeAa/XD0aNH0a9fPxgMBhw4cMBu2eHDh7Fy5Up8++23OHbsGICCm2PfeeediI+PxwcffIBXX31V04epANcZDxwL9lw58F+PIY9I47T4C70stNYPmZmZ+Oyzz1CzZk2MHTtWvd+bXq+3a+fOnTuxYsUKrF69GpmZmQCAc+fOwc/PT3N9UhpaajvHws25SuC/HkMeEZGTsd3yJDc3F2azGb6+voWW26Zustm1a5c6ddOmTZuc+rYpdBXHwq3TcsDVxr5ZIiIXwrlayYZj4dZpNeABgOtGdyIiJ8Spm8iGY4FuhiGPiMhJcK5WsuFYoJLgOXlERE6AUzeRDccClRRDHhGRE+FcrWTDsUA3w5BHRORkOHUT2XAs0I0w5BERORFO3UQ2HAt0Mwx5REROjFM3kQ3HAl2PIY+IyAlx6iay4Vig4jDkERFphKtO3USFcSwQwJBHROQStDx1E5UOx4LrYMgjIiIi0iDOeEFERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBrEkEdERESkQQx5RERERBr0/wGrJ4pjMaTFHQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHtCAYAAABlFmhpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABioElEQVR4nO3deXwM9/8H8NfsbhK5pREixB3ibPhSdYsSrWhLVVutOlqUUkW1qLtKi+qpF1qlqtWiWupI3UXUGVcdQd13SCJBjt337w+/mWZzyEGyO+P1fDw82nxmdvL+fDKz+9o5FREREBEREZGhmBxdABERERHdewx5RERERAbEkEdERERkQAx5RERERAbEkEdERERkQAx5RERERAbEkEdERERkQBZHF6B3NpsN586dg7e3NxRFcXQ5REREZHAiguvXryMoKAgmU8776xjy7tK5c+cQHBzs6DKIiIjoPnP69GmULVs2x+kMeXfJ29sbwO2B9vHxcXA1REREZHSJiYkIDg7WMkhOGPLuknqI1sfHhyGPiIiIikxup4nxwgsiIiIiA3LqkPfrr7+iTZs28Pf3R7FixVCxYkV06dIFp0+ftpsvMTERQ4YMQfny5eHm5oYKFSrgzTffRFJSUrbLtdls+Oyzz1C7dm24u7sjICAAXbp0wfHjx4uiW0RERESFThERcXQRmYkI+vbtixkzZqBy5cpo27YtvL29ce7cOWzYsAE//PADmjZtCgBITk5G06ZNERMTg4iICNStWxe7d+9GVFQUGjRogI0bN6JYsWJ2y+/duzdmzZqFmjVrIjIyEufOncPPP/8MLy8vbN26FSEhIXmuNTExEb6+vkhISODhWiIiIip0ec4e4oQ+/vhjASCvvvqqpKenZ5melpam/f+YMWMEgAwbNsxunmHDhgkAmTRpkl372rVrBYA0b95cUlJStPbly5cLAImIiMhXrQkJCQJAEhIS8vU6IiIiPRs7dqwAsPtXrVo1bXqLFi2yTH/llVfslrF69Wpp1KiReHl5SalSpeStt96y+4yn7OU1ezjdnrybN2+iTJky8PPzw+HDh2Gx5HxtiIigbNmySExMxIULF+Dp6alNS05ORmBgIEqWLIljx45p7c8//zx+/PFHbNiwAc2bN7dbXnh4ONavX4+TJ0+iXLlyeaqXe/KIiOh+NG7cOCxcuBCrV6/W2iwWC0qUKAEAaNmyJapWrYp33nlHm+7h4aF9Vu7ZswcPPfQQRo4cieeffx5nz55F3759ERkZiQ8++KBoO6Mzec0eTndOXlRUFK5du4YOHTrAarVi8eLFeP/99/HVV1/h6NGjdvPGxsbi3LlzaNKkiV3AAwBPT080adIEx48ftzuHb/369dq0zNq2bQsA2LBhQyH0jIiIyFgsFgsCAwO1f2rAU3l4eNhNzxhIFixYgDp16mDMmDGoUqUKWrRogSlTpuDzzz/H9evXi7orhuR0t1DZuXMnAMBsNqNOnTo4cuSINs1kMmHw4MFawo+NjQWAHM+hCwkJwapVqxAbG4vg4GAkJyfj/PnzqFWrFsxmc7bzZ1xudlJSUpCSkqL9nJiYCABIS0tDWlqaVqfZbIbVaoXNZrOr32w2Iz09HRl3oJrNZphMphzb1eWq1L2b6enpeWp3cXGBzWaD1WrV2hRFgcViybE9p9rZJ/aJfWKf2Cf2Sf0MjY2NRVBQEIoVK4aGDRvi/fffR7ly5bT5f/jhB8ybNw+BgYFo3749RowYAQ8PDwC3j9wVK1bMrnYXFxfcunULO3fuRPPmzfl3ukOf8sLpQt6lS5cAAB9++CHq1auHbdu2oXr16ti9ezf69OmDadOmoXLlyujXrx8SEhIAAL6+vtkuS/3GoM6X3/mz895772H8+PFZ2qOiorQVt1y5cqhbty727t2LU6dOafNUq1YNoaGh2LZtGy5fvqy1h4WFoXz58ti4caPdt5dGjRqhZMmSiIqKsvuDhoeHw93dHcuXL7eroV27drh58ybWrVuntVksFkRGRuLKlSuIjo7W2r29vdGqVSucPn0aMTExWntAQAAaN26M2NhYHD58WGtnn9gn9ol9Yp/Yp4x9atiwIQYOHIjAwEBcu3YNP/30E5o1a4aYmBj89ddfqFmzJsLDw+Hn54fixYvj7bffxoYNGzB8+HAAwAMPPIAtW7ZgxowZKFmyJOLj4zFt2jQAwPnz5/l3ukOf1B1iuXG6c/L69OmDmTNnwt3dHUePHkVQUJA2bf/+/XjwwQdRsWJFHD16FPPnz8cLL7yAkSNH4t13382yrJEjR2LSpElYvHgxOnbsiHPnzqFMmTJo0qQJNm3alGX+P//8ExERERg4cCA++eSTbOvLbk9ecHAwrly5ooXE+/VbBfvEPrFP7BP7dP/2KT4+HlWqVMG0adPQvXv3LH1au3YtWrdujYMHD6Jy5coAgM8++wzjx49HcnIy3Nzc8Pbbb2PUqFH46aef0LlzZ4f36U5/D0f+na5evQp/f/9cz8lzuj156l62+vXr2wU8AKhVqxYqVaqEo0ePIj4+Xps3pz1v6qFUdb78zp8dNzc3uLm5ZWl3cXGBi4uLXZvZbM72sHBOF5Pk1J55uQVpN5lM2T7EOKf2nGpnn9in/LazT+wTwD7lVGN+2525TwEBAahatSqOHTuWbe0PP/wwAODkyZMIDQ0FAAwZMgSDBw/G+fPn4efnhxMnTmDUqFGoVKmSU/SpoO2O+jtl+X15mqsIVatWDQBQvHjxbKer7Tdv3sz1HLrM5+x5enqidOnS+Pfff+2SdE7zExERUd4kJSXh2LFjKF26dLbT1cOUmacrioKgoCC4u7vjxx9/RHBwMOrVq1fY5d4XnC7khYeHAwAOHjyYZVpaWhqOHj0KT09PBAQEICQkBEFBQdi8eTOSk5Pt5k1OTsbmzZtRsWJFBAcHa+0tWrTQpmW2atUqAMhyaxUiIiKyN3ToUGzYsAEnTpzAli1b0LFjR5jNZnTp0gXHjh3DhAkTsHPnTpw4cQK///47unXrhubNm6NOnTraMqZOnYp9+/bhwIEDmDBhAt5//318+umn2e69ovxzupBXuXJlRERE4OjRo5g1a5bdtPfffx/x8fHo2LEjLBYLFEVBr169kJSUhAkTJtjNO2HCBCQlJaF379527X369AEAjB49GqmpqVr7ihUrsH79ekRERKB8+fKF1DsiIiJjOHPmDLp06YJq1arhmWeegb+/P7Zu3YqAgAC4urpi9erViIiIQGhoKN544w106tQJS5cutVvGihUr0KxZM9SvXx9//PEHfvvtN3To0MExHTIgp7vwAgCOHTuGxo0b49KlS4iMjERoaCh2796NtWvXonz58ti6dSsCAwMB3N5j16RJE+zZswcRERGoV68edu3apT3WbMOGDXB3d7dbfubHmp0/fx4LFiyAl5cXoqOjUbVq1TzXypshExERUVHKa/ZwypAHAKdPn8aYMWOwcuVKxMXFITAwEE888QTGjBmDkiVL2s2bkJCAcePGYdGiRbhw4QJKly6Nzp07Y+zYsfD29s6ybJvNhunTp2PGjBk4evQovLy80Lp1a0ycOFG74ievGPKIiIioKOk+5OkFQx4REREVJd0+1oyIiIiI7h5DHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBWRxdABEREelT748Lb9kzBxXesu8X3JNHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGxJBHREREZEAMeUREREQGpIuQN3nyZCiKAkVRsHXrVrtp48aN06Zl9+/EiRPZLnPVqlVo0aIFvL294ePjg/DwcKxZs6YIekNERERU+CyOLiA3+/fvx9ixY+Hp6Ynk5OQc5+vevTsqVKiQpb148eJZ2ubNm4cXX3wRAQEB6NGjBwBgwYIFaNOmDX7++Wc8/fTT96h6IiIiIsdw6pCXlpaG7t27IywsDCEhIZg3b16O8/bo0QMtW7bMdZnXrl3Da6+9hhIlSmDXrl0oW7YsAGDYsGGoW7cu+vXrh7Zt28Lb2/tedYOIiIioyDn14dqJEyfiwIED+Pbbb2E2m+/JMn/55RfEx8fjtdde0wIeAJQtWxYDBgzAlStX8Ouvv96T30VERETkKE4b8nbt2oWJEydi7NixqFGjRq7zb9y4EZMnT8bUqVOxZMkSJCUlZTvf+vXrAQARERFZprVt2xYAsGHDhoIXTkREROQEnPJwbUpKCrp164awsDC89dZbeXrN2LFj7X4uXrw4PvnkE3Tr1s2uPTY2FgAQEhKSZRlqmzpPTrWlpKRoPycmJgK4fWg5LS0NAGAymWA2m2G1WmGz2bR51fb09HSIiNZuNpthMplybFeXq7JYbv/Z0tPT89Tu4uICm80Gq9WqtSmKAovFkmN7TrWzT+wT+8Q+sU/sk9pemPh3unOf8sIpQ96YMWMQGxuLnTt35nqY9sEHH8S3336Lli1bonTp0rhw4QKWLVuGMWPGoEePHihevDieeOIJbf6EhAQAgK+vb5Zl+fj42M2Tnffeew/jx4/P0h4VFQUPDw8AQLly5VC3bl3s3bsXp06d0uapVq0aQkNDsW3bNly+fFlrDwsLQ/ny5bFx40Zcv35da2/UqBFKliyJqKgouz9oeHg43N3dsXz5crsa2rVrh5s3b2LdunVam8ViQWRkJK5cuYLo6Git3dvbG61atcLp06cRExOjtQcEBKBx48aIjY3F4cOHtXb2iX1in9gn9ol9ytynwsS/U8592rlzZ57GUJGMMdYJREdHo2nTphg3bhxGjx6ttffo0QNz5sxBdHQ0Hn744VyXs2bNGrRp0wa1atXC3r17tfaqVasiNjYWaWlpWgpXpaWlwdXVFXXq1MGePXuyXW52e/KCg4Nx5coVLSTer98q2Cf2iX1in9in+6tPvT9Gofl6IP9OObVfvXoV/v7+SEhI0LJHdpxqT156ejq6d++OOnXqYPjw4Xe1rEceeQSVK1fGvn37kJiYqA2CugcvISEB/v7+dq9RD71mt5dP5ebmBjc3tyztLi4ucHFxsWszm83Z7onMHC5za8+83IK0m0ymbHet59SeU+3sE/uU33b2iX0C2Kecasxvu7P1qTDx75T/PmX5fXmaq4gkJSUhNjYWMTExcHV1tbup8Zw5cwDc3p2qKAqWLFmS6/JKlCgBALhx44bWdqfz7u50vh4RERGRnjjVnjw3Nze8/PLL2U7buHEjYmNj8cQTTyAgICDbGx9nlJycjAMHDsDT01MLewDQokUL/Pjjj4iKispy2HfVqlXaPERERER65nTn5OUku3Pyrl+/jvPnz6Nq1ap28968eRMvv/wyfvzxR/Ts2RPffvutNu3atWuoWLEiXFxcsHv3bu1eeWfOnEHdunUBAMePH8/zzZATExPh6+ub63FxIiIioynMc/JmDiq8ZetdXrOHU+3Jy6+4uDiEhoaiQYMGqF69OgIDA3Hx4kWsXr0aZ86cQe3atTF16lS71/j5+WH69Ol48cUXUa9ePTz77LMAbj/WLC4uDgsWLODTLoiIiEj3dB3yHnjgAbz66qvYtm0bli9fjmvXrsHd3R3Vq1fHwIEDMWDAALi7u2d5XdeuXVGiRAlMmjQJs2fPhqIo+N///odRo0ahdevWDugJERER0b2lm8O1zoqHa4mI6H7Fw7WOkdfs4VRX1xIRERHRvcGQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRADHlEREREBsSQR0RERGRABQ55GzduxKlTp+44z+nTp7Fx48aC/goiIiIiKqACh7zw8HB89913d5xn7ty5CA8PL+ivICIiIqICKnDIE5Fc57HZbFAUpaC/goiIiIgKqFDPyYuNjYWvr29h/goiIiIiyoYlPzO/9NJLdj8vWbIEJ06cyDKf1WrVzsd77LHH7qpAIiIiIsq/fIW8jOfgKYqCmJgYxMTEZDuvoiho0KABPvroo7upj4iIiIgKIF8h799//wVw+3y8SpUqYdCgQXj99dezzGc2m+Hn5wdPT897UyURERER5Uu+Ql758uW1/589ezbq1q1r10ZEREREziFfIS+j7t2738s6iIiIiOgeKnDIU23btg3bt29HfHw8rFZrlumKomD06NF3+2uIiIiIKB8KHPKuXr2KDh06YPPmzXe8Zx5DHhEREVHRK3DIGzJkCDZt2oSWLVuie/fuKFu2LCyWu94xSERERET3QIFT2bJly/DQQw9hzZo1fKoFERERkZMp8BMvbt68iebNmzPgERERETmhAoe8sLCwbJ92QURERESOV+CQN3bsWPz+++/YunXrvayHiIiIiO6BAp+Td+HCBURGRqJFixZ44YUXUK9ePfj4+GQ7b7du3QpcIBERERHlnyJ3uv/JHZhMJiiKYnf7lMzn54kIFEXJ9v55RpGYmAhfX18kJCTkGHKJiIiMqPfHhbfsmYMKb9l6l9fsUeA9ebNnzy7oS4mIiIiokPGxZkREREQGVOALL4iIiIjIeRV4T96pU6fyPG+5cuUK+muIiIiIqAAKHPIqVKiQpxshK4qC9PT0gv4aIiIiIiqAAoe8bt26ZRvyEhISsGfPHvz7779o0aIFKlSocDf1EREREVEBFDjkfffddzlOExFMmzYNU6ZMwTfffFPQX0FEREREBVQoF14oioKhQ4eiZs2aePPNN/P12lu3bmHIkCFo3rw5goKCUKxYMQQGBqJJkyaYPXs20tLSsrwmMTERQ4YMQfny5eHm5oYKFSrgzTffRFJSUra/w2az4bPPPkPt2rXh7u6OgIAAdOnSBcePHy9Qf4mIiIicTaFeXVu/fn2sXbs2X69JSkrCl19+CUVREBkZiSFDhqBjx444e/YsXnrpJbRv3x42m02bPzk5GS1atMBHH32E0NBQDB48GNWqVcMHH3yAVq1a4datW1l+xyuvvIKBAwdCRDBw4EA8+uijWLx4MRo0aIDY2Ni77jcRERGRoxX4cG1eHDt2LN8XXTzwwANISEiAq6urXXt6ejratGmDqKgorFixApGRkQCAKVOmICYmBsOGDcP777+vzT98+HBMnjwZH330EUaMGKG1r1u3DrNmzULz5s3x559/ar/n+eefR7t27TBgwACsWrWqoF0mIiIicgr3fE+ezWbD6dOnMWHCBPz2229o1KhR/goymbIEPACwWCzo2LEjAODo0aMAbp/7N2vWLHh5eWH06NF2848ePRpeXl6YNWuWXfvMmTMBABMmTLD7PY899hhatmyJqKiofN0ehoiIiMgZFTjkmUwmmM3mLP9cXFxQoUIFjB07FsWLF8e0adPuSaE2mw0rV64EANSqVQsAEBsbi3PnzqFJkybw9PS0m9/T0xNNmjTB8ePHcfr0aa19/fr12rTM2rZtCwDYsGHDPamZiIiIyFEKfLi2efPm2d5CxWQywc/PDw0aNEDPnj1RsmTJAi0/NTUVkyZNgoggLi4Oa9aswaFDh9CzZ0888sgjAKCdPxcSEpLtMkJCQrBq1SrExsYiODgYycnJOH/+PGrVqgWz2Zzt/BmXm52UlBSkpKRoPycmJgIA0tLStItC1ABstVrtzh9U29PT0yEiWrvZbIbJZMqxPfPFJhbL7T9b5kPhObW7uLjAZrPBarVqbYqiwGKx5NieU+3sE/vEPrFP7BP7pLYXJv6d7tynvChwyFu/fn1BX5onqampGD9+vPazesXue++9p7UlJCQAAHx9fbNdho+Pj918+Z0/O++9955dXaqoqCh4eHgAuP2Ej7p162Lv3r12h36rVauG0NBQbNu2DZcvX9baw8LCUL58eWzcuBHXr1/X2hs1aoSSJUsiKirK7g8aHh4Od3d3LF++3K6Gdu3a4ebNm1i3bp3WZrFYEBkZiStXriA6Olpr9/b2RqtWrXD69GnExMRo7QEBAWjcuDFiY2Nx+PBhrZ19Yp/YJ/aJfWKfMvepMPHvlHOfdu7cmacxVCRjjHVCNpsN586dw9KlS/H222+jZs2aWL58OXx8fDB//ny88MILGDlyJN59990srx05ciQmTZqExYsXo2PHjjh37hzKlCmDJk2aYNOmTVnm//PPPxEREYGBAwfik08+ybae7PbkBQcH48qVK1pIvF+/VbBP7BP7xD6xT/dXn3p/jELz9UD+nXJqv3r1Kvz9/ZGQkKBlj+zck6trN2/ejJiYGCQmJsLHxwdhYWHZnvNWECaTCWXLlkW/fv1QokQJPPPMM5g4cSImT56s7ZHLac+beihVnS+/82fHzc0Nbm5uWdpdXFzg4uJi16aep5iZumLktT3zcgvSbjKZst21nlN7TrWzT+xTftvZJ/YJYJ9yqjG/7c7Wp8LEv1P++5RlvjzNlYMtW7agZ8+edle7qufphYSEYPbs2fm+uvZOIiIiAPx3qDi3c+gyn7Pn6emJ0qVL499//4XVas0ycLmd40dERESkFwUOeQcOHEBERARu3LiBNm3aIDw8HKVLl8aFCxewbt06REVFoW3btti6dStq1KhxT4o9d+4cgP9Sc0hICIKCgrB582YkJyfbXWGbnJyMzZs3o2LFiggODtbaW7RogZ9++gmbN29G8+bN7Zav3h8vczsRERGR3hT40ph33nkHqampWL58OVatWoXhw4eje/fuGDZsGFauXInly5fj1q1beOedd/K13H/++Qc3btzI0n7jxg0MGTIEwO2THYHbx7J79eqFpKQkTJgwwW7+CRMmICkpCb1797Zr79OnD4Db99FLTU3V2lesWIH169cjIiIC5cuXz1fNRERERM6mwBdelCpVCo888gjmz5+f4zzPP/881qxZg4sXL+Z5uePGjcOHH36Ipk2bokKFCvDx8cHZs2exYsUKxMXFoVmzZli1ahXc3d0B3N5j16RJE+zZswcRERGoV68edu3ahaioKDRo0AAbNmzQ5lX17t0bs2bNQs2aNREZGYnz589jwYIF8PLyQnR0NKpWrZrnehMTE+Hr65vryY9ERERGU5gXXswcVHjL1ru8Zo8CH65NSEhAxYoV7zhPxYoV73g7kuy0b98e586dw5YtWxAdHY2kpCT4+vqiTp06eO655/DSSy/ZnXDo6emJDRs2YNy4cVi0aBHWrVuH0qVL44033sDYsWOzBDwA+Prrr1G7dm3MmDEDn3zyCby8vNCxY0dMnDgRlStXzle9RERERM6owHvyKlWqhIoVK2LNmjU5ztO6dWscP34cx48fL3CBzo578oiI6H7FPXmOkdfsUeBz8p544gmsX78eo0ePxq1bt+ym3bp1C2PHjsW6devw5JNPFvRXEBEREVEBFXhPXlxcHBo2bIh///0X/v7+eOihh1CqVClcvHgR27dvx+XLl1GpUiVs27YNDzzwwL2u22lwTx4REd2vuCfPMQr9nDx/f39s3boVb731Fn766Se7x30UK1YMPXv2xOTJkw0d8IiIiIic1V3dDLlEiRL49ttv8fXXX+PQoUPaEy9CQ0NzvDM0ERERERW+fIe8iRMnIjk5GePHj9eCnIuLC2rXrq3Nk5qaipEjR8Lb2xvDhw+/d9USERERUZ7k68KL1atXY8yYMfD397/jnjpXV1f4+/tj5MiRWLdu3V0XSURERET5k6+QN3fuXPj5+WHAgAG5ztu/f3888MADmD17doGLIyIiIqKCyVfI27JlC1q3bg03N7dc53Vzc0Pr1q2xefPmAhdHRERERAWTr5B37tw5VKpUKc/zV6xYEefPn893UURERER0d/IV8kwmE9LS0vI8f1paGkymAt9vmYiIiIgKKF8JLCgoCPv378/z/Pv370eZMmXyXRQRERER3Z18hbxmzZph7dq1OHHiRK7znjhxAmvXrkXz5s0LWhsRERERFVC+Ql7//v2RlpaGp59+GleuXMlxvri4OHTu3Bnp6eno16/fXRdJRERERPmTr5sh16tXD4MGDcLHH3+MGjVqoG/fvggPD0fZsmUBAGfPnsWaNWswY8YMXL58GUOGDEG9evUKpXAiIiIiylm+n3gxbdo0FCtWDFOnTsXEiRMxceJEu+kiArPZjBEjRuDdd9+9Z4USERERUd7lO+QpioJJkybh5ZdfxuzZs7FlyxZcuHABABAYGIgmTZqgR48eqFy58j0vloiIiIjyJt8hT1W5cmXuqSMiIiJyUryJHREREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGZBThrx58+bhlVdeQf369eHm5gZFUfDdd99lO++4ceOgKEqO/06cOJHt61atWoUWLVrA29sbPj4+CA8Px5o1awqvU0RERERFyOLoArIzatQonDx5EiVKlEDp0qVx8uTJXF/TvXt3VKhQIUt78eLFs7TNmzcPL774IgICAtCjRw8AwIIFC9CmTRv8/PPPePrpp++yB0RERESO5ZQhb9asWQgJCUH58uXx/vvvY8SIEbm+pkePHmjZsmWu8127dg2vvfYaSpQogV27dqFs2bIAgGHDhqFu3bro168f2rZtC29v77vtBhEREZHDOOXh2tatW6N8+fKFsuxffvkF8fHxeO2117SABwBly5bFgAEDcOXKFfz666+F8ruJiIiIiopThryC2LhxIyZPnoypU6diyZIlSEpKyna+9evXAwAiIiKyTGvbti0AYMOGDYVWJxEREVFRcMrDtQUxduxYu5+LFy+OTz75BN26dbNrj42NBQCEhIRkWYbaps6TnZSUFKSkpGg/JyYmAgDS0tKQlpYGADCZTDCbzbBarbDZbNq8ant6ejpERGs3m80wmUw5tqvLVVkst/9s6enpeWp3cXGBzWaD1WrV2hRFgcViybE9p9rZJ/aJfWKf2Cf2SW0vTPw73blPeaH7kPfggw/i22+/RcuWLVG6dGlcuHABy5Ytw5gxY9CjRw8UL14cTzzxhDZ/QkICAMDX1zfLsnx8fOzmyc57772H8ePHZ2mPioqCh4cHAKBcuXKoW7cu9u7di1OnTmnzVKtWDaGhodi2bRsuX76stYeFhaF8+fLYuHEjrl+/rrU3atQIJUuWRFRUlN0fNDw8HO7u7li+fLldDe3atcPNmzexbt06rc1isSAyMhJXrlxBdHS01u7t7Y1WrVrh9OnTiImJ0doDAgLQuHFjxMbG4vDhw1o7+8Q+sU/sE/vEPmXuU2Hi3ynnPu3cuTNPY6hIxhjrhNQLL2bPnq1dCZsXa9asQZs2bVCrVi3s3btXa69atSpiY2ORlpampXBVWloaXF1dUadOHezZsyfb5Wa3Jy84OBhXrlzRQuL9+q2CfWKf2Cf2iX26v/rU+2MUmq8H8u+UU/vVq1fh7++PhIQELXtkR/d78nLyyCOPoHLlyti3bx8SExO1QVD34CUkJMDf39/uNeqh1+z28qnc3Nzg5uaWpd3FxQUuLi52bWazGWazOcu8mcNlbu2Zl1uQdpPJlO2u9Zzac6qdfWKf8tvOPrFPAPuUU435bXe2PhUm/p3y36csvy9Pc+lUiRIlAAA3btzQ2u503t2dztcjIiIi0hPDhrzk5GQcOHAAnp6eWtgDgBYtWgC4fQ5dZqtWrbKbh4iIiEivdB3yrl+/jiNHjmRpv3nzJnr37o3r16/jmWeesdut+cwzz8DX1xefffYZzpw5o7WfOXMG06dPR4kSJdCxY8ciqZ+IiIiosDjlOXmzZs3Cpk2bAAD79u3T2tR73DVt2hS9evVCXFwcQkND0aBBA1SvXh2BgYG4ePEiVq9ejTNnzqB27dqYOnWq3bL9/Pwwffp0vPjii6hXrx6effZZALcfaxYXF4cFCxbwaRdERESke04Z8jZt2oQ5c+bYtW3evBmbN2/Wfu7VqxceeOABvPrqq9i2bRuWL1+Oa9euwd3dHdWrV8fAgQMxYMAAuLu7Z1l+165dUaJECUyaNAmzZ8+Goij43//+h1GjRqF169aF3j8iIiKiwub0t1BxdomJifD19c31MmYiIiKjKcxbqMwcVHjL1ru8Zg9dn5NHRERERNljyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMiIiIyIIY8IiIiIgNiyCMi3alQoQIURcnyr3///o4uzdA47kT6wpBnIGfPnkXXrl3h7+8Pd3d31K5dGzt27HB0WUT33Pbt23H+/Hnt359//gkA6Ny5s4Mryxu9bqt6H3ei+w1DnkFcu3YNTZo0gYuLC1asWIF//vkH06ZNg5+fn6NLy9W4ceOy7BkIDQ11dFl5wtodIyAgAIGBgdq/ZcuWoXLlymjRooWjS8uVnrdVPY+7ntd3PdeuZ0YYd4ujC6B7Y/LkyQgODsbs2bO1tooVKzqwovypWbMmVq9erf1ssehn1WTtjpWamop58+ZhyJAhUBTF0eXkSu/bqkpv4w7oe33Xc+16pvdx11e1lKPff/8dbdu2RefOnbFhwwaUKVMGr776Knr37u3o0vLEYrEgMDDQ0WUUCGt3rCVLliA+Ph49evRwdCl5ovdtVaW3cQf0vb7ruXY90/u483CtQRw/fhxffvklQkJCsGrVKvTr1w8DBw7EnDlzHF1ansTGxiIoKAiVKlXCCy+8gFOnTjm6pDxj7Y71zTff4LHHHkNQUJCjS8kTvW+rKr2NO6Dv9V3PteuZ3sddERFxdBF6lpiYCF9fXyQkJMDHx8dhdbi6uqJ+/frYsmWL1jZw4EBs374d0dHRDqsrL1asWIGkpCRUq1YN58+fx/jx43H27Fns378f3t7eji7vjli7Y508eRKVKlXC4sWL8eSTTzq6nDzR87aq0uO463l9d+bae39ceMueOajwlp0Xzjzuec0ePFxrEKVLl0aNGjXs2qpXr45FixY5qKK8e+yxx7T/r1OnDho2bIjy5cvj559/xssvv+zAynLH2h1r9uzZKFmyJCIjIx1dSp7peVtV6XHc9by+67l2PTPCuPNwrUE0adIEhw8ftms7cuQIypcv76CKCq548eKoWrUqjh496uhS8o21Fx2bzYbZs2eje/fuujoZWu/bql7HPTO9re8Z6bl2PdPjuDPkGcTgwYOxdetWTJo0CUePHsX8+fMxY8YMXd6kNCkpCceOHUPp0qUdXUq+sfais3r1apw6dQovvfSSo0vJF71vq3od98z0tr5npOfa9UyP486QZxANGjTAr7/+ih9//BG1atXChAkT8PHHH+OFF15wdGm5Gjp0KDZs2IATJ05gy5Yt6NixI8xmM7p06eLo0nLF2h0nIiICIoKqVas6upR80fO2Cuh33PW8vuu5dj0zwrjrd1/7PbB9+3aMHTsWW7ZsQVpaGmrXro0hQ4bgmWeecXRpBdK+fXu0b9/e0WXk25kzZ9ClSxfExcUhICAATZs2xdatWxEQEODo0nLF2qkg9Lqt6pme13c9165nRhj3+/bq2nXr1qFt27YoVqwYnnvuOXh7e2PRokU4efIkPvjgA7zxxht5Wo6zXF1LRERU1Ix8da0zy2v2uC9DXnp6OkJDQ3HmzBls3boVYWFhAICEhAQ89NBDOHHiRJ5PhGbII7r3+MHhGBx3yi+uM47BW6jcwdq1a3Hs2DH07NlTC3gA4Ovri7fffhs9evTAnDlzMGbMGMcVmUlhbkhA4W5MrD17hf0Gpufa9Yzj7hh6Hnc9165n98O435cXXqxfvx7A7ROIM2vbti0AYMOGDUVZEhEREdE9dV/uyYuNjQUAhISEZJkWGBgILy8vbZ7MUlJSkJKSov2ckJAAALh69SrS0tIAACaTCWazGVarFTabTZtXbU9PT0fGo+RmsxkmkynH9rS0NKTecrmLHucuLu527YqiwGKx5Fh7QfqUeqtwV7PMtdtsNlitVm363fSpMGtX61a5uLjkWHtB+pR6y1xktav3S0tPT7drL2ifnKH2gvYp9VbhfXe+ejXn94i81J5bnxxR+53e9/JSu9qeeksprNJx7dq9ey93ltrv1edT6q1CKx3x8ffuvdxZar9Xn09Xr14FAOR2xt19eU5eREQE/vzzT8TGxqJKlSpZppcpUwZJSUlagMto3LhxGD9+fFGUSURERJSj06dPo2zZsjlOvy/35N2NESNGYMiQIdrPNpsNV69ehb+/PxSl8L6N5UdiYiKCg4Nx+vRp3V0Mwtodg7U7Bmt3DNbuGKz93hERXL9+HUFBQXec774Meb6+vgCQ7Z464PYf08/PL9tpbm5ucHNzs2srXrz4Pa3vXvHx8XGKlbEgWLtjsHbHYO2Owdodg7XfG2qWuZP78sIL9Vy87M67u3DhApKSkrI9X4+IiIhIL+7LkNeiRQsAQFRUVJZpq1atspuHiIiISI/uy5D3yCOPoFKlSpg/fz5iYmK09oSEBEyaNAmurq7o1q2b4wq8S25ubhg7dmyWw8p6wNodg7U7Bmt3DNbuGKy96N2XV9cC9+6xZkRERETO6L4NeQCwbds2jB07Flu2bEFaWhpq166NIUOG4Nlnn3V0aURERER35b4OeURERERGdV+ek0dERERkdAx5RERERAbEkEdERERkQAx5RERERAbEkEdORUSgXgukt2uC9Fy7nul53G02m/b/eqtdz+Ou59qNRB37jNtBxv+nu8eraw0qMTER3t7e2Lt3L1xdXeHq6orr168jICAAZcqUcXR55IS4zjhGSkqKdoPVjP9PlBMjbquJiYlO80zYnOhx3C2OLoDuvZ9//hkfffQRDh8+DJvNhsTERHh4eKB48eJwcXFBaGgo2rZti+eeew6BgYGOLhcAcPHiRVy4cAEbN26Ei4sLzpw5AwCoU6cOPD09ERQUhIoVK6J48eKOLTQbeq5dxXWmaO3fvx/r1q1DTEwMbt68iXPnzsHX1xfBwcHw8vJCWFgYmjZtirJlyzq61Cz0PO56rl2lx201s5SUFHz22WeIj4/Htm3b4ObmhvT0dKSlpaFGjRpo0qQJqlatinLlysHf3x/A7b1+iqI4rGa9jjv35BnQqFGjsH37drRp0wZJSUm4desWTCYTjh07hg0bNuDSpUsAAE9PT3Tt2hW9evVCvXr1HLoBNW7cGFu3boWvry+Sk5NhtVq1Xflubm4oV64cwsLCEBkZiebNm6NChQqw2WxQFMWhdeu9dhXXmaLVrFkzbN++HaGhoUhMTITJdPvMmbi4OCQkJAAAAgIC0LFjRzz77LNo0qQJXF1dHf5BB+h73PVcu0qP22pm33//PV555RWULFkSXl5e8PLywpkzZ3Dx4kVYrVYAQIkSJdC6dWu88MILiIyMdHDF+h13hrz7RFpaGlxcXAAAW7duxYIFCzB79mwkJiYiLCwM77zzDtq3b++Q2lJSUjB37lzUr18fN27cQFBQEFJSUnDgwAFcvXoVR44cQXR0NHbs2AGTyYS2bdvi7bffRoMGDRxSr1Fqzw3XmcIhIjh8+DD8/PxgsVjg7++PS5cuIS4uDoqi4PDhw/j999+xcOFCXL9+HUFBQXjttdfw2muvwcPDw6G163nc9Vx7bpx5W83OhQsXcPHiRTz44IO4evUqXFxc4O3tjdjYWOzZswd79uzBjh07sGnTJiQnJyMiIgJjxoxB48aNATh+r55KF+MuZDg2m037//T0dO3/rVar3XxpaWkybdo0KV++vFgsFhk7dqwkJiZmWYaj3bhxQy5cuCArVqyQl156Sfz8/ERRFBk+fLhcvnxZRLL2zVnosXauM87hxo0bMnPmTAkLCxOTySSPPfaY7N+/X0Sct3Y9j7seazfCtpqTU6dOyfz58+XJJ58URVGkTJkysnjxYkeXJSL6GneGvPuQ1Wq1W0k3btwobdu2FbPZLFOnTi3yetQVP+MGYLPZst0gLl26JPPmzZOwsDBRFEVGjBhRZHVmR8+1Zyen2rnO3Hs5veHbbDa7sT5y5IgMGjRILBaLNGvWTE6fPl1UJWZbm8jtD7KMfwM9jLsR1pmM9LKtZudO637m0HTz5k2ZO3euhISEiJubm3zwwQeSmppa5IEpt9/nrOPOkGcwmVe0vLp48aL06tVLXFxcZMqUKU7/TS8uLk4GDBggZrNZunXrJjdv3nRoPRnfmHIbO2erPTvZvdlm5gzrTH5+px7GPSc3btyQGTNmiLe3t9SpU0fbo6cHzjbuRltn9LKt5lfmEHvo0CFp27at+Pj4yLJlyxxWV3p6ep7HzxnGnSHPINRgN3PmTJk7d67cuHEj2/nu9GaQkpIiTz/9tDRp0kSuXbtWGGXetYwbflJSkowaNUoURZGPP/7YIbVklJaWluv8zlK7Sl0fEhMTZffu3fLLL7/ImTNn8vz6ol5n1PHLbv3O7g1U3SvmDOOubqMxMTF3HKs7fUnbsGGD+Pv7S9++fYv00KE6fgcPHpTvvvtODh48mOM86v9brVanGHc9rzMZ6W1bzY0amNX1Pac9k+o0EZEzZ87I448/LqVKlSqSLzpqbX/99ZccOXLEblpOO1Qyrvcijh93hjyDsVgs0qFDB4mPjxcR+8Mrt27dsmvLuFFlXCmXLl1aoL2BdyMv30ZzMmHCBBk8eHCR16yaO3euvPnmmzJy5Ej5/vvvtbHPC0fXLiKye/duqVevnnh7e4uiKOLn5ydvv/22XL9+/Y6vc+Q6M2LECJk1a5bs27cvy4e3Wsed1idHjrvZbJZ+/frl+EVMlfGwbcaxXr58uYwaNcohtXfo0EEqV64s//zzj4hkP9bOOu56XmdUetxWM9dgs9lk8eLF0q5dO6lUqZL06NFDNmzYkOflnDx5Ut588005fvx4YZWaRWBgoHh5eclTTz0l8+fPzzasnThxQpKSkuzanGHcGfIMQF2R1q5dK4qiyDfffGM3fd26ddK/f3+pUKGCNG7cWEaNGiWHDh3Kshz1Da4oVkS15vj4eO2k1IzTctutnZ6eru05S05OzvItqzCptZ07d04GDx4siqKIoihisVjEx8dH3njjDUlOTs7x9Var1WG1q9Q+7Nu3T2rVqiXu7u7y+OOPS5cuXcTT01Pc3Nzk008/veMyMu7tKMp15s8//xRFUSQgIEDq1asnQ4cOlSVLlsjx48ft6vj000/ll19+sTvEpq7jjlpn1qxZI4qiyNdff203PS4uTlauXCkjR46Ub775Rv799987Lu/KlSuFVWoWau0bNmwQT09PGTp0qN301atXy0svvSQtW7aUfv36ycyZM7N8ADt63PW4zqj0uK3eybvvvqu9Z3p7e4vJZBJFUeSjjz7K9bW5nQdaGLZt2yaKooirq6tWd3BwsLzyyivy559/ajtPwsPDpVq1atnu8RNx3Lgz5BmAuhJ16tRJqlSpIjExMdq0hQsXaiunl5eX+Pj4iKIoUqxYMZk8ebKjStZW+GHDhkmbNm1k+vTpEhMTk+WbdOZd385ArfGtt94SRVGkc+fO8v3338vcuXOlSZMmoiiKjBs3TkSc9yo2tQ89evQQb29v+e6777RpBw8elFq1aonZbM72kMilS5eKrM7sfPXVV6IoioSHh0vDhg3FbDZL8eLF5ZFHHpF3331XNm7cKIcPHxZFUWTQoEHa6xx5ZaT6u5966ikJCQmRPXv2aNP+/vtvbb1R/5lMJunatWu2X8aKmlr7888/L1WqVJHt27eLiMitW7dkxowZWr2Kooibm5uYTCZ5+OGHZc2aNY4s244e15nMNehxW1Wp74NbtmwRLy8vady4sRw8eFD++ecf+eKLL6R48eJSunRpiY6OFhH7cU9JSbH70lyU76k2m00uXLggzZs3l4iICFm0aJG8+OKL2vquKIo8+OCD8tZbb4nFYpGuXbtqr3WGdUeEIc8wrFaruLq6ymuvvabtMt68ebNUrlxZKleuLPPnz5f4+HjZtGmTjBo1SlxdXaVkyZKyd+9eh9ZsNptFURQxm81StWpVefnll2XevHk57gk4d+6cvPTSSw6/SsxqtYqvr6907NhR2xOZnp4uBw8elAYNGoinp6fs3LlTRP57U7p+/bp8//33snTpUofVnZHVahU/Pz/p06ePts6kpKSIiMiyZctEURTp1auX3WuuXr0qjz/+uNSsWbPI61UlJibKQw89JNWqVZNly5bJt99+K88++6yUKVNGFEWRsmXLSr169bSrIh2950KlbqP9+/fXDq8dOnRIq/WVV16R7777TgYNGiQVK1YURVG0Dw1Hf1mw2WwSFhYmjz/+uHaoas2aNRIUFCR16tSRJUuWyK5du2TevHnSs2dPURRFSpUqJSdOnHBo3Sq9rjMqvW6rKvX9u0uXLlK+fHnZuHGj3fSVK1eKoijSoUMHu/lFRFasWCEjRoxwaGCNiooSb29v7ct7UlKSfPvtt9K4cWO7L2ahoaEyY8YMOXbsmMNqzYwhT+fUjeGHH34QRVFk3rx52rTRo0eLyWSSzZs3Z3nd9OnTRVEUGTlypIgU/bcjkf8OLz/55JPy9ttvS9WqVbXd4vXr15ehQ4fK0qVL7TbuP/74Q0wmk7z66qsiUvTfltTaFy9eLO7u7vLDDz+IiP2u+IULF4qiKNKnTx8R+e+CjC1btki5cuVk1KhRdssqahkPYfn5+cn06dOzna9Tp05isVhk9+7dWtvff/8tZcuWlZdeeklEcr/YpLAcPHhQKlWqJKNHjxaR21exbd68WT744AN54oknxGKxiMlkkooVK8qAAQPkyy+/lAsXLjikVnUdnTdvnpjNZvnll19E5PaH9Lhx48RsNsv333+vHfYRuR1KIiIiRFEUp7g3WGJiorRq1UrCw8NF5PZevNGjR4vFYskS5G7evCkffvihKIoiEydOdES52dLTOqMywraqstls2jl46pectLQ0SU1NFRGRF198UYoVK2a3Bzg+Pl46deokbm5uDqk5o2+++Ubc3d2zfEm/efOmBAUFiZubm93e+Dlz5jioUnsMeTqnvgk0b95cFEWR/v37y+bNm2X79u3SqFEjadWqlTZfxhO5L1++LCVKlJCuXbs67LYAX3zxhSiKoh1+OHnypCxevFi6d+8upUqVEkVRxNfXVx555BGZOHGibNq0Sfr37y+KojjsprDqeA8bNkyCg4Nl69atdu2q5557TlxdXeXUqVNa28cffyyKomiH6hy9O/+7774TT09P+e2337KtZ/fu3VkOX6l9UPcAO6IP6jr8ySefiIuLi/z444920//66y9RFEUaNGggDRs2FA8PD1EUJdfz3AqLOkaNGjWSBx54QLv9Q2xsrNSrV0/bRkVuf+ip8y9ZskRMJpNMmzat6IvOxssvvyxeXl7aXorOnTtL3bp1ReS/++ap20FycrKULl1aOnXqZBdeHUVv60xmet1WM9q9e7cEBQXJkCFDsp2+detW8fb2ls6dO2ttalDt27eviDguqKrnUXfq1EkqVaoksbGx2rQLFy6IoigyZMgQ2blzp7z22mtO9T7PkGcAaWlpMnr0aGnSpIm4ubmJj4+Pdo6PehGGuqKpb8JHjx6VwMBAeeaZZxxSs9Vqlc8++0yKFSsmu3btspt269YtiY2NlZkzZ0pkZKR4enqKoigSFBQkLi4uUqNGDRFx3J6w9PR0GTx4sLi6umYJyOo4r1q1ShRFkcGDB4uIyOnTp+XRRx+VkJAQEXH84TcRkUWLFomiKPL3339nmab2o0OHDuLt7S2nTp2SK1euSNu2baVy5coi4vg+2Gw2efrpp+WBBx6Q6OhoreZRo0aJxWKR+fPny/nz5+WHH36Qd999V3uNIyQlJUndunXFzc1N/Pz8pHPnzjJx4kRxd3fXAkfmbXTv3r3i4uKirUOOpu55f/755yU1NVUGDRokDz/8sLanPWNAPXnypDz44IPSunVrR5achZ7WmYz0vq2KiOzcuVM8PT3lnXfeEZHsL0R45plnxNPTU3bs2CEi/wVV9TxzRwemf/75R8qXLy8tWrTQLn4aPny4WCwWWbhwoUNrywlDnkFcv35djhw5IgsXLpS+fftKaGioeHl5yfz58+3mUzf2ZcuWiaenp7aXwBHnoOzYsUMmTpx4x3s9JSUlyY4dO+TDDz+U0NBQURRFPvzwQxFx7OGHzz77TKpWrZrj1Xa3bt2SRx99VNzc3OTatWvalYnq4StHHzoRETl//rwMGzbsjjcWXbdunSiKIlOmTJH169eLt7e3TJgwQUScow+JiYlSp04dadeunRa4g4KCpFGjRnL+/HkRub3Oq+cvOerDLiUlRTZu3ChffPGFPP300xIUFKQd1lH3BqvUGhctWiRubm7y5Zdfiojjr4oUERkzZowoiiK1atWSZ599VlxcXGTu3LnadLX2+fPni4eHh3ZxlzPUrtLLOpOREbbVCxcuSKdOneTbb7/NMk0Nb+vWrROz2SwDBgyQpKQkadOmjVSqVElEnOPvIHL7XFQ3NzeZNGmSiIgEBwfLww8/rD2JJvOtyhyNIc+A4uPjZdeuXTJ//vwsJ/+LiKSmpsqAAQPEYrFo55w4coXMy+++deuWdOnSRRRF0fYcOLLmq1evypYtWyQuLi7HedRv3yNHjpSxY8eKoihy8eJFEXGeN4DcpKamStOmTcXf31+6du0qiqLYfRA6kvrBtXz5ci1Q7NmzRxRF0c67cnSN2bl06ZKsXbtW3nnnHenbt2+2e2dSU1Nl6NChTrfOXLp0SV599VXtYin1v127dpW1a9fKsWPH5Msvv5Ry5cpJmTJltL0dzlC7iH7Xmbxw5m1VderUqRy/GKtfBB577DEpWbKkfPLJJ1KqVCkZP368iDhHUFXD6IgRI6RMmTLa+7q67jgjhjwDy3g/towb+apVq6RcuXLauQ+O2gWel9+rzrNjxw4JDAyU5s2b5/m1jpaYmCjNmjUTLy8vefDBB6Vhw4Yi4jy15/X2NAsWLNAuiHHW8R8+fLh4e3tLlSpVpESJErJ69WoRca46M4+1zWaTU6dOaSehZ7wh+ObNm6VKlSrSvn17EXGufoiIrF+/Xnr37q3tXVf/qbdrql69unYRmLPVrtLDOqMy0raaE7V/S5cuFYvFIqVLlxZFUeTcuXN2053B5cuXtVOiSpUqJStWrBAR5xxrhrz7zIULF6R06dISEBCgXcbuTIdScrJkyRLx8PCQ2bNni4hzfKu7E/UNac6cOdoHoHrulR7GW6X2o0GDBqIoSrZXEzuL9u3bi9lslo4dO2p7WJ3pg0GV241cb968KXXr1hV/f39ZtWqViDjPeGf8ELt48aJER0fLnDlzZNiwYdKqVSvp3LmzTJo0SXsihohz/g1Uelln8kJP2+qdJCcny6OPPiqKojh1UD169KgMHTpU3n77badedxQREZDuiQgURcnTvNHR0YiLi0P79u0Luap758KFC9ixYwciIyPz3E9ncOXKFXTt2hU7duzAxYsXYTabHV0SgNvri4jAZDLlaf7du3fj66+/xvTp02GxWAq5uvyx2WwwmUy4ePEili1bBj8/Pzz11FOOLqvAzpw5g+HDhyMkJARjxoxx+vU943vPzZs34e7u7uCKcme0dSYjZ9tW1YiRn/X4999/x/Dhw/Hee+/hySefRHp6ulP0JbPr16/j1q1bCAgIcHQpOWLI07EbN25AURS7N9WCbFBUuGJjY3HlyhU0atRI+3ApauoHcUJCAkwmE7y9ve2mAVxnnI3VanWaLwW5ybheO2odJ+dmtVoBIM/r9NGjR1G5cmW+L90lhjwdUt/8J02ahNOnT6Nt27Z48MEHUaFCBbsNIj9795ydkfriCOo6M3z4cOzatQtPPvkkmjZtitq1a9t9INtsNiiKosuxZlil/DLiOuMMXw7U9+uYmBisXbsWvXr1go+PjzY9PT0diqJkWyff6+8thjydstls2u5rPz8/hIWFITw8HI0aNUKtWrVQqlQpu3lNJhMuXbqETz75BFWrVkX37t0dVTo5iM1mg6urq7Y+VK5cGc2aNUN4eDgaN26MihUr2s1rMplw/vx5jBo1CtWrV8fQoUMdWD0R6YX6/tGpUyf8+uuvMJlMePTRR9GnTx888cQTdvOmp6fDZDJpXza3bt0Kk8mEevXqOeUhWr1hyNMZ9VvOmjVr0KZNG7Ru3RqBgYFYvXo1Lly4gNKlS+Phhx9GeHg4GjRogOrVq2vfoJYtW4ann34aAwcOxJQpU3hY5T6hrjPr1q3DI488gieeeAI1a9bEwoULERsbCxcXF9SpUwctW7ZEixYt0LBhQ+0ck+XLl+Pxxx9H37598fnnn3OdIaI8ERGUL18eycnJ8PHxwcmTJwEAnp6eeO6559CrVy80bNjQ7jWnTp1Chw4dkJSUhCNHjjiibMNhTNapAwcOAAC6du2Kbt26YcuWLfj777+xatUqrF69GkuWLEGVKlXQrFkztGjRAvXr18eqVauQmpqKbt26Obh6KkrqoY9Dhw4BADp27Iju3bvjlVdewc6dO/Hbb79h5cqVmDZtGmbOnIn69eujVatWaNGiBZYvXw4RwauvvurILhCRzsTExCApKQmPPvoo5s+fj4ULF2LRokWIiorCN998g2+++QblypVD9+7d0a1bN1SuXBmnT5/G4cOHtc8oZ73gQk+4J0+HrFYrJk+ejNGjR+PAgQMIDQ0FAKSlpeHSpUs4dOgQ1q9fj6ioKMTExMBkMqFatWo4fvw4ypYti3/++YfnPdxnbDYbvvjiC7z55pvYsmUL6tatq01LSUnB6dOnsX79eixZsgTr16/HjRs3ULp0aVy+fBkhISE4cOAA1xkiJ+WM2+bSpUvx5JNPYvTo0Rg/frzWfvbsWSxbtgwLFy7E+vXrtQsy6tevD19fX6xZswZ79+5FrVq1nP7IgTOOe2aMyDpkMpnQsGFD9O3bFx4eHlq7i4sLypQpgzJlyqBx48bo0aMH9uzZg7/++guLFi1CUlISevfuDeB2UOQ3pPuHyWRCo0aNMHr0aJQsWdJumpubG6pUqYIqVaqgS5cuOHToEDZu3IgZM2bg/Pnz6NWrFwCuM0TOyhmDRtWqVdGpUyftkKzVaoXJZEKZMmXwyiuv4JVXXsH+/fuxePFiLF26FDt27AAA1KxZE7Vq1crXLZ4cxRnHPTPuydO5vHzTuXLlCnr16oXff/8dFy9eREBAgC6+gQDOcaVYQTlr7Xn526ekpKBnz5746aefuM4UMhHRArTeas+ItRcddVu8ceMGNm/ejLCwMAQEBDjdnq/4+Hi4urra7YwQEdhstizjPWrUKEyaNAlTp07FG2+84ZSHavUy7hk5Z1WUK5vNBgB3XLHU3eBnz57F9u3b0axZM22FdMYP6/T0dADAkiVL8M033yAlJUU3b7x6qF1dZ+70t1fn2b9/P9atW8d1phCptf/0008YO3YsTp8+rbva9TzueqxdpW6nn3/+Odq3b4+pU6dqV6k6k+LFi9sFPAB2t05RP6NEBNeuXQMAvPjiiwDyfj+9oqSXcbdTKM/RIKfy448/isVike+++05EnP+RYA888IAoiiLNmjWTffv2ObqcfNFz7Rk502Pk0tPTc31ckJ7HvVq1aqIoioSGhsqaNWscUoM6vvHx8Vna7sSZxj2/j5RyptpzklufRo8eLZUrVxZFUeTxxx+XixcvFlFl99a2bdvEzc1N6tevLyKOeYxZftYfPY07Q9594NChQzJ9+nSnfP5fZunp6fLxxx9Ly5YtRVEUeeyxx+T8+fOOLitP9Fx7ZufPn5elS5c65bMYM3O2cb969Wqex81qtcq8efPkxRdfFEVRpG7dunLkyJFCrjBnnTt31h62nhtnG3eR2w+OT05OlpSUlGynq88NdsbaVampqVlqyWl9io+Pl+joaOnTp4+4urrKc889p7tn1YqIXLt2TQYPHiw///yziBT9l8pbt27Z/Zzb9quncWfIo0JX0A32559/lrJly0r37t3vbUH5oOfa9ezo0aPy7rvvymOPPSaTJ0/O8k05pzdhR427Ws/atWvliSeeKFBQ27hxo1SvXl3at29/r8u7I7X2devWiaIo4uLiIp9++mm+luHo9f3mzZvy+++/S82aNaVkyZLy/PPPy+HDh0Uk971Cjq49o40bN0r79u3Fw8NDQkJCZNy4cXL16lURyT14LFiwQF588cWiKNMQ1PFcvXq1eHl5yZtvvil///13lvnU8Hb9+vVsl+Ps486Qdx9wxN6Y7H6n1WrN9duOzWazC1Z//PGHbN269Z7Xl1sNmeml9nvFEeuM+mG8cuVKqV69uiiKov3r1KmTpKamish/wTs5OVn7WZ0m4phxV2uPjIyUUqVKyZ49e7JM379/v1y8eFHi4+O1+VNTU+3WmX379sn+/fuLrnD5r/annnpKPDw8pESJEuLr6ytTp06Vmzdv2s2TkbpHTOXIcf/888/F399f3N3dpUKFCqIoijz88MMicnv9uHjxomzZskUOHjyo1Zxxb58jt1W1D7NmzZKAgABRFEWqVKkiLi4uoiiKREZG5hgwMnPWvUm5sVqtRX6kSf19L730kiiKImazWRRFkbCwMJkyZYocO3ZMmzcxMVEaNGggv//+u4jcXvcz1uvM486QR4UmPT1dOnfuLD/++KP2gZxxmjMfPtZz7XqWnp4uDRs2lFKlSsnChQtl+/bt0rVrV1EURaKjo+XPP/+UJ554QsLCwqR///6yc+dOR5esSUtLEzc3N3n99dflxo0bWvuKFSukS5cu4unpKYqiyP/+9z+ZNGmSJCYmOrBae2lpaeLi4iKvv/66zJkzR0qUKCGKokj//v2zHMpyNunp6VKxYkWpXbu2/Pvvv3L27FmZNm2aFC9eXL7//nvp37+/FCtWTPz8/KRevXoyderULNu0o1mtVqlQoYJUq1ZN1q5dK1arVfbu3SsvvPCCKIoiY8aMyfY1169fd+qAoQcjRowQRVGkffv20q5dO3F3d9e+XLZq1UqWLFkikyZNEkVRZNasWSLi3KEuM4Y8uufUvUA//fSTtrEEBwfLq6++Khs2bMgyf3p6urYnZtu2bbJ48WJJTk526B5IPdauZ+p4zZs3T9zd3e0OF54+fVrc3Nzk+eefl+LFi0tgYKC2p8PNzU2WLl3qqLJF5L/aZ8+eLSaTSX755RetfceOHeLh4aHtWWrQoIEEBweLoihSvXp1h55/p9Yo8l/tixcvFpHbh24bNGggJpNJnnvuOTl06JCI5Hzo05Hb6g8//CAeHh7y/fff200PDAyUatWqScWKFeWpp56Sbt26SaVKlURRFBk6dKikpqY6fDvN2Aez2SzffPON3fS4uDipVq2aBAYGysGDB0Xkvz3Z27Ztk+7du8umTZuKtmiDuXXrljz//PMSGRkpN27ckG3btsnIkSPloYceEpPJJIqiiMViEX9/f5k5c6ajy803hjy659Q3rmeffVYURZGmTZtqG4uiKFKnTh0ZP358toelevbsKYqiaOfTFDU9165naniIiIiQ+vXra6FCRGTPnj1SsmRJqVSpknz11Vdis9lk7969MnbsWFEURcLDw+32nBU1tfaHH35YGjVqJP/++6+IiBw+fFjatGkjZcqUkTlz5oiIyI0bN2Tz5s3y1FNPiaIo8uqrrzqqbBGxr71hw4Zy9OhRbdrff/8t//vf/7S9HCdPnnRUmdlSt9UePXpItWrV7NaZf/75R6pUqSI1atTQ9vYmJibKmjVrpFSpUuLt7S3Hjx93SN0ZqePfpUsXCQsLkwMHDmjt6rQ//vhDFEWRN998U0T+6/cHH3wgiqJopwY4OrDqkTpmW7duFW9vb+ndu7c2LT4+XtauXavtTVX/lS9fXvr16+f0e7hVDHlUKJKTk6Vly5ZStmxZEbl90urnn38uDRs2tNtgwsPD5fPPP5eEhAS5dOmS1K9fX2rUqCEijnvT0nPtenbt2jWpUKGC9O3b1+48tR9//FFMJpN89tlnWV7zwgsviLe3t5w7d64oS83iwoULoiiKvP7669ph2IULF4rJZJKvvvoqy/xXrlyRqlWrSuXKlfN0i5jCpNY+bty4LHvqLl++rJ2zVLNmTVm+fLlWrzOs42lpadKtWzcJDg62uzhnzpw5YjabZcaMGVleM336dFEURX788ceiLDVHN27ckFatWkmDBg2yjL+6HTRv3lzKlCmjfYE8e/asPPbYYxIaGioifL+5F7766iuxWCzy4Ycfish/YzpmzBixWCwycOBA6d69u3h6ekqlSpUcWWq+MOQZkDOcL3bs2DEJDQ2VWrVqZZkWGxsro0eP1g6dKIoivr6+0qhRI1EURaZOnSoijrs3m55r17Po6GgpXbq0DBs2TGu7deuWDBkyRBRF0S4CsNls2knzgwYNEj8/P9myZYtDalY/CL7++mvtXncTJkyQ5cuXy+uvvy7e3t5Ztkd1D8AzzzwjZcuWlZiYmCKvW+S/94l33nlHvL295c8//xSR//qk/vfff//V9mbUqFFDNm/e7JB6M1PrU8+X+uyzzyQ+Pl7Wr18vderUEZPJpIX/jBeJfPHFF6IoinZY3dHvl9euXZM2bdpoF4pkV496+oh6bt6qVavEy8tLJk2aJCL6fL9xxmA6ePBgCQwMtDsaU6ZMGWnatKl2Hufu3btl165dIqKPcWfIMzBHvnnFx8fLpEmT5Msvv9TqSEtLy7Jhb968Wfr06SPFixfXQtOVK1dExHFvAnqu/W458oTigwcPSocOHWT16tUicnv9TUpKki+++ELee++9LPWlpqZK9+7dpUSJEnY38XWEjRs3yltvvSUNGzYUFxcXbZ1Qb4eSeVtMSUmRTp06SenSpSUhIcERJWs6d+4sTz75pHZvtpzW3Y8//lg8PDzEbDbLRx995NBD5BkdPHhQatasqR1Kc3V1lQoVKkj9+vW1dSnjldlvvfWWWCwWp9lW09PTZdy4cTJgwIAcL8ZJTU2VWrVqSWhoqJw6dUrGjBkjiqLIpUuXRMTxfdA7dfzOnj0rNWvWlAYNGoiISExMjCiKIqNHj3ZkeXeFIc8g1DexFStWyNq1ax1ai/qBlpSUlO2Hr9VqzfINaNu2beLt7S2tW7e2W0ZR03Pt+aX249dff5VZs2Y59ByTjG+y2QVNtbaMhwkPHjwoYWFhEh4eLiKOG3e1nuTkZDly5Ij88ssv0rdvX6lZs6YMGjRIkpKSssx76NAhqVu3rrRq1UpEHL/OXL58Ocdpam0JCQny7rvvSrFixcTNzU1++umnoirvjnWJiPz222/SqVMnadSokTz33HNy4sQJiYiIsDvHSuT2fQzLlSvnlNvq2bNns21Xt4evvvpKzGazvPbaa9K6dWtp2LChiDhXH+4k43YSFRWlBVRnq3/FihXi4uIi48ePl2effVa8vb21z1Sr1aq7QM2QpyMZP/xyWtHUPUqdO3fWNiJnpobTTz/9VBRFkR9++EFE9HGJuh5qz8ubkh4e75SR2p+pU6dKsWLFtHOrnGncr127Jjt37pTo6Gi7drX2adOmiaurq8yfP19EnKv23KxZs0bMZrPMmzdPRJzrQzrjeXnqdtm0aVN55513ZPLkyVK+fHnx8fHRnurhDOOel9BgtVolJSVFQkJCpFixYqIoinY1sTP0IS/UOqdMmSKurq7y5ptvOu3hzs8++0y7T2GHDh3yfENqZ8SQZyBpaWkyatQoqVq1qiiKIj179tRWzqIydepULfzk9c3/+vXrEh4eLoqiOPQDQ8+1Z5SfOpzh8U4FGfeDBw9KjRo1pGHDhg59481Ye14voDh06JDUrFlT6tat6zS152Xc1S8MaWlp8scffzhN7enp6dkGnYsXL0pkZKTdxVIuLi66vA2GOtYff/yxKIoibm5uTvN+k5men7eb8RnOr7/+utSuXVveffddB1d1dxjynFxcXJysXLlShg4dKqNHj5a5c+fK6tWrJTY2NsfDa1arVaZMmSIPPPCADB8+vMhqXbdunVgsFlm0aFG+Xme1WmXNmjXaVYiO+Han59ozS05Olr///lu+/vprWbx4cZ7PPXLE450KMu6pqanSu3dvcXNz0/biOeIDryC1p6WlSd++fUVRFC1s6KV2Z5Hf2rdt2ybjxo2T999/X3bv3l24xeVTft8vzpw5I61bt5bBgweLiPPsxdPb83bzOu5nz56VuLg4EXGuPdb5wZDnhNSVac2aNdK4cWO7b6Lq1ZxNmzaVcePGydatW7UNJDU1Vft2e/PmTfnyyy+1E4+LoubU1FTp1q2beHl5ZdlL4My7ufVcu0pdZ/bs2SPPPPOM3foSGRmp3X8rM5vN5rBHgt3tuB8/ftzuituidLe1Hz58WHtUld5qd+T2kJ/anSUAZVbQxyZmpJ7n6QzBQy/P270X465HDHlOKj09XXvY9pQpU+Svv/6S+fPny0cffSTdu3eXypUri8lkkkqVKskHH3ygvc7RgeTMmTPSsmVLcXNzk2HDhmW5ctBZ7q+VHT3XLnL7DatNmzbi4uIiERERMm7cOHn88cfFZDJJ8+bNi/wwbF7ld9yd6W9wP9XuTPJTe+Zn7DoDvT82Ua/P283PuDvrup9fDHlORl2xvv/+e3F1ddWelZdRXFycbN++XaZOnSp169bVzqXKeIWcI9+g09PTtUNSVatWla+++sruYc+qjLvMneEwp4g+a8/4aCRFUezuMxcfH6/1R72HX8bXnDp1StvL58gPQj2Ou+p+q91ZApMea79Xj010Bnp63u7djvuiRYucZtzziyHPyagro3oXd/WmjNk9ZzEtLU22b98uHTp0EEVR5K233iryejNTN94zZ85o96OyWCzSqlUr+eCDD2T16tVy5syZbF/r6MfE6LV29dtnmzZtpGHDhtozLtX+XL16VZo0aSJ+fn5ZbpXxwQcfiMlkcugjnvQ67iKs3VH0WrsRHpuox+ftGmHcC0oREQE5FavViqFDh+Lbb7/F9u3bUbVqVaSnp8NiseQ4f+vWrREbG4vDhw/D09OziCvO2b59+zB9+nQsWbIEly9fRkBAAIKDg1GiRAnUqFEDpUuXxqVLl5CSkoLk5GS0bdsWzzzzjKPLBqCv2hMSElC/fn00bdoUM2fO1NYVm80Gk8mERYsWoXPnznj//ffx1ltvAQAuXLiAnj174tixYzhy5AhEBIqiOKT+jPQ07pmxdsfQU+03btxAZGQkjh49itOnTyMpKQlz587F3LlzsW3bNm2+li1b4umnn0bXrl2RkpKCdu3a4caNGzhw4IBDt1X1PeX555/HwYMH8cMPP6BGjRqw2WwAAJPJhOXLl6N9+/YYOnQopkyZotU7bdo0vPnmm4iJiUGdOnWKtB96H/cCc2DApGyo3zgWLlyo3QYl8/SM5w2o30pHjRolvr6+8tdffxVdsXeQsc7ExET566+/5MMPP5SOHTtKYGCgWCwW8fT0FDc3N/Hz85Nq1arJU089pT3c3ZH0WPu+ffukXLly8tprr4lI1hOyU1NT5X//+5+UKVNGe9TTqlWrxNPTU3uahKMPIepx3FWs3TH0WLsRHpuox+ftGmHcC4Ihzwmpj3Pq0qWLKIoibdq0kZUrV2Z5jJC6wqWnp8uwYcPE3d29yO+Llx9paWnaeQ6HDx+W6OhoiYuLk9jYWIefK5MbZ6/9+PHjYrFYpE+fPiKS/VV3v/zyi3brDqvVKqNGjXL6RyM5+7jfCWt3DGev3QiPTdTj83aNMO4FwcO1TkbdFQ4ABw8exBtvvIGVK1fCw8MD7dq1Q+vWrdGoUSPUrl1be83KlSvRq1cv1KhRA1FRUXbL0AvR427w/+fo2tW/94YNG3Dp0iU8/fTT2dZz48YN1KtXD76+vvjqq6/Qr18/WCwWbNq0ietMEWPtjuHo2tXtLDk5Genp6fD19c0y3Waz2Z2as337djzyyCNo2LAh/vzzT6fYVq1WK959911cuXIFkyZNgre3d5Z50tLSUK9ePaSnpyMqKgqzZs3ChAkTcPHiRQQEBBTp38Io414Q2Z/kRQ6TcSWqXr06li9fju+//x7Tp0/HwoULsXDhQgQFBSEoKAghISG4fPkyNm3ahLJly+Ltt98GcPuNTG/0+qEBOL52dZ1p0aLFHefz8PDA4MGD0a9fP0ycOBE7duzAt99+C4DrTFFj7Y7h6NrVbTWn86ZNJpM2T1paGlxcXLB161YkJSWhZ8+eAJxjWzWbzRg7dizOnTuXbcCzWq1wcXHBgAED0L9/f0ydOhUHDx7EQw89hICAgCIPTEYZ9wJxyP5DylbmG3tm3AV++fJl+eOPP2TAgAESGhqqPaInODhY2rRpI7t27XJU2eRAmR/vlJsLFy5I+fLlxdXVVby8vJz+flxERmGUxyaK6Ot5u0Ya94JgyHMSeX1Uj7pxnT59WjZt2iSXLl3Szm3Q+8pI+VPQR1NNnjxZFEWRTp06iYjj7x1GZHRGemxiXjnD83bvx3HPjCHPCeT2qJ7MG0Z236L0eEIoFdzdPJoqLS1Nvv/++yz30yOie88Ij03MSC/P2zXauBcUL7xwImfPnkXXrl0RHR2NQYMG4e2334aPj4823WazQVEUKIri8BOIyTnkts6omzfXFSLH0vO2mt3njc1mg4jAbDbnaRnJycnw9PQs8vPx9Dzu94Tj8iVlR4+P6iHH0vNjtYjuJ3reVvX8vF09j/vd4p48J2K1WmE2m3H27Fl8+umn+PDDDwEAzZs3R7t27RAWFobQ0FCUKVMmy2tTUlLg5uZW1CWTg3GdIdIHvW6r8v978RYsWIAuXboAAMqWLYvHH38czz77LJo3b243v9Vqhc1mg4uLC7Zv344zZ86gbdu28PDwcET5uh33e4Uhz4np6VE95By4zhDpg162VTXkPffcc/j555/RpEkTbNmyRTvMWbt2bXTq1AmdOnVCzZo17V770ksv4bvvvsOhQ4dQtWrVIq89O3oZ93uFIc8Jye0LYmAymXD9+nXs2bMH27dvx19//YXo6GhcuXIFbm5uSE9Ph4eHB0qWLImaNWti2rRpqFChgqPLJwfgOkOkD3rcVo3w3Fc9jvu9wJCnE+np6RARuLi44MiRI7h69SqqVq2Kq1evomLFink++ZXuH1xniPTB2bfV48ePIzIyEhaLBfv27bObdvToUcydOxc//PAD/v33XwCAj48PatSoga1bt2LKlCkYOnQo0tPT7Z4o4QycfdzvBYY8A3D0NyTSH64zRPrgDNtqQkICvvjiC/j5+aFPnz4wmUxIT0+H2Wy2q23Lli2YM2cOfv75ZyQkJAAALl++DH9/f6foR37ord6cMOQRERFRtu7n574agXPtOyUiIiKncV8/99UAGK2JiIgoiw8++ABpaWkAbu+xy42LiwuSkpLw66+/AgCee+45ADDEuW16xZBHREREdtavX48RI0Zg6dKlAJDnw60eHh4YNWoUvvzyS+3cPXIcnpNHREREGpvNBqvVil69emHx4sUYO3YsXn/9dbi4uNg9XpOcH0MeERERZXHfP/fVABjyiIiIKFtWqxUDBgzA119/jZCQEAwZMgRt2rRBpUqV7ObLeB88Z7wn3v2KIY+IiIiyuN+f+2oEDHlERESUq/vtua9GwJBHREREObpfn/tqBAx5RERElC/3w3NfjYAhj4iIiO4Zozz31Qh4M2QiIiK6ZxjwnAdDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGRBDHhEREZEBMeQRERERGdD/AeatYli/Y7LdAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/docs/source/example_grover_subset.ipynb b/docs/source/example_grover_subset.ipynb index d3c34102..0e22487e 100644 --- a/docs/source/example_grover_subset.ipynb +++ b/docs/source/example_grover_subset.ipynb @@ -11,16 +11,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "from qlasskit import qlassf, Qint2, Qint3\n", + "from qlasskit import qlassf, Qint, Qint3\n", "from typing import Tuple\n", "\n", "\n", "@qlassf\n", - "def subset_sum(ii: Tuple[Qint2, Qint2]) -> Qint3:\n", + "def subset_sum(ii: Tuple[Qint[2], Qint[2]]) -> Qint[3]:\n", " l = [0, 5, 2, 3]\n", " return l[ii[0]] + l[ii[1]] if ii[0] != ii[1] else 0" ] @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -54,17 +54,17 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHWCAYAAAALq58HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVP0lEQVR4nO3deVxU9f4/8NcZNpFNRU1QxF3SLDTRFEMxBUzTbLeua2qL5tclNTVSM3PJUqNuLpRb6y29LdcF1AvupkmodS1xSUlwJUFQgZl5//7wNydGQGBmYIYzr+fj0eORn3PmvD+f+QxnXnPmnDOKiAiIiIiISFN09u4AEREREdkeQx4RERGRBjHkEREREWkQQx4RERGRBjHkEREREWkQQx4RERGRBjHkEREREWkQQx4RERGRBrnauwPVndFoREZGBnx8fKAoir27Q0RERBonIrh27RoCAwOh05V+vI4hz0oZGRkICgqydzeIiIjIyaSnp6NRo0alLmfIs5KPjw+AW0+0r6+vnXtDREREWpeTk4OgoCA1g5SGIc9Kpq9ofX19GfKIiIioypR1mhgvvCAiIiLSIIY8InJY8+fPh6IoGD9+vNq2YsUK9OjRA76+vlAUBVevXi318fn5+QgNDYWiKEhNTa30/hIRORKGPCJySAcPHsTy5ctx7733mrVfv34dMTExmD59epnbmDJlCgIDAyuri0REDo0hj4gcTm5uLp577jmsXLkStWvXNls2fvx4vPbaa3jggQfuuI3NmzcjMTERixYtqsyuEhE5LIY8InI4Y8aMQd++fdGrVy+LHn/hwgWMGjUK69atQ82aNW3cOyKi6oFX1xKRQ/nyyy+RkpKCgwcPWvR4EcGwYcPw4osvomPHjvjjjz9s20EiomqCIY+IHEZ6ejr+7//+D1u3bkWNGjUs2kZcXByuXbuGadOm2bh3RETVC7+uJSKHcejQIVy8eBEdOnSAq6srXF1dsWPHDrz//vtwdXWFwWAocxv//e9/sW/fPnh4eMDV1RUtWrQAAHTs2BFDhw6t7CEQETkMHskjIofx0EMP4ejRo2Ztw4cPR0hICKZOnQoXF5cyt/H+++/jrbfeUv+dkZGB6OhofPXVV+jcubPN+0xE5KgY8ojIYfj4+OCee+4xa/Py8oK/v7/afv78eZw/fx4nTpwAABw9ehQ+Pj5o3Lgx6tSpg8aNG5s93tvbGwDQvHnzO/7GIxGR1vDrWiKqVpYtW4b27dtj1KhRAICIiAi0b98e33//vZ17RkTkWBjyiMihJScnY8mSJeq/Z82aBREp9t+wYcNKfHyTJk0gIggNDa2S/mpJSb84cvPmTYwZMwb+/v7w9vbG448/jgsXLqjLr1y5gpiYGAQGBsLDwwNBQUEYO3YscnJy7DACIufGkEdERMWU9osjEyZMwA8//ICvv/4aO3bsQEZGBh577DF1uU6nw4ABA/D999/j+PHjWL16NbZt24YXX3yxqodA5PQY8oiIyExpvziSnZ2Njz/+GO+99x569uyJ+++/H6tWrcLevXuxf/9+AEDt2rXx0ksvoWPHjggODsZDDz2El19+Gbt27bLXcIicFkMeERGZKe0XRw4dOoTCwkKz9pCQEDRu3Bj79u0rcVsZGRnYsGEDunfvXql9JqLiGPKIiEhl+sWRefPmFVt2/vx5uLu7o1atWmbtd911F86fP2/WNmjQINSsWRMNGzaEr68v4uPjK7PbRFQChjwiIgLw9y+OfPbZZxb/4ojJ4sWLkZKSgu+++w4nT57ExIkTbdRLIiov3iePiIgAmP/iiInBYMDOnTvxwQcfICEhAQUFBbh69arZ0bwLFy6gQYMGZttq0KABGjRogJCQENSpUwcPPvggYmNjERAQUFXDIXJ6DHlERASg7F8cCQoKgpubG7Zv347HH38cAPD777/j7Nmz6NKlS6nbNRqNAID8/PzK6zwRFcOQR0REAMr3iyPPP/88Jk6ciDp16sDX1xevvPIKunTpggceeAAAsGnTJly4cAFhYWHw9vbGr7/+ismTJyM8PBxNmjSp6iEROTWGPCIiKrfFixdDp9Ph8ccfR35+PqKjo/HPf/5TXe7p6YmVK1diwoQJyM/PR1BQEB577DG89tprduw1kXNSRETs3YnqLCcnB35+fsjOzoavr6+9u0NEREQaV97swatriYiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIgxjyiIiIiDSIIY+IiIhIg/jbtUTk0EYtse7xK8fbohdERNUPj+QRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGVYuQt2DBAiiKAkVRsH///mLLc3JyMHHiRAQHB8PDwwNNmjTB5MmTkZubW+L2jEYj4uLi0K5dO3h6eqJevXoYNGgQTp06VdlDISIiIqoSDh/yfvnlF8ycORNeXl4lLs/Ly0P37t2xePFihISEYMKECWjdujUWLVqEnj174ubNm8Ue88ILL2DcuHEQEYwbNw4xMTHYsGEDwsLCkJaWVtlDIiIiIqp0Dh3yCgsLMXToUISGhmLgwIElrrNw4UKkpqZi6tSpSEhIwPz585GQkICpU6fi4MGDWLx4sdn6SUlJiI+PR0REBFJSUrBgwQKsW7cO3377LbKysjB27NiqGBoRERFRpXLokDd37lz8+uuv+OSTT+Di4lJsuYggPj4e3t7eiI2NNVsWGxsLb29vxMfHm7WvXLkSADBnzhy4u7ur7X369EGPHj2QmJiIs2fPVsJoiIiIiKqOw94MOSUlBXPnzsWbb76JNm3alLhOWloaMjIyEB0dXezrXC8vL4SHhyMhIQHp6ekICgoCACQnJ6vLbhcdHY3k5GTs2LEDgwcPtv2giIiqEd6Imqh6c8gjefn5+RgyZAhCQ0MxZcqUUtcznT/XsmXLEpeb2k3r5eXlITMzE02bNi3xyODt6xMRERFVVw55JO+NN95AWloaDh06VGIYM8nOzgYA+Pn5lbjc19fXbL2Krl+S/Px85Ofnq//OyckBcOv8wcLCQgCATqeDi4sLDAYDjEajuq6pXa/XQ0TUdhcXF+h0ulLbTds1cXW9NW16vb5c7W5ubjAajTAYDGqboihwdXUttb20vnNMHFNVjwlwgzVMY3CkMVWXebL2LaKwsNDhxqTFeeKYnHNM5eFwIW/fvn1YtGgRZs2ahXvuucfe3Slm3rx5mD17drH2xMRE1KxZEwDQuHFjtG/fHkeOHDE7v69169YICQnBgQMHcOnSJbU9NDQUwcHB2LlzJ65du6a2d+nSBfXr10diYqLZhEZGRsLT0xObNm0y68PDDz+MGzduICkpSW1zdXVF3759cfnyZezbt09t9/HxQc+ePZGeno7U1FS1vV69eujatSvS0tLw+++/q+0cE8dkrzEBA2ANU18daUzVZZ6AnqU/seWwadMmhxuTFueJY3K+MR06dAjloUjRGGtner0ebdq0gZeXFw4cOAA3t78/wQ8bNgxr1qzBvn378MADDwAANm7ciH79+mHs2LGIi4srtr1XXnkFH3zwAbZv346ePXsiLy8P3t7euOeee3D06NFi669fvx5PPPEEYmNj8eabb5bYx5KO5AUFBeHy5cvqkUBn/VTBMXFMlTGmlz+07kjeP8fwSJ6lY3rpA+uOA/xzDI/kcUwcU2WMKSsrC/7+/sjOzlazR0kc6khebm6uej5c0Stfi+rSpQsA4N///rd6QUZp59Ddfs6el5cXAgICcPr0aRgMhmJfBZd1jh8AeHh4wMPDo1i7m5ubWSgFbr1gSvq62fTCKG/77du1pF2n00GnK34KZmntpfWdY+KYKtpuqzFZ6vY+OdKYqsM8WaNoHUcakxbniWPimEriUCHPw8MDzz//fInLdu7cibS0NPTv3x/16tVDkyZN0LJlSwQGBmLPnj3Iy8szu8I2Ly8Pe/bsQdOmTdUrawGge/fu+PLLL7Fnzx5ERESY1UhISACAYu1ERERE1Y1DhTxPT89i97UzGTZsGNLS0jBt2jT161oAGDlyJN58803MmTMH8+fPV9vnzJmD3NxcTJ8+3Ww7o0ePxpdffonY2Fhs3bpVPWK4efNmJCcnIyoqCsHBwZUwOiIiIqKq41AhzxJTpkzBd999hwULFuDnn39Ghw4dkJKSgsTERISFhWH8+PFm60dGRmLkyJGIj49Hhw4d0LdvX2RmZuKrr75CnTp1Sjy3j4iIiKi6ccj75FWEl5cXduzYgfHjx+PYsWN499138dtvv2HSpEnYvn07PD09iz1m+fLlWLp0KQBg6dKl2LRpEwYOHIgDBw6gVatWVT0EIiIiIptzqKtrq6OcnBz4+fmVeYULEVmGv7pgP3zuiRxTebNHtT+SR0RERETFMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaRBDHhEREZEGMeQRERERaZDDhbybN29i4sSJiIiIQGBgIGrUqIEGDRogPDwcq1atQmFhYbHH5OTkYOLEiQgODoaHhweaNGmCyZMnIzc3t8QaRqMRcXFxaNeuHTw9PVGvXj0MGjQIp06dquzhEREREVUJhwt5ubm5+Oijj6AoCvr27YuJEydi4MCBOHfuHEaMGIF+/frBaDSq6+fl5aF79+5YvHgxQkJCMGHCBLRu3RqLFi1Cz549cfPmzWI1XnjhBYwbNw4ignHjxiEmJgYbNmxAWFgY0tLSqnK4RERERJXC1d4duF2dOnWQnZ0Nd3d3s3a9Xo/evXsjMTERmzdvRt++fQEACxcuRGpqKqZOnYr58+er67/22mtYsGABFi9ejGnTpqntSUlJiI+PR0REBLZu3arWefbZZ/Hwww9j7NixSEhIqIKREhEREVUehzuSp9PpigU8AHB1dcXAgQMBACdOnAAAiAji4+Ph7e2N2NhYs/VjY2Ph7e2N+Ph4s/aVK1cCAObMmWNWp0+fPujRowcSExNx9uxZm46JiIiIqKo5XMgrjdFoxJYtWwAA99xzDwAgLS0NGRkZCA8Ph5eXl9n6Xl5eCA8Px6lTp5Cenq62Jycnq8tuFx0dDQDYsWNHZQ2DiIiIqEo43Ne1JgUFBXj77bchIrhy5Qq2b9+O3377DcOHD8dDDz0EAOr5cy1btixxGy1btkRCQgLS0tIQFBSEvLw8ZGZm4p577oGLi0uJ6xfdbkny8/ORn5+v/jsnJwcAUFhYqF4UotPp4OLiAoPBYHb+oKldr9dDRNR2FxcX6HS6Uttvv9jE1fXWtOn1+nK1u7m5wWg0wmAwqG2KosDV1bXU9tL6zjFxTFU9JsAN1jCNwZHGVF3mydq3iMLCQocbkxbniWNyzjGVh0OHvNmzZ6v/VhQFr776KubNm6e2ZWdnAwD8/PxK3Iavr6/ZehVdvyTz5s0z65dJYmIiatasCQBo3Lgx2rdvjyNHjph99du6dWuEhITgwIEDuHTpktoeGhqK4OBg7Ny5E9euXVPbu3Tpgvr16yMxMdFsQiMjI+Hp6YlNmzaZ9eHhhx/GjRs3kJSUpLa5urqib9++uHz5Mvbt26e2+/j4oGfPnkhPT0dqaqraXq9ePXTt2hVpaWn4/fff1XaOiWOy15iAAbCGqa+ONKbqMk9Az9Kf2HLYtGmTw41Ji/PEMTnfmA4dOoTyUKRojHVARqMRGRkZ+OGHHzB9+nS0bdsWmzZtgq+vLz7//HM899xzmDFjBt56661ij50xYwbefvttbNiwAQMHDkRGRgYaNmyI8PBw7N69u9j6W7duRVRUFMaNG4elS5eW2J+SjuQFBQXh8uXLakh01k8VHBPHVBljevlD647k/XMMj+RZOqaXPrDuOMA/x/BIHsfEMVXGmLKysuDv74/s7Gw1e5TEYY/kmeh0OjRq1AgvvfQS6tati6eeegpz587FggUL1CNypR15M32ValqvouuXxMPDAx4eHsXa3dzc4OZm/mbk4uJS4tfCphdGedtv364l7TqdDjpd8VMwS2svre8cE8dU0XZbjclSt/fJkcZUHebJGkXrONKYtDhPHBPHVJJqc+EFAERFRQG4dfEEUPY5dLefs+fl5YWAgACcPn3aLEmXtj4RERFRdVWtQl5GRgaAv1Nzy5YtERgYiD179iAvL89s3by8POzZswdNmzZFUFCQ2t69e3d12e1M98eLiIiorCEQERERVQmHC3n/+9//cP369WLt169fx8SJEwHcOtkRuPVd9siRI5Gbm4s5c+aYrT9nzhzk5uZi1KhRZu2jR48GcOs+egUFBWr75s2bkZycjKioKAQHB9t0TERERERVzeHOyfvXv/6F9957D926dUOTJk3g6+uLc+fOYfPmzbhy5QoefPBBTJgwQV1/ypQp+O6777BgwQL8/PPP6NChA1JSUpCYmIiwsDCMHz/ebPuRkZEYOXIk4uPj0aFDB/Tt2xeZmZn46quvUKdOHcTFxVXxiImIiIhsz+FCXr9+/ZCRkYG9e/di3759yM3NhZ+fH+69914888wzGDFihNkJh15eXtixYwdmzZqF9evXIykpCQEBAZg0aRJmzpwJT0/PYjWWL1+Odu3aYcWKFVi6dCm8vb0xcOBAzJ07F82bN6/K4RIRERFVCoe/hYqjy8nJgZ+fX5mXMRORZUYtse7xK8fbohfOic89kWMqb/ZwuHPyiIiIiMh6DHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGmRxyNu5cyfOnj17x3XS09Oxc+dOS0sQERERkYUsDnmRkZFYvXr1HddZu3YtIiMjLS1BRERERBayOOSJSJnrGI1GKIpiaQkiIiIislClnpOXlpYGPz+/yixBRERERCVwrcjKI0aMMPv3t99+iz/++KPYegaDQT0fr0+fPlZ1kIiIiIgqrkIhr+g5eIqiIDU1FampqSWuqygKwsLCsHjxYmv6R0REREQWqFDIO336NIBb5+M1a9YM48ePx//93/8VW8/FxQW1a9eGl5eXbXpJRERERBVSoZAXHBys/v+qVavQvn17szYiIiIicgwVCnlFDR061Jb9ICIiIiIbsjjkmRw4cAAHDx7E1atXYTAYii1XFAWxsbHWliEiIiKiCrA45GVlZeHRRx/Fnj177njPPIY8IiIioqpnccibOHEidu/ejR49emDo0KFo1KgRXF2tPjBIRERERDZgcSr7z3/+g06dOmH79u38VQsiIiIiB2PxL17cuHEDERERDHhEREREDsjikBcaGlrir10QERERkf1ZHPJmzpyJ77//Hvv377dlf4iIiIjIBiw+J+/8+fPo27cvunfvjueeew4dOnSAr69viesOGTLE4g4SERERUcVZHPKGDRsGRVEgIli9ejVWr15d7Pw8EYGiKAx5RERERFXM4pC3atUqW/aDiIiIiGyIP2tGREREpEEWX3hBRERERI7L4iN5Z8+eLfe6jRs3trQMEREREVnA4pDXpEmTct0IWVEU6PV6S8sQERERkQUsDnlDhgwpMeRlZ2fj8OHDOH36NLp3744mTZpY0z8iIiIisoDFIW/16tWlLhMRvPvuu1i4cCE+/vhjS0sQERERkYUq5cILRVHw6quvom3btpg8eXJllCAiIiKiO6jUq2s7duyI//73v5VZgoiIiIhKUKkh7+TJk7zogoiIiMgOLD4nrzRGoxHnzp3D6tWr8d133+Ghhx6ydQkiIiIiKoPFIU+n093xFioigtq1a+Pdd9+1tAQRERERWcjikBcREVFiyNPpdKhduzbCwsIwfPhw1K9f36oOEhEREVHFWRzykpOTbdgNIiIiIrIl/nYtERERkQbZ5MKLPXv2IDU1FTk5OfD19UVoaCjCw8NtsWkiIiIisoBVIW/v3r0YPnw4Tpw4AeDWxRam8/RatmyJVatWoUuXLtb3koiIiIgqxOKQ9+uvvyIqKgrXr19H7969ERkZiYCAAJw/fx5JSUlITExEdHQ09u/fjzZt2tiyz0RERERUBotD3ptvvomCggJs2rQJMTExZsumTp2KLVu2oH///njzzTfx5ZdfWt1RIiIiIio/iy+8SE5OxhNPPFEs4JnExMTgiSeeQFJSksWdIyIiIiLLWBzysrOz0bRp0zuu07RpU2RnZ1tagoiIiIgsZHHICwwMxP79+++4zo8//ojAwEBLSxARERGRhSwOef3790dycjJiY2Nx8+ZNs2U3b97EzJkzkZSUhAEDBljdSSIiIiKqGIsvvIiNjcV//vMfvP3221i+fDk6deqEu+66CxcuXMDBgwdx6dIlNGvWDLGxsbbsLxERERGVg8Uhz9/fH/v378eUKVPw5ZdfYtOmTeqyGjVqYPjw4ViwYAHq1Kljk44SERERUflZ9bNmdevWxSeffILs7GwcPnwYu3btwuHDh5GdnY2PP/4YdevWrfA2z507hyVLliAqKgqNGzeGu7s7GjRogMcffxw//vhjiY/JycnBxIkTERwcDA8PDzRp0gSTJ09Gbm5uiesbjUbExcWhXbt28PT0RL169TBo0CCcOnWqwv0lIiIickQVDnlz587F9OnTUVhYqLa5ubmhXbt2CA8PR7t27SAimDFjBubPn1/hDsXFxWHChAk4deoUoqKiMGnSJHTr1g3fffcdunbtiq+++sps/by8PHTv3h2LFy9GSEgIJkyYgNatW2PRokXo2bNnsfMFAeCFF17AuHHjICIYN24cYmJisGHDBoSFhSEtLa3CfSYiIiJyNBUKedu2bcMbb7wBf39/uLm5lbqeu7s7/P39MWPGjArfJ69Tp05ITk7GiRMnEB8fj3nz5uGbb75BUlISXFxc8NJLLyE/P19df+HChUhNTcXUqVORkJCA+fPnIyEhAVOnTsXBgwexePFis+0nJSUhPj4eERERSElJwYIFC7Bu3Tp8++23yMrKwtixYyvUXyIiIiJHpIiIlHflIUOGYNOmTTh37hw8PDzuuG5+fj4aNWqEPn36YO3atVZ3FACio6ORmJiIgwcPomPHjhARNGrUCDk5OTh//jy8vLzUdfPy8tCgQQPUr18fJ0+eVNufffZZfPHFF9ixYwciIiLMth8ZGYnk5GScOXMGjRs3LlefcnJy4Ofnh+zsbPj6+tpknET0t1FLrHv8yvG26IVz4nNP5JjKmz0qdCRv79696NWrV5kBDwA8PDzQq1cv7NmzpyIl7sh09NDV9db1ImlpacjIyEB4eLhZwAMALy8vhIeH49SpU0hPT1fbk5OT1WW3i46OBgDs2LHDZn0mIiIisocKhbyMjAw0a9as3Os3bdoUmZmZFe5USc6ePYtt27YhICAA7dq1AwD1/LmWLVuW+BhTu2m9vLw8ZGZmomnTpnBxcSlzfSIiIqLqqkK3UNHpdGYXXJSlsLAQOp1VF/Cq2xk8eDDy8/OxYMECNaCZfjLNz8+vxMeZDmGa1qvo+iXJz883OycwJydH7aPpudHpdHBxcYHBYIDRaFTXNbXr9XoU/ZbcxcUFOp2u1Pbbn3PTkUy9Xl+udjc3NxiNRhgMBrVNURS4urqW2l5a3zkmjqmqxwSUfv5veZjG4Ehjqi7zZMVdtgD8/R7gSGPS4jxxTM45pvKo0F9wYGAgfvnll3Kv/8svv6Bhw4YVKVGM0WjEsGHDsHPnTowaNQqDBw+2anvWmjdvHmbPnl2sPTExETVr1gQANG7cGO3bt8eRI0dw9uxZdZ3WrVsjJCQEBw4cwKVLl9T20NBQBAcHY+fOnbh27Zra3qVLF9SvXx+JiYlmExoZGQlPT0+zexMCwMMPP4wbN26YXezi6uqKvn374vLly9i3b5/a7uPjg549eyI9PR2pqalqe7169dC1a1ekpaXh999/V9s5Jo7JXmMCrPvVHFNfHWlM1WWegJ6lP7HlsGnTJocbkxbniWNyvjEdOnQI5VGhCy+ef/55fPrpp/j999/RpEmTO677xx9/oHXr1hgyZAhWrlxZ3hJmjEYjRowYgTVr1uAf//gH1qxZY3ZkcOPGjejXrx/Gjh2LuLi4Yo9/5ZVX8MEHH2D79u3o2bMn8vLy4O3tjXvuuQdHjx4ttv769evxxBNPIDY2Fm+++WaJfSrpSF5QUBAuX76sHgl01k8VHBPHVBljevlD647k/XMMj+RZOqaXPrDuSN4/x/BIHsfEMVXGmLKysuDv71/mhRcV+gseM2YMVq1ahSeeeAJbtmwp9WbHV65cwZNPPgm9Xo+XXnqpIiVURqMRw4cPx9q1azFo0CCsXr262Fe/ZZ1Dd/s5e15eXggICMDp06dhMBiKnZdX1jl+wK0LSkq68MTNza3YbWVcXFxKPPfP9MIob3tpt6upSLtOpyvxq/PS2kvrO8fEMVW03VZjstTtfXKkMVWHebJG0TqONCYtzhPHxDGVpEJ/0R06dMD48eORkpKCNm3a4I033kBSUhLS0tKQlpaG5ORkxMbGok2bNjh06BAmTJiADh06VKQEAPOA9/TTT2PdunWlXigRGBiIPXv2IC8vz2xZXl4e9uzZg6ZNmyIoKEht7969u7rsdgkJCQBQ7NYqRERERNVNhT+2vfvuu3jttdfw119/Ye7cuejVqxdCQkIQEhKChx56CHPnzkVWVhamTZuGd955p8IdMn1Fu3btWjz55JP49NNPS/1UrygKRo4cidzcXMyZM8ds2Zw5c5Cbm4tRo0aZtY8ePRoAEBsbi4KCArV98+bNSE5ORlRUFIKDgyvcbyIiIiJHUqFz8oo6efIkVq1ahb179+L8+fMAgAYNGiA8PBzDhg1D8+bNLerQrFmzMHv2bHh7e+P//u//Sjwk+eijjyI0NBTArSN24eHhOHz4MKKiotChQwekpKQgMTERYWFh2LFjBzw9Pc0eP2rUKMTHx6Nt27bo27cvMjMz8dVXX8Hb2xv79u1Dq1atyt1f3gyZqHLxhrz2w+eeyDGVN3tYfFZt8+bN8dZbb1n68FL98ccfAIDc3FzMnTu3xHWaNGmihjwvLy/s2LEDs2bNwvr165GUlISAgABMmjQJM2fOLBbwAGD58uVo164dVqxYgaVLl8Lb2xsDBw7E3LlzLQ6nRERERI7E4iN5dAuP5BFVLh5Nsh8+90SOqVJ+1oyIiIiIqgeGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINcsiQ9+mnn+KFF15Ax44d4eHhAUVRsHr16lLXz8nJwcSJExEcHAwPDw80adIEkydPRm5ubonrG41GxMXFoV27dvD09ES9evUwaNAgnDp1qpJGRERERFS1HDLkvf7661ixYgXOnDmDgICAO66bl5eH7t27Y/HixQgJCcGECRPQunVrLFq0CD179sTNmzeLPeaFF17AuHHjICIYN24cYmJisGHDBoSFhSEtLa2yhkVERERUZRwy5MXHx+OPP/7ApUuX8OKLL95x3YULFyI1NRVTp05FQkIC5s+fj4SEBEydOhUHDx7E4sWLzdZPSkpCfHw8IiIikJKSggULFmDdunX49ttvkZWVhbFjx1bm0IiIiIiqhEOGvF69eiE4OLjM9UQE8fHx8Pb2RmxsrNmy2NhYeHt7Iz4+3qx95cqVAIA5c+bA3d1dbe/Tpw969OiBxMREnD171gajICIiIrIfhwx55ZWWloaMjAyEh4fDy8vLbJmXlxfCw8Nx6tQppKenq+3JycnqsttFR0cDAHbs2FG5HSciIiKqZK727oA1TOfPtWzZssTlLVu2REJCAtLS0hAUFIS8vDxkZmbinnvugYuLS4nrF91uSfLz85Gfn6/+OycnBwBQWFiIwsJCAIBOp4OLiwsMBgOMRqO6rqldr9dDRNR2FxcX6HS6UttN2zVxdb01bXq9vlztbm5uMBqNMBgMapuiKHB1dS21vbS+c0wcU1WPCXCDNUxjcKQxVZd5svYtorCw0OHGpMV54picc0zlUa1DXnZ2NgDAz8+vxOW+vr5m61V0/ZLMmzcPs2fPLtaemJiImjVrAgAaN26M9u3b48iRI2Zf/bZu3RohISE4cOAALl26pLaHhoYiODgYO3fuxLVr19T2Ll26oH79+khMTDSb0MjISHh6emLTpk1mfXj44Ydx48YNJCUlqW2urq7o27cvLl++jH379qntPj4+6NmzJ9LT05Gamqq216tXD127dkVaWhp+//13tZ1j4pjsNSZgAKxh6qsjjam6zBPQs/Qnthw2bdrkcGPS4jxxTM43pkOHDqE8FCkaYx3Q/PnzMW3aNKxatQrDhg0zW/b555/jueeew4wZM/DWW28Ve+yMGTPw9ttvY8OGDRg4cCAyMjLQsGFDhIeHY/fu3cXW37p1K6KiojBu3DgsXbq0xP6UdCQvKCgIly9fVkOis36q4Jg4psoY08sfWnck759jeCTP0jG99IF1xwH+OYZH8jgmjqkyxpSVlQV/f39kZ2er2aMk1fpInumIXGlH3kxfpZrWq+j6JfHw8ICHh0exdjc3N7i5mb8Zubi4lPi1sOmFUd7227drSbtOp4NOV/wUzNLaS+s7x8QxVbTdVmOy1O19cqQxVYd5skbROo40Ji3OE8fEMZWkWl94UdY5dLefs+fl5YWAgACcPn3aLEmXtj4RERFRdVXtQ15gYCD27NmDvLw8s2V5eXnYs2cPmjZtiqCgILW9e/fu6rLbJSQkAAAiIiIqt+NERERElaxahzxFUTBy5Ejk5uZizpw5ZsvmzJmD3NxcjBo1yqx99OjRAG7dR6+goEBt37x5M5KTkxEVFVWue/QREREROTKHPCcvPj5evTDi6NGjaltycjIAoFu3bhg5ciQAYMqUKfjuu++wYMEC/Pzzz+jQoQNSUlKQmJiIsLAwjB8/3mzbkZGRGDlyJOLj49GhQwf07dsXmZmZ+Oqrr1CnTh3ExcVV2TiJiIiIKotDhrzdu3djzZo1Zm179uwx+4rVFPK8vLywY8cOzJo1C+vXr0dSUhICAgIwadIkzJw5E56ensW2v3z5crRr1w4rVqzA0qVL4e3tjYEDB2Lu3Llo3rx55Q6OiIiIqAo4/C1UHF1OTg78/PzKvIyZiCwzaol1j1853ha9cE587okcU3mzR7U+J4+IiIiISsaQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlE1cDOnTvxyCOPIDAwEIqi4NtvvzVbfuHCBQwbNgyBgYGoWbMmYmJikJaWZp/OEhGRQ2DII6oG8vLycN999+HDDz8stkxE8Oijj+LUqVP47rvv8PPPPyM4OBi9evVCXl6eHXqrLWUF7NzcXIwdOxaNGjWCp6cn2rRpg2XLltmns0RERTDkUbVQ1hutoigl/vfOO+/Yp8M21qdPH7z11lsYOHBgsWVpaWnYv38/PvroI4SFhaF169b46KOPcOPGDXzxxRd26K223ClgA8DEiROxZcsWfPrppzh27BjGjx+PsWPH4vvvv6/inpLWOPt+j6zHkEflUtbOBgCOHTuG/v37w8/PD15eXggLC8PZs2dtUr+sN9rMzEyz/z755BMoioLHH3/cJvUdWX5+PgCgRo0aaptOp4OHhwd2795tr25pxp0CNgDs3bsXQ4cORY8ePdCkSROMHj0a9913Hw4cOFDFPSWt4X6PrMWQV42UFbSGDRtW7BNdTEyMTWqXtbM5efIkunXrhpCQECQnJ+PIkSOIjY01Cx7WKOuNtkGDBmb/fffdd4iMjESzZs1sUt+RhYSEoHHjxpg2bRr++usvFBQUYMGCBfjzzz+RmZlp7+5pXteuXfH999/j3LlzEBEkJSXh+PHjiIqKsnfXyAbsud+1937PnmMn22DIq0bKCloAEBMTY/bJzlZf15W1s5kxYwYefvhhLFy4EO3bt0fz5s3Rv39/1K9f3yb1K+LChQvYuHEjnn/+eZtts6yd3axZsxASEgIvLy/Url0bvXr1wo8//miz+nfi5uaGDRs24Pjx46hTpw5q1qyJpKQk9OnTBzqdbf7EHXn89hYXF4c2bdqgUaNGcHd3R0xMDD788ENERETYZPvlOYpu8uKLL0JRFCxZssQmtcm++92KqIz9XnUZe2XRwn6PIa8aKStoAYCHh4fZJ7vatWtXer+MRiM2btyIVq1aITo6GvXr10fnzp3v+GZUmdasWQMfHx889thjNttmWTu7Vq1a4YMPPsDRo0exe/duNGnSBFFRUbh06ZLN+nAn999/P1JTU3H16lVkZmZiy5YtuHLlis0+0Tv6+O0pLi4O+/fvx/fff49Dhw7h3XffxZgxY7Bt2zabbL88b7QA8O9//xv79+9HYGCgTerSLY66371dZez3qsvYK4sW9nsMeRqTnJyM+vXro3Xr1njppZdw5cqVSq958eJF5ObmYv78+YiJiUFiYiIGDhyIxx57DDt27Kj0+rf75JNP8Nxzz9nsq2Kg7J3ds88+i169eqFZs2Zo27Yt3nvvPeTk5ODIkSM260N5+Pn5oV69ekhLS8NPP/2EAQMG2GS71WX8Ve3GjRuYPn063nvvPTzyyCO49957MXbsWDz99NNYtGiRTWqU54323LlzeOWVV/DZZ5/Bzc3NJnUdRVlHUzZs2ICoqCj4+/tDURSkpqZWeR/tsd+9XWXs98qjMsdu77nXwn6PIU9DYmJisHbtWmzfvh0LFizAjh070KdPHxgMhkqtazQaAQADBgzAhAkTEBoaitdeew39+vWr8ltJ7Nq1C7///jtGjhxZpXWLKigowIoVK+Dn54f77rvPJtvMzc1FamqquhM7ffo0UlNT1Qtbvv76ayQnJ6u3UenduzceffRRu5wXVhnjd1SFhYUoLCws9rW4i4uL+ndR2YxGIwYPHozJkyejbdu2VVKzKpV1NCUvLw/dunXDggULqrhnt9hrv1uUvfZ7lT12R5/7ohx1v+dq7w6Q7TzzzDPq/7dr1w733nsvmjdvjuTkZDz00EOVVrdu3bpwdXVFmzZtzNrvvvvuKr+68+OPP8b9999vlz+y//znP3jmmWdw/fp1BAQEYOvWrahbt65Ntv3TTz8hMjJS/ffEiRMBAEOHDsXq1auRmZmJiRMn4sKFCwgICMCQIUMQGxtrk9rlVZnjt6fc3FycOHFC/bcpYNepUweNGzdG9+7dMXnyZHh6eiI4OBg7duzA2rVr8d5771VJ/xYsWABXV1eMGzeuSupVtT59+qBPnz6lLh88eDAA4I8//qiiHpmz1363KHvt9yp77I4+94Dj7/cY8jSsWbNmqFu3Lk6cOFGpOxt3d3eEhYXh999/N2s/fvw4goODbVKjrDdaAMjJycHXX3+Nd9991yY1KyoyMhKpqam4fPkyVq5ciaeeego//vijTS4+6dGjB0Sk1OXjxo2z+5t8ZY7fnsoK2F9++SWmTZuG5557DllZWQgODsbcuXPx4osvVnrfDh06hKVLlyIlJQWKolR6PSqbLfe71WG/V1RVvec4Ekff7zHkadiff/6JK1euICAgwOptlbWzmTx5Mp5++mlEREQgMjISW7ZswQ8//IDk5GSrawNlv9ECwJdffgkRwaBBg2xSs6K8vLzQokULtGjRAg888ABatmyJjz/+GNOmTbNLf6qaVsdfVsBu0KABVq1aVYU9+tuuXbtw8eJF9Q0fAAwGAyZNmoQlS5bY9QiHs7Llfrc67PeKsuXYqwtH3+8x5FUjdwpaderUwezZs/H444+jQYMGOHnyJKZMmYIWLVogOjra6tpl7WwGDhyIZcuWYd68eRg3bhxat26N9evXo1u3blbXBsp+owWA0aNHY/To0TapZwtGo1G9UbEzcvbxV4XBgwejV69eZm3R0dEYPHgwhg8fbqdeaYs997v23u/Zc+zVlaPt9xjyqpE7Ba2PPvoIR44cwZo1a3D16lUEBgYiKioKc+bMgYeHh9W1y7OzGTFiBEaMGGF1LUd0p52dv78/5s6di/79+yMgIACXL1/Ghx9+iHPnzuHJJ5+0Y69tx9nHb09lHUX39/c3W9/NzQ0NGjRA69atq7qrmmTP/a69OfPYAW3s9xjyqpGyglZCQkIV9sa53Glnt2zZMvz2229Ys2YNLl++DH9/f4SFhWHXrl02udpx1BLrHr9yvNVdsOv47c2a57+yn3vTV3ZUeZx5v+vMYwe0sd9jyCOH5wghp6yd3YYNG6wv4sCcffz2VJ6j6EVp7Ty8so5kZmVl4ezZs8jIyAAA9QIw0815qzNH2PfZk73nXgv7PYY8Khdn39kQkX2UdSTz+++/Nzv/0HRbj5kzZ2LWrFlV2leyLc699RjyqgmGLCJyRmUdTRk2bBiGDRtWKbWdeb/rCGO359xrBUMeEZGDcoQ3WiKqvhjyiMrg7G+0zj5+InI+WtnvMeQREZFD0sobLVUc5942dGWvQkRERETVDUMeERERkQY5bcg7ePAgHn74YdSqVQteXl544IEH8K9//cve3SIiIiKyCac8Jy8pKQnR0dGoUaMGnnnmGfj4+GD9+vV4+umnkZ6ejkmTJtm7i0RERERWcbojeXq9HqNGjYJOp8POnTuxYsUKvPvuuzh8+DBatWqF6dOn48yZM/buJhEREZFVnC7k/fe//8XJkyfx7LPPIjQ0VG338/PD9OnTUVBQgDVr1tivg0REREQ24HQhLzk5GQAQFRVVbFl0dDQAYMeOHVXZJSIiIiKbc7qQl5aWBgBo2bJlsWUNGjSAt7e3ug4RERFRdeV0F15kZ2cDuPX1bEl8fX3VdUqSn5+P/Pz8YtvLyspCYWEhAECn08HFxQUGgwFGo1Fd19Su1+vNfo/PxcUFOp2u1PbCwkIU3HSzYLR/u3rVCIPBoP5bURS4urrCaCy5/fa+W1v/ypVbz03RMRXl6nrrpajX64u1F9xUrKqdlaUvcUzlnSdbjd2ktLG6ubmVOB8FN637M71ypZCvPVj22rtV3/LXH197fO0B9nntAUBODvjaq6avvbLmKSsrCwDu+Nu+AKBIWWtoTFRUFLZu3Yq0tDS0aNGi2PKGDRsiNze31KA3a9YszJ49u7K7SURERHRH6enpaNSoUanLne5InukIXmkhLicnB7Vr1y718dOmTcPEiRPVfxuNRmRlZcHf3x+KYt2nLkvl5OQgKCgI6enp8PX1dar6zjx21udrj/VZn69956sP3DqCd+3aNQQGBt5xPacLeaZz8dLS0nD//febLTt//jxyc3PRqVOnUh/v4eEBDw8Ps7ZatWrZvJ+W8PX1tdsLzt71nXnsrM/XHuuzvrPVZv3STzsryukuvOjevTsAIDExsdiyhIQEs3WIiIiIqiunC3kPPfQQmjVrhs8//xypqalqe3Z2Nt5++224u7tjyJAh9usgERERkQ043de1rq6uiI+PR3R0NCIiIsx+1uzMmTNYtGgRmjRpYu9uVoiHhwdmzpxZ7GtkZ6jvzGNnfb72WJ/1+dp3vvoV4XRX15ocOHAAM2fOxN69e1FYWIh27dph4sSJePrpp+3dNSIiIiKrOW3IIyIiItIypzsnj4iIiMgZMOQRERERaRBDHhEREZEGMeQRERERaRBDnkaYrp+x13U0ph9QFhG79IH17VO/aD17jNvZ6wP2fe3Ze/z2rG/vsQOce2euX168upaIiIhIg5zuZshacv36dSiKgpSUFCiKghs3buCvv/5C27Zt0bBhQ7i5ucHd3R0uLi6VUv/q1au4ceMG9uzZA3d3d1y8eBH5+flo3749fHx8UKtWLdStWxeenp6sr7H6Fy5cwPnz57Fz5064ubnhzz//BADce++98PLyQmBgIJo2bVppv+vs7PXt/dqz9/jtWd/eY+fcO3f9ChOqtgYMGCDe3t7i7e0tiqKY/RcQECBPPfWUfPjhh3L8+HH1MQaDwWb1IyMjRVEUqVmzZrH6tWvXloiICJk8ebJs375drl69yvoaqt+lSxdRFEVq1aolbm5uotPp1No1atSQVq1ayVNPPSVr1qyR06dPq7WNRiPr24C9X3v2Hr8969t77Jx7565fUfy6tpq6du0aRo8ejV69eqGwsBA1atSAn58fUlNTceLECZw8eRInT57ElStX0Lx5c4wYMQLjx4+32ae769ev46233kL37t1x/fp11KpVC56envj5559x7tw5HD9+HEeOHMGJEydQt25dPPHEE5g2bRoaNmzI+tW8fn5+PtauXYuOHTvi+vXrCAwMRH5+Pn799VdkZWXh+PHj2LdvH3766SfodDpER0dj+vTpCAsLs8HIWd/erz17j9+e9e09ds69c9e3iF2iJVW6M2fOyJYtW2Tq1Kly9913i6Io0qZNG/nmm2+qpP6lS5ckNTVVPvroI4mKilI/+bz//vty/fp1EZFK/WTD+varf/36dTl//rxs3rxZRowYIbVr1xZFUeS1116TS5cuiYhtjyywvjl7v/bsPX571rf32Dn3zl2/JAx51ZTphWI0Gs3+X6/XF1svJSVFxo4dK4qiSKNGjeSHH36waX3TTsNgMBR7ARuNRjlx4oTMnz9f/P39pUaNGrJs2TJN1Tf9v7PUNz3fRd8sis5DURcvXpRPP/1UQkNDRVEUmTZtmlW1Ha1+Sa/Dyq5v79eeIz3/VV2fc++8c397fXvMvyUY8qq5on/cer3e7EV4+wsvJSVFwsPDxd3dXVatWlWV3RSRW0cXH3/8cVEURWbOnGmTbVbkU2ll1y+rL5VRv+j8FxYWmvXl9v5URv3yunLliowdO1ZcXFxkyJAhcuPGDau3WXTsZT33lVG/KHvUry5zL6Lt+efc35mW594R6peFIa8auv1FdfPmzWLrFP0jKPpJ76effpIePXpIjRo1ZNOmTZXb0RLqnzlzRp577jlRFEU+/fTTaln/9h3sX3/9Zbf6IqKeXF1V9Sui6JtObm6uvP7666IoiixZssTi7RVV9A2uqutfuXJFMjMzq7R+dZp7EW3NP+e+YrQ097fXt8f8W4q3UKmGFEWB0WjE559/jtTUVFy5cgUFBQXo2LEj+vXrh5YtW0Knu3Wfa6PRCEVRoCgKAOD+++/H1q1bMXDgQOzcuRMxMTHqMkuISJmPN/UFABo3boxPP/0UXl5eSE1NxaBBg8yWV8T27dvx888/o1atWmjZsiW6d+9eJfV1Oh3y8/MxadIk/PHHH/D09ET//v0xePDgYusaDAYoiqLWsFX9goICLFmyBL/88gvOnj0LvV6PBx98EJGRkQgNDUX9+vXV+jqdTp0jWz3/8v9vBFrWY4u+Nry8vDBnzhx4eHjgzJkzMBgMFb69j2l769atw9GjR+Hu7o6QkBA88sgj8PPzq5L6V69excsvv4wTJ05ARDBgwABMmjSp2EVNphvVmp4jW9R3hLkHnHP+Ofe3OOPcm7Znz/m3WJVGSrKK6VPBH3/8IcOHD1cv2/bx8TG7jD4sLExWrFhR4hE+0zl7aWlpsn//fov6kZeXp57EW7RvZR221uv1UlBQICIi58+fl9TU1ArVNW3/8uXL8uabb5pduh4YGCjvvPOOuv2SGAwG9dOfNfVPnz4tzz77rCiKIvXq1RNPT0+pW7eubNiwQV33xIkTkp+fX2wbpuffmvppaWny6KOPqidV16lTx2z+Q0JCZNasWXLx4kWb1TfVvnr1quTk5BRbVp65Nz33eXl5Zrf1qUj9jIwMmTBhgjpWV1dX8fX1lUmTJkleXl6pjy8699bUP3HihDzyyCOiKIq0bdtW/Pz8xNPTU1asWCEit44u/PzzzyUeZTEdVbGmvj3mvmh9Z5x/zr3zzn3R+vaaf2sx5FUjphfKSy+9JO7u7jJ+/HjZs2ePXLx4Ufbu3Stz5syRHj16iJubmyiKIi1btpQ1a9aUeVi7vEw7irlz58qLL74o//73v+XUqVPF/sgr6+ot0/hNh7179eol7777rsyePVuaNGkiiqLIJ598Uml9MNWfMGGC1KhRQ2bMmCG//vqrfPfdd+Lv7y/9+/eXM2fOyCOPPCL169eXBg0ayNixY232R22qP2rUKPHy8pKZM2fKqVOnRETk8OHDsnLlShk2bJg0a9ZMFEURT09PmT9/fplf65SHae6nTp0qvXv3lg8++EBSU1OLfYVUWfeDMtWZMmWKKIoiTz75pKxbt07Wrl0r4eHhoiiKzJo1S0Qqd+5feeUV8fX1lXnz5smVK1fkyJEj0rp1a+natav873//kwceeEAURREXFxd54oknJCUlxab17TH3Is49/5x75537ovXtNf/WYsirZgwGg/j4+MjIkSNLPGql1+slKSlJBg8eLIqiSP369dXbplTkZNU71Td9kqpTp4707NlT5syZI9u2bZPz588XW1dE5MKFCzJ9+nRZvXq1RTVv32atWrWkX79+cvnyZRG5NZb9+/dLcHCwNGrUqFioysvLk82bN1t85PL2+v7+/vLss8+aHal7+umnpWHDhtKpUydp1aqVREZGqmF78ODBaj9tUd/X17fU+TcYDHLo0CGZPn26eoQ3Li5OXWZtbRcXF3VH1qpVK3n++efl008/Vd90iq4rcuvT94gRI+Sdd96xqrZpm35+fjJw4ED1iIJer5djx45JWFiYeHl5yaFDh0Tk7+f62rVrsm7dOptdUV67dm35xz/+YXby9KhRo8TX11dCQ0Olc+fOMmjQIGnevLkoiiLdu3e/41GGita319ybtuGs88+5d965N9W35/xbgyGvmklKSpIaNWrI4sWLReTvT1klXUa/d+9eCQwMlLvuukt++eUXq+qa/nC2bdsmiqJI7969ZfDgwRIQEKB+XfrYY49JXFyc7N+/X7Kzs9XH/vDDD+Lh4SGTJ09W+2pp/W+++UZq1Kghn332mYiI2S1jli5dKoqiyIwZM0Tk7xNz9+zZI82aNZN58+aZbcuS+l9//bV4eHio9U3LTKH67bffVsPuX3/9JTExMaIoinz99dcVrlmS3bt3i5eXl7z99tsicuf5P336tHTs2FE8PDxk586dFtc0jf2///2vKIoiAwYMkOnTp0urVq1EURRxd3eXjh07yquvvio//PCD2ddFGzduFJ1OJy+//LLaT0vrb9iwQTw9PUuc+2+++UYURZHRo0eLyN9zv3fvXmncuLG8/vrrZtuypP4333wjnp6esm7dOnWZwWCQUaNGqW+qpjeAmzdvqqdU2OpKdnvMvYhzzz/n3nnnvuhj7D3/1mDIq2YOHz4snp6eMmXKlFLX0ev16h/U2rVrRVEUWblypVV1TS92U5Bas2aNiNwKUO+9955ER0eLr6+v6HQ69VPe2rVr5X//+596j76jR4+KiHV/7BMmTJCmTZvKTz/9ZNYuIpKfny8PPvigNGjQQLKystRlS5YsEUVR5PDhw1bXf+mll+Tuu+82OxR/8uRJ6dq1q3Tq1EltM+1oEhISxMXFRRYtWlThmiU5efKk1KlTR/7xj3+U2D8R8x3/pk2bxMXFRRYuXGh17X/+85+iKIp6RPbMmTOyYcMGGTp0qNx1112iKIr4+fnJQw89JHPnzpXdu3fLmDFjRFEU9UOGNc/91KlTJSgoSD0ie/tO+5lnnhF3d3c5e/as2mbLuR83bpy0aNFCfe2J3JqPzp07S1hYmLqu6Q3op59+kho1asgbb7xR4Zolsefcizjn/HPub3HGuS9ax97zbw2GvGrm+vXrcu+994qfn5988cUXJV5cIfL3C/r06dNSq1YtGTt2rNW19Xq9zJ07V3Q6nRw7dkxtLygokD///FO2bdsmr7/+unTq1Enc3d2lRo0act9994mPj4/cfffdImLdV5aFhYXy4osvio+PT7GLGkyhas2aNeoRNRGRs2fPSkxMjLRs2dLq+jdv3pRHH31UWrZsafa8r1+/XhRFkY8//lhEzEP20aNHxc3NTSZNmmRx3aIMBoN0795dPD09JS4ursSvA4reqDM9PV0CAgJk2LBhVteNi4uTGjVqFDvX5ObNm5KWliYrV66Uvn37ipeXl3p0183NTdq0aaP2y1J6vV4mTJgg7u7uxe4zZRprQkKCKIoiEyZMEJFbY7fV3Ofn58uwYcOkefPmZvU3b94sHh4e6if2oveqPHbsmPj4+KhHMqxlr7k31XbW+efcO+/cizjG/FuDIa8a2rp1q+h0OvH29pZZs2bJL7/8UmrY27x5s/j4+BT7etcSRqNRtm3bJi+//LKcOXOmxHWuX78uJ06ckPXr18v48eMlKChIFEWR9957T0TKvrfRnRgMBpkzZ47cfffdpd6jKDs7Wzp27CiBgYFSWFgoycnJ4uXlJW+99ZbV9QsKCiQuLk49x870XKanp8ukSZOK3ZRU5O/D/MuXLzd7jDWOHj0qgYGBoiiKDB8+XBISEuTChQsl7sg2btwo3t7e6pFEa+r/9NNPMnfuXPnzzz9LXSc3N1d++uknee+99yQkJMRmcy8iEhcXJ61atSr1QpabN29KTEyMeHh4yF9//SU7duwQLy8vmTt3rtX19Xq9fPbZZ+qbiOnN5fz587Jw4UKz5/X2r5g+/PBDdRvWstfcizjv/HPunXfuRRxn/i3FkFfNmF5E//nPfyQ0NFR0Op2EhITI1KlTJTExUY4dO6YGoOPHj0vv3r3F29tbPVfCVlcflefQ96VLl2TAgAGiKIrN6h8/fly++eYb9XcASxIXFyeKosjixYtlzpw5oiiKXLhwwSb1iyprW4WFhTJ58mSb1jc97/v27ZOePXuKi4uLBAQEyHPPPScrVqyQpKQkOXnypBgMBtm1a5d07dpVatWqZdP5L882bt68KYMGDbLp3GdlZcnevXvlypUrpa5jOqo6Y8YMmTlzZqXNfVkKCgrk1Vdf1dzcl3c7zjz/nHvnnXuRypl/azDkVWMpKSkyadIk9SRY0+HxTp06qV+T1qhRQ958800Rsd1VVmUxfWpJTU2VwMBAiYiIsFn98jh37py0bdtWGjZsKGFhYeq5ctbWL3rORVEl3UpARGT//v0SEhIiDz/8sE3q3+78+fMSFxcnPXv2FB8fH3FxcZG77rpL6tevL40aNRIXFxepXbu2+mnaFlfXlnedn376SRo0aFDlc5+TkyMPPvigeHt7y3333SedO3e2Wf2KzP3evXulVatW0q9fP5vVL6qq576829Dq/HPunXfuRRxr/iuKIa+ay8/Pl4MHD8qSJUtk6NChEhERIY0aNRJ/f38ZMGCAbNy4UX2BVvWniS+++EJcXV3Vk3Vtcb++ssZg+oOaO3euequXzz//XESq/pB57969pX79+urPx1VGfb1eL2lpabJ+/Xp544035KmnnpKQkBC59957ZfTo0bJr1y513aqc/2+//VZq1qypnq9iq3s13olpfKbzMhVFkS+++EJEqn7uu3btKgEBAZKQkFBp9R117kWce/4598479yJVM/8VwZBXjd3+x3vt2jXJzMyUmzdvlnjX86r222+/yQcffGCXTzJnz56VTp06iZ+fX5X/kZnuWRUeHi6zZs2qsp1sfn6+eg+tsn5Pt7JlZmbKDz/8YJevKS5duiTR0dHi7+9f5XNvNBrl2LFj0q9fP1m4cKFTzr2Ic84/5/4WZ5x7EfvNf1kUEZGq+QE1qixGo7HE3xGUcvyurJYlJyfj2rVreOSRR6r2twIB5OXl4dKlS/D394ePj0+lzkVp23bm+U9LS8Ply5fRpUuXUv8+Koter8fNmzfh5uYGDw+PSq3FuS+Zveafc29/zvK3X14MeVRpnH1n48w4986N8++8OPeOhSGPNIs7GyIicmZVdxyTqIox4BERkTNjyCMiIiLSIIY8IiIiIg1iyNMQo9HI+k5cn4iIqCiGPA0xXSpur7DB+vatb2IwGJyyNuuzPl/7rO+s9UvDkFfNFRYWAgC2bNmCpKQkAKjS+wKxvn3r6/V6AMC3336Ljz/+GPn5+VV2P0B71mZ91udrn/WdtX6FVPHNl8kCRe/cXdpdtE0/5fLkk0/a/NcuWN++9cujTp06oiiKPPjgg3L06FGnqa31+gaDocw757N+5dS399j1ej3rO3F9W2HI04DCwkJ5/fXXpVWrVqIoigwfPlyysrJY30nq6/V6WbJkifTo0UMURZE+ffpIZmam5mtrtX5FfgaQ9W1b395jrwjWd+765cWQ56CuXLkiW7ZskVdffVViY2Nl7dq1sm3bNklLS5ObN2+W+BiDwSALFy6UOnXqyGuvvcb61bi+pT/q/a9//UsaNWokQ4cOrZa1WV8kLy9PfvzxR1m+fLls2LBBLl++LCJl/9A861tf395jP3HihLz11lvSp08fWbBggVy4cMFseWn9YH1t1K8MDHkOxPQpcvv27dK1a1f1K0DTf35+ftKtWzeZNWuW7N+/X/0asaCgQP2B6hs3bshHH30k27ZtY/1qVr+kHYjBYCjzh7aNRqNZMNm4caPs37+/2tRm/b9fe4cPH5annnrK7HXXt29f+fXXX0utb3rtsb5l9R1l7Fu2bJG7777brP7jjz+u1jC9zvLy8tR/s371r1/ZGPIcjF6vl7Zt20r9+vVl4cKFsmvXLvn8889l8eLFMnToUGnevLnodDpp1qyZLFq0SH1cWZ80Wb/61H/yySfliy++UHcmRZdV5Ouk6lSb9W+92fTu3Vvc3NwkKipKZs2aJY888ojodDqJiIio9K+CnLm+vceu1+ulc+fOctddd8k333wjBw8elH/84x+iKIrs27dPtm7dKv3795fQ0FAZM2aMHDp0iPU1VL8yMeQ5CFNIWLdunbi7u0t8fHyxda5cuSIHDx6Ud955R9q3b6+eB3Dp0iWz7VgSOFjfMep/+eWX6qfIoKAgefnll2XHjh3F1tfr9eqnyAMHDsiGDRskLy+v2tVm/b/rf/bZZ6IoikydOlVddvXqVXnxxRdFURR55513ij3m7Nmz6pGmso46sr5j1S66rU8//VQ8PT3l/fffV5elp6eLh4eHPPvss1KrVi1p0KCBtGjRQtzc3MTDw0N++OEHi2qyvuPUrwoMeQ7C9GIbMmSIBAUFye+//y4it74KvP3No7CwUA4ePCiPPvqoKIoiU6ZMYX2N1H/66adFURTp1q2b6HQ6NXTce++9Mnv2bPnll1+KPXb48OGiKIra5+pUm/X//rqod+/e0rlzZzl27JiI/B0csrKyJDw8XGrXrm32gUJEZNGiRaLT6eTUqVOsX81qF60fFRUlHTt2lN9++01ddvjwYalfv740a9ZMli1bJkajUY4cOSIzZ84URVEkMjJSrl+/bnFt1rd//arAkOdA9Hq9jB8/Xnx9fdU3jTudBK7X66VHjx7SsGFDyc3NZf1qXj8vL0969OghjRo1EhGRa9euyYcffiidO3c2O08kMjJSPvzwQ8nOzpaLFy9Kx44dpU2bNiJi+dfG9qzN+reOGrVo0UKGDRtm9pozvQl98803oiiKLFiwQF2WmZkpMTEx0rJlS9a3or69x/7XX39JkyZN5MUXXzSr/8UXX4hOp5O4uLhij3nuuefEx8dHMjIyLK7L+o5Rv7LxZsgOQkTg4uKCbt264dq1a5g/fz4AwNXVVV1e9JcUTDdf7NatG3Jzc/Hzzz+zfjWuDwDnz5/H+fPnUatWLQCAt7c3Xn75Zezfvx/Hjx/H66+/jqZNmyI5ORljx45F48aNMWDAABw6dAjDhw8HYPld1+1Zm/WB9PR0FBQUwMfHB66uruprzXRj7f79+6NDhw54//33kZmZCQA4cuQIdu3ahREjRrC+FfXtPfbffvsN+fn58PPzU/c3+fn5OHjwIEQEI0eOBHBrH1RQUAAAqFevHlxdXfHHH39YXJf1HaN+ZWPIcxCKosBoNCImJgbPPPMMVq9ejaioKCQkJODGjRtQFEXd6ej1enh4eMBgMKCwsBAFBQVo27Yt61fj+gDg7++PIUOGYMyYMeobjV6vh4igRYsWePPNN3Hy5Ens3r0bo0aNgqIo2L9/PwCoQcPSu67bszbrA15eXsjIyEB+fn6Jy93c3PDaa68hIyMDGzduhNFoxK5du3D9+nU8//zzrG9FfXuPvVatWujcuTN69+4N4NbPIur1erRo0QJvv/02atSoAYPBAEVR4O7ujsLCQvz1119wcXFBmzZtLK7L+o5Rv9JV7YFDKk3RK/f+97//SZ8+fURRFPHy8pInn3xSli9fLkeOHDF7zObNm6Vhw4bSu3fvYttg/epZPzc3V65evVri8tu/Oj5w4ID4+PhIr169rKpvz9qs//djk5OT5V//+lepX/3l5eVJ69atpVOnTpKSkiKdO3eW8PBw1reivr3Hbqp37ty5Ei/eMN2Ts+gFXceOHZPQ0FCJjIxk/Wpevyow5DmwtWvXSqdOndTzgRo2bChhYWHy7LPPSu/evcXT01NatmwpSUlJImL5FV6s75j1S2O6svP9998XRVHks88+q7L69qzN+iLLli1T79/l4uIia9asYf0qqm/vsZtCxjvvvCM1atSQL774gvWdqL6lGPIcwDvvvKO+eRgMBrNPBpcuXZKNGzfK2LFjJSQkRBRFETc3NwkKCpLevXtLSkoK62usfnlcu3ZNIiMjRVEUqz5J2rM265vXL8+bxfnz5yU4OFjc3d3F29ub9W302rf32Mu7rWPHjkmbNm2kc+fOVt+bk/XtW7+qMOTZWVJSkri6usr69evvuJ7pBZWeni67d++Wixcvql8hWbOzYf3qUf92BoNBtm/fLsuWLRMRy36Ky561Wd/y+gsWLFCPKIlYfiTBmetXx7EXFBTIqFGjxMPDQz2KZOm+h/XtW78qMeTZkcFgkIKCAhkyZIh4e3vf8YiSSMmX6VvzaYL1Hbt+ZX5StGdt1reufmFhoaxbt67YPd1Y3/FrW1tfROTUqVNy48YNEbFs/8P69q1f1RjyHMCff/4pPXr0EA8PD5k6dapkZ2ebLS/6wquMFxXrO3b9oif9aqk267M+X/vlr2/rvrC+fetXFYY8B6HX69Wf0GnVqpUsW7ZMTp48WWy9ol8N2fKET9avfvUt/ZrQkWqzPuvztc/6zlq/KjDkOQBTWPjzzz9lypQp4urqKq6urtKzZ09ZtGiRbNu2Tf78888SH2u6xJv1Wb+61WZ91udrn/WdtX5VUURE7H2vPjJ39OhRfPDBB/j2229x6dIl1KtXD0FBQahbty7atGmDgIAAXLx4Efn5+cjLy0N0dDSeeuop1mf9al2b9Vmfr33Wd9b6lYUhz4HIrSOr0Ol0uHbtGg4fPoyDBw9i165d2LdvHy5fvgwPDw/o9XrUrFkT9evXR9u2bfHuu++iSZMmrM/61bI267M+X/us76z1KxtDnoMz/bSSm5sbjh8/jqysLLRq1QpZWVlo2rSpVT+nw/qs76i1WZ/1+dpnfWetb0sMedWYiEBRFNZnfaeqzfqsz9c+6ztr/YpiyCMiIiLSIJ29O0BEREREtseQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRB/w/QgXhQMfi6lAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHWCAYAAAALq58HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXgUlEQVR4nO3deVhUZf8/8PcZ9thUhITEHSXTUhPNJRVSXNN8Mssst9QWza9LahtpmqVmaWmLSrm1PqnZUy5gCu7mSmqp4Y4pbiTIqMDMfH5/+JsTIyAwMzDDmffrurquvM+Z+dw392F4z1kVEREQERERkaboHN0BIiIiIrI/hjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDXJ3dAcqOpPJhHPnzsHf3x+Koji6O0RERKRxIoJr164hLCwMOl3R++sY8mx07tw5hIeHO7obRERE5GLS0tJQvXr1Ipcz5NnI398fwK0fdEBAgIN7Q0RERFqXlZWF8PBwNYMUhSHPRuZDtAEBAQx5REREVG6KO02MF14QERERaRBDHhE5renTp0NRFIwePVpte/7551G3bl34+PggODgYvXr1wpEjR9Tlv//+O/r164fw8HD4+Pjg3nvvxUcffeSA3hMRORYP1xKRU9q9ezfmz5+P+++/36L9wQcfRP/+/VGjRg1kZGRg8uTJiI2NxcmTJ+Hm5oa9e/ciJCQEX331FcLDw7F9+3YMHz4cbm5uGDlypINGQ0RU/hQREUd3oiLLyspCYGAgMjMzeU4ekZ1kZ2ejWbNm+PTTT/HOO++gSZMmmDNnTqHrHjhwAA888ACOHTuGunXrFrrOiBEjcPjwYWzcuLEMe01EVD5Kmj14uJaInM6IESPQvXt3dOzY8Y7r6fV6LFq0CLVr177jrYwyMzNRpUoVe3eTiMip8XAtETmV7777Dvv27cPu3buLXOfTTz/FhAkToNfr0aBBA6xfvx6enp6Frrt9+3Z8//33WL16dVl1mYjIKXFPHhE5jbS0NPzf//0fvv76a3h7exe5Xv/+/bF//35s2rQJ9evXR9++fXHz5s0C6x06dAi9evXCpEmTEBsbW5ZdJyJyOjwnz0Y8J4/IflatWoXevXvDzc1NbTMajVAUBTqdDjk5ORbLACA3NxeVK1dGfHw8+vXrp7b/+eefiI6OxtChQzFt2rRyGwMRUVkrafbg4VoichqPPPIIDh48aNE2ePBgREZGYuLEiQUCHnDrGY4igpycHLXtjz/+QExMDAYOHMiAR0QuiyGPiJyGv78/GjVqZNHm6+uLoKAgNGrUCCdOnMD333+P2NhYBAcH4+zZs5g+fTp8fHzQrVs3ALcO0cbExKBz584YO3Ys0tPTAQBubm4IDg4u9zERETkKz8kjogrD29sbW7ZsQbdu3VCvXj08+eST8Pf3x/bt2xESEgIAWL58OS5duoSvvvoKoaGh6n9RUVEO7j0RUfniOXk24jl5REREVJ54nzwiIiIiF8aQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRB7o7uABHRnQybY9vrF462Ry+IiCoe7skjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIAwGeffYb7778fAQEBCAgIQKtWrbB27Vp1+fHjx9G7d28EBwcjICAAffv2xYULFyzeIyMjA/3790dAQAAqVaqE5557DtnZ2eU9FCICQx4REf1/1atXx/Tp07F3717s2bMHMTEx6NWrF/744w/o9XrExsZCURRs3LgR27ZtQ25uLh599FGYTCb1Pfr3748//vgD69evxy+//ILNmzdj+PDhDhwVketSREQc3YmKLCsrC4GBgcjMzERAQICju0OkObyFimNVqVIF77//PsLDw9G1a1f8888/6mddZmYmKleujMTERHTs2BGHDx9Gw4YNsXv3bjRv3hwAsG7dOnTr1g1nz55FWFiYI4dCpBklzR7ck0dERAUYjUZ899130Ov1aNWqFXJycqAoCry8vNR1vL29odPpsHXrVgDAjh07UKlSJTXgAUDHjh2h0+nw22+/lfsYiFwdQx4REakOHjwIPz8/eHl54YUXXsCPP/6Ihg0b4qGHHoKvry8mTpyI69evQ6/X45VXXoHRaMT58+cBAOnp6QgJCbF4P3d3d1SpUgXp6emOGA6RS2PIIyIiVYMGDZCSkoLffvsNL774IgYOHIg///wTwcHB+OGHH/Dzzz/Dz88PgYGBuHr1Kpo1awadjn9KiJwRH2tGREQqT09P1KtXDwDw4IMPYvfu3fjoo48wf/58xMbG4vjx47h8+TLc3d1RqVIlVKtWDXXq1AEAVKtWDRcvXrR4P4PBgIyMDFSrVq3cx0Lk6vj1i4iIimQymZCTk2PRVrVqVVSqVAkbN27ExYsX0bNnTwBAq1atcPXqVezdu1ddd+PGjTCZTGjZsmW59puIuCePiIj+v9deew1du3ZFjRo1cO3aNXzzzTdITk5GQkICAGDRokW49957ERwcjB07duD//u//MGbMGDRo0AAAcO+996JLly4YNmwYPv/8c+Tl5WHkyJF46qmneGUtkQMw5BEREQDg4sWLGDBgAM6fP4/AwEDcf//9SEhIQKdOnQAAR48exWuvvYaMjAzUqlULb7zxBsaMGWPxHl9//TVGjhyJRx55BDqdDo8//jg+/vhjRwyHyOXxPnk24n3yiMoW75NHRGSJ98kjIiIicmEMeUREREQaxJBHREREpEEVIuTNmDEDiqJAURTs3LmzwPKsrCyMHTsWNWvWhJeXF2rVqoXx48cjOzu70PczmUyYO3cuGjduDB8fHwQHB6Nfv344ceJEWQ+FiIiIqFw4fcg7dOgQJk2aBF9f30KX6/V6tG/fHrNnz0ZkZKR6Of+sWbMQExODmzdvFnjN888/j1GjRkFEMGrUKHTp0gUrV65EVFQUUlNTy3pIRERERGXOqUNeXl4eBg4ciCZNmqB3796FrjNz5kykpKRg4sSJSEhIwPTp05GQkICJEydi9+7dmD17tsX6SUlJiI+PR7t27bBv3z7MmDEDy5Ytw6pVq5CRkYGRI0eWx9CIiIiIypRTh7xp06bhjz/+wJdffgk3N7cCy0UE8fHx8PPzQ1xcnMWyuLg4+Pn5IT4+3qJ94cKFAICpU6fC09NTbe/atSs6dOiAxMREnDlzpgxGQ0RERFR+nDbk7du3D9OmTcOkSZPQsGHDQtdJTU3FuXPn0KZNmwKHc319fdGmTRucOHECaWlpantycrK67HadO3cGAGzatMmOIyEiIiIqf04Z8nJycjBgwAA0adIEEyZMKHI98/lzERERhS43t5vX0+v1OH/+PGrXrl3onsHb1yciIiKqqJzysWZvvfUWUlNTsXfv3kLDmFlmZiYAIDAwsNDl5rtAm9cr7fqFycnJsXhYd1ZWFoBb5w/m5eUBAHQ6Hdzc3GA0GmEymdR1ze0GgwH5HzTi5uYGnU5XZLv5fc3c3W9Nm8FgKFG7h4cHTCYTjEaj2qYoCtzd3YtsL6rvHBPHVN5jAjxgC/MYnGlMWpwnjolj4pjKd0wl4XQhb8eOHZg1axYmT56MRo0aObo7Bbz33nt4++23C7QnJibirrvuAgDUqFEDTZs2xYEDByzO72vQoAEiIyOxa9cuXLp0SW1v0qQJatasic2bN+PatWtqe6tWrRASEoLExESLCY2OjoaPjw/WrFlj0Ydu3brhxo0bSEpKUtvc3d3RvXt3XL58GTt27FDb/f39ERMTg7S0NKSkpKjtwcHBaN26NVJTU3H06FG1nWPimBw1JqAXbGHuqzONSYvzxDFxTBxT+Y1p7969KAmnenatwWBAw4YN4evri127dsHD499v8IMGDcKSJUuwY8cOPPTQQwCA1atXo0ePHhg5ciTmzp1b4P1efvllzJs3Dxs2bEBMTAz0ej38/PzQqFEjHDx4sMD6K1asQJ8+fRAXF4cpU6YU2sfC9uSFh4fj8uXL6p5AV/1WwTFxTGUxppc+sW1P3qcjuCePY+KYOCZtjSkjIwNBQUHFPrvWqfbkZWdnq+fD5b/yNb9WrVoBAH788Uf1goyizqG7/Zw9X19fhIaG4uTJkzAajQUOBRd3jh8AeHl5wcvLq0C7h4eHRSgFbm0whR1uNm8YJW2//X2tadfpdNDpCp6CWVR7UX3nmDim0rbba0zWur1PzjQmLc4Tx8QxlbadY7LfmAqsV6K1yomXlxeee+65Qpdt3rwZqamp6NmzJ4KDg1GrVi1EREQgLCwM27Ztg16vt7jCVq/XY9u2bahduzbCw8PV9vbt2+O7777Dtm3b0K5dO4saCQkJAFCgnYiIiKiicaqQ5+PjU+C+dmaDBg1CamoqXnvtNfVwLQAMHToUU6ZMwdSpUzF9+nS1ferUqcjOzsbrr79u8T7Dhw/Hd999h7i4OKxfv17dY7h27VokJycjNjYWNWvWLIPREREREZUfpwp51pgwYQJ++uknzJgxA/v370ezZs2wb98+JCYmIioqCqNHj7ZYPzo6GkOHDkV8fDyaNWuG7t274/z58/j+++9RpUqVQs/tIyIiIqponPI+eaXh6+uLTZs2YfTo0Th8+DA++OADHDlyBOPGjcOGDRvg4+NT4DXz58/HRx99BAD46KOPsGbNGvTu3Ru7du1C/fr1y3sIRERERHbnVFfXVkRZWVkIDAws9goXIrLOsDm2vX7haHv0gojIeZQ0e1T4w7VERFQ2GLCJKrYKf7iWiIiIiApiyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1iyCMiIiLSIIY8IiIiIg1yupB38+ZNjB07Fu3atUNYWBi8vb1RrVo1tGnTBosWLUJeXl6B12RlZWHs2LGoWbMmvLy8UKtWLYwfPx7Z2dmF1jCZTJg7dy4aN24MHx8fBAcHo1+/fjhx4kRZD4+IiIioXDhdyMvOzsZnn30GRVHQvXt3jB07Fr1798bff/+NIUOGoEePHjCZTOr6er0e7du3x+zZsxEZGYkxY8agQYMGmDVrFmJiYnDz5s0CNZ5//nmMGjUKIoJRo0ahS5cuWLlyJaKiopCamlqewyUiIiIqE+6O7sDtqlSpgszMTHh6elq0GwwGdOrUCYmJiVi7di26d+8OAJg5cyZSUlIwceJETJ8+XV3/1VdfxYwZMzB79my89tprantSUhLi4+PRrl07rF+/Xq3z9NNPo1u3bhg5ciQSEhLKYaREREREZcfp9uTpdLoCAQ8A3N3d0bt3bwDAsWPHAAAigvj4ePj5+SEuLs5i/bi4OPj5+SE+Pt6ifeHChQCAqVOnWtTp2rUrOnTogMTERJw5c8auYyIiIiIqb04X8opiMpmwbt06AECjRo0AAKmpqTh37hzatGkDX19fi/V9fX3Rpk0bnDhxAmlpaWp7cnKyuux2nTt3BgBs2rSprIZBREREVC6c7nCtWW5uLt59912ICK5cuYINGzbgyJEjGDx4MB555BEAUM+fi4iIKPQ9IiIikJCQgNTUVISHh0Ov1+P8+fNo1KgR3NzcCl0///sSERERVVROHfLefvtt9d+KouCVV17Be++9p7ZlZmYCAAIDAwt9j4CAAIv1Srt+YXJycpCTk6P+OysrCwCQl5enXvmr0+ng5uYGo9FocZGIud1gMEBE1HY3NzfodLoi22+/otjd/da0GQyGErV7eHjAZDLBaDSqbYqiwN3dvcj2ovrOMXFM5T0mwAO2MI/BmcZUUebJ1j8ReXl5TjcmLc4Tx+SaYyoJpw15fn5+EBGYTCacO3cOP//8M15//XXs2LEDa9asUQNZeXvvvfcswqdZYmIi7rrrLgBAjRo10LRpUxw4cMDi/L4GDRogMjISu3btwqVLl9T2Jk2aoGbNmti8eTOuXbumtrdq1QohISFITEy0mNDo6Gj4+PhgzZo1Fn3o1q0bbty4gaSkJLXN3d0d3bt3x+XLl7Fjxw613d/fHzExMUhLS0NKSoraHhwcjNatWyM1NRVHjx5V2zkmjslRYwJ6wRbmvjrTmCrKPAExRf9gS2DNmjVONyYtzhPH5Hpj2rt3L0pCkfwx1sn98MMP6Nu3LyZMmIAZM2Zg9erV6NGjB0aOHIm5c+cWWP/ll1/GvHnzsGHDBsTExECv18PPzw+NGjXCwYMHC6y/YsUK9OnTB3FxcZgyZUqhfShsT154eDguX76sBk9X/VbBMXFMZTGmlz6xbU/epyO4J8/aMb04z7b9AJ+O4J48joljKosxZWRkICgoCJmZmXfc6eW0e/IKExsbC+DWxRNA8efQ3X7Onq+vL0JDQ3Hy5EkYjcYC5+UVd44fAHh5ecHLy6tAu4eHBzw8LP8Yubm5FXrun3nDKGn77e9rTbtOp4NOV/A6m6Lai+o7x8QxlbbdXmOy1u19cqYxVYR5skX+Os40Ji3OE8fEMRWmwlxdCwDnzp0D8O8PNCIiAmFhYdi2bRv0er3Funq9Htu2bUPt2rURHh6utrdv315ddjvz/fHatWtXVkMgIiIiKhdOF/L+/PNPXL9+vUD79evXMXbsWAC3joMDt3ZzDh06FNnZ2Zg6darF+lOnTkV2djaGDRtm0T58+HAAt+6jl5ubq7avXbsWycnJiI2NRc2aNe06JiIiIqLy5nSHa//73//iww8/RNu2bVGrVi0EBATg77//xtq1a3HlyhU8/PDDGDNmjLr+hAkT8NNPP2HGjBnYv38/mjVrhn379iExMRFRUVEYPXq0xftHR0dj6NChiI+PR7NmzdC9e3ecP38e33//PapUqVLouX1EREREFY3ThbwePXrg3Llz2L59O3bs2IHs7GwEBgbi/vvvx1NPPYUhQ4ZYHIv29fXFpk2bMHnyZKxYsQJJSUkIDQ3FuHHjMGnSJPj4+BSoMX/+fDRu3BgLFizARx99BD8/P/Tu3RvTpk1D3bp1y3O4RERERGWiQl1d64yysrIQGBhY7BUuRGSdYXNse/3C0fbohWviz57IOZU0ezjdOXlEREREZDuGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINYsgjIiIi0iCGPCIiIiINsjrkbd68GWfOnLnjOmlpadi8ebO1JYiIiIjISlaHvOjoaCxevPiO6yxduhTR0dHWliAiIiIiK1kd8kSk2HVMJhMURbG2BBERERFZqUzPyUtNTUVgYGBZliAiIiKiQriXZuUhQ4ZY/HvVqlU4depUgfWMRqN6Pl7Xrl1t6iARERERlV6pQl7+c/AURUFKSgpSUlIKXVdRFERFRWH27Nm29I+IiIiIrFCqkHfy5EkAt87Hq1OnDkaPHo3/+7//K7Cem5sbKleuDF9fX/v0koiIiIhKpVQhr2bNmur/L1q0CE2bNrVoIyIiIiLnUKqQl9/AgQPt2Q8iIiIisiOrQ57Zrl27sHv3bly9ehVGo7HAckVREBcXZ2sZIiIiIioFq0NeRkYGHnvsMWzbtu2O98xjyCMiIiIqf1aHvLFjx2Lr1q3o0KEDBg4ciOrVq8Pd3eYdg0RERERkB1ansl9++QUtWrTAhg0b+FQLIiIiIidj9RMvbty4gXbt2jHgERERETkhq0NekyZNCn3aBRERERE5ntUhb9KkSfjf//6HnTt32rM/RERERGQHVp+Tl56eju7du6N9+/bo378/mjVrhoCAgELXHTBggNUdJCIiIqLSszrkDRo0CIqiQESwePFiLF68uMD5eSICRVEY8oiIiIjKmdUhb9GiRfbsBxERERHZER9rRkRERKRBVl94QURERETOy+o9eWfOnCnxujVq1LC2DBERERFZweqQV6tWrRLdCFlRFBgMBmvLEBEREZEVrA55AwYMKDTkZWZm4vfff8fJkyfRvn171KpVy5b+EREREZEVrA55ixcvLnKZiOCDDz7AzJkz8cUXX1hbgoiIiIisVCYXXiiKgldeeQX33Xcfxo8fXxYliIiIiOgOyvTq2ubNm2Pjxo1lWYKIiIiIClGmIe/48eO86IKIiIjIAaw+J68oJpMJf//9NxYvXoyffvoJjzzyiL1LEBEREVExrA55Op3ujrdQERFUrlwZH3zwgbUliIiIiMhKVoe8du3aFRrydDodKleujKioKAwePBghISE2dZCIiIiISs/qkJecnGzHbhARERGRPfHZtUREREQaZJcLL7Zt24aUlBRkZWUhICAATZo0QZs2bezx1kRERERkBZtC3vbt2zF48GAcO3YMwK2LLczn6UVERGDRokVo1aqV7b0kIiIiolKxOuT98ccfiI2NxfXr19GpUydER0cjNDQU6enpSEpKQmJiIjp37oydO3eiYcOG9uwzERERERXD6pA3ZcoU5ObmYs2aNejSpYvFsokTJ2LdunXo2bMnpkyZgu+++87mjhIRERFRyVl94UVycjL69OlTIOCZdenSBX369EFSUpLVnSMiIiIi61gd8jIzM1G7du07rlO7dm1kZmZaW4KIiIiIrGR1yAsLC8POnTvvuM5vv/2GsLAwa0sQERERkZWsDnk9e/ZEcnIy4uLicPPmTYtlN2/exKRJk5CUlIRevXrZ3EkiIiIiKh2rL7yIi4vDL7/8gnfffRfz589HixYtcPfdd+PChQvYvXs3Ll26hDp16iAuLs6e/SUiIiKiErA65AUFBWHnzp2YMGECvvvuO6xZs0Zd5u3tjcGDB2PGjBmoUqWKXTpKRERERCVn082Qq1atii+//BLz58/HkSNH1CdeREZGwsPDw159JCIiIqJSKnXImzZtGvR6Pd5++201yHl4eKBx48bqOrm5uXjjjTfg7++PV1991X69JSIiIqISKdWFF7/++iveeustBAUF3XFPnaenJ4KCgvDGG2/wPnlEREREDlCqkLd06VJUrlwZI0eOLHbdESNGoEqVKli0aJHVnSMiIiIi65Qq5G3fvh0dO3aEl5dXset6eXmhY8eO2LZtm9WdIyIiIiLrlCrknTt3DnXq1Cnx+rVr18b58+dL3SkiIiIisk2pQp5Op0NeXl6J18/Ly4NOZ/X9lomIiIjISqVKYGFhYTh06FCJ1z906BDuueeeUnXo77//xpw5cxAbG4saNWrA09MT1apVw+OPP47ffvut0NdkZWVh7NixqFmzJry8vFCrVi2MHz8e2dnZha5vMpkwd+5cNG7cGD4+PggODka/fv1w4sSJUvWViIiIyFmVKuQ9/PDD2LhxI06dOlXsuqdOncLGjRvRrl27UnVo7ty5GDNmDE6cOIHY2FiMGzcObdu2xU8//YTWrVvj+++/t1hfr9ejffv2mD17NiIjIzFmzBg0aNAAs2bNQkxMTIFHrgHA888/j1GjRkFEMGrUKHTp0gUrV65EVFQUUlNTS9VfIiIiImdUqpA3YsQI5OXloU+fPrh8+XKR6125cgVPPPEEDAYDXnzxxVJ1qEWLFkhOTsaxY8cQHx+P9957D8uXL0dSUhLc3Nzw4osvIicnR11/5syZSElJwcSJE5GQkIDp06cjISEBEydOxO7duzF79myL909KSkJ8fDzatWuHffv2YcaMGVi2bBlWrVqFjIyMEl05TEREROTsFBGR0rxg7NixmDNnDqpWrYoXXngB0dHRqF69OoBbh1o3bNiABQsW4NKlSxg7dixmzZplt8527twZiYmJ2L17N5o3bw4RQfXq1ZGVlYX09HT4+vqq6+r1elSrVg0hISE4fvy42v7000/j22+/xaZNmwrsZYyOjkZycjJOnz6NGjVqlKhPWVlZCAwMRGZmJgICAuwzUCJSDZtj2+sXjrZHL1wTf/ZEzqmk2aPUV0V88MEHePXVV/HPP/9g2rRp6NixIyIjIxEZGYlHHnkE06ZNQ0ZGBl577TW8//77Ng3iduYbMLu733pQR2pqKs6dO4c2bdpYBDwA8PX1RZs2bXDixAmkpaWp7cnJyeqy23Xu3BkAsGnTJrv2m4iIiKi8lfqxZoqi4N1338Vzzz2HRYsWYfv27UhPTwcAVKtWDW3atMGgQYNQt25du3b0zJkz+PXXXxEaGqo+Qs18/lxEREShr4mIiEBCQgJSU1MRHh4OvV6P8+fPo1GjRnBzcyt0/fzvS0RERFRRlTrkmdWtWxfvvPOOPftSpLy8PDz77LPIycnBjBkz1ICWmZkJAAgMDCz0deZdmOb1Srt+YXJycizOCczKylL7aL69jE6ng5ubG4xGI0wmk7quud1gMCD/UXI3NzfodLoi22+/bY15T6bBYChRu4eHB0wmE4xGo9qmKArc3d2LbC+q7xwTx1TeYwKKfoRiSZjH4ExjqijzZMOfCAD/3kbLmcakxXnimFxzTCVh229wOTCZTBg0aBA2b96MYcOG4dlnn3Vof9577z28/fbbBdoTExNx1113AQBq1KiBpk2b4sCBAzhz5oy6ToMGDRAZGYldu3bh0qVLanuTJk1Qs2ZNbN68GdeuXVPbW7VqhZCQECQmJlpMaHR0NHx8fLBmzRqLPnTr1g03btyweF6wu7s7unfvjsuXL2PHjh1qu7+/P2JiYpCWloaUlBS1PTg4GK1bt0ZqaiqOHj2qtnNMHJOjxgT0gi3MfXWmMVWUeQJiiv7BlsCaNWucbkxanCeOyfXGtHfvXpREqS+8KE8mkwlDhgzBkiVL8Mwzz2DJkiUWN1devXo1evTogZEjR2Lu3LkFXv/yyy9j3rx52LBhA2JiYqDX6+Hn54dGjRrh4MGDBdZfsWIF+vTpg7i4OEyZMqXQPhW2Jy88PByXL19W9wS66rcKjoljKosxvfSJbXvyPh3BPXnWjunFebbtB/h0BPfkcUwcU1mMKSMjA0FBQcVeeOG0e/JMJhMGDx6MpUuXol+/fli8eHGBp2cUdw7d7efs+fr6IjQ0FCdPnoTRaCxwXl5x5/gBt57JW9izez08PNQLQ8zc3NwKPffPvGGUtP3297WmXafTFfr0kaLai+o7x8QxlbbdXmOy1u19cqYxVYR5skX+Os40Ji3OE8fEMRXGKZ85lj/gPfnkk1i2bFmRF0qEhYVh27Zt0Ov1Fsv0ej22bduG2rVrIzw8XG1v3769uux2CQkJAFDqGzgTERERORunC3nmQ7RLly7FE088ga+++qrIb/WKomDo0KHIzs7G1KlTLZZNnToV2dnZGDZsmEX78OHDAQBxcXHIzc1V29euXYvk5GTExsaiZs2adh4VERERUflyusO1U6ZMwZIlS+Dn54f69esXegXvY489hiZNmgAAJkyYgJ9++gkzZszA/v370axZM+zbtw+JiYmIiorC6NGjLV4bHR2NoUOHIj4+Hs2aNUP37t1x/vx5fP/996hSpUqh5/YRERERVTROF/LMz8XNzs7GtGnTCl2nVq1aasjz9fXFpk2bMHnyZKxYsQJJSUkIDQ3FuHHjMGnSJPj4+BR4/fz589G4cWMsWLAAH330Efz8/NC7d29MmzbN7vf3IyIiInIEp766tiLgY82IyhYfreU4/NkTOacye6wZERERETk/hjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDWLIIyIiItIghjwiIiIiDXLKkPfVV1/h+eefR/PmzeHl5QVFUbB48eIi18/KysLYsWNRs2ZNeHl5oVatWhg/fjyys7MLXd9kMmHu3Llo3LgxfHx8EBwcjH79+uHEiRNlNCIiIiKi8uWUIe/NN9/EggULcPr0aYSGht5xXb1ej/bt22P27NmIjIzEmDFj0KBBA8yaNQsxMTG4efNmgdc8//zzGDVqFEQEo0aNQpcuXbBy5UpERUUhNTW1rIZFREREVG6cMuTFx8fj1KlTuHTpEl544YU7rjtz5kykpKRg4sSJSEhIwPTp05GQkICJEydi9+7dmD17tsX6SUlJiI+PR7t27bBv3z7MmDEDy5Ytw6pVq5CRkYGRI0eW5dCIiIiIyoVThryOHTuiZs2axa4nIoiPj4efnx/i4uIslsXFxcHPzw/x8fEW7QsXLgQATJ06FZ6enmp7165d0aFDByQmJuLMmTN2GAURERGR4zhlyCup1NRUnDt3Dm3atIGvr6/FMl9fX7Rp0wYnTpxAWlqa2p6cnKwuu13nzp0BAJs2bSrbjhMRERGVsQof8gAgIiKi0OXmdvN6er0e58+fR+3ateHm5lbs+kREREQVlbujO2CLzMxMAEBgYGChywMCAizWK+36hcnJyUFOTo7676ysLABAXl4e8vLyAAA6nQ5ubm4wGo0wmUzquuZ2g8EAEVHb3dzcoNPpimw3v6+Zu/utaTMYDCVq9/DwgMlkgtFoVNsURYG7u3uR7UX1nWPimMp7TIAHbGEegzONqaLMk61/IvLy8pxuTFqcJ47JNcdUEhU65DnCe++9h7fffrtAe2JiIu666y4AQI0aNdC0aVMcOHDA4vy+Bg0aIDIyErt27cKlS5fU9iZNmqBmzZrYvHkzrl27pra3atUKISEhSExMtJjQ6Oho+Pj4YM2aNRZ96NatG27cuIGkpCS1zd3dHd27d8fly5exY8cOtd3f3x8xMTFIS0tDSkqK2h4cHIzWrVsjNTUVR48eVds5Jo7JUWMCesEW5r4605gqyjwBMUX/YEtgzZo1TjcmLc4Tx+R6Y9q7dy9KQpH8MdYJTZ8+Ha+99hoWLVqEQYMGWSxbvXo1evTogZEjR2Lu3LkFXvvyyy9j3rx52LBhA2JiYqDX6+Hn54dGjRrh4MGDBdZfsWIF+vTpg7i4OEyZMqXQ/hS2Jy88PByXL19W9wS66rcKjoljKosxvfSJbXvyPh3BPXnWjunFebbtB/h0BPfkcUwcU1mMKSMjA0FBQcjMzFSzR2Eq9J684s6hu/2cPV9fX4SGhuLkyZMwGo0Fzssr7hw/APDy8oKXl1eBdg8PD3h4WP4xcnNzK/TcP/OGUdL229/XmnadTgedruApmEW1F9V3joljKm27vcZkrdv75ExjqgjzZIv8dZxpTFqcJ46JYypMhb7wIiIiAmFhYdi2bRv0er3FMr1ej23btqF27doIDw9X29u3b68uu11CQgIAoF27dmXbcSIiIqIyVqFDnqIoGDp0KLKzszF16lSLZVOnTkV2djaGDRtm0T58+HAAt+6jl5ubq7avXbsWycnJiI2NLdE9+oiIiIicmVMero2Pj8fWrVsBQD13Lj4+HsnJyQCAtm3bYujQoQCACRMm4KeffsKMGTOwf/9+NGvWDPv27UNiYiKioqIwevRoi/eOjo7G0KFDER8fj2bNmqF79+44f/48vv/+e1SpUqXQc/uIiIiIKhqnDHlbt27FkiVLLNq2bdtmcYjVHPJ8fX2xadMmTJ48GStWrEBSUhJCQ0Mxbtw4TJo0CT4+PgXef/78+WjcuDEWLFiAjz76CH5+fujduzemTZuGunXrlu3giIiIiMqB019d6+yysrIQGBhY7BUuRGSdYXNse/3C0fbohWviz57IOZU0e1Toc/KIiIiIqHAMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHREREpEEMeUREREQaxJBHFcJ7772HqKgo+Pv7IyQkBI899hiOHj1qsc7zzz+PunXrwsfHB8HBwejVqxeOHDnioB4TERE5FkMeVQibNm3CiBEjsHPnTqxfvx55eXmIjY2FXq9X13nwwQexaNEiHD58GAkJCRARxMbGwmg0OrDnREREjuHu6A4QlcS6dess/r148WKEhIRg7969aNeuHQBg+PDh6vJatWrhnXfewQMPPIBTp06hbt265dpfIiIiR+OePKqQMjMzAQBVqlQpdLler8eiRYtQu3ZthIeHl2fXiIiInAJDHlU4JpMJo0ePRps2bdCoUSOLZZ9++in8/Pzg5+eHtWvXYv369fD09HRQT4mIiByHIY8qnBEjRuDQoUP47rvvCizr378/9u/fj02bNqF+/fro27cvbt686YBeEhERORZDXgWyefNmPProowgLC4OiKFi1apXFckVRCv3v/fffL/PaAHD48GH07NkTgYGB8PX1RVRUFM6cOWNz7fxGjhyJX375BUlJSahevXqB5YGBgYiIiEC7du2wfPlyHDlyBD/++KNd++CKnGX+yfXwc4/Iegx5FYher8cDDzyATz75pNDl58+ft/jvyy+/hKIoePzxx8u89vHjx9G2bVtERkYiOTkZBw4cQFxcHLy9vW2uDQAigpEjR+LHH3/Exo0bUbt27RK9RkSQk5Njc/3iPuwHDRpU4I9Mly5dbK7rLBw9/66M257rfu65+tyT7Xh1bQXStWtXdO3atcjl1apVs/j3Tz/9hOjoaNSpU6fMa7/xxhvo1q0bZs6cqbbZ84rWESNG4JtvvsFPP/0Ef39/pKenA7i1587HxwcnTpzA999/j9jYWAQHB+Ps2bOYPn06fHx80K1bN5vrmz/shwwZgv/85z+FrtOlSxcsWrRI/beXl5fNdZ2Fo+fflXHbc93PPVefe7Id9+Rp1IULF7B69Wo899xzZV7LZDJh9erVqF+/Pjp37oyQkBC0bNmy0EMb1vrss8+QmZmJDh06IDQ0VP3v+++/BwB4e3tjy5Yt6NatG+rVq4cnn3wS/v7+2L59O0JCQmyu37VrV7zzzjvo3bt3ket4eXmhWrVq6n+VK1e2uW5FUB7z78q47ZWc1j73HD33xe1JnDx5MiIjI+Hr64vKlSujY8eO+O233+xWn2zHkKdRS5Ysgb+/f5Hf/uzp4sWLyM7OxvTp09GlSxckJiaid+/e+M9//oNNmzbZpYb50Ovt/w0aNAgAEBYWhjVr1uDChQvIzc1FWloavv76azRo0MAu9UsiOTkZISEhaNCgAV588UVcuXLFbu99pw/bvLw8TJw4EY0bN4avry/CwsIwYMAAnDt3zm7176Q85p/urCy3vYpEa597JVGWc1/c4er69etj3rx5OHjwILZu3YpatWohNjYWly5dslsfyDYMeRr15Zdfon///uVyTpTJZAIA9OrVC2PGjEGTJk3w6quvokePHvj888/LvL4z6NKlC5YuXYoNGzZgxowZ2LRpE7p27Wq3p23c6cP2+vXr2LdvH+Li4rBv3z6sXLkSR48eRc+ePe1Suzhan//i9maICN566y2EhobCx8cHHTt2RGpqarn1r6y3vYrE1T73ynrui9uT+PTTT6Njx46oU6cO7rvvPnz44YfIysrCgQMH7FK/uN+9lStXIjY2FkFBQVAUBSkpKXapqyU8J0+DtmzZgqNHj6qHMsta1apV4e7ujoYNG1q033vvvdi6dWu59MHRnnrqKfX/GzdujPvvvx9169ZFcnIyHnnkEZvf/07nBgUGBmL9+vUWbfPmzUOLFi1w5swZ1KhRw+b6d6L1+S/uvKiZM2fi448/xpIlS1C7dm3ExcWhc+fO+PPPP8slbJT1tldRuOLnnjPNfW5uLhYsWIDAwEA88MADdnnP4n739Ho92rZti759+2LYsGF2qak1DHka9MUXX+DBBx+02y9acTw9PREVFYWjR49atP/111+oWbNmufTB2dSpUwdVq1bFsWPHHPKHNjMzE4qioFKlSmVeS+vzf6eALSKYM2cO3nzzTfTq1QsAsHTpUtx9991YtWqVxR/h8uLobc9R+LnnmLn/5Zdf8NRTT+H69esIDQ3F+vXrUbVqVbu8d3EXvjz77LMAgFOnTtmlnhYx5FUg2dnZOHbsmPrvkydPIiUlBVWqVFH31mRlZeGHH37ABx98UK61x48fjyeffBLt2rVDdHQ01q1bh59//hnJyck21x42x7bXLxxtcxdK7ezZs7hy5QpCQ0PLvfbNmzcxceJE9OvXDwEBAXZ5T0fOvzM7efIk0tPT0bFjR7UtMDAQLVu2xI4dOxwS8hy57ZUFV/3cs4Yj5j46OhopKSm4fPkyFi5ciL59++K3336zywVvZDuek1eB7NmzB02bNkXTpk0BAGPHjkXTpk3x1ltvqet89913EBH069evXGv37t0bn3/+OWbOnInGjRsjPj4eK1asQNu2be3aD0fJzs5GSkqKes6H+cP+zJkzyM7Oxvjx47Fz506cOnUKGzZsQK9evVCvXj107ty5XPuZl5eHvn37QkTw2Wef2e19XX3+i2K+lc/dd99t0X733Xery2xVUba9suLKn3sVYe59fX1Rr149PPTQQ/jiiy/g7u6OL774otzql7e///4bzzzzDIKCguDj44PGjRtjz549ju5WkbgnrwLp0KEDROSO6wwfPhzDhw93SO0hQ4ZgyJAhdq/tDPbs2YPo6Gj132PHjgUADBw4EJ999hkOHDiAJUuW4OrVqwgLC0NsbCymTp1arvesMge806dPY+PGjXbbiwdw/h2pImx7ZcmVP/cq4tybTCa73IDeGf3zzz9o06YNoqOjsXbtWgQHByM1NdWpb1nEkEdUAsV92CckJJRjbwoyB7zU1FQkJSUhKCjIof1xFeYb8V64cMHiENmFCxfQpEkTu9Rw9m2Pyo6j5/5Oh6uDgoIwbdo09OzZE6Ghobh8+TI++eQT/P3333jiiSfKtF+OMmPGDISHh1vcfLokT19yJB6uJaoA7nTYJi8vD3369MGePXvw9ddfw2g0Ij09Henp6cjNzXVsxzWudu3aqFatGjZs2KC2ZWVl4bfffkOrVq0c2DMi293pcLWbmxuOHDmCxx9/HPXr18ejjz6KK1euYMuWLbjvvvsc3POy8b///Q/NmzfHE088gZCQEDRt2hQLFy50dLfuiHvyKoiKePEB2c+dDttMnjwZ//vf/wCgwN6jpKQkdOjQoby6qUnFnXw/evRovPPOO4iIiFBvoRIWFobHHnvMcZ3WCH7uOVZxexJXrlxZpvWL+93LyMjAmTNn1Bu/m690Nj/9w95OnDiBzz77DGPHjsXrr7+O3bt3Y9SoUfD09MTAgQPtXs8eGPKoRPhh61jFfdgWd96QLVx97u8UsBcvXowJEyZAr9dj+PDhuHr1Ktq2bYt169aVyz3yqGy5+rbvaMX97v3vf//D4MGD1eXmq9knTZqEyZMn270/JpMJzZs3x7vvvgsAaNq0KQ4dOoTPP/+cIY+oouIHvWsrLmArioIpU6ZgypQpdq/Nbc+1ufr8F/e7N2jQIPXRluUhNDS00Jtfr1ixotz6UFoMeURERGTB1QNmYdq0aeNUN78uCYY8IifHD1siIscbM2YMWrdujXfffRd9+/bFrl27sGDBAixYsMDRXSsSQx4RERE5FWf8chsVFYUff/wRr732GqZMmYLatWtjzpw56N+/v/2L2QlDHhHRHdjyx4Z7UYm0pUePHujRo4eju1FiLnufvN27d6Nbt26oVKkSfH198dBDD+G///2vo7tFREREZBcuuScvKSkJnTt3hre3N5566in4+/tjxYoVePLJJ5GWloZx48Y5uotERERENnG5kGcwGDBs2DDodDps3rxZvXnsW2+9hRYtWuD1119Hnz59nPpqGSIiIio7znhOoDVc7nDtxo0bcfz4cTz99NMWTwcIDAzE66+/jtzcXCxZssRxHSQiIiKyA5cLecnJyQCA2NjYAss6d+4MANi0aVN5domIiIjI7lwu5KWmpgIAIiIiCiyrVq0a/Pz81HWIiIiIKiqXOycvMzMTwK3Ds4UJCAhQ1ylMTk4OcnJyCrxfRkYG8vLyAAA6nQ5ubm4wGo0wmUzquuZ2g8Fg8agWNzc36HS6Itvz8vKQe9PDitH+6+pVE4xGo/pvRVHg7u4Ok6nw9tv7bmv9K1du/Wzyjyk/d/dbm6LBYCjQnntTsal2Roah0DGVdJ7sNXazosbq4eFR6Hzk3rTt1/TKlTxue7Bu27tV3/rtj9setz3AMdseAGRlgdteBd32ipunjIwMAMU/t1yRsnyyuROKjY3F+vXrkZqainr16hVYfs899yA7O7vIoDd58mS8/fbbZd1NIiIiojtKS0tD9erVi1zucnvyzHvwigpxWVlZqFy5cpGvf+211zB27Fj13yaTCRkZGQgKCoKi2Paty1pZWVkIDw9HWloaAgICXKq+K4+d9bntsT7rc9t3vfrArT14165dQ1hY2B3Xc7mQZz4XLzU1FQ8++KDFsvT0dGRnZ6NFixZFvt7LywteXl4WbZUqVbJ7P60REBDgsA3O0fVdeeysz22P9Vnf1WqzftGnneXnchdetG/fHgCQmJhYYFlCQoLFOkREREQVlcuFvEceeQR16tTBN998g5SUFLU9MzMT7777Ljw9PTFgwADHdZCIiIjIDlzucK27uzvi4+PRuXNntGvXzuKxZqdPn8asWbNQq1YtR3ezVLy8vDBp0qQCh5Fdob4rj531ue2xPutz23e9+qXhclfXmu3atQuTJk3C9u3bkZeXh8aNG2Ps2LF48sknHd01IiIiIpu5bMgjIiIi0jKXOyePiIiIyBUw5BERERFpEEMeERERkQYx5BERERFpEEOeRpivn3HUdTTmByiLiEP6wPqOqZ+/niPG7er1Acdue44evyPrO3rsAOfeleuXFK+uJSIiItIgl7sZspZcv34diqJg3759UBQFN27cwD///IP77rsP99xzDzw8PODp6Qk3N7cyqX/16lXcuHED27Ztg6enJy5evIicnBw0bdoU/v7+qFSpEqpWrQofHx/W11j9CxcuID09HZs3b4aHhwfOnj0LALj//vvh6+uLsLAw1K5du8ye6+zq9R297Tl6/I6s7+ixc+5du36pCVVYvXr1Ej8/P/Hz8xNFUSz+Cw0Nlb59+8onn3wif/31l/oao9Fot/rR0dGiKIrcddddBepXrlxZ2rVrJ+PHj5cNGzbI1atXWV9D9Vu1aiWKokilSpXEw8NDdDqdWtvb21vq168vffv2lSVLlsjJkyfV2iaTifXtwNHbnqPH78j6jh47596165cWD9dWUNeuXcPw4cPRsWNH5OXlwdvbG4GBgUhJScGxY8dw/PhxHD9+HFeuXEHdunUxZMgQjB492m7f7q5fv4533nkH7du3x/Xr11GpUiX4+Phg//79+Pvvv/HXX3/hwIEDOHbsGKpWrYo+ffrgtddewz333MP6Fbx+Tk4Oli5diubNm+P69esICwtDTk4O/vjjD2RkZOCvv/7Cjh07sGfPHuh0OnTu3Bmvv/46oqKi7DBy1nf0tufo8TuyvqPHzrl37fpWcUi0pDJ3+vRpWbdunUycOFHuvfdeURRFGjZsKMuXLy+X+pcuXZKUlBT57LPPJDY2Vv3m8/HHH8v169dFRMr0mw3rO67+9evXJT09XdauXStDhgyRypUri6Io8uqrr8qlS5dExL57FljfkqO3PUeP35H1HT12zr1r1y8MQ14FZd5QTCaTxf8bDIYC6+3bt09GjhwpiqJI9erV5eeff7ZrffOHhtFoLLABm0wmOXbsmEyfPl2CgoLE29tbPv/8c03VN/+/q9Q3/7zz/7HIPw/5Xbx4Ub766itp0qSJKIoir732mk21na1+YdthWdd39LbnTD//8q7PuXfdub+9viPm3xoMeRVc/l9ug8FgsRHevuHt27dP2rRpI56enrJo0aLy7KaI3Nq7+Pjjj4uiKDJp0iS7vGdpvpWWdf3i+lIW9fPPf15enkVfbu9PWdQvqStXrsjIkSPFzc1NBgwYIDdu3LD5PfOPvbiffVnUz88R9SvK3Itoe/4593em5bl3hvrFYcirgG7fqG7evFlgnfy/BPm/6e3Zs0c6dOgg3t7esmbNmrLtaCH1T58+Lf379xdFUeSrr76qkPVv/4D9559/HFZfRNSTq8urfmnk/6OTnZ0tb775piiKInPmzLH6/fLL/weuvOtfuXJFzp8/X671K9Lci2hr/jn3paOlub+9viPm31q8hUoFpCgKTCYTvvnmG6SkpODKlSvIzc1F8+bN0aNHD0RERECnu3Wfa5PJBEVRoCgKAODBBx/E+vXr0bt3b2zevBldunRRl1lDRIp9vbkvAFCjRg189dVX8PX1RUpKCvr162exvDQ2bNiA/fv3o1KlSoiIiED79u3Lpb5Op0NOTg7GjRuHU6dOwcfHBz179sSzzz5bYF2j0QhFUdQa9qqfm5uLOXPm4NChQzhz5gwMBgMefvhhREdHo0mTJggJCVHr63Q6dY7s9fOX/38j0OJem3/b8PX1xdSpU+Hl5YXTp0/DaDSW+vY+5vdbtmwZDh48CE9PT0RGRuLRRx9FYGBgudS/evUqXnrpJRw7dgwigl69emHcuHEFLmoy36jW/DOyR31nmHvANeefc3+LK869+f0cOf9WK9dISTYxfys4deqUDB48WL1s29/f3+Iy+qioKFmwYEGhe/jM5+ylpqbKzp07reqHXq9XT+LN37fidlsbDAbJzc0VEZH09HRJSUkpVV3z+1++fFmmTJlicel6WFiYvP/+++r7F8ZoNKrf/mypf/LkSXn66adFURQJDg4WHx8fqVq1qqxcuVJd99ixY5KTk1PgPcw/f1vqp6amymOPPaaeVF2lShWL+Y+MjJTJkyfLxYsX7VbfXPvq1auSlZVVYFlJ5t78s9fr9Ra39SlN/XPnzsmYMWPUsbq7u0tAQICMGzdO9Hp9ka/PP/e21D927Jg8+uijoiiK3HfffRIYGCg+Pj6yYMECEbm1d2H//v2F7mUx71Wxpb4j5j5/fVecf8696859/vqOmn9bMeRVIOYN5cUXXxRPT08ZPXq0bNu2TS5evCjbt2+XqVOnSocOHcTDw0MURZGIiAhZsmRJsbu1S8r8QTFt2jR54YUX5Mcff5QTJ04U+CUvq6u3zOM37/bu2LGjfPDBB/L2229LrVq1RFEU+fLLL8usD+b6Y8aMEW9vb3njjTfkjz/+kJ9++kmCgoKkZ8+ecvr0aXn00UclJCREqlWrJiNHjrTbL7W5/rBhw8TX11cmTZokJ06cEBGR33//XRYuXCiDBg2SOnXqiKIo4uPjI9OnTy/2sE5JmOd+4sSJ0qlTJ5k3b56kpKQUOIRUVveDMteZMGGCKIoiTzzxhCxbtkyWLl0qbdq0EUVRZPLkySJStnP/8ssvS0BAgLz33nty5coVOXDggDRo0EBat24tf/75pzz00EOiKIq4ublJnz59ZN++fXat74i5F3Ht+efcu+7c56/vqPm3FUNeBWM0GsXf31+GDh1a6F4rg8EgSUlJ8uyzz4qiKBISEqLeNqU0J6veqb75m1SVKlUkJiZGpk6dKr/++qukp6cXWFdE5MKFC/L666/L4sWLrap5+3tWqlRJevToIZcvXxaRW2PZuXOn1KxZU6pXr14gVOn1elm7dq3Vey5vrx8UFCRPP/20xZ66J598Uu655x5p0aKF1K9fX6Kjo9Ww/eyzz6r9tEf9gICAIuffaDTK3r175fXXX1f38M6dO1ddZmttNzc39YOsfv368txzz8lXX32l/tHJv67IrW/fQ4YMkffff9+m2ub3DAwMlN69e6t7FAwGgxw+fFiioqLE19dX9u7dKyL//qyvXbsmy5Yts9sV5ZUrV5ZnnnnG4uTpYcOGSUBAgDRp0kRatmwp/fr1k7p164qiKNK+ffs77mUobX1Hzb35PVx1/jn3rjv35vqOnH9bMORVMElJSeLt7S2zZ88WkX+/ZRV2Gf327dslLCxM7r77bjl06JBNdc2/OL/++qsoiiKdOnWSZ599VkJDQ9XDpf/5z39k7ty5snPnTsnMzFRf+/PPP4uXl5eMHz9e7au19ZcvXy7e3t7y9ddfi4hY3DLmo48+EkVR5I033hCRf0/M3bZtm9SpU0fee+89i/eypv4PP/wgXl5ean3zMnOofvfdd9Ww+88//0iXLl1EURT54YcfSl2zMFu3bhVfX1959913ReTO83/y5Elp3ry5eHl5yebNm62uaR77xo0bRVEU6dWrl7z++utSv359URRFPD09pXnz5vLKK6/Izz//bHG4aPXq1aLT6eSll15S+2lt/ZUrV4qPj0+hc798+XJRFEWGDx8uIv/O/fbt26VGjRry5ptvWryXNfWXL18uPj4+smzZMnWZ0WiUYcOGqX9UzX8Abt68qZ5SYa8r2R0x9yKuPf+ce9ed+/yvcfT824Ihr4L5/fffxcfHRyZMmFDkOgaDQf2FWrp0qSiKIgsXLrSprnljNwepJUuWiMitAPXhhx9K586dJSAgQHQ6nfotb+nSpfLnn3+q9+g7ePCgiNj2yz5mzBipXbu27Nmzx6JdRCQnJ0cefvhhqVatmmRkZKjL5syZI4qiyO+//25z/RdffFHuvfdei13xx48fl9atW0uLFi3UNvMHTUJCgri5ucmsWbNKXbMwx48flypVqsgzzzxTaP9ELD/416xZI25ubjJz5kyba3/66aeiKIq6R/b06dOycuVKGThwoNx9992iKIoEBgbKI488ItOmTZOtW7fKiBEjRFEU9UuGLT/7iRMnSnh4uLpH9vYP7aeeeko8PT3lzJkzaps9537UqFFSr149ddsTuTUfLVu2lKioKHVd8x+gPXv2iLe3t7z11lulrlkYR869iGvOP+f+Flec+/x1HD3/tmDIq2CuX78u999/vwQGBsq3335b6MUVIv9u0CdPnpRKlSrJyJEjba5tMBhk2rRpotPp5PDhw2p7bm6unD17Vn799Vd58803pUWLFuLp6Sne3t7ywAMPiL+/v9x7770iYtshy7y8PHnhhRfE39+/wEUN5lC1ZMkSdY+aiMiZM2ekS5cuEhERYXP9mzdvymOPPSYREREWP/cVK1aIoijyxRdfiIhlyD548KB4eHjIuHHjrK6bn9FolPbt24uPj4/MnTu30MMB+W/UmZaWJqGhoTJo0CCb686dO1e8vb0LnGty8+ZNSU1NlYULF0r37t3F19dX3bvr4eEhDRs2VPtlLYPBIGPGjBFPT88C95kyjzUhIUEURZExY8aIyK2x22vuc3JyZNCgQVK3bl2L+mvXrhUvLy/1G3v+e1UePnxY/P391T0ZtnLU3Jtru+r8c+5dd+5FnGP+bcGQVwGtX79edDqd+Pn5yeTJk+XQoUNFhr21a9eKv79/gcO71jCZTPLrr7/KSy+9JKdPny50nevXr8uxY8dkxYoVMnr0aAkPDxdFUeTDDz8UkeLvbXQnRqNRpk6dKvfee2+R9yjKzMyU5s2bS1hYmOTl5UlycrL4+vrKO++8Y3P93NxcmTt3rnqOnflnmZaWJuPGjStwU1KRf3fzz58/3+I1tjh48KCEhYWJoigyePBgSUhIkAsXLhT6QbZ69Wrx8/NT9yTaUn/Pnj0ybdo0OXv2bJHrZGdny549e+TDDz+UyMhIu829iMjcuXOlfv36RV7IcvPmTenSpYt4eXnJP//8I5s2bRJfX1+ZNm2azfUNBoN8/fXX6h8R8x+X9PR0mTlzpsXP9fZDTJ988on6HrZy1NyLuO78c+5dd+5FnGf+rcWQV8GYN6JffvlFmjRpIjqdTiIjI2XixImSmJgohw8fVgPQX3/9JZ06dRI/Pz/1XAl7XX1Ukl3fly5dkl69eomiKHar/9dff8ny5cvV5wAWZu7cuaIoisyePVumTp0qiqLIhQsX7FI/v+LeKy8vT8aPH2/X+uaf+44dOyQmJkbc3NwkNDRU+vfvLwsWLJCkpCQ5fvy4GI1G2bJli7Ru3VoqVapk1/kvyXvcvHlT+vXrZ9e5z8jIkO3bt8uVK1eKXMe8V/WNN96QSZMmldncFyc3N1deeeUVzc19Sd/Hleefc++6cy9SNvNvC4a8Cmzfvn0ybtw49SRY8+7xFi1aqIdJvb29ZcqUKSJiv6usimP+1pKSkiJhYWHSrl07u9Uvib///lvuu+8+ueeeeyQqKko9V87W+vnPucivsFsJiIjs3LlTIiMjpVu3bnapf7v09HSZO3euxMTEiL+/v7i5ucndd98tISEhUr16dXFzc5PKlSur36btcXVtSdfZs2ePVKtWrdznPisrSx5++GHx8/OTBx54QFq2bGm3+qWZ++3bt0v9+vWlR48edqufX3nPfUnfQ6vzz7l33bkXca75Ly2GvAouJydHdu/eLXPmzJGBAwdKu3btpHr16hIUFCS9evWS1atXqxtoeX+b+Pbbb8Xd3V09Wdce9+srbgzmX6hp06apt3r55ptvRKT8d5l36tRJQkJC1MfHlUV9g8EgqampsmLFCnnrrbekb9++EhkZKffff78MHz5ctmzZoq5bnvO/atUqueuuu9TzVex1r8Y7MY/PfF6moijy7bffikj5z33r1q0lNDRUEhISyqy+s869iGvPP+fededepHzmvzQY8iqw2395r127JufPn5ebN28Wetfz8nbkyBGZN2+eQ77JnDlzRlq0aCGBgYHl/ktmvmdVmzZtZPLkyeX2IZuTk6PeQ6u45+mWtfPnz8vPP//skMMUly5dks6dO0tQUFC5z73JZJLDhw9Ljx49ZObMmS459yKuOf+c+1tcce5FHDf/xVFERMrnAWpUVkwmU6HPEZQSPFdWy5KTk3Ht2jU8+uij5fusQAB6vR6XLl1CUFAQ/P39y3QuinpvV57/1NRUXL58Ga1atSry96OsGAwG3Lx5Ex4eHvDy8irTWpz7wjlq/jn3jucqv/slxZBHZcbVP2xcGefetXH+XRfn3rkw5JFm8cOGiIhcWfntxyQqZwx4RETkyhjyiIiIiDSIIY+IiIhIgxjyNMRkMrG+C9cnIiLKjyFPQ8yXijsqbLC+Y+ubGY1Gl6zN+qzPbZ/1XbV+URjyKri8vDwAwLp165CUlAQA5XpfINZ3bH2DwQAAWLVqFb744gvk5OSU2/0AHVmb9Vmf2z7ru2r9Uinnmy+TFfLfubuou2ibH+XyxBNP2P1pF6zv2PolUaVKFVEURR5++GE5ePCgy9TWen2j0VjsnfNZv2zqO3rsBoOB9V24vr0w5GlAXl6evPnmm1K/fn1RFEUGDx4sGRkZrO8i9Q0Gg8yZM0c6dOggiqJI165d5fz585qvrdX6pXkMIOvbt76jx14arO/a9UuKIc9JXblyRdatWyevvPKKxMXFydKlS+XXX3+V1NRUuXnzZqGvMRqNMnPmTKlSpYq8+uqrrF+B61v7UO///ve/Ur16dRk4cGCFrM36Inq9Xn777TeZP3++rFy5Ui5fviwixT9onvVtr+/osR87dkzeeecd6dq1q8yYMUMuXLhgsbyofrC+NuqXBYY8J2L+FrlhwwZp3bq1egjQ/F9gYKC0bdtWJk+eLDt37lQPI+bm5qoPqL5x44Z89tln8uuvv7J+Batf2AeI0Wgs9kHbJpPJIpisXr1adu7cWWFqs/6/297vv/8uffv2tdjuunfvLn/88UeR9c3bHutbV99Zxr5u3Tq59957Leo//vjjag3zdqbX69V/s37Fr1/WGPKcjMFgkPvuu09CQkJk5syZsmXLFvnmm29k9uzZMnDgQKlbt67odDqpU6eOzJo1S31dcd80Wb/i1H/iiSfk22+/VT9M8i8rzeGkilSb9W/9senUqZN4eHhIbGysTJ48WR599FHR6XTSrl27Mj8U5Mr1HT12g8EgLVu2lLvvvluWL18uu3fvlmeeeUYURZEdO3bI+vXrpWfPntKkSRMZMWKE7N27l/U1VL8sMeQ5CXNIWLZsmXh6ekp8fHyBda5cuSK7d++W999/X5o2baqeB3Dp0iWL97EmcLC+c9T/7rvv1G+R4eHh8tJLL8mmTZsKrG8wGNRvkbt27ZKVK1eKXq+vcLVZ/9/6X3/9tSiKIhMnTlSXXb16VV544QVRFEXef//9Aq85c+aMuqepuL2OrO9ctfO/11dffSU+Pj7y8ccfq8vS0tLEy8tLnn76aalUqZJUq1ZN6tWrJx4eHuLl5SU///yzVTVZ33nqlweGPCdh3tgGDBgg4eHhcvToURG5dSjw9j8eeXl5snv3bnnsscdEURSZMGEC62uk/pNPPimKokjbtm1Fp9OpoeP++++Xt99+Ww4dOlTgtYMHDxZFUdQ+V6TarP/v4aJOnTpJy5Yt5fDhwyLyb3DIyMiQNm3aSOXKlS2+UIiIzJo1S3Q6nZw4cYL1K1jt/PVjY2OlefPmcuTIEXXZ77//LiEhIVKnTh35/PPPxWQyyYEDB2TSpEmiKIpER0fL9evXra7N+o6vXx4Y8pyIwWCQ0aNHS0BAgPpH404ngRsMBunQoYPcc889kp2dzfoVvL5er5cOHTpI9erVRUTk2rVr8sknn0jLli0tzhOJjo6WTz75RDIzM+XixYvSvHlzadiwoYhYf9jYkbVZ/9Zeo3r16smgQYMstjnzH6Hly5eLoigyY8YMddn58+elS5cuEhERwfo21Hf02P/55x+pVauWvPDCCxb1v/32W9HpdDJ37twCr+nfv7/4+/vLuXPnrK7L+s5Rv6zxZshOQkTg5uaGtm3b4tq1a5g+fToAwN3dXV2e/0kK5psvtm3bFtnZ2di/fz/rV+D6AJCeno709HRUqlQJAODn54eXXnoJO3fuxF9//YU333wTtWvXRnJyMkaOHIkaNWqgV69e2Lt3LwYPHgzA+ruuO7I26wNpaWnIzc2Fv78/3N3d1W3NfGPtnj17olmzZvj4449x/vx5AMCBAwewZcsWDBkyhPVtqO/osR85cgQ5OTkIDAxUP29ycnKwe/duiAiGDh0K4NZnUG5uLgAgODgY7u7uOHXqlNV1Wd856pc1hjwnoSgKTCYTunTpgqeeegqLFy9GbGwsEhIScOPGDSiKon7oGAwGeHl5wWg0Ii8vD7m5ubjvvvtYvwLXB4CgoCAMGDAAI0aMUP/QGAwGiAjq1auHKVOm4Pjx49i6dSuGDRsGRVGwc+dOAFCDhrV3XXdkbdYHfH19ce7cOeTk5BS63MPDA6+++irOnTuH1atXw2QyYcuWLbh+/Tqee+451rehvqPHXqlSJbRs2RKdOnUCcOuxiAaDAfXq1cO7774Lb29vGI1GKIoCT09P5OXl4Z9//oGbmxsaNmxodV3Wd476Za58dxxSUfJfuffnn39K165dRVEU8fX1lSeeeELmz58vBw4csHjN2rVr5Z577pFOnToVeA/Wr5j1s7Oz5erVq4Uuv/3Q8a5du8Tf3186duxoU31H1mb9f1+bnJws//3vf4s89KfX66VBgwbSokUL2bdvn7Rs2VLatGnD+jbUd/TYzfX+/vvvQi/eMN+TM/8FXYcPH5YmTZpIdHQ061fw+uWBIc+JLV26VFq0aKGeD3TPPfdIVFSUPP3009KpUyfx8fGRiIgISUpKEhHrr/BifeesXxTzlZ0ff/yxKIoiX3/9dbnVd2Rt1hf5/PPP1ft3ubm5yZIlS1i/nOo7euzmkPH++++Lt7e3fPvtt6zvQvWtxZDnBN5//331j4fRaLT4ZnDp0iVZvXq1jBw5UiIjI0VRFPHw8JDw8HDp1KmT7Nu3j/U1Vr8krl27JtHR0aIoik3fJB1Zm/Ut65fkj0V6errUrFlTPD09xc/Pj/XttO07euwlfa/Dhw9Lw4YNpWXLljbfm5P1HVu/vDDkOVhSUpK4u7vLihUr7rieeYNKS0uTrVu3ysWLF9VDSLZ82LB+xah/O6PRKBs2bJDPP/9cRKx7FJcja7O+9fVnzJih7lESsX5PgivXr4hjz83NlWHDhomXl5e6F8nazx7Wd2z98sSQ50BGo1Fyc3NlwIAB4ufnd8c9SiKFX6Zvy7cJ1nfu+mX5TdGRtVnftvp5eXmybNmyAvd0Y33nr21rfRGREydOyI0bN0TEus8f1nds/fLGkOcEzp49Kx06dBAvLy+ZOHGiZGZmWizPv+GVxUbF+s5dP/9Jv1qqzfqsz22/5PXt3RfWd2z98sKQ5yQMBoP6CJ369evL559/LsePHy+wXv5DQ/Y84ZP1K159aw8TOlNt1md9bvus76r1ywNDnhMwh4WzZ8/KhAkTxN3dXdzd3SUmJkZmzZolv/76q5w9e7bQ15ov8WZ91q9otVmf9bnts76r1i8vioiIo+/VR5YOHjyIefPmYdWqVbh06RKCg4MRHh6OqlWromHDhggNDcXFixeRk5MDvV6Pzp07o2/fvqzP+hW6NuuzPrd91nfV+mWFIc+JyK09q9DpdLh27Rp+//137N69G1u2bMGOHTtw+fJleHl5wWAw4K677kJISAjuu+8+fPDBB6hVqxbrs36FrM36rM9tn/VdtX5ZY8hzcuZHK3l4eOCvv/5CRkYG6tevj4yMDNSuXdumx+mwPus7a23WZ31u+6zvqvXtiSGvAhMRKIrC+qzvUrVZn/W57bO+q9YvLYY8IiIiIg3SOboDRERERGR/DHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGsSQR0RERKRBDHlEREREGvT/AG5HPdFKzNvdAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "execution_count": 15, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } diff --git a/docs/source/example_grover_sudoku.ipynb b/docs/source/example_grover_sudoku.ipynb index 52597f04..2b67a4e1 100644 --- a/docs/source/example_grover_sudoku.ipynb +++ b/docs/source/example_grover_sudoku.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -46,17 +46,17 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAKoCAYAAAABG4U8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrMUlEQVR4nOzdd1xV9f8H8Ne57C2iKCqCAzdfcQ9KnLjKUZkztXJkWjmytL7mynKmja+VWZqVpqWW5cIBmCtcaG4UFRRRcYAg89737w9+98QVcCBw1+v5ePAozjn38n77Oefc9/2cz/kcRUQERERERGTVNMYOgIiIiIiMj0UhEREREbEoJCIiIiIWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEEy0KRQTr1q1Du3bt4OPjA2dnZ9SuXRsjR45EbGxsvu1TUlIwfvx4+Pn5wcHBAf7+/pg4cSJSU1MLfH+dTofPP/8cgYGBcHJyQvny5dG/f/8C35uIiIjIGiim+OzjCRMm4JNPPoGPjw969uwJd3d3HD16FGFhYXB1dcXevXvRoEEDAEBaWhqeeuopREdHIzQ0FI0aNcKRI0cQFhaGZs2aYdeuXXB0dDR4/+HDh2Pp0qWoX78+unfvjoSEBKxZswaurq7Yv38/AgICjJE2ERERkdGYXFGYmJiIypUrw9fXF0ePHoWHh4e6buHChRg/fjxefvllfPfddwCAqVOnYsaMGXj33Xcxe/ZsddtJkyZhzpw5+OijjzB58mR1eXh4ONq3b482bdpg27ZtsLe3BwBs3rwZ3bp1Q2hoKLZu3frI8ep0OiQkJMDNzQ2Kojxp+kREREQPJCK4e/cuKlWqBI2mGC/6ionZt2+fAJABAwbkW3f27FkBIM8884yIiOh0OqlUqZK4urpKamqqwbapqani6uoq1atXN1jev39/ASCRkZH53r9t27YCQC5duvTI8cbHxwsA/vCHP/zhD3/4w59S/YmPj3/keuVR2MLEBAQEwN7eHnv27EFKSgrc3d3VdX/++ScAoEOHDgCAmJgYJCQkoHPnznBxcTF4HxcXFwQHB2Pr1q2Ij4+Hr68vACAiIkJdd7/OnTsjIiICkZGReOmllx4pXjc3NwBAfHy8QaxEREREJSElJQW+vr5qDVJcTK4o9PLywuzZszFhwgTUqVPHYEzhzp078frrr2PMmDEAcotCAIWOAQwICMDWrVsRExMDX19fpKWl4erVq2jQoAFsbGwK3D7v+xYkMzMTmZmZ6u93794FADg5OcHJyQkAoNFoYGNjA61WC51Op26rX56TkwPJc9XexsYGGo2m0OXZ2dkGMdja5jZbTk7OIy23s7ODTqeDVqtVlymKAltb20KXFxY7c2JOzIk5MSfmxJyMn5P+9cXJ5IpCABg3bhwqV66MYcOG4auvvlKXP/XUUxgwYIDaEMnJyQBgMO4wL33PnX67x92+IB9//DGmT5+eb3lYWBicnZ0BAFWrVkWjRo1w7NgxxMXFqdvUrl0bderUQVRUFG7cuKEuDwoKgp+fH3bt2qUWmQDQqlUreHt7IywszGCna9euHZycnLBp0yaDGLp164b09HSEh4ery2xtbdG9e3ckJSVh37596nI3Nze0b98e8fHxiI6OVpeXL18erVu3RkxMDM6cOaMuZ07MiTkxJ+bEnJiTaeR06NAhlASTu9EEAGbMmIEPP/wQM2bMwKBBg1CmTBlER0dj3LhxiI6Oxtq1a9GjRw+sXLkSAwcOxPvvv48PP/ww3/u8//77+Oijj7Bu3Tr07t0bCQkJqFy5MoKDg7F79+5822/btg2hoaF488038emnnxYY2/09hfou3KSkJLWotNZvLcyJOTEn5sScmBNzKvmcbt26BS8vLyQnJxfv0LViHaFYDLZt2yYAZNy4cfnWXb16VZycnKRmzZoiIvLnn38KABkzZkyB7zVmzBgBIDt27BCR3JtPAEiDBg0K3P7XX38VADJlypRHjjc5OVkASHJy8iO/hogsk5+fX4GDwV9//XURERkxYoRUr15dHB0dpVy5ctKjRw85deqU+vqkpCTp3Lmz+Pj4iL29vVSpUkVGjx7N8wsRGSip2sPkJq/evHkzgNzu2vtVrFgRderUwblz55CamvrQMYD3jzl0cXGBj48PLly4YFCpF7Y9EdHjOHDgAK5evar+bNu2DQDQp08fAECTJk2wbNkynDp1Clu3boWIIDQ0VD0faTQa9OzZExs2bMDZs2exfPlybN++Ha+99prRciIi62FyRWFWVhYAGFz/z+vGjRvQaDSws7NDQEAAKlWqhD179iAtLc1gu7S0NOzZswfVqlVT7zwGgJCQEHXd/fTzE7Zp06a40iEiK1K+fHlUrFhR/fnzzz9Ro0YNhISEAABGjBiBNm3awN/fH40bN8aHH36I+Ph4XLx4EQDg6emJUaNGoWnTpvDz80OHDh3w+uuv46+//jJiVkRkLUyuKNRPFfPJJ5/ku+Hjq6++wuXLl9GqVSs4ODhAURQMGzYMqampmDlzpsG2M2fORGpqKoYPH26wfMSIEQCAKVOmqAUokNtDGRERgdDQUPj5+ZVEakRkRbKysvDjjz/ilVdeKfAOwbS0NCxbtizfF9e8EhISsG7dOrWoJCIqSSZ3o4lWq0X79u2xa9cueHt7o0ePHihTpgwOHz6MnTt3wsnJCREREWjevDmA3BNrcHAwjh49itDQUDRu3BiHDx9WH3MXGRmpThWjd/9j7q5evYrVq1fD1dUV+/btQ61atR453pSUFHh4eBT/YE8iMmtr1qzBgAEDEBcXh0qVKqnLFy9ejHfeeQdpaWmoXbs2Nm7ciBo1ahi8tn///vj999+Rnp6OZ599FmvWrMn3uE4isl4lVXuYXFEI5N7hu3DhQqxZswZnzpxBVlYWKlSogHbt2uG9995D3bp1DbZPTk7GtGnTsHbtWiQmJsLHxwd9+vTB1KlTC5zYUafT4YsvvsCSJUtw7tw5uLq6omPHjpg1a1a+k/PDsCgkooJ07twZ9vb2+OOPPwyWJycn4/r167h69Srmz5+PK1euYM+ePQZFX2JiIu7cuYOzZ89i8uTJCAkJweLFi0s7BSIyUVZVFJoTFoVEdL9Lly6hevXqWLduHXr27FnodllZWfD09MTSpUvRv3//ArfZvXs3nn76aSQkJMDHx6ekQiYiM1JStYfJjSkkIjJ3y5Ytg7e3N7p37/7A7UQEImIw9+n99HOUPWgbIqLiYJJPNCEiMlc6nQ7Lli3DkCFD1MltASA2NharV69GaGgoypcvj8uXL2P27NlwcnJCt27dAACbNm3CtWvX0KxZM7i6uuLEiROYOHEigoOD4e/vb6SMiMhasCgkIipG27dvR1xcHF555RWD5Y6Ojvjrr7+waNEi3L59GxUqVECbNm2wd+9eeHt7A8h9hvo333yDcePGITMzE76+vnjuuecwadIkY6RCRFaGYwqfEMcUEhERUWnimEIiIiIiKjEsComIiIiIRSERERERsSgkIiIiIrAoJCIiIiKwKCQiIiIisCgkIiIiIrAoJCIiIiKwKCQiIiIisCgkIiIiIrAoJCIiIiKwKCQiIiIisCgkIiIiIrAoJCIiIiKwKCQiIiIisCgkIiIiIrAoJCIiIiKwKCQiIiIisCgkIiIiIgC2xg6AiMjcDV9U+n/zm7Gl/zeJyLKxp5CIiIiIWBQSEREREYtCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIigokXhevXr0enTp3g5eUFR0dHVKtWDf3790d8fLzBdikpKRg/fjz8/Pzg4OAAf39/TJw4EampqQW+r06nw+eff47AwEA4OTmhfPny6N+/P2JjY0sjLSIiIiKTY2vsAAoiInjttdewZMkS1KhRA/369YObmxsSEhIQGRmJS5cuwdfXFwCQlpaGkJAQREdHIzQ0FP3798eRI0cwf/58REZGYteuXXB0dDR4/5EjR2Lp0qWoX78+3nzzTSQkJGDNmjUICwvD/v37ERAQYIy0iYiIiIzGJIvCzz77DEuWLMHrr7+Ozz77DDY2Ngbrc3Jy1P+fO3cuoqOj8e6772L27Nnq8kmTJmHOnDlYuHAhJk+erC4PDw/H0qVL0aZNG2zbtg329vYAgAEDBqBbt24YM2YMtm7dWsIZEhEREZkWRUTE2EHklZ6ejsqVK8PT0xNnzpyBrW3hdauIoEqVKkhJSUFiYiJcXFzUdWlpaahYsSK8vb1x/vx5dfmAAQOwatUqREZGok2bNgbv165dO0RERODSpUuoWrXqI8WbkpICDw8PJCcnw93d/TGzJSJLMHxR6f/Nb8aW/t8kItNQUrWHyY0pDAsLw+3bt9GrVy9otVqsW7cOs2fPxldffYVz584ZbBsTE4OEhAQEBwcbFIQA4OLiguDgYMTGxhqMQYyIiFDX3a9z584AgMjIyBLIjIiIiMh0mdzl40OHDgEAbGxs8J///Adnz55V12k0GowbNw7z588HkFsUAih0DGBAQAC2bt2KmJgY+Pr6Ii0tDVevXkWDBg3yXZLO+z769yUiIiKyFiZXFF6/fh0A8Mknn6Bx48aIiopC3bp1ceTIEYwYMQILFixAjRo1MGrUKCQnJwMAPDw8CnwvfZeqfrvH3b4gmZmZyMzMVH9PSUkBAGRnZyM7OxtAbvFqY2MDrVYLnU6nbqtfnpOTg7xX7W1sbKDRaApdrn9fPf0l9bxjKx+03M7ODjqdDlqtVl2mKApsbW0LXV5Y7MyJOTGn/DkBdiht2dnZbCfmxJysOKeSYHJFoT55e3t7/Pbbb6hUqRIA4Omnn8Yvv/yChg0bYsGCBRg1apRR4vv4448xffr0fMvDwsLg7OwMAKhatSoaNWqEY8eOIS4uTt2mdu3aqFOnDqKionDjxg11eVBQEPz8/LBr1y7cvXtXXd6qVSt4e3sjLCzMYAdo164dnJycsGnTJoMYunXrhvT0dISHh6vLbG1t0b17dyQlJWHfvn3qcjc3N7Rv3x7x8fGIjo5Wl5cvXx6tW7dGTEwMzpw5oy5nTsyJORWeE9ATpW3Tpk1sJ+bEnKw0J/1V1eJmcjeaTJw4EfPnz8fTTz+NXbt25VsfEBCAc+fO4fbt29izZw+eeeYZjBkzBp9//nm+bd944w188cUX2LFjB9q3b4+0tDS4urqiQYMG+Oeff/Jtv3btWrzwwguYMmUKZsyYUWB8BfUU+vr6IikpSe1ptNZvLcyJOVlrTq//r/R7ChePZk8hc2JO1prTrVu34OXlVew3mphcT2Ht2rUBAGXKlClwvX55enr6Q8cA3j/m0MXFBT4+Prhw4QK0Wm2+cYUPG6MIAA4ODnBwcMi33M7ODnZ2hh8MNjY2BY5dLOyO6sKW3/++RVmu0Wig0eS/r6iw5YXFzpyY0+Mut6acSlPeuNhOzIk5MafiYHJ3H7dr1w4AcOrUqXzrsrOzce7cObi4uKB8+fIICAhApUqVsGfPHqSlpRlsm5aWhj179qBatWrqRNcAEBISoq67n35+wvunqiEiIiKydCZXFNaoUQOhoaE4d+4cli5darBu9uzZuHPnDnr37g1bW1soioJhw4YhNTUVM2fONNh25syZSE1NxfDhww2WjxgxAgAwZcoUZGVlqcs3b96MiIgIhIaGws/Pr4SyIyIiIjJNJjemEADOnz+P1q1b4/r16+jevTvq1KmDI0eOYOfOnfDz88P+/ftRsWJFALk9gsHBwTh69ChCQ0PRuHFjHD58GGFhYWjWrBkiIyPh5ORk8P7Dhw9XH3PXvXt3XL16FatXr4arqyv27duHWrVqPXKsnLyaiDh5NRGVJquZvBrI7S08ePAghg4dikOHDuGzzz5DTEwMRo8ejaioKLUgBHLHCUZGRmLs2LE4deoUFixYgNOnT2PChAnYsWNHvoIQAL7++mt8+umnAIBPP/0UmzZtQu/evREVFfVYBSERERGRpTDJnkJzwp5CImJPIRGVJqvqKSQiIiKi0sWikIiIiIhYFBIRERERi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiLCExSFu3btQlxc3AO3iY+Px65du4r6J4iIiIiolBS5KGzXrh2WL1/+wG1WrFiBdu3aFfVPEBEREVEpKXJRKCIP3Uan00FRlKL+CSIiIiIqJSU6pjAmJgYeHh4l+SeIiIiIqBjYPs7Gr7zyisHvv/32Gy5evJhvO61Wq44n7Nq16xMFSEREREQl77GKwrxjCBVFQXR0NKKjowvcVlEUNGvWDAsXLnyS+IiIiIioFDxWUXjhwgUAueMJq1evjrFjx+Ktt97Kt52NjQ08PT3h4uJSPFESERERUYl6rKLQz89P/f9ly5ahUaNGBsuIiIiIyDw9VlGY15AhQ4ozDiIiIiIyoiIXhXpRUVE4cOAA7ty5A61Wm2+9oiiYMmXKk/4ZIiIiIipBRS4Kb926hV69emHPnj0PnLOQRSERERGR6StyUTh+/Hjs3r0bbdu2xZAhQ1ClShXY2j5xxyMRERERGUGRq7g///wTzZs3x44dO/jUEiIiIiIzV+QnmqSnp6NNmzYsCImIiIgsQJGLwqCgoAKfZkJERERE5qfIReHUqVOxYcMG7N+/vzjjISIiIiIjKPKYwsTERHTv3h0hISEYOHAgGjduDHd39wK3HTx4cJEDJCIiIqKSp8iD5pN5AI1GA0VRDKajuX98oYhAUZQC5y+0FCkpKfDw8EBycnKhRTERWbbhi0r/b34ztvT/JhGZhpKqPYrcU7hs2bJiC4KIiIiIjIuPuSMiIiKiot9oQkRERESWo8hFYVxc3CP/PKk5c+ZAURQoilLg3c4pKSkYP348/Pz84ODgAH9/f0ycOBGpqakFvp9Op8Pnn3+OwMBAODk5oXz58ujfvz9iY2OfOFYiIiIic1Tky8f+/v6PNHG1oijIyckp6p/B8ePHMXXqVLi4uCAtLS3f+rS0NISEhCA6OhqhoaHo378/jhw5gvnz5yMyMhK7du2Co6OjwWtGjhyJpUuXon79+njzzTeRkJCANWvWICwsDPv370dAQECR4yUiIiIyR0UuCgcPHlxgUZicnIyjR4/iwoULCAkJgb+/f5GDy87OxpAhQxAUFISAgAD8+OOP+baZO3cuoqOj8e6772L27Nnq8kmTJmHOnDlYuHAhJk+erC4PDw/H0qVL0aZNG2zbtg329vYAgAEDBqBbt24YM2YMtm7dWuSYiYiIiMxRkaekeRARwYIFCzB37lzs378f1atXL9L7TJs2DbNnz8bhw4cxd+5cfP/999i3bx9atmyp/p0qVaogJSUFiYmJcHFxUV+blpaGihUrwtvbG+fPn1eXDxgwAKtWrUJkZCTatGlj8PfatWuHiIgIXLp0CVWrVn2kGDklDRFxShoiKk0lVXuUyI0miqLg7bffRv369TFx4sQivcfhw4cxa9YsTJ06FfXq1Stwm5iYGCQkJCA4ONigIAQAFxcXBAcHIzY2FvHx8eryiIgIdd39OnfuDACIjIwsUsxERERE5qrIl48fRdOmTbF06dLHfl1mZiYGDx6MoKAgvPPOO4VuFxMTAwCFjgEMCAjA1q1bERMTA19fX6SlpeHq1ato0KABbGxsCtw+7/sWFltmZqb6e0pKCoDcS93Z2dkAcif2trGxgVarhU6nU7fVL8/JyTGY9NvGxgYajabQ5fr31bO1zW22+8dqFrbczs4OOp3OYBJxRVFga2tb6PLCYmdOzIk55c8JsENpy87OZjsxJ+ZkxTmVhBItCs+fP1+kwD/44APExMTg0KFDBRZvesnJyQAADw+PAtfru1T12z3u9gX5+OOPMX369HzLw8LC4OzsDACoWrUqGjVqhGPHjhncfV27dm3UqVMHUVFRuHHjhro8KCgIfn5+2LVrF+7evasub9WqFby9vREWFmbw79iuXTs4OTlh06ZNBjF069YN6enpCA8PV5fZ2tqie/fuSEpKwr59+9Tlbm5uaN++PeLj4xEdHa0uL1++PFq3bo2YmBicOXNGXc6cmBNzKjwnoCdK26ZNm9hOzIk5WWlOhw4dQkko9jGFOp0OV65cwfLlyzFt2jR06NABYWFhj/z6ffv24amnnsK0adMwZcoUdfnQoUPzjSlcuXIlBg4ciPfffx8ffvhhvvd6//338dFHH2HdunXo3bs3EhISULlyZQQHB2P37t35tt+2bRtCQ0Px5ptv4tNPPy0wvoJ6Cn19fZGUlKQWldb6rYU5MSdrzen1/5V+T+Hi0ewpZE7MyVpzunXrFry8vEznMXf6Zx8XRkTg6emJBQsWPPJ75uTkYMiQIfjPf/6DSZMmPXR7fY9fYT17+ku7+u0ed/uCODg4wMHBId9yOzs72NkZfjDY2NgU2NOp35Eedfn971uU5RqNBhpN/iGkhS0vLHbmxJwed7k15VSa8sbFdmJOzIk5FYciv2ubNm0KLAo1Gg08PT3RrFkzvPzyy/D29n7k90xNTVXH8+mnirlfq1atAADr169Xb0ApbAzg/WMOXVxc4OPjgwsXLkCr1eb7h37YGEUiIiIiS1XkojAiIqIYw8jl4OCAV199tcB1u3btQkxMDHr06IHy5cvD398fAQEBqFSpEvbs2YO0tLR8U9Ls2bMH1apVg6+vr7o8JCQEP//8M/bs2ZNvShr9/IT3LyciIiKydCV6o8njcnJyKvRu5aFDhyImJgaTJ09WxxQCwLBhwzBjxgzMnDnTYPLqmTNnIjU1Fe+9957B+4wYMQI///wzpkyZYjB59ebNmxEREYHQ0FD4+fmVQHZEREREpqtYisI9e/YgOjoaKSkpcHd3R1BQUIHzAJaEd955B7///jvmzJmDI0eOoHHjxjh8+DDCwsLQrFkzjB071mD7du3aYdiwYVi6dCkaN26M7t274+rVq1i9ejXKli2Lzz//vFTiJiIiIjIlT1QU7t27Fy+//DLOnTsHIPfmEv04w4CAACxbtkwdA1hSXFxcEBkZiWnTpmHt2rUIDw+Hj48PJkyYgKlTp8LJySnfa77++msEBgZiyZIl+PTTT+Hq6orevXtj1qxZqFGjRonGS0RERGSKijwlzYkTJ9CiRQvcu3cPnTp1Qrt27eDj44PExESEh4cjLCwMrq6u2L9/f6FPJLEEfMwdEfExd0RUmkqq9ihyT+GMGTOQlZWFTZs2oUuXLgbr3n33XWzZsgU9evTAjBkz8PPPPz9xoERERERUcoo80VZERAReeOGFfAWhXpcuXfDCCy8YzPRNRERERKapyEVhcnIyqlWr9sBtqlWr9sBHxhERERGRaShyUVipUiXs37//gdv8/fffqFSpUlH/BBERERGVkiIXhT169EBERASmTJmCjIwMg3UZGRmYOnUqwsPD0bNn6T8onoiIiIgeT5HvPr558yZatGiBCxcuwMvLC82bN0eFChVw7do1HDhwADdu3ED16tURFRWFsmXLFnfcJoN3HxMR7z4motJkcncfe3l5Yf/+/XjnnXfw888/Y9OmTeo6R0dHvPzyy5gzZ45FF4REREREluKJJq8uV64cvvvuO3z99dc4ffq0+kSTOnXqwM7OrrhiJCIiIqIS9thF4axZs5CWlobp06erhZ+dnR0CAwPVbbKysvD+++/Dzc0NkyZNKr5oiYiIiKhEPNaNJtu3b8cHH3wALy+vB/YE2tvbw8vLC++//z7nKSQiIiIyA49VFK5YsQKenp4YM2bMQ7cdPXo0ypYti2XLlhU5OCIiIiIqHY9VFO7duxcdO3aEg4PDQ7d1cHBAx44dsWfPniIHR0RERESl47GKwoSEBFSvXv2Rt69WrRquXr362EERERERUel6rKJQo9EgOzv7kbfPzs6GRlPk+bGJiIiIqJQ8VsVWqVIlHD9+/JG3P378OCpXrvzYQRERERFR6XqsovDpp5/Gzp07cfHixYdue/HiRezcuRNt2rQpamxEREREVEoeqygcPXo0srOz8cILLyApKanQ7W7evIk+ffogJycHo0aNeuIgiYiIiKhkPdbk1Y0bN8bYsWOxaNEi1KtXD6+99hratWuHKlWqAACuXLmCHTt2YMmSJbhx4wbGjx+Pxo0bl0jgRERERFR8HvuJJgsWLICjoyPmzZuHWbNmYdasWQbrRQQ2NjaYPHkyPvzww2ILlIiIiIhKzmMXhYqi4KOPPsKrr76KZcuWYe/evUhMTAQAVKxYEcHBwRg6dChq1KhR7MESERERUcl47KJQr0aNGuwJJCIiIrIQnESQiIiIiFgUEhERERGLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIoIJFoVXrlzBokWLEBoaiqpVq8Le3h4VK1bE888/j7///rvA16SkpGD8+PHw8/ODg4MD/P39MXHiRKSmpha4vU6nw+eff47AwEA4OTmhfPny6N+/P2JjY0syNSIiIiKTZXJF4eeff45x48YhNjYWoaGhmDBhAp566in8/vvvaN26NVavXm2wfVpaGkJCQrBw4ULUqVMH48aNQ+3atTF//ny0b98eGRkZ+f7GyJEj8eabb0JE8Oabb6JLly5Yt24dmjVrhpiYmNJKlYiIiMhk2Bo7gPs1b94cERERCAkJMVj+119/oUOHDhg1ahR69eoFBwcHAMDcuXMRHR2Nd999F7Nnz1a3nzRpEubMmYOFCxdi8uTJ6vLw8HAsXboUbdq0wbZt22Bvbw8AGDBgALp164YxY8Zg69atpZApERERkelQRESMHcSj6ty5M8LCwnDgwAE0bdoUIoIqVaogJSUFiYmJcHFxUbdNS0tDxYoV4e3tjfPnz6vLBwwYgFWrViEyMhJt2rQxeP927dohIiICly5dQtWqVR8pppSUFHh4eCA5ORnu7u7FkygRmZXhi0r/b34ztvT/JhGZhpKqPUzu8vGD2NnZAQBsbXM7OGNiYpCQkIDg4GCDghAAXFxcEBwcjNjYWMTHx6vLIyIi1HX369y5MwAgMjKypFIgIiIiMklmUxTGxcVh+/bt8PHxQWBgIACo4/8CAgIKfI1+uX67tLQ0XL16FdWqVYONjc1DtyciIiKyFiY3prAg2dnZeOmll5CZmYk5c+aoBV1ycjIAwMPDo8DX6btU9ds97vYFyczMRGZmpvp7SkqKGmN2djYAQKPRwMbGBlqtFjqdTt1WvzwnJwd5r9rb2NhAo9EUulz/vnr6ntKcnJxHWm5nZwedTgetVqsuUxQFtra2hS4vLHbmxJyYU/6cADuUtuzsbLYTc2JOVpxTSTD5olCn02Ho0KHYtWsXhg8fjpdeesmo8Xz88ceYPn16vuVhYWFwdnYGAFStWhWNGjXCsWPHEBcXp25Tu3Zt1KlTB1FRUbhx44a6PCgoCH5+fti1axfu3r2rLm/VqhW8vb0RFhZmsAO0a9cOTk5O2LRpk0EM3bp1Q3p6OsLDw9Vltra26N69O5KSkrBv3z51uZubG9q3b4/4+HhER0ery8uXL4/WrVsjJiYGZ86cUZczJ+bEnArPCeiJ0rZp0ya2E3NiTlaa06FDh1ASTPpGE51Oh1deeQXff/89Bg0ahO+//x4azb9XvDdu3IhnnnkGY8aMweeff57v9W+88Qa++OIL7NixA+3bt0daWhpcXV3RoEED/PPPP/m2X7t2LV544QVMmTIFM2bMKDCmgnoKfX19kZSUpPY0Wuu3FubEnKw1p9f/V/o9hYtHs6eQOTEna83p1q1b8PLyKvYbTUy2p1Cn0+Hll1/GihUr0L9/fyxfvtygIAQePgbw/jGHLi4u8PHxwYULF6DVavONK3zYGEUAcHBwUKfDycvOzk69EUbPxsamwLGL+h3pUZff/75FWa7RaPL9+z1oeWGxMyfm9LjLrSmn0pQ3LrYTc2JOzKk4mOSNJnkLwr59++KHH34o9MaQSpUqYc+ePUhLSzNYl5aWhj179qBatWrw9fVVl4eEhKjr7qefn/D+qWqIiIiILJ3JFYX6S8YrVqxAnz598OOPPxZYEAK53a7Dhg1DamoqZs6cabBu5syZSE1NxfDhww2WjxgxAgAwZcoUZGVlqcs3b96MiIgIhIaGws/Pr5izIiIiIjJtJjemcNq0aZg+fTpcXV3x1ltvFdhF2qtXLwQFBQHI7REMDg7G0aNHERoaisaNG+Pw4cMICwtDs2bNEBkZCScnJ4PXDx8+HEuXLkX9+vXRvXt3XL16FatXr4arqyv27duHWrVqPXK8nLyaiDh5NRGVppKqPUxuTOHFixcBAKmpqZg1a1aB2/j7+6tFoYuLCyIjIzFt2jSsXbsW4eHh8PHxwYQJEzB16tR8BSEAfP311wgMDMSSJUvw6aefwtXVFb1798asWbNQo0aNkkqNiIiIyGSZXE+huWFPIRGxp5CIShMfc0dEREREJYZFIRERERGxKCQiIiIiFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRGQkH3/8MZo1awY3Nzd4e3ujV69eOHPmjLr+4sWLUBSlwJ9ffvnFiJETEVkmFoUW4GEfrnmJCLp27QpFUfDbb7+VbqBEeURGRmL06NHYv38/tm3bhuzsbISGhiItLQ0A4Ovri6tXrxr8TJ8+Ha6urujatauRoycisjwsCi3Awz5c81q0aBEURTFClPSoHlbk37p1C2+88QZq164NJycnVK1aFW+++SaSk5ONGPXj27JlC4YOHYr69eujYcOGWL58OeLi4nDo0CEAgI2NDSpWrGjws379erz44otwdXU1cvR0v0f5cjpy5EjUqFEDTk5OKF++PHr27InTp08bKWIi7rf3Y1FoAR724aoXHR2NBQsW4LvvvjNSpE/mUQ7ejIwMjB49Gl5eXnB1dcXzzz+Pa9euGSnionlYkZ+QkICEhATMnz8fx48fx/Lly7Flyxa8+uqrRo78yeiL2rJlyxa4/tChQ4iOjjb7PC3Vo3w5bdKkCZYtW4ZTp05h69atEBGEhoZCq9UaMfLHYy3nIWvJ01r220eliIgYOwhzlpKSAg8PDyQnJ8Pd3d3Y4QAAzp07h4CAAPzzzz9o0KABAODevXto2rQpPv74Y/Ts2ROKomD9+vXo1auXcYN9DF26dEG/fv3QrFkz5OTk4L333sPx48dx8uRJuLi4AABGjRqFjRs3Yvny5fDw8MCYMWOg0WiwZ88eI0dfdDdu3IC3tzciIyPRpk2bArf55ZdfMGjQIKSlpcHW1raUI3xyOp0OPXr0wJ07d7B79+4Ct3n99dcRERGBkydPlnJ0Dzd8Uen/zW/Glv7ffByPst8eO3YMDRs2xLlz51CjRo1SjrBorOU8ZC153s9c9tuSqj3M79ODHkin02Hs2LEIDg5WC0IAGDduHFq3bo2ePXsaMbons2XLFoPfly9fDm9vbxw6dAht2rRBcnIyvv32W6xcuRLt27cHACxbtgx169bF/v370bJlS2OE/cQe1oOm38bd3d0sC0IAGD16NI4fP15oQZieno6VK1diypQppRwZFdXD9tu0tDQsW7YM1apVg6+vb2mG9kSs5TxkLXnez1L320fFy8cWRv/h+vPPP6vLNmzYgJ07d2LRokXGC6wE3H/wHjp0CNnZ2ejYsaO6TZ06dVC1alXs27fPKDE+qcKK/LySkpIwc+ZMjBgxopSjKx5jxozBn3/+ifDwcFSpUqXAbX799Vfcu3cPgwcPLuXoqCgetN8uXrwYrq6ucHV1xebNm7Ft2zbY29sbKdInZw3nIcA68rSm/bYwLAotSGEfrjt37sT58+dRpkwZ2Nraqr1Jzz//PNq2bWukaJ9MQQdvYmIi7O3tUaZMGYNtK1SogMTERCNE+eQKKvLzSklJQffu3VGvXj1MmzatdIN7QiKCMWPGYP369di5cyeqVatW6LbffvstevTogfLly5dihFRUD9pvBw4ciCNHjiAyMhK1atXCiy++iIyMDCNE+eSs5TxkLXlay377IOZ5rYkMiAjeeOMNrF+/HhEREfk+XCdNmoRhw4YZLAsMDMTChQvx7LPPlmaoxeZhlxstgb7I37VrV4E9aHfv3kWXLl3g5uaG9evXw87OzghRFt3o0aOxcuVK/P7773Bzc1M/SDw8PODk5KRud+7cOezatQubNm0yVqj0GB6233p4eMDDwwMBAQFo2bIlPD09sX79evTv398I0T4ZazgPAdaRpzXttw/CotACPOzDVT+dx/2qVq36wN4ZU1XYwVuxYkVkZWXhzp07Bt9er127VmD+puphRT6Q20PYuXNnODg4YMOGDXB0dDRCpE/myy+/BIB8vdXLli3D0KFD1d+/++47VKlSBaGhoaUYHT2uR9lvC3qNiCAzM7MUIixeln4e0rP0PK1tv30YXj62AF9++SWSk5PRtm1b+Pj4qD+rV682dmjF6mGXG5s0aQI7Ozvs2LFDXXbmzBnExcWhVatWpR1ukY0ePRo//vgjVq5cqRb5iYmJSE9PB5BbEOqnTPj222+RkpKibmNOUyToT6z3/+QtCAHgo48+QlxcHDQanq5M2cP229jYWHz88cc4dOgQ4uLisHfvXvTp0wdOTk7o1q2bkaN/dNZyHrKWPK1lv31UnJLmCZnilDSW6vXXX1d7RGvXrq0uz3u5cdSoUdi0aROWL18Od3d3vPHGGwCAvXv3GiXmoihscnF9D1pERATatWtX4DYXLlyAv79/CUZHBeGUNA/fbxMSEjBs2DAcOnQIt2/fRoUKFdCmTRt88MEHBsezqbOW85C15Gmu+21J1R4sCp8Qi8LS87CDF8idTHXChAlYtWoVMjMz0blzZyxevNisLmeQ+WFRaD2s5TxkLXmaKxaFJopFIVHhrKVYspY8icg0lFTtwUE6RERERMS7j80FeyKIyNh4HiJzxP320bEoJDICnqSIiMjUsCgkk8JiiYiMzVrOQ9aSJz06jikkIiIiIhaFRERERGTFReGBAwfQrVs3lClTBi4uLmjZsiXWrFlj7LCIiIiIjMIqxxSGh4ejc+fOcHR0RL9+/eDm5oa1a9eib9++iI+Px4QJE4wdIhEREVGpsrqewpycHAwfPhwajQa7du3CkiVLsGDBAhw9ehS1atXCe++9h0uXLhk7TCIiIqJSZXVF4c6dO3H+/HkMGDAAQUFB6nIPDw+89957yMrKwvfff2+8AImIiIiMwOqKwoiICABAaGhovnWdO3cGAERGRpZmSERERERGZ3VjCmNiYgAAAQEB+dZVrFgRrq6u6jYFyczMRGZmpvp7cnIyAODWrVvIzs4GAGg0GtjY2ECr1UKn06nb6pfn5OQg7yOnbWxsoNFoCl2enZ2NrAy7ImZcdDdvZqv/XxI55WVrm7srZmUU/BD2knT7dsnmlJOTk2+5MfJMSUGJ5lTQcmPst3fu6Eo0Jzs7O+h0Omi1WnWZsY7PksxJURTY2toaLDfmeaikcsq7XH9+M/b5tiRy0st7Ls/KsCmpdAqVN0+g+HMqaHlWRgkmVIg7d0o2p1u3bgGAwTmuOChS3O9o4kJDQ7Ft2zbExMSgZs2a+dZXrlwZqamparF3v2nTpmH69OklHSYRERHRA8XHx6NKlSrF9n5W11P4pCZPnozx48erv+t0Oty6dQteXl5QlNLv/XmQlJQU+Pr6Ij4+Hu7u7sYOp8QwT8vCPC0L87QszNM0iAju3r2LSpUqFev7Wl1R6OHhAQCF9gSmpKTA09Oz0Nc7ODjAwcHBYFmZMmWKLb6S4O7ubpI7dXFjnpaFeVoW5mlZmKfx6euZ4mR1N5roxxIWNG4wMTERqampBY43JCIiIrJkVlcUhoSEAADCwsLyrdu6davBNkRERETWwuqKwg4dOqB69epYuXIloqOj1eXJycn46KOPYG9vj8GDBxsvwGLk4OCAqVOn5rvcbWmYp2VhnpaFeVoW5mnZrO7uY6Dwx9xdunQJ8+fP52PuiIiIyOpYZVEIAFFRUZg6dSr27t2L7OxsBAYGYvz48ejbt6+xQyMiIiIqdVZbFBIRERHRv6xuTCERERER5ceikIiIiIhYFBIRERERi0IiIiIiAotCKmU6na7A5ZZ4v5Ml56rVavMtExGLyK0wltyeZFms5fi0ljzz5lPSubEopFKl0WgQHx+Pu3fv4uzZszhx4gQAQFEUizuQLTlXGxsb3LlzBwAQFxeHa9euQVEUKIpi3MBKkCW3JwDk5OQAAK5du4YLFy4gLS0NiYmJuH79upEjK17WkKe1HJ/WkKeIQFEU3Lx5E8nJyVAUBbdu3UJGRkaJ/D3bEnlXogIMHz4cR44cQVJSEm7evAlHR0ekp6fD1dUVTZo0Qdu2bdGsWTMEBQWhTJky6jc+jcb8vrtYcq6vvfYa4uPjERsbi9TUVNjb2yM9PR3ly5dHcHAwWrdujYYNGyIgIACOjo7Q6XRmf6K25PYEcif0/+qrr3DkyBHk5OQgJSUFOTk5qFatGtzd3VGrVi08/fTT6NKlC7y9vY0dbpFZQ57WcnxaQ55hYWFYv349jhw5guzsbCQlJcHOzg7Vq1eHm5sbGjRogLZt26JNmzawsbEplr/JeQqpVCQmJqJLly5o3rw5dDodvLy8oNVqER0djaSkJFy5cgU3b96Em5sbQkND8cYbb6BNmzbGDrtILDnXo0ePomfPnmjYsCEURUG5cuWQnJyMEydOqD0u2dnZqFatGp5//nmMGTMGVatWNXbYT8SS21Pv3Xffxe+//46QkBDY2Njg1q1bsLW1RWJiIqKjo3Hr1i0AQEBAAPr164f+/fujTp060Ol0ZlP4Apafp7Ucn9aSZ69evXD48GG0bNkS6enpyMzMBABcvXoVJ0+eVK9QtG3bFgMHDsSzzz4Lb29vtXexSISohOl0OhERuXv3rrosOztb/f8bN25IeHi4fPbZZ9K9e3dxcXERRVFk0KBBcuzYMRER0Wq1pRt0EVlyrvrcEhIS1GUZGRnq/58+fVpWr14t7733njRu3FgURREnJyeZMWOGXL16VUREcnJySjfoJ2TJ7ZmXPr+8uaWkpMjdu3fl1q1bEhYWJoMGDRJHR0dRFEU6d+4sf//9t7HCLTJLztNajk9ryVNEJCkpSUT+zU+n08m1a9ckKSlJzpw5I19++aW0aNFCFEURe3t7GTlypFy5cuWJ/iaLQioV+gM57wdkTk6OulwvISFBfvrpJ2ndurUoiiKdOnVSD2RzYQ255j2p3n+CzcnJkX/++Udmz54tVapUEUVRZNSoUaUdYrGxhvbM60EfmJcvX5bJkydL+fLlxcnJSRYsWGDwgWVOLDlPazk+rSVPkQfvr/v27ZO+ffuKvb29VKtWTX7//XfR6XRF2ldZFJLRFbbzfvHFF1K2bFnx8/OTPXv2GCGy4mfJuRaUW0JCgrz++uuiKIq0a9dOLly4YJzgSoglt2deWq1WLYrT0tLk119/laCgIHF2dpbvvvvOyNEVH0vO01qOT2vJU8SwULx27ZosWrRIvL29xd/fX/bu3Vuk92RRSKUm74Ga9/+1Wq36u06nM+iRWbVqlfj4+EjTpk0lLi6u9IJ9QtaQ6/055s0lb54ZGRkye/ZscXJyksGDBxtc6jEXltyehV3eftgltsuXL0ufPn3EwcHBLAoma8lTz1qOT0vNU5/H/fk8bDjK7t27pWHDhuLt7S07d+587L/LopBKTU5OjiQmJqr/n5KSkm+bgnpdjhw5ItWrV5d58+aZxaUbEcvOVavVSmpqqojk5pCVlZVvfUGx//TTT1K2bFlZtWpVqcRZnCy5PUVE7t27p/731q1bD9w2b0/MjRs3pGPHjtKkSRO5efNmicf5pKwhT2s5Pq0hT30BmJGRYTAOtiB5cz158qTUqFFDevfuLZmZmY/1NzklDZWoffv2Yd26dfj777+Rnp6OtLQ0pKSkoH79+qhQoQICAgLQqFEjBAcHw9PT0+COKfn/O6uCgoKwePFi2NramvR0Apac6969e7F7927s3bsXOTk5uHnzJnJyclC/fn2UK1cOtWrVQpMmTdCoUaN8d2nK/98J17dvX2RnZ8Pf3984STwmS25PvY8++gixsbGIi4vDlStX4OnpCZ1OBzc3NwQHB6NDhw6oW7cuypYtCyB3smCNRqPmUq5cOWzatAmrV6+Gq6urMVN5IEvP01qOT2vIU0Tw2Wef4ebNmzh58iTu3LkDd3d3aLValCtXDh07dkSzZs3g6+sLBwcHALn7a94paerWrYsdO3bgzz//hK3t45V5nJKGStTIkSPxyy+/oHnz5nBycsKtW7eQk5ODu3fv4uLFi+r8UiEhIXjhhRfwzDPPwMfHJ99J2RxYcq4dOnTA3r170ahRI+Tk5ODevXvQarW4e/curl69ChFBxYoV0bVrV/Tu3Rtt27aFq6trvpMVgCebLqEUWXJ7AsCBAwcQEhKCwMBAZGVloXz58sjJyUF0dDRSUlLUJ7g0bNgQQ4cOxYgRI+Dk5GTwHvqpWjIyMuDo6GiMNB7KGvK0luPTGvJct24d+vbtC19fX4gIypYti3v37uHMmTPqNs7OzujYsSNGjhyJrl275nsPfW5paWlwcXF5vAAeq1+R6DHpB/Tqu/lFci/FnD9/Xg4fPizffvutdOvWTezt7cXJyUleeeUVuXz5cr73MeVLb3qWmqtWq5V//vlHRHLzEcm9hBoTEyPHjh2TrVu3yn//+1+pV6+eKIoilStXlo8//jjfWC1Ty+thLLU9Rf6N6fTp0+qyvJdTDx48KJ9++qkMGDBAvL29RVEU8fX1lSVLlkhycrKImMdUO9aQp7Ucn9aSZ2pqquzfv19ERLKysiQhIUFycnLk+vXrsmHDBnnnnXekXbt2YmdnJ4qiSJs2bSQsLEyys7PzjaksChaFVGoK21mzsrJk9+7dMnjwYLG1tZWKFSuaxXiPB7HkXAvL7datW/Lzzz9LSEiIKIoizZs3V++8NfUP1oexlva8/wNTn9/o0aPF1tZWHB0d5eOPPy7tEIuFNeaZl6Udn5ae54P21+vXr8vq1aulW7duoiiKVK1aVdauXVssf5dFIRlFQd/WEhISZNGiRVKuXDmpUqWKbNq0yQiRFT9LzbWgvLRarZw4cULGjh0rGo1GWrVqJefOnTNCdCXHUtszr4Lucjx58qQ8//zz6uTct2/fNk5wxciS87SW49Oa8izoTvkNGzZIo0aNxMbGRmbMmJHvhpvHxaKQjKqgO6pOnTolISEh4unpKdu3bzdCVCXDknK9f1qWwk5Wfn5+UqdOHTl16lRphlcqLKk9RQwn6b5/mh3975cvX5aRI0eKoijyzjvvmPyluIJYQ57WcnxaS54ihlMn3Z/r0aNHJTQ0VBwdHeWHH354or/DopBK3P0n1PT09AKn9Mj7rf348eNSv359CQ4OLnBbU2XJud6fW2ZmZqHf0vW2bt0qZcqUkcGDBz90SgVTZMntWZBHnb5iwYIFUqZMGdm8eXMJR1QyLDFPazk+rSXPx3X37l0ZOnSoVKhQQaKjo4v8PpyShkqU/P9dUFlZWfjtt9/w888/486dO3BxcUGVKlUwdOhQtGjRAgAMphCoX78+duzYgTVr1qi33Zs6S89VURSICNatW4fNmzcjLS0Nzs7OqFatGoYMGQJfX18AhrmFhoYiLCwMO3fuzDdFhKmz9PbMKy4uDj/88AO2bduGnJwcdOzYES1btkSnTp3Uuza1Wi1EBLa2thg2bBgyMzNNcnqWB7HkPK3l+LSWPAHg4sWL2Lx5MzZv3gwPDw+EhISgadOmCAoKUrfJycmBRqOBq6srpk6dCnd398eehsZAMRSoRA+k1Wpl/PjxYmtrK2XLlpUWLVqIq6urKIoiq1evFpHcyWT1vSp576Ayt54WS8xV/y08NTVVxo0bJzY2NuLs7CzVq1cXjUYjiqLI7t27RSS3J03fC5N38t+HTRRsqiyxPfX0l5/++OMP9Y7NGjVqiL+/vyiKIvXr13/oe5jDZVVLz9Najk9ryVN//li/fr3Url1bFEURb29v8fDwEEVRpFevXo/8HkXBopBKjP5k/PPPP4udnZ0MGjRIkpKSJCMjQ8aMGSMajUZ91FBSUpJMmTLFbAcDW3Ku+sstn332mdjZ2cnQoUMlPj5ebt68KT179pQyZcqo28bFxcmiRYskKSnJWOEWC0tuz/s1aNBA/P39ZevWrSIi8v3334utra3MnDlTRHKfpjB37lxZsmRJgY/eMheWmqe1HJ/WkqdI7t3w+i8uO3fulJs3b8qcOXNEURT1UYvJyckyb948g0fZFcf+yqKQSox+B23Tpo00bdpUjh07JiK5j/6qV6+ePPPMM+q2R48eFUVR5McffzRKrE/KGnKtU6eOdOjQQZ2/b/fu3VKlShUZOXKkus0ff/whiqIU6ZmbpsTS21Of37Zt20RRFPnss8/UdR9//LEoiiJXrlxRl3Xs2FE6deokd+7cKfVYn4S15CliPcenJeep/zK6fPlysbOzk2+//VZEcns73377bbG1tTUYD1unTh0ZNmxYsT7H2XwurpPZ0Wg0uHPnDs6dO4c6deqgdu3aAICjR4/i1KlTGDVqlLrtxYsXUbFiRaSmpgL49zFh5sJSc9XHFhsbi8uXL6NRo0bq46EOHTqEK1eu4LXXXlO3T0xMRIUKFXD37l2D15sbS23P+23ZsgU+Pj5o0qQJAODcuXP4448/0LRpU1SqVAkAkJ6ejpycHOh0OpN8msejsNQ8reX4tJY89eMdN2/ejICAAHXM8rFjx/Dnn3+iW7dusLe3BwDcuHEDNjY2uHfvXrGOXWZRSCXq1q1bcHNzQ3Z2Nuzt7XHt2jXs3LkT7u7u6Natm7rd6dOncffuXTRr1gyA+RzEeVlirvrHQCUlJcHR0VE9+Vy6dAlhYWHw9/c3GPR89uxZZGdno1GjRsYIt1hZYnvq6T987OzskJycDD8/PwC5Hz5RUVEYMWKEuu25c+eQlJSEChUqwMHBQX0snDmw9Dyt5fi0pjyzs7MBAGlpaahZsyYA4PDhwzhz5oxB4XvmzBmkpqaicuXKAFBs+yuLQioxIoLq1aujUqVK2Lt3LzIzM3H37l3s2LEDL774orpdQkICdu/ejTJlyqBx48YAYFZ3iAGWn2v9+vVRpkwZREZGAgCuXr2KXbt2YfDgweo2586dw/79++Hr66s+t9MUny36KCy9PfUaN26Me/fu4a+//kJ6ejp2794NAHjppZfUbfbv34+TJ0/i+eefB2AeRe/9LD1Pazk+LT1PEYGdnR0aNGiAuLg4nD59GmlpaYiIiICHhwe6du2q7pdRUVGIi4tD7969iz0IohL19ddfi42NjXTq1EnGjh0riqIYDMqfM2eOODk5ydSpU0Wk4EmBzYUl5zp+/HhRFEXefPNNNbf09HR1/X//+1+xt7eXxYsXi4h55VYYS25PkdybZAICAqRKlSoyf/58qVu3rnTv3l1df/HiRWnWrJn4+voaMconZw15WsvxaQ15Hj9+XBwcHOSpp56Sr776SipXriwjRowwWN+wYUOpW7dusf9tFoVU4nJycuStt94SRVFEURRxdnaW+fPny6+//iqDBw8WRVGkS5cukpiYKCKmPf3Dw1hyrjdv3pTu3buLoihiY2MjFSpUkD/++EPCw8Nl+PDhoiiKPPPMM5KWliYi5pVbYSy5PfWxbtiwQapWrSo2NjaiKIoMHTpUduzYIfPmzZMmTZqIu7u7/O9//xMRKfCJEabOWvK0luMzKSnJ4vPU6XQyZ84ccXZ2FmdnZ1EURWbNmiVRUVHy3XffSZMmTcTLy0tWrFghIsW7v7IopBKlvysqKytLli9fLo0bN1Y/YBVFEScnJ+nXr5/ExsYaOdLiY2m5arVatR0TEhJk0qRJUr58eYPcbG1tZeDAgWovmjmeiAtjae1ZkJ07d8qAAQMkICBAFEVR533z9vaWtWvXqu1v7u0aHh5ucXla4/Gpz9Pb29ui8/zxxx+lY8eOUqFCBVEURezt7UVRFClTpoz89ttvBnMxFhdFxIwGTpDJ02q1sLGxwd27d+Hm5pZvfU5ODs6cOYNdu3ZBURS0bt0aNWrUgIuLi1mN/QD+feJFeno6rl27Bnd3d3h4eBg8GeHUqVMIDw+Hra0tgoODzSZXfTtmZmYWeGfb7du3sXfvXuzZsweenp5o3bo1GjVqBGdnZyNEWzwsuT3vd/r0afj6+sLFxUVdduPGDRw8eBBxcXFQFAVOTk7o1q0bvLy8jBjpk4mLi4O9vT0qVqyoLrt586Y6HgsAnJyc0L17d7PK01qOz7zHZEpKCtzc3AxyuH37Nnbv3o3du3ejXLlyZpun3uXLl1GlShWDZadOnUJUVBQuX74MrVYLT09PvPDCC/Dx8SmZ806xlZdE8m839rPPPisuLi4yffp0dT4pS6PP9csvvxQ/Pz91njpzmPD2YfQ5tG7dWpo0aSKrVq166CUKc/9WbsntKfJv+xw/flyqVKkib7zxhqxevVrOnDkjWVlZRo6u+Ojb6/Lly9K7d29p3bq13L1718hRFS9rOT71eS5cuFAaNmyozjv4oFzNLU99jhEREdK4cWP5+OOPJTw8XB2Scv92JY09hVTsRASDBw/G1q1bkZSUBABo0qQJXn31VQwaNMjgOaJZWVmws7Mzq16WvHJyclC3bl14eHjg999/V6cHuH37Nv766y/8888/aNy4MUJDQ9UeJ3Nx7949dOjQAYcOHUJOTg7s7e3x3HPPYcSIEWjbtq26nYggKyvLbJ7z+yCW3J56O3fuxMiRI5GQkAARQaNGjdChQwe0bNkSgYGB6rNjzVVOTg5sbW0xbdo0fPbZZ5g2bRrefPNNdf3x48dx5MgReHt7o1GjRvD29jZitEVn6cen/H8v2PXr19G0aVOUK1cOu3btUj8/7t27h8jISFy+fBmtW7dG/fr1jRzxk1m6dCnGjh2LzMxMlCtXDk899RTatm2Lpk2bok6dOvDw8FC3lZK8MlEqpSdZpTNnzshnn30mXbp0UZ8XqyiKPPfcc7Jp0yZjh/dE9N9UV6xYIc7OzrJ8+XJ1XUZGhvTq1Usd0G5raytff/21sUJ9IhkZGRIRESFvv/22/Oc//1Hb0MfHRyZPnixnzpwxdojFwlraUyS3x+H69euyc+dOmTBhgvp8VS8vL3nmmWdk/vz5EhkZabaPCNPz8fGR5557zqDHZcmSJVK1alV1fNYLL7wg165dM2KUT8aSj0/9XcOzZ8+WsmXLytq1a9V1N27ckOeee04dY1e5cmX18YXmKiMjQ86dOyc//PCDPPfcc+Lp6SmKokitWrVkxIgRsmLFCjl+/HixPr2kICwKqdjd382t0+lk//798t///lc9ISuKIg4ODvL6668bKcono8+xS5cu0rhxYzlx4oS6fOrUqaIoivTv31++/fZbqVKlivj6+prdo7Puvwxz8+ZNWbt2rQwePFgtkBRFEX9/f1myZImRoiwe1tCeBcnMzJS4uDhZu3atvPjii+Lu7i4uLi4SFBQk3bp1k1OnThk7xMeS91Kcg4ODQfF+6dIlcXd3l5o1a8p7770nXbp0EUVR1Ds4ze2yo7Ucn0FBQdKpUye5ePGiuuzNN98URVGkX79+MnnyZNFoNNKuXTuzvGu8IHfv3pVjx47JwoULpVWrVmJjYyM+Pj7Srl07ee211/JdWi5OLAqp2OlPVlqtNl+BmJaWJgMHDhR/f3+pUKGCDBgwQETMcwqIu3fvSuPGjaVdu3bqsg0bNoiHh4e89tpr6jNV33//ffHw8JC///7bWKE+Ea1Wm+8D6NSpU9K6dWupUaOGKIoi48ePFxHzbEc9a2rPgly/fl3mzp0riqJInTp1xNnZWZKTk0s5uiej30/nzp0rrq6usnHjRhERiYuLk4EDB0r58uXVHqWzZ8+Kp6enTJo0yewKwrws+fi8fPmy+Pn5ycCBA9Vla9euFUdHR5kwYYLcvHlTRET69u0r1apVM+vx6wUdlzk5OXLu3DkZMWKEKIoiFSpUEFdX1xKNw7ZkLkqTNVMUBZL7hUMdd6V/BI+zszPGjRuHXbt2YdWqVWjatKn6GnNjZ2eHqlWrIioqCn///Td0Oh3ef/99ODk5YerUqeodj3Z2drCzs1PHwoiJ36maNz6tVgtFUdQ21el00Gg0qFOnDt544w1MnjwZ27dvR/PmzQGYZzvqWWp73k//xBX9Mar/vXz58pg4cSKOHTsGLy8vTJw4Ee7u7mqbmwN9OwQEBCAtLQ2JiYkAgC+++AIrV67EvHnzEBoaCiD3MWLOzs5ITU1V929zaEdrOj7t7OxQrlw5nD17FteuXcO5c+fw/vvvo0qVKnjvvfdQtmxZAICnpye0Wi2cnJyMHHHR5T0ugdy2srGxQY0aNfDVV1/h/PnzCA0NxQsvvADg3zvQiz2OYn9Hsmo//vgj4uPj1R0ayC0IJc/9TD4+PnBwcMDly5fVaWvM4UNHf9LVc3BwQKNGjXD16lV069YNXbp0QUJCgkEBkZiYiOjoaLi6uqJevXoATP/ErCgKtm3bpp509G1zf3FQp04daDQaODs7qwWSObSjnrW0p1arBZA7tUVERARu3LihFhZ5P4j0z1x1dHTE2bNn4e7uDsD82hQAgoKCULt2bQwbNgzVqlXDvHnz0KVLF4MbTqKjo5GUlIQOHToAKL5nx5Y0Sz4+dTqdQTt4e3ujVq1aOHjwINq0aYNevXrhxo0bmD59uloQxsbG4tSpU6hYsSIqVKhgNo8n1B+XJ0+exLFjx5CWlgYAapEP/Pvvof/9woULqFq1KgCU2I1upr2HkFk5ceIEBg8ejKCgIDz33HNYs2YN0tLSoNFoDE5ep0+fRmpqKq5evQrAPE7GGRkZBh+i+pg/+OADfP/99wgODkbNmjWxcuVKDB06VH3d9u3bsWvXLvUZqzk5OaUe+6PSn0y3bduGzp07IzAwEG+//TYOHDgAIPckpCiKmntsbCxu376NCxcuGLzeHFhDe+rpc3z99dfRuXNnvPHGG/j2228RHR2N5ORkALkfRHZ2drh79y50Oh1Onz5d4DyjpkhfzAL/Fuh+fn5YsGABunbtiipVquCdd97B4sWLYWdnBwBISkrC+vXr4enpiV69egEouQ/Z4mINx6dGo1H3V/2x9e2332LKlClwdnZG2bJl8eOPP6q9ZQCwefNmHDp0SD1O9cWWqdPvb3369EGvXr0wdepU/Pnnn7hw4QIyMzMB/Pvvce3aNbi5ueHo0aOwtS3hC7wlenGarEpiYqKMHTvW4C44X19fGTFihOzYsUOys7Pl6NGj8swzz4iiKBITEyMi5jHA+7nnnpMxY8ZIeHh4vru/Chujde3aNalevbrUrVtX4uPjRcQ8cj18+LB0797d4GkBzZs3lzlz5sj58+dFROSff/6RLl26iJ2dndmNOxOxrvYUyY3zm2++kT59+kilSpVEo9FIjRo1ZOTIkbJ69Wo5fPiw3Lp1S5YuXSp2dnYydOhQETH9MWgbN26UV199VXbu3CnXr1/PF69Wqy1wUP6sWbPEzc1Npk+fLiKmn2delnp89uvXTxYsWCCnT5/Oty4rK8vgyS364y42NlZq1KghQUFBZjkXZXp6ukyaNEmeeuopcXJyEicnJ3nqqadk5syZsnPnTvUz8osvvhCNRiPvvfeeiJTs/sqikIrNpUuXRCT3gN26dau88sorUqlSJfXE5e7urj7HcciQIeq2pi4hIUHNwc7OTtq0aSMff/yxHDlyJN+2+kmAMzMzZfXq1RIQECBLly4VEfPIVafTSUpKiojkFvlffvmltG/fXhwcHNR/g4CAAClTpowoiiKjRo0SEfP6ULWm9tS3y40bN0Qk90avvXv3yieffCKhoaHi7u4udnZ24u/vL+7u7qIoilSpUkWOHj0qIqY/cbf+LlRHR0dp2bKlfPTRR3Lw4EG5ffu2OqXJ/aKjo6V27drSr18/uXz5soiYfp56lnp8Hjp0SI2/YsWK0r9/f/nxxx/l6tWr+bbVH5MZGRnyySefiI+Pj3oHubm0oz5O/fOZr169Kn/88YeMHz9eAgMDxcbGRjw9PaVRo0bi6+srNjY2UrVqVfXLaEnmycmr6Ynox7Vs27YNb775Jj766CP07t1bXZ+SkoI///wTmzdvxqVLl1CuXDl06tQJ/fr1g6enp8kPYpf/H3ul1Wqxbt06fPXVVwgPDwcAlClTBm3atEG3bt3QqVMnVKtWTX2dVqtFUlIS0tPTUbFiRTg6Opr0QHb9hL8rV67EN998gxkzZuDpp59W1586dQpr167Fzp07cfPmTbi7u6Nfv37o378/ypYta/LtqGct7Xm/evXqoX79+li2bBlcXV2Rk5ODa9eu4dSpU9i3bx8OHDiAmJgYtGjRAq+99hpatmxp7JAfSUxMDKKjo/HXX38hPDwcp06dgpOTkzr+7Omnn0bVqlXzPfbs4sWL0Gg06vgsU2fJx6f+OIqNjcVPP/2E7777DpcuXQIA1KpVCx07dkT37t3x9NNPGzz4ICMjA4mJicjMzISfn5/ZHZMAULNmTbz44ouYNWsWFEVBWloa4uLiEB0djYiICBw8eBDx8fHo0qULXn31VYSEhJR8jiVWbpJV0H8DHTJkiPj6+qrTdOi7+/My13nd7v+WfePGDVmwYIHUr19f/Xbr5+cnL7/8sqxdu9YsJ/3Vt1Xbtm2lXr166vx0BT3+7PLly2bzjbwg1tCeIv+26cmTJ8XR0VFmzJhR4HaZmZnq/99/ec5cpKWlSXR0tCxdulQGDhyozodasWJFGTx4sKxdu1bi4uIMcjUnln583h9vVFSUDB8+XO29VhRFWrRoIVOnTpX9+/eb3f6Zlz7XHTt2iL29vSxYsKDA7e7evSvZ2dmSlpYm6enppRYfewrpiYkIBg0ahPj4eGzdutVgWgD5/zs8TX0Q96PQT/+Q9xv36dOn8e233+KHH37A9evXAQCBgYHo0qUL2rdvjw4dOpT8wOBikp6eji5duqBixYpYtWqVQZ76O8gtoR31LL099Xbu3IkRI0bg008/Rffu3dVeI8nT4yBm1sOiV1Dct2/fxsmTJ/H3339j586d2LdvH27fvo1atWrhmWeeQffu3VGvXj1UqFDBSFEXjaUfnyICrVab7/j6448/sGTJEmzcuBFA7rRmTz/9NLp37462bduiQYMGxgj3iS1btgyzZ8/GDz/8gObNmxfYm2uU47LUyk+yCPpvOVFRUXLu3Dl1+W+//SbNmzdXtzH1MSxPQqfTSUZGRr5vqxERETJgwACD8T1//fWXkaJ8MH07Hjt2zOAxX5988ok8++yzIpL7mClz/kb+qCyhPfO6ffu2hIWFGfQUuru7y++//y4iuflaYrsWlNOVK1dky5YtMmXKFGndurW4ubmJoijqjTSmytqPz5ycnHy9unfv3pWvv/5amjZtqh6P9vb2Bp9DpkjfRomJieqTkkRE9uzZI/b29vLPP/+IiOmMh2RRSEXi4OAgEydOFJHcOzmDgoLE09NTPv30U4PtcnJyTGZnLy05OTny008/Sbdu3YwdygOlpaWJk5OTLF68WERy2zE4OFgqVKigPglCJPekZslF/sOYS3vqj7Np06ZJtWrVJD4+Xg4cOCDPPfectGrVSp555hn17tS8LLWwyCsnJ0diYmLk119/lUGDBsnq1atFRAq9GcUU8Pgs3MWLF2XSpEnSqlUrY4fyUPq2ee2116Rly5aSlpYmO3bskJEjR0pQUJCMHz/epO6cZlFIj0z/4fHnn3+KoiiyfPlyyczMFG9vb7Gzs1Pv5hw6dKhERUXle60pn4AflVarlb1798rWrVvl0KFDEhMT89AD2tQ+dPXFw1dffSWKosiGDRvk2rVr6vOo9XegzpkzJ990HpbWC2wJ7Xm/KlWqSPfu3SUtLU0WLVqk9qooiiKhoaGyatUquXjxYr6peMxV3p6YgwcPym+//fbA3qO0tDSTbkNrPz51Op0cOXJETpw4IefOnZOEhIQCx07mZQ4dD87OzjJkyBDR6XQycuRIg+PylVdekZ07d8qNGzeMvm+yKKRHpj/wunbtKvXr15fjx4+LiEhKSor88ssv0qdPH/Hw8BBFUUSj0UjLli1l3rx5Ehsba8ywn5j+JBsTEyOvvfaaODk5iaIo4uTkJG3btpV33nlHNm7cKLGxsWbxQatvx0aNGkmbNm3U9jl58qTMmTNHWrRooZ6sypUrJy+++KKsW7fOLHJ7FJbWniL/FkYHDhwQRVHkiy++EJHcqS527Nghc+bMkc6dO4urq6s4OTnJ008/LR9++KFERkZKYmKiWRcSOp1O1q5da/DltFy5ctKxY0dZsmSJXL9+3dghPhZrPD71OZ89e1ZGjRqlfo5UqlRJ+vbtK59++qns379frl+/bvSi6XHoY/39999FURT58ccfRST32dRr1qyR8ePHS8OGDcXGxkYqVqwo/fr1k2XLlsmxY8fUqYdKG4tCeizp6emi0WhkwoQJBfb86efOatu2rdjb26vzE3bo0EF+/fVXI0RcfJ5//nl1jsVff/1VGjZsKIqiiK2trbi7u8szzzwj8+bNUyfSNWWXLl0SRVHko48+KnD9gQMHZOLEiRIQEKB+ANWoUUNeeeWVAufzM0eW1J76ou7ll18Wf39/iY6ONlifnp4u58+flz/++EPGjRsnDRo0EBsbG/Hy8pLevXvL/PnzzW52AH3Of/zxh5QtW1Zq1qwp33//vbzxxhui0WjU/bZs2bLSr18/syqcrPX47Nq1qyiKIn379pUvv/zSYIJuPz8/GT58uHz//fdy5MgRdY4/U6YvdkNDQyUoKCjfxNy3bt2SI0eOqBPLe3t7i0ajkdq1a8uYMWNk1apVpb7PsiikR6Lfub/77jtRFEUWL14sOp1OXV7Q4PXjx4/L1KlTpUmTJqIoikyaNMngvcyBPtajR4+KRqNRJ4MVEXF3d5e+ffvKV199Ja1atVILCkVR5KeffjJWyA+kz2fGjBlia2urFur6tru/DXNycmTjxo3y0ksvSZUqVURRFPnyyy8L3NYcWFp73q9MmTLSoUOHAif91bt7966cOHFCfvzxRxk6dKhUrFhR3NzcSjHK4qFvyzZt2kjNmjUlIiJCRETmzZsn7u7u8sUXX8jQoUMNLtPVr1/fmCE/lDUen/rifuvWrWJjYyPjxo0Tkdz91NbWVoYOHSozZ84UPz8/URRFnJ2dpUyZMmZx05eIyL1790Sj0cjgwYML/ezT6XRy7do12bNnj8ydO1c6deokiqJIzZo1SzlaFoX0iPQ7c3BwsMHj6wqa/6ugk9GOHTvU+d7MqSjUn7AmTJggVapUkfDwcBERWbt2rSiKIj///LOI5BYZTZs2lZ49e0q/fv0kLi5OREz3xKzvYWjatKl89NFHsnfvXrl165ZB29wf+61bt+S7776Te/fuFbjeHFhie+pj2rJlizrurHXr1jJt2jR13tDC3Lp1S/bu3av+O5jLZeS84widnZ3lvffeU69cVK5cWXr16qX+PmrUKPH09JSWLVvK2LFjRcS0bzARsa7jU7/P9evXT+rVq6eOR//ss8/Ezs5ONm3aJCK5M1z4+vrKc889Jx07djSpmzMKom+rZcuWGVzqX7p0qXo+KUhWVpbEx8fLb7/9Jtu3bxeR0t1fWRTSI4uLixNFUaRly5byn//8R+1FadCggbz77rsSHh6e7/mj5nJiKkjeE3DHjh2lU6dOkpCQICIivXr1ktq1a6uPAxMR+e9//yu1atUymELClNw/7qxx48bqYwhdXFykS5cusnjxYjl+/LikpqYW+FpzZmntqZd3rK+++NH3jHl4eEi3bt3k888/lzNnzhg50uKjP8f88MMPUqVKFVm5cqWI/Ltv550QOCkpSWrVqqWOgRYxzf3ZGo9P/b6bnZ0tQUFB0r9/f3UsXfPmzaVVq1YGd8z37dtXOnbsqHYwmHLe+twaN24sXl5eak+n/lL/iBEj5LfffjO5YRvmNQsrGYV+Us1vvvkGZcqUwUcffYTq1asjLCwMkZGR2LNnD+bOnYuFCxeiRYsW6NGjB9q3b4+aNWvCzc3N2OEXmX4i0Vu3bsHGxgb29vbw8fFBZmYmTp06herVq6Nu3brq9uXLlwcA3Lx5E97e3kaJ+UH0k4gvXrwYVatWxcKFC+Hk5ITNmzcjMjIS+/btw9atW+Ht7Y1OnTrhmWeeQYsWLeDj4wMHBwdjh//ELK099TQaDdLT07F161a8/fbbmD59OmJjY7F69Wr8+uuv2Lx5MzZv3ozKlSujbdu26NatGzp06GDSOT2MfpLme/fu4caNG/D39wcAbN26FW5ubgbtmJaWhszMTPz000/46KOPAMAkJ+q2xuNTf0xeuXIFNjY28PDwgJubGxITE3Hx4kV0794d1atXV7evWrUqLl26BK1WC8A021FPo9Hg0qVLOHLkCGbPno3XXnsNe/bswcqVK/Hnn3/im2++wTfffINGjRohNDQU3bp1Q6tWrYw+OT6LQnoo/YG7YsUKPPXUUwgMDES5cuUwfPhwDB48GMeOHUNkZCQiIiIQFRWF3bt3w8PDA+3bt0f37t3x1FNPoVatWkbO4vEsXLgQvXr1QrVq1eDs7IwGDRqoJ6CrV6/C0dERGRkZsLOzA5A783xsbCyuXbuGKlWqGDP0Quk/SNeuXYvnn38ezZs3h6OjI5o1a4br168jKioK4eHhiIyMxJo1a/DTTz8hICAA3bp1Q5cuXRAUFGR2T4HQs8T2BP79wrZixQrY2NggODgYjo6OqFevHqZPn47Jkydj//79WL16NX7//Xf89NNP+Omnn1C3bl107twZbdu2RdeuXdW8TZU+z+joaKSmpqJ58+awt7dHkyZN0KNHDwQFBQHILRJSU1NRo0YN9bVnz55FZmam+gXVVJ8DbG3H508//YQePXrAzc0N7u7uqFy5slrcX7lyJd8+ee/ePSQmJuLKlSsm/4Umb0eKh4cHmjVrBnd3d3Tt2hVdu3ZFYmIitmzZglWrVmHHjh04cuQIPvvsM7Rq1QrdunVDu3bt0KhRI+MEb+yuSjJthU11kfcmE73bt2/Ltm3b5P3335fg4GB1WgFTf3qA3v25fvvttwbr846b7NChg9jb28uqVavUO67LlSsnPXv2FBHTG5ulz+23334zmBqhoDjPnz8vP/zwg7zyyitSq1YtdZqPwu6ENFWW3J56+mOwQYMGEhISIpcuXTJYntfNmzfll19+keeee06cnZ3VS1n6S+imTJ9P7dq1pUePHnLjxg0Ryb3smJiYqI652rhxoyiKIgMHDpSoqChJSkqSzp07i0ajUS9DmuIlR2s5PvPmaWtrqz5lR09/WVyn00n16tXF399f9u3bJykpKfLFF1+Ih4eHjBgxQkRM95jMq3LlyvLcc8+psxcUdFyePn1a5syZI40bNzaYaqg0n3ecF4tCeiTvv/++1KlTRw4ePCgihifWgnb0+Ph4Wbt2rQwaNEh27twpIqZ/EOed1qNKlSpy4MABdV1mZqbcvXtXzfuvv/6S2rVri6IoUrlyZVEURapXry67du0yeC9ToY974MCB0rhxYzl16pTB8oKK/JycHDly5Ih88cUX0rFjR3WqC3O5UciS2zOv69evi7Ozs0yZMuWRC564uDhZuHChDB8+XETMo03107RMnz7dIM87d+6oReHVq1fVOzddXV3F0dFRbGxs5I033hAR0ywIRazn+NTH1rlzZ2nQoIGap0hugZ/3i9rSpUvF09NT7O3tpX79+uoxaWqPhSvM8ePHRVEU+eSTTx5p+6ysLNm/f7+MGDFCXnnlFRExznmHRSE9kri4OImIiFDvbCtIQScuc+Tu7i4vv/yyweShu3btkpCQENmyZYu6bNOmTfLGG29Iv379ZPjw4XL27FljhPtY9u7dK1u2bHng3WwFTS9kDnOCFcaS21Mkd8qLAwcOqL2ERSl8TLVYEvn3w/+///2veHh4qHdKi+T2LE2ZMkX69u2rLsvKypJPP/1U2rRpI+3atZMVK1Y8sKfGlFjD8ZmWliYajUbefvttgyJwy5Yt8txzz6k3BGVlZcnSpUulT58+0rFjR+nbt69BEWnqkpKSJCwsrEjHpb4YNMb+yqKQSoS5FYj6A3bDhg2iKIqsWLHCYP3cuXNFUZR8JyWdTmc2E+IWhVarNemCoTBsT8vj6+srPXv2NJhI/PDhw+Lr6ysDBw4UEcMhASJitEtwpcWcjk/958HixYvFzs7O4NJxVlaWvPPOO6Ioity+fdvgdSkpKQ/sjKDiZXqjbckkichjba8oikkO5i6MPr/FixcjMDAQrVu3VtddvnwZW7duRYMGDVCnTh1I7pcpiAgURTGrO/8etx01Go1J3+FXGGtpT0unb8eoqChcvnwZnTp1Qrly5dTlBw8exOXLl/Haa68B+PdmDZ1OB51OB0dHx8fe543JGo7PJUuWIDg4GE2aNFGXXbhwAdu3b0fHjh1RpkwZaLVa9d/Czc0NTk5OxgrX6pjPpzYZlbmdeB6XflqPbdu2ITAwEK6uruq6U6dOYc+ePRgyZAgAQKvVQlEUs/w3MceYi8Ja2tPS6XQ6AMCyZcvg5eWFjh07qm11/fp1bN26FRUqVMBTTz0F4N+iUKPRqF9KzaldzSnWx6XRaBAXF4ejR4+iSZMm8PLyUtcdOXIER44cwbBhw9RllvxvYco4JQ1ZPX0P0R9//AGdTofw8HB88MEHeOqpp9CgQQNs27YNmZmZGD16NIDck5X+NWR62J6WQ1/k/fDDD7h37x769++PV199FYMHD8aNGzewa9cuDB06FACQkZEBR0dHI0ZLhdEfXz///DMAYNu2bXBzc0PLli3h5+eHnTt3wsnJCS+++CIAFoTGpIg59a0TlaCoqCj89ttv2L17Nw4cOAAAqF69Oq5fv47KlStjz549sLW1Nbi8qD98eBIzPWxPy5CWlobp06cjIiICBw8eVJfXqlULZ8+exYkTJwwmq87JyTHoKSTT8ccff2DdunXYu3cvzp07By8vL9SqVQunT59G06ZNsWXLlnxf0PiFrXSxKCTKIz09HVeuXME///yjThR75swZ6HQ6dOzYES1btkRwcDDq16+PihUrGjtcegi2p2XZu3cv1qxZgw0bNuDixYsAcsec9e7dG6+++iqefvppdVsWE6bp1q1buHDhAqKiohAWFoaoqChcvXoV5cqVQ48ePdC8eXM0b94cNWvWNBj2QaWDRSFRIVJSUnDhwgUcOXIE27dvR2RkJK5cuYKKFSuidevWaN++PQIDA9GiRQvY29sbO1x6CLanedLpdBAR9VIyAGRmZmLjxo345ZdfsGXLFiQnJwPIfQzaoEGDMHDgQIPeQzI9Wq0W169fx5kzZ/D3339j8+bNOHToEDIzM1GnTh2EhIQgJCQE9erVQ926dVnglxIWhUQPISK4efMmzp07h/379yMsLAx///03bt++jerVq+PEiRO8Y9WMsD3Nl/6Zt3kLxOvXr2PDhg1YvXo1wsPD1ZtTvvrqK4wYMcIocdLjyczMxNWrV3H8+HFERkZi+/btOHXqFHQ6Hdq2bYuwsDBjh2g1WBQSPYacnBwkJibizJkz2Lx5