-
Notifications
You must be signed in to change notification settings - Fork 3
/
fields.cpp
227 lines (134 loc) · 3.45 KB
/
fields.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include"cpFEM.h"
#include"simu.h"
const double pi = M_PI;
FT parabolla(const FT x,const FT y ) {
const FT cut = 0.4;
const FT pre = 1;
FT r2= x*x + y*y;
FT r = std::sqrt(r2);
if( r > cut )
return 0 ;
else
return pre * r2 ;
}
FT cut(const FT x,const FT y ) {
const FT cut = 0.4;
const FT amp = 1;
FT r2= x*x + y*y;
FT r = std::sqrt(r2);
if( r > cut )
return 0 ;
else
return amp;
}
FT sinx(const FT x,const FT y ) {
const FT amp = 1;
return amp*std::sin( 2 * M_PI * x );
}
FT sinsin(const FT x,const FT y ) {
const FT amp = 1;
return amp*std::sin( 2 * M_PI * x )*std::sin( 2 * M_PI * y );
}
void set_pressure(Triangulation& T) {
for(F_v_it vit=T.finite_vertices_begin();
vit != T.finite_vertices_end();
vit++) {
FT x=vit->point().x();
FT y=vit->point().y();
// vit->p.set( parabolla(x,y) );
// vit->p.set( cut(x,y) );
// vit->p.set( sinx(x,y) );
vit->p.set( sinsin(x,y) );
}
return;
}
Vector_2 field_rotation(const FT x,const FT y ) {
const FT cut = 0.4;
const FT width = 0.1;
FT r2= x*x + y*y;
FT r = std::sqrt(r2);
if( r > cut )
return CGAL::NULL_VECTOR ;
else {
FT cross = 1; //(1 - std::tanh( ( r - cut) / width )) / 2;
return cross * 2 * M_PI * Vector_2( -y , x ) ;
}
}
void set_vels_rotating(Triangulation& T) {
for(F_v_it vit=T.finite_vertices_begin();
vit != T.finite_vertices_end();
vit++) {
FT x=vit->point().x();
FT y=vit->point().y();
vit->U.set( field_rotation(x,y) );
}
return;
}
void set_vels_Lamb_Oseen(Triangulation& T) {
const FT tiny = 1e-10;
const FT Gamma_over_2pi = 1.0 / (2 * pi );
const FT r_c = 0.1;
const FT r2_c = r_c * r_c;
for(F_v_it vit=T.finite_vertices_begin();
vit != T.finite_vertices_end();
vit++) {
FT x=vit->point().x();
FT y=vit->point().y();
FT r2 = x*x + y*y ;
FT r = std::sqrt( r2 ) ;
Vector_2 u_theta( Vector_2( -y , x ) / ( r + tiny) ) ;
FT amp = Gamma_over_2pi * ( 1 - std::exp( - r2 / r2_c ) ) / ( r + tiny ) ;
vit->U.set( amp * u_theta );
// cout << r << " " << amp << endl;
}
return;
}
Vector_2 Gresho_v( const FT x, const FT y) {
const FT tiny = 1e-10;
const FT rc1 = 0.2;
const FT rc2 = 0.4;
FT r2 = x*x + y*y ;
FT r = std::sqrt( r2 ) ;
Vector_2 u_theta( Vector_2( -y , x ) / ( r + tiny) ) ;
FT amp = 0;
if( r <= rc1 ) amp = 5*r ;
else if( r <= rc2 ) amp = 2 - 5*r;
return amp * u_theta ;
}
void set_vels_Gresho(Triangulation& T) {
for(F_v_it vit=T.finite_vertices_begin();
vit != T.finite_vertices_end();
vit++) {
FT x=vit->point().x();
FT y=vit->point().y();
vit->U.set( Gresho_v( x , y) ) ;
}
return;
}
FT L2_vel_Gresho( Triangulation& T) {
FT L2 = 0 , L2_0 = 0;
int nn=0;
for(F_v_it vit=T.finite_vertices_begin();
vit != T.finite_vertices_end();
vit++) {
FT x=vit->point().x();
FT y=vit->point().y();
Vector_2 U0 = Gresho_v( x , y) ;
Vector_2 U = vit->U.val();
L2 += std::sqrt( ( U - U0 ).squared_length() );
L2_0 += std::sqrt( U0.squared_length() );
++nn;
}
return L2 /L2_0; // / nn;
}
FT kinetic_E( Triangulation& T) {
FT TT=0;
for(F_v_it vit=T.finite_vertices_begin();
vit != T.finite_vertices_end();
vit++) {
Vector_2 U = vit->U.val();
FT v = vit->Dvol.val();
TT += v * U.squared_length();
}
return TT/2;
}