-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnet_model.py
75 lines (60 loc) · 2.31 KB
/
Unet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torchvision.transforms.functional as TF
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self,in_channels , out_channels):
super(DoubleConv,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3,1,1,bias = False ),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3,1,1,bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self,x):
return self.conv(x)
class Unet(nn.Module):
def __init__(
self,in_channels=3,out_channels=1,features=[64,128,256,512]):
super(Unet, self).__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size= 2 , stride = 2)
# Down part
for feature in features:
self.downs.append(DoubleConv(in_channels,feature))
in_channels = feature
# Up part of the unet
for feature in reversed(features):
self.ups.append(
nn.ConvTranspose2d(feature *2, feature, kernel_size=2,stride =2)
)
self.ups.append(DoubleConv(feature*2,feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size =1)
def forward(self ,x ):
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1]
for idx in range(0,len(self.ups),2):
x =self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = TF.resize(x, size=skip_connection.shape[2:])
concat_skip = torch.cat((skip_connection,x),dim=1)
x = self.ups[idx+1](concat_skip)
return self.final_conv(x)
def test():
x = torch.randn((3,1,160,160))
model = Unet(in_channels =1 , out_channels =1)
preds = model(x)
print(preds.shape)
print(x.shape)
assert preds.shape == x.shape
if __name__ == "__main__":
test()