forked from secastel/aFC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aFC.py
533 lines (423 loc) · 18 KB
/
aFC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#!/usr/bin/env python
import argparse
import copy
import gzip
import math
import numpy as np
import os
import pandas as pd
import pysam
import scikits.bootstrap as boot
import statsmodels.api as sm
import statsmodels.formula.api as smf
import subprocess
import tempfile
import time
import warnings
def main():
parser = argparse.ArgumentParser()
# REQUIRED
parser.add_argument("--vcf", required=True, help="Genotype VCF")
parser.add_argument("--pheno", required=True, help="Phenotype file")
parser.add_argument("--qtl", required=True, help="File containing QTL to calculate allelic fold change for. Should contain tab separated columns 'pid' with phenotype (gene) IDs and 'sid' with SNP IDs. Optionally can include the columns 'sid_chr' and 'sid_pos', which will facilitate tabix retrieval of genotypes, greatly reducing runtime.")
parser.add_argument("--geno", required=False, default="GT", help="Which field in VCF to use as the genotype. By default 'GT' = genotype. Setting to 'DS' will use dosage rounded to the nearest integer (IE 1.75 = 2 = 1|1).")
parser.add_argument("--chr", type=str, help="Limit to a specific chromosome.")
parser.add_argument("--log_xform", type=int, required=True, help="The data has been log transformed (1/0). If so, please set --log_base.")
parser.add_argument("--output", "--o", required=True, help="Output file")
# OPTIONAL
parser.add_argument("--cov", help="Covariates file")
parser.add_argument("--matrix_o", help="Output the raw data matrix used to calculate aFC for each QTL into the specific folder.")
parser.add_argument("--boot", default=100, type=int, help="Number of bootstraps to perform for effect size confidence interval. Can be set to 0 to skip confidence interval calculation, which will greatly reduce runtimes.")
parser.add_argument("--ecap", default=math.log(100,2), type=float, help="Absolute aFC cap in log2.")
parser.add_argument("--log_base", default=2, type=int, help="Base of log applied to data. If other than 2, data will be converted to log2.")
parser.add_argument("--min_samps", default=2, type=int, help="Minimum number of samples with genotype data required to calculate effect size, default = 2.")
parser.add_argument("--min_alleles", default=1, type=int, help="Minimum observations of each allele in data to calculate aFC, default = 1.")
parser.add_argument("--count_o", default=0, type=int, help="Output the observed allele counts, default = 0.")
# disable warnings
warnings.filterwarnings("ignore")
global args
args = parser.parse_args()
version = "0.3"
print("")
print("########################################################")
print(" Welcome to aFC v%s"%(version))
print(" Authors: Pejman Mohammadi ([email protected]),\n Stephane Castel ([email protected])")
print("########################################################")
print("")
print("RUN SETTINGS")
print(" Genotype VCF: %s"%(args.vcf))
print(" Phenotype File: %s"%(args.pheno))
if args.cov != None:
print(" Covariate File: %s"%(args.cov))
print(" QTL File: %s"%(args.qtl))
print(" Genotype Field: %s"%(args.geno))
print(" Log Transformed: %d"%(args.log_xform))
if args.log_xform == 1:
print(" Log Base: %d"%(args.log_base))
print(" Boostraps: %d"%(args.boot))
print(" Minimum number of samples with genotype data: %d"%(args.min_samps))
print(" Minimum number of allele observations: %d"%(args.min_alleles))
if args.chr != None:
print(" Chromosome: %s"%(args.chr))
print("")
if args.log_xform == 1:
print("!! PLEASE ENSURE THAT YOUR DATA HAVE BEEN LOG TRANSFORMED WITH A BASE OF %d !!"%args.log_base)
elif args.log_xform == 0:
print("!! PLEASE ENSURE THAT YOUR DATA HAVE NOT BEEN LOG TRANSFORMED !!")
print("")
start_time = time.time()
# get sample - column map from VCF
print("1. Loading VCF...")
vcf_map = sample_column_map(args.vcf)
tabix_vcf = pysam.Tabixfile(args.vcf,"r")
global df_cov
if args.cov != None:
print("1b. Loading covariates...")
df_cov = pd.read_csv(args.cov, sep="\t", index_col=False)
if "ID" in df_cov.columns:
cov_id_col = "ID"
elif "id" in df_cov.columns:
cov_id_col = "id"
else:
print("Could not find covariate ID column in covariates column. Please ensure that it is either labeled 'ID' or 'id'")
quit()
else:
df_cov = pd.DataFrame(columns=['ID'])
cov_id_col = "ID"
#2 get sample - column map from phenotype file
print("2. Loading phenotype data...")
pheno_map = sample_column_map(args.pheno, line_key="#", start_col=4)
tabix_pheno = pysam.Tabixfile(args.pheno, "r")
# 3 load fastQTL results
print("3. Loading fastQTL results...")
df_qtl = pd.read_csv(args.qtl, sep="\t", index_col=False)
print("4. Retrieving eSNP positions...")
set_esnp = set(df_qtl['sid'].tolist())
dict_esnp = {}
if "sid_chr" in df_qtl.columns and "sid_pos" in df_qtl.columns:
# eSNP positions are specified in file
for index, row in df_qtl.iterrows():
if args.chr == None or str(row['sid_chr']) == args.chr:
dict_esnp[row['sid']] = [row['sid_chr'],int(row['sid_pos'])]
else:
# retrieve SNP positions from the VCF (since these are not included in the fastQTL output)
print(" unpacking VCF...")
# retrieve the SNP positions from the VCF
tfile = tempfile.NamedTemporaryFile(delete=False)
vcf_in = tfile.name
tfile.close()
if args.chr != None:
# retrieve only genotypes from the desired chromosome
error = subprocess.call("tabix "+args.vcf+" "+args.chr+": | cut -f 1-3 > "+vcf_in, shell=True)
if error != 0:
print(" ERROR loading retrieving genotype data. Ensure tabix index exists and is current.")
quit()
else:
error = subprocess.call("gunzip -c "+args.vcf+" | cut -f 1-3 > "+vcf_in, shell=True)
if error != 0:
print(" ERROR loading retrieving genotype data.")
quit()
stream_in = open(vcf_in, "r")
current_chr = ""
for line in stream_in:
if line[0:1] != "#":
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
columns = line.rstrip().split("\t")
if columns[0] != current_chr:
print(" chr: %s"%(columns[0]))
current_chr = columns[0]
if columns[2] in set_esnp:
dict_esnp[columns[2]] = [columns[0],int(columns[1])]
stream_in.close()
os.remove(vcf_in)
# determine how many total eQTL there are
total_eqtl = 0
for esnp in df_qtl['sid'].tolist():
if esnp in dict_esnp: total_eqtl += 1
# 5 retrieve phenotype positions
print("5. Retrieving ePhenotype positions...")
set_epheno = set(df_qtl['pid'].tolist())
stream_in = gzip.open(args.pheno, "r")
dict_ephenotype = {}
for line in stream_in:
if isinstance(line, bytes) and not isinstance(line, str):
line = line.decode()
if line[0:1] != "#":
columns = line.rstrip().split("\t")
#Chr start end ID
if columns[3] in set_epheno:
dict_ephenotype[columns[3]] = [columns[0],int(columns[1])]
stream_in.close()
# 6 calculate effect sizes
print("6. Calculating eQTL effect sizes...")
stream_vcf = open
completed = 0
t = time.time()
stream_out = open(args.output, "w")
headers = ['log2_aFC','log2_aFC_lower','log2_aFC_upper']
if args.count_o == 1:
headers += ['ref_allele_count','alt_allele_count']
stream_out.write("\t".join(df_qtl.columns.tolist()+headers)+"\n")
for index, row in df_qtl.iterrows():
# now retrieve the genotypes for the snp
# only for those individuals with phenotype data
dict_geno = {}
line_written = False
allele_counts = None
if row['sid'] in dict_esnp:
if row['pid'] in dict_ephenotype:
esnp = dict_esnp[row['sid']]
records = tabix_vcf.fetch(esnp[0], esnp[1]-1, esnp[1])
snp_found = 0
for record in records:
cols = record.rstrip().split("\t")
if cols[2] == row['sid']:
gt_index = cols[8].split(":").index(args.geno)
snp_found = 1
for sample in pheno_map.keys():
sample_col = cols[vcf_map[sample]]
dict_geno[sample] = sample_col.split(":")[gt_index]
if snp_found == 0:
print(" WARNING: eSNP %s not found in VCF"%(row['sid']))
continue
# assume phenotype is within a megabase of SNP
ephenotype = dict_ephenotype[row['pid']]
records = tabix_pheno.fetch(ephenotype[0], ephenotype[1]-1, ephenotype[1]+1)
dict_pheno = {}
for record in records:
cols = record.rstrip().split("\t")
if cols[3] == row['pid']:
for sample in dict_geno.keys():
if args.log_xform == 1 and args.log_base != 2:
# if data has been log transformed but is not in base 2 convert it
dict_pheno[sample] = float(cols[pheno_map[sample]]) * math.log(args.log_base,2)
else:
dict_pheno[sample] = float(cols[pheno_map[sample]])
# make a dataframe with all covariates and genotype classes
list_rows = []
allele_counts = [0,0]
for sample in dict_geno.keys():
if args.geno == "GT":
if "." not in dict_geno[sample]: # only include samples w/ complete genotype data (no '.')
list_rows.append([dict_geno[sample].count("1"),dict_pheno[sample]] + return_cov(sample))
allele_counts[0] += dict_geno[sample].count("0")
allele_counts[1] += dict_geno[sample].count("1")
elif args.geno == "DS":
list_rows.append([round(float(dict_geno[sample])),dict_pheno[sample]] + return_cov(sample))
if len(list_rows) >= args.min_samps and min(allele_counts) >= args.min_alleles: ## Changed to only run effect size calc when more than minimum # samps w/ GT data and minimum number of observations for each allele
df_test = pd.DataFrame(list_rows, columns=['geno','pheno']+["cov_"+x for x in df_cov[cov_id_col].tolist()])
for col in df_test.columns:
df_test[col] = pd.to_numeric(df_test[col], errors = 'ignore')
if args.matrix_o != None:
df_test.to_csv(args.matrix_o+"/"+row['pid']+":"+row['sid']+".txt",sep="\t",index=False)
# correct for covariates
df_test = correct_covariates(df_test)
esize = effect_size(df_test)
line_out = row.tolist()+esize[0:3]
if args.count_o == 1:
line_out += allele_counts
stream_out.write("\t".join(map(str,line_out))+"\n")
line_written = True
else:
if len(list_rows) == 0:
print(" WARNING: no individual with genotype data for eQTL %s - %s"%(row['pid'],row['sid']))
elif len(list_rows) < args.min_samps:
print(" WARNING: only %d individual(s) with genotype data for eQTL %s - %s"%(len(list_rows),row['pid'],row['sid']))
elif min(allele_counts) < args.min_alleles:
print(" WARNING: only %d observations of minor allele for eQTL %s - %s"%(min(allele_counts),row['pid'],row['sid']))
else:
if row['sid'] != "nan" and args.chr == None:
print(" WARNING: positional information not found for ePhenotype %s"%(row['pid']))
completed += 1
if completed % 100 == 0:
print(" COMPLETED %d of %d = %f in %d seconds"%(
completed, total_eqtl,
float(completed)/float(total_eqtl),
time.time()- t))
t = time.time()
else:
if row['pid'] != "nan" and args.chr == None:
print(" WARNING: positional information not found for eSNP %s"%(row['sid']))
# ensure that every eQTL has a line written so number of output lines = number of input eQTLs
if ("sid_chr" in df_qtl.columns and (str(row['sid_chr']) == args.chr or args.chr == None)):
if line_written == False:
line_out = row.tolist()+[float('nan'),float('nan'),float('nan')]
if args.count_o == 1:
if allele_counts != None:
line_out += allele_counts
else:
line_out += [float('nan'),float('nan')]
stream_out.write("\t".join(map(str,line_out))+"\n")
stream_out.close()
duration = time.time() - start_time
print("COMPLETED - total runtime was %d seconds"%(duration))
def return_cov(sample):
global df_cov
if sample in df_cov.columns:
return(df_cov[sample].tolist())
else:
return([])
def sample_column_map(path, start_col=9, line_key="#CHR"):
stream_in = gzip.open(path, "r")
out_map = {}
for line in stream_in:
if isinstance(line, bytes) and not isinstance(line, str):
line = line.decode()
if line_key in line:
line = line.rstrip().split("\t")
for i in range(start_col,len(line)):
out_map[line[i]] = i
break
stream_in.close()
return(out_map)
def correct_covariates(df_test):
global df_cov
if len(df_cov.index) > 0:
# correct for covariates
# add genotype categorical covariates
cov_homo_ref = [int(x == 0) for x in df_test['geno']]
if sum(cov_homo_ref) > 0:
df_test['cov_homo_ref'] = cov_homo_ref
cov_homo_alt = [int(x == 2) for x in df_test['geno']]
if sum(cov_homo_alt) > 0:
df_test['cov_homo_alt'] = cov_homo_alt
cov_ids = [x for x in df_test.columns if "cov_" in x]
# convert categorical covariates to n-1 binary covariates
new_cols = {}
drop_cols = []
for xcov in cov_ids:
if df_test.dtypes[xcov] == object:
values = list(set(df_test[xcov]))[1:]
for xval in values:
xname = xcov+"_"+xval
new_cols[xname] = [int(x == xval) for x in df_test[xcov]]
drop_cols.append(xcov)
df_test.drop(drop_cols,axis=1,inplace=True)
for xcov in new_cols.keys():
df_test[xcov] = new_cols[xcov]
cov_ids = [x for x in df_test.columns if "cov_" in x]
# NOTE any variable that is a string will be treated as categorical - this is the same functionality as FASTQTL, so good
# see: http://statsmodels.sourceforge.net/devel/example_formulas.html
xformula = "pheno ~ "+"+".join(cov_ids)
result = smf.ols(formula=xformula, data=df_test).fit()
# use only significant (95% CI doesn't overlap 0) covariates to correct expression values
# do not include intercept or genotypes in correction
drop_covs = []
for xcov in list(result.params.index):
if xcov in df_test.columns:
coefficient = result.params.loc[xcov]
upper_ci = result.conf_int(0.05).loc[xcov][1]
lower_ci = result.conf_int(0.05).loc[xcov][0]
if (lower_ci <= 0 and upper_ci >= 0):
drop_covs.append(xcov)
# drop insignificant covariates
df_test.drop(drop_covs, axis=1, inplace=True)
cov_ids = [x for x in df_test.columns if "cov_" in x]
# redo regression without insignificant covs
if len(cov_ids) > 0:
xformula = "pheno ~ "+"+".join(cov_ids)
result = smf.ols(formula=xformula, data=df_test).fit()
df_test_corrected = copy.deepcopy(df_test)
for xcov in list(result.params.index):
coefficient = result.params.loc[xcov]
if xcov == "Intercept" or xcov == "cov_homo_ref" or xcov == "cov_homo_alt":
df_test_corrected[xcov] = [0] * len(df_test_corrected.index)
else:
df_test_corrected[xcov] = [x * coefficient for x in df_test_corrected[xcov]]
# add residual to dataframe
df_test_corrected['pheno_cor'] = [row['pheno'] - sum(row[2:len(row)]) for index, row in df_test_corrected.iterrows()]
else:
# if none of the covariates are significant then just leave the values as is
df_test_corrected = copy.deepcopy(df_test)
df_test_corrected['pheno_cor'] = df_test_corrected['pheno']
else:
# covariates not provided
df_test_corrected = copy.deepcopy(df_test)
df_test_corrected['pheno_cor'] = df_test_corrected['pheno']
return(df_test_corrected)
def effect_size(df_test):
global args
# calculate effect size
esize = calculate_effect_size(df_test['geno'],df_test['pheno_cor'])
# calculate 95% CI for effect size using BCa bootstrapping
if args.boot > 0:
try:
ci = boot.ci((df_test['geno'].tolist(),df_test['pheno_cor'].tolist()), statfunction=calculate_effect_size, alpha=0.05, n_samples=args.boot, method="bca")
except (IndexError,ValueError): ## ValueError added for calculating CI on one sample
ci = [float('nan'),float('nan')]
else:
ci = [float('nan'),float('nan')]
return([esize, ci[0],ci[1]])
def calculate_effect_size(genos,phenos):
global args
# in cases where there is only a single genotype in the data return nan
if len(set(genos)) == 1:
return(float('nan'))
if args.log_xform == 1:
# M5 - for log2 transformed data
#1 need to prepare 4 estimates
p_m = [
np.mean(phenos[genos == 0]),
np.mean(phenos[genos == 1]),
np.mean(phenos[genos == 2])
]
log2ratio_M2M0 = bound_basic(p_m[2] - p_m[0], -args.ecap, args.ecap)
log2ratio_M1M2 = bound_basic(p_m[1] - p_m[2], -0.9999999, args.ecap)
log2ratio_M1M0 = bound_basic(p_m[1] - p_m[0], -1, args.ecap)
p_delta = [
float('nan'),
math.pow(2,log2ratio_M2M0),
float(1) / (math.pow(2,log2ratio_M1M2+1) - 1),
math.pow(2,log2ratio_M1M0+1) - 1,
None,
]
X = sm.add_constant(genos)
result = sm.OLS(phenos,X).fit()
result_coef = bound_basic(result.params[1]*2, -args.ecap, args.ecap)
p_delta[4] = math.pow(2,result_coef)
for x in range(1, 5):
p_delta[x] = bound_basic(p_delta[x], math.pow(2,-args.ecap), math.pow(2,args.ecap))
stdevs = {}
# pick the estimate that minimizes residual variance
for i in range(1,5):
#stdevs[i] = numpy.std([yi - calculate_expected_expr(p_delta[i], xi) for xi, yi in zip(genos, phenos)])
stdevs[i] = np.std(phenos - np.log2((2 - genos) + (p_delta[i] * genos)))
min_delta = min([x for x in stdevs.values() if math.isnan(x) == False])
use_delta = 0
for delta in range(1,5):
if stdevs[delta] == min_delta:
use_delta = delta
break
p_delta[0] = float('nan')
return(math.log(p_delta[use_delta],2))
else:
# linear regression on untransformed data
X = sm.add_constant(genos)
result = sm.OLS(phenos,X).fit()
# ensure intercept is positive
b0 = bound_basic(result.params[0], np.finfo(float).eps, float('inf'))
# calculate the effect size
use_delta = (float(2 * result.params[1]) / float(b0)) + 1
# bound delta between caps
if use_delta < 0:
if result.params[1] > 0:
use_delta = math.pow(2, args.ecap)
else:
use_delta = math.pow(2, -args.ecap)
# bound effect size between -args.ecap and args.ecap in log space
use_delta_log = math.log(use_delta, 2)
use_delta_log_bounded = bound_basic(use_delta_log, -args.ecap, args.ecap)
return(use_delta_log_bounded)
def bound_basic(x, l, h):
y = min([x,h])
y = max([y,l])
if math.isnan(x) == True:
y = float('nan')
return(y)
def calculate_expected_expr(delta, alt_alleles):
if math.isnan(delta) == False:
return(math.log((2 - alt_alleles) + (delta * alt_alleles), 2))
else:
return(float('nan'))
if __name__ == "__main__":
main()