-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsf_tools.py
235 lines (192 loc) · 6.49 KB
/
psf_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
'''
Last update by Dan Xie, 04/10/2017
This file contains all the psf tools: reading, plotting
'''
import matplotlib.pyplot as plt
import numpy as np
from scipy import optimize
from scipy.ndimage import gaussian_filter as gf
def gaussian(z, a, z0, w, b):
# w = 2 \sigma ^2
# FWHM: 2.355 \sigma
return a * np.exp(-(z-z0)**2/w) + b
def cylinder_cutter(dims,c_offset,rad1, rad2 = None):
"""
return a cylinder-shaped 3D array
This is kinda useless, but let's still keep it here.
"""
nz = dims[0]
ny = dims[1]
nx = dims[2]
cy = c_offset[0]
cx = c_offset[1]
MX, MY = np.meshgrid(np.arange(nx), np.arange(ny))
rad = np.sqrt((MX-cx)**2 + (MY-cy)**2) # radius of t
if(rad2 is None):
cyl = np.array(nz*[rad<rad1])
else:
cyl = np.array(nz*[np.logical_and(rad> rad1, rad<rad2)])
return cyl
# done with cylinder
def psf_recenter(stack, r_mask = 40, cy_ext = 1.5):
'''
find the center of the psf and
stack: the raw_psf
r_mask: the radius of the mask size
cy_ext: how far the background should extend to the outside
'''
nz, ny, nx = stack.shape
cy, cx = np.unravel_index(np.argmax(gf(stack,2)), (nz,ny,nx))[1:]
ny_shift = int(ny/2 - cy)
nx_shift = int(nx/2 - cx)
PSF = np.roll(stack, ny_shift, axis = 1)
PSF = np.roll(PSF, nx_shift, axis = 2)
return PSF
# Background estimation
def psf_slice(stack, dim_slice = 0, n_slice = None, trunc = 50):
"""
take out a slice from a stack and return it.
"""
hy, hx = stack.shape[1:]
hy/=2
hx/=2
if n_slice is None:
n_slice = stack.shape[dim_slice]/2 # take from the middle
if (dim_slice == 0):
# take an xy slice on
pslice = stack[n_slice,hy-trunc:hy+trunc, hx-trunc:hx+trunc]
elif(dim_slice == 1):
# take an xz slice
pslice = stack[:, n_slice, hx-trunc:hx+trunc]
else:
# take an yz slice
pslice = stack[:,hy-trunc:hy+trunc,n_slice]
return pslice
# end of psf_slice
def psf_zplane(stack, dz, w0, de = 1):
'''
determine the position of the real focal plane.
Don't mistake with psf_slice!
'''
nz, ny, nx = stack.shape
cy, cx = np.unravel_index(np.argmax(stack), (nz,ny,nx))[1:]
zrange = (nz-1)*dz*0.5
zz = np.linspace(-zrange, zrange, nz)
#center_z = stack[:,cy-de:cy+de+1,cx-de:cx+de+1]
#im_z = center_z.mean(axis=2).mean(axis=1)
im_z = stack[:,cy, cx]
b = np.mean((im_z[0],im_z[-1]))
a = im_z.max() - b
p0 = (a,0,w0,b)
try:
popt = optimize.curve_fit(gaussian, zz, im_z, p0)[0]
z_offset = popt[1] # The original version is wrong
except RuntimeError:
ind_z = np.argmax(im_z)
z_offset = zz[ind_z]
return z_offset, zz
def psf_lineplot(stack, cut_range = 2, z_step = 0.3, r_step=0.097):
"""
cut_range: where to cut off
axis: 0 --- z-direction
1 --- y-direction
2 --- x-direction
z_step: step in z-direction
r_step: step in x and y direction
plot all the three directions
and fit to Gaussian to give the FWHM
"""
figv = plt.figure(figsize=(6,4))
ax = figv.add_subplot(1,1,1)
ax.set_xlim([-cut_range,cut_range])
nz, ny, nx = stack.shape
cz, cy, cx = np.unravel_index(np.argmax(stack), (nz,ny,nx))
FWHM = np.zeros(3)
# plot along z-direction
psf_z = stack[:, cy, cx]
coord_z = (np.arange(nz)-nz*0.5)*z_step
b = np.mean((psf_z[0],psf_z[-1]))
a = psf_z.max() - b
w0 = 3.00
pz_0 = (a,0,w0,b)
popt = optimize.curve_fit(gaussian, coord_z, psf_z, pz_0)[0]
FWHM[0] = np.sqrt(popt[2]*0.5)* 2.355
ax.plot(coord_z-popt[1], psf_z, '-ob', linewidth = 2, label = 'z')
# plot along y-direction
psf_y = stack[cz,:, cx]
coord_y = (np.arange(ny)-ny*0.5)*r_step
b = np.mean((psf_y[0],psf_y[-1]))
a = psf_y.max() - b
w0 = 0.50
py_0 = (a,0,w0,b)
popt = optimize.curve_fit(gaussian, coord_y, psf_y, py_0)[0]
FWHM[1] = np.sqrt(popt[2]*0.5)* 2.355
ax.plot(coord_y-popt[1], psf_y, '->g', linewidth = 2, label = 'y')
# plot along x-direction
psf_x = stack[cz, cy, :]
coord_x = (np.arange(nx)-nx*0.5)*r_step
b = np.mean((psf_x[0],psf_x[-1]))
a = psf_x.max() - b
w0 = 0.50
px_0 = (a,0,w0,b)
popt = optimize.curve_fit(gaussian, coord_x, psf_x, px_0)[0]
FWHM[2] = np.sqrt(popt[2]*0.5)* 2.355
ax.plot(coord_x-popt[1], psf_x, '-xr', linewidth = 2, label = 'x')
ax.legend(['z', 'y', 'x'])
ax.set_xlabel('distance (micron)')
plt.tight_layout()
return figv, FWHM
# done with psf_lineplot
def psf_planeplot(stack, plane = 0, c_pxl = None, argmt = None):
"""
select one or more planes to display
argmt: arrangement of multiple plots
"""
side_0 = 6.0
nz, ny, nx = stack.shape
cz, cy, cx = np.unravel_index(np.argmax(stack), (nz,ny,nx))
centers = [cz, cy, cx]
if c_pxl is None:
# plot where the maximum is
c_pxl = centers[plane]
if(np.isscalar(c_pxl) == True):
# If we only plot one frame
pslice = psf_slice(stack, plane, c_pxl)
py, px = pslice.shape
figp = plt.figure(figsize = (side_0,side_0*py/px))
ax = figp.add_subplot(1,1,1)
ax.imshow(pslice, cmap = 'Greys_r', interpolation = 'none')
ax.tick_params(
axis = 'both',
which = 'both',
bottom = 'off',
top = 'off',
right = 'off',
left = 'off',
labelleft='off',
labelbottom = 'off')
# All the units are in pixels, no microns involved
else:
# plot multiple frames in one figure
# if the length of c_pxl is smaller than the arrangement, then stop at c_pxl;
# otherwise stop when the arrangement is full.
n_stop = np.min(len(c_pxl), np.prod(argmt))
ii = 1
figp = plt.figure(figsize = (side_0, side_0*argmt[0]/argmt[1])) # scale
for n_slice in c_pxl[:n_stop]:
# plot one by one
pslice = psf_slice(stack, plane, n_slice)
ax = figp.add_subplot(argmt[0], argmt[1], ii)
ax.imshow(pslice, cmap = 'Greys_r', interpolation = 'none')
ax.tick_params(
axis = 'both',
which = 'both',
bottom = 'off',
top = 'off',
right = 'off',
left = 'off',
labelleft='off',
labelbottom = 'off')
plt.tight_layout()
return figp
# end of psf_planeplot