diff --git a/README.md b/README.md index 05dcf67..9fb0f66 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,11 @@ This repository contains code and instructions to reproduce the results presente ## Requirements - [geniml](https://github.com/databio/geniml) +- beautifulsoup4 +- python=3.9 +- pybedtools - [bedtools](https://bedtools.readthedocs.io/en/latest/content/installation.html) + ``` git clone git@github.com:databio/geniml.git cd geniml @@ -25,7 +29,7 @@ EVAL_RESULTS_FOLDER: folder that stores all the evaluation results ### Download the dataset Run the following command: ```bash -python download_dataset.py +python -m src.download_dataset ``` Or download all the [content](http://big.databio.org/region2vec_eval/tfbs_dataset/) to `DATA_FOLDER`. ### Prepare universes @@ -34,17 +38,17 @@ We provided all the seven universes used in the paper at [hg19 universes](http:/ We used the following code to generate the universes except the DHS universe, which is an external universe. You can use the same code to generate the universes based on your data, only to change `DATA_FOLDER` in `config.py` and the total number of files passed to `-n`. ```bash # The Merge (100) universe -python gen_universe.py -m merge -n 690 -d 100 +python -m src.gen_universe -m merge -n 690 -d 100 # The Merge (1k) universe -python gen_universe.py -m merge -n 690 -d 1000 +python -m src.gen_universe -m merge -n 690 -d 1000 # The Merge (10k) universe -python gen_universe.py -m merge -n 690 -d 10000 +python -m src.gen_universe -m merge -n 690 -d 10000 # The Tiling (1k) universe -python gen_universe.py -m tile -v hg19 -n 690 -t 1000 +python -m src.gen_universe -m tile -v hg19 -n 690 -t 1000 # The Tiling (5k) universe -python gen_universe.py -m tile -v hg19 -n 690 -t 5000 +python -m src.gen_universe -m tile -v hg19 -n 690 -t 5000 # The Tiling (25k) universe -python gen_universe.py -m tile -v hg19 -n 690 -t 25000 +python -m src.gen_universe -m tile -v hg19 -n 690 -t 25000 ``` ### Train embedding models You can download all the trained models to `MODELS_FOLDER` (in `config.py`) at [models](http://big.databio.org/region2vec_eval/tfbs_models/). Note that `Large`, `Medium` and `Small` correspond to `Merge (100)`, `Merge (1k)` and `Merge (10k)`, respectively, in the paper. @@ -53,7 +57,7 @@ We used the following steps to get all the models. 1. Generate training scripts via ```bash - python gen_train_scripts.py + python -m src.gen_train_scripts ``` 2. Then, go to the `TRAIN_SCRIPTS_FOLDER` (specified in `config.py`) folder, and run all the scripts there to get trained models. @@ -62,22 +66,22 @@ We used the following steps to get all the models. 3. After training Region2Vec models, run the following code to generate base embeddings, namely Binary, PCA-10D, and PCA-100D, for each of the seven universes. ```bash - python get_base_embeddings.py + python -m src.get_base_embeddings ``` To obtain the results in Table S2, run the following code ```bash -python assess_universe.py +python -m src.assess_universe ``` Note that we do not assess the original universes. Since Region2Vec will filter out some low-frequency regions in a universe based on the training data, we focused on the acutal universes with regions that have embeddings. ## Evaluate region embeddings Run the following scripts to obtain the evaluation results. ```bash -python eval_script.py --type GDSS -python eval_script.py --type NPS -python eval_script.py --type CTS -python eval_script.py --type RCS +python -m src.eval_script --type GDSS +python -m src.eval_script --type NPS +python -m src.eval_script --type CTS +python -m src.eval_script --type RCS ``` To speed up the process, you can split the universes into batches (Line 