-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathatari_a2c_ppo.py
195 lines (165 loc) · 6.73 KB
/
atari_a2c_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import copy
import glob
import os
import time
from collections import deque
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from a2c_ppo_acktr import algo, utils
from a2c_ppo_acktr.arguments import get_args
from a2c_ppo_acktr.envs import make_vec_envs
from a2c_ppo_acktr.model import Policy
from a2c_ppo_acktr.storage import RolloutStorage
from utils import make_atari_env_watch
from tianshou.data import Batch
from utils import make_policy
def main():
args = get_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(1)
device = args.device
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, None, device, False)
if args.resume_path is None:
actor_critic = Policy(
envs.observation_space.shape,
envs.action_space,
device=args.device,
base_kwargs={'recurrent': args.recurrent_policy})
actor_critic.to(device)
actor_critic.init(device)
else:
actor_critic = make_policy(args, args.algo, args.resume_path)
# watch agent's performance
def watch():
print("Testing agent ...")
actor_critic.eval()
args.task, args.frames_stack = args.env_name, 4
env = make_atari_env_watch(args)
obs = env.reset()
n_ep, tot_rew = 0, 0
while True:
inputs = Batch(obs=np.expand_dims(obs, axis=0))
with torch.no_grad():
result = actor_critic(inputs)
action = result.act
# Observe reward and next obs
obs, reward, done, _ = env.step(action)
tot_rew += reward
if done:
n_ep += 1
obs = env.reset()
if n_ep == args.test_num:
break
print("Evaluation using {} episodes: mean reward {:.5f}\n".format(
n_ep, tot_rew / n_ep))
if args.watch:
watch()
exit(0)
if args.resume_path is not None:
args.rms_eps = 0.1
if args.algo == 'a2c':
agent = algo.A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.rms_eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'ppo':
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.rms_eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algo.A2C_ACKTR(
actor_critic, args.value_loss_coef, args.entropy_coef, acktr=True)
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
acc_rewards = np.zeros(args.num_processes)
best_reward = -np.inf
start = time.time()
num_updates = int(
args.num_env_steps) // args.num_steps // args.num_processes
print("start training")
for j in range(num_updates):
if args.use_linear_lr_decay:
# decrease learning rate linearly
utils.update_linear_schedule(
agent.optimizer, j, num_updates,
agent.optimizer.lr if args.algo == "acktr" else args.lr)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# Observe reward and next obs
obs, reward, done, infos = envs.step(action)
for i, d in enumerate(done):
acc_rewards[i] += reward[i].detach().cpu()[0]
if d:
episode_rewards.append(acc_rewards[i])
acc_rewards[i] = 0
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# save for every interval-th episode or for the last epoch
if len(episode_rewards) > 0 and np.mean(episode_rewards) >= best_reward and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
best_reward = np.mean(episode_rewards)
torch.save([
actor_critic,
getattr(utils.get_vec_normalize(envs), 'ob_rms', None)
], os.path.join(save_path, "policy.pth"))
if j % args.log_interval == 0 and len(episode_rewards) > 0:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
end = time.time()
print(
"Updates {}, num timesteps {}, FPS {} \nLast {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f} (best avg reward {:.1f})\n"
.format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards), np.mean(episode_rewards),
np.median(episode_rewards), np.min(episode_rewards),
np.max(episode_rewards), best_reward))
print("model saved to " + str(os.path.join(args.save_dir, args.algo, "policy.pth")))
watch()
if __name__ == "__main__":
main()