-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathap.py
100 lines (85 loc) · 3.27 KB
/
ap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from collections import defaultdict
from numpy.lib.function_base import average
import torch
import numpy as np
def distance(a, b):
# the times 3 is to account for the fact that we normalized coords
# by dividing by 3 in the data loader
return 3 * (a - b).norm(p=2)
@torch.no_grad()
def compute_ap(groundtruth, prediction, thresholds=[]):
groundtruth = groundtruth.cpu()
prediction = prediction.cpu()
for gt, pr in zip(groundtruth, prediction):
gt = vec_to_properties(gt)
pr = vec_to_properties(pr)
gt = list(zip(*gt))
pr = list(zip(*pr))
properties_to_gt_coord = defaultdict(list)
for m, c, p in gt:
if m == 1:
properties_to_gt_coord[p].append(c)
tp = torch.zeros(len(thresholds), len(pr), dtype=torch.long)
fp = torch.zeros(len(thresholds), len(pr), dtype=torch.long)
# sort prediction on their confidences
pr.sort(key=lambda x: x[0], reverse=True)
for i, (mask, coord, properties) in enumerate(pr):
candidates = properties_to_gt_coord[properties]
# print(mask, coord, properties, candidates)
best_dist, best_index = find_closest(coord, candidates)
if best_index is None:
fp[:, i] = True
continue
candidates.pop(best_index)
for j, threshold in enumerate(thresholds):
within_threshold = best_dist < threshold
tp[j, i] = within_threshold
fp[j, i] = not within_threshold
acc_tp = tp.cumsum(1)
acc_fp = fp.cumsum(1)
precision = acc_tp / (acc_tp + acc_fp)
recall = acc_tp / sum(x[0] for x in gt)
results = []
precision = precision.numpy()
recall = recall.numpy()
for p, r in zip(precision, recall):
ap, *_ = CalculateAveragePrecision(r, p)
results.append(ap)
return torch.FloatTensor(results)
def find_closest(coord, list):
best = float('inf')
best_index = None
for i, c in enumerate(list):
dist = distance(coord, c)
if dist < best:
best = dist
best_index = i
return best, best_index
def vec_to_properties(vec):
coord, material, color, shape, size, mask = vec.split((3, 2, 8, 3, 2, 1), dim=-1)
properties = [material, color, shape, size]
properties = [torch.argmax(x, dim=-1).tolist() for x in properties]
properties = list(zip(*properties))
return mask, coord, properties
# interpolation code copied from https://github.com/rafaelpadilla/Object-Detection-Metrics/blob/master/lib/Evaluator.py#L294-L314
# by rafaelpaddila
def CalculateAveragePrecision(rec, prec):
mrec = []
mrec.append(0)
[mrec.append(e) for e in rec]
mrec.append(1)
mpre = []
mpre.append(0)
[mpre.append(e) for e in prec]
mpre.append(0)
for i in range(len(mpre) - 1, 0, -1):
mpre[i - 1] = max(mpre[i - 1], mpre[i])
ii = []
for i in range(len(mrec) - 1):
if mrec[1:][i] != mrec[0:-1][i]:
ii.append(i + 1)
ap = 0
for i in ii:
ap = ap + np.sum((mrec[i] - mrec[i - 1]) * mpre[i])
# return [ap, mpre[1:len(mpre)-1], mrec[1:len(mpre)-1], ii]
return [ap, mpre[0 : len(mpre) - 1], mrec[0 : len(mpre) - 1], ii]