You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Could you help me with this? (03_01_autoencoder_train.ipynb works fine; replacing VariationalAutoencoder with models.AE.Autoencoder also helps but I still can't pass through most of book examples; output is pretty big, last line looks the most informative but I can't figure out how to repair this notebook).
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\def_function.py in call(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
869 # This is the first call of call, so we have to initialize.
870 initializers = []
--> 871 self._initialize(args, kwds, add_initializers_to=initializers)
872 finally:
873 # At this point we know that the initialization is complete (or less
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
632 xla_context.Exit()
633 else:
--> 634 out = weak_wrapped_fn().wrapped(*args, **kwds)
635 return out
636
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except
976 if hasattr(e, "ag_error_metadata"):
--> 977 raise e.ag_error_metadata.to_exception(e)
978 else:
979 raise
TypeError: in user code:
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\training.py:805 train_function *
return step_function(self, iterator)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\training.py:795 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\distribute\distribute_lib.py:1259 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\distribute\distribute_lib.py:2730 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\distribute\distribute_lib.py:3417 _call_for_each_replica
return fn(*args, **kwargs)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\training.py:788 run_step **
outputs = model.train_step(data)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\training.py:756 train_step
y, y_pred, sample_weight, regularization_losses=self.losses)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\compile_utils.py:238 __call__
total_loss_metric_value, sample_weight=batch_dim)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\utils\metrics_utils.py:90 decorated
update_op = update_state_fn(*args, **kwargs)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\metrics.py:177 update_state_fn
return ag_update_state(*args, **kwargs)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\metrics.py:364 update_state **
sample_weight, values)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\ops\weights_broadcast_ops.py:155 broadcast_weights
values = ops.convert_to_tensor(values, name="values")
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\profiler\trace.py:163 wrapped
return func(*args, **kwargs)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\ops.py:1540 convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\constant_op.py:339 _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\constant_op.py:265 constant
allow_broadcast=True)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\constant_op.py:283 _constant_impl
allow_broadcast=allow_broadcast))
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\tensor_util.py:435 make_tensor_proto
values = np.asarray(values)
C:\Users\user\Anaconda3\lib\site-packages\numpy\core\_asarray.py:83 asarray
return array(a, dtype, copy=False, order=order)
C:\Users\user\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\keras_tensor.py:274 __array__
'Cannot convert a symbolic Keras input/output to a numpy array. '
TypeError: Cannot convert a symbolic Keras input/output to a numpy array. This error may indicate that you're trying to pass a symbolic value to a NumPy call, which is not supported. Or, you may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model.
The text was updated successfully, but these errors were encountered:
I've got the following output in cell containing
Could you help me with this?
(03_01_autoencoder_train.ipynb works fine; replacing VariationalAutoencoder with models.AE.Autoencoder also helps but I still can't pass through most of book examples; output is pretty big, last line looks the most informative but I can't figure out how to repair this notebook).
TypeError Traceback (most recent call last)
in ()
5 , run_folder = RUN_FOLDER
6 # , print_every_n_batches = PRINT_EVERY_N_BATCHES
----> 7 , initial_epoch = INITIAL_EPOCH
8 )
d:\jupyter\GDL_code\models\VAE.py in train(self, x_train, batch_size, epochs, run_folder, print_every_n_batches, initial_epoch, lr_decay)
200 , epochs = epochs
201 , initial_epoch = initial_epoch
--> 202 , callbacks = callbacks_list
203 )
204
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1098 _r=1):
1099 callbacks.on_train_batch_begin(step)
-> 1100 tmp_logs = self.train_function(iterator)
1101 if data_handler.should_sync:
1102 context.async_wait()
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\def_function.py in call(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
869 # This is the first call of call, so we have to initialize.
870 initializers = []
--> 871 self._initialize(args, kwds, add_initializers_to=initializers)
872 finally:
873 # At this point we know that the initialization is complete (or less
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
724 self._concrete_stateful_fn = (
725 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 726 *args, **kwds))
727
728 def invalid_creator_scope(*unused_args, **unused_kwds):
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2967 args, kwargs = None, None
2968 with self._lock:
-> 2969 graph_function, _ = self._maybe_define_function(args, kwargs)
2970 return graph_function
2971
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)
3359
3360 self._function_cache.missed.add(call_context_key)
-> 3361 graph_function = self._create_graph_function(args, kwargs)
3362 self._function_cache.primary[cache_key] = graph_function
3363
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3204 arg_names=arg_names,
3205 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3206 capture_by_value=self._capture_by_value),
3207 self._function_attributes,
3208 function_spec=self.function_spec,
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
988 _, original_func = tf_decorator.unwrap(python_func)
989
--> 990 func_outputs = python_func(*func_args, **func_kwargs)
991
992 # invariant:
func_outputs
contains only Tensors, CompositeTensors,~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
632 xla_context.Exit()
633 else:
--> 634 out = weak_wrapped_fn().wrapped(*args, **kwds)
635 return out
636
~\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except
976 if hasattr(e, "ag_error_metadata"):
--> 977 raise e.ag_error_metadata.to_exception(e)
978 else:
979 raise
TypeError: in user code:
The text was updated successfully, but these errors were encountered: