-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path05_results_analysis.py
152 lines (100 loc) · 3.71 KB
/
05_results_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Databricks notebook source
# MAGIC %md-sandbox
# MAGIC <div style="text-align: center; line-height: 0; padding-top: 9px;">
<img src="https://databricks.com/wp-content/uploads/2018/03/db-academy-rgb-1200px.png" alt="Databricks Learning" style="width: 600px">
</div>
# COMMAND ----------
# MAGIC %md
# MAGIC # Results Analysis
# COMMAND ----------
# MAGIC %md
# MAGIC ## Configuration
# COMMAND ----------
# MAGIC %run ./includes/configuration
# COMMAND ----------
# MAGIC %md
# MAGIC ### Load Data and Scipy Libraries
# COMMAND ----------
# MAGIC %run ./includes/preprocessing
# COMMAND ----------
# MAGIC %md
# MAGIC ### Generate Subsample Sets
# COMMAND ----------
lifestyles = health_tracker_sample_agg_pd_df.lifestyle.unique()
sample_sets = generate_subsample_sets(
health_tracker_sample_agg_pd_df,
lifestyles
)
feature_subsets = generate_feature_subsets(health_tracker_sample_agg_pd_df)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Run Experiments Using Decision Tree Classification On Each Feature Subset
# COMMAND ----------
from sklearn.tree import DecisionTreeClassifier
for feature_subset in feature_subsets:
experiment_runner(
feature_subset=feature_subset,
model=DecisionTreeClassifier()
)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Retrieve Results
# COMMAND ----------
results = retrieve_results(metrics=["mean score", "std score"],
params=["subset"])
results
# COMMAND ----------
# MAGIC %md
# MAGIC ### Display Correlation Plot
# COMMAND ----------
features = health_tracker_sample_agg_pd_df.select_dtypes(exclude=["object"])
corr = features.corr()
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask, 0)] = True
sns.heatmap(corr, mask=mask, square=True, annot=True)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Run Experiments Using Logistic Regression On Each Feature Subset
# MAGIC
# MAGIC Use a Logistic Regression with maximum iterations of 10000 and the
# MAGIC penalty set to `'none'`.
# COMMAND ----------
# TODO
from sklearn.linear_model import LogisticRegression
for feature_subset in feature_subsets:
experiment_runner(
feature_subset=feature_subset,
model=FILL_THIS_IN
)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Retrieve Results and Display Top Performing Models by Bias
# COMMAND ----------
results = retrieve_results(metrics=["mean score", "std score"],
params=["model", "subset"])
results["bias"] = 1 - results["metrics.mean score"]
results["variance"] = results["metrics.std score"]**2
results.drop(["metrics.mean score", "metrics.std score"], axis=1, inplace=True)
results.sort_values("bias").head(10)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Retrieve Results and Display Top Performing Models by Tradeoff
# COMMAND ----------
results["n_terms"] = results["params.subset"].apply(lambda x: x.count(",") + 1)
results["tradeoff"] = results["bias"]**2 + results["variance"]
results.sort_values("tradeoff").head(10)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Plot Models by Tradeoff and Number of Terms
# COMMAND ----------
plt.figure(figsize=(20,10))
for _, (_, description, _, _, n_terms, tradeoff) in results.sort_values("tradeoff").head(10).iterrows():
plt.scatter(n_terms, tradeoff, s=100*n_terms, label=description)
plt.ylim(0, 0.1)
plt.legend()
# COMMAND ----------
# MAGIC %md-sandbox
# MAGIC © 2020 Databricks, Inc. All rights reserved.<br/>
# MAGIC Apache, Apache Spark, Spark and the Spark logo are trademarks of the <a href="http://www.apache.org/">Apache Software Foundation</a>.<br/>
# MAGIC <br/>
# MAGIC <a href="https://databricks.com/privacy-policy">Privacy Policy</a> | <a href="https://databricks.com/terms-of-use">Terms of Use</a> | <a href="http://help.databricks.com/">Support</a>