MxRFwbx586DVag0+qMg8WEt76nQ6i7vDWqvV5puS5fTp01i3bh2+//57bNmyBdWqVTPZZx1TwZf4U1NTERcXh2PHjuGXX35BnTp1MGvWLIs7JgHTfA43i0IqVpb44VOYe/fuAQCcnZ0tbvySKZ6sSpqltacl5PAoRAQ6nc7iCoYHscTjs6D99ebNm3BycrKYY9IcWNZeRaVKfynn1KlT+PDDDxEfH2+Wk6k+Lv33KGdnZzg7OwMw77tVc3JyAACHDh3CypUrkZGRYXEfOA9iae15vw8//BBLlixRx93pL69aCkVRDCat1u/PlsJajs+CjjkvLy+LPCYBYMGCBdi8eTOys7PVyfNNQjE/IYUsXN5HKun/f8CAAaIoilSuXFl+++03Y4VGRaR//FTLli1FURRp3bq1HDp0SERM+5m49K/C2ikuLk4URREPDw+ZO3duKUdFxYHHp+XQt9fff/8tiqJIzZo1Zf369cYN6j6W93WDitX9vQr6b2v6p0AAwKBBg9C3b18kJCRg7NixiIyMLPU46cEK6h3SPwpM3+vw4osvomXLlti3bx8mTpyIhIQEi/t2bqkKayetVospU6YgMDAQ7777Lt5++21kZGSUcnT0MDw+rYO+vWxsbPDKK69ARDBgwAB8/fXXJtODzzGF9FA3b97EtWvXcPnyZfj7+6NWrVoFbnf06FGMHTsWN27cwLFjxyzyEoc5y8zMREJCApKSklCrVi14eHgUuN0vv/yCd955BzVq1MD27dtLOUp6XJcuXcK9e/fg6uoKGxsblCtXzmBKnczMTJw4cQJfffUVli5dij/++APdu3c3YsRUEB6fliUxMRF2dnbqGHtPT0+D9cnJydi7dy8WLVqE7du34+jRo2jQoIGRos3DyD2VZIL0XdxpaWnyyy+/SO3atcXJyUkURZFy5cpJo0aN5ObNmwW+Njo62uS6w62Vvh1TU1Pl119/lcDAQPHy8hI3NzepXr269OvXT7Kysgp87ZYtWzgUwETp2/XKlSvy6quvipeXlyiKIj4+PtK2bVvZvHlzoa9du3at3Llzp7RCpQfg8WmZEhMTZdSoUVK5cmWxs7OThg0bSv/+/eXw4cMFbp+WliZz5swxmaEA7CmkfPS3/n/xxReYOnUqypYti2HDhuH69ev4/PPPUaNGDZw6dQoiggsXLkCn06FmzZrGDrvEmdud1fp2nD17NubMmQNPT0/06dMHp0+fxh9//IGnn34akZGRyMnJweXLl+Hq6opy5coZO+xSY27tCfx7h2ZSUhJ69eqFvXv3om/fvggICMCOHTuwb98+bN++He3bt8e9e/fg6OgIjUbDOzdNEI/P/Mz1rmp93LGxsRg0aBD279+Pzp07w9/fH9u2bUNsbCxOnTqF2rVrIzMzU50H1SSPS2NWpGTafHx8pHXr1nL58mURETly5Ii4ubnJRx99pG6zaNEiGThwoKSkpIiI5Q18Nvd87t27Jx4eHtKuXTu5du2aiIiEh4eLoijyww8/qNtNnTpV/vvf/0p2drbodDqzz7sw5p5Xdna2iIjMmjVLXF1dZcGCBSIicufOHenTp494e3ur2548eVLKlSsn27ZtM0qspU1/Q4Y54fFpGfTH5RtvvCGenp7y5ZdfiojIpUuXpG3btlK3bl1124iICKlbt66cOnXKKLE+jPmV5FSi9INdd+zYgevXr2Pw4MGoXLkysrKysG7dOqSmpuKVV15Rt4+KisLBgwdx8+ZNAJY3bYCeuU3roZ8u6JdffkFGRgaGDx8Ob29vJCcn49dff4WdnR369eunbr9t2zbs3r0bKSkpZtd7VhTm1p56tra2AICVK1eiVatW6NOnDwDgxIkT2L17t/o7kDuVSWpqKi5cuGCUWEuSuU/TwuMzP5OdouUR6I/LNWvWoEuXLnjhhRcAAGfOnMHBgwfx0ksvqdveu3cPMTExOH/+vFFifRhbYwdApkV/sjly5Ajs7e1RrVo1AEBcXBzCwsLQokULVKhQAQCQkZGB7Oxs2Nvbq8vMmRTQla8oCuLj4/HBBx/A3d0dycnJmDhxosl/AOnnbTt48CDc3NxQu3ZtAMDFixexbds2PPPMM+qJ7ObNm3B0dISIoGzZskaLubhZUnvmdfnyZaSkpKBZs2bw9fUFkPvlLDExESNHjlS3O3bsGNzc3ODo6AjAfC/NFUSfx5gxY/D333+jVatW+Pzzz9G4cWPTvCR3Hx6fufRtFRUVhYkTJ6JGjRqYN28eevXqZezQHpk+h+joaGRlZaFatWooV64csrOzsXv3bqSlpWHYsGHq9qdPn0bZsmVN9hKyZZwhqNjod87q1asbTF1x6NAhHDx40OBD5/z58zh58iTq1KkDJycns+ltKYwlTuvh5+eHmzdvwsvLC0Bu8RATE4NRo0ap25w9exYxMTFo2LAhgH97McydJbYnkDvJtouLC+7cuQMAuHbtGrZu3Yrq1asjMDAQQG4BeObMGaSmpiIkJASA+fXiW8M0LdZ8fALmMUXLw+hzcHZ2hqIoyMrKApBb4G/ZsgWtWrVC+fLlAeR2pJw/fx5arRatW7c2eL3JMNJlazJxJ0+eFE9PT+natatkZGTIpEmTxM7OTtLT09Vt5s2bJxqNRtatWyciIjk5OcYK94ldvHhRTp48KXFxcXLlyhXJzMw0WJ+RkSGHDh2S4cOHi6Io8ueffxop0kejH3MUFhYmiqLI22+/LVqtVl5++WXx8vIy2Hb69OmiKIrs379fRMxzbNb9LK0979e7d29xcHCQ7du3y5YtW8TFxUVmz56trj9x4oQEBQVJs2bNRMR8x1JmZGRIbGysREVFPfCu6TVr1oi/v7906NChFKMrOms8Pq9evSpJSUly8+ZNuXXrVr71d+7ckU2bNkloaKhoNBr5559/jBBl0Wm1WqlXr57UrFlTzpw5I+vWrRNFUeTHH39Ut9m/f7/UrFlTnnnmGRExzc9MFoWUj1arFZ1OJ1OnThVFUaRBgwZSpUoVdUe+d++e7NixQ8qWLSuNGzc2crRFYy3TeiQnJ0u/fv1EURTp3LmzlCtXTt544w0REcnMzJQtW7aIp6enPP3000aO9MlYS3vqRUdHi6Ojo/j7+0unTp1EURT1Q1Tf5q6urvLTTz+JyL8D4U2dtU3TYg3Hp7lP0fI41q5dK4qiSKtWraRLly7i6Ogot2/fFpHcfbpnz57i5uYmYWFhIsKikMzM7du35bXXXhNFUURRFHFycpIePXpI8+bNRVEUCQoKUu9sNMWduzD6k82NGzckODhYFEWRfv36yZQpU6R169aiKIrs2LFDRHJPUPpv5uZ4khIROX/+vISGhqrt6O/vL2+88Ya0b99eFEWRpk2bSkREhIiYVzvqWVt76ouitWvXSr169cTGxkYURZH+/ftLjx49pFatWqIoikycODFfD6mp0+9/H3/8sZQpU0aqVasm77zzjvTo0UMURZE2bdqISG6Re+HCBblx44Yxwy0WsbGxFnd86o+x8+fPS6tWrURRFOnSpYu89tprUqNGDVEURU6fPi0iub3BeuZ6TOp0OsnJyRGtViuzZs1Sv5S6uLjI22+/LS+99JL85z//EUVRZNKkScYO94FYFNJD7dixQ55//nkpV66clClTRmrXri3Dhw+XM2fOGDu0IrGmaT30J9nk5GT53//+J0FBQaIoitjb24uPj48MGTJEYmJijBzlk7Gm9rzfwYMH5YMPPpD27dtLhQoVRKPRSPPmzeV///ufsUMrMmucpiU5OVkWL15sMcenJU3R8rh0Op1s3LhRRo4cKYGBgeLo6CiKokj9+vXl888/N9jOFLEoJAPh4eGyfPlySUhIyDd25d69e3L48OFCn2ZiburXry+dOnWSuLg4ERHZs2eP+Pj4yOjRo9Vtjh07Jo6OjrJkyRJjhVkkO3bskLS0tALXXbhwQfbs2SPXrl1TT96meoJ6HJbanvrj8NKlS/LVV1+pPSx6+nF38fHxEh8fb9Du5tSu+l6w77//XhwcHGTlypUiklvcjx49Wuzt7Q0ug7du3Vratm1rluejPXv2yIYNG+TOnTv52ujcuXMSGRlpEcdnhQoVpH///mqPblhYmLi6uhrMdbtp0yaxtbU1u3G9+rbZu3evREREyL179wzWX7t2TY4cOSLHjx+X6OjofOtNFaekIfVuvpiYGIwYMQIODg4YNGiQwfQV+jvkGjVqpC4TE7uV/nFY4rQe+vbYtm0bOnfujICAAPTs2RN9+/ZFw4YN1Sku/P394e/vn+915swS2/N+CxYswFdffYVPP/0UtWvXVmN3cHBAtWrVkJWVBXt7e3UOP8AE72x8AEufpkX/BJMDBw5g0KBBqFmzJp599lkA/x6DmZmZqFGjBmrUqKG+ztyOT7GwKVoKo98X+/Xrh+TkZHTt2hUhISEIDg5GgwYN4O3tDW9vb3X7vMelKTOPsyGVKP2t/4sXL0Z6ejomT56snqCTkpKwfPly9OrVC23atMH333+v3nJvDgduYSxxWg99bB4eHnj55Zfh6uqK+fPno1mzZmjVqhUWLFiA2NjYQl9nziyxPYHcD0iNRoOEhAT8+OOPePHFFzFixAgAuXP1/fPPPxg6dCj69OmDuXPn4tatW+qHlbmy9GlaFi1aBEVRMHr0aHXZjRs3sGrVKvTq1QsvvfQSdu/era4z9X30fhY3RcsD5OTkYNy4cQgKCsLq1avx+uuvo0+fPhg1ahRWrVqFixcvqtuazXFptD5KMjkVKlSQgQMHGkwXMHHiRFEURR0XYWtrK5s2bTJilMXH0qf1OHv2rCxbtkwGDx4s/v7+oiiKODg4yPPPPy8///yzOl7LUlhie+ovqc6YMUM8PT3ljz/+UNedOXNG/Pz8RFEUKV++vGg0Gunbt6/Z3VyiZw3TtNy7d09cXFxk9OjRBtN7vfbaa2Jra6vebFK1alU5evSoESN9cpYyRcujOn78uEybNk3q1aunnmtbt24tEydOlI0bN5rNTVEsCq2c/mS6e/dusbe3l4ULF4pI7niJyMhIsbe3ly5dukh8fLz89ddf6snaEljqtB73f0BmZWXJoUOHZMaMGVK+fHn1g0dRFImOjjZSlMXPUttTRKRNmzbStm1bSUhIEBGRmzdvyvPPPy+enp6yaNEiiYqKknbt2omnp6fZF/uWOE2L/phcs2aNODo6qjfMZGVlyZYtW0RRFOnevbucO3dO/ve//4miKOrNGebMEqZoeVxZWVmyfft26devn9ja2oqbm5vY2dnJm2++aezQHgmLQhKR3JOVk5OTfPPNNyKSe5dmmzZt1G95Irk7e506deSZZ54xqw/U++l0OjV+S5vWIycnR+1xKeiOzKNHj0rjxo2la9eu0rVrV2OEWCIseZqWW7duSfPmzaVVq1Zqe37yySeiKIp89tln6r48Y8YM8fb2lvDwcCNGWzwscZoWkdx2c3BwkJ07d4qIyIEDB6Rp06bStGlT9TybmJgoXl5eMmrUKGOG+kQsaYqWB9HpdIX2Ul+9elW6d+8uderUkdatW8uKFStExPT3VxaFJCK5d7zpJ6P+9ttvpUOHDvm6+o8dOyaBgYEyZMgQETGfSzYPExUVpU7rUbFiRYuY1kOr1RqcfLRarVoM9e3bV1599VWzv7OxMJY4TUv//v1FURRZuXKlfPbZZ+Lh4aFeBhfJ/aCZPHmyuLu7y5UrV0TE/NvV0qZpEcmdfsXGxkZeeOEF2bRpk7Rt21Y0Go3BkJzdu3eLn5+fvPfeeyJi/udZc5+ipTD3d4wU9CX89OnTUrt2bbl69WpphvZEWBRambw7bd5epXv37qmP/FIURVxdXfNdJv7f//4nGo1GfWqAqX/jyUt/AP/999+ycuVK9TKc3r179+TcuXNy4cIFuXLlisH0AaZ+stLn9vXXX8v06dPzjV3JyckxaKu33npLmjVrVuCjpsyFtUzToo91z549Urt2bfX4bNGihURGRqrbnT59Wlq2bCktWrQweJ05scRpWu7/cnb16lVp27at2o7u7u4yceJEg9fMnj1bFEWRqKgo9T3MgaVO0VKQjIwMmThxovz+++9y8eLFfOv1X8B37dolvr6+smrVqtIOschYFFoZrVYrJ0+ezLdM78iRIzJ//nz5/fffDba5evWqtGrVymDSUXPUrFkzURRF2rZtKx988IFs375dHeOSlzleHtf3qCiKIu3atZOffvopX+F+48YN6dy5s9SrV89IURYP/T775ptvir29vTr+6v4PUP3J2Vza88yZM3Lx4sV88ebk5EhYWJjMmzdPli1bJvHx8Qbrp02bJh4eHrJs2TJ1e3OgjzMqKkqqVasmnTp1Utfpi768T7y4f52pSk9Pz3de0bepVquVX3/9Vd566y357bffDNr6zJkzBjdDmaOqVauKh4eH9OvXT7788ks5duxYge1lLsdkQfQ3zXh5eUmHDh1k1qxZsnPnTrl+/brBdl999ZXY29vL1q1bRcQ8CnwWhVZm2bJloiiKdOrUSb788stH6tbWarXywgsviJ2dnXoJzlw+dO63ceNGGTp0qJQtW1Y9qJ999llZsGCBREVFmd14s7xOnToln3zyiYSEhIidnZ16B1y/fv1k/fr1snHjRvUy5IwZM0TEPE/MeZ9zXLZsWRk0aJDByfbYsWMyZMgQeeGFF2TmzJlmNbmxv7+/tG3bVhYuXCj79u2TGzduPLQAOnLkiDg7O0toaKjBHa3mQH8eGTBggFSvXt3g2cXXrl2TlStXSpcuXWTQoEHy119/GSvMx/bhhx+KoigybNgw2bp16yMVsdnZ2dKxY0fx8PBQb0Qxt/Nsdna2LFy4UEJCQtQvqLVr15aRI0fKypUr5cKFC8YOsVhkZGTIunXrZNSoUVK1alVRFEUqVqwoL7zwgnzyySeyfv16Wb16tZQvX14qVqxo7HAfC4tCK/Pzzz9L3bp1xd7eXhRFEU9PT+nTp4+sXbs2X3e+fqDwrVu35JNPPpF58+ap335N/Zv6w9y4cUN++OEH6dq1q/pvUatWLRkyZIh8++23ZvPIJf2HxtatW2Xv3r0ikts7Fh4eLhMnTlQHcyuKIhqNRhRFkR49eqjfaM2xHS11mpbr169L//79pU6dOqLRaKRixYrSt29f+e677+TIkSMFXu6/d++erFixQgYNGiS7d+8WEfNrU0ucpmXatGnqF099YfTuu+/KoUOHDLbT35Ch0+nkypUrMnr0aJk9e7Y63MHc2jIvS5miRU//xfP27dty7NgxEcktDs+fPy8//PCDPP/88wZtriiKVKlSRX16krkU+CwKrdSBAwfk7bffNhin5OfnJ6NGjTIYq6Sn1WrNouu7KE6fPi3vv/++lClTRi0QO3fubOywHkuFChVk2LBh+XrFbt68Kb///rtMnz5d5s2bJz/88IPZ9SYVxhKnabl9+7YcPXpUli5dKn369FFvlKlVq5aMGjVK1q5dKzExMfm+wKWnp5vNh46epU/TkpaWJmvWrJHnn39eypQpI4qiiI2NjbRq1UoWLFiQbyxaTk6OZGdnm107Poy5T9Gip2+XCRMmiKIosn79eoP1d+/elePHj8uKFSvkrbfeksmTJ8vx48fVL6TmUuCzKLQy918u1Gq1smnTJhkyZIhUqFBBLRAbNmwo06dPzzf+0NxptdoCD867d+/KuHHjpHbt2tK3b19ZvHixiJj25dW8c0y6urqqH5j6aRLM5SRUFJY+TYtOp5Pr16/Lnj17ZP78+dKxY0dxc3MTe3t7adasmfz3v/+Vbdu2SVxcXIFj7syJpU3Tou/9y+vKlSvyxRdfSEhIiPrF083NTZ599ln54Ycf5M6dO0aKtnhZ4hQtIoYxPvXUU/Lss8+qz1i3tM4SFoVW6v674kRyP2iXL18u3bp1ExcXF7XLv3379vLpp5+a5c6vLxjy3n2qd38+6enp4uvrm+8SjynKW6zu3btXvL29ZcOGDSJieAJ70Ena3FnLNC1ZWVkSFxcnW7dulcmTJ0uTJk3Ezs5O3N3dpVu3bjJz5kyJjY01dphFZsnTtOSd4UHv2LFj8sEHH0hgYKD6Jbxy5coyZMgQ9YYEc2SpU7TklZWVJUOHDpUXX3xRRAo+n5j7OZdFoZXTarXqxL95xcbGyty5c6V169aiKIr85z//ERHz/FAVERkxYoR89dVXEh0dna9A1J/MTpw4IXXq1DF4NJop0f/bnzlzRhYsWCA3b94UnU4nKSkp0r17d3XicXM/KT2MtUzTUlAb3rt3T86ePSu//PKLjBw5Us3fXMbaiVjXNC162dnZBZ5nd+7cKSNGjJBq1aqJoijq497MbV+1xCla9PvYBx98oD5O8dy5czJs2DBp1KiRwbbm1l4PwqLQChW0Az/oJLt79275+++/RcS0L6cW5uDBg2qvZ/369WXMmDGyevVqiYmJMcjnhx9+EGdnZ1m6dKmImN4Hj/6D9PnnnxcfHx+5efOmfPPNN6Ioinh4eIifn5/s27fP4DXZ2dlmf8Kytmla8npQ2925c0cOHz4sq1evLsWIis7apml5nOMuLS1Nvv/+ezl8+LCImN++amlTtOjb7vz586IoisydO1dERGrVqiUtW7YUDw8P+e9//5svv7yvNVeKiAjIaogIFEVBTk4Ofv/9d/z5559wcnKCv78/6tati4YNG6Jq1arGDrPY6PM9ePAgduzYgd9++w0HDx6EnZ0dGjVqhKeffhr+/v6ws7PDlClTkJqaioSEBLi6uho79EK5u7ujb9+++OKLL7Bq1Sp8/PHHSElJwbVr1+Dq6oq+ffti9OjRCAoKUl+j0+kgIrCxsTFe4EVUrVo1+Pv7o2fPnmjZsiVq1qwJLy8vKIpS6Guio6MRHByMp556Cr///jscHR1LMeInd/HiRWzcuBGHDh2Cm5sbevTogQ4dOhg7rCcya9YsTJkyBa+++ir69OmDTp06PbANASAnJwddu3bFgQMH8MUXX2DQoEHQarVmtR//9ttv2Lt3Lzw8PFCpUiXUrl0b9erVQ5kyZYwdWrHJzMzEpk2bsG3bNmzcuBHx8fGoUKECnnrqKbRu3RrVqlVDVlYWxowZAxsbG1y9etXYIT+Qfh9799138e2332LDhg0IDAxEnz59cPLkSVy+fBkA0LlzZ/Tp0wfNmjVDQECA2Z1nCmTUkpSMIisrS8aNGyd2dnbi4OAgvr6+YmNjI1WrVpXOnTvL7NmzZceOHWZzx2ZB9N/WMjMzZd26deqy69evy86dO2XChAlSp04dg+kD/Pz85NNPPxUR0/umrs/nl19+UcfR6SUnJ8v69etl5MiREhAQoOZTo0YNmTlzply+fNlYYT8xa5qmRb/P/fHHH+o0Hp6enmp7li1bVt588035559/jBxp0VjLNC36+JKTk2Xs2LHqnKFubm7i5uYmgYGB8vLLL8t3331n1k/2sIYpWipVqiS9e/dWewSTk5PlxIkTsnTpUnn22WfFxcVFbG1t5T//+Y+89dZbsnbtWjl37pzJ9oA+ChaFVkR/EP7000+i0Wikd+/ecu3aNdmxY4coiiKNGjUSb29vsbW1laCgIBk8eLDMnz9fkpOTjRz549Pn+sUXX4iiKAbP2BTJLYwvX74sO3fulEWLFsnHH38sZ86cMdlHaOlPMp06dZLAwEA5f/68wXK9y5cvy/fffy99+/YVb29v9WRcr149s5rEOS9rmqZFRKRBgwbi4+OjTuTcuHFj8fHxES8vL7U969atK++//77ZzfVmDdO06M8hCxcuFEVR5MUXX5TY2Fj57rvvRFEUqVmzpjg6Ooq7u7u0b99e3n77bVm1alWBYw5NmaVO0aKPa+/evaIoijpVUt54tVqt3L59W6KiomTmzJnSrFkzsbGxEQ8PDwkMDJSff/7ZKLEXBxaFVkRfQLRs2VKaN28uR44cERGRt99+W7y8vGTz5s3y119/qY9Ls7GxEXd3dyNGXDT6SbdFRPr06SNt2rRRp7Ywpw+X+929e1cURZGQkBDZuXOn3Lhx44H5nDhxQhYuXCjBwcFm/1g7EcuepiVvL6GiKPLJJ5+ISG5hqyiKTJkyRc6cOSOTJ08WOzs7dfqor7/+WkRM9wNWzxqnaalZs6a0b99evTO8X79+Ur16ddm2bZv6tIu8X9rMiSVP0aLPbfjw4QV2KIgYHm85OTly7do1CQsLk3Hjxom7u7ts3rxZRMzz34JFoZXQ78QJCQlSpkwZef/999Wdv1KlStKrVy91EPj+/fslMDBQPv30U9mzZ4+ImOcNJiIiM2fOlODg4AduY+qFov7E8uWXX4qiKGJvby+VKlWSPn36yNdffy2HDx8u8PnNejk5OepNGKae66OytGla9G388ssvS7169dS7bD/55BOxt7dXpxvKysqSTp06SfPmzeWTTz5Ri19TLwrzsuRpWvR5HT16VJydnWX+/PnqOmdnZxk2bJjaZitWrJAGDRrIZ599JhERESJifudZS56ixd3dXd0Xa9asKRMmTFBvuMwrb84ZGRlqcWyuNMYe00glT0SQk5MDADhy5AicnJxQpUoV2NjY4ODBg0hMTETLli3Vgc8tWrRASkoK7ty5g9atWwMAbG1tjRX+I9HpdACAd955B6tWrQIAnD17Funp6YiLi8Pt27fVbSX3y5D6u7kMWv/yyy9Rt25dvPnmm6hXrx7CwsIwatQo9O3bF5MmTcKaNWtw5swZpKWlGbzOxsYGVapUUf/fnOnb2c7ODr6+vggNDcWUKVOwatUqrFy5Ev3798f58+fxwQcf4O7du0aO9tFpNBrk5OQgLi5OvREBANatW4eGDRuiQYMGAHLz7tmzJ2xsbPDWW2/BwcEBAB56w4YpsbGxUW92y87OBgAEBgZi+vTpOHbsGHbs2IHhw4fD3t4eK1aswOeffw4ABsesKdJqtdBqtQCAAwcOoEyZMqhWrRoAYMOGDcjIyECLFi3UNuvVqxcuXLiAsmXLIiQkBIBpn2f1x97UqVPx999/AwDi4uJga2uLmJgYAP/uh3nbSlEUaDTmUWro4/71119x9+5djB49Gm3btsX58+fxySefoGXLlmjRogXmzZuH8+fPAzDM2d7eHr6+vkaLv1gYsSAlI4iIiBAfHx/1m+n//vc/cXR0lLVr16rbJCQkSLt27eSFF14wVphFkpKSIoqiyPjx40Ukd2xWrVq1xNnZWfr06SP//PNPvm+spt7Dcv/UCAsWLJCcnByJjY2VtWvXyrhx46RJkybi6OgoDg4O0rRpU5k0aZJs2rRJLl26ZBbP/H1cljBNiz6HvD28t27dkg4dOkjr1q1FJPcmm4CAAOnWrZuI/NubOHfuXClXrpw6fYk5sZZpWlatWiXly5eXs2fPiojI+++/L25ubuqVF5HcqXYaNmwoEyZMMFaYj8xapmjRH2MdOnSQRo0aqeOwL1++LHPmzDG4OdHW1la6du0qy5cvN9vx2gUx3a8l9ER0Oh00Gg2+/PJLRERE4PPPP4e3tzfq16+PsWPH/l975x0VxfW+8WcWFqQj1RZF7LH3Xr/GbjRqoth7jYkmEY3GxBJLjCbGWGKJPWqMvYuKBey9C4piB6UooNTd5/cHv5mwgMbK7pTPOTnBnbuc9+HeufPOLc9FsWLFAAAFChSAwWBAWFiY9J0TJ07g7NmzGDZsGABYvAWEGPfSpUthY2ODxo0bgyQaNmyIw4cPIzExEevWrUNISAg6duyIWrVqoXTp0vD09LT4ERaj0QgrKyvMnz8f7u7uqFy5MqysrFC4cGEULlwYLVq0wPXr13H69GkcOnQIwcHB+PnnnzFv3jzUrFkTVatWxZAhQ+Dt7W1uKW/Nq9i0uLi4oGLFiqhYsaKZonw1xHb3zTffoFu3bqhbty5y586NCRMmSCOcOp0OuXPnxqNHj6R/P336FGfPnoVOp7N4jdkh6n4VmxZ7e3t0795d+rcl9kFi3zh16lQkJSXB398f9vb2qFSpEnr27AkvLy8YjUZ4e3sjKSkJUVFR0ndPnjyJ0NBQDB061OR3WSIZ+yE3NzfUrl0b8fHxKFy4MK5cuYK4uDhMmjQJp06dymLRYul9bEZ0Oh3i4uIQGBgIf39/yWImf/788Pf3h7+/Py5evIjFixdj5cqV2LVrF3bt2gVPT080bNgQAwcORIMGDcwr4m0xd1aq8X4Q33jKlSvHqlWr8vbt29mWu3nzJp2cnOjt7c0pU6bwp59+YpEiRZg7d25pHZqlv+ll1FqvXj1pB2NiYiLv3bvHHTt28PPPP2ehQoUoCALz5s3LTz/9lHPnzuWpU6cYFxdnzvBfCS8vL3788cfSbtPsRk1iY2N59OhRzpw5k+3atZM2I8jV8oJUpk2LeD+tWbOGgiBw7dq1Lyz7zTffUBAEfvLJJ1y2bBl79+5NQRA4bNgwkvJZg6Z0mxZPT082bdr0hbvBDx48KDk8rFixgr///jt9fX2ZJ0+ebI/gtFSUbNEixjh58mRaWVlJxyyKx/Vld68FBATw008/Za5cuSgIAseMGSN9R65oSaECERvkzZs3KQhClmPbLl++zKCgIKkz2rFjBytVqiTtAMybNy9nz55t8rsslcxaM+4Uyxh7YmIib9y4weXLl7Ndu3Z0dXWlXq9nnjx5OGXKlByP+3W4e/cu69atK1kjZCa7Onr48CG3bdsmTaPKaeotO5Rk0yI+fJo0acKKFSvy2rVr0rXo6Gju2bNH2nkbEhLC2rVrm3i9de7cWXphk8PDllSmTUvG4xYz7gQXr4WEhPDixYuShpkzZzJ//vy0srKSPPvmzp1L0rLrUW0WLZ9//jmbNGkiDaRk7l8NBkOWBDEpKYmLFy+W+h5Lrs//QksKFYiYAIwcOZJubm4m58HGxcWxW7du9PX1lT5LTU3l2bNn+c8//3Dr1q28cuWKdM3Sk0JR6/jx4ykIAocPH86oqCiTMpk1xMfH8/z58/ztt9/44YcfWvQxaGJdhIeHS+tWXlYnll5fr4OSbVrE9a8jR440SXy2bt1KJyenLC8ABw4c4IwZM7hjxw5ZjSxlRkk2LWL77NKlC318fEzWeEZGRrJNmzZs0qSJ9FlCQgL37t3L+fPnc8GCBbx06ZJ0zZLbqlosWjLaWL2qN29aWppFPjfeBi0pVDCi1UzGk0nOnDnDwoULs1OnTiTlM/30X4gHyguCQHt7e37yySf8+++/GR8fb1Iu89ttVFSUxXbIycnJLFeuHK9evfra3xWnPOSMEm1aRE2//fYbbW1tuW3bNulacnIyR4wYQUEQpHb7ovvTErW9CKXbtNjb27NPnz4micTBgwfp6uoqbSKxdA2vgtItWgYPHsxevXpJL2mWnMC+T+SxT1zjleH/b6k/fvw4Hj58iI8//hheXl7S9WPHjiE8PBxffvklAEhWAeL3aOG2DxkRYz169CjCw8Ph7++Pfv36QafTYdOmTejUqRNKlCiBgQMHYv/+/QBMrTsEQfjPM3TNSWxsLJKTk9G8eXPs3r1b+ly0hngZgiBYrK5XRck2LX/++Sfq1q2L8uXLS5/dunULAQEB+Oijj+Do6AiDwSBZlIhnV4tYsraMKNWmRayLDRs2IDExEa1atYKzszOAdM2HDx/G06dP8fnnnwNIb8sZ608u/SxVZNFSuHBhrF+/HsuWLQMA2djovGvUqVrBiAnDnDlzAAAPHz7E3bt3AaQfWh4YGIh8+fKhRo0a0q5d4N8bWS4PG+BfrfPmzUPBggXRt29fzJ8/H3Fxcdi4cSNatmyJhw8fYsGCBfjf//6HMmXK4Pvvv8fFixcBWL5Wb29vrFu3DoIgYMiQIQgICACg3M5KfAA9efJE+kzciRsZGQkHBwc8fvwYkZGR8PT0ROHChaU28Pz5c1y/fh3nz5/P8bhfB51Oh9u3b+PixYvw8vKCk5OTdO306dO4cOECBgwYAMA0cdDpdBbfXrPDyspKSuocHByQmpqKsmXLAgBOnDgBBwcHKdkH0vurokWL4uzZs2aJ91UR62bevHlwdnbG06dPkZCQAAB4+vQpAgICUK5cOfj4+MBgMGSpP7nUpajzjz/+QIUKFTB+/HgEBgbi7t27mDp1KkqUKIGTJ09i5MiRKFmyJFq0aIFly5YhJiZGdi+mgwYNQqdOndC/f38MHDgQt27dApD+nBFfbFSBOYYnNd4/derUoSAIzJUrF6tVq8ZRo0ZxypQpzJ07t7RDSkTuw+ROTk7s27dvtsdiPX36lPPmzWOVKlVMFuvXrFlTOpjdUhGnYS5dusSqVatSEAT27duXp06dyrIAP/OpAXKaXsxMnz59eODAAUnP4cOHuWvXLpJkVFQUq1WrxipVqkjlnzx5Qj8/P3p5eZkl3tdl/vz5Ujv08PBg//79uX37dvbq1YtOTk5SObnel+IaqylTpvCHH36Q1kCGhIRwxIgRfPLkCQ0GA2fNmkW9Xs/NmzdL3125ciXt7Oy4aNEik99liSQmJkrrWL28vNi6dWv+9ttvnD59Om1sbLhw4UKS/y7lkOs9+fTpU2n9a3brWS9cuMBhw4bRw8NDatdeXl7s2LEj9+/fn/MBvwWxsbHs1KkTBUFgu3btePr0aZPrGY9QzYxc6zczWlKoQAwGA8PCwrhp0yb27t2b+fPnN0mIvv76a544cYIxMTEm35NToxZjXbFiBQVB4OrVq02uZ7cA+ObNm/z+++9ZtGhRCoIgrau05IevqDM4OJjVq1enIAisXLkyp06dytOnT2fZVCNX1GTTEhMTw1WrVrFPnz708fExMcMtW7YsHz9+bHIvyum+zIjSbVpSUlJ46tQpzpkzh40bN6adnZ30Ii4IAufMmcMbN25k6Ycsub/JiJotWiZPnixZX/n5+Zls1lQ6WlKocJ4/f85r165x0aJF7NChA93c3KRzRTt06MDZs2fz7NmzFm398DLmzp3L5s2bS7t0M3c+YueV+fOgoCDJcsCSRyMy8+uvv7Jo0aLU6XQsUqQIO3fuzGnTpnHlypU8ffo0Y2JieO7cOV67do2HDx/m8ePHZdEhq9GmhSRv3brFBQsWsE2bNiYJYo0aNfj777/z3r175g7xtVCLTUtGDAYDo6OjGRwczB9++IE1atSgTqejra0ty5Urxy+++ILr1q2TzYaLzKjJokWMMz4+nitWrDA5i7t8+fIcMWIEAwMDeenSJZ49e5b37t3j8+fPefDgQV6+fDnLxkY5IpAyWfGq8Z+kpKRAp9NluzCbJJ48eYKbN29i79692Lp1K06cOIG0tDSUKlUKlStXRvv27dGmTRszRP76ZNSanJwsLVR/GUajEUaj0SIXrv8X4mkHaWlpOHfuHLZv347AwEBcunTJ5FxnGxsbODo6IiEhATY2Nvjtt9/Qq1cvM0b+6sTHx8PFxQX+/v6YOHEi9Ho9AGDbtm3o3Lkz5s6di65du0rlDx48iNOnT6NUqVKoX78+7O3tzRX6KxESEoISJUogNTUVgiBkaYenT5/G3r17sXPnThw7dgwpKSnQ6/Vo1aoVPvnkE/j5+VnsiRciYjvt2rUrDh8+jA0bNkgnrzx69Aj9+/dHYmKitHHq2bNnOHbsGMLCwiAIgnTaEJDeZ1nimrSX9Tepqal49OgRLly4gK1bt2L37t24desWHBwcULVqVVSpUkU68cPSyagzLi5O2kjzMsS1d5beTl+Vp0+fYu3atZg/fz7OnDkjfe7o6Ag7Ozs8f/5c2kTUoEEDrFixAi4uLmaM+O3RkkIF8eOPP2Lr1q3YuXMn3Nzcsl3gDKTfuDExMbh06RJ27tyJgIAAXLhwAZMmTcK3335rsZ1xRkStO3bsgLu7u8mmGTWQkpKC+/fv4+7du4iOjsaVK1dw//59FChQAKmpqShatChKly6NYsWKwcHBwdzhvhSx7mbNmgV/f3+sX78eLVu2BJCu87vvvsP06dMRFxcHR0dHpKWlvfDFx1LbbUpKCqpWrYq///4bJUuWlD5n+myNSdtNSUnB4cOHsWPHDuzdu1faPPMqu84tBQcHB/j5+eGXX36RkolDhw6hTZs26NOnD6ZPn/7CerR0hgwZgsTERCxYsABWVlZS+83c9pKSknD//n0cO3YMW7ZsQVBQECIiIvDXX3/Bz8/Potsr8K/O+fPnQ6/Xq6qPFdOijPUTFhaG/fv3Izw8HED6S469vT2KFCkCJycnNGrUCAULFjRHuO8Ws4xParwXNm3aRGdnZw4fPvyVp0STk5N5584drl27VlpjKIfpRlHrsGHDZDX9q5GVjMcUNm7cWJoGJslr166xfPnykglwxro2GAyyaKskGRERwRIlStDHx4e7d++WPs84rWYwGLJMs0VHR3PlypWSmbUlr5cU62L9+vUUBIEbN26UrqWlpXHy5MkUBIG3bt0imbX+5FKXP//8M52dnaXNMK9CRsP85OTk9xjdu0PUKW6YUSMvWn6kZLSkUGH8/vvvtLKyYuPGjXny5EmpMSuxYatJa3ZkPkVARC7rdzISHh4urQ3MuIv8r7/+oiAIXL9+PUnLTor+i4sXL7Jw4cIsUqSISWKYHXJKeEXEdte4cWO6uLhw6dKl0hqr6OhoNmjQgOXLlycpr3W8mUlISGD//v0pCAIHDBggnc5iMBj+U5ec6vRtdCqRzA4P4s9yqtNXQUsKFUZaWhrHjh0r7VL9559/TK5nvqGza+Ry4XW1Zj7NRMNyULpNy5vaC2W3iN+SUYtNy+tYl8jZLkqzaFEfWlKoUNavX88SJUpQEARWqVKFS5YsYWxsrLnDei+oSatSUYNNixrshZRu05IZtViXqEWnhrb7WHEYjUYIggCDwYCgoCDMmDEDO3bsAAB4enqiTp06aNGiBUqUKAGj0QgHBwcUKFAAp0+fhrW1NSpWrAhPT08zq3g11KRVTYSHh2PPnj3Yvn07zp8/j9u3bwMAqlevji5duuCTTz5B/vz5zRzl2zNz5kzMmTMHN2/eROHChVG9enVUqFAB+fLlQ6lSpVC4cGHcuXMHuXLlQnR0NKytrVG1alWL3pwgYjQa8eTJE1y9ehV79uzB7t27ceLECej1epQoUQINGjRAvXr1UK1aNdkcg5YRcdNFQkICNm3ahGnTpuHSpUsAgHLlyqFJkyZo3rw5vLy8kJqaCk9PT7i5ueHkyZPw8PBAwYIF4ejoaGYV/41adGpkwNxZqcb7JzAwkJ999hldXV1NRmDs7OxoY2NDQRDo4ODAxo0b8/79++YO961Qk1YlIPoRpqSkZDtNeurUKU6dOpX169enra0tBUGgjY0N27VrxxUrVshybZMYc2pqKk+ePMlx48axXr16koeo+J+trS3d3d1pa2tLJycnLl682MyRv5ikpKQXXktJSeG9e/e4Y8cODho0iL6+vhQEgY6OjmzYsCFHjBjBEydO5GC0754nT55wwYIFrFy5skkdOjk50cvLi46OjnR2dqaTkxNbt26d7elLckAtOtWMNlKoYDJbCCQmJuLgwYMIDQ0FScTHx0s+hXZ2dqhYsaIs39oBdWlVCmqzaXkRSrAXUotNS2aoEusStejU0HwKVYHSDEVfhpq0AnihF6UciIyMRP369ZGcnIz58+ejSZMmAEwTfDHpy5ggxsTEYOfOnSCJrl27ytbvTklMnz4dEydOxC+//II+ffq80ncSEhJw8+ZNHDhwAAMHDoSNjc17jvL9QVIy7pbjvfiqqEWnmtGSQpWR+YEr/iy3N/RXQclalWIke+nSJXz88cfQ6XSYO3eulBhmh7iGVO51lx0Z26T40AXkU8/Pnj3DV199hYULF6J///4YOXIkChcuDKPRCJIvfUlTwv2Ykcwj3WIdajrlh6glMTERNjY2sLKyMrk/lYjl9zYa75SMD5iMPyvlJs6IErWmpaUBABYvXozq1avjn3/+gcFggBzf7UiiTJky2Lp1K9zc3NCsWTP069cPp0+fRmpqapayQHrdGY1G6e+gFDK2yYwPHDkkhED6CSY//fQTOnbsiAULFuCbb77BmTNnoNPpJD0Gg0Ea+SUp/SwIgizb74sQBCHbvkfO/U52qEGn2DZ79uyJxYsXA1D+LJQ2UqihYQGIb6QZR8Ne9sbdrFkzBAQEoFChQpg7dy6aN2+ewxG/G0SNhw8fxtdff40TJ06gUqVK+PTTT/HRRx+hUKFCcHd3N3eYGq/BlClT8PPPP+PJkyfo1KkTBg4ciHr16pk7LA0NE7Lrc7Njx44daNWqFQCgc+fOmDlzJjw8PHIy1BxFSwo1NCwccVQl4xvqlStXcOTIEcyaNQvh4eGYP38+OnXqJPu3dCXbtCgdzb5Ew5IRk8DXnd6OiIjAP//8g9WrV+PYsWMYNGgQZs+eDUBZo6IiWlKooWFGUlJScPfuXcTFxeHOnTuIjY1F3rx5IQgC7OzsUKZMGeTOnVsqn7FDS01NxalTpzBy5EjY2tpiz5495pLx1ojrdNLS0nDu3Dls374dgYGBuHTpEmJjY6VyNjY2cHR0REJCAmxsbPDbb7+hV69eZoxc40U8ffoUa9euxfz583HmzBnpc0dHR9jZ2eH58+fSGrQGDRpgxYoVcHFxMWPEGkonISEBsbGxuHz5MpydnfHgwQPY2dmhfPnycHV1hZWVFezs7F74/dmzZ+O7777D/v37UbFixRyMPOfQkkINDTPSuXNn7Ny5E8+ePTNZJ2drawtbW1v4+PigevXq6NixI+rWrQu9Xp/t77l58yZ8fX1zKuz3jhJsWtSKZl+iYYlcuHABjRs3RlJSEp4/f57Fzqps2bKoW7cumjZtilq1aknLVlJTUyEIAqytrWE0GnH8+HHUrFnTHBJyBC0p1NAwEyQxbdo0CIKA0qVLI1euXLh37x6SkpIQHR2NoKAgBAYGIjU1Fba2tmjfvj0GDhyIOnXqAEgfXcu82FtDvsjZXig7NPsSDUti06ZN2LNnD+rWrYu4uDh4e3sjPj4eJ0+exL1793D16lWEh4cjLS0NdevWhb+/P5o2bWrusHMcLSlUOOI6n/j4eOj1euTKlUuxW+qVqPXZs2f4+++/MX/+fJw8eRIlS5bE+PHj8emnn5o7tPeO3G1aXhWl6ckOpduXqMW6RKk6k5OTcf36dZw9exY7d+7Etm3bkJCQgB49euDbb79F8eLFsx0BVyLK7ok0pE64Y8eOGDduHOLj42V/A78IuWoVpzFETzcRknBwcEDv3r0RHByMpUuXwtraGh07dsSYMWMko26lIneblv9CSfZC/4XS7UvUYl0iZ50Z+1kR8X6ztbVFmTJl0K1bN8ybNw/Lly9HjRo1sGzZMowcORIRERGKaav/yVsckadhZgwGA0nSaDRKP2fH+fPnpTMqq1WrxqtXr+ZUiO8MNWklaaLRaDSSTD9DNjg4mE2bNqUgCBw7duxLz5zVMA9ifRkMBuln8f/ZIdanj48Pd+zYkSMxarw62dVndmzfvl3qe7p06cLHjx/nVIjvBLXozEjG+zO7c9TnzJlDJycnVq5cmffv38/p8MyClhTKiJfdqC8jKSmJGzduZOfOnSkIAhs0aMCHDx++8e/LCdSk9WVk11GR5LfffktHR0cuXbo0hyPSeBuye/hcvnyZCxcuZNmyZenk5MRVq1bJtr0qgVdJ5LPj4cOHnDVrFmvWrElBEDh48GAajUaLrUu16HwTxHs0MTGRCxYsoKOjIxs1asSIiAgzR/b+0dYUyox79+7h+fPnOHHiBOzs7PD06VOkpqaiYsWK+OCDD+Dg4AB7e/sXngW7d+9eDBw4ELNmzUKLFi1yOPrXQy1a+f/rdKKjo/Hw4UPcvHkTzs7OqF69uok9Av9/4b61tTWio6MxePBgAMDKlStfuCtZI+fQ7IWUg1qsS9SiMzMk8ejRI4SGhsLDwwO2trbInTu3yf2Zkd27d2P8+PGYM2eOrHS+EebMSDVej/v379PNzY3W1tbU6/W0srKShvEFQaCXlxfbtGnDefPm8ebNm9L3UlNTmZqaKr3JXbx40VwSXhk1aSXJffv2sVq1atTr9RQEgfb29nRwcOCBAwde+r0zZ87kUIQa/4Wfnx9dXV2lOhT/y5UrF11cXFi+fHn279+f+/btY0pKygt/T1hYWA5GrZGZ8+fP09PTk05OTln6HUEQWK5cOQ4ZMoRbtmxhVFSU9L2UlBSmpqaSTJ+CPXLkiLkkvBJq0SkiLsl5/Pgxv//+e3p6elIQBNrY2LB06dKcMGGCSXlxVN9gMDAtLY3BwcF8+vSpOULPUbSRQhlx5swZrFmzBi1btkRMTAxcXFyg1+tx4sQJhIWF4fLlywgJCcGjR49QrFgxDB48GAMHDoStra25Q39t1KBV3LUXHByMbt264fnz5xg8eDAKFCiA6dOnIyQkBNHR0cidOzcePnyIe/fuoXz58rCxsVHc7s0XIRebFmr2QopBLdYlatGZmU6dOmHt2rVo06YNatWqhStXrmDZsmX4+uuv8fPPPyM5ORnx8fGKPsrupZg3J9V4l9y7d4+7d+/m119/TV9fXwqCwPr16/PgwYNSGaWs+1CCVnHdSqtWrfjBBx8wMDCQJBkdHc0aNWqwQYMGUtnjx4+zUqVKst0487q8bDORXElISOCff/7JatWqURAElipVimvXrjV3WO8N8f57/vy51NZftEZWLiQlJfHixYtcvnw5/fz86OTkREEQ2LNnT4aEhJCkItbXKU2n2J8cO3aMVlZWHDJkiHRtypQpFASBoaGhJNO1lyxZkqNHj5Z9e30TtKRQRogNNOPNaDAYsjxADQYDT5w4wW7dulEQBJYtW1Ya4pfLTawWrQkJCXRycuLQoUOZkJBAkly5ciUFQeDq1aulckuWLKG9vT137txprlBzBHFaauHChaxWrRrXrl3LtLQ0WdQl+e/DJ/MOzow/p6SkcNmyZSxbtiwFQVD0w8doNPKzzz7jggULzB3KK5OxDkWya4NPnjzhxo0bpQ0Xbdu25cOHD0nKo+9Ri07y3+fJoEGDmD9/fgYHB5Mkw8PD2bhxY5YqVcqkfNGiRdm7d++XLvNQKlpSqADEG1Nc/5CRPXv2sHjx4sybNy9PnDhhjvDeKUrTGhwcTAcHB44bN44kGRcXx4EDBzJXrlwm5caPH08vLy9Jl1w6YxE127Qo0V5IbfYlarEuUbrOZs2asVy5ctIayW3bttHOzo4zZsyQypw/f54lSpRg//79Scqvr31btKRQoYhvfEajkbt372bx4sX5wQcfyGbjxesgZ61hYWH08PDgoEGDSKZPE/v6+rJTp05SmdjYWHbs2JGFChUyU5TvF7XYtMjZXkizL8ketViXKEXngAED6OnpKc1IjB49moIgMDo6WiqzatUq2tvbc+XKlSTlv+ThddE2msgUknjw4AGOHTsGd3d3uLm5IXfu3Pjggw+yLR8WFobBgwdj2LBhaN68eQ5H+3YoWWtqaiqaN2+O06dP49SpUzhz5gw6duyI/fv3o379+gDSF4QPGDAA7du3x9y5c5GWlvZCGx5LQ202LVSwvZAa7UuoEusStehctGgR+vfvjwkTJqB58+bo168fXF1dERgYCABISkpC9+7dsWPHDkRHR8tq4+I7w2zpqMZrI05DRUZG8ocffqCDg4M0NZMnTx727Nkzy3fS0tKkN52QkBCTNyJLRg1aRY27d++mi4sLnZ2dWbp0aXp4eEhlLly4wJIlSzJPnjy8cuWKyffkgBptWpRoL6Qm+xK1WJeoRWdGkpOTWaNGDVpbW7Nhw4a0srLizJkzSZLx8fHSs+aLL74gqb5RQlIbKZQV/P9RiN69e2Pp0qX47LPP0LRpU1y/fh1Tp05Fhw4dsHbtWqSkpODevXvw9fU1d8hvjJq0Aunn344aNQpRUVEAgLJlyyJXrlw4deoU3NzcMHPmTHTp0sXMUb4eVJFNi9LthdRoX6IW6xK16BRnWMLDw/HNN98gICAACQkJqFGjBnLnzo2wsDCEhobCz88PP/74IwoXLizdm6rCnBmpxqsjrsG5desWra2t2a9fP+naggULKAgCDx06JH1Wp04dtm3blomJiTke69uiJq0ZuXPnDsePH8+yZcvSy8uL5cqVY7du3RgUFCSVUcpaLBGl2LSo2V5ISfYlarEuUYvOF3Hv3j3Onz+fXbt2ZenSpeni4sLSpUvzxx9/lNVMzPtASwplgngzTp48mS4uLtKOzIiICHbs2JFeXl4m5evUqcNmzZrJbnifVLZWcSpt1apV3L9/v/TvzNy+fVu2OzUzoxabFiXbC6nFvkQt1iVq0JlxCdL06dN59uzZLP3tw4cPeefOHcbHx5s8P+TQVt8XKhsXlS9WVlYAgJs3b8LR0RHFihUDAISEhCAwMNBkavH27dtITU2FXq+Hs7OzWeJ9G5SsVdwgMmjQIDRq1AiVK1fGpEmTcPXqVTDDSo6CBQtK0zWU+QoPcfol48kkRqNR+pkk9Ho9/Pz8MG/ePDRp0gRTpkzB+PHjkZycbLa4X5dz587BaDTC3d0dDg4OiI+PR3BwMGxtbdGpUyep3J07d+Do6Ah3d3cA8qjfjHWY8TNBEKRNMwDg4uKCtm3b4siRI5g9ezb27duHVq1a4cGDBxY7NZ4Rse+5desW3N3dUbJkSQDApUuXcPjwYfTt21cqe+HCBVhZWcHa2hp6vV4W9SiiBp1ie5s3bx5GjBiBTp06oX///li+fDmuX78OAMiTJw8++OADODo6wsnJCUaj0eS7akRLCmVGqVKl8ODBAym5OHnyJKKiotCvXz+pzOXLlxEaGmqyNkuOKFVrYmIiZsyYgf79+yMxMRFjx45FmTJl0KhRI/z555948OCBSXkldlBiciGuGwQAvV6P2rVrY9euXRg1ahR+/fVXrFmzxpxhvhZ58+aFnZ0dIiMjAQBXr15FQEAA2rZtK5V58uQJrly5Ajs7O1StWhWAfOtXjFsQBCnJAP69B3v37o0ZM2YgJCQE3bp1k/4ucqBQoUJ4+PAhXFxcAABHjhxBUlISevbsKZW5fPky7t69i3r16gGAlFDICSXrFNtnjx49MGHCBDg6OmLp0qXo1asXOnbsiOHDh2Pz5s2IiIiQyqtu/WB2mHGUUuMN2L9/v2QEe+TIETZq1IgffvihSZlevXrR2tqa9+7dIynfoXClazUYDLxw4QLnzJnDDh060Nvbm4IgMHfu3OzZsyc3btzIuLg4c4f51oh1EhUVxYsXL3Lz5s3cv38/nz9/nqWcOL0TFRXFzz77jJ999plspqxSUlL4v//9j66urrxx4wbXrl1LQRBMdh1v3LiRXl5eki/li5YPWDJGo5ERERE8dOgQr1y5wrCwMMbExLyw/K5du1izZk2L3l2dmYULF1IQBE6cOJGnTp1ixYoV2bBhQ+l6YmIiP/30Uzo4OMjKdDwzatFJpk+ZHz9+nMOHD2ehQoUoCAJdXV3ZtGlTjh8/nrt375ZNX/M+0ZJCGdK9e3cKgsAKFSrQ1taWw4YNI5m+dmLKlCl0cHBgjx49SMrLviQ7lKjVaDRmiTUhIYH79+9nr169TKw+BgwYYKYo3y1KtGnJiNLthdRmX6IW6xK16MxMXFwcV65cyYoVK1IQBFpbW9PR0fGlLzdqQUsKZYR4QyYnJ3PUqFHMnz8/BUFg4cKFWbt2bebLl4+CILBjx47Szka5PHQyo2StGUeHsjsm7LvvvuOHH37IHj168NixYyTl2RmLMQcFBdHHx4deXl4cN24cFy1axJIlS1IQBKkTfvDgAU+cOMHk5GSS/9alnEZ+Rf78808paRI9/KpVq0adTkcPDw/ppAQ50rFjR2kDybRp09izZ08KgsBvvvmGZPpOVblvkBLvz1u3brF9+/bSbuqaNWuyRYsWLFGiBAVBYOfOnXnz5k2S8ul7MqIWnS/a+W4wGLhhwwYWLVqUffv25ejRo6XP1YyWFMqU+Ph4bty4kV9//TUbNGhAX19fVq5cmb/99pssp6RehlK1ZjTbJiklRMHBwfTx8eGjR4/MFdo7QU02LZmT9rt373L8+PEsU6aM7O2F1GxfohbrEiXpFO+rZ8+eZWmD2b2E165dm9OnT8/yfbWiJYUyIDU1lb///jsnTpyYZc1DQkICnzx5QpKy9+kjlalV7GRu3rzJsmXL8s8//8yyni4tLU1KcAMCApg/f35ZjyiJqMGm5eTJk/ztt9949uzZbG1awsLCZHdGbEaUbl+iFusStegU26u/vz9HjBjBPXv28MGDByZlRD3x8fFs27YtP/74Y9klv+8LeRygqlLEUxI2b96MiRMnolq1atK5qPx/Gwg7OztERUUhLS0NuXLlsuhTEV6GkrWKMQYHB+PSpUvo27cv+vXrh48//hj9+vVDixYtTHZvBgcH48GDByhbtiwAyEZndryNTYulaxZ3Ko4cORLHjh3DmTNnTOoxIiICnp6esj9t57/sS3788UepbHb2JZZejxmtS8aPH4/ixYujVq1aaNCgAWrWrIlixYohT548UnmS0kkXlq4tI2rRaWVlheTkZKxZswZ3797F0qVLUaNGDTRq1AjVq1dHyZIlpTOdL126hMuXL6NChQrQ6XTqPMEkM2ZLRzX+E/Ftpn79+qxQoQLPnTsnXbt+/TqHDh3KYsWKsVWrVly/fr25wnwnqEXr6dOn+f3337NKlSrSmjNXV1f27duXCxYsYL9+/ZgrVy5WrlzZ3KG+E8LCwujh4SHttj1+/Dh9fX3ZqVMnqUxsbCw7duzIQoUKmSnK10ccjdiyZQsdHR05ceJE6ZrRaOTff//NJk2asFixYvziiy94//59c4X6zhgwYAA9PT2l0aXRo0dTEASTM8ZXrVpFe3t7aZRbTlPIt27d4sSJE1m5cmUKgkCdTseKFSty2LBh3LRpk2TCLXfUovPRo0dcu3Ytu3TpQi8vLwqCQB8fH3bu3JmTJk3inDlzpI0me/fuJSmv9vq+0JJCCyXjUW+CIHD8+PEmw9sNGjSgIAgsVqwYPTw8qNfruX//fjNF+3YoWauoIzQ0lD///LOUHMTFxXHr1q0cNGgQixUrRkEQaGVlRUEQWKdOHcV0Ukq1acm4XrJChQq8cOGCdO2ff/6hXq+no6OjlPiPGTPGXKG+M9RiX6IW6xIl6hT723nz5vHu3bsk05ewXL16lX/88QebNm0qbagRBIFeXl7SJimNdLSk0EIRG/ecOXPo5ubGzZs3k0xfPDt37lzpKLBbt27xzz//pCAI/P33380Z8hujZK1i8tClSxf6+vry8OHDWcrcv3+fGzdu5JIlS7hv3z5GRUXldJjvBaXbtDx79ox58+Zl9+7dpTWiISEhLFasGEuXLs1jx44xMTGRZcuWZeXKlaX1sHJFjfYlarEuUYJOcXDh+vXrFASBXbt2zXL9yZMnvHTpEjds2MBff/2Vp06dktqpnNZNvk+0NYUWiriuITk5GfHx8bC1tQUA7N27Fz/++CPatWuH4cOHw8PDA/Xr10f+/PkREhJizpDfGCVrFddjhYSEoEqVKihdujSA9FMBSMLKygr58uUzOfVCKYj12qRJE/zyyy8YNWoUrly5AgAoX748cuXKhVOnTsHNzQ0zZ85EqVKlTL5n6dy9exf29vZITEyEnZ0dUlJS8NNPPyE8PByBgYGoUqUKrKysULFiRRw4cADR0dHSyRFyIy0tDTY2Nli9ejW++eYbBAQEwGg04u+//0ZAQADCwsIQGhoKPz8/DBs2DID8Tmrh/x/fljFuJycn+Pn5wd7eHv7+/mjQoAG8vLyQO3du2a4/U6JOo9EIo9EIa2trBAQEoGDBgujevTuAf9erC4IAFxcXuLi4SP1wRuTWXt8Xll3TKoSZzpWsWrUq0tLSMHv2bPzxxx/48ssv8ezZM0yaNEk6GzckJATPnj1DkSJFAMjjqDdAmVpFTfHx8dJxUEajEUWKFEFycrKUFOh0OilhZPqIvXkCfo9krJvevXvjzJkzGDduHEqXLo2IiAgkJSWhS5cu2Lhxo3SetVz+DiRRvHhxFC5cGNu3b8e4cePQt29fLFmyBAMHDkSdOnVgZWWF2NhYpKSkwN7eXtYbTsSjJn18fPDbb79h+vTp6NKlC+Li4nD48GFYW1tj4sSJWLFiBQoXLgzA8pN7sa09f/5cOm4x49nc4nWdTodPPvkE3t7eKFmyJCZNmgRAPkmEGnTqdDqpjZYuXRqCIKBgwYIAsu9T5HJUn1kww+ikxmuQkpLCb7/9li4uLhQEgd7e3ly1apV0PS0tjcOGDaONjY0sj3rLiJK0fv7559y9ezdJ8vLly/zll1/YqFEjPnz40OS0B6WhdJuWzPW2ePFik7WDPXv25J07d6Tru3btYt68eTl48GDp+3JADfYlarEuUapOMb6FCxdy+PDhTEtLY2RkJBctWkQ3Nzfu2rXLpLxc2qW50ZJCCyEiIoL79u1jRERElpvx8ePH3LBhA3fs2CGZxIoEBASwcOHCbNOmDUl5rMdSqlax09m3bx8FQeDy5cv57Nkzk00kX375JWNjY02+k5qaqrgOq1GjRrS3t+e1a9dMPn/48KFsEqOMHDx4UDIXz0xsbCzXrl2bra9k586d6e7uzkuXLpG0vDb7IsT2OG7cOAqCwBIlSrBXr15ctmxZlvtSLC8XbRlJSkpiwYIFKQgCPT092bp1a/766688cuSIyXq6o0ePslixYvz0009JyqceRZSoU2yjxYsXZ926dWk0Gjl48GDa2dnR3d2dRYoU4aZNm7Ks5X3RCSca6WhJoYUwZMgQCoLADh068I8//uDp06dNkofsePz4MWvVqsUiRYrw4MGDJOUxEqFUrWI8fn5+LFasGM+fP8/Y2Fh27dqVlStXlna95c2bl6NHj+aNGzey/b5cUapNy+3btykIAosUKcIvv/wy281C2TFz5kwKgmByAojcUIN9iVqsS5SkU0zqrl69SkEQOGPGDJLkihUr2KJFC+bNm9fE7mv16tUMCQmRhbOBudGSQgthzZo17NSpEwsWLEidTkcfHx/26dOHa9as4eXLlxkXF5flO9evX+eoUaO4adMmWb35KF2rra0tBw8ezPj4eOmzyMhIrlq1it26dWOBAgWk6cYKFSpw9uzZ/5kUywGl2rSEhoayefPm0nnbgiCwcuXKnDRpEkNCQkzKGgwGGgwGPnv2jAEBAZw0aZKU/FvyqMt/oTT7ErVYlyhVp9jXfPnll/T09DQZKHjy5AlPnz7NX3/9lfXq1aONjQ1z5crF6tWrc/To0dyxYwfDw8PNGb5FoyWFFkR0dDSPHz/OWbNmsUWLFnR1daW1tTXLly/PESNGSI058zSWpb7NvQylaRUT1TVr1mQ5wi0z169f59y5c9myZUuTDvmPP/7IqXDfG0q2aYmKiuKiRYvYpEkT2tnZURAE2tnZ8aOPPuLChQv5+PFjk/Jigqg05G5fohbrEjXo9PT0ZI8ePaR/Z3w+pKWl8fHjxzx48CBHjhzJDz/8kDqdjk5OTmzRooUi7813gZYUWiBpaWm8f/8+AwMDOX78eNasWZO5cuWig4MD69evzylTpvDQoUO8f/++xSZJr4pStIqxNWvWjDqdjuPGjeP58+f56NGjl37v5MmT/PHHH1mmTBlevHiRpLxHlK5du8YiRYpIa5KSk5PZu3dv6vV6BgUFSX+n7t27s2DBggwLCzNnuK9EdpuCQkNDOXnyZJOTaTw8POjn58fNmze/cP2h3HjR+iuDwcANGzawaNGi7Nu3L0ePHi19bskYDAZpCnHOnDksVKgQAwICSFruC+eboGSdYns8fPgwBUHg//73v2yXdGRstykpKbx79y63bNnC9u3bc+DAgSTl/7d4H2hJoYWTmJjIsLAwbtq0iV988QVLlSpFKysrent7s1WrVly6dKm5Q3xnyF1rTEyMNHqk0+lYuHBh9ujRgytWrOClS5eynRYXSUxMzMFI3w9iAtG4cWPa29vzhx9+YLdu3SgIAocOHSqVi4mJYadOnViyZEkzRvv6iLvGM3P06FF++eWXLFKkiJQglihRgj179swyemjpiA/SZ8+eZdFqMBiyJIi1a9fm9OnTs3xfDhw4cIA+Pj7SZqjs1ptZepL7KihNp9guxb5F/K9cuXIcP348L1++bFI+84vN8+fPpVkMOenOKbSk0AJ50dt5XFwcL126xOXLl7Nnz57U6/X88ssvScq3cStBqxjPzz//TL1ez/Hjx/O7775jjRo1aG9vL02LDx8+nJs3b2ZYWJgikkARtdi0kP8mPSkpKVnaYUpKCrds2cIuXbrQzc2NgiDI7rg3JdqXqMW6RC06yfTYbW1t2atXL86YMYOVKlUySRAbNmzIP/74I8tGKDlrzim0pNBC+a+HSVRUFA8fPiwdiWbJnfJ/IXetYkdTokQJNmvWjNHR0STJS5cuceXKlRwwYAA//PBDWltb08HBgfXq1ePEiRMZGBho8dPiL0NtNi2ZeVm7jYyM5L59+0jKK+kllWdfohbrEjXoFONcuXIlBUHgpk2bpGshISH89ttvmT9/fik5dHJyYseOHblhwwZpdFDj5WhJoYURFxfHcePGsW3btqxTpw6HDh3KY8eOmTus94IStIqd1JUrVygIAqdPn56lg42Li+PJkyc5d+5cduzYUXrg5s2bl40aNeKGDRvMEfpboSabFrE+U1NTeeDAAXbt2pVt27blV199xUWLFvH06dNMSEgwc5TvFqXYl6jFukQtOsU21qBBA1apUkXa/Z9ZR3BwMHv06CFtCBPbb+/evbXk8D/QkkILQHzDDgsLY9OmTSkIAosWLWryxlOoUCGOHz+et27dMm+wb4nStIqd8ddff01XV1cGBQWRzH79FZn+sN2/fz+nTJnCli1bUhAEaTTNUkdaskNNNi1iPU6fPp2urq60sbFhmTJlaG1tTVdXV5YrV45DhgzhqlWreOXKFVlZs2REifYlarEuUYtOMt2zVhAEjh492iQZzLi5JuNn//zzD5s3by6NHGq8HC0ptADEhvz555/TwcGBEyZMIJneOdvY2LBWrVom6yUqVKjAWbNmmTPkN0apWr/99lt+//330tRM5oQwuwQxPDycW7dutcgRlldF6TYtYqy3bt2ik5MTK1asyOvXrzMmJoZubm4sU6YMy5UrR51OxwIFCrB58+b84osvePXqVTNH/noo3b5ELdYlatB54cIFtmzZUlojmV3bS0tLy9KvPn78mGfOnCGZ/WYbjXS0pNCCcHFxYefOnaV1O/Xq1WO1atV4584dXrt2jTVq1KCXlxf1ej3Lli1L0vI74xehRK2v4rknp/U7L0MtNi3ig2X06NF0d3fn+vXrSf57lOH8+fMZGhrKAQMGUBAEuru7UxCELDsgLRml2peoxbpELToz86qxKvWc+feFlhSaGbGx7tmzh66urpw7dy7J9BEYQRA4cuRIqcNeu3Yt3d3d+ccff7zUXsBSUarWN03ylJAcqsGmhSQrV67Mjz/+mPfu3SNJfvrppyxcuDDPnz9Pknz69ClbtmzJIUOGvPL6SktESfYlarEuUYtOjZxBBw2zotOlV8Hly5fh5uaGUqVKAQDWrVuHXLlyoXLlyrC2tgYAtGjRAnZ2dsiXLx9KlCgBANI1OaBUrYIg5Oj3LAlBEKR6TU1NhdFoBADUqFEDM2fOxNWrV7F582Z07twZjx8/xrJly+Dk5GTOkF+Z1NRUAMDdu3eRnJwMT09P5M+fHyQRFBSEGjVqoGDBggAAZ2dnuLu748qVKyhXrpw5w34lxHpatGgRvvrqKxgMBjx69Ag3btxAXFwcwsPDAfx7z5GUvivWt6VjZWUFkli7di169uyJ6dOno2LFirh48SLGjRuHMmXKoFGjRpg/fz4iIiIgCIJ0T5KEnZ0d7OzsAFi2ZrXo1MgZtBZgJuLi4vD48WPp315eXrh16xaKFCkCAAgNDYW1tTWKFi0qlbl69SpsbGwQHBwMwLSjtmTUpFWNiA8YvV4vJVIier0erVu3xsqVK3H16lXs3bsXtra2MBgM5gj1tdDr9QDS9Tk4OCBfvnwAgJMnTyItLQ0eHh5wdXUFABgMBri5ueHu3buy0CbW2c8//4xTp05Bp9Nh/PjxGDp0KARBwJAhQ7B582Y8ffrUpDzTZ5fMFverIsa4atUqpKSkoE2bNvjqq69w+vRpXLt2DaNGjUK+fPlw4MABDBo0CMWLF0enTp2wceNGJCYmyuaFTS06NXIQ8wxQqhdxqH/EiBEcPXq0tKYuPj6e+/btk9Y/LFy4kIIgcM+ePdJ3p06dSp1Ox927d5O0/KF+NWlVG0q0aRE1Xb58mcWLF+fx48dJpmtcs2aN9O9bt27Rx8eHzZo149OnT6XvlC9fnvXq1SNp2e1VDfYlarEuUYtOjZxDSwrNhCAI7NOnzwtvyPPnz9PDw4OOjo7s3bs3hwwZQp1Ox/Lly+dsoO8ANWlVC0q0aREfsMOHD6ezs7Nk65EdDRs2lE5rmTp1KitXrkxra2uuXbvW5HdZImqxL1GLdYladGrkDFpSmIOID9JVq1aZPEDI9Jt1y5YtkpFxSkoKFyxYQA8PDwqCQJ1Ox2bNmnH//v0kLfuhQ6pLq9pQuk2Lp6cnO3XqZHJ6x82bN7lt2zbp2KwHDx7Qz8+Prq6uFASB1tbWHDdunKzaqtLtS9RiXaIWnRo5g5YU5iDiTVmvXj1WqlSJ169fl66Fh4ezdu3arF27dpbvBQYGMiAgQFbTcWrSqjaUaNMiPkgDAwMpCAIXLVpkcv3nn3+mIAgmxtx3795lQEAA9+/fz9OnT+dovG+KGu1L1GJdohadGu8XLSnMYaKjo7Md6t+0aROtra05f/58kmRycrJsOt0XoSatakRJNi1i+/v0009ZpEgRaQSFTD/HuE2bNixYsCBJeVsJafYlGhoaL0PbfZxDiBYQixcvhoODAxo3bizZPSQlJeHgwYMAgO7duwMAbGxsYGVlBUB+O2/VpFVtKNWmRbT12LZtG1q0aIGKFStK1y5cuID9+/ejd+/eACDtLpZjW9XsSzTUgvgc0ng9tLs6hxA71pUrV0Kn0+Hhw4fSQ+Xu3bvYtWsXmjZtily5ciEtLS3b78oFNWl9GaLm58+fm/wN5JhMiCjRpkWsj9WrVyMpKQlPnjzB8ePHkZCQAAA4ffo04uPjpaRQTIbk1lap2ZdoKJiMzxhAe2l5Y8wwOqlaIiMj6ePjQ71eT0EQWLBgQfr7+3PcuHEUBIGBgYEk09fwyHmKilSX1hchTpn7+/uzZMmSXLVqlXRNLprVYtNCkhMmTJCmUwsWLEg/Pz/++OOPrFSpEqtUqWJS1mAwyKYORTT7Eg2lIt6LERERdHd3Z5cuXaT2Lbf71NxoSWEOEx4ezuXLl7Njx4709vaWOl2dTsdffvmFN2/eNCkv5watFq0Z405LS8uio379+pL2KVOm5HR4b4VabFrI9DWwJ06c4JQpU1ijRg1aW1tL9VavXj3u2LHDZKOJiJzarWZfoqEEMvYlGe+/rVu3Svds+/btGR0dbY7wZI2WFJqRK1eucMaMGfzoo4/o6ekpJUxNmjTh8uXLFdWglapV7JBelvBERkZy9erVLFeuHK2trTlx4sScCu+doRabFjK9LiMiIrh3716OGDGC5cuXpyAItLOzY40aNThy5Ehu376dkZGR5g71tdHsSzSUQnYzD/Hx8Tx79iz9/f3p5ubG5s2bS/2TxqshkDJe4CRDSMJoNEobK4D0tVfHjx/Hzp07sXv3bpw6dQoA4Obmhjp16mD8+PEoX768uUJ+Y9SgNT4+Hn/99ReuXr2KqKgoVKlSBe3bt5c2W2Rm1KhRiIuLw9y5c3M40teHJARBwP79+/G///0PCxcuRJ8+faTr06dPh7+/P65du4bixYsDAO7du4erV69Cr9fD2dkZlSpVMlf474SkpCRERETg1KlT2LJlC/bu3YuIiAi4ubmhatWqqF27NkaNGmWx53K/CIPBYHJfvqxcxvOtNTTMydmzZ7Fp0yYkJCSgQIECyJMnD+rXry+tbRaJjY3Fhg0b4O/vjwsXLiB//vxmilh+aEmhGRF3R2XscOPi4hAUFIRt27bh4MGDuHbtGnbt2oUmTZpID2k5oiSt4gP10KFDGDduHA4cOABnZ2ckJCTAaDTC09MTkZGRAP5NrMT/x8XFwWAwIHfu3GZW8d+IOj/77DOcOXMG//zzj7Qr99GjR+jfvz/Onj2L27dvW3R9vSueP3+O27dv49ChQ9i+fTu2bduGOnXq4NChQ6rQr6FhLlJSUjB79mz4+/vDaDTC3d0dcXFxIIng4GBUq1YNRqMxy8tLamqqtDlO4xUxx/CkRlayW7h+9+5d/v3332aK6P2hFK01a9akl5cXZ82axZSUFC5fvpxWVlYcO3YsyXT/xVWrVnHDhg2yWneWEaPRSDs7Ow4dOtTk8z179tDZ2Znjxo0j+e+Uolx1vg5Go5FPnjxhcHAwL126RNLy10tqvBhL3wD1rpCjTrFfWbx4MW1sbNi6dWueP3+eR44cYePGjanX66Wyt27d4pYtWySd2j35ZmhzAhaCTqeTRhpE+44CBQrgs88+M2dY7wU5axVHPIODg3Hs2DEMGzYMQ4cOhV6vR0xMDIxGI3r27Akg3X9x2bJlWLVqFZ49e2bGqF8fqsSm5U0QBAEuLi6oXbs2SpcuDQCvNBWrYRlQJdYlStAp3le//fYbqlatiqlTp6JcuXKws7PD9evX0blzZ6nsuXPn0KZNGxw5csTkuxqvh/xaiQpQk5GzXLVu3rwZ3t7eqFOnDgAgPDwcmzZtQpkyZeDr6wsASEtLkxIquXVQYnIXFhYGIN1z8rPPPkP//v0xadIkrF27FpUrV8YHH3wAIP2BYzQaZVePGuqC/z/NHxkZiYoVK6Jr164IDQ2VrikFJegUNdy5cwc3btxArVq18OGHHwIAjh49ijt37mDAgAFS+aioKHh6euLJkyfS9zVeHy0ptGDUMOoiIhet4tu2wWDAs2fPUKpUKQDApUuXcPToUfTt21cqe+3aNURHR8Pd3R12dnay7KSGDBmC48ePY/LkyciXLx/++ecfjB07FmfPnoW9vT127twpPWwyjgDLUauG8shoms4M6z5PnjyJmJgYrFq1CqNHj0ZMTIxs+qDsUKJOMc7bt2/D1tYW9vb2AID79+9j7969yJs3L2rWrCmVv3XrFgwGg5Q4arwZWlKoofEGlC9fHgkJCTh+/DhSUlJw6NAhpKSkSFPHAHD+/HmEhITg448/BiDPY5fEXbYjRozApk2bsGvXLnzzzTcoV64cgoKC0L59e/To0QOjRo3Cjh078OjRIwDySfI1lI2VlZV032Vskw0aNMCZM2cwYsQI7N+/H127dkVERIS5wnxrlKyzQoUK0Ol0CAkJAQA8fPhQ0iJy+/ZtHD9+HHnz5pVmarQ+6M2Ql4+ChoaFUKNGDXh7e2P06NEAgAMHDqBp06ZwdnYGkG6JsHjxYri6uuLTTz8FIO81LlZWVvD29oa3tzdq166NwYMHm9i0TJs2DYsWLZK1TYuGcvgv6xJHR0dUqFABhQoVQvHixeHv72/RRzG+CDXodHR0ROvWrbF8+XKULl0aCQkJePLkCYYPHy6VWbduHYKDgzFp0iQA6Ut3tP7nDcn5vS0aGvJG3GG7evVquri4SEbcX375JRMSErhq1SppZ5x4golSd8I9e/aMV65c4R9//MHWrVtTEATWrVuXpDp2ImtYFsnJyZwxYwatrKwoCAI9PDxoY2NDvV4vHcmY3S7clJSUnA71rVCLTpHQ0FAWL15cOlknb968PHz4ME+ePMnp06fTycmJderUYWxsLEmt73kbtKRQQ+MNSU1N5cKFC6UTLwRBoI2NjdRxzZs3j/Hx8STlaQfxOqjFpkXp9SgiN51qsS5Ri86MiInsw4cPOXjwYBYqVMikrxWPoTx16hRJLSF8WzTzajPD/18U/Pz5czx9+hR58uQxMTtWEkrQGhMTg5SUFOTJk0f67NmzZ9i+fTsOHz4MvV6PDz74APXr10eFChXMF6jGO0Fsm3fv3pV2WisRuesU469QoQIcHR2xYMECfPjhhzh37hzatm2LBg0aYOnSpQCATZs2oV27djh06JDkHiAX1KBTNKFOTEyEnZ2dybWoqChcvHgRFy5cwLVr1xAfH48OHTqgTp068PDwMFPECsNc2ahGOuKbn7+/P0uWLMlVq1ZJ15T2xiNXrWJsjx8/5pAhQ9i7d2/GxsbSaDRmGVFJTk42R4ga7wGx3iMiIuju7s4uXbowJCTE5JoSkLtOMcbbt2/TwcGBI0aMkK7NnTuXgiDwyJEj0mcLFy6kl5cXt27davJ9S0ctOsURzR49etDPz4+bN2+WpoVFtPO33x/a7uMcghkGZA0Gg/RvcTHs8ePHERISgi5dumDq1KkA5Lt7SmlaxYXZS5YsweLFi5E3b164urpKZ8I+evQI69evx507d2BjY2PmaDXeFCXaemSH0nSqxbpELTqtrKyQlJSETZs2Yc2aNWjbti0aNWqEUaNG4eDBg0hNTTXZRJKammrGaBWIOTNStSC+ob1sTUdkZCRXr17NcuXK0dramhMnTsyp8N4pStbq4+PD1q1b8969e9Jna9asYa1ataS1LT179mRkZKQZo9R4G7JbSxcfH8+zZ8/S39+fbm5ubN68OR8+fGiG6N4dStQZFxdHDw8PdurUiSR58uRJ5s6dm/7+/lKZ8PBw/u9//2OZMmXMFeZboxadJLlv3z5+9tlntLa2piAItLW1ZcOGDfnTTz/x3Llz5g5PkWh7tnOAhIQE/PXXX7h69SqioqJQpUoVtG/fHgULFpTKeHl5oVOnTujUqRNGjRqFBw8emDHiN0dpWsX1LUePHsX9+/cxYsQI5M+fH0D6+sJhw4YhJSUFXbt2xZEjR7Bs2TJ06NABLVu2lNVaSTWjBlsPQPk61WJdogadBoMBVlZWaNSoERo1aoSUlBT8/fffmD9/Pg4cOIADBw5g/vz5KFWqFLp06QI/Pz9zh6wczJ2VKhVxpOzgwYNs2LAhBUGgi4uLZCHg5eUllRVH18T/P336lDExMTkf9BuiZK1inD/99BPt7Oy4a9cukuSDBw84ePBgOjs7S2sjw8LCqNfrOWHCBNms31EzarH1UItOUj3WJWrRmZaWlmXWKTg4mEWKFKGdnR0FQeDgwYNJym/HvKWiJYXvmZo1a9LLy4uzZs1iSkoKly9fTisrK44dO5Zkeoe9atUqbtiwQbY3roiStS5evJiCIHDt2rUkySlTptDKyopjxoyROq0zZ84wf/78/Pzzz0nKtyN+XeTWGavF1kMtOkXUYl2iFp2ZN/KlpaVJWubNm8cWLVrw6NGjjIqKIim/fshS0ZLC94DYOIOCgigIAidPnixdmzlzJgVBYFhYmPRZ06ZN2aFDB8nTTk4oUavBYMjSkV69epVeXl4UBIFVq1alIAisVq0aExISpDJr1qyhg4MD16xZQ1KeD9ZXQfzb3Llzx8yRvBli/OXLl2ft2rV5+fJlkuTZs2dZqFAh9ujRQyq7ceNGCoLAoKAgc4T6Vihdp9j3PH/+PMu1x48fMzAwkDNnzuTAgQPZpUsXbty4kY8fP87pMN8ategUOXr0KOPi4kw+MxqNJkniqVOn6O3tzfPnz5sjREUjn0UGMmTz5s3w9vaWPKLCw8OxadMmlClTRjqfMS0tDUlJSdIaCrmiJK06XfqmfKPRKK0LLFKkCKZMmYLJkyfjxo0b6NGjBwYNGgQHBwcAwNOnT7F+/Xro9Xq0b98egLyPtXsR4t8jMjISFStWRLNmzfD999+jePHislhDKcZ4584d3LhxA4MHD5Z2Zx49ehR37tzBgAEDpPJRUVHw9PTEkydPTL5v6ahBJ//f1WDQoEFISUlBp06dUK9ePbi6usLDwwMNGzZE3bp1ZbWWLjvUoFNsb0FBQahfvz4++eQT1K9fH/Xq1UOZMmUkbWKbvH//Pkji8uXLKFeunCzaq1yQbyuyYMSkwmAw4NmzZyhVqhQA4NKlSzh69CimTZsmlb127Rqio6NRunRp2NnZya5xK01rYGAgAgMDMWTIEOTNm1f6XKfToXfv3ujduzdu3bqFfPnywdbWVrq+cuVK7N+/H/369YO1tbXFJ76vSkYdfIF9SVJSEhYsWAA3NzdzhvpKqMXWQw06M1qXxMXFYc2aNahQoQKaNGmC5s2bo1atWtDr9VL51NRUk3/LBTXoFNurIAioVKkSdu7ciY0bN6Jw4cKoV68eGjVqhBo1aqBYsWJISkrCypUrERUVhcaNG5s5cgVihtFJ1bB06VIKgsBt27YxOTmZI0aMoCAIfPr0qVRm5cqV1Ov1/Ouvv0jKd8pRKVr9/PykdTm1a9fm0qVLmZSUlKVcxkX4169fp7OzM+vUqcMbN26QVNb6Fs2+RL62HmrRqRbrErXoDA0N5U8//cSKFStKZ8sXLVqU1atXlzbYdOvWjaSy+lpLQEsK3yPXrl1jnjx5WK5cOW7bto1Vq1Zls2bNpOsxMTFs1KgRPT09ZbnTLyNK0Xrx4kVOmzaNjRs3pq2tLQVBoLW1Ndu3b8+AgIAs5cXF/OHh4QwNDc3pcN8bZ86c4ffff8+vvvqKv/zyC1etWsX79+9nKRcTE8NFixbRzc3NxL/R0jEajezVqxetrKw4ceJEjhw5koIgmCS206dPp62tLadPn05SnqcoKF1n5hfL5ORkLl++nLVr15Ze7nx9fdmyZUuTE5TkhpJ1iu3tn3/+YatWraSz08l03cePH+c333zDIkWK0MrKisWLF+d3333HW7duSWU03h1aUvieEBd5r169mi4uLtLbzpdffsmEhASuWrVK2gE4ZcoUkvJt3ErUmpqayqCgII4aNYqVKlWSOl53d3cOHTqUFy5cMHeI7wXNvkR5th5q0KkW6xIl6hTjbNKkCb29vXnixAmTzzNy9+5dKRnUeD9oSeF7JjU1lQsXLmT58uWlxEK0DnBycuK8efOknbhyuYlfhBK0GgyGLLHFxsZy8+bN7NevH319fSVtxYsX59SpU2U1bfoiNPsSZdp6qEGnWqxLlKQz88lXiYmJrFGjBnv27Jlt3HJsl3JFIDMcVKvxToiJiUFKSgry5Mkjffbs2TNs374dhw8fhl6vxwcffID69eujQoUK5gv0HaBkrUajEcC/m2kA4O7du9i7dy+2b9+OAwcOICYmBgDQtWtXLF++3Cxxvgv4/5tIKlSoAEdHRyxYsAAffvghzp07h7Zt26JBgwZYunQpAGDTpk1o164dDh06JO02t3TEk2kSExNhZ2dnci0qKgoXL17EhQsXcO3aNcTHx6NDhw6oU6cOPDw8zBTxm6EWnQBw7NgxlC5dGk5OTtJn4uOMJHQ6HU6fPo2WLVsiICAA5cqVM1eob4XSdIptNC4uDs7OztLnI0aMwKVLl7Bz504kJyfDxsbG4jYiqgIzJqSKQnyTefz4MYcMGcLevXszNjY2y9sdmT5FJ2fUpPVlXLhwgb/88gvLlSvHmTNnkpTXeiwRsT5v375NBwcHjhgxQro2d+5cCoLAI0eOSJ8tXLiQXl5e3Lp1q8n3LRlxRKJHjx708/Pj5s2bpelSETnWXWaUrlNsa4cOHaIgCGzXrh1/++03nj17NltdmzdvppeXl7TOTg5tlVS+zrS0NAqCwF9++YUkOXr0aLZu3ZqlSpXi1atXTcpm5xur8f7QksJ3hHijTps2jXZ2dhwzZozJ9cjISK5bt463b982R3jvFKVrFTugmJgYPnjwgJcvX+bNmzdfWD4lJUX6m8i58zp06BDd3Nz4ww8/kCTv3bvHdu3aMV++fCblRo8eTXd3d8mUXC6aExMTpTWvgiCwYsWKHDlyJA8cOJBlTaQc10iKqEFnUFAQK1euLK2j8/X1Zc+ePbl8+XJpw1diYiI//fRT6nQ6Pnr0iKR82qqI0nSKca1YsYI6nY7r1q1jVFSUtKFPEAQWLlyY8+bNy9Yc35KnxJWClhS+Y3x8fNi6dWuTnZhr1qxhrVq1pE66Z8+ejIyMNGOU7wYlaw0MDGTNmjXp4OBADw8PNmjQgJ9//jnXrVsnq122r4NmX6IsWw816FSLdYlSdIqx1axZk9WrV5deLI8ePcpx48axXLly0rOjVq1aHDNmDPfs2ZNltFvj/aElhe8AsaEfOXKEer2ec+bMka5FR0czT548dHNzY7du3VikSBHJz4+03De6F6FkreLU24EDB1iwYEHmzp2bw4cPZ58+faSOyt7envXq1ePo0aMZEBDAmJgYM0f97tDsS+Rr65ERpepUi3WJ0nVGRERQEASOHTuWiYmJJteeP3/OwMBA9u3bl56enhQEgblz52arVq04adIkXrx40UxRqwctKXwHiMnOTz/9RDs7O+7atYsk+eDBAw4ePJjOzs5S5xsWFka9Xs8JEyZYfJKUHUrWKia8zZo1o7e3N3fu3EmSnDJlCp2cnDhx4kS2a9eOer2ezs7O9Pb2Zps2bWSh7VXR7EvkaeuRHUrTqRbrEqXqFOOfNm0abW1tJYsrMj0RzryUITo6mqtXr2arVq3o5OREQRC4aNEikvLsd+SClhS+QxYvXkxBELh27VqS6cmElZUVx4wZI3XOZ86cYf78+fn555+TlG/jVqrWmJgY2tnZccSIEdIB9L6+vmzevDkjIiIYFRXF5s2b09nZmWXKlGHPnj1JWv7b+aug2ZfIy9bjZShFp1qsS9SgU4xZnCKuVq0aly1bxri4OJNyqampWWYgwsPD+csvv/DJkycmv0vj3aMlhW9Idjuirl69Si8vLwqCwKpVq0oNPyEhQSqzZs0aOjg4cM2aNSTlkUyoQavY8a5evZp58uSRRjsvXLhAQRA4bdo0qeyDBw/o6+tr8qZrqQ/VlyHGLCa/GXn8+DEDAwM5c+ZMDhw4kF26dOHGjRv5+PHjnA7znXD06NEsDx+j0WiSPJ06dYre3t48f/68OUJ8JyhJpxhvxqMySfKbb76RTktKSkqSfYKgBp1i7BcvXqQgCMyTJ4/0oikIAtu2bcvt27dn+V5KSopFPzeUiO6/TWs0skOn00EQBBiNRhgMBhiNRhQpUgRTpkyBr68vbty4gR49euD333+Hg4MDAODp06dYv3499Ho92rdvDyD9sHNLRw1aRT+s2NhYJCcno2DBggCA7du3w97eHqVKlZLKpqamIi0tDQcOHJA+y+hlKBf4/15ngwYNQufOnbFlyxY8efIEAODh4YGGDRtiyJAhmDdvHlauXIm2bdvKys9O1BcUFIRatWqhZ8+emDVrFs6dO4e0tDQIggBBEKS6u3//Pkji8uXLJt+3dJSqU6fTwWAwwNXVFb/++isAYMyYMQgJCcHt27dx7do12NraSveu0Wi0WC0vQw06Rc/XuXPnIn/+/Fi/fj0OHTqEXr16wcvLC5s3b0arVq2QO3duDB48GKdPnwYA6PV6WFlZyVKzbDFXNipn9u3bxzFjxvDBgwcvLHPz5k0mJSWZfDZ79mx6eHhIPnByeANSqlbx7fzmzZsmb+h79uxh3bp1pRHPb7/9lrly5eL169elMvv372eBAgU4YcIEk98lRzT7EvnZerwIJelUi3WJWnSKuLm50c/Pz2Q0+8mTJ/zrr7/48ccfM1euXFJfVKRIEf7444+ytTaTK1pS+Ab4+flJDbd27dpcunRplqSINH2IXr9+nc7OzqxTpw5v3LhBUh43tFK1ivGUKFGC9evXlx6QqampvHz5sqRn7dq1FASBw4cPZ2hoKGNiYti5c2cKgsArV66Y/C45o9mXyMfW479Qgk61WJeoQaeY+O7Zs4c6nY5LliwhmT5QkLn9hYeHc+bMmSa2ZoIgcNy4cTkdtmrRksI34OLFi5w2bRobN25MW1tb6a2uffv2DAgIyFJeXDQbHh4uvbHLBSVrjYyMpE6n43fffWcykpmcnCxZJYSGhkpnOVeqVIk+Pj60srKin58fScscZXkdNPsSedp6iChZp1qsS5SuU+wjGzZsSDc3N164cMHkc6PRaLIRSuTMmTMcM2YMPTw8uG/fPpKW3V6VgpYUvgWpqakMCgriqFGjWKlSJekh6u7uzqFDh0qNXwkoSav4djp58mQ6ODhwz5490rXnz59zzpw5HD9+vMnxbyNGjGD16tVZsGBBTpw4UZrSsNSRltdFsy+5lZPhvTOUqFMt1iVq0Sly4sQJrlmzJkvimxGDwZClH5KDNiWhJYVvgMFgyNLpxsbGcvPmzezXrx99fX2lpKl48eKcOnWqiQGwnFCiVrGTKVq0KJs1a2YS7/nz51mgQAG2adOG5L/T4gkJCYyPj5dFQvS6aPYl8kLpOtViXaIWnXv37pVsrF6HjAmiJetTGlpS+JZklzTduXOHixcvZvv27enu7i4lTeI6HrmiBK1i5yJazcycOVOy7CDJJUuWUBAEaWo8uxM7lNJBafYl8kPpOtViXaIWnSTZokULFixY0GRtslzbpxqQn4+GhaHT6bLYkXzwwQfo1asX1q1bh/3792PGjBkoW7YsKleuDABIS0szR6hvjRK0itYIS5YsQe7cuVGzZk3JsiM2NhYBAQHInTs3PvroIwCAtbV1lt8hWkPIEWr2JQDkaesBKF+nWqxL1KITACZMmIDU1FQMGjQI586dAyDvPlTxmDEhlTXim05MTAwfPHjAy5cv8+bNmy8sn5KSIo06ye0tSYlaraysKAgCO3TowOXLlzMyMpJnzpxhvnz5+MUXX5BktruslYJmX/Ivljodnhm16CTVY12iFp2HDx9moUKFmCdPHi5evJjR0dEk/91komE5aEnhWxAYGMiaNWvSwcGBHh4ebNCgAT///HOuW7eO9+7dM3d47xQlaY2Pj+fQoUMlew5BEFiqVCnWrVuXgiAwODjYpHx20+ZKQbMvkQ9K16kW6xK16BQRl6Rs3LiRhQoVoq2tLfv168dr16698DsZ/w6W2u8oFS0pfE3Et5oDBw6wYMGCzJ07N4cPH84+ffpIN6y9vT3r1avH0aNHMyAggDExMWaO+s1QutaEhATu3LmT3bt3p5ubm6Spbt26HDNmDIOCgmRr2Jwdmn2JfG09RJSsUy3WJWrRSWZN6MLDw9mjRw+pr23RogXXr1/Pp0+fMi0tzeSY1Ixkt7Zb4/2gJYWvidjImzVrRm9vb+7cuZMkOWXKFDo5OXHixIls164d9Xo9nZ2d6e3tzTZt2ljktNt/oVSt2Z3lHBkZyZUrV7Jly5bU6/UUBIEuLi5s3rw5Z86cKSvLnReh2ZfI19ZDLTpJ9ViXqEUnaepwcO/ePf76668m1mZ2dnZs0KABe/fuzYEDB/KLL77g2LFj2bhxYw4fPly2Z67LES0pfANiYmJoZ2fHESNG8Pnz5yRJX19fNm/enBEREYyKimLz5s3p7OzMMmXKsGfPniQt/60uO5Skdc+ePa9kjRAaGsrp06ezSpUqUqdlbW0tK/NmEc2+JB2523qoQadarEvUovPnn3+WXlayi/fZs2fcsGEDBwwYwFq1arF06dL09PSktbU18+TJw7x587JRo0acO3euNoWcg2hJ4WsgNszVq1czT548UpIg2ptMmzZNKvvgwQP6+vqavNHLqWErUWuLFi1YqFAhk2m0l3Wu4pSqv78/3d3dpWPt5NAhk5p9iVJsPdSiUy3WJWrQuX//flpbW3P9+vVZrr3I+zY0NJRRUVG8desWw8LCaDAYXjidrPH+0CxpXgNxG31sbCySk5NRsGBBAMD27dthb2+PUqVKSWVTU1ORlpaGAwcOSJ9ltnOxZJSodcKECUhJSUH//v1fyRrBysoK1apVw08//YS7d+9KmuVip6DZlyjD1kMtOtViXaJ0nUajEbVr10bnzp3Ro0cPTJ8+HampqdK1jJZXBoMBJOHq6opixYrB3d0dPj4+8PX1hU6ng4ODgzmlqBPz5qSWjfg2c/PmTZPRlj179rBu3brSW8y3337LXLly8fr161KZ/fv3s0CBApwwYYLJ77JU1KJVLdYImn2J8mw91KBTLfenGnTeu3ePDRo0oK2tLUeOHJllxiLjoQEaloOWFL4E8cFYokQJ1q9fX/JqS01N5eXLl6X1EmvXrqUgCBw+fDhDQ0MZExPDzp07UxAEacrR0h+yatD6JtYIGXcBWqqu7NDsS/5FzrYeatFJqse6RC06yfR2OnDgQOkY1D/++EPqizKScR2sUpJiuaIlhf9BZGQkdTodv/vuO5PGmpycLO0aCw0NZfny5SkIAitVqkQfHx9aWVnRz8+PpHzWiyhZqxqtETT7EvnbeqhFp1ruT7XoJP9tb/fu3aO/vz+tra1pbW3NRo0acfr06dy7d+8LPW6VfHCApSOQMlhsYgaMRiN0Oh2mTJmCSZMmYdOmTWjcuDEAIDExEUuWLEFUVBTGjh0LQRBw584dzJ49G4cOHcLDhw/Rr18/dO/eHQULFpR+l6WiJq1MfxGCTqfD/fv38c8//2DFihU4e/YsACBXrlyoXr06fH19YWNjAxsbG7i4uODo0aMoW7YsRo8eDQ8PDzOreDliHfz8888YO3YsDh06hGrVqgFIP3aQJPR6vVQ+JiYGAQEB+Ouvv3Dw4EEkJCRg4cKF6NOnD0ha9HqnkydP4ubNm2jTpg1y5cqVbRlxTZ2VlZX0maXryoxadKrh/gTUozMjFy9exOzZs7Fp0yY8fvwYnp6e+OCDD+Dh4YEPP/wQefPmxaNHj5CcnIxnz56hadOm+Oyzz8wdturQksIXIHamxYoVQ9GiRbFkyRLkyZMHAHDhwgW0bNkSlStXxqZNm5Camgq9Xo9nz56BJOzt7S06McqM0rVOnz4dX375JfR6fbYPyefPn2P37t3YvXs3Ll68iKdPn+LRo0eIjY2Fh4cHBEFAqVKl0KFDBwwYMMDi9Yoay5cvj4sXL6Jq1aoYMmQIPvnkEzg5OUnlxHOpM57vfPv2bWzYsAG9e/eGi4uLxSYV+/btg6urq3TG9quSMXGyVG0ZUYNOtdyfatGZmYwJcHx8PM6fP4+TJ08iKCgIR48eRVRUFGxtbZGWlgZ7e3t4eXmhdOnSmDFjBnx8fMwdvvrIgdFI2SFOxYj2KzNnzjRZFLtkyRIKgsCAgACS2Q/lW+o0amaUrlVt1giafYmyULpOtdyfatH5qmQ0XA8JCeHRo0cZHR3N69evy6ofUiJaUpgNYqMcPnw43dzcTPz3YmJi6OfnRzc3N3OF905RslaDwcCUlBR2796djo6OJmaqmU81yW5dlhwR63PQoEEsUKAADx8+zKCgIPbu3Zve3t5Scujq6spBgwZlMdHN7rQXS+TUqVPMmzcva9asybNnz5o7nPeGknWq5f5Ui853hdr1mxstKXwJVlZWFASBHTp04PLlyxkZGckzZ84wX758/OKLL0gqZ0GskrWq0RpBsy9RzmiD0nWq5f5Ui04NeaMlhS8gPj6eQ4cOZfHixaWHZ6lSpVi3bl0KgsDg4GCT8tlNAcgFNWhVgzWCZl+iPFsPtehUw/1JqkenhnzRksL/ICEhgTt37mT37t3p5uYmPTzr1q3LMWPGMCgoKMth9HJFqVrVYo2g2Zcoy9ZDLTrVcn+qRaeGvNF2H78A8TiejDvEHj16hD179mD16tUICAhAWloanJ2dUatWLTRt2hSNGjVC2bJlzRj1m6EmrYDyrRE0+xJl2XqoRaeI0u9PEbXo1JAXWlKYib179yJ37tz/aQFx/fp1bNmyBWvWrJHOGrWyssLy5cvh5+eXE6G+NWrSCijfGkGzL1GOrYdadGZE6feniFp0asgTLSnMRMuWLXH58mVs27YNZcqUAfDyERSDwYDTp09j/fr1+PPPPxEUFIRSpUpZ/MMVUJfWF5HRzDk0NBQxMTEoXrw4YmJiULhwYZORNEunZcuWuHTpErZs2YLy5csDkN/o38s4cOAAPvroI/z9999o166dyTWj0QgAJsnPkydP8PjxY7i5uSE+Ph5GoxE+Pj5ITEyEg4NDjsb+OqhF56ugpPvzZahFp4bloyWFmTh9+jRat24NHx8fzJ07FxUqVHjl7yYmJsLOzu79BfeOUZPWN0FuCdXb1KelYzQaYTAY0LdvX2zYsAE//PCDNJKWefmDwWCATqeTVd2JqEXnu0Bu9+ebohadGpaB5c8p5DCVK1fGunXr8ODBAzRv3hxLlixBTEwMgPSb02AwvPC7ckuS1KT1TZBbR/w29Wnp6HQ66PV6TJ48GVWqVMF3332HsWPHIi4uziQxEqfl5FZ3ImrR+S5Qi3a16NSwEN7fHhZ58iYWEBl3dMrFAoJUl1Y1oNmXmCJ3Ww+16NTQ0LActOnjDBiNRpO1Ordv38YPP/yA5cuXAwCaN2+OPn36oHHjxnBwcEBSUlK2a3bS0tJMzpO1RNSkVQ2opT4NBgOsrKxw//59zJo1C7/88gsAoF69emjRogUqVKiAkiVLIn/+/Fm+m5ycDFtb25wO+Y1Qi04NDQ3LQksKs4EqsoBQk1Y1oLb6VIuth1p0amhomBctKfx/1GQBoSatakCN9UmV2HqoRaeGhoZloCWFUJcFhJq0qgGtPv9FLbYeatGpoaGR86g+KVSTBYSatKoBrT5fnexGUJWIWnRqaGi8H1SfFIrcv38fXbt2xdGjRzFs2DCMHj0azs7O0nXxz6SEDldNWtWAVp8aGhoaGu8CLSnMgMFgwOeff4758+ejWLFi+Oqrr/DRRx/B19fXpFzGHZriLkG5oSatakCrTw0NDQ2Nt0VLCv8fNVlAqEmrGtDqU0NDQ0PjXaAlhS9ATRYQatKqBrT61NDQ0NB4E7SkMBNqsoBQk1Y1oNWnhoaGhsbboCWFr4CaLCDUpFUNaPWpoaGhofGqaEnhW6ImCwg1aVUDWn1qaGhoaGRESwo1NDQ0NDQ0NDRg+edZaWhoaGhoaGhovHe0pFBDQ0NDQ0NDQ0NLCjU0NDQ0NDQ0NLSkUENDQ0NDQ0NDA1pSqKGhoaGhoaGhAS0p1NDQ0NDQ0NDQgJYUamhoaGhoaGhoQEsKNTQ0NDQ0NDQ0oCWFGhoaGhoaGhoa0JJCDQ0NDQ0NDQ0NAP8HefiqGOcHbX4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAKwCAYAAADungXKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADnMklEQVR4nOzdd1xV9f8H8Ne5bJAliqAijnCb20RMnKjY1zIzR0srV1q508xMrdRyNqzMsrQcpeYoBy4wxa1oLsIJCqiIArK59/37g989eQWcwF2v5+PBozj3cy/vt58z3vdzzvkcRUQERERERGTVNMYOgIiIiIiMj0UhEREREbEoJCIiIiIWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEEy0KRQRr1qxBu3bt4OvrC2dnZ9SqVQuDBw/G+fPnC7RPTU3FqFGj4O/vDwcHB1StWhVjx47F7du3C/18nU6HL7/8Eg0aNICTkxPKly+Pvn37FvrZRERERNZAMcVnH48ePRpz5syBr68vnn32Wbi5ueHYsWMICwtDmTJlEBkZifr16wMA0tPT0bp1a0RFRSEkJASNGzfG0aNHERYWhubNm2PXrl1wdHQ0+PyBAwdi0aJFqFevHrp164b4+Hj89ttvKFOmDPbt24eAgABjpE1ERERkPGJiEhISRKPRiL+/v9y6dcvgtTlz5ggAGTBggLrsww8/FADy3nvvGbR97733BIB8+umnBst37NghAKRNmzaSnZ2tLt+4caMAkJCQkBLIioiIiMi0mdxI4b59+xAYGIh+/frh119/NXgtJiYGNWvWxDPPPIMNGzZARFC5cmWkpqYiMTERLi4uatv09HT4+PjA29sb586dU5f369cPy5cvR0REBNq0aWPw+e3atUN4eDguXbqEKlWqPFC8Op0O8fHxcHV1haIoj5E5ERER0f2JCNLS0lCxYkVoNMV4JaBxa9KCkpKSxN7eXvz9/SUlJcXgNf1I4dy5c0VEJDo6WgBI586dC/2szp07CwCJjY1Vl/n6+oqLi4vk5eUVaD99+nQBIEuWLHngeOPi4gQAf/jDH/7whz/84U+p/sTFxT1wvfIgbGFivLy8MGPGDIwePRq1a9c2uKZwx44deOuttzB8+HAA+SOHAIq8BjAgIABbtmxBTEwM/Pz8kJ6ejoSEBNSvXx82NjaFtr/zcwuTnZ2N7Oxs9Xf5/4HWCxcuwNXVFQCg0WhgY2MDrVYLnU6nttUvz8vLU98HADY2NtBoNEUuz83NNYjB1ja/2/Ly8h5ouZ2dHXQ6HbRarbpMURTY2toWubyo2JkTc2JOzIk5MSfmZNyckpOTUa1aNbXuKC4mVxQCwMiRI1GpUiW8+eab+Pbbb9XlrVu3Rr9+/dSOSElJAQC4u7sX+jlubm4G7R62fWGmT5+OKVOmFFi+d+9eODs7AwCqVKmi3vASGxurtqlVqxZq166NyMhIXL9+XV3eqFEj+Pv7Y8eOHUhLS1OXBwYGwtvbG3/99ZfBSteuXTs4OTlh48aNBjGEhoYiMzMTu3fvVpfZ2tqiW7duuHbtGvbu3asud3V1Rfv27XHp0iVERUWpy8uXL49WrVrhzJkziI6OVpczJ+bEnJgTc2JOzMk0ctq/fz8AFPtlayZ3TSEATJ06FR9//DGmTp2Kl19+GR4eHoiKisLIkSMRFRWF1atXo3v37li2bBleeuklTJw4ER9//HGBz5k4cSI+/fRTrFmzBj169EB8fDwqVaqEoKAgg07U27p1K0JCQvDOO+9g/vz5hcZ290hhamoq/Pz8kJSUpBaV1vithTkxJ+bEnJgTc2JOpTdS6OXlhZSUFLX2KA4mN1K4bds2TJ48GSNHjsT48ePV5a1bt8aGDRtQvXp1jB49Gt27d1dH/Ioa2UtNTQXw38jgw7YvjIODAxwcHAost7Ozg52dncEyGxubQk9T61ekB11+9+c+ynKNRlPoxahFLS8qdubEnB52OXNiTgBzKirGh13OnJgTUHTsj8vkJq/etGkTgPzh2rv5+Pigdu3aOHv2LG7fvn3fawDvvubQxcUFvr6+uHDhgkGlXlR7IiIiImthckVhTk4OABic/7/T9evXodFoYGdnh4CAAFSsWBF79uxBenq6Qbv09HTs2bMH1apVg5+fn7o8ODhYfe1uW7ZsAYACU9UQEdF/qlatCkVRCvwMGzYMADB48GDUqFFDfWLUs88+izNnzhh8RmxsLLp16wZnZ2d4e3tj7NixBU7DEVHpMrmiMCgoCAAwZ86cAqd5v/32W1y+fBmBgYFwcHCAoih48803cfv2bUybNs2g7bRp03D79m0MHDjQYPmgQYMAAJMmTVILUCB/hDI8PBwhISHw9/cvidSIiCzCwYMHkZCQoP5s3boVANCrVy8AQNOmTbF48WKcPn0aW7ZsgYggJCREPUOj1WrRrVs35OTkIDIyEj///DN++uknfPjhh0bLiYhM8EYTrVaL9u3bY9euXfD29kb37t3h4eGBI0eOYMeOHXByckJ4eDhatGgBIH9EMCgoCMeOHUNISAiaNGmCI0eOqI+5i4iIgJOTk8HfuPsxdwkJCVi5ciXKlCmDvXv3ombNmg8cb2pqKtzd3Yv9Yk8iInMxYsQI/Pnnn4iJiSn0bsjjx4+jYcOGOHv2LGrUqIFNmzbhmWeeQXx8PCpUqAAg/0v/e++9h+vXr8Pe3r60UyAyKyVVe5jcSKGNjQ3CwsIwffp0VKpUCcuWLcO8efMQHR2Nl19+GYcPH1YLQiD/OsGIiAiMGDECp0+fxuzZs3HmzBmMHj0a27dvL1AQAsB3332n3l08f/58bNy4ET169MCBAwceqiAkIrJ2OTk5+OWXX/D6668XWhCmp6dj8eLFBpfy7N27Fw0aNFALQgDo3LkzUlNTcfLkyVKLnYgMmdxIobnhSCERWbPffvsN/fr1Q2xsLCpWrKguX7BgAcaNG4f09HTUqlULf/31F2rUqAEg/zKeS5cuqddxA0BGRgZcXFywceNGdO3atdTzIDInVjNSSERE5uOHH35A165dDQpCAHjppZdw9OhRREREoGbNmnjxxReRlZVlpCiJ6EGwKCQiokdy6dIlbNu2DW+++WaB19zd3REQEIA2bdpg1apVOHPmDP744w8A+dOLXb161aC9/ncfH5+SD5yICsWikIiIHsnixYvh7e2Nbt263bOdiEBE1KdBBQYG4p9//sG1a9fUNlu3boWbmxvq1q1bojETUdFYFBIR0UPT6XRYvHgxXnvtNYOnK5w/fx7Tp0/H4cOHERsbi8jISPTq1QtOTk4IDQ0FAISEhKBu3bp45ZVXcOzYMWzZsgUffPABhg0bVugTo4iodLAoJCKih7Zt2zbExsbi9ddfN1ju6OiIv//+G6GhoXjiiSfQu3dvuLq6IjIyEt7e3gDyZ5n4888/YWNjg8DAQLz88st49dVXMXXqVGOkQkT/j3cfPybefUxERESliXcfExEREVGJYVFIRERERCwKiYiIiIhFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREQGwNXYARERkHgbOK/2/+f2I0v+bRNaKI4VERERExKKQiIiIiFgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREVgUEhERERFYFBIRERERWBQSEREREUy8KPzjjz/QqVMneHl5wdHREdWqVUPfvn0RFxdn0C41NRWjRo2Cv78/HBwcULVqVYwdOxa3b98u9HN1Oh2+/PJLNGjQAE5OTihfvjz69u2L8+fPl0ZaRERERCbH1tgBFEZEMGTIECxcuBA1atRAnz594Orqivj4eERERODSpUvw8/MDAKSnpyM4OBhRUVEICQlB3759cfToUcyaNQsRERHYtWsXHB0dDT5/8ODBWLRoEerVq4d33nkH8fHx+O233xAWFoZ9+/YhICDAGGkTERERGY1JFoVffPEFFi5ciLfeegtffPEFbGxsDF7Py8tT//+zzz5DVFQU3nvvPcyYMUNdPn78eMycORNz587FhAkT1OU7d+7EokWL0KZNG2zduhX29vYAgH79+iE0NBTDhw/Hli1bSjhDIiIiItOiiIgYO4g7ZWZmolKlSvD09ER0dDRsbYuuW0UElStXRmpqKhITE+Hi4qK+lp6eDh8fH3h7e+PcuXPq8n79+mH58uWIiIhAmzZtDD6vXbt2CA8Px6VLl1ClSpUHijc1NRXu7u5ISUmBm5vbQ2ZLRGQ+Bs4r/b/5/YjS/5tEpq6kag+TGykMCwvDzZs3MWDAAGi1Wqxfvx7//vsvPDw80LFjRzzxxBNq25iYGMTHx6Nz584GBSEAuLi4ICgoCFu2bEFcXJx6ujk8PFx97W6dO3dGeHg4IiIi8MorrxQaX3Z2NrKzs9XfU1NTAQC5ubnIzc0FAGg0GtjY2ECr1UKn06lt9cvz8vJwZy1uY2MDjUZT5HL95+rpC+U7R0zvtdzOzg46nQ5arVZdpigKbG1ti1xeVOzMiTkxJ2vOyQ6lTZ8b+4k5MSfDnEqCyRWFhw8fBpDfOU8++ST+/fdf9TWNRoORI0di1qxZAPKLQgBFXgMYEBCALVu2ICYmBn5+fkhPT0dCQgLq169f4JT0nZ+j/9zCTJ8+HVOmTCmwPCwsDM7OzgCAKlWqoHHjxjh+/DhiY2PVNrVq1ULt2rVx4MABXL9+XV3eqFEj+Pv7Y9euXUhLS1OXBwYGwtvbG2FhYQYrQLt27eDk5ISNGzcaxBAaGorMzEzs3LlTXWZra4tu3bohKSkJe/fuVZe7urqiffv2iIuLQ1RUlLq8fPnyaNWqFWJiYhAdHa0uZ07MiTkxJ+BZlDZ9Duwn5sSc/stJXysVN5M7fTxkyBB89913sLGxQZMmTfD111+jTp06OHr0KAYNGoQzZ85gwYIFGDp0KJYtW4aXXnoJEydOxMcff1zgsyZOnIhPP/0Ua9asQY8ePRAfH49KlSohKCgIu3fvLtB+69atCAkJwTvvvIP58+cXGl9hI4V+fn5ISkpSh3Ct9VsLc2JOzMmyc3rr69IfKVwwjCOFzIk53b08OTkZXl5eln/6WJ+8vb091q5di4oVKwIAnn76afz+++9o2LAhZs+ejaFDhxolPgcHBzg4OBRYbmdnBzs7wx2mjY1NoSOSRV0nWdTyuz/3UZZrNBpoNAVnICpqeVGxMyfm9LDLmZNl5lRa7o6V/cScmFPRsT8uk5un0N3dHQDQrFkztSDUq1+/PqpXr45z587h1q1batuUlJRCP0t/vZ++3cO2JyIiIrIWJlcU1qpVCwDg4eFR6Ov65ZmZmfe9BvDuaw5dXFzg6+uLCxcuGAzfFtWeiIiIyFqYXFHYrl07AMDp06cLvJabm4uzZ8/CxcUF5cuXR0BAACpWrIg9e/YgPT3doG16ejr27NmDatWqqXceA0BwcLD62t308xPePVUNERERkaUzuaKwRo0aCAkJwdmzZ7Fo0SKD12bMmIFbt26hR48esLW1haIoePPNN3H79m1MmzbNoO20adNw+/ZtDBw40GD5oEGDAACTJk1CTk6OunzTpk0IDw9HSEgI/P39Syg7IiIiItNkcncfA8C5c+fQqlUrXLt2Dd26dUPt2rVx9OhR7NixA/7+/ti3bx98fHwA5I8IBgUF4dixYwgJCUGTJk1w5MgRhIWFoXnz5oiIiICTk5PB5w8cOFB9zF23bt2QkJCAlStXokyZMti7dy9q1qz5wLFy8moishacvJrINJRU7WFyI4VA/mjhoUOH0L9/fxw+fBhffPEFYmJiMGzYMBw4cEAtCIH86wQjIiIwYsQInD59GrNnz8aZM2cwevRobN++vUBBCADfffedOuXM/PnzsXHjRvTo0QMHDhx4qIKQiIiIyFKY5EihOeFIIRFZC44UEpkGqxopJCIiIqLSxaKQiIiIiFgUEhERERGLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIgKLQiIiIiICi0IiIiIiAotCIiIiIsJjFIW7du1CbGzsPdvExcVh165dj/oniIiIiKiUPHJR2K5dO/z000/3bLNkyRK0a9fuUf8EEREREZWSRy4KReS+bXQ6HRRFedQ/QURERESlpESvKYyJiYG7u3tJ/gkiIiIiKga2D9P49ddfN/h97dq1uHjxYoF2Wq1WvZ6wa9eujxUgEREREZW8hyoK77yGUFEUREVFISoqqtC2iqKgefPmmDt37uPER0RERESl4KGKwgsXLgDIv56wevXqGDFiBN59990C7WxsbODp6QkXF5fiiZKIiIiIStRDFYX+/v7q/y9evBiNGzc2WEZERERE5umhisI7vfbaa8UZBxEREREZ0SMXhXoHDhzAwYMHcevWLWi12gKvK4qCSZMmPe6fISIiIqIS9MhFYXJyMp577jns2bPnnnMWsigkIiIiMn2PXBSOGjUKu3fvRtu2bfHaa6+hcuXKsLV97IFHIiIiIjKCR67i/vzzT7Ro0QLbt2/nU0uIiIiIzNwjP9EkMzMTbdq0YUFIREREZAEeuShs1KhRoU8zISIiIiLz88hF4eTJk7F+/Xrs27evOOMhIiIiIiN45GsKExMT0a1bNwQHB+Oll15CkyZN4ObmVmjbV1999ZEDJCIiIqKSp8i95pO5B41GA0VRDKajufv6QhGBoiiFzl9oKVJTU+Hu7o6UlJQii2IiIkswcF7p/83vR5T+3yQydSVVezzySOHixYuLLQgiIiIiMi4+5o6IiIiIHv1GEyIiIiKyHI9cFMbGxj7wz+OaOXMmFEWBoiiF3u2cmpqKUaNGwd/fHw4ODqhatSrGjh2L27dvF/p5Op0OX375JRo0aAAnJyeUL18effv2xfnz5x87ViIiIiJz9Minj6tWrfpAE1crioK8vLxH/TM4ceIEJk+eDBcXF6Snpxd4PT09HcHBwYiKikJISAj69u2Lo0ePYtasWYiIiMCuXbvg6Oho8J7Bgwdj0aJFqFevHt555x3Ex8fjt99+Q1hYGPbt24eAgIBHjpeIiIjIHD1yUfjqq68WWhSmpKTg2LFjuHDhAoKDg1G1atVHDi43NxevvfYaGjVqhICAAPzyyy8F2nz22WeIiorCe++9hxkzZqjLx48fj5kzZ2Lu3LmYMGGCunznzp1YtGgR2rRpg61bt8Le3h4A0K9fP4SGhmL48OHYsmXLI8dMREREZI4eeUqaexERzJ49G5999hn27duH6tWrP9LnfPTRR5gxYwaOHDmCzz77DD///DP27t2Lli1bqn+ncuXKSE1NRWJiIlxcXNT3pqenw8fHB97e3jh37py6vF+/fli+fDkiIiLQpk0bg7/Xrl07hIeH49KlS6hSpcoDxcgpaYjIWnBKGiLTYHJT0tyLoigYM2YM/vrrL4wdOxarV69+6M84cuQIPvnkE0ydOhV169YttE1MTAzi4+PRuXNng4IQAFxcXBAUFIQtW7YgLi4Ofn5+AIDw8HD1tbt17twZ4eHhiIiIwCuvvFLo38zOzkZ2drb6e2pqKoD8Uc3c3FwA+XM42tjYQKvVQqfTqW31y/Py8gzmd7SxsYFGoylyuf5z9Wxt87vt7tPyRS23s7ODTqczmC9SURTY2toWubyo2JkTc2JO1pyTHUqbPjf2E3NiToY5lYQSKQr1mjVrhkWLFj30+7Kzs/Hqq6+iUaNGGDduXJHtYmJiAKDIawADAgKwZcsWxMTEwM/PD+np6UhISED9+vVhY2NTaPs7P7cw06dPx5QpUwosDwsLg7OzMwCgSpUqaNy4MY4fP25wo02tWrVQu3ZtHDhwANevX1eXN2rUCP7+/ti1axfS0tLU5YGBgfD29kZYWJjBCtCuXTs4OTlh48aNBjGEhoYiMzMTO3fuVJfZ2tqiW7duSEpKwt69e9Xlrq6uaN++PeLi4hAVFaUuL1++PFq1aoWYmBhER0ery5kTc2JOzAl4FqVNnwP7iTkxp/9yOnz4MEpCiZw+1nv++eexdetWg3/0B/Hee+9h3rx5OHz4MOrXrw8A6N+/f4HTx8uWLcNLL72EiRMn4uOPPy7wORMnTsSnn36KNWvWoEePHoiPj0elSpUQFBSE3bt3F2i/detWhISE4J133sH8+fMLja2wkUI/Pz8kJSWpQ7jW+q2FOTEn5mTZOb31demPFC4YxpFC5sSc7l6enJwMLy8v0z99rNPpcOXKFfz0009Yt24dOnTo8FDv37t3L2bNmoWPPvpILQhNiYODAxwcHAost7Ozg52d4Q7Txsam0BFJ/Yr0oMvv/txHWa7RaKDRFJyBqKjlRcXOnJjTwy5nTpaZU2m5O1b2E3NiTkXH/rge+VP1zz4uiojA09MTs2fPfuDPzMvLw2uvvYYnn3wS48ePv297d3d3APl3PBdGf72fvt3DticiIiKyFo9cFLZp06bQolCj0cDT0xPNmzfHgAED4O3t/cCfefv2bfV6Pv1UMXcLDAwEAPzxxx/qDShFXQN49zWHLi4u8PX1xYULF6DVagtU3/e7RpGIiIjIUj1yURgeHl6MYeRzcHDAG2+8Uehru3btQkxMDLp3747y5cujatWqCAgIQMWKFbFnzx6kp6cXmJJmz549qFatmnrnMQAEBwdjxYoV2LNnT4EpafTzE969nIiIiMjSlejdxw/LycmpyLuV+/fvj5iYGEyYMEG90QQA3nzzTUydOhXTpk0zmLx62rRpuH37Nt5//32Dzxk0aBBWrFiBSZMmGUxevWnTJoSHhyMkJAT+/v4lkB0RERGR6SqWonDPnj2IiopCamoq3Nzc0KhRo0LnASwJ48aNw7p16zBz5kwcPXoUTZo0wZEjRxAWFobmzZtjxIgRBu3btWuHN998E4sWLUKTJk3QrVs3JCQkYOXKlShbtiy+/PLLUombiIiIyJQ8VlEYGRmJAQMG4OzZswDyby7RX2cYEBCAxYsXq9cAlhQXFxdERETgo48+wurVq7Fz5074+vpi9OjRmDx5MpycnAq857vvvkODBg2wcOFCzJ8/H2XKlEGPHj3wySefoEaNGiUaLxEREZEpeuR5Ck+ePImnnnoKGRkZ6NSpE9q1awdfX18kJiZi586dCAsLQ5kyZbBv374in0hiCfiYOyKyFnzMHZFpMLnH3E2dOhU5OTnYuHEjunTpYvDae++9h82bN6N79+6YOnUqVqxY8diBEhEREVHJeeQZScPDw/HCCy8UKAj1unTpghdeeMHg8S9EREREZJoeuShMSUlBtWrV7tmmWrVqRU4UTURERESm45GLwooVK2Lfvn33bLN//35UrFjxUf8EEREREZWSRy4Ku3fvjvDwcEyaNAlZWVkGr2VlZWHy5MnYuXMnnn322ccOkoiIiIhK1iPffXzjxg089dRTuHDhAry8vNCiRQtUqFABV69excGDB3H9+nVUr14dBw4cQNmyZYs7bpPBu4+JyFrw7mMi02Bydx97eXlh3759GDduHFasWIGNGzeqrzk6OmLAgAGYOXOmRReERERERJbisSavLleuHH788Ud89913OHPmjPpEk9q1a8POzq64YiQiIiKiEvbQReEnn3yC9PR0TJkyRS387Ozs0KBBA7VNTk4OJk6cCFdXV4wfP774oiUiIiKiEvFQN5ps27YNH374Iby8vO45Emhvbw8vLy9MnDiR8xQSERERmYGHKgqXLFkCT09PDB8+/L5thw0bhrJly2Lx4sWPHBwRERERlY6HKgojIyPRsWNHODg43Letg4MDOnbsiD179jxycERERERUOh6qKIyPj0f16tUfuH21atWQkJDw0EERERERUel6qKJQo9EgNzf3gdvn5uZCo3nk+bGJiIiIqJQ8VMVWsWJFnDhx4oHbnzhxApUqVXrooIiIiIiodD1UUfj0009jx44duHjx4n3bXrx4ETt27ECbNm0eNTYiIiIiKiUPVRQOGzYMubm5eOGFF5CUlFRkuxs3bqBXr17Iy8vD0KFDHztIIiIiIipZDzV5dZMmTTBixAjMmzcPdevWxZAhQ9CuXTtUrlwZAHDlyhVs374dCxcuxPXr1zFq1Cg0adKkRAInIiIiouLz0E80mT17NhwdHfH555/jk08+wSeffGLwuojAxsYGEyZMwMcff1xsgRIRERFRyXnoolBRFHz66ad44403sHjxYkRGRiIxMREA4OPjg6CgIPTv3x81atQo9mCJiIiIqGQ8dFGoV6NGDY4EEhEREVkITiJIRERERCwKiYiIiIhFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERGBRSERERERgUUhEREREYFFIRERERHBBIvCK1euYN68eQgJCUGVKlVgb28PHx8f9OzZE/v37y/0PampqRg1ahT8/f3h4OCAqlWrYuzYsbh9+3ah7XU6Hb788ks0aNAATk5OKF++PPr27Yvz58+XZGpEREREJsvkisIvv/wSI0eOxPnz5xESEoLRo0ejdevWWLduHVq1aoWVK1catE9PT0dwcDDmzp2L2rVrY+TIkahVqxZmzZqF9u3bIysrq8DfGDx4MN555x2ICN555x106dIFa9asQfPmzRETE1NaqRIRERGZDFtjB3C3Fi1aIDw8HMHBwQbL//77b3To0AFDhw7Fc889BwcHBwDAZ599hqioKLz33nuYMWOG2n78+PGYOXMm5s6diwkTJqjLd+7ciUWLFqFNmzbYunUr7O3tAQD9+vVDaGgohg8fji1btpRCpkRERESmQxERMXYQD6pz584ICwvDwYMH0axZM4gIKleujNTUVCQmJsLFxUVtm56eDh8fH3h7e+PcuXPq8n79+mH58uWIiIhAmzZtDD6/Xbt2CA8Px6VLl1ClSpUHiik1NRXu7u5ISUmBm5tb8SRKRGSCBs4r/b/5/YjS/5tEpq6kag+TGym8Fzs7OwCArW1+2DExMYiPj0fnzp0NCkIAcHFxQVBQELZs2YK4uDj4+fkBAMLDw9XX7ta5c2eEh4cjIiICr7zySqExZGdnIzs7W/09NTUVAJCbm4vc3FwAgEajgY2NDbRaLXQ6ndpWvzwvLw931uI2NjbQaDRFLtd/rp4+/7y8vAdabmdnB51OB61Wqy5TFAW2trZFLi8qdubEnJiTNedkh9Kmz439xJyYk2FOJcFsisLY2Fhs27YNvr6+aNCgAQCo1/8FBAQU+p6AgABs2bIFMTEx8PPzQ3p6OhISElC/fn3Y2NgU2v7Ozy3M9OnTMWXKlALLw8LC4OzsDACoUqUKGjdujOPHjyM2NlZtU6tWLdSuXRsHDhzA9evX1eWNGjWCv78/du3ahbS0NHV5YGAgvL29ERYWZrACtGvXDk5OTti4caNBDKGhocjMzMTOnTvVZba2tujWrRuSkpKwd+9edbmrqyvat2+PuLg4REVFqcvLly+PVq1aISYmBtHR0epy5sScmBNzAp5FadPnwH5iTszpv5wOHz6MkmAWp49zc3PRsWNH7Nq1C0uWLFFH8ZYtW4aXXnoJEydOxMcff1zgfRMnTsSnn36KNWvWoEePHoiPj0elSpUQFBSE3bt3F2i/detWhISE4J133sH8+fMLjaWwkUI/Pz8kJSWpQ7jW+q2FOTEn5mTZOb31demPFC4YxpFC5sSc7l6enJwMLy8v6zt9rNPp0L9/f+zatQsDBw4s8rRuaXFwcFBvcrmTnZ2denpbz8bGptARSf2K9KDL7/7cR1mu0Wig0RS82byo5UXFzpyY08MuZ06WmVNpuTtW9hNzYk5Fx/64TG5KmjvpdDq8/vrrWLZsGV5++WV8++23Bq+7u7sDAFJSUgp9v/56P327h21PREREZC1MtijU6XQYMGAAfv75Z/Tt2xc//fRTger6ftcA3n3NoYuLC3x9fXHhwgWD4dui2hMRERFZC5MsCvUF4ZIlS9C7d28sXbq0yBtDKlasiD179iA9Pd3gtfT0dOzZswfVqlVT7zwGgODgYPW1u+nnJ7x7qhoiIiIiS2dyRaH+lPGSJUvQq1cv/PLLL4UWhED+BZpvvvkmbt++jWnTphm8Nm3aNNy+fRsDBw40WD5o0CAAwKRJk5CTk6Mu37RpE8LDwxESEgJ/f/9izoqIiIjItJnc3ccfffQRpkyZgjJlyuDdd98t9GLK5557Do0aNQKQPyIYFBSEY8eOISQkBE2aNMGRI0cQFhaG5s2bIyIiAk5OTgbvHzhwIBYtWoR69eqhW7duSEhIwMqVK1GmTBns3bsXNWvWfOB4OXk1EVkLTl5NZBqsZvLqixcvAgBu376NTz75pNA2VatWVYtCFxcXRERE4KOPPsLq1auxc+dO+Pr6YvTo0Zg8eXKBghAAvvvuOzRo0AALFy7E/PnzUaZMGfTo0QOffPIJatSoUVKpEREREZkskxspNDccKSQia8GRQiLTUFK1h8ldU0hEREREpY9FIRERERGxKCQiIiIiFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFRERERAQWhUREREQEFoVEREREBBaFZEamT5+O5s2bw9XVFd7e3njuuecQHR1t0KZt27ZQFMXgZ8iQIUaKmIjIPHF/a51YFJLZiIiIwLBhw7Bv3z5s3boVubm5CAkJQXp6ukG7gQMHIiEhQf357LPPjBQx3cuDHHT0RARdu3aFoihYu3Zt6Qb6mKwlT2thLf3J/a11YlFIZmPz5s3o378/6tWrh4YNG+Knn35CbGwsDh8+bNDO2dkZPj4+6o+bm5uRIn40D3LQWbhwIdq2bQs3NzcoioJbt24ZJ9jH8KAHHQCYN28eFEUxQpSPz1rytBbW0p/Wsr8lQywKLcCDFBFZWVkYNmwYvLy8UKZMGfTs2RNXr141UsTFIyUlBQBQtmxZg+W//vorypUrh/r162PChAnIyMgwRniP7EEOOhkZGejSpQvef/99I0b6eB70oBMVFYXZs2fjxx9/NFKkj8da8rQW1tqflrq/tdbjZ1FsjR0APT59EdG8eXPk5eXh/fffR0hICE6dOgUXFxcAwMiRI/HXX3/h999/h7u7O4YPH47nn38ee/bsMXL0j0an02HEiBEICgpC/fr11eX9+vWDv78/KlasiOPHj+O9995DdHQ01qxZY8RoH87mzZsNfv/pp5/g7e2Nw4cPo02bNgCAESNGAADCw8NLObqSU9hBJyMjA/369cPXX38NHx8fY4VWrKwlT2thDf1pyftbazx+3guLQgtwvyIiJSUFP/zwA5YtW4b27dsDABYvXow6depg3759aNmypTHCfizDhg3DiRMnsHv3boPlgwYNUv+/QYMG8PX1RYcOHXDu3DnUqFGjtMMsFkV9Q7ckRR10Ro4ciVatWuHZZ581YnTFx1rytBbW0p+WvL+1xuPnvbAotEB3FxGHDx9Gbm4uOnbsqLapXbs2qlSpgr1795rdSj18+HD8+eef2LVrFypXrnzPtk899RQA4OzZs2azk7pTUQcdS1PYQWf9+vXYsWMHjh49asTIipe15GktrKE/rWl/C1j+8fN+eE2hhSmsiEhMTIS9vT08PDwM2laoUAGJiYlGiPLRiAiGDx+OP/74Azt27EC1atXu+56oqCgAgK+vbwlHVzL0B50VK1YYO5QSoz/o7Ny50+Cgs2PHDpw7dw4eHh6wtbWFrW3+d9iePXuibdu2Ror20VlLntbC0vvTGve3lnz8fFAcKbQwRQ3zW4Jhw4Zh2bJlWLduHVxdXdUN0t3dHU5OTjh37hyWLVuG0NBQeHl54fjx4xg5ciTatGmDJ5980sjRP7yH+YZujkQEb7/9Nv744w+Eh4cXOOiMHz8eb775psGyBg0aYO7cufjf//5XmqE+FmvJ01pYS39a2/4WsOzj54NiUWhBiioifHx8kJOTg1u3bhl827l69apZXQT9zTffAECBb9uLFy9G//79YW9vj23btmHevHlIT0+Hn58fevbsiQ8++MAI0T66+x10LMX9Djr6KS7uVqVKFbP6N7GWPK2FtfSntexv9Sz9+PmgWBRagPsVEU2bNoWdnR22b9+Onj17AgCio6MRGxuLwMBAY4T8SETknq/7+fkhIiKilKIpOfc76AD5pzQSExNx9uxZAMA///wDV1dXVKlSxWxuSLnfQcdSWEue1sJa+tNa9rfWcvx8UIrcr+fpnlJTU+Hu7o6UlBSjTdr51ltvqUVErVq11OV3FhFDhw7Fxo0b8dNPP8HNzQ1vv/02ACAyMtIoMVPRiprs9s6DzkcffYQpU6bcsw1RcRs4r/T/5vcjSv9vkvUw1+NnSdUeLAofkykUhQ9SRGRlZWH06NFYvnw5srOz0blzZyxYsMAih7+JqGSwKCRLY67HTxaFJsoUikJLwoMOkeni9mlZ2J/mq6RqD15TSEQlxloOOtaSp7Vgf5K1YlFoJriTsizsTyKi0sH97YPj5NVERERExKKQiIiIiFgUEhERERFYFBIRERERrLgoPHjwIEJDQ+Hh4QEXFxe0bNkSv/32m7HDIiIiIjIKq7z7eOfOnejcuTMcHR3Rp08fuLq6YvXq1ejduzfi4uIwevRoY4dIREREVKqsbqQwLy8PAwcOhEajwa5du7Bw4ULMnj0bx44dQ82aNfH+++/j0qVLxg6TiIiIqFRZXVG4Y8cOnDt3Dv369UOjRo3U5e7u7nj//feRk5ODn3/+2XgBEhERERmB1Z0+Dg8PBwCEhIQUeK1z584AgIiIiCLfn52djezsbPX3lJQUAEBycjJyc3MBABqNBjY2NtBqtdDpdGpb/fK8vDzc+XRBGxsbaDSaIpfn5uYiJ8vuEbJ9PDdu5Kr/XxI53cnWNn9VzMkq/DmUJenmzZLNKS8vr8ByY+SZmooSzamw5cZYb2/d0pVoTnZ2dtDpdNBqteoyY22fJZmToiiwtbU1WG7M/VBJ5XTncv3+zdj725LISe/OfXlOlk1JpVOkO/MEij+nwpbnZJVgQkW4datkc0pOTgYAFPuTisXKvPDCCwJADh06VOjrZcqUET8/vyLfP3nyZAHAH/7whz/84Q9/+GPUn7i4uGKtkRSR4i4zTVtISAi2bt2KmJgYPPHEEwVer1SpEm7fvq2OAN7t7pFCnU6H5ORkeHl5QVFKf/TnXlJTU+Hn54e4uLhifWC2qWGeloV5WhbmaVmYp2kQEaSlpaFixYrQaIrvSkCrO338uBwcHODg4GCwzMPDwzjBPCA3NzeTXKmLG/O0LMzTsjBPy8I8jc/d3b3YP9PqbjTR/yMWNRKYmppaIv/QRERERKbM6orCgIAAAEBMTEyB1xITE3H79m21DREREZG1sLqiMDg4GAAQFhZW4LUtW7YYtDF3Dg4OmDx5coHT3ZaGeVoW5mlZmKdlYZ6WzepuNMnLy0OtWrVw5coV7Nu3T52rMCUlBS1atMDFixcRHR2NqlWrGjVOIiIiotJkdUUhUPRj7i5duoRZs2bxMXdERERkdayyKASAAwcOYPLkyYiMjERubi4aNGiAUaNGoXfv3sYOjYiIiKjUWW1RSERERET/sbobTYiIiIioIBaFRERERMSikIiIiIhYFBKVGJ1OV+hyXsZrniy5P7VabYFlImIRuVkja+lPa8nzznxKOjfeaEKlLjc3F1qtFklJSUhMTESFChWg1WqRl5eHatWqwcbGxtghFpu4uDh4eHggISEBubm5qFevHoD8DVtRFCNH93jy8vJga2uLq1evIiMjA97e3khLS4NGo4G3t7exwysRltyft27dgoeHB2JjY+Hg4IAKFSoYO6QSYS3rrbX0p6Xnqd+33LhxA7a2tnB3d0dycjKcnZ3h6OhY7H/Pttg/kegeDh06hPfeew9nzpxBdnY2MjIykJWVhcqVK8PNzQ1Vq1ZFixYt0L17d3VicXM0cOBAHD16FElJSbhx4wYcHR2RmZmJMmXKoGnTpmjbti2aN2+ORo0awcPDQ/12q9GYx+D9zp078e233+Lo0aPIy8tDamqqWtS7ubmhZs2aePrpp9GlSxeLONBacn8OGTIEcXFxOH/+PG7fvg17e3tkZmaifPnyCAoKQqtWrdCwYUMEBATA0dEROp0OiqKYZRFsDeuttfSnNeQZFhaGP/74A0ePHkVubi6SkpJgZ2eH6tWrw9XVFfXr10fbtm3Rpk2bYhtM4Ughlaoff/wRCxcuRNu2beHp6YmEhARoNBpcv34dx44dw4kTJwAAbm5u6NGjBwYMGIBWrVrB1tbWbEZjEhMT0aVLF7Ro0QI6nQ5eXl7QarWIiopCUlISrly5ghs3bsDV1RUhISF4++230aZNG2OH/VDee+89rFu3DsHBwbCxsUFycjJsbW2RmJiIqKgoJCcnA8h/1nifPn3Qt29f1K5dGzqdziwKpTtZcn8eO3YMzz77LBo2bAhFUVCuXDmkpKTg5MmTSE9PR2JiInJzc1GtWjX07NkTw4cPR5UqVYwd9iOz9PXWWvrTWvJ87rnncOTIEbRs2RKZmZnIzs4GACQkJODUqVPqqeS2bdvipZdewv/+9z94e3s/3rFSiEpRdnZ2gWU5OTmSmZkpubm5Eh0dLR9//LFUq1ZNFEWRevXqyfLly40Q6aPR6XQiIpKWlqYuy83NVf//+vXrsnPnTvniiy+kW7du4uLiIoqiyMsvvyzHjx8XERGtVlu6QT8CfX535paamippaWmSnJwsYWFh8vLLL4ujo6MoiiKdO3eW/fv3GyvcR2bJ/anPLT4+Xl2WlZWl/v+ZM2dk5cqV8v7770uTJk1EURRxcnKSqVOnSkJCgoiI5OXllW7Qj8mS11tr6U9ryVNEJCkpSUT+y0+n08nVq1clKSlJoqOj5ZtvvpGnnnpKFEURe3t7GTx4sFy5cuWx/iaLQip1+oNkXl6euoHfLTs7W3744QepX7++KIoigwYNUjeQot5jKvTx3VkMFJZrfHy8/Prrr9KqVStRFEU6deqk7rTMyb12sJcvX5YJEyZI+fLlxcnJSWbPnm2wgzMH1tCfd/bh3f2Zl5cn//zzj8yYMUMqV64siqLI0KFDSzvEYmfJ66219Ke15Cly7/V179690rt3b7G3t5dq1arJunXrRKfTPdK6yqKQTIpOpzMoGnfv3i3PPvusKIoio0ePNviGb46K2lC/+uorKVu2rPj7+8uePXuMEFnx0mq1aj+mp6fLqlWrpFGjRuLs7Cw//vijkaMrPpbcn4XlFh8fL2+99ZYoiiLt2rWTCxcuGCe4EmLJ66219Ke15CliWChevXpV5s2bJ97e3lK1alWJjIx8pM9kUUilpqjTaPcaMRTJP9Xz0UcfiaOjo7z//vslFV6xujOfO/9fq9Wqv99ZAIuILF++XHx9faVZs2YSGxtbesE+pHv1471cvnxZevXqJQ4ODmZ3gLXk/tS7O8c7c7kzz6ysLJkxY4Y4OTnJq6++anDqzpRZ23pr6f2pZ6l56vO4O5/7XY6ye/duadiwoXh7e8uOHTse+u+yKKRSlZKSIrm5uXL79m25ePHifdvrN4Ds7Gx56623pGrVqnL27NmSDvOx5eXlSWJiovr/qampBdoUVggfPXpUqlevLp9//rlJn6bKyMhQ/5ucnHzPtnd+c79+/bp07NhRmjZtKjdu3CjxOIuLJfenVquV27dvi0h+Djk5OQVeLyz2X3/9VcqWLWtW1/xaw3prLf1pDXnqj39ZWVn3PUt2Z66nTp2SGjVqSI8ePQq9jv9eOCUNlYopU6bg4MGDSEpKwqVLl+Du7g4AcHBwQMOGDdGtWze0aNEC1apVA4ACU3rY29vj66+/xpYtW+Dj42O0PO5l7969WLNmDfbv34/MzEykp6cjNTUV9erVQ4UKFRAQEIDGjRsjKCgInp6eBneHyf/fRdaoUSMsWLAAtra2Jnmn9aefforz588jNjYWV65cgaenJ3Q6HVxdXREUFIQOHTqgTp06KFu2LID8yWU1Go2aS7ly5bBx40asXLkSZcqUMWYq92XJ/RkZGYndu3cjMjISeXl5uHHjBvLy8lCvXj2UK1cONWvWRNOmTdG4ceMCd93K/9/Z2Lt3b+Tm5qJq1arGSeIhWPp6ay39aQ15igi++OIL3LhxA6dOncKtW7fg5uYGrVaLcuXKoWPHjmjevDn8/Pzg4OAAIH99vXNKmjp16mD79u34888/YWv7cGUep6ShEnf58mU0btwYTz31FHJzc+Hh4QFbW1scO3YMCQkJuHnzJgCgfPnyeOGFF/Duu++iZs2aBp+hnxJCP/GsKRo8eDB+//13tGjRAk5OTkhOTkZeXh7S0tJw8eJFdS6t4OBgvPDCC3jmmWfg6+tb4ABkqg4ePIjg4GA0aNAAOTk5KF++PPLy8hAVFYXU1FT1iR8NGzZE//79MWjQIDg5ORl8hr4fs7KySmTi1eJkyf3ZoUMHREZGonHjxsjLy0NGRga0Wi3S0tKQkJAAEYGPjw+6du2KHj16oG3btihTpkyBgw9g+hN3W8N6ay39aQ15rlmzBr1794afnx9EBGXLlkVGRgaio6PVNs7OzujYsSMGDx6Mrl27FvgMfW7p6elwcXF5uAAealyR6CHdefpFT38KR0TkypUr8vvvv8uYMWPUO43t7OxkwoQJ6nVYpjqlx930Fy/rT2mI5Od97tw5OXLkiPzwww8SGhoq9vb24uTkJK+//rpcvny5wOeY4mlGfUxnzpxRl915+u3QoUMyf/586devn3h7e4uiKOLn5ycLFy6UlJQUETGfftSz1P7UarXyzz//iMh/22VeXp7ExMTI8ePHZcuWLfLBBx9I3bp1RVEUqVSpkkyfPr3AtXemlldhrGG9tZb+tJY8b9++Lfv27ROR/Ona4uPjJS8vT65duybr16+XcePGSbt27cTOzk4URZE2bdpIWFiY5ObmFrim8lGwKKQSd+eF+IX9v965c+dk9uzZ6vQB/fv3N/mLgYtS1IaZk5Mju3fvlldffVVsbW3Fx8fHLK5tudOdud3dh/r8hg0bJra2tuLo6CjTp08v7RCLnbX0552Sk5NlxYoVEhwcLIqiSIsWLdQ7qU29UCqMtay31tifd7KUPO+1vl67dk1WrlwpoaGhoiiKVKlSRVavXl0sf5dFIRmVTqcr8E3u9u3bMmHCBHFwcJCnnnpKYmJijBRd8Sjsm2l8fLzMmzdPypUrJ5UrV5aNGzcaIbLiU9hdcadOnZKePXuqkznfvHnTOMEVM0vtz8Ly0mq1cvLkSRkxYoRoNBoJDAw0ixu9HpQlr7fW0p/WlGdhd8qvX79eGjduLDY2NjJ16tQCN9w8LBaFZFR3326vX+lTU1Nl5syZ4ujoKKGhoSZ/x9+DKOzusdOnT0twcLB4enrKtm3bjBDVo7tzUue7p2XR/3758mUZPHiwKIoi48aNM/lTNw/Dkvrz7ml2ijr4+Pv7S+3ateX06dOlGV6xsob11lr601ryFDGcOunuXI8dOyYhISHi6OgoS5cufay/w6KQjEJ/vY7Iva/x2LJli5QvX14WLlxYGmE9trtzyczMLHT6kjtHKE6cOCH16tWToKCgQtuasged7mD27Nni4eEhmzZtKuGIipcl9+fduWVnZxc56qK3ZcsW8fDwkFdffdWsJ5K3xPXWWvrTWvJ8WGlpadK/f3+pUKGCREVFPfLnmOZtnGSxLl++jPnz52Pnzp24ceMGgoODERQUhJdfflm940+n00Gr1cLW1hYdOnTA7Nmz4eXlZeTI70/+/46vnJwcrF27FitWrMCtW7fg4uKCypUro3///njqqacAwGC6hHr16mH79u347bff1CkGTF1sbCyWLl2KrVu3Ii8vDx07dkTLli3RqVMn9S4/rVYLEYGtrS3efPNNZGdnm+R0HkWx9P5UFAUigjVr1mDTpk1IT0+Hs7MzqlWrhtdeew1+fn4ADHMLCQlBWFgYduzYUWDKD3NgyeuttfSnteQJABcvXsSmTZuwadMmuLu7Izg4GM2aNUOjRo3UNnl5edBoNChTpgwmT54MNze3x5uhozgqVKJ70Q9zh4WFSYMGDURRFGncuLE0b95cFEURZ2dnta05XQhcGK1WK6NGjRJbW1spW7asPPXUU1KmTBlRFEVWrlwpIvl3X+tHkO68W8yUR5VE/uvHDRs2qHf41ahRQ6pWrSqKoki9evXu+xnmdhrOEvtT3we3b9+WkSNHio2NjTg7O0v16tVFo9GIoiiye/duEckfGdWPqt15c9j9Jn42JZa+3lpLf1pLnvr9xx9//CG1atUSRVHE29tb3N3dRVEUee655x74Mx4Fi0IqcfoNMjAwUKpUqSLr168XkfwhfU9PT3nrrbdEJH9F/vLLL2XMmDGSmZmpvteUd8h6+gPPihUrxM7OTl5++WVJSkqSrKwsGT58uGg0GvVO6qSkJJk0aZLZXvhcv359qVq1qmzZskVERH7++WextbWVadOmiUj+7PufffaZLFy4sNBHNZkDS+5P/emzL774Quzs7KR///4SFxcnN27ckGeffVY8PDzUtrGxsTJv3jxJSkoyVrjFxlLXW2vpT2vJUyT/bnj9F5cdO3bIjRs3ZObMmaIoivqoxZSUFPn8888NHmVXHOsri0IqUXdeZ6Uoinz88cfqa998840oiiKHDx9Wlw0aNEjq1atX6HxvpkyfZ5s2baRZs2Zy/PhxEcl/zFndunXlmWeeUdseO3ZMFEWRX375xSixPgp9flu3bhVFUeSLL75QX5s+fbooiiJXrlxRl3Xs2FE6deokt27dKvVYi4Ol96eISO3ataVDhw7qfIy7d++WypUry+DBg9U2GzZsEEVRHukZqqbAmtZba+hPEcvOU/9l9KeffhI7Ozv54YcfRCR/cGTMmDFia2trcD1s7dq15c033yzWqdvM5+Q6mbWtW7fC3d0dDRs2BAAkJCTgr7/+QpUqVdCkSRO1XUpKCmxtbU36WqzCaDQa3Lp1C2fPnkXt2rVRq1YtAMCxY8dw+vRpDB06VG178eJF+Pj44Pbt2wD+eySaOdi8eTN8fX3RtGlTAMDZs2exYcMGNGvWDBUrVgQAZGZmIi8vDzqdziSf/vAgLLU/9bGdP39efdKQ/nFfhw8fxpUrVzBkyBC1fWJiIipUqIC0tDSD95sbS11vraU/rSVP/fWOmzZtQkBAgHrN8vHjx/Hnn38iNDQU9vb2AIDr16/DxsYGGRkZxXq8ZFFIJUq/kru4uCAlJQUVKlQAAJw4cQK7du3Ca6+9pra9ePEiLl++jLJly6JcuXJmsyHrJScnw9XVFbm5ubC3t8fVq1exY8cOuLm5ITQ0VG135swZpKWloXnz5gDMY4el70c7OzukpKTA398fQP7O6sCBAxg0aJDa9uzZs0hKSkKFChXg4OCgPkbM3Fhif+of65WUlARHR0f1YHLp0iWEhYWhatWqBhex//vvv8jNzUXjxo2NEe5js/T11lr605ryzM3NBQCkp6fjiSeeAAAcOXIE0dHRBoVvdHQ0bt++jUqVKgFAsa2vLAqpVOg3zvXr1+P27ds4cOAA0tLSMHjwYLXNvn37cPjwYTz33HMAim8lLw0igurVq6NixYqIjIxEdnY20tLSsH37drz44otqu/j4eOzevRseHh7qCKk53Q3XpEkTZGRk4O+//0ZmZiZ2794NAHjllVfUNvv27cOpU6fQs2dPAKZdJBXF0vuzXr168PDwQEREBID8kftdu3bh1VdfVducPXsW+/btg5+fn/ocVlN8VuyDsPT11lr609LzFBHY2dmhfv36iI2NxZkzZ5Ceno7w8HC4u7uja9eu6np54MABxMbGokePHsUeBFGJy83NlW7duolGo5Hx48dLixYtpEmTJurr165dk6CgIPH29lafIGAON5jc7bvvvhMbGxvp1KmTjBgxQhRFMbgBYebMmeLk5CSTJ08WkcInQDZlSUlJEhAQIJUrV5ZZs2ZJnTp1pFu3burrFy9elObNm4ufn58Royw+ltyfo0aNEkVR5J133lFz09/gJSLywQcfiL29vSxYsEBEzCu3u1nDemst/WkNeZ44cUIcHBykdevW8u2330qlSpVk0KBBBq83bNhQ6tSpU+x/m0UhlTh9cXf69GkJCgpSpw8IDg6W1atXy/vvvy+NGzcWZ2dnmTVrloiYx11/hcnLy5N3331XFEVRp9uZNWuWrFq1Sl599VVRFEW6dOkiiYmJImJeha8+1vXr10uVKlXExsZGfUb19u3b5fPPP5emTZuKm5ubfP311yIihT5hwJxYcn/euHFDunXrJoqiiI2NjVSoUEE2bNggO3fulIEDB4qiKPLMM89Ienq6iJhXbneylvXWWvozKSnJ4vPU6XQyc+ZMcXZ2FmdnZ1EURT755BM5cOCA/Pjjj9K0aVPx8vKSJUuWiEjxrq8sCqlUnTx5UsaMGSPNmzcXBwcH9WDr7+8vK1euVJ/baI4bsl5OTo789NNP0qRJEzU/RVHEyclJ+vTpI+fPnzd2iI9tx44d0q9fPwkICBBFUdRC39vbW1avXq3eDWfO/ahnaf2p1WrV/omPj5fx48dL+fLlDXKztbWVl156SR0VtYR+FLHM9dYa+1Ofp7e3t0Xn+csvv0jHjh2lQoUKoiiK2Nvbi6Io4uHhIWvXrjWYi7G4KCJmdOEEmQ35/+s4zp8/j7S0NPWuYyB/BvaoqChcuHABNjY2sLe3x9NPPw13d3cjRvzw9DlmZmbi6tWrcHNzg7u7u8GTEU6fPo2dO3fC1tYWQUFBqFGjBlxcXMzqOhcg/2YKPz8/uLi4qMuuX7+OQ4cOITY2FoqiwMnJCaGhoWbx9JnCWHJ/arVa2NjYIDs7u9A7FW/evInIyEjs2bMHnp6eaNWqFRo3bgxnZ2cjRFt8LHW9tZb+vHObTE1Nhaurq0EON2/exO7du7F7926UK1fObPPUu3z5MipXrmyw7PTp0zhw4AAuX74MrVYLT09PvPDCC/D19S2Z/U6xlZdE/0//reXWrVvSs2dPqV27tsTHx4tI0aeFzfEbnX7I/ptvvhF/f391njpzPfV9N32fnDhxQipXrixvv/22rFy5UqKjo9URXUtiyf2pz6FVq1bStGlTWb58+X1POZnjNiliHeuttfSnPs+5c+dKw4YN1XkH75WrueWpzzE8PFyaNGki06dPl507d6qXpNzdrqRxpJCKXV5eHmxtbbFgwQK8//77GDNmDD744AMA+d/8Tp06hQ0bNqBixYpo1aqVetu9OcrLy0OdOnXg7u6OdevWqdMD3Lx5E3///Tf++ecfNGnSBCEhIeqIk7nZsWMHBg8ejPj4eIgIGjdujA4dOqBly5Zo0KCB+qxRS2DJ/ZmRkYEOHTrg8OHDyMvLg729PZ5//nkMGjQIbdu2VduJCHJycsxurtC7Wfp6a+n9Kf8/Cnbt2jU0a9YM5cqVw65du9TnUGdkZCAiIgKXL19Gq1atUK9ePSNH/HgWLVqEESNGIDs7G+XKlUPr1q3Rtm1bNGvWDLVr1zY4kyYleWaiVEpPskp16tSRjh07yrlz59RlS5YskSpVqqjXgDRp0kSOHDlixCgfjf6b6pIlS8TZ2Vl++ukn9bWsrCx57rnn1AvabW1t5bvvvjNWqI9Nq9XKtWvXZMeOHTJ69Gj1eZxeXl7yzDPPyKxZsyQiIsJsHyklYj39mZWVJeHh4TJmzBh58skn1e3Q19dXJkyYINHR0cYOsdhYw3pryf2pv2t4xowZUrZsWVm9erX62vXr1+X5559Xr7GrVKmS+vhCc5WVlSVnz56VpUuXyvPPPy+enp6iKIrUrFlTBg0aJEuWLJETJ04U69NLCsOikIqVfuj+zJkz4uTkJDNmzFBfS0hIEB8fH6lRo4Z8+umnMnToUFEURT788EOD95oD/VB+ly5dpEmTJnLy5El1+eTJk0VRFOnbt6/88MMPUrlyZfHz8zPLR2fdLTs7W2JjY2X16tXy4osvipubm7i4uEijRo0kNDRUTp8+bewQH4k19Ofd29eNGzdk9erV8uqrr6oFr6IoUrVqVVm4cKGRoiwZlrjeWkt/NmrUSDp16iQXL15Ul73zzjuiKIr06dNHJkyYIBqNRtq1a2eWd40XJi0tTY4fPy5z586VwMBAsbGxEV9fX2nXrp0MGTKkwKnl4sSikIqVfke1bNkycXR0lO+//15E8gvCIUOGiKurq/z5558ikn9XZ7Vq1aRfv34G80yZi7S0NGnSpIm0a9dOXbZ+/Xpxd3eXIUOGqM9UnThxori7u8v+/fuNFepjKepalmvXrslnn30miqJI7dq1xdnZWVJSUko5uuJjTf15d0Fx+vRpadWqldSoUUMURZFRo0aJiHlOzaJnLeutJffn5cuXxd/fX1566SV12erVq8XR0VFGjx4tN27cEBGR3r17S7Vq1dTnIZujwtbXvLw8OXv2rAwaNEgURZEKFSpImTJlSjQO25I5KU3WSn+dQ82aNZGdnY1Tp04BABYsWICFCxdi3Lhx6NatGwAgLi4OLi4uyMjIMJtnjd7Jzs4OVapUwYEDB7B//37odDpMnDgRTk5OmDx5Mnx8fNR2dnZ26rUwYuJ3qt5N/4QOyf8Sqf5evnx5jB07FsePH4eXlxfGjh0LNzc36HQ6s3iqx90stT/vjE+r1UJRFCiKAhFR+6p27dp4++23MWHCBGzbtg0tWrQAAJPO634sdb21pv60s7NDuXLl8O+//+Lq1as4e/YsJk6ciMqVK+P9999H2bJlAQCenp7QarVwcnIycsSP7s71FcjvKxsbG9SoUQPffvstzp07h5CQELzwwgsA/rsDvdjjKPZPJAIQEBCAbt26Yd68efDw8MDHH3+MTp06YezYsWqbqKgoxMbGokOHDgDyV3JTpt/p6jk4OKBx48ZISEhAaGgounTpgvj4eIMCIjExEVFRUShTpgzq1q0LwPR3zPp+OH36NMLDw3H9+nX1QHTnjkv/jE5HR0f8+++/cHNzA2Aej3kDrKc/FUXB1q1b1YOIvn/uLoJq164NjUYDZ2dnteA1l74ErGe9teT+1Ol0Btukt7c3atasiUOHDqFNmzZ47rnncP36dUyZMkUtCM+fP4/Tp0/Dx8cHFSpUMJvHE+rX11OnTuH48eNIT08HALXIB/7799D/fuHCBVSpUgUASuxGN44U0mNLT083mAcMANzc3DB16lT4+PggMTERjRs3xhtvvKFuyFlZWVi1ahU0Gg1efvllAKa9w8rKyoKjo6PBxqrRaPDhhx+iWrVq+P3333HlyhVMnz4dbdq0Ud+3bds27Nq1C8OGDQPw353ZpkzfD2+99RYiIyPRo0cPdOzYEc2aNUO1atXg7u4ORVFgZ2eHtLQ06HQ6nDlzBq6urkaO/MFZQ3/qC6KtW7eic+fOqF27NkJDQ9G7d280b97cYP5FGxsbnD9/Hjdv3sSFCxfQsmVLkx8BvZulr7fW0J93HgP029YPP/yAgIAArF+/HgAwf/58tG/fXm23adMmHD58GJ999hmA/PxNdZu8k76/evXqhczMTDz//PNo27Yt6tWrh4oVK8LBwUH997h69SpcXV1x7Nixks+tRE9Ok8WLjIyUDh06yNKlS+Xs2bOFXhuYkpJS4JqXr7/+WpydnWXkyJEiYvpzwT3//PMyfPhw2blzZ4G7v4qK/erVq1K9enWpU6eOxMXFiYj53Eyj0+nk+++/l169eknFihVFo9FIjRo1ZPDgwbJy5Uo5cuSIJCcny6JFi8TOzk769+8vIuZzzZI19eeRI0ekW7duBk9/aNGihcycOVOdGeCff/6RLl26iJ2dnVlfX2fp662I5fZnnz59ZPbs2XLmzJkCr+Xk5Bg8uUW/3Z0/f15q1KghjRo1krS0tFKNtzhkZmbK+PHjpXXr1uLk5CROTk7SunVrmTZtmuzYsUNiYmJEROSrr74SjUYj77//voiU7PrKopAeyxdffCG2trZia2srVapUkUGDBsmff/4ply9fLvLmkXPnzkmbNm2kZ8+e6uOITLkojI+PV3e+dnZ20qZNG5k+fbocPXq0QFv95LjZ2dmycuVKCQgIkEWLFomIeRQQ+p3N9evXRUQkPT1dIiMjZc6cORISEiJubm5iZ2cnVatWFTc3N1EURSpXrizHjh0TEdPuRz1r6k+dTiepqakiIpKYmCjffPONtG/f3uARkwEBAeLh4SGKosjQoUNFxLyKJBHrWG9FLLc/Dx8+rMbv4+Mjffv2lV9++UUSEhIKtNVvk1lZWTJnzhzx9fVVnwFsLv2oj1P/fOaEhATZsGGDjBo1Sho0aCA2Njbi6ekpjRs3Fj8/P7GxsZEqVaqoX0ZLMk9OXk2PJSkpCcePH8eBAwewfft2HDhwAGlpaahfvz66d++Orl27ok6dOvDw8DA4NZCZmYlbt27B19fXiNHfn/z/KRetVos1a9bg22+/xc6dOwEAHh4eaNOmDUJDQ9GpUydUq1ZNfZ9Wq0VSUhIyMzPh4+MDR0dHszh9o1e3bl3Uq1cPixcvRpkyZZCXl4erV6/i9OnT2Lt3Lw4ePIiYmBg89dRTGDJkCFq2bGnskB+ItfSn/tTbsmXL8P3332Pq1Kl4+umn1ddPnz6N1atXY8eOHbhx4wbc3NzQp08f9O3bF2XLljWbmy7uZqnrrSX3p347On/+PH799Vf8+OOPuHTpEoD8GxY7duyIbt264emnn1avjQTyLwFJTExEdnY2/P39TX6bLMwTTzyBF198EZ988gkURUF6ejpiY2MRFRWF8PBwHDp0CHFxcejSpQveeOMNBAcHl3yOJVZuktW5dOmSrF+/XsaNGyfNmjUTe3t7cXBwkODgYJk7d64cO3ZM0tLSTP5b693ujvf69esye/ZsqVevnvrt1t/fXwYMGCCrV68228lw9d8+T506JY6OjjJ16tRC2+kfwi4iBU7nmANr6E99X7Zt21bq1q2rzsNX2GPeLl++bDYjLIWxhvXW0vvz7ngPHDggAwcOVEd1FUWRp556SiZPniz79u0zm34rjD7X7du3i729vcyePbvQdmlpaZKbmyvp6emlOmUbi0J6LDqdrsAGmp2dLadOnZJffvlFBg4cKAEBAaIoinh6ekrPnj3ll19+kejoaLPbsPPy8grsvE6fPi1jxoyRChUqqDuvJ598UsaNGyebN29WZ+U3J9u3b5caNWqo80nqc76zv8yt7wpj6f2ZkZEhbdq0kRdffLFAnlqt1uy+nN2Ppa+3lt6fOp2u0O1r/fr18swzz6jbo4uLi3Tp0kW+/PJL+eeff4wQafH48ccfpWbNmup8p4UV8sZYX1kUUrHR6XQFVuzU1FQ5ePCgLFiwQF544QWpXLmy+q3PXOl0OsnKyiqwwYaHh0u/fv0Mru/5+++/jRTlg7t586aEhYUZjLi4ubnJunXrRKTwwt+SWEJ/6vvu+PHjcvXqVXX5nDlz5H//+5+I5D82zJL60ZLXW2vszzvl5eUZjOyK5I+cfffdd9KsWTN1e7S3t1evSzdV+j5KTExUn5QkIrJnzx6xt7dXC1tTGd1lUUil5tq1axIeHi4TJkyQxYsXi4iY1cjLg8rLy5Nff/1VQkNDjR3KPel3Qh999JFUq1ZN4uLi5ODBg/L8889LYGCgPPPMMwbPrdaz1ANRUcylP9PT08XJyUkWLFggIvl3WAcFBUmFChXkr7/+UtvpdDqzHlWylvXWWvrzUVy8eFHGjx8vgYGBxg7lvvR9M2TIEGnZsqWkp6fL9u3bZfDgwdKoUSMZNWqUSd05zaKQis2FCxckPDxcFi1aJBEREffcCZvrTkyr1UpkZKRs2bJFDh8+LDExMffdoE39YFS5cmXp1q2bpKeny7x589Rv4YqiSEhIiCxfvlwuXrxY4g9iNwZL6E99kfTtt9+Koiiyfv16uXr1qiiKoo5yVq5cWWbOnFngmanmfNrRUtdba+1PPZ1OJ0ePHpWTJ0/K2bNnJT4+vtBrJ+9kKqNs9+Ls7Cyvvfaa6HQ6GTx4sMH6+vrrr8uOHTvk+vXrRt+/sCikYrFy5UqD67AcHR2lTp06Mn78eDly5Iixw3ss+p1sTEyMDBkyRJycnERRFHFycpK2bdvKuHHj5K+//pLz58+bzQFIv+M5ePCgKIoiX331lYjkT42wfft2mTlzpnTu3FnKlCkjTk5O8vTTT8vHH38sERERkpiYaNYHHkvrT/0BsXHjxtKmTRs5f/68iOSfTp05c6Y89dRT6nZZrlw5efHFF2XNmjVmkdvdrGG9tab+1NPn/O+//8rQoUPF3d1dFEWRihUrSu/evWX+/Pmyb98+uXbtmtGLpoehj3XdunWiKIr88ssvIpJ/7fJvv/0mo0aNkoYNG4qNjY34+PhInz59ZPHixXL8+HF16qHSxqKQHpl+BxsZGSnly5eX6tWry+rVq+W7774TjUYjjo6O6s6rVatWMmvWLJO//uNeevbsKYqiyGuvvSarVq2Shg0biqIoYmtrK25ubvLMM8/I559/Ljt27JBr164ZO9x70vfdgAEDpGrVqhIVFWXwemZmppw7d042bNggI0eOlPr164uNjY14eXlJjx49ZNasWXLr1i1jhF5sLKk/L126JIqiyKefflro6wcPHpSxY8eqN30piiI1atSQ119/vdD5GU2Vtay31tKfd+vatasoiiK9e/eWb775xmCCbn9/fxk4cKD8/PPPcvToUXWOP1OmL3ZDQkKkUaNGBSbmTk5OlqNHj6oTrnt7e4tGo5FatWrJ8OHDZfny5aVe7LMopEem30G/8MILUqlSJdm4caOIiCxbtkxsbGxk8eLFMmPGDClfvrwoiiIajUacnJzMYmPW02/Ux44dE41Go04GKyLi5uYmvXv3lm+//VYCAwPVgkJRFPn111+NFfJD8fDwkA4dOhQ6SaxeWlqanDx5Un755Rfp37+/+Pj4iKuraylGWXwsrT/1+UydOlVsbW1l1apVIvLfCMXdoyp5eXny119/ySuvvKLe9PXNN98U2taUWep6a439qT+ObNmyRWxsbNSnXKWlpYmtra30799fpk2bJv7+/qIoijg7O4uHh4fJ3vR1t4yMDNFoNPLqq68WeZpbp9PJ1atXZc+ePfLZZ59Jp06dRFEUeeKJJ0o5WhaF9JhycnKkfPnyMmTIEPVxSg0bNpTWrVuroytz5swRDw8P6dq1qwwfPlxEzOeaQn2co0ePlsqVK8vOnTtFRGT16tWiKIqsWLFCRPKLjGbNmsmzzz4rffr0kdjYWBExzR2zPqbNmzer1ym1atVKPvroI3V6hKIkJydLZGSk+u9gLv2oZ4n9KSLqiFGzZs3k008/lcjISElOTjY4CN0de3Jysvz444+SkZFR6OumxprWW2voTz19X/Tp00fq1q0rBw4cEJH8p2XZ2dmpgw1r164VPz8/ef7556Vjx44mdXNGYfR9tXjxYoNT/YsWLVL3J4XJycmRuLg4Wbt2rWzbtk1ESveGTBaF9Ej0G/L27dulUqVK8vXXX4uISFxcnPqMxjtX5IYNG8qGDRvU381hh3XnDrhjx47SqVMniY+PFxGR5557TmrVqqU+JktE5IMPPpCaNWsaTCFhivR5de3aVTw9PaVly5bqKRp3d3cJDQ2VL7/8UqKjo40cafGytP68+/q6Jk2aSMWKFQ3mcluwYIGcOHFCbt++Xeh7zYmlr7fW1p8i//Vpbm6uNGrUSPr27ateS9eiRQsJDAw0uJO8d+/e0rFjR3VCeVPOW59bkyZNxMvLSx3p1J/qHzRokKxdu9bkLmewLblnpZAls7GxAZD/uLpr166hfPnyAIBt27bB3t4eNWvWhK1t/up18+ZN9RFNzzzzDACYxaOI9I+FSk5Oho2NDezt7eHr64vs7GycPn0a1atXR506ddT2+n+DGzduwNvb2ygxPwiNRoPMzExs2bIFY8aMwZQpU3D+/HmsXLkSq1atwqZNm7Bp0yZUqlQJbdu2RWhoKDp06GDSOT0IS+tPnU4HGxsbLFiwAFWqVMHcuXPh5OSETZs2ISIiAnv37sWWLVvg7e2NTp064ZlnnsFTTz0FX19fODg4GDv8h2bp66219Sfw3zZ55coV2NjYwN3dHa6urkhMTMTFixfRrVs3VK9eXW1fpUoVXLp0CVqtFoBpH0c0Gg0uXbqEo0ePYsaMGRgyZAj27NmDZcuW4c8//8T333+P77//Ho0bN0ZISAhCQ0MRGBioHjeNxthVKZkH/TeyEydOyKpVq9Sh+0uXLsmQIUPkypUrIiKyZMkSURRFNm3apL5379698sQTT6jXb5nD9AFz5sxR7/rLzMyU0aNHy5gxY0Qkf+qdhg0bSrt27dT2Op1O3n33XXF3dzfaXWMP4s7pLuzs7NSJfvUyMzNl586dMmTIEPH19VW/2datW1dGjhwp69atu+/0EKbIUvtTJP9ayAEDBhg8Cuvq1auyYcMGGTVqlDRt2lTs7e1FURSpWbOmjBgxQjZv3lxgOhNTZk3rrTX0p4jIL7/8om5bycnJ0r17d5kxY4aIiBw6dEgqVaokAwYMUNunp6fLK6+8In5+fkaJ92Ho19eJEyeKh4eH7Nixw+D1hIQEWbx4sYSEhIiNjY16rWSHDh1k9uzZRp2xg0UhPRD9Sv70009Lw4YN5eLFi+prN2/eVE8nHz9+XJydnaV58+byxx9/yIULF+R///ufKIoikZGRBp9lau4+ffPDDz8YvH7nDPsdOnQQe3t7Wb58uSQmJso333wj5cqVk2effVZETPeaJf2/ff369SU4OFguXbpksPxON27ckN9//12ef/55cXZ2Vg+0+lOups6S+1Of29q1aw2muigsznPnzsnSpUvl9ddfl5o1a4qdnd0972w1RZa+3lpLf96Zp62tbYHiXn9aXKfTSfXq1aVq1aqyd+9eSU1Nla+++krc3d1l0KBBImJ622RhKlWqJM8//7x6fX1h6+uZM2dk5syZ0qRJE4Ophkrzecd3YlFIDywzM1Ps7e1lxIgRBrfJX79+XV3p09LSZNiwYQYTc9ra2srAgQONFfYDu3O6i8qVK8vBgwfV17KzsyUtLU3dqf39999Sq1YtURRFKlWqJIqiSPXq1WXXrl0Gn2WKrl27Js7OzjJp0qQHviYnNjZW5s6dq/ajqRb2d7Lk/tTH/dJLL0mTJk3k9OnTBssLe+RkXl6eHD16VL766ivp2LGjOnWJOfSliGWvt9bSn/rYOnfuLPXr11fzFMm/rvDOL2qLFi0ST09Psbe3l3r16qnbpKk9Fq4oJ06cEEVRZM6cOQ/UPicnR/bt2yeDBg2S119/XUSMs99hUUj3da9TNzk5OTJ9+nRp3bq1etebiMjGjRulf//+0r17d1m+fLl6YbCpb8gi/52+ufO04a5duyQ4OFg2b96sLtu4caO8/fbb0qdPHxk4cKD8+++/xgj3oWVkZMjBgwfV0ZZHuVjblC/wvpsl92dkZKRs3rz5nncnFvYMYHOaFkrPGtZba+jP9PR00Wg0MmbMGIMicPPmzfL888/LiRMnRCT/2LJo0SLp1auXdOzYUXr37m1QRJq6pKQkCQsLe6T1VV8MGuN4yaKQ7uvOu6hat25tcOr433//lSeffFKCg4NFRMzmup276TfY9evXi6IosmTJEoPXP/vsM1EUpcBOSafTmfWTBCwV+7NwWq3W5AsjenDm1J/648iCBQsKHVwYN26cKIoiN2/eNHhfamqqwYADlSyNcW9zIXOg0WgQFxeHo0ePIjQ0FL6+vtDpdACAo0eP4sSJExg6dKjaFgBERL1DTESME/hD0Me4YMECNGjQAK1atVJfu3z5MrZs2YL69eujdu3akPwvUxARKIpitnf+WTJr6c+H3bY0Go1J37Fp7ayhPxcuXIigoCA0bdpUXXbhwgVs27YNHTt2hIeHB7Rarfpv4erqCicnJ2OFa3VYFNI96Yu/pUuXwsbGBoGBgbC3t4dGo0F6ejq2b98OBwcH9O7dG8B/U9UoimLw/6ZOP93F1q1b0aBBA5QpU0Z97fTp09izZw9ee+01AIBWq4WiKGaRl7Wylv40x5ipaJbcnxqNBrGxsTh27BiaNm0KLy8v9bWjR4/i6NGjePPNN9VllvxvYco4TyHdk37k78cff4RWq8WLL76I3r17Y9CgQXBwcEB4eDheeOEFAPlzFjo6OprdxqwfIdqwYQN0Oh127tyJDz/8EK1bt0b9+vWxdetWZGdnY9iwYQDyd1b695DpYX8SmRb99rVixQoAwNatW+Hq6oqWLVvC398fO3bsgJOTE1588UUALAiNSRFzOLdHRqXT6fDTTz/hzz//RFhYGDIyMgAAFSpUwNWrV7FixQp1YwagnjbWjxSaiwMHDmDt2rXYvXs3Dh48CACoXr06rl27hkqVKmHPnj2wtbU1OL2o33y4EzM97E8i07JhwwasWbMGkZGROHv2LLy8vFCzZk2cOXMGzZo1w+bNmwt8QeMXttLFopAeyuXLl/HHH3/gt99+w/79+5GXlwcACAoKQv/+/fHiiy/C1dXVyFE+uszMTFy5cgX//PMPdu7ciYiICERHR0On06Fjx45o2bIlgoKCUK9ePfj4+Bg7XLoP9ieRaUlOTsaFCxdw4MABhIWF4cCBA0hISEC5cuXQvXt3tGjRAi1atMATTzxhcNkHlQ4WhfRAtFptgYuajxw5glWrVmHdunU4ffo0AMDW1hbPPvssXnvtNfWRduYqNTUVFy5cwNGjR7Ft2zZERETgypUr8PHxQatWrdC+fXs0aNAATz31FOzt7Y0dLt0H+5PIdGi1Wly7dg3R0dHYv38/Nm3ahMOHDyM7Oxu1a9dGcHAwgoODUbduXdSpU4ejhaWERSE9FBFRn9F5p+3bt+O3337Dhg0bkJiYCAB49913MXfuXGOEWaxEBDdu3MDZs2exb98+hIWFYf/+/bh58yaqV6+OkydPmtUdq9aO/UlkWrKzs5GQkIATJ04gIiIC27Ztw+nTp6HT6dC2bVuEhYUZO0SrwaKQHplOp4OIGBSIqamp2LRpE7777jvMnDkTzZs3h1arNbvrC4uSl5eHxMREREdHY9OmTVAUBZ9//rlF5Qjk96253pH7MKylP62Ftay3lqKw6wVv376N2NhYHD9+HL///jtq166NTz75xCK3SZ1Op97MaSpYFFKx0E/rYWoreEnS33Dj7OxsERdDW0IOj8PS+vNOpnjwKS6W1lcPwhL7s7B+vHHjBpycnCxymzRVlrVWkdHY2NioOyn9zSeWSv89ytnZGc7OzgAs627Vjz/+GAsXLkRKSgqA/+aqtFSW1p/67e/w4cNYtmwZsrKyLK6AKIylrrfW0p+FbXNeXl4WsU0WZvbs2di0aRNyc3PVyfNNAUcKiaxQUd+64+Li4O/vDzc3N0ycOBFjx441QnT0OPSjSIGBgdi/fz8CAwPx5ZdfokmTJmY/2mKN660l96e10ffXgQMH0LJlS9SoUQOff/45nnvuOWOHprK8rxtEdF9FHUi0Wi0mTZqEBg0a4L333sOYMWOQlZVVytHR/RQ2CqbT6QxOK7744oto2bIl9u7di7FjxyI+Pt7sCwhLXW+ttT+tjb6/bGxs8Prrr0NE0K9fP3z33XcmM7LNkUIiK3Pp0iVkZGSgTJkysLGxQbly5QymYMnOzsbJkyfx7bffYtGiRdiwYQO6detmxIipMNnZ2YiPj0dSUhJq1qwJd3f3Qtv9/vvvGDduHGrUqIFt27aVcpTFx9LXW2vrT0uXmJgIOzs79cYnT09Pg9dTUlIQGRmJefPmYdu2bTh27Bjq169vpGjvIERk0XQ6nYiIXLlyRd544w3x8vISRVHE19dX2rZtK5s2bSryvatXr5Zbt26VVqh0D/p+vH37tqxatUoaNGggXl5e4urqKtWrV5c+ffpITk5Ooe/dvHmzrF27tjTDfWyWvt5aW39ai8TERBk6dKhUqlRJ7OzspGHDhtK3b185cuRIoe3T09Nl5syZ6vpgbBwpJHpA5jjdhfz/NSxJSUl47rnnEBkZid69eyMgIADbt2/H3r17sW3bNrRv3x4ZGRlwdHSERqOximuVzK0/9VNyzJgxAzNnzoSnpyd69eqFM2fOYMOGDXj66acRERGBvLw8XL58GWXKlEG5cuWMHfYjsYb11pr680GZ613V+rjPnz+Pl19+Gfv27UPnzp1RtWpVbN26FefPn8fp06dRq1YtZGdnq/OgmuT6asSClCyMVqs1mW87xcXc88nNzRURkU8++UTKlCkjs2fPFhGRW7duSa9evcTb21tte+rUKSlXrpxs3brVKLGWBnPvz4yMDHF3d5d27drJ1atXRURk586doiiKLF26VG03efJk+eCDDyQ3N1d0Op3Z5W0t66219Kel06+vb7/9tnh6eso333wjIiKXLl2Stm3bSp06ddS24eHhUqdOHTl9+rRRYr0f8yvJySRotVoAwOnTp/Hxxx8jLi6uwGPwLIm5Tndha2sLAFi2bBkCAwPRq1cvAMDJkyexe/du9Xcgf+qL27dv48KFC0aJtTSZW3/qt7fff/8dWVlZGDhwILy9vZGSkoJVq1bBzs4Offr0Udtv3boVu3fvRmpqqlmNhupZ+nprbf35IEx1ipYHoV9ff/vtN3Tp0gUvvPACACA6OhqHDh3CK6+8orbNyMhATEwMzp07Z5RY74dFIT2wOzdS/RD/xx9/jA8//BCBgYFYt26dsUIrFoXthBRFQVxcHD788EOMGzcOCxcuBACzOsVx+fJlpKamolKlSvDz8wMAHDhwAImJiRg8eLDa7vjx43B1dYWjoyMA0y+U7seS+lP/JIdDhw7B1dUVtWrVAgBcvHgRW7duxTPPPKMemG7cuAFHR0coioKyZcsaLebHZcnrrTX2Z2H02+iBAwcwduxYvPPOO/jrr7/MqvDV5xAVFYWcnBxUq1YN5cqVQ25uLnbv3o309HS8+eabavszZ86gbNmyBqeQTYlp7wnJqO7eueo3Uv3TSwDg5ZdfRu/evREfH48RI0YgIiKi1OMsLpY63YWzszNcXFxw69YtAMDVq1exZcsWVK9eHQ0aNACQ39fR0dG4ffs2goODAZj/ZLGW2J/+/v64ceMGvLy8AOQfTGNiYjB06FC1zb///ouYmBg0bNgQwH+jUubGGtZba+rPwpjDFC33o8/B2dkZiqIgJycHQH6Bv3nzZgQGBqJ8+fIAgKysLJw7dw5arRatWrUyeL/JMNqJazILSUlJcvLkSdmyZYtER0cX2S4qKkratm0r9erVE61WW4oRFo+LFy/KqVOnJDY2Vq5cuSLZ2dkGr2dlZcnhw4dl4MCBoiiK/Pnnn0aK9NH06NFDHBwcZNu2bbJ582ZxcXGRGTNmqK+fPHlSGjVqJM2bNxcR87/2ztL6U98fYWFhoiiKjBkzRrRarQwYMEC8vLwM2k6ZMkUURZF9+/aJiJjl9qhnqeutNfZnQkKCJCUlyY0bNyQ5ObnA67du3ZKNGzdKSEiIaDQa+eeff4wQ5aPTarVSt25deeKJJyQ6OlrWrFkjiqLIL7/8orbZt2+fPPHEE/LMM8+IiEheXp6xwi0Si0IyoN9Zpaeny++//y61atUSJycnURRFypUrJ40bN5YbN24U+t6oqCj5448/SjHaR2fp013cLSoqShwdHaVq1arSqVMnURRF3emmpKRInz59pEyZMvLrr7+KyH8XTpsLa+lPfV8piiKdO3eWcuXKydtvvy0iItnZ2bJ582bx9PSUp59+2siRFg9LX2+toT/NfYqWh7F69WpRFEUCAwOlS5cu4ujoKDdv3hSR/KmHnn32WXF1dZWwsDARYVFIZkC/kn755ZdStmxZeeKJJ2TGjBkyatQosbOzk9q1a4tI/kH43LlzEhMTY8xwH4l+Z3P9+nUJCgoSRVGkT58+MmnSJGnVqpUoiiLbt28XkfwdlP6buTnupHQ6nXqgXL16tdStW1dsbGxEURTp27evdO/eXWrWrCmKosjYsWMLjKiZA2vqTxGRc+fOSUhIiCiKIoqiSNWqVeXtt9+W9u3bi6Io0qxZMwkPDxcR0zzoPCj9HH2Wut7qWWJ/6rexc+fOSWBgoCiKIl26dJEhQ4ZIjRo1RFEUOXPmjIjkj9rrmes2qdPpJC8vT7RarXzyySfql1IXFxcZM2aMvPLKK/Lkk0+Koigyfvx4Y4d7TywKqVC+vr7SqlUruXz5soiIHD16VFxdXeXTTz9V28ybN09eeuklSU1NFRHz2aCtZbqLwhw4cEA+/PBDad++vfj4+IhGo5EWLVrI119/bezQHpk19ad+G0tJSZGvv/5aGjVqJIqiiL29vfj6+sprr71mll/U7ufQoUPqeluhQgWLWG9FLLc/LWmKloel0+nkr7/+ksGDB0uDBg3E0dFRFEWRevXqyZdffmnQzhSxKCSV/tvdtm3bxMbGRr799lsRyT+NMWnSJFEURRITE9X2/fr1k1q1asmFCxeMEe5jq1evnnTq1EliY2NFRGTPnj3i6+srw4YNU9scP35cHB0dZeHChcYK86Hpd8j79++XZcuWSXx8vMHrGRkZcvbsWblw4YJcuXJFMjIy1NdMdUf1ICy1P0VEtm/fLunp6YW+duHCBdmzZ49cvXpV7Xtz7Ef9/ufSpUvy7bffqiNJellZWXL+/HmJi4uTuLg4g38Pc8vXGvpTRKRChQrSt29fuX79uojkX0NZpkwZg8GFjRs3iq2trclf13s3fd9ERkZKeHi4wX5UROTq1aty9OhROXHihERFRRV43VTZGvtGFzId+rugjh49Cnt7e1SrVg0AEBsbi7CwMDz11FOoUKECgPy7qHJzc2Fvb68uMyf66S6aN2/+0NNdmPr0JfqpLIYPH45Dhw4hODgYbdq0QZs2bdC0aVN4eHigRo0aavu8vDz1/03uTrgHZIn9Kf//tIOtW7eic+fOCAgIwLPPPovevXujYcOGaj9XrVoVVatWLfA+czV79mx8++23mD9/PmrVqqX2kYODA6pVq4acnBzY29ub3XprLf2pj/dxpmgxh3z1/dWnTx+kpKSga9euCA4ORlBQEOrXrw9vb294e3ur7e9cX02Zae4NySj0G2L16tUNpug4fPgwDh06ZHBwPXfuHE6dOoXatWvDycnJbKYP0LOG6S4++ugjvPbaazh+/DimTZuG3r1749VXX8WcOXNw8OBBdeoE/c7NnFlif+pjc3d3x4ABA1CmTBnMmjULzZs3R2BgIGbPno3z588X+T5zIiLQaDSIj4/HL7/8ghdffBGDBg0CkD+H5D///IP+/fujV69e+Oyzz5CcnGx266219KfFTdFyD3l5eRg5ciQaNWqElStX4q233kKvXr0wdOhQLF++HBcvXlTbms36asRRSjJRp06dEk9PT+natatkZWXJ+PHjxc7OTjIzM9U2n3/+uWg0GlmzZo2ImM8F0Hey1Oku7nb9+nVZunSpdO3aVezt7UVRFKlZs6a89tpr8sMPP1jMtTyW3p///vuvLF68WF599VWpWrWqKIoiDg4O0rNnT1mxYoX6mDRzpN9/TJ06VTw9PWXDhg3qa9HR0eLv7y+Kokj58uVFo9FI7969zfrmEhHL7k8Ry5mi5UGdOHFCPvroI6lbt67al61atZKxY8fKX3/9pZ5CN3UsCsmA/vnFkydPFkVRpH79+lK5cmV1o83IyJDt27dL2bJlpUmTJkaO9vFY+nQXhTlz5oxMnDhRPDw81AKxc+fOxg6rWFhqf949L11OTo4cPnxYpk6dKuXLl1fvWlUURaKioowUZfFo06aNtG3bVr0O9saNG9KzZ0/x9PSUefPmyYEDB6Rdu3bi6elptkWTNfWnJUzR8rBycnJk27Zt0qdPH7G1tRVXV1exs7OTd955x9ihPRAWhVSomzdvypAhQ9Sdk5OTk3Tv3l1atGghiqJIo0aN1Ds4zW1DtoZpWkT+K/DvlpaWJiNHjpRatWpJ7969ZcGCBSJiPkVSYSx1+pK8vDy1D3U6XYH+PHbsmDRp0kS6du0qXbt2NUaIxSY5OVlatGghgYGBap5z5swRRVHkiy++UNfPqVOnire3t+zcudOI0T4aa+lPS5qi5V50Ol2Rk4knJCRIt27dpHbt2tKqVStZsmSJiJj+8ZJFId3T9u3bpWfPnlKuXDnx8PCQWrVqycCBA+/5dBNzYynTtNw58fjd7t5xZWZmip+fnxw+fLhUYitNljh9iVarNTiYaLVatbjt3bu3vPHGG2Z/p6qISN++fUVRFFm2bJl88cUX4u7urp7uF8k/oE6YMEHc3NzkypUrImKe+VpLf4qY/xQtRbn7S3RhRf6ZM2ekVq1akpCQUJqhPRYzufKRSkN4eDguXbqEkJAQVKhQARqNBu3bt0f79u2RmZmJM2fOwN/f3ywfyp6XlwdbW1scOHAA586dQ9u2beHr6wsAaN68OerXr4/4+HjY2NjA3t4enp6ecHJyAmA+d8PpYxw5ciSaNGmCli1bIiAgAM7Ozuodtvp/h/Pnz8PFxQVbt25FkyZNjBn2I9HfkRobG4tNmzahbdu2qFWrFgCgadOman/a2dkBAMqWLQtnZ2cApt+f+j5auHAhEhMT8dZbb6FcuXLq6/pn39rb2wMAfHx8EBkZibS0NHh6epp0bkXR98nw4cNx5MgRvPTSSwCAFi1a4LPPPlPbnT17Fjt37kSdOnVQsWJFk+9LwHr6U5/n3r17kZOTgxYtWsDJyQmKoiA0NBTNmjVTt8m8vDzUrFlT3ccC5nWDSXZ2NiZNmoTWrVujYcOG8Pf3N4hff4f8tWvXkJGRgfDwcPTp08eIET8E49akZGz6EaR///1XAgICpH79+gWGt5OSkgq8z9y+1ek1b95cFEWRtm3byocffijbtm1Tr3G5k7meSj106JB6kXO9evVk+PDhsnLlSomJiTHIaenSpeLs7CyLFi0SEfN7nqo+3nfeeUfs7e3VyXHvzkM/+mKO/amfyFhRFGnXrp38+uuvBbbN69evS+fOnaVu3bpGivLRREdHy8WLFwv0S15enoSFhcnnn38uixcvlri4OIPXP/roI3F3d5fFixer7c2FJffnnapUqSLu7u7Sp08f+eabb+T48eOFHi/McZvU09804+XlJR06dJBPPvlEduzYIdeuXTNo9+2334q9vb1s2bJFRMxjP6uIiBi7MCXj0X+7GzlyJFatWoWZM2eiX79+AICkpCT8+eef+OGHH6AoCt544w307dtX/UZrjjZu3Ijff/8d69evx82bN1G2bFm0atUKbdu2xdNPP42GDRuabX7y/6Mmhw4dwvbt27F27VocOnQIdnZ2aNy4MZ5++mlUrVoVdnZ2mDRpEm7fvo34+HiUKVPG2KE/FH2e8fHxaNCgAUJDQ/Hzzz+ro6H//PMPZs+ejfT0dDRs2BBvvfWWWY5unzlzBps2bcK6desQGRmJvLw82Nvbo0ePHujduzfs7e3xyy+/YMWKFZgyZQomTZqkbs+mrlq1aqhatSqeffZZtGzZEk888QS8vLzuOVoUFRWFoKAgtG7dGuvWrVPnmjQXltyfenl5efjqq6+wdu1a7Nq1CwBQs2ZNtG3bFsHBwQgMDDSYg9FcZWdnY+PGjdi6dSv++usvxMXFoUKFCmjdujVatWqlzqc5fPhw2NjYICEhwdghPzjj1qRkKipUqCAvvfSSJCcnq8vGjh0riqKo14DY2trKxo0bjRhl8bGkaVr038Kzs7PVKYJ0Op1cu3ZNduzYIaNHj5batWsb3NXo7+8v8+fPFxHzGm0RsezpS/S5bdmyRSIjI0Ukv1937twpY8eOVS/OVxRFNBqNKIoi3bt3V0cozGEE/9q1a9K3b1+pXbu2aDQa8fHxkd69e8uPP/4oR48eNdgH6WVkZMiSJUvk5Zdflt27d4uIeeRqDf1ZFEuZokVPP8p38+ZNOX78uIjkP2Xn3LlzsnTpUunZs6eULVvWYD9buXJl9elJ5rKfZVFoxfQr+e7du8Xe3l7mzp0rIvnD+hEREWJvby9dunSRuLg4+fvvv0VRFBkzZowRIy4Z5j5Ni35n89VXX4miKAYXb4vk35l7+fJl2bFjh8ybN0+mT58u0dHRZn8huyVPX1KhQgV588035caNGwbLb9y4IevWrZMpU6bI559/LkuXLjWYP9Rc3Lx5U44dOyaLFi2SXr16qTcE1axZU4YOHSqrV6+WmJiYAo8Gy8zMNJuD650svT/vxdynaNHTr3ejR48WRVHkjz/+MHg9LS1NTpw4IUuWLJF3331XJkyYICdOnFC/kJrLftZ8xqWp2OlPt+lvsNCfRoyJicGkSZNQpUoVzJ8/H5UrV0aFChVQq1YtnDlzxuxOadxJp9NBURSD01S1atXC+PHjkZGRgY0bN6JRo0bqEy9MPVetVqvmEhERgaeffhohISHqazY2NrCzs0OlSpVQqVIltGvXrsBnmNMF3no3b95EVlYWbGxs4OPjAwD4+eefsWbNGsyfPx9Dhw6Fra0t2rVrh5MnT+LUqVMGj5wyRfqbZ/bs2YP09HQ0bdoUZcuWheR/eYeiKChbtiy6d++O7t27Gzvcx+Lh4QEPDw80aNAA3bt3R0xMDPbu3YvNmzfjl19+wQ8//ICGDRuic+fOCA4ORq1ateDt7W1Wp4ytqT/19Lnd+ehIOzs7dOjQAfXq1UNaWhrOnTuHsmXLolmzZgD+20+Zsjtj3L9/P5555hk0bdoUwH/9XKZMGdSrVw/16tXDK6+8UuAzzGU/a7pHOyo1TZo0gZOTE7755htoNBosW7YMf//9N5YuXYqaNWsCyL8exs7ODl5eXrC1tTXpZ8beSb/zzcjIMLgLFzB87m2ZMmXw6aefYtWqVRg3bpx6R64pF4QADHamTz75JDZv3qz2WWE7WnPYAT8IT09P1KhRAytWrMCKFSuQlJSEKVOmoFmzZnj77bcB5OeamZmJrKws9d9ETPRu1Tu/fGg0Gjg7O6NSpUoA8tdTfZ8VdtA1Z4qioHz58ihfvjyaN2+OF198EadPn0Z4eDjCwsIwc+ZMfPHFF2jdujUCAwPx0ksvqc9kN2XW2J/6nPXbl/z/7Qr63318fDB79mw8++yzWL16tfplzhz2R/oYc3Nz8cQTTyAjIwN+fn6F9p2596l5Rk2PRO64p0ir1aq/V6xYET179sTRo0fx5ptvYv/+/Rg9erQ6LQQA/P333zh58iR69OhR4LNM2Z3TtHz33Xc4duwYMjIyAMBgmhYABtO0mDL9c6bHjRuH5cuXAwD+/fdfZGZmIjY2Fjdv3lTb6ndQeuawA74ffT7Dhw9HzZo18dJLL+Hdd99F7dq1MWvWLLWdqU9fos/j33//xRdffIHk5GSICOrXr4/mzZvj6tWrAPLXU32fK4pitgebouhzs7Ozg5+fH0JCQjBp0iQsX74cy5YtQ9++fXHu3Dl8+OGHSEtLM3K0RbPm/szOzsb777+P9evX49KlSwBgcEZG//zjO6doMXX6Ppo8eTL2798PAIiNjYWtrS1iYmIAoEABrF9m1n1aOmepyRRotVo5depUgWV6R48elVmzZsm6desM2iQkJEhgYKDUqVOnVOIsbpY4TUtqaqooiiKjRo0SEZH69etLzZo1xdnZWXr16iX//PNPgfjN5ZqWu1nq9CX6eHr27Cm+vr5y48YN+f7770VRFHF3dxd/f3/Zu3evwXtyc3PNth/v5V453bp1S44cOSIrV64sxYgenjX3p6VN0aLvk3PnzomiKPLZZ5+JiEjNmjWlZcuW4u7uLh988EGB/O58r7liUWhFFi9eLIqiSKdOneSbb755oFnWtVqtvPDCC2JnZ6c+EcLUDq73ot9ADx48KDNmzJCWLVuKra2tODk5SatWreS9996Tb775RhYtWiS+vr7i6uoqaWlpRo66aPqd6BdffCEODg6yceNG0el08vbbb0uTJk3Uu96efPJJ+eSTT2Tnzp2F7rjMSdWqVaVt27Yyd+5c2bt3r1y/fv2+O96jR4+Ks7OzhISEmPyF+66urvLmm29KVlaWLF68WGrWrCk+Pj6iKIr62tGjRw3ec/cTMczVhQsX5KuvvpIBAwbIO++8I9u2bTN2SI/NGvszKytL1qxZI0OHDpUqVaqIoiji4+MjL7zwgsyZM0f++OMPWblypZQvX158fHyMHe596fti3Lhx4uXlJXv27JHU1FTp3Lmz+Pn5qfvZLl26yA8//CDHjx83+f3Mg2JRaEVWrFghderUUe+w9fT0lF69esnq1asL3OWnf25lcnKyzJkzRz7//HN1kmdz+CZkqdO06IvCJ598Utq0aSMXL14Ukfy7Mi9fviwbN26U4cOHq9Oy+Pr6Sq9evWTBggVy6NAhSU1NNWb4D81Spy/Rx/P777+rj3XTS0lJkT/++EMGDx4sAQEB6vpZo0YNmTZtmly+fNlYYRcL/ba1YcMGdboST09PNc+yZcvKO++8I//884+RI31w1tif1jBFS8WKFaVHjx7qF+uUlBQ5efKkLFq0SP73v/+Ji4uL2NraypNPPinvvvuurF69Ws6ePWuyI6APgkWhFTp48KCMGTNGatWqZVAQDR06VCIiIgq012q1ZreSW+I0LfqYzp8/XyCnO+PNzMyUs2fPypIlS+T5558XDw8PsbOzEx8fH5k+fXqpx/24LHH6Ev321KlTJ2nQoIGcO3fOYLne5cuX5eeff5bevXuLt7e3ur3WrVu3wPQm5qZ+/fri6+sra9euFRGRJk2aiK+vr3h5eal51qlTRyZOnGjyc9pZY39a6hQt+rgiIyNFURRZunSpwXKR/H69efOmHDhwQKZNmybNmzcXGxsbcXd3lwYNGsiKFSuMEntxYFFoRe6+Jkur1crGjRvltddekwoVKqg7qIYNG8qUKVMKXH9oLvSjnCIivXr1kjZt2kh0dLT6mrnSxz5lyhRRFEVGjhxZ4BGEd+9o09LS5NixYzJ//nypW7euyV5f9yD0I7179uyRWbNmSceOHcXV1VXs7e2lefPm8sEHH8jWrVslNjZWsrKyjB3ufaWlpYmiKBIcHCw7duyQ69ev37NfTp48KXPnzpWgoCCzfQzanaOEiqLInDlzRCS/gFcURSZNmiTR0dEyYcIEsbOzU/dL3333nYiYbiEhYl39eWderVu3lv/9738SGxsrIqZ7neCD0uc2cODAQgcURAzXw7y8PLl69aqEhYXJyJEjxc3NTTZt2iQi5vlvwaLQChV2/UpycrL89NNPEhoaKi4uLuqNGe3bt5f58+eb5cotIjJt2jQJCgq6ZxtzK5CqVaumFvDOzs7So0cPWblyZYFrIe/+ZpuUlGTSB9WHkZOTI7GxsbJlyxaZMGGCNG3aVOzs7MTNzU1CQ0Nl2rRpcv78eWOHWSj9tvTNN9+Ioihib28vFStWlF69esl3330nR44cKfR53Hp5eXnqTTXmtu7qcx8wYIDUrVtXDhw4ICIic+bMEXt7e1m/fr2I5Pdvp06dpEWLFjJnzhy1yDfF9dea+zMnJ0f69+8vL774oogU3j86nc4sjx9ubm7qfvaJJ56Q0aNHy/79+wu0uzPnrKwstTg2V3z2sRXT6XTQarWws7MzWH7hwgWsWrUKa9euxd69e9GgQQMcO3bM5Kb0uJN+zsFx48ahcePG6Nu3L/7991/8/PPPWLp0KY4dOwZPT08ABefPMgf6f/u9e/ciKCgI48aNw82bN7Fs2TKkp6cDAHx9ffG///0PvXv3LjBJtSn33cMobH7MzMxMXL58GceOHcO2bdsQHh6Of//9F1FRUXjyySeNFGnR9Dk0bNgQeXl5CA0NRVRUFA4ePIi0tDTUqFED7du3R/v27dGwYUNUrlwZLi4uxg672OTl5aFLly5wc3PD0qVL4eLigqeffhrZ2dlYuXKlOg/h119/jV9//RW7d+826Sk+rKU/9XlOnjwZoaGheOqpp3Du3DnMmDEDhw8fxpEjR9S25rq/0ce9atUqvPjiixg2bBhOnjxpMIVO8+bN8cILL+D5559HjRo1DN4LmNdxpVBGK0fJKAr7Jnevb3G7d+9Wvx3dffrZ1FjyNC36EYRXXnlF/P39JSYmRkTy41+7dq0888wzBhd016tXTyZNmqReAG5JzHn6krunupg9e7bk5eXJ+fPnZfXq1TJy5Ehp2rSpODo6ioODgzRr1kzGjx8vGzdulEuXLpnNM5z19PneOVKWnJwsHTp0kFatWolI/s1EAQEBEhoaKiL/7Y8+++wzKVeunBw5cqR0g34I1tKf1jJFi37d69ChgzRu3Fi9zvPy5csyc+ZMg5sTbW1tpWvXrvLTTz+Z3fWg98Ki0IroN87c3FxZtWqV9O/fX4YOHSozZ86U9evXy6VLl4wc4aOxpmla9FNa3Lp1q8BrKSkp8s0330izZs0MCsTAwED1jj9zZgnTl9w51UW5cuUkPDzc4PXMzEw5fvy4LF68WAYMGCABAQHqBexdunSRSZMmSWJiojFCfyxvvPGGhIeHq9vqnj17ZPPmzSIikpSUJC1atJBmzZqp7W/duiV9+/YVb29vo8T7oKylP61pipaUlBRRFEXee+89SU9PL/D68ePHZcSIEVKuXDk1b29vb+ndu7fs3Lmz9AMuZiwKrUxOTo6MHDlS7OzsxMHBQfz8/MTGxkaqVKkinTt3lhkzZsj27dvl6tWrxg71gVn6NC36Yn7p0qWiKIosX77c4PW8vLwC1yKdP39ePvzwQ3niiSdEURTp06ePiJjfhc+WOH2JiIi3t7d0795dvau2sGvJbt68KXv37pV58+bJ888/r950cfdd1qZKv96uWLFCFEWR3377rci2Y8aMEUVRpEePHvLzzz/L66+/LoqiyIgRI0TE9M9SWEN/ilj2FC36GD/99FOxsbGRjRs3ikj+eqzT6QpdB8PCwqRXr17i6OgoiqLIxIkT1feYKxaFVkK/k/r1119Fo9FIjx495OrVq7J9+3ZRFEUaN24s3t7eYmtrK40aNZJXX31VZs2aJSkpKUaO/N6saZqWBQsWSNeuXdW7wu/e8eh3XHcv//vvv9VRYHO7kF3PkqYviYuLk6efflqd6uJuhR1QEhIS5M8//1RPi5tDP+oPsiEhIdK4cWM5c+aM+tqNGzdk69at6oh3dHS0BAUFGYxw9+vXT70Bw5SLCkvvT2ubomX48OESEhKi7jPv7j+tVlugQMzKypIff/xR3feY8vr6f+2dd3gUVffHv7PJJoQkkEYIPYQaQzXSq4h0BAWBUKQoSrEhUlV+ICAdsYCAAooISC8i0hIk9FAEQgst9ISSkAIhye5+f3/wzribgtTszsz9PM/7vLgzw3MO586dM3fO+d7/QiSFOkEepLVr12bNmjUVRf1PP/2Uvr6+3LhxIyMjI1mtWjVKkkQnJycWKFDAjhY/GnqQaUlPT1cmoUeVWslp4lIbWpQvkRP62NhYpQ7pYXY6og+Pg1znO2zYMGZkZCi/r1+/np6entkSqe3bt3PatGn8888/c/x052joIZ56kWixnlsfdTEkp680akckhTpAvmGvXbtGLy8vfvbZZ8pALlq0KNu3b68Ugu/du5eVK1fmN998w127dpF0/E83pLZlWsaOHcuaNWsqya4jT6zPEq3Jl6Snp7NKlSo8efLkY18rf8JSC3LsvvnmG7q6uvKPP/5QjqWnp3PIkCGUJEm5P3ObYxzZZz3Fk9S+RMuAAQPYu3dv5eVFL/NsVhy3z1/wTCAJk8kEADh8+DDc3NxQvHhxODk54cCBA4iLi0Pt2rXh5eUFAKhVqxaSk5Nx584d1K1bFwDg7OxsL/MfCv8nAbBnzx7ExsZi6NCh6Nu3LwwGA9asWYMuXbqgQoUK6NevHyIiIgDYygVIkgRfX1+HlxCoXLkyTp06hXHjxsFsNju0PMezxGAwwGQy4dKlS6hQoQJeeOEFAMCqVatQtWpVVKpUCQBgNBrRrl07ODk54aOPPoKrqysAx5OGSExMRHp6Olq2bIlNmzYpv1sslv+8VpIkh/PnUZg3bx4aNGiAqlWrKr9duHABmzdvxquvvgoPDw+YzWZljrFYLMp9DTheDK3RQzzlWKxYsQIpKSkYOHAgGjdujHPnzmH69OmoXbs2atWqhSlTpuDcuXMA/o0ZSbi4uKBEiRJ2s/9xKF26NFauXIlffvkFAHQzz2bDrimpIE/Zvn07ixQponTIzZw5k/ny5ePKlSuVc65du8aXX36ZHTt2tJeZj4yeZFq+++47Ojk5sWnTpoyKirLpJFfbikNuaF2+hCSPHTvG0qVLs0yZMty0aZO9zXmuxMbGKrWB1t3yv/32GyVJUuYdNXyJyA2tx1NPEi2pqal89913KUkS33vvPUX8PqfNHrSMSAo1iHwjz5o1i506dVI6iW/evMlJkybx6tWrJMm1a9fSaDRy8uTJyjVr1qyhl5cXR48eTdJx6+ys0YNMi8lk4hdffEFJkhgaGsrly5fbHM86cWX9TK4mtCpfIsckOjqaNWrUoCRJfOedd3jgwAGbejv5XOu4qTHxnzNnjnK/+fn58d133+WGDRvYu3dvenp6KuepbXzK6CWeepJoSUxMZJcuXShJEt944w0ePHjQ5rj1FqpZUVNMH4ZICjWItURLjRo1ctUfPH/+PD09PVm4cGFOmDCBkyZNYpkyZejt7a10/TnqQNerTMvKlStZoUIFSpLEl156iQsWLHjoFlpqQS/yJbKfO3fuZK1atZQkf+LEiTx48GC2Jik1k5CQwMWLF/Ptt99mYGCgzYpS5cqVefPmTZv5xVHnmoeh5XjqWaLlq6++UqSvwsLC+Pfff9vbpDxDbHOnMfi/bXouXLiAMmXKYMKECRg2bJhy/MSJE0hISMCLL76I/PnzY+PGjfj8888RHR2NzMxMBAQE4LPPPsPAgQNVsVXRDz/8gPXr12PatGkIDg7OZjNJmM1mODk52fy+c+dOlCxZEiVLllSOOzIWiwWSJMFsNiMyMhLTpk3Dn3/+CQAoVKgQ6tevj1atWqFChQqwWCxwd3dH8eLFcfDgQTg7O6N69eooVKiQnb3IHXkLrebNm+PmzZtYsmQJKlSoAABISEjAoUOHUKNGDRQsWBAxMTHo06cPdu/erVwfFhaGSZMmoXjx4jluheeozJgxAzNnzsT58+dRunRp1KpVC9WqVUPRokURHByM0qVL49KlS8iXLx9u374NZ2dn1KhRw+Hvy6zExsZiy5Yt2LBhA44cOYKLFy8CeFDD3K1bN7z++usoVqyYna18erQYzw8++AAxMTH48ccfUbJkyWxzrMVigcVisak9T09Px+LFi9G2bVv4+fmp5p6U7UxNTcWaNWswefJkREdHAwCqVKmCZs2aoWXLlvD390dmZiYKFSoEHx8fREVFwc/PDyVLloSHh4edvXhK7JiQCp4D8urYsGHD6OPjY/OGk5yczB49ejAoKEj5LTMzk4cPH+by5cu5fv16RWKBdOy3O73KtFgTHh7OTp060cvLy2YVxs3NjS4uLpQkie7u7mzatKlSMuDIaF2+xBr5Ps3MzGRUVBRHjx7Nhg0b0sfHx6bMwdXVlb6+vnR1daWnpyfnz59vZ8v/G1mPMCMjI8f77cCBA5w4cSIbNWpEV1dXSpJEFxcXvvHGG/z1119VUbKSFS3GU0i0PChNmTt3LkNDQ23i6OnpSX9/f3p4eLBAgQL09PRk27ZtcyxhUhtipVCjFCtWDDVr1sScOXPg7+8P4EH3cYcOHVCrVi0sWbIEJpPJYTuL/4tx48Zh/fr1+PPPP+Hr66uaN9FnQVZf09LS8PfffyMmJgYkkZKSApPJhODgYLi5uaF69eoO3QEo+/Ptt99i6NChWLlyJVq3bg0AyMjIwOeff46pU6ciOTkZHh4euY5bqmBlOzcyMjJw9epVXL58Gbdv38aJEydw9epVFC9eHJmZmShbtixCQkJQrlw5uLu729vcXMnIyECNGjXw+++/o2LFisrvfFCqZDNuMzIysGvXLvz555/YunUrjhw5AuDRuncdHS3Ec+DAgUhLS8OcOXNgNBp1NcfKaZH1fHLu3DlEREQgNjYWAHDjxg3kz58fZcqUgaenJ5o0aYKSJUvaw9xnix0TUsEzRl7Z27t3LyVJyvYWOmvWLEqSxD179pD8t2ZEvs6RVwazsmbNGhYoUIAff/yxpt5MHwetvJVb18A2bdpUqWclH6w6Va1alc2aNSNp2/hkNptVNWb1QFxcHCtUqMDAwECbblzrul2z2Zytjvf27dtctGiRshqspRV9tTJlyhQWKFCAP/74o71NsRu57RKlZfSR9usE+Q175syZAIDr16/j8uXLAB7UeISHh6No0aKoXbu2zVuf/DakplWWdu3aYfz48fjuu+/QokULHDhwQHm7M5lMNlpnWsXJyUmphbReXbH+sxr+HQwGAy5evIhjx47B398fnp6eyrGDBw/i6NGjeO+99wDY+mMwGFQ1Zv8La9/MZrPyZzWtnBUuXBgrVqyAJEkYMGAANm/eDMBW881gMCj/LesS+vj4oFu3bujevTsAx9VGfRzUHs/+/fujS5cuePfdd9GvXz9cuHABwAP7rf3RMpIkwdnZGZIkgWSO86wa5tjHwm7pqOC5Ub9+fUqSxHz58rFmzZocPnw4J0yYQG9vb6UbTEZNnbdZ0ZNMi9bRunyJXnhSmRat1ftqBSHRoj9ETaHGsFgsiI2NxbFjx7Bu3Tps2rQJ165dU45/8skn6Ny5M8qWLQtvb2/ld6q4HmvVqlUYOXIkYmJiEBoaioEDB6J9+/bKLi0CxycxMRF//fUXtm3bhm3btindqU5OTggODkZ4eLjN7jNqHq9aR47Nrl27MHjwYOzfvx8vvvgi3nzzTbz66qsoVaoUfH197W2m4DGYMGECpkyZgjt37qBLly7o168fGjZsaG+zBM8BkRRqmLS0NFy6dAk7d+7EX3/9hfDwcCQmJqJo0aKoU6cOGjdujHr16iEkJARGo9He5j42Wpdp0St6kS/RC1qUadELQqJFf4ikUCNkZGTAYDDk2pV5584dnD9/Hlu3bsX69euxf/9+pUM1NDQUHTp0QLt27exg+bMlIiICs2fPxubNm5GUlATgwWqT0WiE2WxGZmYm8ufPjzp16uCXX35B0aJF7Wyxvjl9+jQqVKiAzMxMpX7HmoMHD2Lr1q3YuHEj9u7di4yMDBiNRrRp0wavv/46wsLCHF5jUq/I+p8mkwn//PMPNmzYgPDwcERHRyMxMVE5z8XFBR4eHkhNTYWLiwu++eYb9O7d246WC3IjKSkJy5Ytw5w5c3Do0CHldw8PD7i5ueHevXswGAwgicaNG+PXX39FwYIF7Wix4HERSaFGkCVaNm7cCB8fH5jN5hwL8c1mMxISEhAdHY2NGzdi8+bNOHr0KMaPH48RI0ao9rOc1mRa9ICQL9EXWpBp0SvUs0SLzhBJoUZYu3Yt3nrrLbz99tuYMmXKI62eZGRkID4+Hnv37kXTpk3h7e2t2qRQRu6KE6tHjk98fDwaNWqE9PR0zJkzB82aNQNgm+DLSZ91gpiQkICNGzeCJLp3765qvc2s5PYyJ1AnWosnc9khSqAdRFKoIb7//nt8/PHHePnllzFhwgSEhoZCkiSYTCZd3sRZkwv5z2pPfIF//UlJSYHRaES+fPlUsV1fVqKjo/Haa6/BYDBg1qxZSmKYE3INqdpjlxN6EQa2vvesx6vW/NeaPzmRdUVf9lkL86uM7EtaWhpcXFzg5OSkynn2cdD2qNUZ/fv3x8iRI7Ft2zb069cPK1euBABFZymrvlRu2nZaIas2mowWJizZn86dO2P06NFISUlR3URFEpUqVcL69evh4+ODFi1aoG/fvjh48CAyMzOznQtAGccmk8keJj9zZD/mz5+PWrVqYfny5TCbzdrTPvsf1vee9XjVSgKlp3hKkpTjHKuF+VVG1ifs1asX5s+fD0AHX6Ger+KNwB6sXLmSFSpUoCRJfOmll7hgwQImJiba2yzBI2K908zDdPmOHDmiaPvVrFmTJ0+ezCsTnxmyltnOnTtZq1YtRXNy4sSJPHjwIG/dumVnC58M2S/rXVceptvWvHlzSpLEwMBA/vnnn3lio+DREfHUHjnFNCc2bNigzLPdunXjzZs388pEuyA+H2sIIdGiTviEn1vS09OxceNGLF++HEuWLEGjRo2wZMkSFC5cWLVv63qQL+H/dkawXnE4ceIEdu/ejW+//RaxsbGYM2cOunTpoiq/9IqIpzqQ59nHnW/j4uKUOXbv3r3o378/vv/+ewDaWhWVEUmhxhESLergypUruHfvHvbv3w83NzckJSUhMzNT6ZJ2d3dH/vz5c22o2Lp1K/r164dvv/0WrVq1ymPrnx6tyJdkZGTg8uXLSE5OxqVLl5CYmIgiRYpAkiS4ubmhUqVKuYrGZ2Zm4sCBAxg2bBhcXV2xZcsWe7kh+B8intoiNTUViYmJOH78OAoUKIBr167Bzc0NVatWhZeXF5ycnODm5pbr9d9//z0+//xzREREoHr16nloed4hkkKNIiRa1MP169dRuXJlJCUlKTVz1jWehQoVQp06ddCiRQs0b94cpUuXBvBv/ZLcRBQdHY1KlSrZxYdnjVrlS7p27YqNGzfi7t27NnWPrq6ucHV1RWBgIGrVqoXOnTujQYMGuYrGnz9/HkFBQXlltiAXRDy1w9GjR9G0aVPcv38f9+7dy1ZHX7lyZTRo0ADNmzdH3bp1lV13rDVULRYL9u3bhzp16tjDhTxBJIUaR0i0OD6HDh3C0qVL0bp1ayQkJKBgwYIwGo3Yv38/zp07h+PHj+P06dO4ceMGypUrhwEDBqBfv35wdXW1t+kCK0hi8uTJkCQJISEhyJcvH65cuYL79+/j9u3biIyMRHh4ODIzM+Hq6ooOHTqgX79+qF+/PoAH92rW4n0tohaZFhFPbbFmzRps2bIFDRo0QHJyMgoXLoyUlBRERUXhypUrOHnyJGJjY2EymdCgQQMMHToUzZs3t7fZeY5ICnWEliVaAO3ItGTl6tWrOH78ODZv3ozVq1fjwoULaNiwIb788ktl/1GtxNAaalC+5O7du/j9998xZ84cREVFoWLFihgzZgzefPNNe5v23FFz3HJDb/GkRiVa0tPTcebMGRw+fBgbN27EH3/8gdTUVPTs2RMjRoxA+fLlcxTw1iR51tIiEOQRLVu25LBhw5icnGxvUx4Jk8lE8kE3nHVHXNbOY7PZzP3797NHjx6UJImVK1fm7t27lWsFjoEct6xdjdZ/zsjI4C+//MLKlStTkiSOHDlSGQdaIzMzkyT5448/smbNmly2bBlNJpNqxqyIpy0Wi4WdOnXi3Llz7W3KY2EdR5mcxuGdO3e4evVq1qlTh5IksX379rx+/TpJfcyzIikUqAI9ybTIyBOQyWTK5vOWLVtYvnx5FilShPv377eHeYLHwDp+clwzMjK4c+dORb7kiy++4P379+1l4mOjZ5kWvcQzJ7Qk0WI9bnNK4mfOnElPT0+Ghoby6tWreW2eXRBJocAhedI3svv373P16tXs2rUrJUli48aNef36dc284clvthaLhZs2bWL58uVZokQJHjt2zN6mCR6B3FaPRowYQQ8PD/788895bNHzIaeH7PHjx/njjz+ycuXK9PT05OLFi1V/X6o5no+SyOfE9evX+e233yoraQMGDLD5yqEF5LimpaVx7ty59PDwYJMmTRgXF2dny54/oqZQ4LDoUaaFJK5du4a9e/fC19cXPj4+8Pb2zrUz/Ny5cxgwYAA+/vhjtGzZMo+tFeQE/1d3dfv2bVy/fh3nz59HgQIFUKtWLRu5C/5vH1lnZ2fcvn0bAwYMAAAsWrQo1y5WR0BvMi1ajqdeJVpI4saNG4iJiYGfnx9cXV3h7e1tM26t2bRpE8aMGYOZM2eqys8nwm7pqEDwEK5evUofHx86OzvTaDTSyclJ+WQhSRL9/f3Zrl07/vDDDzx//rxyXWZmJjMzM5W3VjWsoMmfouLj4/l///d/dHd3V/wMCAhgr169sl1jMpmUt9nTp0/z9u3beWqz4OFs27aNNWvWpNFopCRJzJ8/P93d3bl9+/aHXnfo0KE8svDJCQsLo5eXl+Kb/L98+fKxYMGCrFq1Kt99911u27aNGRkZuf49586dy0Ornw4txvPIkSMsVKgQPT09s82vkiSxSpUqHDhwINetW2ezs1BGRoZSJ2o2m5W6ZkdHnmdv3rzJUaNGsVChQpQkiS4uLgwJCeGXX35pc7682m02m2kymbhz504mJSXZw/Q8RawUChwSPcm08H8rEX369MHPP/+MTp06oXnz5jhz5gwmTpyIjh07YtmyZcjIyMCVK1d0pXemFvkS4N8O6Z07d6JHjx64d+8eBgwYgOLFi2Pq1Kk4ffo0bt++DW9vb1y/fh1XrlxB1apV4eLionTm0sG7yKkjmRatx1OvEi1dunTBsmXL0K5dO9StWxcnTpzAL7/8gsGDB2PKlClIT09HSkoK/Pz87G2qfbBnRip4vshvRsnJyUxLSyOZew2M2rhy5Qo3bdrEwYMHMygoiJIksVGjRvz777+Vc9RQ4yLbeOHCBTo7O7Nv377Ksblz51KSJO7YsUP5rX79+mzfvr0ST63ysGYiR0W+t9q0acMSJUowPDycJHn79m3Wrl2bjRs3Vs7dt28fX3zxRVU3QuVGamoq582bx5o1a1KSJAYHB3PZsmX2Nuux0XM879+/z2PHjnHhwoUMCwujp6cnJUlir169ePr0aZJUVR2hPJ/s3buXTk5OHDhwoHJswoQJlCSJMTExJB/4XrFiRU13kD8MkRTqALVJtJD6kWmR/fzqq69YsGBBpSszLi6OnTt3pr+/v8359evXZ4sWLTT7GUPt8iWpqan09PTkBx98wNTUVJLkokWLKEkSlyxZopy3YMEC5s+fnxs3brSXqU+FXmRatBxPPUm0yOOuf//+LFasGHfu3EmSjI2NZdOmTRkcHGxzftmyZdmnT5+Hlj9oFcdfwxfkiLxFD/+3GXtuHD16FH/99RcmT56Mpk2b4tSpU3ll4lMhi6FKkqR8frH+jGg2m5VPNDVq1MDChQuxefNmpKeno0OHDoiKinLYzzbWyH6eP38eHh4eKFeuHADg9OnTCA8PR7du3ZRzL168iMzMTBiNRhQoUMAu9j4p/F+VisViUf7MHCpX5KahFStWICoqCkOHDsXmzZtVEUsA+Oeff2CxWODr6wt3d3ekpKRg586dcHV1RZcuXZTzLl26BA8PD2UrrZz+LRwZ+fOv9T1psViUP5OE0WhEWFgYfvjhBzRr1gwTJkzAmDFjkJ6ebje7Hxctx9M6hta/SZKkNM0AQMGCBdG+fXvs3r0b33//PbZt24Y2bdrg2rVrqrkv5Xn2woUL8PX1RcWKFQEA0dHR2LVrF9555x3l3KNHj8LJyQnOzs4wGo2qiOWzRCSFKiHrwJRv5P+qz6lQoQJWrVqFsLAwREVFoX///oiLi1PtQJcnIScnJ8Vvs9kMknjllVfw3XffwdPTEx06dEB0dLQ9TX0sgoODce3aNSUpioqKwq1bt9C3b1/lnOPHjyMmJsamPkst5JTYWycQWX2ZPn065s6dC09PT3Tu3BlLlixRxZgtUqQI3NzcEB8fDwA4efIkNm/ejPbt2yvn3LlzBydOnICbmxtq1KgBQBu7JFjfj7I/RqMR9erVw19//YXhw4fj66+/xtKlS+1p5mOht3ha35vWu5TI92efPn0wbdo0nD59Gj169FD+XdRCqVKlcP36dRQsWBAAsHv3bty/fx+9evVSzjl+/DguX76s7Bb1sEUXTWKP5UnBk3H58mWePn2av/76K1esWMF58+Zx9uzZ3LdvH69du8akpCTl81tObNmyhWXKlOGGDRvy0Oqnx2Kx8MqVK1yxYgUjIiJ45MgRXrp0Kdfzz549y2bNmqlKIDciIkIRg929ezebNGnCF154weac3r1709nZmVeuXCGpjk836enpPHv2LA8dOsQ1a9ZwwYIF/Ouvv7hp0ybu2LGDCQkJNudn/fy4e/duNmjQgE2bNs1r05+IjIwMvvLKK/Ty8uLZs2e5bNkySpJk06W6evVq+vv7s3///iT50HvWUZHjdOvWLR47doxr165lREQE7927l+082b9bt26xU6dO7NSpk2o+y+kpnnFxcdyxYwdPnDjBc+fOZbs3rfnrr79Yp04dh+6uzokff/yRkiRx7NixPHDgAKtXr86XX35ZOZ6WlsY333yT7u7uqhIef5aIpFAl6EmihdSnTMtbb71FSZJYrVo1urq68uOPPyb54N9gwoQJdHd3Z8+ePUmqpxFDT/Ilckw2bdrEggULskCBAgwJCaGfn59yztGjR1mxYkUGBATwxIkTNtepDS3KtFij9XjqUaIlPT2dtWvXprOzM19++WU6OTlxxowZJMmUlBTlWfPhhx+S1E5j5uMgkkKVcPDgQQ4ZMoTbt2/nqlWruG3bNu7YsYNTp05l//792bBhQxYuXJiSJLF8+fKcMWOGqt905CS2d+/elCSJnTt35vz58zlixAhKksQ333yT5IObXA0Jw8OQJ5709HQOHz6cxYoVoyRJLF26NOvVq8eiRYsq/wZyd6MaHjwWi4UTJ07kpEmT+Mcff3Dr1q38+eefOXv2bI4fP54tWrSgi4uLkiR269aNkZGRyvU5be+nFubNm6c8ZGXNt5o1a9JgMNDPz4+LFi2yt4lPhDxWIyMjGRgYSH9/f44ePZo//fQTK1asSEmSlBWma9eucf/+/UxPTydpu1Wl2tBqPEmyc+fOSgPJ5MmT2atXL0qSxE8//ZTkg25cNW9lJyOv4F64cIEdOnRQOqrr1KnDVq1asUKFCpQkiV27dlUWVtQ6/zwNIinUCFqRaCH1LdOSkpLC1atXc/DgwWzcuDGDgoIYGhrKb775RpWfpf4LrciX5MSlS5c4ZswYVq5cmf7+/qxSpQp79Ohhk/iq5Z6U0ZNMS9ZVosuXL3PMmDGsVKmS6uOpd4mWK1eucM6cOezevTtDQkJYsGBBhoSEcNy4cbpMBK0RSaFK0ItEC6kfmZbMzEx+9913HDt2bLZPp6mpqbxz5w5Jqj7Z1bJ8iZyoL168mBEREbkm7hcvXtTEagupD5mWqKgofvPNNzx8+HCOMi3nzp1T9T64epBosS5Bmjp1Kg8fPpzt/rx+/TovXbrElJQUm+eHWp6VzwPRfawS9CLRAmhfpkXu5Fu7di3Gjh2Lffv2KXujkoTJZIKbmxvS09NhMpmQL18+VXTe5oaW5UvkbvH+/fujSZMmCA0Nxfjx43Hy5EmbmJUsWVLZIUHNsQT0IdMybNgwjBgxAm5ubnByclLGalxcHMxmM4KCglC4cGF7mvpU6EGiRY7ZDz/8gCFDhqBLly549913sXDhQpw5cwYAEBAQgBIlSsDDwwOenp5Kp7FanpXPA5EUqhytSrQA2pVpkeP03XffoWjRohg3bpxy7Ny5c/jkk09QsWJFvP3221i3bh0A7U1SWpIvSUtLw7Rp0/Duu+8iLS0NX3zxBSpVqoQmTZpg3rx5uHbtms35ao+lVmVa5Llj/fr12L9/P0aMGIEKFSoAeJDQLlu2DD179kRwcDA++uijbHFVI1qWaJHHW8+ePfHll1/Cw8MDP//8M3r37o3OnTtj0KBBWLt2LeLi4pTz1bD94nPHbmuUgidGDxItpDZlWqzrJSVJ4pgxY2xKABo3bkxJkliuXDn6+fnRaDQyIiLCTtY+G/QiX2I2m3n06FHOnDmTHTt2VBq/vL292atXL65evVpVuwrlhlZlWqzrJatVq8ajR48qx5YvX06j0UgPDw+l2eSzzz6zl6nPDD1JtJhMJu7bt4+DBg1iqVKlKEkSvby82Lx5c44ZM4abNm1SzVzzPBFJoUrQo0QLqT2ZFtnGmTNn0sfHh2vXriVJ3r17l7NmzVLq6S5cuMB58+ZRkiR+99139jT5maBl+RKLxZJt7KWmpjIiIkLpnpf/995779nJymeD1mVa7t69yyJFivCtt95SXlpOnz7NcuXKMSQkhHv37mVaWhorV67M0NBQpe5XrehVoiU5OZmLFi1i9erVKUkSnZ2d6eHh8VBtRr0gkkKVoCeJFlK7Mi0y06dPp9Fo5F9//UWSXLt2LYsWLcoOHTooDQlnz55l8eLF+f7779vT1CdGL/Il1qtgWZtpSPLzzz/nCy+8wJ49e3Lv3r0ktfFw1aJMy6lTp1imTBmb+bRPnz40Go2MjIxU4vbWW2+xZMmSqp5r9SLRYt2caY3ZbOaqVatYtmxZvvPOOxw5cqTyu54RSaEK0LNEC6kNmZask1JkZCQlSWKbNm34ww8/MDAwkAULFuSpU6eUczZs2EBvb29+/fXXJNWXSOhJvoS0XZknqSS4O3fuZGBgIG/cuGEv054ZWpZpkZOHpk2bMn/+/Py///s/RcXhgw8+UM5LSEhgly5dWLFiRTta+2zRkkSLPN7u3r2bbbzm9NJWr149Tp06Ndv1ekUkhSpALxItpH5kWjIyMjhixAgWLFiQkiSxcOHCXLx4sXLcZDLx448/pouLi2rqJXNCi/IlchzOnz/PypUrc968ednqI00mk/LCsnnzZhYrVkyVK2ek9mVasoqkz58/36Z2sFevXjY123/99ReLFCnCAQMGKNerAb1ItMjxGDp0KIcMGcItW7bw2rVrNufI/qSkpLB9+/Z87bXXVJf8Pi+c7d3oIvhv/kuipXv37sq5apRoAR50/jk5OSkyLTVr1rSRaTGbzXBzc8OtW7dsZFocvaMxPj4ex48fR0hICAoVKqR0txmNRnzyySeoUaMG8uXLh7JlyypxBYDw8HCsXbsWLVu2RLFixRS5IbXxNPIljhpb2a6dO3ciOjoa77zzDvr27YvXXnsNffv2RatWrZR7Vj7v2rVrqFy5MgDH9i0nrGVa9u7di0OHDtn4FxcXh0KFCiEoKMheJj4RO3bsQO3ateHi4mLze+/evfH6669jy5YtyMjIsJHAAoCFCxciIyMDAwYMAOD4XdUy1hItY8aMQfny5VG3bl00btwYderUQbly5RAQEKCcT1KZd9TiI/DgeZmeno6lS5fi8uXL+Pnnn1G7dm00adIEtWrVQsWKFeHt7Q3ggQTP8ePHUa1aNRgMBtXOs88Uu6akgsdi2rRplCSJFy5cIElOnTqVkiQpxdzkv58cJ02aRFI9b7Hym1ujRo1YrVo1/vPPP8qxM2fO8IMPPmC5cuXYpk0brly50l5mPjYDBw6kJEns2LEjZ8+ezYMHDzIxMfGh19y8eZN169ZlmTJllB1p1BLHrJw7d45+fn5KF+q+ffsYFBTELl26KOckJiayc+fOLFWqlJ2sfHIOHjzIUaNG8aWXXlJWlry8vPjOO+9w7ty57Nu3L/Ply8fQ0FB7m/pEyONu3bp19PDw4NixY5VjFouFv//+O5s1a8Zy5crxww8/5NWrV+1l6mNx8eJFSpLEMmXK8KOPPuKuXbse6boZM2ZQkiSbHUDUxoULFzh27FiGhoZSkiQaDAZWr16dH3/8MdesWcPr16/b28Rnwo0bN7hs2TJ269aN/v7+lCSJgYGB7Nq1K8ePH8+ZM2cqjSZbt24lqd559lkikkIVoUWJFlLbMi1Lly5lly5dWLJkSRoMBgYGBvLtt9/m0qVLefz48RwlSs6cOcPhw4dzzZo1qojfw9CafIk8LmNiYjhlyhQlCUpOTub69evZv39/litXjpIk0cnJiZIksX79+qp96GhVpiUmJoYtW7ZUGtYkSWJoaCjHjx/P06dP25wr7xx19+5dbt68mePHj+fZs2eVY2pFixItcjx++OEHXr58meSDEpaTJ09y9uzZbN68udJQI0kS/f39lT2eBQ8QSaHK0JpEC6l9mZbbt29z3759/Pbbb9mqVSt6eXnR2dmZVatW5ZAhQ/jnn38yNjZWaUyQUVsCkRUtypfIMenWrRuDgoJyXGG6evUqV69ezQULFnDbtm28detWXpv5TNGyTMutW7f4008/sVmzZnRzc6MkSXRzc+Orr77KH3/8MdvWhDltLaoFtCDRIr9AnzlzhpIksXv37tmO37lzh9HR0Vy1ahW//vprHjhwwGYLWYFIClWD1iVaSO3LtJhMJl69epXh4eEcM2YM69Spw3z58tHd3Z2NGjXihAkTuGPHDl69elX1CWFWtCZf8tJLL7FTp05KAmQ2mzUXMxktyrRkbS4hH6wefvXVVzalAH5+fgwLC+PatWuzvbSpFS1KtJjNZuULw8yZM1mqVClu3ryZpPpfrvMakRSqEC1ItJD6lGmRSUtL47lz57hmzRp++OGHDA4OppOTEwsXLsw2bdrw559/treJz5xLly5xzJgxrFy5smrkS2R7kpOTlYej2Wxm586d2a5du1yvcTQ/nhSty7RYLJYc55A9e/bwo48+YpkyZZQEsUKFCuzVq1e21UNHR28SLdu3b2dgYKDy3MjpmaiGRNdeiKTQwdGLRAupfZmW3JKF5ORkRkdHc+HChezVqxeNRiM/+ugjkuqbvOQJePHixYyIiMj1JeXixYuqeri+//773LRpE0ny+PHjnD59Ops0acLr168riYXaYvUw9CLTQv47h2RkZGSLYUZGBtetW8du3brRx8eHkiSpbrs3rUq0yPb9+OOPHDRoEE0mE+Pj4/nTTz/Rx8dH+eIko6ZnhT0RSaGDIt/IK1asoL+/P9u0aaMck/eINZvNjI+PVx68ahn0cXFx3LZtG+Pi4rJNPDdv3uSqVav4559/MiYmxubY5s2bWbp0aWWFxtEnrZz4rwfKrVu3uGvXLqUOTY0+klQS+ypVqnDcuHE8ceJEruPTUcetbNe2bdsoSRIXLlzIu3fv2jSRfPTRRzbd5PK96ag+/Rd///13rp9JExMTuWzZshw/9Xft2pW+vr6Mjo4mqd5x+7D7Mz4+ntu2bSOprqSXfOBXyZIlKUkSCxUqxLZt2/Lrr7/m7t27beoG9+zZw3LlyimlAo4cR/keK1++PBs0aECLxcIBAwbQzc2Nvr6+LFOmDNesWZOtxlVLK/nPA5EUOihalWgh9SnTkpyczNGjR7N9+/asX78+P/jgA2XLM61x7949/vTTT3zvvfeUTlyDwcDGjRvzp59+Uo1siTy+wsLCWK5cOR45coSJiYns3r07Q0NDlS7GIkWKcOTIkUpHatbr1YKeZFrk+TUzM5Pbt29n9+7d2b59e37yySf86aefePDgQUVsXStoSaJFjt/JkycpSRKnTZtGkvz111/ZqlUrFilSxEYeasmSJTx9+rSqyqvshUgKHRAtS7SQ+pFpkWN27tw5Nm/enJIksWzZskqTkCRJLFWqFMeMGaNoT2oJs9nMo0ePcubMmezYsSMLFy5MSZLo7e3NXr16cfXq1TnG2tFwdXXlgAEDmJKSovwWHx/PxYsXs0ePHixevLgSz2rVqvH777//z5ccR0RPMi3yHDJ16lR6eXnRxcWFlSpVorOzM728vFilShUOHDiQixcv5okTJ1QnzSKjVYkWOVn96KOPWKhQIZuFgjt37vDgwYP8+uuv2bBhQ7q4uDBfvnysVasWR44cqag9CHJGJIUOiNYlWkh9yLTIb6Xvv/8+3d3d+eWXX5J8MEG7uLiwbt26ymQsJxTffvutPU1+JlgslmyJQWpqKiMiIti7d28bn9977z07Wflw5KRh6dKl2bbky8qZM2c4a9Ystm7d2uYBO3v27Lwy95midZkW2dYLFy7Q09OT1atX55kzZ5iQkEAfHx9WqlSJVapUocFgYPHixdmyZUt++OGHqtuXWw8SLYUKFVIk2Ejb54PJZOLNmzf5999/c9iwYXzhhRdoMBjo6enJVq1aqWrM5iUiKXRgtC7RQupDpqVgwYLs2rWrUrvTsGFD1qxZk5cuXeKpU6dYu3Zt+vv702g0snLlyiTVMSHnhvUnmpy6Gz///HO+8MIL7Nmzp/IJ3dFiK9vTokULGgwGjh49mkeOHOGNGzceel1UVBTHjRvHSpUq8dixYyTVsXJG6kemRY7tyJEj6evrq5TfyLWjc+bMYUxMDN977z1KkkRfX19KksTjx4/b0+zHQssSLfJ8smvXLkqSxFdeeSXHUgfreScjI4OXL1/munXr2KFDB/br14+k+v8tngciKXQg9CzRQmpLpkV+uG7ZsoVeXl6cNWsWyQerMJIkcdiwYcqkvWzZMvr6+nL27NkPlVFQGyaTyWY8ygnEzp07GRgY+J8Jlr1JSEhQVskMBgNLly7Nnj178tdff2V0dPRDP32rWQ1ADzItJBkaGsrXXntNUTJ48803Wbp0aR45coQkmZSUxNatW3PgwIGPXF/piGhNokUem7I0krX26ZgxY7Il71kbS+7du6eIsKvJ77xCJIUOjNYlWkjty7TMmDGDQUFBSs3n7Nmz6ebmxmXLlinnpKamsnjx4ly3bp2drHw65PidP3+elStX5rx585RJV8ZkMikPo82bN7NYsWIOK1gtj68pU6bQaDRyzJgx/Pzzz1m7dm3mz59fKXMYNGgQ165dy3Pnzqk6CcwJrcq0yLWBly5dYqVKlfj222+TfOBvQEAAw8LCbOpB33rrLb788ss29aSOip4kWiwWC11dXdm7d29OmzaNL774ok2C+PLLL3P27NnZ9nFWs895hUgKHQA9S7SQ2pJpSUpKslkBW7x4MSVJUjTdPvnkE3p6evLQoUPKOVFRUQwKCuLQoUNJqnfiWrhwoTIpGwwGtm/fnhs2bMh23qhRoyhJkrIi42j+yvZUqFCBLVq04O3bt0mS0dHRXLRoEd977z2+8MILdHZ2pru7Oxs2bMixY8cyPDxc1WUOuaFFmZbLly+zVq1a/OKLL0iS+/bto5+fn40gt/zSXbZsWVVs3acHiRbZzkWLFlGSJK5Zs0Y5dvr0aY4YMcKmkc/T05OdO3fmqlWrsr2oCnJGJIUOgB4lWkhtybTI//ZDhgzhyJEjlfrBlJQUbtu2TanX+vHHHylJErds2aJcO3HiRBoMBkUc2ZGT3v/i4MGDHDVqlE0NmiwLMXfuXPbt25f58uVjaGiovU3NEfmhc+LECUqSxKlTp2Z7YCYnJzMqKoqzZs1i586dFf23IkWKsEmTJly1apU9TH9qtCjTIvt0/Phxli9fnvv27SP5wMelS5cq/33hwgUGBgayRYsWTEpKUq6pWrUqGzZsSNKx70u9SLTI82zjxo350ksvKV3xWf3YuXMne/bsqTRKyfI7ffr0EcnhfyCSQgdALxItpPZlWiRJ4ttvv53rxHPkyBH6+fnRw8ODffr04cCBA2kwGFi1atW8NfQZIcczJiaGU6ZMUTQIk5OTuX79evbv31/RKpQFn+vXr++wOmjyvTR48GB6eXkpW/Dl1DBDPtB+i4iI4IQJE9i6dWtKkqR8FnfkJCIntCjTIo+vQYMGsUCBAsoLdE68/PLLym4tEydOZGhoKJ2dnZVSD0cbq9boSaLl5s2bigJH1qa2rMmh2Wzm8uXL2bJlS2XlUPBwRFLoIOhBooXUpkyL/DBdvHixzUOEfDAprVu3Tlk9ysjI4Ny5c+nn56d8Zm3RooVSc6i2eMr2duvWjUFBQTkW5F+9epWrV6/mggULuG3bNqUMwJEZMWIER40apXxqy5oQ5pQgxsbGcv369aqLIal9mZZChQqxS5cuNrt3nD9/nn/88YdSd3bt2jWGhYXRy8uLkiTR2dmZo0ePVlU89SDRcvToUbZu3VqpkczpXsza5EY+SCblsh21rZDmJSIpdDD0INFCakumRY5Dw4YN+eKLL/LMmTPKsdjYWNarV4/16tXLdl14eDg3b96suk9yOfHSSy+xU6dOShJlNptVPT5JPlIdmZrqsR6GFmVa5LiEh4dTkiT+9NNPNsenTJlCSZJshLkvX77MzZs3MyIiggcPHsxTe58UvUq0PKqtWtuX/HkjkkIHRksSLaS2ZVpu376d4yeNNWvW0NnZmXPmzCH5QJZFTRNvVuQHS3JyshJPs9nMzp07Kw1POV2jpsTpSW1Vk4+5oSWZFvk+e/PNN1mmTBmb5q74+Hi2a9eOJUuWJKnu2AmJFsGzxACBQ8EHiToAIF++fAgKCkK7du0wbtw4LF++HAsWLEDLli2xadMmHD58GABgsVjsafIjYzA8GG7Hjx+Hj48PgoODAQArVqxAvnz5EBoaCmdnZwBAq1at4ObmhqJFi6JChQoAoBxzJOR/+/nz58Pd3R1NmzZV7Lx//z7+/vtvAMBbb70FAHBxcYGTkxMAKHFWE5IkAQBGjhyJrVu3AgBOnTqFWrVqISUlBXFxcSAJs9ms/NtIkqRcpwae1FY1+WhNZmYmAODy5ctIT09HoUKFUKxYMZBEZGQkateujZIlSwIAChQoAF9fX5w4cQJVqlSxp9n/iZOTE0jijz/+QKtWrVC9enXl2NGjRxEREYE+ffoAAMxmMwB13pOyn8uWLUOvXr0wdepUVK9eHceOHcPo0aNRqVIlNGnSBHPmzEFcXJzN/UgSbm5ucHNzA/DvHC3QL2IEOBiSJCEjIyPb756enggJCUGPHj0wdepUbN++HV988YUdLHx8kpOTcfPmTeW//f39ceHCBZQpUwYAEBMTA2dnZ5QtW1Y55+TJk3BxccHOnTsBOO5kLU+uixYtgsFgwPXr1xVbL1++jL/++gvNmzdHvnz5YDKZcrxWLch+hYeHY+bMmYiPj8e9e/dQqVIlDBkyBBEREZg4cSKSkpLg5OQEg8EAkjCZTA4bPwFgNBoBPBiP7u7uKFq0KAAgKioKJpMJfn5+8PLyAvAgefLx8cHly5eVRMoRkcfbkiVLcP/+fdy5cwf79u1DamoqAODgwYNISUlRkkI5GVLrPbl48WJkZGSgXbt2+OSTT3Dw4EGcOnUKw4cPR9GiRbF9+3b0798f5cuXR5cuXbB69WqkpaWpzl9BHpD3i5OC3NCSRAupH5mW+Ph4BgYG0mg0UpIklixZkkOHDuXo0aMpSRLDw8NJPqjj0cJnqrCwMJYrV45HjhxhYmIiu3fvztDQUGXf3yJFinDkyJE8e/ZsjtcL7IteZFpI8ssvv1Q+p5YsWZJhYWEcN24cX3zxRb700ks25+bWYe7ICIkWwbNGJIV2RusSLaQ+ZFpiY2O5cOFCdu7cmYULF7YRcZ4+fTrPnz9vc77aHj7WuLq6csCAATa7PMTHx3Px4sXs0aMHixcvbtM9/v333/+n7qYg79CLTAv5oNZ3//79nDBhAmvXrk1nZ2dlbDZs2JB//vmnTaOJjJruTyHRIniWiKTQzmhRooXUt0zLiRMnOG3aNL766qssVKiQ4lOzZs24cOFCZYcMNSHHc+nSpZQkiUuWLMn13DNnznDWrFls3bq1snooSRJnz56dV+YKHgG9yLSQD+aQuLg4bt26lUOGDGHVqlWVfa1r167NYcOGccOGDYyPj7e3qY+NkGgRPEtEUuggaEmihdSfTIvFYsk26ZpMJu7atYuff/45a9SooSRHvr6+bNeuHf/55x87Wfv4yL61aNGCBoOBo0eP5pEjR2y29MuJqKgojhs3jpUqVeKxY8dIOv4nRy2jF5mWh5GWlsYLFy5w+fLl7NGjh7Lbh6+vL1u0aMGxY8eqMkkSEi2CZ4FICu2IliVaSP3ItGTFbDZnm3STkpL4xx9/sF+/fgwODqYkSUq9pCMn99YkJCQoqysGg4GlS5dmz549+euvvzI6OjrHnXdk0tLS8tBSQW7oRablUbl79y5PnDjB2bNns23btpQkiQ0aNCCpD/8Fgqw4nsaHjtCiRAvwQKbFYDA8lkyLDEnVd8RZyzpYLBZIkoQCBQqgdevWaN26Na5cuYLdu3ejWbNmABy/41GO57x58+Ds7Izhw4cjMzMTW7duxfLly/Hbb78hJCQETZo0QePGjVGpUiUULVoU+fLlU/4O6z8L7Ie1TMs777yTo0zLJ598AuBBp7Gzs7Mm7sncyJ8/P4KDg1GxYkV06dIF0dHRSqe1xWJR5KME6kOetwSPh2NmFRonOTlZ0QMDHl+ipW3btg49Uecm0yJJUo4yLdbJraP69KRYT0pmsxlOTk4oXrw4OnXqZEerHg85Jj/99BNeeeUVvP/++/Dx8UGXLl3wzz//IDIyEpGRkfjuu+8wd+5chIaG4tVXX0W9evVQoUIFFC5cWBMPV3kM37t3D0lJSQgICIAkSQ59L1oj25lVpiUkJAQeHh6akWl5EiRJQsGCBVGvXj3lNy2MWT1h/YwpUaKESAifEJEU5iFyUjBu3DgYjUZ8+umn8Pb2Rtu2bbF161YULVoUFosFwcHBSE1Nxe3bt5Vrt23bhtjYWLzyyisAHHtFTZIk3LhxA0lJSUhLS0P37t0xYsQIdOnSBfnz58epU6cwc+ZMAP+KdTuqL88Sa9Fqtfgr23ry5EnExMSgb9++8Pb2BgCEhIQgJCQEr732Gk6fPo2oqCj8/fff2LNnD0aNGoWAgAAEBwfj/fffx+uvv25nT54eeeVszJgxWLduHUaNGoWwsDDVJIayfefOnQPw4KXt77//Rr169RASEoJVq1YhNDQUJUqUAPAgKZRXuh3dN4G+ke+/+Ph4VK9eHS1atMCoUaNQvnx5VdybDkWef7AW6EKihdSXTItWkWMyePBgenl5MTIykmTumm43btxgREQEJ0yYwNatW1OSJC5atEi5Rg1Y+2UymbL52ahRI2UsT5gwIa/Ne2r0INMi0DbWNejW43L9+vXKWO7QoYMqlR7sjUgK8wg9S7SQ2pRp0RMjRozgqFGjeOfOHZLZE4ScEobY2FiuX79eVeNV9uNhNsfHx3PJkiWsUqUKnZ2dOXbs2Lwy75miZZkWgfbJ6SUzJSWFhw8f5tChQ+nj48OWLVsq8kqCR0Mixf5TeYH86bhRo0ZITU3F77//rtQMXrx4Ed26dQMAZVs3mYiICJhMJtStWxfu7u55bvfTQDJbsbbZbMa+ffuwceNGbNq0CQcOHAAA+Pj4oH79+hgzZgyqVq1qL5MFDyEpKQkFCxZ86DnydKLWzzUpKSn47bffcPLkSdy6dQsvvfQSOnTooOz9m5Xhw4cjOTkZs2bNymNLny33799HXFwcDhw4gHXr1mHr1q2Ii4uDj48PatSogXr16mH48OEO29wm0AeHDx/GmjVrkJqaiuLFiyMgIACNGjVStmaUSUxMxKpVqzB06FAcPXoUxYoVs5PFKsS+Oam+0KtEC6ldmRY98KSxUEsM5Xvt77//VnbwKFiwIJ2cnChJEv39/ZVzZZ/k/09KSrIRf9YCQqZF4Gikp6dz2rRpyj3p5+dHFxcXGo1GZVvGnFYOMzIy8tpU1SOSwjxAHqxTpkyhh4eHshcu+UC/bdCgQXR2ds5Ry02Lk3BO9WiXL1/m77//bieLBAKyTp069Pf357fffsuMjAwuXLiQTk5O/OKLL0g+eDAtXryYq1at0uR9mRWLxcI7d+5w586djI6OJqnO0pX/Qi21rk+LGv2UF0/mz59PFxcXtm3blkeOHOHu3bvZtGlTGo1G5dwLFy5w3bp1ip9aHKt5gejZzgNyk2gBkKNES07XagmDwaD4ZTabAUB1Mi3/hRzfe/fu2cSbolrDobBYLAAelG3s3bsXH3/8MT744AMYjUYkJCTAYrGgV69eAB7oaf7yyy9YvHgx7t69a0er8wZrmZaQkBAA2pBpsZ57AWhWukQLfsrj7ZtvvkGNGjUwceJEVKlSBW5ubjhz5gy6du2qnPvPP/+gXbt22L17t821gsdDfaNEheQk0RIYGIhhw4Zh8eLFOHXqFAYPHgzgX4kWvWAt06Il5GR3zJgxaNKkCZYuXQoAinyJwLFYu3YtChcujPr16wMAYmNjsWbNGlSqVAlBQUEAAJPJpOj7iQeOOmEW6ZLu3bsjJiZGOaYVtOCn7MOlS5dw9uxZ1K1bFy+88AIAYM+ePbh06RLee+895fxbt26hUKFCuHPnjnK94PERVcN5hL+/P7Zv344dO3Zgw4YN2L59O6ZMmQLgQaLwzz//IDAwEKVLl1auoY70ldTqp3WMzGazsgoqF+Tv27cPp0+fRrdu3XDx4kUMHz5ctb5qEXn1xGw24+7du8quQtHR0dizZw8mT56snHvq1Cncvn0bISEhcHNz09X9qVbkBj/A9l6NiopCQkICFi9ejPv372Pu3Lnw8fGxp6lPhRb9lH24ePEiXF1dkT9/fgDA1atXsXXrVhQpUgR16tRRzr9w4QLMZrOSOAqeDLFSmIeUKlUKPXr0wNKlSxEREYGpU6eiadOm8PX1xeDBg1G2bFk0b94cv/76KxISEsQDx8GRJ195VdDJySlbzJYtW4bFixejcuXK+OKLLzBu3Dh7mCr4D6pWrYrU1FTs27cPGRkZ2LFjBzIyMpRPxwBw5MgRnD59Gq+99hqAfz89CxwXJycnJU7W92bjxo1x6NAhDBkyBBEREejevTvi4uLsZeZTo2U/q1WrBoPBgNOnTwMArl+/rvgic/HiRezbtw9FihRRVvbF8/PJECuFeQitJFqCg4MRHByMjz76yEaiZcuWLdiyZYuQaFEBqamp/ylf4u/vjy5duqBLly4YPnw4rl27ZkeLBblRu3ZtFC5cGCNHjgQAbN++Hc2bN0eBAgUAPJC4mD9/Pry8vPDmm28CEDVLjsx/SZd4eHigWrVqKFWqFMqXL4+hQ4cqL3dqQg9+enh4oG3btli4cCFCQkKQmpqKO3fuYNCgQco5K1aswM6dOzF+/HgAyLZ9quAxyMOmFoEVQqJFnQj5Eu0hx2fJkiUsWLCgIqz+0UcfMTU1lYsXL1Y6HeUdTERno2OiF+kSvfgpExMTw/Lly1OSJHp6erJIkSLctWsXo6KiOHXqVHp6erJ+/fpMTEwkKZ6XT4NICh0AIdGiPoR8ifbIzMzkjz/+qOzsIUkSXVxclAfRDz/8wJSUFJLqlPd4HNTmn16kS/TipzVyInv9+nUOGDCApUqVsrk35e0ZDxw4QFIkhE+L2NHEwbAuGNYa/F8N3r1795CUlISAgAClG1cN9R8WiwUGgwE7d+5Ew4YNMX78eIwYMQLAA8mEQYMG4ezZs0pNS4sWLeDp6YkFCxbAw8PDnqY/F9QeTwBISEhARkYGAgIClN/u3r2LDRs2YNeuXTAajShRogQaNWqEatWq2c/Q54wcs8uXL6NEiRL2Nuexke2vVq0aPDw8MHfuXLzwwgv4559/0L59ezRu3Bg///wzAGDNmjV44403sGPHDqXbXC3owU95nk1LS4Obm5vNsVu3buHYsWM4evQoTp06hZSUFHTs2BH169eHn5+fnSzWFuKju4ORUweZVjCbzXB2dsaYMWOwbt06jBo1CmFhYapLJB5HvkTLSb5a4ynbduvWLYwePRppaWmYNm0aChYsCJJwd3dHp06d0KlTJ2RkZMDFxcXeJj9XmEW+pEWLFhg1ahTKly/v0HGUYRbpkgEDBjy2dImj+wjoy08A6N+/PzIyMtClSxc0bNgQXl5e8PPzw8svv4wGDRqImsHnhOg+dlDUcPPmhvXis9lsVv47J5mWiRMnAlCHv/8lX/LOO+8o58ryJb6+vop8iVrRWjzlQvsFCxZg/vz5KFKkCLy8vCBJEgwGA27cuIGVK1fi0qVLmkwIrRsNmIt8yciRI1WjgKAX6RK9+Onk5IT79+9jzZo1WLp0Kdq3b48mTZpg+PDh+Pvvv5GZmWmTEGZmZtrRWg2SR5+pBTpBrud4WP1KfHw8lyxZwipVqtDZ2Zljx47NK/OeCT///DMlSeIff/zB9PR0DhkyhJIkMSkpSTln0aJFNBqN/O2330iqt55Hy/EMDAxk27ZteeXKFeW3pUuXsm7dukqtUq9evRgfH29HK58POdUMpqSk8PDhwxw6dCh9fHzYsmVLXr9+3Q7WPRnJycn08/Njly5dSJJRUVH09vbm0KFDlXNiY2P5yiuvsFKlSvYy86nRi58kuW3bNnbq1InOzs6UJImurq58+eWXOWnSJP7zzz/2Nk+TiPVXwTNFDzItepIv0Vo85XqlPXv24OrVqxgyZAiKFSsG4EF94ccff4yMjAx0794du3fvxi+//IKOHTuidevWqvn8lhtaly/Ri3SJHvyUy26aNGmCJk2aICMjA7///jvmzJmD7du3Y/v27ZgzZw6Cg4PRrVs3hIWF2dtk7WDvrFSgfvQk06IH+RItx1O2c9KkSXRzc+Nff/1Fkrx27RoHDBjAAgUKcPHixSTJc+fO0Wg08ssvv1R1R6Oe5Ev0Il2iFz9NJlO2+XPnzp0sU6YM3dzcKEkSBwwYQFJ9HfOOikgKBc8MPcm06EG+RMvxnD9/PiVJ4rJly0iSEyZMoJOTEz/77DPlIXTo0CEWK1aM77//Pkn1PVj1Jl+iF+kSvfhpsVhs5k6TyaT48sMPP7BVq1bcs2cPb926RVK986yjIZJCOyIP8Lt37/LatWvZVl3UgHwjRkZGUpIkfvXVV8qxGTNmUJIknjt3TvmtefPm7Nixo5IwqYnbt29nq7FKTU3l77//zg8//JCDBw/mjBkzePjwYfsY+AzQYjxz0gE9efIk/f39KUkSa9SoQUmSWLNmTaampirnLF26lO7u7ly6dClJ9SVKss9Vq1ZlvXr1ePz4cZLk4cOHWapUKfbs2VM5d/Xq1ZQkiZGRkfYw9YmQx+q9e/eyHbt58ybDw8M5Y8YM9uvXj926dePq1at58+bNvDbzqdGLnzJ79uxhcnKyzW8Wi8UmSTxw4AALFy7MI0eO2MNETaOeIgMNolZJj5zQqkwLdSpfoqV4yl3jFotFiWeZMmUwYcIEfPXVVzh79ix69uyJ/v37w93dHQCQlJSElStXwmg0okOHDgDUVRdKHciXUCfSJXrwUx5vkZGRaNSoEV5//XU0atQIDRs2RKVKlRTf5DF59epVkMTx48dRpUoVVYxXtaDeUaQirAes2WyGwWCAJEk5SnpcvHgRw4cPV80A/y+ZlsmTJyvnyjItISEhikyLo/spJ+6yfMknn3wCLy8vAA8mqBs3biAyMhI1atSwab5QK1qLZ3h4OMLDwzFw4EAUKVJE+d1gMKBPnz7o06cPLly4gKJFi8LV1VU5vmjRIkRERKBv375wdnZ2+MQ3K3qQL7GWLklOTsbSpUtRrVo1NGvWDC1btkTdunVhNBqV8zMzM23+Wy3owU95vEqShBdffBEbN27E6tWrUbp0aTRs2BBNmjRB7dq1Ua5cOdy/fx+LFi3CrVu30LRpUztbrkHssTypJ7Qs6WGN1mVa9CZfopV4hoWFKfGpV68ef/75Z96/fz/bedZNFWfOnGGBAgVYv359nj17lqR665X0Il+iF+kSvfgZExPDSZMmsXr16kozX9myZVmrVi2lwaZHjx4k1XtvOioiKXzOJCcn84cffuCHH37Irl27cvr06bx48WKu5w8bNoz9+/fPQwufDadOnWJAQACrVKnCP/74gzVq1GCLFi2U4wkJCWzSpAkLFSqkmq5GebLZvXs3jUYjZ86cqRy7ffs2AwIC6OPjwx49erBMmTJKEkWqqy40J7QSz2PHjnHy5Mls2rQpXV1dKUkSnZ2d2aFDB27evDnb+XJzRmxsLGNiYvLa3GeOxWJh79696eTkxLFjx3LYsGGUJMmmNnbq1Kl0dXXl1KlTSf77b6AGsr6IpKenc+HChaxXr57yMhAUFMTWrVsrXeVqRMt+yuNt+fLlbNOmDaOjo5VjJpOJ+/bt46effsoyZcrQycmJ5cuX5+eff84LFy4o5wieHSIpfA5oWdIjJ7Qq06JH+RJSm/HMzMxkZGQkhw8fzhdffFF5kPr6+vKDDz7g0aNH7W3ic0MP8iV6kS7Rop+ync2aNWPhwoW5f/9+m9+tuXz5spIMCp4PIil8jmhZ0iMntCrTogf5kpzQQjzNZnM22xITE7l27Vr27duXQUFBim/ly5fnxIkTVbWLx3+hB/kSvUiXaMnPrGVVaWlprF27Nnv16pWj3Wocl2pFIlW8KasDIu+YsHPnTjRs2BDjx4/HiBEjAADffPMNBg0ahLNnzyodnC1atICnpycWLFgADw8Pe5r+RCQkJCAjIwMBAQHKb3fv3sWGDRuwa9cuGI1GlChRAo0aNUK1atXsZ+gjYrFYIEmSTcPEqVOn0KhRI9y8eRMvvfQSDhw4gBo1aiA8PFzpVv3999/x9ttvY968eejcubPqGhNktBZPaywWC4B/m2kA4PLly9i6dSs2bNiA7du3IyEhAQDQvXt3LFy40C52Pg3y/JOWlgY3NzebY7du3cKxY8dw9OhRnDp1CikpKejYsSPq168PPz8/O1n85OzduxchISHw9PRUfpMfZyRhMBhw8OBBtG7dGps3b0aVKlXsZepToTU/5TGanJys7AIFAEOGDEF0dDQ2btyI9PR0uLi4OFzjmi6wZ0aqReS3nE8//ZQBAQHcsWMHyQfisI0bN2blypWVczMzM9moUSM2bdo0Rw0qR0V+a7t58yYHDhzIPn36MDExMdubLPlgNVSNmM1mmkwmms1mZmRkcN68eSxTpgy9vb3Zq1cvZScIkrxz5w7ffPNNenl5qaoeS0YP8XwUjh49yunTp7NKlSqcMWMGSXXV15H/rrz07NmTYWFhXLt2rfJZWEZtPlkjj9UdO3ZQkiS+8cYb/Oabb3j48OEc/Vq7di39/f2VMg+1rDhp3U+TyURJkjh9+nSS5MiRI9m2bVsGBwfz5MmTNufmpDMqeH6IpPA5MWjQIHp6eioiouvXr6erqyu/+eYb5Zxjx46xUqVK7Ny5M0nHv5Fl5Elp8uTJdHNz42effWZzPD4+nitWrHhoQ40jsm3bNn722We8du1aruecP38+W/fq999/Tz8/Pw4ZMoSk49fXZUWr8ZSR76uEhAReu3aNx48f5/nz53M9PyMjQ/k3Ucs9aU1aWppSCypJEqtXr85hw4Zx+/bt2ZqCHLlJ6GFERkYyNDRUqaMLCgpir169uHDhQqVBKC0tjW+++SYNBgNv3LhBUn3x1Jqfsl2//vorDQYDV6xYwVu3bikNYJIksXTp0vzhhx946dKlbNc78idxrSCSwueEViQ9HobWZFr0Ll+itXhaEx4ezjp16tDd3Z1+fn5s3Lgx33//fa5YscLGXy2hB/kSvUiXaMVP2bY6deqwVq1ayu5Ie/bs4ejRo1mlShVlrqlbty4/++wzbtmyJdtqt+D5IZLC54RWJD2yomWZFj3Kl2g5nvJL1vbt21myZEl6e3tz0KBBfPvtt5UHT/78+dmwYUOOHDmSmzdvVl3nf05oVb5EL9IlWvczLi6OkiTxiy++YFpams2xe/fuMTw8nO+88w4LFSpESZLo7e3NNm3acPz48Tx27JidrNYPIil8DmhR0kNGDzItepIv0XI85YS3RYsWLFy4MDdu3EjyQfe4p6cnx44dyzfeeINGo5EFChRg4cKF2a5dO1X49ihoTb5EL9IlWvVTtn/y5Ml0dXW1qcvOzMzMtjhy+/ZtLlmyhG3atKGnpyclSeJPP/1E0vFfSNWMSAqfI1qQ9MgNLcq06Fm+RIvxJB+syLu5uXHIkCFKM1dQUBBbtmzJuLg43rp1iy1btmSBAgVYqVIl9urVi6R6XtJyQyvyJXqRLtGDn7LN8ifimjVr8pdffmFycrLNeZmZmdmaaWJjYzl9+nTeuXPH5u8SPHtEUviMuX37drZEITU1lb///js//PBDDh48mDNmzODhw4ftY+ATkFP318mTJ+nv709JklijRg3lJk9NTVXOWbp0Kd3d3bl06VKS6nrQ5pQgXrp0ifPnz2eHDh3o6+urJIhyLY9a0EM85dgtWbKEAQEBymrn0aNHKUkSJ0+erJx77do1BgUF2axcOGqS9F/s2bMn20PWYrHYJIkHDhxg4cKFeeTIEXuY+MjI9lrXYZMPlB3kUpz79++rPkHQg5+y7ceOHaMkSQwICFDmT0mS2L59e27YsCHbdRkZGQ49z2gRkRQ+A/Qi6aEnmZb/QgvyJVqOp3xPzpo1i97e3ty5cyfJByug7u7uXL9+vXLuxYsXWbJkSU6aNMkutj4tWpYv0Yt0idb9lBO7/v37s3jx4ty1axcjIyPZp08fFi5cWEkOvby82L9/f0VMXUaNPqsVkRQ+A7Qs6aE3mRaty5doNZ7yy9f58+dtVly2bNnCBg0aKCueI0aMYL58+XjmzBnlnIiICBYvXpxffvmlzd+lNrQkX6IX6RK9+Cnj4+PDsLAwm9XsO3fu8LfffuNrr73GfPnyKQlimTJlOG7cOFU+N9WMSAqfIVqU9NCjTIuW5Uu0Gk/ZngoVKrBRo0ZKwpOZmcnjx48r/ixbtoySJHHQoEGMiYlhQkICu3btSkmSeOLECZu/S61oQb5EL9IlevBTTny3bNlCg8HABQsWkKTylcKa2NhYzpgxw+aZKUkSR48enddm6xaRFD4lWpb0IPUj06IX+RItxzM+Pp4Gg4Gff/65zUpmenq6In0RExOjNH69+OKLDAwMpJOTE8PCwkiq4560RsvyJXqRLtG6n/I99fLLL9PHx0dRb5B/t1gsNo1QMocOHeJnn31GPz8/btu2jaRjj1etIJLCp0TLkh7WaF2mRW/yJVqKpxy7r776iu7u7tyyZYty7N69e5w5cybHjBmjxOrixYscMmQIa9WqxZIlS3Ls2LHKJypHXTnLDS3Kl+hFukQvfsrs37+fS5cuzZb4WiPXOVujBt+0hEgKnxFalfTQk0yLHuRLtBhP+T4qW7YsW7RoYWPvkSNHWLx4cbZr147kv5/FU1NTmZKSorokkNS+fIlepEv04ufWrVuzNY48CtYJoiP7pzVEUvgE6EHSIye0KtOiV/kSLcRTvg/lWM2YMUORYCHJBQsWUJIk5dN4Tt24anrgaF2+RC/SJXrxkyRbtWrFkiVL2mytqNbxqQcMEDw2BoMBkiTBYrHAbDbDYrGgTJkymDBhAoKCgnD27Fn07NkT3333Hdzd3QEASUlJWLlyJYxGIzp06AAAcHJysqcbj43BYIDBYDtkSpQogd69e2PFihWIiIjAtGnTULlyZYSGhgIATCaTPUx9LCRJAgAkJiYiPT0dJUuWBABs2LAB+fPnR3BwsHJuZmYmTCYTtm/frvyW9d9ELWghnhaLBQCwYMECeHt7o06dOpAkCZIkITExEZs3b4a3tzdeffVVAICzs3O2v0OOvxowGAwwm83w8vLC119/DQD47LPPcPr0aVy8eBGnTp2Cq6ur4pPFYgFJe5r8WMjxnDVrFooVK4aVK1dix44d6N27N/z9/bF27Vq0adMG3t7eGDBgAA4ePAgAMBqNcHJyUo2/evETAL788ktkZmaif//++OeffwCo657THXZOSlWHViU9HobWZFr0Ll+itXiSpJOTEyVJYseOHblw4ULGx8fz0KFDLFq0KD/88EOSzLHLWk3oSb5EL9IlevFz165dLFWqFAMCAjh//nzevn2b5L9NJgLHQSSFj4lWJT3+Cy3JtAj5Em3FMyUlhR988IEityJJEoODg9mgQQNKkqQIV8vk9NlcDWhdvkQv0iV68VNGLudYvXo1S5UqRVdXV/bt25enTp3K9Rrrfwc13qtqRiSFj4mWJT2yomWZFj3Kl2g5nuSD5pGNGzfyrbfeoo+Pj+JTgwYN+NlnnzEyMjJbR6fa0LJ8iV6kS/TiJ5k9oYuNjWXPnj2Ve7NVq1ZcuXIlk5KSaDKZbGrwrVHDLkpaQSSFT4iWJD1yQ4syLUK+RFvxJHNu/IqPj+eiRYvYunVrGo1GSpLEggULsmXLlpwxY4bq7k89yZfoRbpEL36StNny9cqVK/z6669tnptubm5s3Lgx+/Tpw379+vHDDz/kF198waZNm3LQoEG8efOmnT3QDyIpfEy0KOnxMLQm06I3+ZKsaCmeW7ZseSSpi5iYGE6dOpUvvfSScm86OzsrXeZqQA/yJXqRLtGLn1OmTFHm0JzsvXv3LletWsX33nuPdevWZUhICAsVKkRnZ2cGBASwSJEibNKkCWfNmqWJuVctiKTwKdCCpEduaFGmRW/yJdZoMZ6tWrViqVKlbD6LPiw+8g4fQ4cOpa+vr1IX6ugx1Yt8iV6kS/TgZ0REBJ2dnbly5cpsx3JbWImJieGtW7d44cIFnjt3jmazOdfPyYLnhzq1NBwELUh65IYWZVr0Jl9ijRbj+eWXXyIjIwPvvvvuI0ldODk5oWbNmpg0aRIuX76s+OzoMdWLfIlepEu07qfFYkG9evXQtWtX9OzZE1OnTkVmZqZyTJIkZT4xm80gCS8vL5QrVw6+vr4IDAxEUFAQDAaDIukmyEPsnZWqES1KeuhJpkUP8iV6iaeepC70IF+il3jqwc8rV66wcePGdHV15bBhw7IJrlt/pRE4DiIpfEK0JOlB6kemRW/yJVqO55NIXVh3dTqqX9boSb5EL9IlevGTfDBO+/Xrp9TYz549W5FSssa6VEcrSbFaEUnhY6B1SQ89ybToQb5Ey/HUi9SFXuRL9BJPvfhJ/jverly5wqFDh9LZ2ZnOzs5s0qQJp06dyq1bt+a6gKL2LzVqRiJVUGziIFgsFhgMBrRs2RKHDx/Gzz//jBYtWmDixIn46quvMHToUBw+fBjr16+Hm5sb3NzcULt2baxevdqha0ZkvyZMmIDx48djzZo1aNq0KQAgLS0NCxYswK1bt/DFF19AkiRcunQJ33//PXbs2IHr16+jb9++eOutt1CyZEnl73JU5JoW63jcuHEDW7ZswZIlS7B582aYTCYUKFAAdevWRfPmzdGkSRNUrlzZjlY/HnqKJx+82MJgMODq1atYvnw5fv31Vxw+fBgAkC9fPtSqVQtBQUFwcXGBi4sLChYsiD179qBy5coYOXIk/Pz87OzFfxMVFYXz58+jXbt2yJcvX47nyLWD1ttnknTouScreomnXvy05tixY/j++++xZs0a3Lx5E4UKFUKJEiXg5+eHF154AUWKFMGNGzeQnp6Ou3fvonnz5ujUqZO9zdYf9spG1YqWJD1k9CDTokf5Eq3GU09SF3qQL9FLPPXiZ1asNQqTk5MZGRnJ6dOn8/XXX2dAQACdnZ3p7u5OV1dXent7s0KFCnzjjTd44cIF+xquU0RS+IhoUdKD1I9Mi97kS7QaT71JXWhdvkQv8dSLn4+KteD66dOnuWfPHt6+fZtnzpxx6AUUPSCSwkdEnohnzZpFb29vpSFhwoQJdHd35/r165VzL168yJIlS3LSpEl2sfVxkG/AQYMG0cfHxyaRTUhIYFhYGH18fOxl3jPjwIEDLFKkCOvUqcPDhw8/1rXyirAa0HI8zWYzMzIy+NZbb9HDw8Nm5SXrriY51dmpkacZt46OXuKpFz+fFXr3396IpDAX9CLpIaMHmRY9yEDIaDmeepO60Pq41Us89eKnQN2IpDAX9CDpIaMHmRY9yJfI6CGeepG60It8iV7iqRc/BepFJIUPQcuSHjmhVZkWPclAWKPVeOpF6kIv41Yv8dSLnwJ1IyRpckBPkh6APmRaAP3IQOglnjJal7rQy7iV0Xo8ZfTip0BdiKQwB/g/ba9y5cqhbNmyWLBgAQICAgAAR48eRevWrREaGoo1a9YgMzMTRqMRd+/eBUnkz5/f4ZNAma1bt8Lb21vZlzk3zpw5g3Xr1mHp0qXKvqpOTk5YuHAhwsLC8sLUJ2bq1Kn46KOPYDQac9Rsu3fvHjZt2oRNmzbh2LFjSEpKwo0bN5CYmAg/Pz9IkoTg4GB07NgR7733nkPHVg/xtMY6WUpJScGRI0cQFRWFyMhI7NmzB7du3YKrqytMJhPy588Pf39/hISEYNq0aQgMDLS3+Q9FT+NWRsvxtEYvfgpUSl4vTTo6Wpf0sEbrMi16k4HQejwfBS1IXeht3D4MLcTzUdCLnwLHRySFWdCypEdWtCzTokcZCC3H81mghhjrcdw+KXrxXS9+ChwD8fk4F5ydnWGxWNChQwe89tpraN68Oa5evYo2bdqgY8eO+Oabb5Ceng5XV1d7m/pU7N69G127dkV6ejq++uortGvXDj4+PiAJi8Vis2WWGrl69Sq6d++OPXv24OOPP8bIkSNRoEAB5bg8/NW0FdjD0Ho89YLexq1AIHAQ7JmROip6kPQg9SPTohcZCL3EUy/oZdwKBALHQawUPoS7d+8iMjISS5YswR9//IHExEQAQP369dGwYUO0aNECtWrVgtFotLOlj0/WruiLFy/i//7v/7Bw4UIAQMuWLfH222+jadOmcHd3x/379+Hu7p7t7zGZTHB2ds4zux8Xs9kMJycnXL16Fd9++y2mT58OAGjYsCFatWqFatWqoWLFiihWrFi2a9W0EqyXeOoFvYxbgUDgWIikMAf0JOlBIXehKRkIvcVTL2h93AoEAsdAJIVW6EXSQ8hdaEsGQo/x1AtaHrcCgcDxEEmhFa1bt8bx48fxxx9/oFKlSgCQ40NWxmw24+DBg1i5ciXmzZuHyMhIBAcHP/Qae7N9+3a8+uqr+P333/HGG2/YHLNYLABgkxTcuXMHN2/ehI+PD1JSUmCxWBAYGIi0tLQcPz+qCZPJBJIwGo2IiYlBQkICypcvj4SEBJQuXVoVTRkinvpDC+NWIBA4JiIptOLgwYNo27YtAgMDMWvWLFSrVu2Rr01LS4Obm9vzM+4ZYLFYYDab8c4772DVqlX4v//7P2WFKesnc7PZDIPB4LDJ7fPGkRN7GRFPQVbUMG4FAoHjIpLCLOhB0kPIXWgLEU+BQCAQPAtEUmiF/E+xdu1afPzxx4iLi8Nbb72FwYMHo0KFCjleY70Co4Z9jmXMZjPef/99zJkzB+XKlcMnn3yCV199FUFBQTbnWXejyh2RAsdDxFMgEAgET4tICv+HniQ9hNyFthDxFAgEAsGzQCSFWdCjpIeQu9AWIp4CgUAgeBJEUgj9SnoIuQttIeIpEAgEgqdB90mhkPSwRchdaAsRT4FAIBA8KrpOCoWkx+Mh5C60hYinQCAQCKzRdVIoIyQ9BAKBQCAQ6B2RFP4PIekhEAgEAoFAz4ikEELSQyAQCAQCgUAkhTkgJD0EAoFAIBDoDZEUWiEkPQQCgUAgEOgVkRT+B0LSQyAQCAQCgR4QSeFTICQ9BAKBQCAQaAV1bL3hoIiEUCAQCAQCgVYQSaFAIBAIBAKBQCSFAoFAIBAIBAKRFAoEAoFAIBAIIJJCgUAgEAgEAgFEUigQCAQCgUAggEgKBQKBQCAQCAQQSaFAIBAIBAKBACIpFAgEAoFAIBBAJIUCgUAgEAgEAoikUCAQCAQCgUAA4P8B5K7mPDAsbqEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "execution_count": 17, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -86,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -131,12 +131,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can create a more realistic sudoku game using numbers instead of booleans, but the resources required will scale exponentially. In the following code snippets, we recreate `sudoku_check` using `Qint2` and a 4x4 matrix. The sum of each column and row must be equal to 6 (3+2+1+0). As we can see, the resulting circuit of the checker requires more than 100 qubits, way above our simulation capabilities." + "We can create a more realistic sudoku game using numbers instead of booleans, but the resources required will scale exponentially. In the following code snippets, we recreate `sudoku_check` using `Qint[2]` and a 4x4 matrix. The sum of each column and row must be equal to 6 (3+2+1+0). As we can see, the resulting circuit of the checker requires more than 100 qubits, way above our simulation capabilities." ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -148,11 +148,11 @@ } ], "source": [ - "from qlasskit import Qint2, Qint4\n", + "from qlasskit import Qint, Qint4\n", "\n", "\n", "@qlassf\n", - "def sudoku_check(m: Qmatrix[Qint2, 4, 4]) -> bool:\n", + "def sudoku_check(m: Qmatrix[Qint[2], 4, 4]) -> bool:\n", " res = True\n", "\n", " # Constraints\n", diff --git a/docs/source/example_simon.ipynb b/docs/source/example_simon.ipynb index 05728d9b..580fe040 100644 --- a/docs/source/example_simon.ipynb +++ b/docs/source/example_simon.ipynb @@ -9,21 +9,21 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "from qlasskit import qlassf, Qint4\n", + "from qlasskit import qlassf, Qint\n", "\n", "\n", "@qlassf\n", - "def f(a: Qint4) -> Qint4:\n", + "def f(a: Qint[4]) -> Qint[4]:\n", " return (a >> 3) + 1" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -33,7 +33,7 @@ "
