diff --git a/README.md b/README.md index e64c24c..a8ebd6a 100644 --- a/README.md +++ b/README.md @@ -19,18 +19,25 @@

- - - -Exploratory Data Analysis (EDA) is the initial task a data scientist or data -analyst undertakes when they obtain new data. EDA refers to the critical -process of conducting preliminary investigations on data to uncover patterns, -spot anomalies, test hypotheses, and verify assumptions with the help of -summary statistics and graphical representations. - -The Effective Data Visualization and Reporting Tool (Edvart for short) is a -tool that generates a report in the form of a Jupyter notebook, containing -various analyses of the input data. +Edvart is an open-source Python library designed to simplify and streamline +your exploratory data analysis (EDA) process. + +## Key features +* **One-line Reports**: Generate a comprehensive set of pandas DataFrame +visualizations using a single Python statement. +Edvart supports: + - Data overview, + - Univariate analysis, + - Bivariate analysis, + - Multivariate analysis, + - Grouped analysis + - Time series analysis. +* **Customizable Reports**: Produce, iterate, and style detailed reports + in Jupyter notebooks and HTML formats. +* **Flexible API**: From high-level simplicity in a single line of code + to detailed control, choose the API level that fits your needs. +* **Interactive Visualizations**: Many of the visualizations are interactive + and can be used to explore the data in detail. ## Installation @@ -46,6 +53,23 @@ See the notebook [api-example.ipynb](https://nbviewer.org/github/datamole-ai/edvart/blob/main/api-example.ipynb) for usage examples. +### Creating a default report + +```python +import edvart + +# Load a dataset to a pandas DataFrame +dataset = edvart.example_datasets.dataset_titanic() +# Create a default report +report = edvart.DefaultReport(dataset) +# Show the report in the current Jupyter notebook +report.show() +# Export the report to an HTML file +report.export_html("report.html") +# Export the code generating the report to a Jupyter notebook +report.export_notebook("report.ipynb") +``` + ## User documentation The user documentation is available at https://datamole-ai.github.io/edvart/.