-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
57 lines (47 loc) · 2.15 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from jax import jit, grad
import optax as optim
from dataloader import NumpyLoader
from model import SkipGramEmbeddings
from sgns_loss import SGNSLoss
from tqdm import tqdm
# from datasets.pypi_lang import PyPILangDataset
from datasets.world_order import WorldOrderDataset
from functools import partial
import numpy as np
class Trainer:
def __init__(self, args):
# Load data
self.args = args
self.dataset = WorldOrderDataset(args)#, examples_path='data/pypi_examples.pth', dict_path='data/pypi_dict.pth')
self.vocab_size = len(self.dataset.dictionary)
print("Finished loading dataset")
self.dataloader = NumpyLoader(self.dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers)
self.model = SkipGramEmbeddings(self.vocab_size, args.embedding_len)
self.sgns = SGNSLoss(self.dataset)
# Set up optimizer - rmsprop seems to work the best
optimizer = optim.adam(args.lr)
self.opt_init = optimizer.init
self.opt_update = optimizer.update
self.apply_updates = optim.apply_updates
@partial(jit, static_argnums=(0,))
def update(self, params, opt_state, batch):
g = grad(self.sgns.forward)(params, batch)
updates, opt_state = self.opt_update(g, opt_state)
params = self.apply_updates(params, updates)
return opt_state, params, g
def train(self):
# Initialize optimizer state!
params = self.model.word_embeds
opt_state = self.opt_init(params)
for epoch in range(self.args.epochs):
print(f'Beginning epoch: {epoch + 1}/{self.args.epochs}')
for i, batch in enumerate(tqdm(self.dataloader)):
opt_state, params, g = self.update(params, opt_state, batch)
self.log_step(epoch, params, g)
def log_step(self, epoch, params, g):
print(f'EPOCH: {epoch} | GRAD MAGNITUDE: {np.sum(g)}')
# Log embeddings!
print('\nLearned embeddings:')
for word in self.dataset.queries:
print(f'word: {word} neighbors: {self.model.nearest_neighbors(word, self.dataset.dictionary, params)}')