209, `eval_script.py`) @@ -90,7 +94,7 @@ batches = [ ``` Then, run the evaluation on each batch in parallel. For example, ```bash -python eval_script.py --type GDSS --batch 0 +python -m src.eval_script --type GDSS --batch 0 ``` will evaluate models for the Tiling (1k) and Tiling (25k) universes. @@ -99,7 +103,7 @@ We designed cell type and antibody type classification tasks for the trained reg Run the classification using the following script: ```bash -python classification.py +python -m src.classification ``` ## Analyze results @@ -110,5 +114,5 @@ The visualizations of different sets of region embeddings can be found at [embed We used the following command to generate UMAP visualizations of all sets of region embeddings. ```bash -python visualization.py +python -m src.visualization ``` \ No newline at end of file diff --git a/config.py b/config.py index 721a1a4..a1fb4f1 100644 --- a/config.py +++ b/config.py @@ -1,8 +1,16 @@ DATA_URL = "http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/" -TRAIN_SCRIPTS_FOLDER = '/root_path/region2vec_eval/train_scripts/' -DATA_FOLDER = '/root_path/region2vec_eval/tfbs_datasets/' -MODELS_FOLDER = '/root_path/region2vec_eval/tfbs_region2vec_models/' -UNIVERSES_FOLDER = '/root_path/region2vec_eval/hg19_universes/' -EVAL_RESULTS_FOLDER = '/root_path/region2vec_eval/eval_results/' \ No newline at end of file +# TRAIN_SCRIPTS_FOLDER = '/root_path/region2vec_eval/train_scripts/' +# DATA_FOLDER = '/root_path/region2vec_eval/tfbs_datasets/' +# MODELS_FOLDER = '/root_path/region2vec_eval/tfbs_region2vec_models/' +# UNIVERSES_FOLDER = '/root_path/region2vec_eval/hg19_universes/' +# EVAL_RESULTS_FOLDER = '/root_path/region2vec_eval/eval_results/' + + + +TRAIN_SCRIPTS_FOLDER = '/bigtemp/gz5hp/region2vec_eval/train_scripts/' +DATA_FOLDER = '/bigtemp/gz5hp/region2vec_eval/tfbs_datasets/' +MODELS_FOLDER = '/bigtemp/gz5hp/region2vec_eval/tfbs_region2vec_models/' +UNIVERSES_FOLDER = '/bigtemp/gz5hp/region2vec_eval/hg19_universes/' +EVAL_RESULTS_FOLDER = '/bigtemp/gz5hp/region2vec_eval/eval_results/' \ No newline at end of file diff --git a/classification_data/antibody_test_train0.60_0.txt b/data/classification_data/antibody_test_train0.60_0.txt similarity index 100% rename from classification_data/antibody_test_train0.60_0.txt rename to data/classification_data/antibody_test_train0.60_0.txt diff --git a/classification_data/antibody_test_train0.60_1.txt b/data/classification_data/antibody_test_train0.60_1.txt similarity index 100% rename from classification_data/antibody_test_train0.60_1.txt rename to data/classification_data/antibody_test_train0.60_1.txt diff --git a/classification_data/antibody_test_train0.60_2.txt b/data/classification_data/antibody_test_train0.60_2.txt similarity index 100% rename from classification_data/antibody_test_train0.60_2.txt rename to data/classification_data/antibody_test_train0.60_2.txt diff --git a/classification_data/antibody_test_train0.60_3.txt b/data/classification_data/antibody_test_train0.60_3.txt similarity index 100% rename from classification_data/antibody_test_train0.60_3.txt rename to data/classification_data/antibody_test_train0.60_3.txt diff --git a/classification_data/antibody_test_train0.60_4.txt b/data/classification_data/antibody_test_train0.60_4.txt similarity index 100% rename from classification_data/antibody_test_train0.60_4.txt rename to data/classification_data/antibody_test_train0.60_4.txt diff --git a/classification_data/antibody_train_train0.60_0.txt b/data/classification_data/antibody_train_train0.60_0.txt similarity index 100% rename from classification_data/antibody_train_train0.60_0.txt rename to data/classification_data/antibody_train_train0.60_0.txt diff --git a/classification_data/antibody_train_train0.60_1.txt b/data/classification_data/antibody_train_train0.60_1.txt similarity index 100% rename from classification_data/antibody_train_train0.60_1.txt rename to data/classification_data/antibody_train_train0.60_1.txt diff --git a/classification_data/antibody_train_train0.60_2.txt b/data/classification_data/antibody_train_train0.60_2.txt similarity index 100% rename from classification_data/antibody_train_train0.60_2.txt rename to data/classification_data/antibody_train_train0.60_2.txt diff --git a/classification_data/antibody_train_train0.60_3.txt b/data/classification_data/antibody_train_train0.60_3.txt similarity index 100% rename from classification_data/antibody_train_train0.60_3.txt rename to data/classification_data/antibody_train_train0.60_3.txt diff --git a/classification_data/antibody_train_train0.60_4.txt b/data/classification_data/antibody_train_train0.60_4.txt similarity index 100% rename from classification_data/antibody_train_train0.60_4.txt rename to data/classification_data/antibody_train_train0.60_4.txt diff --git a/classification_data/cell_test_train0.60_0.txt b/data/classification_data/cell_test_train0.60_0.txt similarity index 100% rename from classification_data/cell_test_train0.60_0.txt rename to data/classification_data/cell_test_train0.60_0.txt diff --git a/classification_data/cell_test_train0.60_1.txt b/data/classification_data/cell_test_train0.60_1.txt similarity index 100% rename from classification_data/cell_test_train0.60_1.txt rename to data/classification_data/cell_test_train0.60_1.txt diff --git a/classification_data/cell_test_train0.60_2.txt b/data/classification_data/cell_test_train0.60_2.txt similarity index 100% rename from classification_data/cell_test_train0.60_2.txt rename to data/classification_data/cell_test_train0.60_2.txt diff --git a/classification_data/cell_test_train0.60_3.txt b/data/classification_data/cell_test_train0.60_3.txt similarity index 100% rename from classification_data/cell_test_train0.60_3.txt rename to data/classification_data/cell_test_train0.60_3.txt diff --git a/classification_data/cell_test_train0.60_4.txt b/data/classification_data/cell_test_train0.60_4.txt similarity index 100% rename from classification_data/cell_test_train0.60_4.txt rename to data/classification_data/cell_test_train0.60_4.txt diff --git a/classification_data/cell_train_train0.60_0.txt b/data/classification_data/cell_train_train0.60_0.txt similarity index 100% rename from classification_data/cell_train_train0.60_0.txt rename to data/classification_data/cell_train_train0.60_0.txt diff --git a/classification_data/cell_train_train0.60_1.txt b/data/classification_data/cell_train_train0.60_1.txt similarity index 100% rename from classification_data/cell_train_train0.60_1.txt rename to data/classification_data/cell_train_train0.60_1.txt diff --git a/classification_data/cell_train_train0.60_2.txt b/data/classification_data/cell_train_train0.60_2.txt similarity index 100% rename from classification_data/cell_train_train0.60_2.txt rename to data/classification_data/cell_train_train0.60_2.txt diff --git a/classification_data/cell_train_train0.60_3.txt b/data/classification_data/cell_train_train0.60_3.txt similarity index 100% rename from classification_data/cell_train_train0.60_3.txt rename to data/classification_data/cell_train_train0.60_3.txt diff --git a/classification_data/cell_train_train0.60_4.txt b/data/classification_data/cell_train_train0.60_4.txt similarity index 100% rename from classification_data/cell_train_train0.60_4.txt rename to data/classification_data/cell_train_train0.60_4.txt diff --git a/hg19_chrom.sizes b/data/hg19_chrom.sizes similarity index 100% rename from hg19_chrom.sizes rename to data/hg19_chrom.sizes diff --git a/meta_data.txt b/data/meta_data.txt similarity index 100% rename from meta_data.txt rename to data/meta_data.txt diff --git a/result_analysis.ipynb b/result_analysis.ipynb index 03b00e3..b046439 100644 --- a/result_analysis.ipynb +++ b/result_analysis.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 21, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -104,7 +104,7 @@ "outputs": [], "source": [ "def get_cts_results(universe):\n", - " paths = glob.glob(f\"{EVAL_RESULTS_FOLDER}/cts_results_uniform/{universe}/cts_eval_seed*\")\n", + " paths = glob.glob(f\"{EVAL_RESULTS_FOLDER}/cts_results/{universe}/cts_eval_seed*\")\n", " cts_scores = {}\n", " for path in paths:\n", " with open(path, \"rb\") as f:\n", @@ -246,28 +246,8 @@ " fig.savefig(f\"{EVAL_RESULTS_FOLDER}/scores_visualization/rcs_results/rcs_{universe}.svg\", bbox_inches=\"tight\")\n", " plt.close()\n", " # plt.show()\n", - "# for u in universes:\n", - "# get_rcs_plot(u, True)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "eval_rcs_pd = []\n", - "eval_rcs_pd_10d = []\n", "for u in universes:\n", - " rcs_scores, rcs_stds, names = get_rcs_results(u)\n", - " eval_rcs_pd.append(pd.DataFrame({'universe':[u]*len(names), 'RCS':rcs_scores, 'model':names})) \n", - " \n", - " paths = glob.glob(f\"{EVAL_RESULTS_FOLDER}/rcs_10d_results/{u}/rcs_eval_seed*\")\n", - " rcs_scores, rcs_stds, names = get_rcs_results(u, paths)\n", - " eval_rcs_pd_10d.append(pd.DataFrame({'universe':[u]*len(names), 'RCS_10D':rcs_scores, 'model':names})) \n", - "eval_rcs_pd = pd.concat(eval_rcs_pd)\n", - "eval_rcs_pd_10d = pd.concat(eval_rcs_pd_10d)\n", - "eval_rcs_pd = eval_rcs_pd.merge(eval_rcs_pd_10d, how='left', on=['universe', 'model'])" + " get_rcs_plot(u, True)" ] }, { @@ -275,22 +255,6 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "corrs = []\n", - "for u in universes:\n", - " condition = (eval_rcs_pd['universe']==u)\n", - " rcss = eval_rcs_pd[condition]['RCS'].to_numpy()\n", - " rcss_10d = eval_rcs_pd[condition]['RCS_10D'].to_numpy()\n", - " corr, _ = scipy.stats.pearsonr(rcss, rcss_10d)\n", - " corrs.append((u,corr))\n", - "corrs" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], "source": [ "def get_gdss_results(result_path):\n", " universe = result_path.split('/')[-2]\n", @@ -356,14 +320,14 @@ " fig.savefig(file_name, bbox_inches=\"tight\")\n", " plt.show()\n", "\n", - "gdss_result_batch = [f\"{EVAL_RESULTS_FOLDER}/gdss_results/{}/gdss_eval_seed*\".format(u) for u in universes]\n", + "gdss_result_batch = [f\"{EVAL_RESULTS_FOLDER}/gdss_results/{u}/gdss_eval_seed*\" for u in universes]\n", "for path in gdss_result_batch:\n", " produce_gdss_plots(path, f\"{EVAL_RESULTS_FOLDER}/scores_visualization/gdss_results/\", True)" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -433,7 +397,7 @@ " fig.clf()\n", " plt.close()\n", " \n", - "nps_result_batch = [f\"{EVAL_RESULTS_FOLDER}/nps_results/{}/nps_eval_seed*\".format(u) for u in universes]\n", + "nps_result_batch = [f\"{EVAL_RESULTS_FOLDER}/nps_results/{u}/nps_eval_seed*\" for u in universes]\n", "for path in nps_result_batch:\n", " produce_nps_plots(path, f\"{EVAL_RESULTS_FOLDER}/scores_visualization/nps_results/\", 9)" ] @@ -603,7 +567,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, diff --git a/assess_universe.py b/src/assess_universe.py similarity index 100% rename from assess_universe.py rename to src/assess_universe.py diff --git a/classification.py b/src/classification.py similarity index 100% rename from classification.py rename to src/classification.py diff --git a/download_dataset.py b/src/download_dataset.py similarity index 93% rename from download_dataset.py rename to src/download_dataset.py index 1d01253..84ab1ff 100644 --- a/download_dataset.py +++ b/src/download_dataset.py @@ -1,23 +1,14 @@ import requests from bs4 import BeautifulSoup import pandas as pd -import numpy as np import urllib import re -import gensim, logging from tqdm import tqdm import hashlib import os -import gzip, bz2 +import gzip import shutil -import pickle -import time -import matplotlib.pyplot as plt -import logging -from sklearn.decomposition import PCA -from sklearn.manifold import TSNE from config import DATA_FOLDER, DATA_URL -logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) class TBFS_Downloader: diff --git a/eval_script.py b/src/eval_script.py similarity index 100% rename from eval_script.py rename to src/eval_script.py diff --git a/gen_train_scripts.py b/src/gen_train_scripts.py similarity index 84% rename from gen_train_scripts.py rename to src/gen_train_scripts.py index b05e3c4..df4c9f9 100644 --- a/gen_train_scripts.py +++ b/src/gen_train_scripts.py @@ -33,10 +33,9 @@ def combine_all(list_of_lists): file_ptrs[universes[i]] = open(name, 'w') params = combine_all([universes, init_lrs, embed_dims, win_sizes]) save_folder = MODELS_FOLDER -program_path = glob.glob("train_region2vec.py")[0] for param in params: universe, init_lr, embed_dim, win_size = param - script = f'python {program_path} --embed_dim {embed_dim} --init_lr {init_lr} --win_size {win_size} --universe {universe} --num_shufflings 100 --save_folder {save_folder}' + script = f'python -m src.train_region2vec --embed_dim {embed_dim} --init_lr {init_lr} --win_size {win_size} --universe {universe} --num_shufflings 100 --save_folder {save_folder}' file_ptrs[universe].write(script) file_ptrs[universe].write('\n') for u in file_ptrs: diff --git a/gen_universe.py b/src/gen_universe.py similarity index 97% rename from gen_universe.py rename to src/gen_universe.py index 11ea9ab..1ad88e1 100644 --- a/gen_universe.py +++ b/src/gen_universe.py @@ -60,7 +60,7 @@ def bedtools_merge(base, df, merge_dist): def save_segmentation(name, segmentation, numfiles, overlap, folder='../segmentations/'): - fp = "{}_{}overlap_{}files_tfbs_universe.txt".format(name, overlap, numfiles) + fp = "{}_{}overlap_{}files_tfbs_universe.bed".format(name, overlap, numfiles) path = os.path.join(folder, fp) print("saving segmentation to ", path) segmentation.to_csv(path, sep='\t', index=False, header=False) @@ -117,6 +117,7 @@ def segmentation_tile(tile_size, chrom_sizes, assembly, save_folder): creates a segmentation from tiling the genome and saves it to the folder returns: None ''' + os.makedirs(save_folder, exist_ok=True) save_path = os.path.join(save_folder, f"tiles{tile_size}.{assembly}.bed") count = 0 with open(save_path, "w") as fout: @@ -159,7 +160,7 @@ def segmentation_tile(tile_size, chrom_sizes, assembly, save_folder): elif args.m == "tile": if args.v == "hg19": - chrom_sizes = "./hg19_chrom.sizes" + chrom_sizes = "data/hg19_chrom.sizes" segmentation_tile(args.t, chrom_sizes, "hg19", UNIVERSES_FOLDER) else: raise ValueError(f"not implemented for args.v={args.v}") diff --git a/get_base_embeddings.py b/src/get_base_embeddings.py similarity index 100% rename from get_base_embeddings.py rename to src/get_base_embeddings.py diff --git a/train_region2vec.py b/src/train_region2vec.py similarity index 100% rename from train_region2vec.py rename to src/train_region2vec.py diff --git a/visualization.py b/src/visualization.py similarity index 100% rename from visualization.py rename to src/visualization.py diff --git a/visualization_utils.py b/src/visualization_utils.py similarity index 100% rename from visualization_utils.py rename to src/visualization_utils.py