" ] }, - "execution_count": 4, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -55,7 +55,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -65,7 +65,7 @@ "
" ] }, - "execution_count": 6, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -77,17 +77,17 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAGwCAYAAADVBnNAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAq7klEQVR4nO3de3BUZYL38V93J4QQcoEkDJeE64aLQoYw4ggoEG4RmGUHB0FUIIgwCyIyOIqgGFABIzLKgDuDMgRc1wUcZtRlQTJCQooAYqEBZEuMCiQYcEmA3EDoJP3+wZte2yQk6Vy68/D9VFFFP3369HMoTtc3p885sTgcDocAAABgFKunJwAAAID6R+QBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAA/l4egJNXVlZmXJychQYGCiLxeLp6QAAAMM5HA4VFhaqffv2slqrPl5H5NVRTk6OIiMjPT0NAABwi8nOzlZERESVzxN5dRQYGCjpxj90UFCQh2cDAABMV1BQoMjISGeDVIXIq6Pyr2iDgoKIPAAA0GiqO02MCy8AAAAMROQBAAAYiMgDAAAwEJEHAIChli5dKovF4vKnZ8+ezufffPNNDR06VEFBQbJYLLp8+XKFdYwbN04dO3ZU8+bN1a5dO02ZMkU5OTmNuBVwF5GHJq0+PsCWL1+ugQMHqkWLFgoJCWm8yQNAI7j99tt17tw555/9+/c7n7ty5YruvfdeLV68uMrXx8bGatu2bTp58qS2b9+ub775RhMmTGiMqaOOuLoWTd7tt9+ujz/+2PnYx+f//luXf4Dde++9WrRoUaWvv379uu6//34NGDBAf/nLXxp8vgDQmHx8fNS2bdtKn5s/f74kKTU1tcrX/+53v3P+vVOnTnrmmWf061//Wna7Xb6+vvU5VdQzIg9NXl0/wJYtWyZJ2rRpUz3PDAA8LzMzU+3bt1fz5s01YMAArVy5Uh07dnRrXRcvXtR//Md/aODAgQReE8DXtWjyyj/AunbtqoceekhZWVmenhIAeIVf/vKX2rRpkz766CP96U9/0qlTp3TPPfeosLCwVutZuHChAgICFBoaqqysLH3wwQcNNGPUJyIPTVp9fYABgIlGjx6t+++/X9HR0YqLi9POnTt1+fJlbdu2rVbreeqpp/T5558rOTlZNptNU6dOlcPhaKBZo77wdS2atNGjRzv/Hh0drV/+8pfq1KmTtm3bphkzZnhwZgDgfUJCQtS9e3d9/fXXtXpdWFiYwsLC1L17d/Xq1UuRkZE6dOiQBgwY0EAzRX3gSB6M4u4HGADcCoqKivTNN9+oXbt2bq+jrKxMknTt2rX6mhYaCJEHo9THBxgAmOL3v/+99u3bp9OnT+vAgQMaP368bDabJk+eLEk6f/68MjIynD8YHz9+XBkZGbp48aIk6ZNPPtG6deuUkZGhM2fOaO/evZo8ebK6devGUbwmgMhDk1bXDzBJysrKUkZGhrKyslRaWqqMjAxlZGSoqKjII9sEAPXl7Nmzmjx5snr06KGJEycqNDRUhw4dUnh4uCTpz3/+s2JiYjRz5kxJ0uDBgxUTE6MPP/xQktSiRQv97W9/0/Dhw9WjRw/NmDFD0dHR2rdvn/z8/Dy2XagZi4MzJ+ukoKBAwcHBys/PV1BQkKenc8t54IEHlJaWpry8PIWHh+vuu+/W8uXL1a1bN0k3bpZcfouUH0tKSlJ8fLwkKT4+Xps3b66wTEpKioYOHdqQ0wcAoNZq2h5EXh0ReQAAoDHVtD34uhYAAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEA+np4AAAB1NfN1T88A+D9vzff0DG7gSB4AAICBOJLXRPBTKryJt/yUCgCoGkfyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABioSUReYmKiLBaLLBaLDh065PLc0qVLnc9V9uf06dOVrnP37t0aMmSIAgMDFRQUpNjYWO3Zs6cRtgYAAKDh+Xh6AtX54osvlJCQoICAABUXF1e53LRp09S5c+cK4yEhIRXG3nnnHU2ZMkXh4eGKj4+XJG3dulUjR47Utm3bNGHChHqaPQAAgGd4deTZ7XZNmzZNffv2VVRUlN55550ql42Pj9fQoUOrXeelS5f0+OOPKywsTJ999pkiIiIkSQsXLlRMTIxmz56tuLg4BQYG1tdmAAAANDqv/rp2+fLlOnHihDZu3CibzVYv63zvvfd0+fJlPf74487Ak6SIiAjNnTtXubm5+vvf/14v7wUAAOApXht5n332mZYvX66EhATddttt1S6flpamxMRErVq1Su+//76KiooqXS41NVWSNGrUqArPxcXFSZL27dvn/sQBAAC8gFd+XXvt2jVNnTpVffv21dNPP12j1yQkJLg8DgkJ0Zo1azR16lSX8czMTElSVFRUhXWUj5UvU9Xcrl275nxcUFAg6cZXy3a7XZJktVpls9lUWlqqsrIy57Ll4yUlJXI4HM5xm80mq9Va5fiN9fredPuBxlT+f72cj8+Nj5KSkhKXcV9fX5WVlam0tNQ5ZrFY5OPjU+V4VftN/e5P1c+dbWpa2yRZBHiLxtifasIrI+/5559XZmamjhw5Uu3XtD//+c+1ceNGDR06VO3atdP58+e1Y8cOPf/884qPj1dISIjGjRvnXD4/P1+SFBwcXGFdQUFBLstUZuXKlVq2bFmF8eTkZLVo0UKS1LFjR8XExOjYsWPKyspyLtOjRw/17NlThw8f1oULF5zjffv2VadOnZSWlqbCwkLn+IABA9SmTRslJydLGnvTfwegMe3cudPl8ZgxY3T16lWlpKQ4x3x8fDR27Fjl5ubq4MGDzvHAwEANGzZM2dnZysjIcI6Hh4dr4MCByszM1MmTJ53jDbE//fgDMjY2Vv7+/mxTE98mKUiAt2jo/enIkSM1mofF8eMfobzAwYMHdffdd2vp0qVasmSJczw+Pl6bN2/WwYMHddddd1W7nj179mjkyJHq3bu3jh075hzv3r27MjMzZbfbf/QT4A12u13NmjVTdHS0jh49Wul6KzuSFxkZqdzcXGckNsRPtHPe4EgevMe/PcaRPLbJu7Zp1hqO5MF7rJ/XsPvTxYsXFRoaqvz8fGd7VMarjuSVlJRo2rRpio6O1jPPPFOndQ0fPlzdunXT8ePHVVBQ4PxHKD+Cl5+fr9DQUJfXlH/1WtlRvnJ+fn7y8/OrMO7r6ytfX9cQs9lslR6J/GlcVjf+0/UCnlbV/8nKxq1Wq6zWiqf/VjVe1X7T0PsT29S0twnwJp7anyq8X42WaiRFRUXKzMxURkaGmjVr5nJT482bN0u6cSjfYrHo/fffr3Z9YWFhkqQrV644x2523t3NztcDAABoSrzqSJ6fn59mzJhR6XNpaWnKzMzUuHHjFB4eXumNj3+suLhYJ06cUEBAgDP2JGnIkCH6z//8TyUnJ1f42nf37t3OZQAAAJoyr4o8f39/bdiwodLn4uPjlZmZqUWLFjnjrLCwUOfOnVP37t1dlr169apmzpypwsJCTZ8+3eWw5sSJE7Vw4UKtXbtWjzzyiPNeeWfPntW6desUFham8ePHN9AWAgAANA6virzaysvLU8+ePdW/f3/16tVLbdu21ffff6+PP/5YZ8+eVZ8+fbRq1SqX17Rq1Urr1q3TlClT1K9fP02aNEnSjV9rlpeXp61bt/LbLgAAQJPXpCOvdevWmjNnjg4fPqydO3fq0qVL8vf3V69evTRv3jzNnTtX/v7+FV738MMPKywsTCtWrFBSUpIsFot+8Ytf6LnnntOIESM8sCUAAAD1y+tuodLUFBQUKDg4uNrLmOtq5usNtmqg1t6a7+kZAK74jIQ3aejPyJq2h1ddXQsAAID6QeQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABnI78tLS0pSVlXXTZbKzs5WWlubuWwAAAMBNbkdebGysNm3adNNl3n77bcXGxrr7FgAAAHCT25HncDiqXaasrEwWi8XdtwAAAICbGvScvMzMTAUHBzfkWwAAAKASPrVZ+JFHHnF5/P777+v06dMVlistLXWejzd69Og6TRAAAAC1V6vI+/E5eBaLRRkZGcrIyKh0WYvFov79++u1116ry/wAAADghlpF3qlTpyTdOB+va9eumj9/vp544okKy9lsNrVq1UoBAQH1M0sAAADUSq0ir1OnTs6/JyUlKSYmxmUMAAAA3sHtCy+mTZum6Ojo+pyLJOmHH37QggULNHjwYLVv317NmzdX27ZtNWjQICUlJclut1d4TUFBgRYsWKBOnTrJz89PnTt31lNPPaWioqJK36OsrExr165Vnz595O/vr/DwcE2ePFnffvttvW8PAACAJ9TqSF5lDh8+rE8//VSXL19WaWlphectFouWLFlS4/UVFRXpT3/6k+68806NHTtW4eHhunTpknbt2qVHHnlEW7Zs0a5du2S13ujT4uJiDRkyRBkZGRo1apQmT56szz//XK+++qr27duntLQ0NW/e3OU9fvvb32rDhg26/fbbNW/ePOXk5Gjbtm1KTk7WoUOHFBUVVbd/FAAAAA9zO/IuXryoX//610pPT7/pPfNqG3mtW7dWfn6+mjVr5jJeUlKikSNHKjk5Wbt27dLYsWMlSa+88ooyMjK0cOFCvfzyy87ln3nmGSUmJuq1117TokWLnOMpKSnasGGDBg8erH/84x/O93nwwQc1ZswYzZ07V7t3767xfAEAALyR25G3YMEC7d+/X0OHDtW0adMUEREhH586HxiU1WqtEHiS5OPjo/Hjxys1NVVff/21pBsXgGzYsEEtW7asEJJLlizRG2+8oQ0bNrhE3ltvvSVJevHFF13eZ/To0Ro6dKiSk5OVlZWljh071nlbAAAAPMXtKtuxY4fuvPNO7dmzp1F+q0VZWZk++ugjSVLv3r0l3bjZck5OjuLi4ipcyRsQEKBBgwZp9+7dys7OVmRkpCQpNTXV+dxPxcXFKTU1Vfv27dOUKVMqnce1a9d07do15+OCggJJkt1ud54vaLVaZbPZVFpaqrKyMuey5eMlJSUuRz9tNpusVmuV4zfW61vjfyugof303NjyH/BKSkpcxn19fVVWVuZyKofFYpGPj0+V41XtN/W7P1U/d7apaW2TxG9XgvdojP2pJtyOvKtXr2rw4MENFnjXr1/XihUr5HA4lJeXpz179ujLL7/U9OnTNXz4cEk3Ik9SlefQRUVFaffu3crMzFRkZKSKi4t17tw59e7dWzabrdLlf7zeyqxcuVLLli2rMJ6cnKwWLVpIkjp27KiYmBgdO3ZMWVlZzmV69Oihnj176vDhw7pw4YJzvG/fvurUqZPS0tJUWFjoHB8wYIDatGmj5ORkSWOrnBPQ2Hbu3OnyeMyYMbp69apSUlKcYz4+Pho7dqxyc3N18OBB53hgYKCGDRum7Oxsl/tshoeHa+DAgcrMzNTJkyed4w2xP/34AzI2Nlb+/v5sUxPfJilIgLdo6P3pyJEjNZqHxVGTX0JbiUGDBqlDhw7atm2bOy+vVlFRkQIDA52PLRaLnnzySa1cudL5k9u7776rhx56SM8++6xeeumlCut49tlntWLFCv3tb3/T+PHjlZOTow4dOmjQoEHav39/heX/8Y9/aNSoUZo3b57WrFlT6bwqO5IXGRmp3NxcBQXd+JBpiJ9o57zBkTx4j397jCN5bJN3bdOsNRzJg/dYP69h96eLFy8qNDRU+fn5zvaojNtH8hISEjRu3DgdOnRId911l7urqVLLli3lcDhUVlamnJwc/dd//ZcWL16sgwcPaufOnTfdqIbk5+cnPz+/CuO+vr7y9XUNMZvNVukRw6rOXaxq/KfrBTytqv+TlY1brVbn1fA1Ga9qv2no/YltatrbBHgTT+1PFZar0VKVOH/+vMaOHashQ4booYceUr9+/aoMr6lTp7r7NrJarYqIiNDs2bMVFhamiRMnavny5UpMTFRwcLAkKT8/v9LXlp8vV75cbZcHAABoqtyOvPj4eFksFjkcDm3atEmbNm2qcH6ew+GQxWKpU+T92KhRoyTduHhCqv4cup+esxcQEKB27drp1KlTKi0trVDH1Z3jBwAA0FS4HXlJSUn1OY8aycnJkfR/h+ujoqLUvn17paenq7i42OUK2+LiYqWnp6tLly7OK2slaciQIdqyZYvS09M1ePBgl/WX3x/vp+MAAABNjduRN23atPqch9P//M//qHPnzs4rVctduXJFCxYskHTjairpxgmLjz76qF544QW9+OKLLjdDfvHFF1VUVKTFixe7rGfWrFnasmWLlixZ4nIz5F27dik1NVWjRo3i9/ECAIAmr+53L65n27Zt0x/+8Afdfffd6ty5s4KCgvTdd99p165dysvL0z333KPf/e53zuWffvppffDBB0pMTNTnn3+ufv366bPPPlNycrL69++v+fPnu6w/NjZWjz76qDZs2KB+/fpp7NixOnfunLZu3arWrVtr7dq1jbzFAAAA9c/tyPvxfVuqU5vfHvGrX/1KOTk5OnDggA4ePKiioiIFBwcrOjpaDzzwgB555BGXq0oCAgK0b98+LV26VNu3b1dKSoratWunJ598UgkJCfL396/wHuvXr1efPn305ptvas2aNWrZsqXGjx+v5cuXq1u3bjWeKwAAgLdy+z55Vqu1RjdCtlgsNb4zc1NUUFCg4ODgau9VU1czX2+wVQO19tZ8T88AcMVnJLxJQ39G1rQ93D6SN3Xq1EojLz8/X0ePHtWpU6c0ZMgQde7c2d23AAAAgJvcjrxNmzZV+ZzD4dDq1av1yiuv6C9/+Yu7bwEAAAA3Vbztcj2wWCz6/e9/r9tvv11PPfVUQ7wFAAAAbqJBIq/cHXfcob179zbkWwAAAKASDRp533zzjdEXXQAAAHirer9PXllZmb777jtt2rRJH3zwgYYPH17fbwEAAIBquB151d1CxeFwqFWrVlq9erW7bwEAAAA3uR15gwcPrjTyrFarWrVqpf79+2v69Olq06ZNnSYIAACA2nM78lJTU+txGgAAAKhPDXrhBQAAADyjXi68SE9PV0ZGhgoKChQUFKS+fftq0KBB9bFqAAAAuKFOkXfgwAFNnz5dX3/9taQbF1uUn6cXFRWlpKQkDRgwoO6zBAAAQK24HXknTpzQqFGjdOXKFY0cOVKxsbFq166dzp8/r5SUFCUnJysuLk6HDh3SbbfdVp9zBgAAQDXcjrwXXnhB169f186dO3Xvvfe6PLdw4UJ99NFHGjdunF544QVt2bKlzhMFAABAzbl94UVqaqomTJhQIfDK3XvvvZowYYJSUlLcnhwAAADc43bk5efnq0uXLjddpkuXLsrPz3f3LQAAAOAmtyOvffv2OnTo0E2X+eSTT9S+fXt33wIAAABucjvyxo0bp9TUVC1ZskQ//PCDy3M//PCDEhISlJKSon/5l3+p8yQBAABQO25feLFkyRLt2LFDK1as0Pr163XnnXfqZz/7mb7//nt9+umnunDhgrp27aolS5bU53wBAABQA25HXmhoqA4dOqSnn35aW7Zs0c6dO53PNW/eXNOnT1diYqJat25dLxMFAABAzdXpZshhYWHauHGj1q9fry+//NL5Gy969uwpX1/f+pojAAAAaqnWkbd8+XIVFxdr2bJlzpDz9fVVnz59nMtcv35dzz77rAIDA/XMM8/U32wBAABQI7W68OLjjz/W888/r9DQ0JseqWvWrJlCQ0P17LPPcp88AAAAD6hV5L399ttq1aqV5s6dW+2yjz32mFq3bq2kpCS3JwcAAAD31CryDhw4oBEjRsjPz6/aZf38/DRixAilp6e7PTkAAAC4p1aRl5OTo65du9Z4+S5duujcuXO1nhQAAADqplaRZ7VaZbfba7y83W6X1er2/ZYBAADgploVWPv27fXFF1/UePkvvvhCHTp0qPWkAAAAUDe1irx77rlHe/fu1enTp6td9vTp09q7d68GDx7s7twAAADgplpF3mOPPSa73a4JEyYoNze3yuXy8vJ0//33q6SkRLNnz67zJAEAAFA7tboZcr9+/TR//ny9/vrruu222/Sv//qvio2NVUREhCTpu+++0549e/Tmm2/qwoULWrBggfr169cgEwcAAEDVav0bL1avXq3mzZtr1apVWr58uZYvX+7yvMPhkM1m06JFi/TSSy/V20QBAABQc7WOPIvFohUrVmjGjBlKSkrSgQMHdP78eUlS27ZtNWjQIMXHx6tbt271PlkAAADUTK0jr1y3bt04UgcAAOCluIkdAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGMgrI++dd97Rb3/7W91xxx3y8/OTxWLRpk2bKl126dKlslgsVf45ffp0pa/bvXu3hgwZosDAQAUFBSk2NlZ79uxpuI0CAABoRD6enkBlnnvuOZ05c0ZhYWFq166dzpw5U+1rpk2bps6dO1cYDwkJqTD2zjvvaMqUKQoPD1d8fLwkaevWrRo5cqS2bdumCRMm1HELAAAAPMsrI2/Dhg2KiopSp06d9PLLL2vRokXVviY+Pl5Dhw6tdrlLly7p8ccfV1hYmD777DNFRERIkhYuXKiYmBjNnj1bcXFxCgwMrOtmAAAAeIxXfl07YsQIderUqUHW/d577+ny5ct6/PHHnYEnSREREZo7d65yc3P197//vUHeGwAAoLF4ZeS5Iy0tTYmJiVq1apXef/99FRUVVbpcamqqJGnUqFEVnouLi5Mk7du3r8HmCQAA0Bi88utadyQkJLg8DgkJ0Zo1azR16lSX8czMTElSVFRUhXWUj5UvU5lr167p2rVrzscFBQWSJLvdLrvdLkmyWq2y2WwqLS1VWVmZc9ny8ZKSEjkcDue4zWaT1WqtcvzGen1vuv1AYyr/v17Ox+fGR0lJSYnLuK+vr8rKylRaWuocs1gs8vHxqXK8qv2mfven6ufONjWtbZIsArxFY+xPNdHkI+/nP/+5Nm7cqKFDh6pdu3Y6f/68duzYoeeff17x8fEKCQnRuHHjnMvn5+dLkoKDgyusKygoyGWZyqxcuVLLli2rMJ6cnKwWLVpIkjp27KiYmBgdO3ZMWVlZzmV69Oihnj176vDhw7pw4YJzvG/fvurUqZPS0tJUWFjoHB8wYIDatGmj5ORkSWNr+C8CNLydO3e6PB4zZoyuXr2qlJQU55iPj4/Gjh2r3NxcHTx40DkeGBioYcOGKTs7WxkZGc7x8PBwDRw4UJmZmTp58qRzvCH2px9/QMbGxsrf359tauLbJAUJ8BYNvT8dOXKkRvOwOH78I5QXKr/wIikpyXklbE3s2bNHI0eOVO/evXXs2DHnePfu3ZWZmSm73f6jnwBvsNvtatasmaKjo3X06NFK11vZkbzIyEjl5uY6I7EhfqKd8wZH8uA9/u0xjuSxTd61TbPWcCQP3mP9vIbdny5evKjQ0FDl5+c726MyTf5IXlWGDx+ubt266fjx4yooKHD+I5QfwcvPz1doaKjLa8q/eq3sKF85Pz8/+fn5VRj39fWVr69riNlsNtlstgrL/jQuqxv/6XoBT6vq/2Rl41arVVZrxdN/qxqvar9p6P2JbWra2wR4E0/tTxXer0ZLNVFhYWGSpCtXrjjHbnbe3c3O1wMAAGhKjI284uJinThxQgEBAc7Yk6QhQ4ZI0v8/z83V7t27XZYBAABoqpp05BUWFuqrr76qMH716lXNnDlThYWFmjhxosthzYkTJyo4OFhr167V2bNnneNnz57VunXrFBYWpvHjxzfK/AEAABqKV56Tt2HDBu3fv1+SdPz4cedY+T3u7r77bj366KPKy8tTz5491b9/f/Xq1Utt27bV999/r48//lhnz55Vnz59tGrVKpd1t2rVSuvWrdOUKVPUr18/TZo0SdKNX2uWl5enrVu38tsuAABAk+eVkbd//35t3rzZZSw9PV3p6enOx48++qhat26tOXPm6PDhw9q5c6cuXbokf39/9erVS/PmzdPcuXPl7+9fYf0PP/ywwsLCtGLFCiUlJclisegXv/iFnnvuOY0YMaLBtw8AAKChef0tVLxdQUGBgoODq72Mua5mvt5gqwZq7a35np4B4IrPSHiThv6MrGl7NOlz8gAAAFA5Ig8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABiIyAMAADAQkQcAAGAgIg8AAMBARB4AAICBiDwAAAADEXkAAAAGIvIAAAAMROQBAAAYiMgDAAAwEJEHAABgICIPAADAQEQeAACAgYg8AAAAAxF5AAAABiLyAAAADETkAQAAGOiWjrxPP/1UY8aMUUhIiAICAnTXXXdp27Ztnp4WAABAnfl4egKekpKSori4ODVv3lwPPPCAAgMDtX37dk2aNEnZ2dl68sknPT1FAAAAt92SR/JKSko0c+ZMWa1WpaWl6c0339Tq1at19OhRde/eXYsXL9aZM2c8PU0AAAC33ZKRt3fvXn3zzTd68MEH1bdvX+d4cHCwFi9erOvXr2vz5s2emyAAAEAd3ZKRl5qaKkkaNWpUhefi4uIkSfv27WvMKQEAANSrW/KcvMzMTElSVFRUhefatm2rli1bOpf5qWvXrunatWvOx/n5+ZKkixcvym63S5KsVqtsNptKS0tVVlbmXLZ8vKSkRA6Hwzlus9lktVqrHLfb7br+g28dthioX3l5dpfHPj43PkpKSkpcxn19fVVWVqbS0lLnmMVikY+PT5XjVe039bk/1WTubFPT2qbrP1gEeIvLlxt2f7p48aIkuew7lbklI688zIKDgyt9PigoyLnMT61cuVLLli2rMN6lS5f6myDg5d5e5OkZAID3aqzPyMLCwipbRrpFI68uFi1apAULFjgfl5WV6eLFiwoNDZXFwk+S3qygoECRkZHKzs5WUFCQp6cDAF6Fz8imw+FwqLCwUO3bt7/pcrdk5JVXb1VH6woKCtSqVatKn/Pz85Ofn5/LWEhISL3ODw0rKCiIDzAAqAKfkU3DzY7glbslL7woPxevsvPuzp8/r6KiokrP1wMAAGgqbsnIGzJkiCQpOTm5wnO7d+92WQYAAKApuiUjb/jw4erataveffddZWRkOMfz8/O1YsUKNWvWTFOnTvXcBNEg/Pz8lJCQUOHrdgAAn5Emsjiqu/7WUFX9WrMzZ87o1Vdf5deaAQCAJu2WjTxJOnz4sBISEnTgwAHZ7Xb16dNHCxYs0KRJkzw9NQAAgDq5pSMPAADAVLfkOXkAAACmI/IAAAAMROQBAAAYiMgDAAAwEJEHI5VfT8R1RQCAWxWRByNZLBY5HA5ZLBadP39eZWVlnp4SAHiFkpISZWRkaNOmTfrkk0/4YdhgPp6eAFDfSkpKlJ6ero0bN+qrr76S1WqVv7+/+vbtq/vuu08DBw709BQBwCOysrK0atUqvfHGG5KkDh06aOXKlXr44Yc9PDM0BO6TB+O8+uqrevHFF1VYWKhu3brJx8dHJ0+edD7fs2dPzZo1Sw888IDatm3rwZkCQOOaNWuW/v3f/11Dhw5VTEyM3n77bYWFhWnHjh0qLS3V3r17lZ2drdGjR6t///6eni7qiMiDUU6dOqU+ffqoX79+2rx5s5o1a6af/exnOn/+vD788EP99a9/VWpqqiRp2LBheuWVV9SvXz/PThoAGsG3336r3r17a9KkSfrzn/8sPz8/paen65//+Z81e/Zs7dq1y+X3uQ8cOFB//OMf+YxswjgnD0ZJSkpSQECAEhIS1KVLF3Xo0EE2m00RERGaM2eO9u7dq6NHj2rKlClKT0/Xgw8+qCNHjnh62gDQ4N599121atVKDz/8sPz8/CRJvXr1UlBQkN5++221adNG//3f/63XXntNd9xxhw4cOKDExERdvXrVwzOHu4g8GOXEiRNq2bKloqKiJN04P6/8IozS0lJJUp8+fbR582a9/PLL+uqrr7Ru3TpPThkAGsWnn36q4OBg9ezZ0zn25Zdfqri4WAMGDNBf//pXjR49Wk888YTS09P1q1/9Su+9956ysrI8OGvUBZEHo8TExOjUqVMqKiqSJPn43Li2yGKxyGazSfq/26o88cQTuu+++7R37159++23npkwADQCu92uDh066LvvvlPr1q2d4x999JHy8vI0b948tWzZUqWlpbp69ap8fX01bNgw2Ww2vu1owog8GCU2NlaS9NBDD2nv3r26fv16pcuVH9Xr0aOHcnNznVEIAKZxOBzy9fVVdHS0CgsLdd999ykpKUmJiYl66aWXFBwcrH/6p3+SJNlsNvn7+0u68U1IWVmZIiMjPTl91AGRB6PcddddWrBggY4ePaq5c+fqrbfe0vfff++yTPlRvUuXLuns2bMKCAhQdHS0h2YMAA3LYrFIkkaNGqURI0Zo9+7dmjFjhhYtWqRZs2bpjjvucF6QVi43N1eff/65goODdc8993hg1qgPXF0LI61fv16rVq3St99+q/bt22v8+PEaPXq0IiMjZbPZFBISorVr1+r111/XnDlztHr1ak9PGQAaXGlpqT788EMdP35c3bt3129+8xuNHTtWxcXF+uMf/6jOnTsrNDRUf/jDH7Rw4UI99thjev311z09bbiJyIORHA6Hvv76a7311lvasmWLzp49K0lq06aNfH19de7cOZWVlWny5MlKTExURESEh2cMAJ6xfft23X///YqMjFRMTIy+/PJLZWZmKjo6Wtu3b1fXrl09PUW4iciD8YqLi3X48GF9+OGHysnJ0f/+7/8qKChIEydO1G9+8xs1b97c01MEAI9KSkrS2rVrlZ2drcLCQg0aNEgvv/wyN0Ru4og83FLsdrt8fX09PQ0A8Dr5+fk6deqUAgMDFRoaqpCQEOfvAEfTROQBAAAYiKtrAQAADETkAQAAGIjIAwAAMBCRBwAAYCAiDwAAwEBEHgAAgIGIPAAAAAMReQAAAAYi8gAAAAxE5AEAABjo/wHAJsQ7N3YlRQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAGwCAYAAADVBnNAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsNElEQVR4nO3de1TVdb7/8dfeG0TiqqB5Aa/hrXSJ5YyXSlGElMYzpmkXr3k547XG5mSWBmpqZk462sxYFuq0Oql5dBqPJuX1iHg5FmbOyrC8YIgjqIBoyO33Bz/2aQcobC4bPj4fa7FW+/P97O9+f4zvd7347s/3+7EUFhYWCgAAAEaxuroAAAAAVD1CHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGcnN1AXVdQUGBUlJS5OPjI4vF4upyAACA4QoLC5WVlaVmzZrJai37eh0hr5JSUlIUHBzs6jIAAMBdJjk5WUFBQWVuJ+RVko+Pj6Sif2hfX18XVwMAAEyXmZmp4OBgewYpCyGvkoq/ovX19SXkAQCAGnOnaWLceAEAAGAgQh4AAICBCHmo02JiYmSxWBx+OnToIEm6cuWKpk+frvbt28vT01MtWrTQjBkzlJGR4bCP8+fPKyoqSvfcc48aN26s//iP/1BeXp4rhgMAQJVhTh7qvPvvv19ffPGF/bWbW9GvdUpKilJSUvTWW2+pU6dOOnfunH73u98pJSVFn3zyiSQpPz9fUVFRatKkiQ4ePKiLFy9q9OjRcnd316JFi1wyHgAAqoKlsLCw0NVF1GWZmZny8/NTRkYGN164QExMjLZu3arExMRy9d+0aZNGjhyp7Oxsubm5aceOHXr88ceVkpKie++9V5L017/+VbNmzdLly5dVr169aqweAICKK2/24Ota1HlJSUlq1qyZ2rRpo2effVbnz58vs2/xAVF8tS8hIUGdO3e2BzxJioyMVGZmpk6ePFnttQMAUF0IeajTfv3rX2vt2rX67LPP9Je//EVnzpzRI488oqysrBJ909LStGDBAk2aNMnelpqa6hDwJNlfp6amVm/xAABUI+bkoU4bOHCg/b+7dOmiX//612rZsqU2btyo8ePH27dlZmYqKipKnTp1UkxMjAsqBQCgZnElD0bx9/dXu3btdPr0aXtbVlaWHnvsMfn4+GjLli1yd3e3b2vSpIkuXbrksI/i102aNKmZogEAqAaEPBjl+vXr+v7779W0aVNJRVfwIiIiVK9ePX366aeqX7++Q/+ePXvqxIkT+te//mVv+/zzz+Xr66tOnTrVaO0AAFQlQh7qtD/84Q/at2+fzp49q4MHD2rIkCGy2Wx6+umn7QEvOztb77//vjIzM5WamqrU1FTl5+dLkiIiItSpUyeNGjVKx48f186dOzVnzhxNnTpVHh4eLh4dAADOY04e6rQLFy7o6aefVnp6uho1aqSHH35Yhw4dUqNGjbR3714dPnxYknTfffc5vO/MmTNq1aqVbDabtm3bpsmTJ6tnz57y8vLSmDFjNH/+fFcMBwCAKsNz8iqJ5+QBAICaxHPyAAAA7mKEPAAADHW79b0l6aefftLUqVMVEBAgb29vDR06tMQTB4qlp6crKChIFotF165dq6ERoDIIeQAAGOz+++/XxYsX7T8HDhywb/v973+vf/zjH9q0aZP27dunlJQUPfHEE6XuZ/z48erSpUtNlY0qwI0XAAAYzM3NrdTnfmZkZOj999/XRx99pH79+kmSYmNj1bFjRx06dEg9evSw9/3LX/6ia9eu6bXXXtOOHTtqrHZUDlfyAAAwWFnrex87dky5ubkKDw+39+3QoYNatGihhIQEe9s///lPzZ8/X+vXr5fVSmyoS/i/BQCAoW63vndqaqrq1asnf39/h/fce++99rW7c3Jy9PTTT2vp0qVq0aKFC0aAyuDrWgAADHW79b09PT3v+P7Zs2erY8eOGjlyZHWWiWrClTwAAO4SP1/fu0mTJrp161aJO2UvXbpkn8O3e/dubdq0SW5ubnJzc1P//v0lSYGBgYqOjq7p8lFBXMkDAOAuUby+96hRo/Tggw/K3d1du3bt0tChQyVJp06d0vnz59WzZ09J0ubNm3Xz5k37+48eParnnntO//M//6O2bdu6ZAwoP0IeAACG+sMf/qDf/OY3atmypVJSUhQdHW1f39vPz0/jx4/XzJkz1bBhQ/n6+mr69Onq2bOn/c7aXwa5tLQ0SVLHjh1LzOVD7UPIAwDAULdb31uS3n77bVmtVg0dOlQ5OTmKjIzUn//8ZxdXjarC2rWVxNq1AACgJrF2LQAAwF2MkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgXgYch0xcbmrKwD+z3svuLoCAMCdcCUPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADsawZAKDOY+lH1Ca1ZelHruQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYKA6EfKWLFkii8Uii8WiQ4cOOWyLiYmxbyvt5+zZs6Xuc+fOnerTp498fHzk6+ursLAw7dq1qwZGAwAAUP3cXF3AnXzzzTeKjo6Wl5eXsrOzy+w3ZswYtWrVqkS7v79/ibYPP/xQo0aNUqNGjTR27FhJ0oYNGzRgwABt3LhRw4YNq6LqAQAAXKNWh7zc3FyNGTNGXbt2VUhIiD788MMy+44dO1Z9+/a94z6vXr2q6dOnKzAwUF9++aWCgoIkSbNmzVJoaKgmT56syMhI+fj4VNUwAAAAalyt/rp24cKFOnnypD744APZbLYq2eemTZt07do1TZ8+3R7wJCkoKEjTpk1TWlqatmzZUiWfBQAA4Cq19krel19+qYULF2r+/Pnq1KnTHfvv379fhw8fltVqVUhIiMLDw+Xt7V2i3969eyVJERERJbZFRkYqJiZG+/bt0+jRo0v9nJycHOXk5NhfZ2ZmSiq66pibmytJslqtstlsys/PV0FBgb1vcXteXp4KCwvt7TabTVartcz2ov263/HfAKgpxb/rxdzcik4leXl5Du3u7u4qKChQfn6+vc1iscjNza3M9rKOm6o9nu5cO2OqW2OSLAJqi5o4nsqjVoa8nJwcjR49Wl27dtVLL71UrvdER0c7vPb399eKFStKhLWkpCRJUkhISIl9FLcV9ynN4sWLNW/evBLtcXFxuueeeyRJLVq0UGhoqL7++mudP3/e3qd9+/bq0KGDjhw5osuXL9vbu3btqpYtW2r//v3Kysqyt/fs2VONGzdWXFycpKgyawJq2vbt2x1eDxo0SDdv3tSePXvsbW5uboqKilJaWpoSEhLs7T4+PurXr5+Sk5OVmJhob2/UqJF69eqlpKQknTp1yt5eHcfTz0+QYWFh8vT0ZEx1fEySr4DaorqPp2PHjpWrDkvhz/+EqiVmzZql5cuX69ixY3rggQckFc25W7dunRISEtSjRw973y1btujatWvq27evmjZtqtTUVG3btk2vvfaarl27pq1bt2rw4MH2/u3atVNSUpJyc3N/9hdgkdzcXNWrV09dunTR8ePHS62ttCt5wcHBSktLk69v0UmmOv6infIOV/JQe/x5KlfyGFPtGtOkFVzJQ+2xekb1Hk9XrlxRQECAMjIy7NmjNLXuSl5CQoLeeustxcTE2APe7QwZMsThdatWrTRt2jR17NhRAwYM0Jw5cxxCXmV5eHjIw8OjRLu7u7vc3R2DmM1mK3Uu4S/D5Z3af7lfwNXK+p0srd1qtcpqLTn9t6z2so6b6j6eGFPdHhNQm7jqeCrxeeXqVUPy8vI0ZswYdenSRS+//HKl9tW/f3+1bdtWJ06csM+bkyQ/Pz9JUkZGRon3FPcr7gMAAFBX1aqQd/36dSUlJSkxMVH16tVzeKjxunXrJBXN17BYLNq6desd9xcYGChJunHjhr3tdvPubjdfDwAAoC6pVV/Xenh4aPz48aVu279/v5KSkjR48GA1atSo1Acf/1x2drZOnjwpLy8ve9iTpD59+ug///M/FRcX5zC3TypaBaO4DwAAQF1Wq0Kep6en1qxZU+q2sWPHKikpSbNnz7aHs6ysLF28eFHt2rVz6Hvz5k1NnDhRWVlZGjdunMN318OHD9esWbO0cuVKPffcc/Zn5V24cEGrVq1SYGBgiXl+AAAAdU2tCnkVlZ6erg4dOqh79+7q2LGjmjRpokuXLumLL77QhQsX1LlzZy1dutThPQ0aNNCqVas0atQodevWTSNGjJBUtKxZenq6NmzYwGoXAACgzqvTIa9hw4aaMmWKjhw5ou3bt+vq1avy9PRUx44dNWPGDE2bNk2enp4l3jdy5EgFBgZq0aJFio2NlcVi0YMPPqg5c+YoPDzcBSMBAACoWrXyOXl1SWZmpvz8/O74rJrKmri82nYNVNh7L7i6AsAR50jUJtV9jixv9qhVd9cCAACgahDyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMJDTIW///v06f/78bfskJydr//79zn4EAAAAnOR0yAsLC9PatWtv22f9+vUKCwtz9iMAAADgJKdDXmFh4R37FBQUyGKxOPsRAAAAcFK1zslLSkqSn59fdX4EAAAASuFWkc7PPfecw+utW7fq7NmzJfrl5+fb5+MNHDiwUgUCAACg4ioU8n4+B89isSgxMVGJiYml9rVYLOrevbvefvvtytQHAAAAJ1Qo5J05c0ZS0Xy8Nm3a6IUXXtDzzz9fop/NZlODBg3k5eVVNVUCAACgQioU8lq2bGn/79jYWIWGhjq0AQAAoHaoUMj7uTFjxlRlHQAAAKhCToe8YkeOHNHRo0d17do15efnl9husVg0d+7cyn4MAAAAKsDpkHflyhX99re/VXx8/G2fmUfIAwAAqHlOh7yZM2fqwIED6tu3r8aMGaOgoCC5uVX6wqB++uknvfLKK/rf//1fnT59WleuXJG/v7/atm2rCRMmaOTIkXJ3d3d4T2ZmpmJiYrR582alpqaqadOmevLJJxUdHS1vb+8Sn1FQUKB33nlH7777rk6fPi1vb2+Fh4dr4cKFatOmTaXHAAAA4GqWwvIsXVGKwMBA3XfffUpISKjSVS3S0tIUHBysX/3qV2rXrp0aNWqkq1evaseOHTp37pwiIiK0Y8cOWa1Fz3HOzs7Www8/rMTEREVERCg0NFRfffWV4uLi1L17d+3fv1/169d3+IyJEydqzZo1uv/++xUVFaWUlBRt3LhR3t7eOnTokEJCQspdb2Zmpvz8/JSRkSFfX98q+3f4pYnLq23XQIW994KrKwAccY5EbVLd58jyZg+nL73dvHlTjz76aJUvW9awYUNlZGSoXr16Du15eXkaMGCA4uLitGPHDkVFRUmS3nzzTSUmJmrWrFl644037P1ffvllLVmyRG+//bZmz55tb9+zZ4/WrFmjRx99VJ9//rn9c5555hkNGjRI06ZN086dO6t0TAAAADXN6WXNunbtWupqF5VltVpLBDxJcnNz05AhQyRJp0+fllT0vL41a9bI29u7xLy/uXPnytvbW2vWrHFof++99yRJCxYscPicgQMHqm/fvoqLi9P58+erdEwAAAA1zekredHR0Ro8eLAOHTqkHj16VGVNpSooKNBnn30mSXrggQckFa2Nm5KSosjIyBIPXvby8lLv3r21c+dOJScnKzg4WJK0d+9e+7ZfioyM1N69e7Vv3z6NGjWq1DpycnKUk5Njf52ZmSlJys3NVW5urqSioGqz2ZSfn6+CggJ73+L2vLw8h5tVbDabrFZrme1F+3Wchwi4UvHverHi+bh5eXkO7e7u7iooKHC4895iscjNza3M9rKOm6o9nu5cO2OqW2OSqvZbJaAyauJ4Kg+nQ15qaqqioqLUp08fPfvss+rWrVuZ3wuPHj26wvu/deuWFi1apMLCQqWnp2vXrl369ttvNW7cOPXv319SUciTVOYcupCQEO3cuVNJSUkKDg5Wdna2Ll68qAceeEA2m63U/j/fb2kWL16sefPmlWiPi4vTPffcI0lq0aKFQkND9fXXXztcFWzfvr06dOigI0eO6PLly/b2rl27qmXLltq/f7+ysrLs7T179lTjxo0VFxcnKarMmoCatn37dofXgwYN0s2bN7Vnzx57m5ubm6KiopSWlqaEhAR7u4+Pj/r166fk5GSHZREbNWqkXr16KSkpSadOnbK3V8fx9PMTZFhYmDw9PRlTHR+TVH1zooGKqu7j6dixY+Wqw+kbL6xWqywWi8NfYL+cn1dYWCiLxVLq8/Pu5Pr16/Lx8XHY94svvqjFixfb/3L76KOP9Oyzz+rVV1/V66+/XmIfr776qhYtWqT/+q//0pAhQ5SSkqLmzZurd+/eOnDgQIn+n3/+uSIiIjRjxgytWLGi1LpKu5IXHBystLQ0e8itjr9op7zDlTzUHn+eypU8xlS7xjRpBVfyUHusnlG9x9OVK1cUEBBQfTdexMbGOvvWcvH29lZhYaEKCgqUkpKif/zjH3rllVeUkJCg7du3V+udrLfj4eEhDw+PEu3u7u4lHu1is9lKvWJY1qNmymr/5X4BVyvrd7K0dqvVar8bvjztZR031X08Maa6PSagNnHV8VSiX7l6laKmljWzWq0KCgrS5MmTFRgYqOHDh2vhwoVasmSJ/Pz8JEkZGRmlvrd4vlxxv4r2BwAAqKucvrvWFSIiIiQV3Twh3XkO3S/n7Hl5ealp06Y6c+ZMqV8h32mOHwAAQF3h9JW8ijxmpEWLFs5+jIOUlBRJ/3e5PiQkRM2aNVN8fLyys7Md7rDNzs5WfHy8Wrdubb+zVpL69Omjjz/+WPHx8Xr00Ucd9l/8fLxftgMAANQ1Tl/Ja9WqlVq3bn3Hn4ouE/bPf/5TN27cKNF+48YNzZw5U1LR3VRS0YTFCRMm6Pr161qwYIFD/wULFuj69euaOHGiQ/ukSZMkFT1H79atW/b2HTt2aO/evYqIiFDLli0rVDMAAEBt4/SVvNGjR5e62kVGRoaOHz+uM2fOqE+fPmrVqlWF9rtx40b98Y9/1MMPP6xWrVrJ19dXP/74o3bs2KH09HQ98sgj+v3vf2/v/9JLL+nvf/+7lixZoq+++krdunXTl19+aV/W7IUXXnDYf1hYmCZMmKA1a9aoW7duioqK0sWLF7VhwwY1bNhQK1eudOafAwAAoFZxOuStXbu2zG2FhYVatmyZ3nzzTb3//vsV2u/jjz+ulJQUHTx4UAkJCbp+/br8/PzUpUsXPfXUU3ruuecc7irx8vLSvn37FBMTo82bN2vPnj1q2rSpXnzxRUVHR8vT07PEZ6xevVqdO3fWu+++qxUrVsjb21tDhgzRwoUL1bZt2wrVCwAAUBs5/Zy88ggLC1PDhg21efPm6voIlyvvIsGVxeLbqE2qe/FtoKI4R6I2qe5zZHmzR7XeXfvQQw9p9+7d1fkRAAAAKEW1hrzvv/++3OurAQAAoOo4PSevLAUFBfrxxx+1du1a/f3vf7evMwsAAICa43TIK167tiyFhYVq0KCBli1b5uxHAAAAwElOh7xHH3201JBntVrVoEEDde/eXePGjVPjxo0rVSAAAAAqzumQV7y0GAAAAGqfOrV2LQAAAMqnSm68iI+PV2JiojIzM+Xr66uuXbuqd+/eVbFrAAAAOKFSIe/gwYMaN26cTp8+LanoZovieXohISGKjY1Vz549K18lAAAAKsTpkHfy5ElFREToxo0bGjBggMLCwtS0aVOlpqZqz549iouLU2RkpA4dOqROnTpVZc0AAAC4A6dD3vz583Xr1i1t375djz32mMO2WbNm6bPPPtPgwYM1f/58ffzxx5UuFAAAAOXn9I0Xe/fu1bBhw0oEvGKPPfaYhg0bpj179jhdHAAAAJzjdMjLyMhQ69atb9undevWysjIcPYjAAAA4CSnQ16zZs106NCh2/Y5fPiwmjVr5uxHAAAAwElOh7zBgwdr7969mjt3rn766SeHbT/99JOio6O1Z88e/du//VuliwQAAEDFOH3jxdy5c7Vt2zYtWrRIq1ev1q9+9Svde++9unTpko4eParLly+rTZs2mjt3blXWCwAAgHJwOuQFBATo0KFDeumll/Txxx9r+/bt9m3169fXuHHjtGTJEjVs2LBKCgUAAED5VephyIGBgfrggw+0evVqffvtt/YVLzp06CB3d/eqqhEAAAAVVOGQt3DhQmVnZ2vevHn2IOfu7q7OnTvb+9y6dUuvvvqqfHx89PLLL1ddtQAAACiXCt148cUXX+i1115TQEDAba/U1atXTwEBAXr11Vd5Th4AAIALVCjkrV+/Xg0aNNC0adPu2Hfq1Klq2LChYmNjnS4OAAAAzqlQyDt48KDCw8Pl4eFxx74eHh4KDw9XfHy808UBAADAORUKeSkpKWrTpk25+7du3VoXL16scFEAAAConAqFPKvVqtzc3HL3z83NldXq9POWAQAA4KQKJbBmzZrpm2++KXf/b775Rs2bN69wUQAAAKicCoW8Rx55RLt379bZs2fv2Pfs2bPavXu3Hn30UWdrAwAAgJMqFPKmTp2q3NxcDRs2TGlpaWX2S09P15NPPqm8vDxNnjy50kUCAACgYir0MORu3brphRde0PLly9WpUyf97ne/U1hYmIKCgiRJP/74o3bt2qV3331Xly9f1syZM9WtW7dqKRwAAABlq/CKF8uWLVP9+vW1dOlSLVy4UAsXLnTYXlhYKJvNptmzZ+v111+vskIBAABQfhUOeRaLRYsWLdL48eMVGxurgwcPKjU1VZLUpEkT9e7dW2PHjlXbtm2rvFgAAACUT4VDXrG2bdtypQ4AAKCW4iF2AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGCgWhnyPvzwQ/37v/+7HnroIXl4eMhisWjt2rWl9o2JiZHFYinz5+zZs6W+b+fOnerTp498fHzk6+ursLAw7dq1q/oGBQAAUIPcXF1AaebMmaNz584pMDBQTZs21blz5+74njFjxqhVq1Yl2v39/Uu0ffjhhxo1apQaNWqksWPHSpI2bNigAQMGaOPGjRo2bFglRwAAAOBatTLkrVmzRiEhIWrZsqXeeOMNzZ49+47vGTt2rPr27XvHflevXtX06dMVGBioL7/8UkFBQZKkWbNmKTQ0VJMnT1ZkZKR8fHwqOwwAAACXqZVf14aHh6tly5bVsu9Nmzbp2rVrmj59uj3gSVJQUJCmTZumtLQ0bdmypVo+GwAAoKbUyit5zti/f78OHz4sq9WqkJAQhYeHy9vbu0S/vXv3SpIiIiJKbIuMjFRMTIz27dun0aNHl/o5OTk5ysnJsb/OzMyUJOXm5io3N1eSZLVaZbPZlJ+fr4KCAnvf4va8vDwVFhba2202m6xWa5ntRft1L/8/BlDNin/Xi7m5FZ1K8vLyHNrd3d1VUFCg/Px8e5vFYpGbm1uZ7WUdN1V7PN25dsZUt8YkWQTUFjVxPJWHMSEvOjra4bW/v79WrFhRIqwlJSVJkkJCQkrso7ituE9pFi9erHnz5pVoj4uL0z333CNJatGihUJDQ/X111/r/Pnz9j7t27dXhw4ddOTIEV2+fNne3rVrV7Vs2VL79+9XVlaWvb1nz55q3Lix4uLiJEWVWRNQ07Zv3+7wetCgQbp586b27Nljb3Nzc1NUVJTS0tKUkJBgb/fx8VG/fv2UnJysxMREe3ujRo3Uq1cvJSUl6dSpU/b26jiefn6CDAsLk6enJ2Oq42OSfAXUFtV9PB07dqxcdVgKf/4nVC1UPCcvNjbWfpPEz23ZskXXrl1T37591bRpU6Wmpmrbtm167bXXdO3aNW3dulWDBw+292/Xrp2SkpKUm5v7s78Ai+Tm5qpevXrq0qWLjh8/Xmo9pV3JCw4OVlpamnx9i04y1fEX7ZR3uJKH2uPPU7mSx5hq15gmreBKHmqP1TOq93i6cuWKAgIClJGRYc8epanzV/KGDBni8LpVq1aaNm2aOnbsqAEDBmjOnDkOIa+yPDw85OHhUaLd3d1d7u6OQcxms8lms5Xo+8tweaf2X+4XcLWyfidLa7darbJaS07/Lau9rOOmuo8nxlS3xwTUJq46nkp8Xrl61UH9+/dX27ZtdeLECfu8OUny8/OTJGVkZJR4T3G/4j4AAAB1lbEhT5ICAwMlSTdu3LC33W7e3e3m6wEAANQlxoa87OxsnTx5Ul5eXvawJ0l9+vSRpP9/M4OjnTt3OvQBAACoq+p0yMvKytJ3331Xov3mzZuaOHGisrKyNHz4cIfvrocPHy4/Pz+tXLlSFy5csLdfuHBBq1atUmBgYIl5fgAAAHVNrbzxYs2aNTpw4IAk6cSJE/a24mfcPfzww5owYYLS09PVoUMHde/eXR07dlSTJk106dIlffHFF7pw4YI6d+6spUuXOuy7QYMGWrVqlUaNGqVu3bppxIgRkoqWNUtPT9eGDRtY7QIAANR5tTLkHThwQOvWrXNoi4+PV3x8vP31hAkT1LBhQ02ZMkVHjhzR9u3bdfXqVXl6eqpjx46aMWOGpk2bJk9PzxL7HzlypAIDA7Vo0SLFxsbKYrHowQcf1Jw5cxQeHl7t4wMAAKhutf45ebVdZmam/Pz87vismsqauLzadg1U2HsvuLoCwBHnSNQm1X2OLG/2qNNz8gAAAFA6Qh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGCguzrkHT16VIMGDZK/v7+8vLzUo0cPbdy40dVlAQAAVJqbqwtwlT179igyMlL169fXU089JR8fH23evFkjRoxQcnKyXnzxRVeXCAAA4LS78kpeXl6eJk6cKKvVqv379+vdd9/VsmXLdPz4cbVr106vvPKKzp075+oyAQAAnHZXhrzdu3fr+++/1zPPPKOuXbva2/38/PTKK6/o1q1bWrdunesKBAAAqKS7MuTt3btXkhQREVFiW2RkpCRp3759NVkSAABAlbor5+QlJSVJkkJCQkpsa9Kkiby9ve19fiknJ0c5OTn21xkZGZKkK1euKDc3V5JktVpls9mUn5+vgoICe9/i9ry8PBUWFtrbbTabrFZrme25ubm69ZN7JUYMVK309FyH125uRaeSvLw8h3Z3d3cVFBQoPz/f3maxWOTm5lZme1nHTVUeT+WpnTHVrTHd+skioLa4dq16j6crV65IksOxU5q7MuQVBzM/P79St/v6+tr7/NLixYs1b968Eu2tW7euugKBWm79bFdXAAC1V02dI7OyssrMMtJdGvIqY/bs2Zo5c6b9dUFBga5cuaKAgABZLPwlWZtlZmYqODhYycnJ8vX1dXU5AFCrcI6sOwoLC5WVlaVmzZrdtt9dGfKKU29ZV+syMzPVoEGDUrd5eHjIw8PDoc3f379K60P18vX15QQGAGXgHFk33O4KXrG78saL4rl4pc27S01N1fXr10udrwcAAFBX3JUhr0+fPpKkuLi4Ett27tzp0AcAAKAuuitDXv/+/dWmTRt99NFHSkxMtLdnZGRo0aJFqlevnkaPHu26AlEtPDw8FB0dXeLrdgAA50gTWQrvdP+tocpa1uzcuXN66623WNYMAADUaXdtyJOkI0eOKDo6WgcPHlRubq46d+6smTNnasSIEa4uDQAAoFLu6pAHAABgqrtyTh4AAIDpCHkAAAAGIuQBAAAYiJAHAABgIEIejFR8PxH3FQEA7laEPBjJYrGosLBQFotFqampKigocHVJAFAr5OXlKTExUWvXrtXhw4f5Y9hgbq4uAKhqeXl5io+P1wcffKDvvvtOVqtVnp6e6tq1q5544gn16tXL1SUCgEucP39eS5cu1TvvvCNJat68uRYvXqyRI0e6uDJUB56TB+O89dZbWrBggbKystS2bVu5ubnp1KlT9u0dOnTQpEmT9NRTT6lJkyYurBQAatakSZP0t7/9TX379lVoaKjWr1+vwMBAbdu2Tfn5+dq9e7eSk5M1cOBAde/e3dXlopIIeTDKmTNn1LlzZ3Xr1k3r1q1TvXr1dO+99yo1NVWffvqpPvnkE+3du1eS1K9fP7355pvq1q2ba4sGgBrwww8/6IEHHtCIESP017/+VR4eHoqPj9dvfvMbTZ48WTt27HBYz71Xr17605/+xDmyDmNOHowSGxsrLy8vRUdHq3Xr1mrevLlsNpuCgoI0ZcoU7d69W8ePH9eoUaMUHx+vZ555RseOHXN12QBQ7T766CM1aNBAI0eOlIeHhySpY8eO8vX11fr169W4cWP993//t95++2099NBDOnjwoJYsWaKbN2+6uHI4i5AHo5w8eVLe3t4KCQmRVDQ/r/gmjPz8fElS586dtW7dOr3xxhv67rvvtGrVKleWDAA14ujRo/Lz81OHDh3sbd9++62ys7PVs2dPffLJJxo4cKCef/55xcfH6/HHH9emTZt0/vx5F1aNyiDkwSihoaE6c+aMrl+/Lklycyu6t8hischms0n6v8eqPP/883riiSe0e/du/fDDD64pGABqQG5urpo3b64ff/xRDRs2tLd/9tlnSk9P14wZM+Tt7a38/HzdvHlT7u7u6tevn2w2G9921GGEPBglLCxMkvTss89q9+7dunXrVqn9iq/qtW/fXmlpafZQCACmKSwslLu7u7p06aKsrCw98cQTio2N1ZIlS/T666/Lz89P9913nyTJZrPJ09NTUtE3IQUFBQoODnZl+agEQh6M0qNHD82cOVPHjx/XtGnT9N577+nSpUsOfYqv6l29elUXLlyQl5eXunTp4qKKAaB6WSwWSVJERITCw8O1c+dOjR8/XrNnz9akSZP00EMP2W9IK5aWlqavvvpKfn5+euSRR1xQNaoCd9fCSKtXr9bSpUv1ww8/qFmzZhoyZIgGDhyo4OBg2Ww2+fv7a+XKlVq+fLmmTJmiZcuWubpkAKh2+fn5+vTTT3XixAm1a9dOQ4cOVVRUlLKzs/WnP/1JrVq1UkBAgP74xz9q1qxZmjp1qpYvX+7qsuEkQh6MVFhYqNOnT+u9997Txx9/rAsXLkiSGjduLHd3d128eFEFBQV6+umntWTJEgUFBbm4YgBwjc2bN+vJJ59UcHCwQkND9e233yopKUldunTR5s2b1aZNG1eXCCcR8mC87OxsHTlyRJ9++qlSUlL0r3/9S76+vho+fLiGDh2q+vXru7pEAHCp2NhYrVy5UsnJycrKylLv3r31xhtv8EDkOo6Qh7tKbm6u3N3dXV0GANQ6GRkZOnPmjHx8fBQQECB/f3/7GuComwh5AAAABuLuWgAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADPT/AJPjTknM2f5kAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "execution_count": 7, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } diff --git a/docs/source/exporter.ipynb b/docs/source/exporter.ipynb index dd5202e3..310a9390 100644 --- a/docs/source/exporter.ipynb +++ b/docs/source/exporter.ipynb @@ -20,11 +20,11 @@ "metadata": {}, "outputs": [], "source": [ - "from qlasskit import Qint2, qlassf\n", + "from qlasskit import Qint, qlassf\n", "\n", "\n", "@qlassf\n", - "def hello_world(a: bool, b: Qint2) -> Qint2:\n", + "def hello_world(a: bool, b: Qint[2]) -> Qint[2]:\n", " return b + (1 if a else 0)" ] }, @@ -213,18 +213,7 @@ "cell_type": "code", "execution_count": 7, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[Gate(hello_world, targets=[0, 1, 2, 3, 4], controls=None, classical controls=None, control_value=None, classical_control_value=None)]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Disabled on docs for a depencency problem\n", "# qc = hello_world.export(\"qutip\")\n", diff --git a/docs/source/how_it_works.ipynb b/docs/source/how_it_works.ipynb index fe3b9699..fdf53fa1 100644 --- a/docs/source/how_it_works.ipynb +++ b/docs/source/how_it_works.ipynb @@ -28,12 +28,12 @@ "metadata": {}, "outputs": [], "source": [ - "from qlasskit import qlassf, Qint2, Qint4\n", + "from qlasskit import qlassf\n", "from qiskit import QuantumCircuit\n", "\n", "\n", "@qlassf\n", - "def f_comp(b: bool, n: Qint2) -> Qint2:\n", + "def f_comp(b: bool, n: Qint[2]) -> Qint[2]:\n", " for i in range(3):\n", " n += 1 if b else 2\n", " return n" @@ -72,7 +72,7 @@ ], "source": [ "@qlassf\n", - "def f1(b: bool, n: Qint2) -> Qint2:\n", + "def f1(b: bool, n: Qint[2]) -> Qint[2]:\n", " return n + (1 if b else 2)\n", "\n", "\n", @@ -151,7 +151,7 @@ "outputs": [], "source": [ "@qlassf\n", - "def f(n: Qint4) -> bool:\n", + "def f(n: Qint[4]) -> bool:\n", " return n == 3" ] }, diff --git a/docs/source/parameters.ipynb b/docs/source/parameters.ipynb index 5981a698..0e3767b6 100644 --- a/docs/source/parameters.ipynb +++ b/docs/source/parameters.ipynb @@ -67,11 +67,11 @@ } ], "source": [ - "from qlasskit import Qlist, Qint2, Qint4\n", + "from qlasskit import Qlist, Qint, Qint4\n", "\n", "\n", "@qlassf\n", - "def test(a: Parameter[Qlist[Qint2, 4]], b: Qint4) -> Qint4:\n", + "def test(a: Parameter[Qlist[Qint[2], 4]], b: Qint[4]) -> Qint[4]:\n", " s = Qint4(0)\n", " for n in a:\n", " s += n\n", diff --git a/docs/source/quickstart.ipynb b/docs/source/quickstart.ipynb index f1fe0361..271207da 100644 --- a/docs/source/quickstart.ipynb +++ b/docs/source/quickstart.ipynb @@ -19,11 +19,11 @@ "metadata": {}, "outputs": [], "source": [ - "from qlasskit import qlassf, Qint2\n", + "from qlasskit import qlassf, Qint, Qint2\n", "\n", "\n", "@qlassf\n", - "def sum_two_numbers(a: Qint2, b: Qint2) -> Qint2:\n", + "def sum_two_numbers(a: Qint[2], b: Qint[2]) -> Qint[2]:\n", " return a + b" ] }, @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -75,7 +75,7 @@ "
" ] }, - "execution_count": 9, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -105,7 +105,7 @@ "
" ] }, - "execution_count": 10, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -136,7 +136,15 @@ "name": "python3" }, "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", "version": "3.10.13" } }, diff --git a/docs/source/supported.rst b/docs/source/supported.rst index 1375daea..dc9ce1af 100644 --- a/docs/source/supported.rst +++ b/docs/source/supported.rst @@ -29,14 +29,15 @@ Boolean type. Qint ^^^^ -Unsigned integers; this type has subtypes for different Qint sizes (Qint2, Qint4, Qint8, Qint12, Qint16). +Unsigned integers; `Qint[2]` has 2 bits, and there other sizes are supported. Single bit of the Qint are accessible by the subscript operator `[]`. - +All the supported sizes have a constructor `Qintn()` defined in `qlasskit.types`. Qfixed ^^^^^^ Fixed point rational number; `Qfixed[2,3]` has 2 bits for the integer part and 3 bits for the fractional. +All the supported sizes have a constructor `Qfixedn_m()` defined in `qlasskit.types`. Qchar ^^^^^ @@ -53,14 +54,14 @@ List ^^^^ Qlist[T, size] denotes a fixed-size list in qlasskit. -For example, the list `[1,2,3]` is typed as `Qlist[Qint2,3]`. +For example, the list `[1,2,3]` is typed as `Qlist[Qint[2],3]`. Matrix ^^^^ Qmatrix[T, m, n] denotes a fixed-size list in qlasskit. -For example, the matrix `[[1,2],[3,4]]` is typed as `Qmatrix[Qint2,2,2]`. +For example, the matrix `[[1,2],[3,4]]` is typed as `Qmatrix[Qint[2],2,2]`. @@ -243,7 +244,7 @@ Function def .. code-block:: python - def f(t: Qlist[Qint4,2]) -> Qint4: + def f(t: Qlist[Qint[4],2]) -> Qint[4]: return t[0] + t[1] diff --git a/qlasskit/ast2logic/t_arguments.py b/qlasskit/ast2logic/t_arguments.py index 2c153f55..d068c979 100644 --- a/qlasskit/ast2logic/t_arguments.py +++ b/qlasskit/ast2logic/t_arguments.py @@ -25,7 +25,10 @@ def to_name(a): if isinstance(a, ast.Attribute): return a.attr elif isinstance(a, ast.Subscript): # for Qfixed and similar - t = "_".join(f"{e.value}" for e in a.slice.elts) + if isinstance(a.slice, ast.Constant): + t = f"{a.slice.value}" + else: + t = "_".join(f"{e.value}" for e in a.slice.elts) return f"{a.value.id}{t}" else: return a.id diff --git a/qlasskit/types/__init__.py b/qlasskit/types/__init__.py index 411d7fca..a12de173 100644 --- a/qlasskit/types/__init__.py +++ b/qlasskit/types/__init__.py @@ -43,13 +43,35 @@ def _full_adder(c, a, b): # Carry x Sum # return c, o -from .qtype import Qtype, TExp, TType # noqa: F401, E402 +from .qtype import ( # noqa: F401, E402 + Qtype, + TExp, + TType, + bin_to_bool_list, + bool_list_to_bin, +) from .qbool import Qbool # noqa: F401, E402 from .qlist import Qlist # noqa: F401, E402 from .qmatrix import Qmatrix # noqa: F401, E402 from .qchar import Qchar # noqa: F401, E402 -from .qfixed import Qfixed, QFIXED_TYPES # noqa: F401, E402 +from .qfixed import ( # noqa: F401, E402 + Qfixed, + Qfixed1_2, + Qfixed1_3, + Qfixed1_4, + Qfixed1_6, + Qfixed2_2, + Qfixed2_3, + Qfixed2_4, + Qfixed2_6, + Qfixed3_3, + Qfixed3_4, + Qfixed3_6, + Qfixed4_4, + Qfixed4_6, + QFIXED_TYPES, +) from .qint import ( # noqa: F401, E402 Qint, Qint2, @@ -61,29 +83,25 @@ def _full_adder(c, a, b): # Carry x Sum Qint8, Qint12, Qint16, + QINT_TYPES, ) from .parameter import Parameter # noqa: F401, E402 -BUILTIN_TYPES = [ - Qint2, - Qint3, - Qint4, - Qint5, - Qint6, - Qint7, - Qint8, - Qint12, - Qint16, - Qchar, - Qlist, - Qmatrix, - Qfixed, -] + QFIXED_TYPES +BUILTIN_TYPES = ( + [ + Qchar, + Qlist, + Qmatrix, + Qfixed, + ] + + QINT_TYPES + + QFIXED_TYPES +) def const_to_qtype(value: Any) -> TExp: if isinstance(value, int): - for det_type in [Qint2, Qint4, Qint6, Qint8, Qint12, Qint16]: # Qint3, Qint5 + for det_type in [Qint2, Qint4, Qint6, Qint8, Qint12, Qint16]: # QINT_TYPES? if value < 2**det_type.BIT_SIZE: return det_type.const(value) diff --git a/qlasskit/types/qchar.py b/qlasskit/types/qchar.py index 7531b610..a636ebb7 100644 --- a/qlasskit/types/qchar.py +++ b/qlasskit/types/qchar.py @@ -17,7 +17,7 @@ from sympy.logic import And, Or, false, true from . import _eq, _neq -from .qint import Qint +from .qint import QintImp from .qtype import Qtype, TExp, bin_to_bool_list, bool_list_to_bin @@ -43,7 +43,7 @@ def from_bool(cls, v: List[bool]): @classmethod def comparable(cls, other_type=None) -> bool: - return other_type == cls or issubclass(other_type, Qint) + return other_type == cls or issubclass(other_type, QintImp) @classmethod def const(cls, value: Any) -> TExp: diff --git a/qlasskit/types/qfixed.py b/qlasskit/types/qfixed.py index 6df75eca..149e150a 100644 --- a/qlasskit/types/qfixed.py +++ b/qlasskit/types/qfixed.py @@ -18,13 +18,13 @@ from sympy.logic import And, Not, Or, false, true from . import _eq, _neq -from .qint import Qint +from .qint import QintImp from .qtype import Qtype, TExp, bin_to_bool_list, bool_list_to_bin class QfixedImp(float, Qtype): """Implementation of the Qfixed type - A number i.f is encoded in a Qfixed_2_4 as iiffff. + A number i.f is encoded in a Qfixed2_4 as iiffff. The interger part is in little endian like Qint Fractional part is obtained as binary fractions, by multiplying for 2 and getting the integer part at each step. @@ -97,7 +97,7 @@ def to_amplitudes(self) -> List[float]: def comparable(cls, other_type=None) -> bool: return ( other_type == cls - or issubclass(other_type, Qint) + or issubclass(other_type, QintImp) or issubclass(other_type, QfixedImp) ) @@ -200,7 +200,7 @@ def add(cls, tleft: TExp, tright: TExp) -> TExp: tl_v = QfixedImp._to_qint_repr(tleft) tr_v = QfixedImp._to_qint_repr(tright) - res = Qint.add((tleft[0], tl_v), (tright[0], tr_v)) + res = QintImp.add((tleft[0], tl_v), (tright[0], tr_v)) return (tleft[0], QfixedImp._from_qint_repr((tleft[0], res[1]))) @@ -216,10 +216,10 @@ def mul(cls, tleft: TExp, tright: TExp) -> TExp: # noqa: C901 a = len(list(filter(lambda b: b is bool, tleft[1]))) b = len(list(filter(lambda b: b is bool, tright[1]))) - if a == 0 and issubclass(tleft[0], Qint): # type: ignore + if a == 0 and issubclass(tleft[0], QintImp): # type: ignore tconst = tleft top = tright - elif b == 0 and issubclass(tright[0], Qint): # type: ignore + elif b == 0 and issubclass(tright[0], QintImp): # type: ignore top = tleft tconst = tright else: @@ -333,13 +333,31 @@ class Qfixed4_6(QfixedImp): Qfixed4_6, ] +# class _GetQfixedTypeInner: +# def __init__(self, base): +# self.base = base + +# def __getitem__(self, index): +# return eval(f"Qfixed{self.base}_{index}") + +# class _GetQfixedType: +# @property +# def __name__(self): +# return 'Qfixed' # I'm not sure this is correct + +# def __getitem__(self, index): +# return _GetQfixedTypeInner(index) + class QfixedMeta(type): def __getitem__(cls, params): if isinstance(params, tuple) and len(params) == 2: i, f = params if isinstance(i, int) and isinstance(f, int) and i >= 0 and f >= 0: - return f"Qfixed{i}_{f}" # TODO: transform to type + return f"Qfixed{i}_{f}" + + # def __new__(cls, name, bases, dct): + # return _GetQfixedType() class Qfixed(metaclass=QfixedMeta): diff --git a/qlasskit/types/qint.py b/qlasskit/types/qint.py index 4ee521d6..2572cebf 100644 --- a/qlasskit/types/qint.py +++ b/qlasskit/types/qint.py @@ -1,4 +1,4 @@ -# Copyright 2023 Davide Gessa +# Copyright 2023-2024 Davide Gessa # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ from .qtype import Qtype, TExp, bin_to_bool_list, bool_list_to_bin -class Qint(int, Qtype): +class QintImp(int, Qtype): BIT_SIZE = 8 def __init__(self, value): @@ -50,7 +50,7 @@ def to_amplitudes(self) -> List[float]: def comparable(cls, other_type=None) -> bool: """Return true if the type is comparable with itself or with [other_type]""" - if not other_type or issubclass(other_type, Qint): + if not other_type or issubclass(other_type, QintImp): return True return False @@ -122,17 +122,20 @@ def gt(tleft: TExp, tcomp: TExp) -> TExp: @staticmethod def lt(tleft: TExp, tcomp: TExp) -> TExp: """Compare two Qint for lower than""" - return (bool, And(Not(Qint.gt(tleft, tcomp)[1]), Not(Qint.eq(tleft, tcomp)[1]))) + return ( + bool, + And(Not(QintImp.gt(tleft, tcomp)[1]), Not(QintImp.eq(tleft, tcomp)[1])), + ) @staticmethod def lte(tleft: TExp, tcomp: TExp) -> TExp: """Compare two Qint for lower than - equal""" - return (bool, Not(Qint.gt(tleft, tcomp)[1])) + return (bool, Not(QintImp.gt(tleft, tcomp)[1])) @staticmethod def gte(tleft: TExp, tcomp: TExp) -> TExp: """Compare two Qint for greater than - equal""" - return (bool, Not(Qint.lt(tleft, tcomp)[1])) + return (bool, Not(QintImp.lt(tleft, tcomp)[1])) # Operations @@ -234,40 +237,63 @@ def bitwise_or(cls, tleft: TExp, tright: TExp) -> TExp: return cls.bitwise_generic(Or, tleft, tright) -class Qint2(Qint): +class Qint2(QintImp): BIT_SIZE = 2 -class Qint3(Qint): +class Qint3(QintImp): BIT_SIZE = 3 -class Qint4(Qint): +class Qint4(QintImp): BIT_SIZE = 4 -class Qint5(Qint): +class Qint5(QintImp): BIT_SIZE = 5 -class Qint6(Qint): +class Qint6(QintImp): BIT_SIZE = 6 -class Qint7(Qint): +class Qint7(QintImp): BIT_SIZE = 7 -class Qint8(Qint): +class Qint8(QintImp): BIT_SIZE = 8 -class Qint12(Qint): +class Qint12(QintImp): BIT_SIZE = 12 -class Qint16(Qint): +class Qint16(QintImp): BIT_SIZE = 16 QINT_TYPES = [Qint2, Qint3, Qint4, Qint5, Qint6, Qint7, Qint8, Qint12, Qint16] + +# class _GetQintType: +# @property +# def __name__(self): +# return 'Qint' # I'm not sure this is correct + +# def __getitem__(self, index): +# return eval(f"Qint{index}") + + +class QintMeta(type): + def __getitem__(cls, params): + if isinstance(params, tuple) and len(params) == 1: + i = params + if isinstance(i, int) and i >= 2: + return f"Qint{i}" + + # def __new__(cls, name, bases, dct): + # return _GetQintType() + + +class Qint(metaclass=QintMeta): + pass diff --git a/test/algo/test_grover.py b/test/algo/test_grover.py index fd72db9e..001c97c6 100644 --- a/test/algo/test_grover.py +++ b/test/algo/test_grover.py @@ -23,7 +23,7 @@ class TestAlgoGrover(unittest.TestCase): def test_grover(self): f = """ -def hash(k: Qint4) -> bool: +def hash(k: Qint[4]) -> bool: h = True for i in range(4): h = h and k[i] @@ -42,7 +42,7 @@ def hash(k: Qint4) -> bool: def test_grover_list_search(self): f = """ -def hash(k: Qint4) -> bool: +def hash(k: Qint[4]) -> bool: h = False for i in [7]: if i == k: @@ -62,7 +62,7 @@ def hash(k: Qint4) -> bool: def test_grover_without_element_to_search(self): f = """ -def hash(k: Qint4) -> bool: +def hash(k: Qint[4]) -> bool: h = True for i in range(4): h = h and k[i] @@ -80,7 +80,7 @@ def hash(k: Qint4) -> bool: def test_grover_too_many_args(self): f = """ -def hash(k: Qint4, q: Qint4) -> bool: +def hash(k: Qint[4], q: Qint[4]) -> bool: h = True for i in range(4): h = h and (k[i] or q[i]) @@ -92,7 +92,7 @@ def hash(k: Qint4, q: Qint4) -> bool: def test_grover_subset_sum(self): f = """ -def subset_sum(ii: Tuple[Qint2, Qint2]) -> Qint2: +def subset_sum(ii: Tuple[Qint[2], Qint[2]]) -> Qint[2]: l = [0, 1, 2, 0] return l[ii[0]] + l[ii[1]] """ diff --git a/test/algo/test_simon.py b/test/algo/test_simon.py index 290a58f5..bca05f3c 100644 --- a/test/algo/test_simon.py +++ b/test/algo/test_simon.py @@ -26,7 +26,7 @@ class TestAlgoSimon(unittest.TestCase): def test_simon(self): f = """ -def hash(k: Qint4) -> Qint4: +def hash(k: Qint[4]) -> Qint[4]: return k >> 3 """ qf = qlassf(f, compiler=self.compiler) diff --git a/test/ast2logic/test_translate_arg.py b/test/ast2logic/test_translate_arg.py index 6937049a..01e640c0 100644 --- a/test/ast2logic/test_translate_arg.py +++ b/test/ast2logic/test_translate_arg.py @@ -16,9 +16,11 @@ import unittest from typing import Tuple +from parameterized import parameterized + from qlasskit import Qint2, Qint4, ast2logic, exceptions from qlasskit.ast2ast import ast2ast -from qlasskit.types.qfixed import Qfixed1_3 +from qlasskit.types import Qfixed1_3 class TestAst2Logic_translate_argument(unittest.TestCase): @@ -39,16 +41,16 @@ def test_bool(self): self.assertEqual(c.ttype, bool) self.assertEqual(c.bitvec, ["a"]) - def test_qint2(self): - f = "a: Qint2" + @parameterized.expand(["a: Qint[2]", "a : Qint2"]) + def test_qint2(self, f): ann_ast = ast2ast(ast.parse(f).body[0].annotation) c = ast2logic.translate_argument(ann_ast, ast2logic.Env(), "a") self.assertEqual(c.name, "a") self.assertEqual(c.ttype, Qint2) self.assertEqual(c.bitvec, ["a.0", "a.1"]) - def test_qint4(self): - f = "a: Qint4" + @parameterized.expand(["a: Qint[4]", "a : Qint4"]) + def test_qint4(self, f): ann_ast = ast2ast(ast.parse(f).body[0].annotation) c = ast2logic.translate_argument(ann_ast, ast2logic.Env(), "a") self.assertEqual(c.name, "a") @@ -80,7 +82,7 @@ def test_tuple_of_tuple2(self): self.assertEqual(c.bitvec, ["a.0", "a.1.0", "a.1.1"]) def test_tuple_of_int2(self): - f = "a: Tuple[Qint2, Qint2]" + f = "a: Tuple[Qint[2], Qint[2]]" ann_ast = ast2ast(ast.parse(f).body[0].annotation) c = ast2logic.translate_argument(ann_ast, ast2logic.Env(), "a") self.assertEqual(c.name, "a") @@ -96,7 +98,7 @@ def test_tuple_of_int2(self): ) def test_list_of_int2(self): - f = "a: Qlist[Qint2, 2]" + f = "a: Qlist[Qint[2], 2]" ann_ast = ast2ast(ast.parse(f)).body[0].annotation c = ast2logic.translate_argument(ann_ast, ast2logic.Env(), "a") self.assertEqual(c.name, "a") diff --git a/test/qlassf/test_builtin.py b/test/qlassf/test_builtin.py index 01fbcae9..e905904f 100644 --- a/test/qlassf/test_builtin.py +++ b/test/qlassf/test_builtin.py @@ -30,21 +30,21 @@ def test_print_call(self): compute_and_compare_results(self, qf) def test_len(self): - f = "def test(a: Tuple[bool, bool]) -> Qint2:\n\treturn len(a)" + f = "def test(a: Tuple[bool, bool]) -> Qint[2]:\n\treturn len(a)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[0][1], False) self.assertEqual(qf.expressions[1][1], True) compute_and_compare_results(self, qf) def test_len2(self): - f = "def test(a: Tuple[bool, bool]) -> Qint2:\n\tc=a\n\treturn len(c)" + f = "def test(a: Tuple[bool, bool]) -> Qint[2]:\n\tc=a\n\treturn len(c)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-2][1], False) self.assertEqual(qf.expressions[-1][1], True) compute_and_compare_results(self, qf) def test_len4(self): - f = "def test(a: Tuple[bool, bool, bool, bool]) -> Qint4:\n\treturn len(a)" + f = "def test(a: Tuple[bool, bool, bool, bool]) -> Qint[4]:\n\treturn len(a)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[0][1], False) self.assertEqual(qf.expressions[1][1], False) @@ -53,58 +53,58 @@ def test_len4(self): compute_and_compare_results(self, qf) def test_min(self): - f = "def test(a: Qint2, b: Qint2) -> Qint2:\n\treturn min(a,b)" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[2]:\n\treturn min(a,b)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_min_const(self): - f = "def test(a: Qint2) -> Qint2:\n\treturn min(a,3)" + f = "def test(a: Qint[2]) -> Qint[2]:\n\treturn min(a,3)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_max(self): - f = "def test(a: Qint2, b: Qint2) -> Qint2:\n\treturn max(a,b)" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[2]:\n\treturn max(a,b)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_max_of3(self): - f = "def test(a: Qint2, b: Qint2) -> Qint2:\n\treturn max(a,b,3)" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[2]:\n\treturn max(a,b,3)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_max_const(self): - f = "def test(a: Qint2) -> Qint2:\n\treturn max(a,3)" + f = "def test(a: Qint[2]) -> Qint[2]:\n\treturn max(a,3)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) # TODO: fix cast # def test_max_const2(self): - # f = "def test(a: Qint4) -> Qint4:\n\treturn max(a,3)" + # f = "def test(a: Qint[4]) -> Qint[4]:\n\treturn max(a,3)" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) def test_max_tuple(self): - f = "def test(a: Tuple[Qint2, Qint2]) -> Qint2:\n\treturn max(a)" + f = "def test(a: Tuple[Qint[2], Qint[2]]) -> Qint[2]:\n\treturn max(a)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_max_tuple_const(self): - f = "def test(a: Qint2, b: Qint2) -> Qint2:\n\treturn max((a, b))" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[2]:\n\treturn max((a, b))" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_sum_const(self): - f = "def test() -> Qint2:\n\treturn sum([1,2,3])" + f = "def test() -> Qint[2]:\n\treturn sum([1,2,3])" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_sum_list(self): - f = "def test(a: Qlist[Qint2, 2]) -> Qint2:\n\treturn sum(a)" + f = "def test(a: Qlist[Qint[2], 2]) -> Qint[2]:\n\treturn sum(a)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_sum_tuple(self): - f = "def test(a: Tuple[Qint2, Qint2]) -> Qint2:\n\treturn sum(a)" + f = "def test(a: Tuple[Qint[2], Qint[2]]) -> Qint[2]:\n\treturn sum(a)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -129,18 +129,18 @@ def test_all_const_list(self): compute_and_compare_results(self, qf) def test_max_in_list(self): - f = "def test() -> Qlist[Qint2, 3]:\n\treturn [max(0,1), max(1,2), max(2,3)]" + f = "def test() -> Qlist[Qint[2], 3]:\n\treturn [max(0,1), max(1,2), max(2,3)]" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) # TODO: # def test_len_of_range(self): - # f = "def test() -> Qint4:\n\treturn len(range(4))" + # f = "def test() -> Qint[4]:\n\treturn len(range(4))" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) # TODO: # def test_range_of_len(self): - # f = "def test(a: Qlist[bool, 3]) -> Qint4:\n\treturn range(len(a))" + # f = "def test(a: Qlist[bool, 3]) -> Qint[4]:\n\treturn range(len(a))" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) diff --git a/test/qlassf/test_fixed.py b/test/qlassf/test_fixed.py index f34a753f..0ea9912f 100644 --- a/test/qlassf/test_fixed.py +++ b/test/qlassf/test_fixed.py @@ -16,9 +16,8 @@ from parameterized import parameterized, parameterized_class -from qlasskit import Qint2, qlassf -from qlasskit.types.qfixed import Qfixed1_3, Qfixed2_3, Qfixed2_4 -from qlasskit.types.qtype import bin_to_bool_list +from qlasskit import qlassf +from qlasskit.types import Qfixed1_3, Qfixed2_3, Qfixed2_4, Qint2, bin_to_bool_list from ..utils import COMPILATION_ENABLED, ENABLED_COMPILERS, compute_and_compare_results @@ -162,11 +161,11 @@ def test_sub_const(self): compute_and_compare_results(self, qf) # def test_to_int(self): - # f = "def test(a: Qfixed[2,4]) -> Qint2:\n\treturn int(a)" + # f = "def test(a: Qfixed[2,4]) -> Qint[2]:\n\treturn int(a)" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) # def test_to_float(self): - # f = "def test(a: Qint2) -> Qfixed[2,4]:\n\treturn float(a)" + # f = "def test(a: Qint[2]) -> Qfixed[2,4]:\n\treturn float(a)" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) diff --git a/test/qlassf/test_for_loop.py b/test/qlassf/test_for_loop.py index 2ff0eed8..9d476c7d 100644 --- a/test/qlassf/test_for_loop.py +++ b/test/qlassf/test_for_loop.py @@ -28,17 +28,17 @@ @parameterized_class(("compiler"), ENABLED_COMPILERS) class TestForLoop(unittest.TestCase): def test_for_1it(self): - f = "def test(a: Qint2) -> Qint2:\n\tfor x in range(1):\n\t\ta += 1\n\treturn a" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tfor x in range(1):\n\t\ta += 1\n\treturn a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_for_4it(self): - f = "def test(a: Qint2) -> Qint2:\n\tfor x in range(4):\n\t\ta += 1\n\treturn a" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tfor x in range(4):\n\t\ta += 1\n\treturn a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_for_3it(self): - f = "def test(a: Qint2) -> Qint2:\n\tfor i in range(3):\n\t\ta += i\n\treturn a" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tfor i in range(3):\n\t\ta += i\n\treturn a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -61,7 +61,7 @@ def test_for_nit_bool_many(self): def test_for_cond(self): f = ( - "def test(a: Qint2, b: bool) -> Qint2:\n\tfor i in range(2):\n" + "def test(a: Qint[2], b: bool) -> Qint[2]:\n\tfor i in range(2):\n" "\t\ta += (i if b else 1)\n\treturn a" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) @@ -69,7 +69,7 @@ def test_for_cond(self): def test_for_sum(self): f = ( - "def hash(k: Qint4) -> bool:\n\tz = 1\n\tfor i in range(3):\n" + "def hash(k: Qint[4]) -> bool:\n\tz = 1\n\tfor i in range(3):\n" "\t\tz += i\n\treturn z == 3" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) diff --git a/test/qlassf/test_hybrid_quantum.py b/test/qlassf/test_hybrid_quantum.py index fb0df652..9923ab96 100644 --- a/test/qlassf/test_hybrid_quantum.py +++ b/test/qlassf/test_hybrid_quantum.py @@ -29,14 +29,14 @@ def test_h(self): # THIS IS NOT ALLOWED, since hybrid quantum is applicable only with gates that # operates on 1 qubit a possible solution is to implement QFT directly as hybrid function. # def test_qft(self): - # f = "def test(a: Qint2) -> Qint2:\n\treturn Q.QFT(a)" + # f = "def test(a: Qint[2]) -> Qint[2]:\n\treturn Q.QFT(a)" # qf = qlassf(f, to_compile=False, uncompute=False) # print(qf.expressions) # count = qiskit_measure_and_count(qf.circuit().export(), 128) # [self.assertEqual(x in count, True) for x in ["00", "11", "01", "11"]] def test_h_multi(self): - f = "def test(a: Qint2) -> Qint2:\n\treturn Q.H(a)" + f = "def test(a: Qint[2]) -> Qint[2]:\n\treturn Q.H(a)" qf = qlassf(f, to_compile=COMPILATION_ENABLED, uncompute=False) count = qiskit_measure_and_count(qf.circuit().export(), 128) [self.assertEqual(x in count, True) for x in ["00", "11", "01", "11"]] @@ -49,7 +49,7 @@ def test_bell(self): self.assertEqual(len(count.keys()), 2) def test_h_and_add(self): - f = "def test(a: Qint2) -> Qint2:\n\ta = Q.H(a)\n\treturn a + 1" + f = "def test(a: Qint[2]) -> Qint[2]:\n\ta = Q.H(a)\n\treturn a + 1" qf = qlassf(f, to_compile=COMPILATION_ENABLED, uncompute=False) count = qiskit_measure_and_count(qf.circuit().export(), 128) [self.assertEqual(x in count, True) for x in ["1110", "0011", "1001", "0100"]] diff --git a/test/qlassf/test_ifthenelse.py b/test/qlassf/test_ifthenelse.py index b7a714a5..a72beb40 100644 --- a/test/qlassf/test_ifthenelse.py +++ b/test/qlassf/test_ifthenelse.py @@ -75,7 +75,7 @@ def test_if_for(self): def test_if_for2(self): f = ( - "def test(a: bool, b: bool) -> Qint2:\n" + "def test(a: bool, b: bool) -> Qint[2]:\n" + "\td = 0\n" + "\tfor i in range(3):\n" + "\t\tif a:\n" diff --git a/test/qlassf/test_int.py b/test/qlassf/test_int.py index bdeaa5c0..1af6ff15 100644 --- a/test/qlassf/test_int.py +++ b/test/qlassf/test_int.py @@ -14,11 +14,12 @@ import unittest -from parameterized import parameterized_class +from parameterized import parameterized, parameterized_class from sympy import Symbol, symbols from sympy.logic import And, Not from qlasskit import Qint2, Qint4, exceptions, qlassf +from qlasskit.types import bin_to_bool_list from ..utils import ( COMPILATION_ENABLED, @@ -32,21 +33,19 @@ class TestQintEncoding(unittest.TestCase): - def test_fixed_const(self): - self.assertEqual(Qint4.to_bin(Qint4(6)), "0110") - self.assertEqual(Qint4.to_bin(Qint4(1)), "1000") - self.assertEqual(Qint4.to_bin(Qint4(2)), "0100") - self.assertEqual(Qint4.to_bin(Qint4(0)), "0000") - self.assertEqual(Qint4.to_bin(Qint4(8)), "0001") - - def test_fixed_from_bool(self): - def fb(b): - return list(map(lambda c: True if c == "1" else False, b)) - - self.assertEqual(Qint4.from_bool(fb("0110")), 6) - self.assertEqual(Qint4.from_bool(fb("0010")), 4) - self.assertEqual(Qint4.from_bool(fb("0100")), 2) - self.assertEqual(Qint4.from_bool(fb("0001")), 8) + @parameterized.expand( + [ + (Qint4, 6, "0110"), + (Qint4, 1, "1000"), + (Qint4, 2, "0100"), + (Qint4, 0, "0000"), + (Qint4, 8, "0001"), + (Qint4, 4, "0010"), + ] + ) + def test_fixed_const(self, qit, val, bin_v): + self.assertEqual(qit.to_bin(qit(val)), bin_v) + self.assertEqual(qit.from_bool(bin_to_bool_list(bin_v)), val) class TestQint(unittest.TestCase): @@ -62,12 +61,12 @@ def test_qint2_to_bin(self): @parameterized_class( - ("ttype", "ttype_str", "ttype_size", "compiler"), + ("ttype_str", "ttype_size", "compiler"), inject_parameterized_compilers( [ - (Qint2, "Qint2", 2), - (Qint4, "Qint4", 4), - # (Qint8, "Qint8", 8), + ("Qint[2]", 2), + ("Qint[4]", 4), + # ("Qint[8]", 8), ] ), ) @@ -138,11 +137,11 @@ def test_int_const_compare_eq(self): @parameterized_class( - ("ttype", "ttype_str", "ttype_size", "compiler"), + ("ttype_str", "ttype_size", "compiler"), inject_parameterized_compilers( [ - (Qint2, "Qint2", 2), - (Qint4, "Qint4", 4), + ("Qint[2]", 2), + ("Qint[4]", 4), ] ), ) @@ -178,7 +177,7 @@ def test_const_int_compare_lt(self): @parameterized_class(("compiler"), ENABLED_COMPILERS) class TestQlassfInt(unittest.TestCase): def test_int_const(self): - f = "def test(a: Qint2) -> Qint2:\n\tc=2\n\treturn c" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tc=2\n\treturn c" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(len(qf.expressions), 2) self.assertEqual(qf.expressions[-2][1], False) @@ -186,7 +185,7 @@ def test_int_const(self): compute_and_compare_results(self, qf) def test_int_const_compare_eq(self): - f = "def test(a: Qint2) -> bool:\n\treturn a == 2" + f = "def test(a: Qint[2]) -> bool:\n\treturn a == 2" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(len(qf.expressions), 1) self.assertEqual(qf.expressions[0][0], _ret) @@ -194,7 +193,7 @@ def test_int_const_compare_eq(self): compute_and_compare_results(self, qf) def test_int_const_compare_eq_different_type(self): - f = "def test(a: Qint4) -> bool:\n\treturn a == 2" + f = "def test(a: Qint[4]) -> bool:\n\treturn a == 2" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(len(qf.expressions), 1) self.assertEqual(qf.expressions[0][0], _ret) @@ -210,7 +209,7 @@ def test_int_const_compare_eq_different_type(self): compute_and_compare_results(self, qf) def test_const_int_compare_eq_different_type(self): - f = "def test(a: Qint4) -> bool:\n\treturn 2 == a" + f = "def test(a: Qint[4]) -> bool:\n\treturn 2 == a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(len(qf.expressions), 1) self.assertEqual(qf.expressions[0][0], _ret) @@ -226,87 +225,87 @@ def test_const_int_compare_eq_different_type(self): compute_and_compare_results(self, qf) def test_const_int_compare_neq_different_type(self): - f = "def test(a: Qint4) -> bool:\n\treturn 2 != a" + f = "def test(a: Qint[4]) -> bool:\n\treturn 2 != a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-1][0], _ret) compute_and_compare_results(self, qf) def test_int_int_compare_neq(self): - f = "def test(a: Qint2, b: Qint2) -> bool:\n\treturn a != b" + f = "def test(a: Qint[2], b: Qint[2]) -> bool:\n\treturn a != b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-1][0], _ret) compute_and_compare_results(self, qf) def test_const_int_compare_gt(self): - f = "def test(a: Qint4) -> bool:\n\treturn a > 6" + f = "def test(a: Qint[4]) -> bool:\n\treturn a > 6" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(len(qf.expressions), 1) self.assertEqual(qf.expressions[0][0], _ret) compute_and_compare_results(self, qf) # def test_int4_int4_compare_gt(self): - # f = "def test(a: Qint4, b: Qint4) -> bool:\n\treturn a > b" + # f = "def test(a: Qint[4], b: Qint[4]) -> bool:\n\treturn a > b" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # # self.assertEqual(len(qf.expressions), 1) # # self.assertEqual(len(qf.expressions[0][0], _ret) # compute_and_compare_results(self, qf) def test_const_int4_compare_lt(self): - f = "def test(a: Qint4) -> bool:\n\treturn a < 6" + f = "def test(a: Qint[4]) -> bool:\n\treturn a < 6" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(len(qf.expressions), 2) self.assertEqual(qf.expressions[-1][0], _ret) compute_and_compare_results(self, qf) def test_int_int_compare_gt(self): - f = "def test(a: Qint2, b: Qint2) -> bool:\n\treturn a > b" + f = "def test(a: Qint[2], b: Qint[2]) -> bool:\n\treturn a > b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-1][0], _ret) compute_and_compare_results(self, qf) def test_int_int_compare_lt(self): - f = "def test(a: Qint2, b: Qint2) -> bool:\n\treturn a < b" + f = "def test(a: Qint[2], b: Qint[2]) -> bool:\n\treturn a < b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-1][0], _ret) compute_and_compare_results(self, qf) def test_const_int_compare_gte(self): - f = "def test(a: Qint2, b: Qint2) -> bool:\n\treturn a >= b" + f = "def test(a: Qint[2], b: Qint[2]) -> bool:\n\treturn a >= b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-1][0], _ret) compute_and_compare_results(self, qf) def test_const_int_compare_lte(self): - f = "def test(a: Qint2, b: Qint2) -> bool:\n\treturn a <= b" + f = "def test(a: Qint[2], b: Qint[2]) -> bool:\n\treturn a <= b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-1][0], _ret) compute_and_compare_results(self, qf) def test_ite_return_qint(self): - f = "def test(a: bool, b: Qint2, c: Qint2) -> Qint2:\n\treturn b if a else c" + f = "def test(a: bool, b: Qint[2], c: Qint[2]) -> Qint[2]:\n\treturn b if a else c" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) self.assertEqual(qf.expressions[-2][0], Symbol("_ret.0")) self.assertEqual(qf.expressions[-1][0], Symbol("_ret.1")) compute_and_compare_results(self, qf) def test_composed_comparators(self): - f = "def f_comp(n: Qint4) -> bool: return n > 3 or n == 7" + f = "def f_comp(n: Qint[4]) -> bool: return n > 3 or n == 7" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_shift_left(self): - f = "def test(n: Qint2) -> Qint4: return n << 1" + f = "def test(n: Qint[2]) -> Qint[4]: return n << 1" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_shift_right(self): - f = "def test(n: Qint2) -> Qint4: return n >> 1" + f = "def test(n: Qint[2]) -> Qint[4]: return n >> 1" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) # Our Qint are unsigned # def test_invert_bitwise_not(self): - # f = "def test(n: Qint4) -> bool: return ~n" + # f = "def test(n: Qint[4]) -> bool: return ~n" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) @@ -315,32 +314,35 @@ def test_shift_right(self): @parameterized_class(("compiler"), ENABLED_COMPILERS) class TestQlassfIntAdd(unittest.TestCase): def test_add_tuple(self): - f = "def test(a: Tuple[Qint2, Qint2]) -> Qint2: return a[0] + a[1]" + f = "def test(a: Tuple[Qint[2], Qint[2]]) -> Qint[2]: return a[0] + a[1]" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_add(self): - f = "def test(a: Qint2, b: Qint2) -> Qint2: return a + b" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[2]: return a + b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_add_const(self): - f = "def test(a: Qint2) -> Qint2: return a + 1" + f = "def test(a: Qint[2]) -> Qint[2]: return a + 1" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_add_const2(self): - f = "def test() -> Qint4: return Qint4(3) + 3" + f = "def test() -> Qint[4]: return Qint4(3) + 3" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_add_const3(self): - f = "def test(a: Qint2, b: Qint2) -> Qint4: return Qint4(3) + a if a == 3 else Qint4(1) + b" + f = ( + "def test(a: Qint[2], b: Qint[2]) -> Qint[4]: " + "return Qint4(3) + a if a == 3 else Qint4(1) + b" + ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_add_const4(self): - f = "def test(a: Qint2) -> Qint2: return a + 2" + f = "def test(a: Qint[2]) -> Qint[2]: return a + 2" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -359,12 +361,12 @@ def test_add_const4(self): ) class TestQlassfIntMod(unittest.TestCase): def test_mod_const(self): - f = f"def test(a: Qint4) -> Qint4: return a % {self.val}" + f = f"def test(a: Qint[4]) -> Qint[4]: return a % {self.val}" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_mod_const_in_var(self): - f = f"def test(a: Qint4) -> Qint4:\n\tb = {self.val}\n\treturn a % b" + f = f"def test(a: Qint[4]) -> Qint[4]:\n\tb = {self.val}\n\treturn a % b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -372,27 +374,27 @@ def test_mod_const_in_var(self): @parameterized_class(("compiler"), ENABLED_COMPILERS) class TestQlassfIntSub(unittest.TestCase): def test_sub_const(self): - f = "def test(a: Qint2) -> Qint2: return a - 1" + f = "def test(a: Qint[2]) -> Qint[2]: return a - 1" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_sub_const2(self): - f = "def test(a: Qint2) -> Qint2: return a - 3" + f = "def test(a: Qint[2]) -> Qint[2]: return a - 3" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_sub_const3(self): - f = "def test(a: Qint4) -> Qint4: return a - 8" + f = "def test(a: Qint[4]) -> Qint[4]: return a - 8" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @parameterized_class( - ("ttype", "ttype_str", "ttype_size", "compiler"), + ("ttype_str", "ttype_size", "compiler"), inject_parameterized_compilers( [ - (Qint2, "Qint2", 2), - (Qint4, "Qint4", 4), + ("Qint[2]", 2), + ("Qint[4]", 4), ] ), ) @@ -425,22 +427,22 @@ def test_bitwise_xor(self): @parameterized_class(("compiler"), ENABLED_COMPILERS) class TestQlassfIntReassign(unittest.TestCase): def test_reassign_newvar(self): - f = "def test(a: Qint2) -> Qint2:\n\tb = 0\n\tb = a + 1\n\treturn b" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tb = 0\n\tb = a + 1\n\treturn b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_reassign_arg(self): - f = "def test(a: Qint2) -> Qint2:\n\ta = a + 1\n\treturn a" + f = "def test(a: Qint[2]) -> Qint[2]:\n\ta = a + 1\n\treturn a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_aug_reassign_newvar(self): - f = "def test(a: Qint2) -> Qint2:\n\tb = a\n\tb += 1\n\treturn b" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tb = a\n\tb += 1\n\treturn b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_aug_reassign_arg(self): - f = "def test(a: Qint2) -> Qint2:\n\ta += 1\n\treturn a" + f = "def test(a: Qint[2]) -> Qint[2]:\n\ta += 1\n\treturn a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -448,32 +450,32 @@ def test_aug_reassign_arg(self): @parameterized_class(("compiler"), ENABLED_COMPILERS) class TestQlassfIntMul(unittest.TestCase): def test_mul(self): - f = "def test(a: Qint2, b: Qint2) -> Qint4: return a * b" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[4]: return a * b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_mul_and_sum(self): - f = "def test(a: Qint2, b: Qint2, c: Qint2) -> Qint2: return a * b + c" + f = "def test(a: Qint[2], b: Qint[2], c: Qint[2]) -> Qint[2]: return a * b + c" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_mult_multconst(self): - f = "def test(a: Qint2, b: Qint2) -> Qint4:\n\treturn (a * b) * 5" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[4]:\n\treturn (a * b) * 5" qf = qlassf(f, compiler=self.compiler, to_compile=COMPILATION_ENABLED) compute_and_compare_results(self, qf) def test_mul_const(self): - f = "def test(a: Qint2, b: Qint4) -> Qint4:\n\treturn (a * 3) + b" + f = "def test(a: Qint[2], b: Qint[4]) -> Qint[4]:\n\treturn (a * 3) + b" qf = qlassf(f, compiler=self.compiler, to_compile=COMPILATION_ENABLED) compute_and_compare_results(self, qf) def test_mul4(self): - f = "def test(a: Qint4, b: Qint4) -> Qint8: return a * b" + f = "def test(a: Qint[4], b: Qint[4]) -> Qint[8]: return a * b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_mul5(self): - f = "def test(a: Qint3, b: Qint3) -> bool: return 3*2==6" + f = "def test(a: Qint[3], b: Qint[3]) -> bool: return 3*2==6" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) self.assertEqual(qf.expressions[0][1], True) diff --git a/test/qlassf/test_list.py b/test/qlassf/test_list.py index 7d7ec4cf..2a146adf 100644 --- a/test/qlassf/test_list.py +++ b/test/qlassf/test_list.py @@ -46,7 +46,7 @@ def test_list(self): compute_and_compare_results(self, qf) def test_list_item_swap(self): - f = "def swapf(a: Qlist[Qint2, 2]) -> Qlist[Qint2, 2]:\n\treturn [a[1], a[0]]" + f = "def swapf(a: Qlist[Qint[2], 2]) -> Qlist[Qint[2], 2]:\n\treturn [a[1], a[0]]" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -56,35 +56,41 @@ def test_list_item_swap_bool(self): compute_and_compare_results(self, qf) def test_list_item_sum(self): - f = "def swapf(a: Qlist[Qint2, 2]) -> Qint2:\n\treturn a[0] + a[1]" + f = "def swapf(a: Qlist[Qint[2], 2]) -> Qint[2]:\n\treturn a[0] + a[1]" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_list_iterator_var(self): - f = "def test(a: Qlist[Qint2, 2]) -> Qint2:\n\tc = 0\n\tfor x in a:\n\t\tc += x\n\treturn c" + f = ( + "def test(a: Qlist[Qint[2], 2]) -> Qint[2]:\n\tc = 0\n" + "\tfor x in a:\n\t\tc += x\n\treturn c" + ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_list_iterator_list(self): - f = "def test(a: Qint2) -> Qint2:\n\tc = 0\n\tfor x in [1,2,3]:\n\t\tc += x + a\n\treturn c" + f = ( + "def test(a: Qint[2]) -> Qint[2]:\n\tc = 0\n" + "\tfor x in [1,2,3]:\n\t\tc += x + a\n\treturn c" + ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_list_iterator_varlist(self): - f = "def test(a: Qint2) -> Qint2:\n\tc = [1,2,3]\n\tfor x in c:\n\t\ta += x\n\treturn a" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tc = [1,2,3]\n\tfor x in c:\n\t\ta += x\n\treturn a" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_list_len(self): f = ( - "def test(a: Qlist[Qint2, 2]) -> Qint2:\n\tc = 0\n\tfor x in range(len(a)):\n" + "def test(a: Qlist[Qint[2], 2]) -> Qint[2]:\n\tc = 0\n\tfor x in range(len(a)):\n" "\t\tc += a[x]\n\treturn c" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_list_access_with_var(self): - f = "def test(a: Qint2) -> Qint2:\n\tc = [1,2,3,2]\n\tb = c[a]\n\treturn b" + f = "def test(a: Qint[2]) -> Qint[2]:\n\tc = [1,2,3,2]\n\tb = c[a]\n\treturn b" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -94,7 +100,7 @@ def test_list_access_with_var_on_tuple(self): return f = ( - "def test(ab: Tuple[Qint2, Qint2]) -> Qint2:\n\tc = [1,2,3,2]\n\tai,bi = ab\n" + "def test(ab: Tuple[Qint[2], Qint[2]]) -> Qint[2]:\n\tc = [1,2,3,2]\n\tai,bi = ab\n" "\td = c[ai] + c[bi]\n\treturn d" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) @@ -106,7 +112,7 @@ def test_list_access_with_var_on_tuple2(self): return f = ( - "def test(ab: Tuple[Qint2, Qint2]) -> Qint2:\n\tc = [1,2,3,2]\n" + "def test(ab: Tuple[Qint[2], Qint[2]]) -> Qint[2]:\n\tc = [1,2,3,2]\n" "\td = c[ab[0]] + c[ab[1]]\n\treturn d" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) diff --git a/test/qlassf/test_matrix.py b/test/qlassf/test_matrix.py index f72730cc..ec91361e 100644 --- a/test/qlassf/test_matrix.py +++ b/test/qlassf/test_matrix.py @@ -59,7 +59,7 @@ def test_matrix_access(self): def test_matrix_iterator_var(self): f = ( - "def test(a: Qmatrix[Qint2, 2, 2]) -> Qint2:\n\tc = 0\n\tfor x in a:\n" + "def test(a: Qmatrix[Qint[2], 2, 2]) -> Qint[2]:\n\tc = 0\n\tfor x in a:\n" "\t\tfor y in x:\n\t\t\tc += y\n\treturn c" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) @@ -67,7 +67,7 @@ def test_matrix_iterator_var(self): def test_matrix_iterator_list(self): f = ( - "def test(a: Qint2) -> Qint2:\n\tc = 0\n\tfor x in [[1,2],[3,4]]:\n" + "def test(a: Qint[2]) -> Qint[2]:\n\tc = 0\n\tfor x in [[1,2],[3,4]]:\n" "\t\tfor y in x:\n\t\t\tc += y + a\n\treturn c" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) @@ -75,7 +75,7 @@ def test_matrix_iterator_list(self): def test_matrix_iterator_varlist(self): f = ( - "def test(a: Qint2) -> Qint2:\n\tc = [[1,2],[3,4]]\n\tfor x in c:\n" + "def test(a: Qint[2]) -> Qint[2]:\n\tc = [[1,2],[3,4]]\n\tfor x in c:\n" "\t\tfor y in x:\n\t\t\ta += y\n\treturn a" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) @@ -83,7 +83,7 @@ def test_matrix_iterator_varlist(self): def test_matrix_len(self): f = ( - "def test(a: Qmatrix[Qint2, 2, 2]) -> Qint2:\n\tc = 0\n" + "def test(a: Qmatrix[Qint[2], 2, 2]) -> Qint[2]:\n\tc = 0\n" "\tfor x in range(len(a)):\n\t\tc += a[x][0]\n\treturn c" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) @@ -93,13 +93,14 @@ def test_matrix_len(self): # (value=Name(id='a', ctx=Load()), slice=Name(id='i', ctx=Load()), ctx=Load()) # def test_matrix_access2(self): # f = ( - # "def test(a: Qmatrix[Qint2, 2, 2]) -> Qint2:\n\ti = 1\n\tj = i + 1\n\treturn a[i][i]" + # "def test(a: Qmatrix[Qint[2], 2, 2]) -> Qint[2]:\n\ti = 1\n" + # "\tj = i + 1\n\treturn a[i][i]" # ) # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) # def test_matrix_access_with_var(self): - # f = "def test(a: Qint2) -> Qint2:\n\tc = [[1,2],[3,4]]\n\tb = c[a][a]\n\treturn b" + # f = "def test(a: Qint[2]) -> Qint[2]:\n\tc = [[1,2],[3,4]]\n\tb = c[a][a]\n\treturn b" # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) @@ -108,7 +109,7 @@ def test_matrix_len(self): # if self.compiler == "internal": # return - # f = ("def test(ab: Tuple[Qint2, Qint2]) -> Qint2:\n\tc = [1,2,3,2]\n\tai,bi = ab\n" + # f = ("def test(ab: Tuple[Qint[2], Qint[2]]) -> Qint[2]:\n\tc = [1,2,3,2]\n\tai,bi = ab\n" # "\td = c[ai] + c[bi]\n\treturn d") # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) @@ -118,7 +119,7 @@ def test_matrix_len(self): # if self.compiler == "internal": # return - # f = ("def test(ab: Tuple[Qint2, Qint2]) -> Qint2:\n\tc = [1,2,3,2]\n" + # f = ("def test(ab: Tuple[Qint[2], Qint[2]]) -> Qint[2]:\n\tc = [1,2,3,2]\n" # "\td = c[ab[0]] + c[ab[1]]\n\treturn d") # qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) # compute_and_compare_results(self, qf) diff --git a/test/qlassf/test_parameters.py b/test/qlassf/test_parameters.py index 4b017efb..ef7841a6 100644 --- a/test/qlassf/test_parameters.py +++ b/test/qlassf/test_parameters.py @@ -37,7 +37,7 @@ def test_bind_bool(self): def test_bind_qint2(self): uqf = qlassf( - "def test(c: Parameter[Qint2], a: bool) -> Qint2: return c+1 if a else c", + "def test(c: Parameter[Qint[2]], a: bool) -> Qint[2]: return c+1 if a else c", to_compile=COMPILATION_ENABLED, ) qf = uqf.bind(c=1) @@ -46,7 +46,7 @@ def test_bind_qint2(self): def test_bind_multiple_qint2(self): uqf = qlassf( ( - "def test(c: Parameter[Qint2], d: Parameter[Qint2], a: bool) -> Qint2: " + "def test(c: Parameter[Qint[2]], d: Parameter[Qint[2]], a: bool) -> Qint[2]: " "return c+d if a else c+1" ), to_compile=COMPILATION_ENABLED, @@ -64,7 +64,10 @@ def test_bind_list(self): def test_bind_tuple(self): uqf = qlassf( - "def test(c: Parameter[Tuple[bool, Qint2]]) -> Qint2: return c[1] if c[0] else c[1]+1", + ( + "def test(c: Parameter[Tuple[bool, Qint[2]]]) -> Qint[2]:" + "return c[1] if c[0] else c[1]+1" + ), to_compile=COMPILATION_ENABLED, ) qf = uqf.bind(c=(True, 2)) diff --git a/test/qlassf/test_qlassf.py b/test/qlassf/test_qlassf.py index 186c94f0..34faf4b8 100644 --- a/test/qlassf/test_qlassf.py +++ b/test/qlassf/test_qlassf.py @@ -71,7 +71,7 @@ def test_encode_decode_bool(self): self.assertEqual(qf.decode_output("0"), False) def test_encode_decode_qint(self): - f = "def test(a: Qint2) -> Qint2:\n\treturn a" + f = "def test(a: Qint[2]) -> Qint[2]:\n\treturn a" qf = qlassf(f, to_compile=False) self.assertEqual(qf.encode_input(Qint2(2)), "01"[::-1]) self.assertEqual(qf.decode_output("01"[::-1]), Qint2(2)) @@ -80,7 +80,7 @@ def test_encode_decode_qint(self): self.assertEqual(qf.decode_output("00"), Qint2(0)) def test_encode_decode_tuple(self): - f = "def test(a: Tuple[Qint2, bool]) -> Tuple[Qint2, bool]:\n\treturn a" + f = "def test(a: Tuple[Qint[2], bool]) -> Tuple[Qint[2], bool]:\n\treturn a" qf = qlassf(f, to_compile=False) self.assertEqual(qf.encode_input((Qint2(2), False)), "010") self.assertEqual(qf.decode_output("010"), (Qint2(2), False)) @@ -89,7 +89,7 @@ def test_encode_decode_tuple(self): self.assertEqual(qf.decode_output("001"[::-1]), (Qint2(0), True)) def test_encode_decode_tuple2(self): - f = "def test(a: Tuple[Qint2, Qint4]) -> Tuple[Qint2, Qint4]:\n\treturn a" + f = "def test(a: Tuple[Qint[2], Qint[4]]) -> Tuple[Qint[2], Qint[4]]:\n\treturn a" qf = qlassf(f, to_compile=False) self.assertEqual(qf.encode_input((Qint2(2), Qint4(3))), "011100"[::-1]) self.assertEqual(qf.decode_output("011100"[::-1]), (Qint2(2), Qint4(3))) @@ -151,7 +151,7 @@ def test_or_not_truth(self): ) def test_big_truth(self): - f = "def test(a: Qint4) -> Qint4:\n\treturn a" + f = "def test(a: Qint[4]) -> Qint[4]:\n\treturn a" qf = qlassf(f, to_compile=False) tt = qf.truth_table() tth = qf.truth_table_header() diff --git a/test/qlassf/test_tuple.py b/test/qlassf/test_tuple.py index 2438e71c..31baa6f1 100644 --- a/test/qlassf/test_tuple.py +++ b/test/qlassf/test_tuple.py @@ -46,7 +46,10 @@ def test_tuple_arg(self): compute_and_compare_results(self, qf) def test_tuple_item_swap(self): - f = "def swapf(a: Tuple[Qint2, Qint2]) -> Tuple[Qint2, Qint2]:\n\treturn (a[1], a[0])" + f = ( + "def swapf(a: Tuple[Qint[2], Qint[2]]) -> Tuple[Qint[2], Qint[2]]:\n" + "\treturn (a[1], a[0])" + ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -140,12 +143,12 @@ def test_multi_assign(self): compute_and_compare_results(self, qf) def test_multi_assign2(self): - f = "def test() -> Qint4:\n\tc, d = 1, 2\n\treturn c+d" + f = "def test() -> Qint[4]:\n\tc, d = 1, 2\n\treturn c+d" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_multi_assign3(self): - f = "def test() -> Qint4:\n\tc, d, e = 1, 2, 0xa\n\treturn c+d+e" + f = "def test() -> Qint[4]:\n\tc, d, e = 1, 2, 0xa\n\treturn c+d+e" qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) @@ -165,24 +168,33 @@ def test_tuple_compare(self): compute_and_compare_results(self, qf) def test_tuple_int_compare(self): - f = "def test(a: Tuple[Qint2, Qint2], b: Tuple[Qint2, Qint2]) -> bool:\n\treturn a == b" + f = ( + "def test(a: Tuple[Qint[2], Qint[2]], b: Tuple[Qint[2], Qint[2]]) -> bool:\n" + "\treturn a == b" + ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_tuple_iterator_var(self): f = ( - "def test(a: Tuple[Qint2, Qint2]) -> Qint2:\n\tc = 0\n\tfor x in a:\n" + "def test(a: Tuple[Qint[2], Qint[2]]) -> Qint[2]:\n\tc = 0\n\tfor x in a:\n" "\t\tc += x\n\treturn c" ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_tuple_iterator_tuple(self): - f = "def test(a: Qint2) -> Qint2:\n\tc = 0\n\tfor x in (1,2,3):\n\t\tc += x + a\n\treturn c" + f = ( + "def test(a: Qint[2]) -> Qint[2]:\n\tc = 0\n" + "\tfor x in (1,2,3):\n\t\tc += x + a\n\treturn c" + ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) def test_tuple_iterator_vartuple(self): - f = "def test(a: Qint2) -> Qint2:\n\tc = (1,2,3)\n\tfor x in c:\n\t\ta += x\n\treturn a" + f = ( + "def test(a: Qint[2]) -> Qint[2]:\n\tc = (1,2,3)\n" + "\tfor x in c:\n\t\ta += x\n\treturn a" + ) qf = qlassf(f, to_compile=COMPILATION_ENABLED, compiler=self.compiler) compute_and_compare_results(self, qf) diff --git a/test/test_compiler_regression.py b/test/test_compiler_regression.py index 8f761f25..7d0082ad 100644 --- a/test/test_compiler_regression.py +++ b/test/test_compiler_regression.py @@ -35,7 +35,7 @@ def test_2(self): self.assertEqual(qc.num_qubits, 3) def test_3(self): - f = """def hash_simp(m: Qlist[Qint4, 2]) -> Qint8: + f = """def hash_simp(m: Qlist[Qint[4], 2]) -> Qint8: hv = 0 for i in m: hv = ((hv << 4) ^ (hv >> 1) ^ i) & 0xff diff --git a/test/test_decopt.py b/test/test_decopt.py index 56b74ee5..0d1dc292 100644 --- a/test/test_decopt.py +++ b/test/test_decopt.py @@ -112,14 +112,14 @@ def test_circuit_boolean_optimizer_random_x_cx(self): # print(g_total, g_simp) def test_circuit_boolean_optimizer_duplicate_qubit_bug(self): - s = "def qf(a: Qint4) -> Qint4:\n\treturn a * a" + s = "def qf(a: Qint[4]) -> Qint[4]:\n\treturn a * a" qf = qlassf(s) qc = qf.circuit() nc = circuit_boolean_optimizer(qc) self.assertEqual(qc.num_gates, nc.num_gates) self.assertEqual(qc.num_qubits, nc.num_qubits) - s = "def qf(a: Qint4) -> Qint4:\n\treturn a + 2 + 1 + 3" + s = "def qf(a: Qint[4]) -> Qint[4]:\n\treturn a + 2 + 1 + 3" qf = qlassf(s) qc = qf.circuit() nc = circuit_boolean_optimizer(qc) diff --git a/test/test_qlassf_to_bqm.py b/test/test_qlassf_to_bqm.py index 8e539564..0d73add4 100644 --- a/test/test_qlassf_to_bqm.py +++ b/test/test_qlassf_to_bqm.py @@ -46,7 +46,7 @@ def test_to_bqm_1(self): self.assertEqual(x.sample["a"], True) def test_to_bqm_2(self): - f = "def test(a: Qint2) -> bool:\n\treturn a != 2" + f = "def test(a: Qint[2]) -> bool:\n\treturn a != 2" qf = qlassf(f, to_compile=False) bqm = qf.to_bqm() ss = sample_bqm(bqm) @@ -58,7 +58,7 @@ def test_to_bqm_2(self): self.assertEqual(x.sample["a"], 2) def test_to_bqm_3(self): - f = "def test(a: Qint2) -> Qint2:\n\treturn a + 1" + f = "def test(a: Qint[2]) -> Qint[2]:\n\treturn a + 1" qf = qlassf(f, to_compile=False) bqm = qf.to_bqm() ss = sample_bqm(bqm) @@ -70,7 +70,7 @@ def test_to_bqm_3(self): self.assertEqual(x.sample["a"] + 1 % 16, 0) def test_to_bqm_4(self): - f = "def test(a: Qint2, b: Qint2) -> Qint4:\n\treturn Qint4(0) + a + b" + f = "def test(a: Qint[2], b: Qint[2]) -> Qint[4]:\n\treturn Qint4(0) + a + b" qf = qlassf(f, to_compile=False) qubo, offset = qf.to_bqm("qubo") ss = sample_qubo(qubo) @@ -93,7 +93,7 @@ def test_to_bqm_4(self): def test_to_bqm_subset_sum_problem(self): lst = [0, 5, 2, 3] f = ( - f"def subset_sum(ii: Tuple[Qint2, Qint2]) -> Qint3:\n\tl = {lst}\n\t" + f"def subset_sum(ii: Tuple[Qint[2], Qint[2]]) -> Qint[3]:\n\tl = {lst}\n\t" "return l[ii[0]] + l[ii[1]] - 7" ) qf = qlassf(f, to_compile=False) @@ -117,7 +117,7 @@ def test_to_bqm_subset_sum_problem(self): self.assertEqual(sum(map(lambda i: lst[i], x.sample["ii"])), 7) def test_to_bqm_addends(self): - f = "def test(a: Qint4, b: Qint4) -> Qint4:\n\treturn a + b - 12" + f = "def test(a: Qint[4], b: Qint[4]) -> Qint[4]:\n\treturn a + b - 12" qf = qlassf(f, to_compile=False) bqm = qf.to_bqm() @@ -130,7 +130,7 @@ def test_to_bqm_addends(self): self.assertEqual(x.sample["a"] + x.sample["b"], 12) def test_to_bqm_factoring(self): - f = "def test(a: Qint3, b: Qint3) -> Qint4:\n\treturn Qint4(15) - (a * b)" + f = "def test(a: Qint[3], b: Qint[3]) -> Qint[4]:\n\treturn Qint4(15) - (a * b)" qf = qlassf(f, to_compile=False) bqm = qf.to_bqm() diff --git a/test/test_types.py b/test/test_types.py index 90ffc547..9a49bbea 100644 --- a/test/test_types.py +++ b/test/test_types.py @@ -1,4 +1,4 @@ -# Copyright 2023 Davide Gessa +# Copyright 2023-204 Davide Gessa # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. diff --git a/test/utils.py b/test/utils.py index 1284fa33..970d0fb8 100644 --- a/test/utils.py +++ b/test/utils.py @@ -1,4 +1,4 @@ -# Copyright 2023 Davide Gessa +# Copyright 2023-2024 Davide Gessa # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -23,8 +23,9 @@ from qiskit_aer import Aer, AerSimulator from sympy.logic.boolalg import gateinputcount -from qlasskit import Qint, Qtype, const_to_qtype +from qlasskit import Qtype, const_to_qtype from qlasskit.qcircuit import CNotSim, GateNotSimulableException +from qlasskit.types.qint import QintImp COMPILATION_ENABLED = True @@ -81,7 +82,7 @@ def test_not(a: bool) -> bool: return not a -class Qint14(Qint): +class Qint14(QintImp): BIT_SIZE = 14