diff --git a/website/docs/best-practices/how-we-structure/5-the-rest-of-the-project.md b/website/docs/best-practices/how-we-structure/5-the-rest-of-the-project.md index 81151582c17..9358b507acc 100644 --- a/website/docs/best-practices/how-we-structure/5-the-rest-of-the-project.md +++ b/website/docs/best-practices/how-we-structure/5-the-rest-of-the-project.md @@ -107,7 +107,6 @@ One important, growing consideration in the analytics engineering ecosystem is h As breaking up monolithic dbt projects into smaller, connected projects, potentially within a modern mono repo becomes easier, the scenarios we currently advise against may soon become feasible. So watch this space! - ✅ **Business groups or departments.** Conceptual separations within the project are the primary reason to split up your project. This allows your business domains to own their own data products and still collaborate using dbt Mesh. For more information about dbt Mesh, please refer to our [dbt Mesh FAQs](/best-practices/how-we-mesh/mesh-5-faqs). -- ❌ **ML vs Reporting use cases.** Similarly to the point above, splitting a project up based on different use cases, particularly more standard BI versus ML features, is a common idea. We tend to discourage it for the time being. As with the previous point, a foundational goal of implementing dbt is to create a single source of truth in your organization. The features you’re providing to your data science teams should be coming from the same marts and metrics that serve reports on executive dashboards. - ✅ **Data governance.** Structural, organizational needs — such as data governance and security — are one of the few worthwhile reasons to split up a project. If, for instance, you work at a healthcare company with only a small team cleared to access raw data with PII in it, you may need to split out your staging models into their own projects to preserve those policies. In that case, you would import your staging project into the project that builds on those staging models as a [private package](https://docs.getdbt.com/docs/build/packages/#private-packages). - ✅ **Project size.** At a certain point, your project may grow to have simply too many models to present a viable development experience. If you have 1000s of models, it absolutely makes sense to find a way to split up your project. - ❌ **ML vs Reporting use cases.** Similarly to the point above, splitting a project up based on different use cases, particularly more standard BI versus ML features, is a common idea. We tend to discourage it for the time being. As with the previous point, a foundational goal of implementing dbt is to create a single source of truth in your organization. The features you’re providing to your data science teams should be coming from the same marts and metrics that serve reports on executive dashboards.