Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

03_03_vae_digits_train #103

Open
Arindam75 opened this issue Aug 23, 2022 · 1 comment
Open

03_03_vae_digits_train #103

Arindam75 opened this issue Aug 23, 2022 · 1 comment

Comments

@Arindam75
Copy link

Arindam75 commented Aug 23, 2022

Getting the following error , when trying to run vae.train

`
TypeError: in user code:

File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\engine\training.py", line 1051, in train_function  *
    return step_function(self, iterator)
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\engine\training.py", line 1040, in step_function  **
    outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\engine\training.py", line 1030, in run_step  **
    outputs = model.train_step(data)
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\engine\training.py", line 890, in train_step
    loss = self.compute_loss(x, y, y_pred, sample_weight)
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\engine\training.py", line 948, in compute_loss
    return self.compiled_loss(
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\engine\compile_utils.py", line 239, in __call__
    self._loss_metric.update_state(
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\utils\metrics_utils.py", line 70, in decorated
    update_op = update_state_fn(*args, **kwargs)
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\metrics\base_metric.py", line 140, in update_state_fn
    return ag_update_state(*args, **kwargs)
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\metrics\base_metric.py", line 449, in update_state  **
    sample_weight = tf.__internal__.ops.broadcast_weights(
File "C:\Users\arind\anaconda3\envs\tf\lib\site-packages\keras\engine\keras_tensor.py", line 254, in __array__
    raise TypeError(

TypeError: You are passing KerasTensor(type_spec=TensorSpec(shape=(), dtype=tf.float32, name=None), name='Placeholder:0', description="created by layer 'tf.cast_2'"), an intermediate Keras symbolic input/output, to a TF API that does not allow registering custom dispatchers, such as `tf.cond`, `tf.function`, gradient tapes, or `tf.map_fn`. Keras Functional model construction only supports TF API calls that *do* support dispatching, such as `tf.math.add` or `tf.reshape`. Other APIs cannot be called directly on symbolic Kerasinputs/outputs. You can work around this limitation by putting the operation in a custom Keras layer `call` and calling that layer on this symbolic input/output.

`
Edit-1 25-Aug-22

I am certain that the error is coming from the custom KL Loss function. In the compile method , if I use only the vae_r_loss, the code works

`
def vae_r_loss(y_true, y_pred):
r_loss = K.mean(K.square(y_true - y_pred), axis = [1,2,3])
return r_loss_factor * r_loss

def vae_kl_loss(y_true, y_pred):
    kl_loss =  -0.5 * K.sum(1 + self.log_var - K.square(self.mu) - K.exp(self.log_var), axis = 1)
    return kl_loss

def vae_loss(y_true, y_pred):
    r_loss = vae_r_loss(y_true, y_pred)
    kl_loss = vae_kl_loss(y_true, y_pred)
    return  r_loss + kl_loss

optimizer = Adam(lr=learning_rate)
self.model.compile(optimizer=optimizer, loss = vae_r_loss,  metrics = [vae_r_loss])

`

@gkonto
Copy link

gkonto commented Apr 29, 2023

from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

This code will possibly fix your issue.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants