-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbart_inference.py
61 lines (52 loc) · 2.65 KB
/
bart_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import sys
from typing import Tuple
import torch
from transformers import HfArgumentParser, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers.pipelines import Text2TextGenerationPipeline
from transformers.pipelines.text2text_generation import ReturnType
from utils import InferenceArguments
def main(inference_args: Tuple) -> None:
texts = ["그러게 누가 6시까지 술을 마시래?"]
tokenizer = AutoTokenizer.from_pretrained(
inference_args.model_name_or_path,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
inference_args.model_name_or_path,
)
seq2seqlm_pipeline = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer)
kwargs = {
"min_length": inference_args.min_length,
"max_length": inference_args.max_length,
"num_beams": inference_args.beam_width,
"do_sample": inference_args.do_sample,
"num_beam_groups": inference_args.num_beam_groups,
}
"""
Generates sequences of token ids for models with a language modeling head. The method supports the following
generation methods for text-decoder, text-to-text, speech-to-text, and vision-to-text models:
- *greedy decoding* by calling [`~generation_utils.GenerationMixin.greedy_search`] if `num_beams=1` and
`do_sample=False`.
- *multinomial sampling* by calling [`~generation_utils.GenerationMixin.sample`] if `num_beams=1` and
`do_sample=True`.
- *beam-search decoding* by calling [`~generation_utils.GenerationMixin.beam_search`] if `num_beams>1` and
`do_sample=False`.
- *beam-search multinomial sampling* by calling [`~generation_utils.GenerationMixin.beam_sample`] if
`num_beams>1` and `do_sample=True`.
- *diverse beam-search decoding* by calling [`~generation_utils.GenerationMixin.group_beam_search`], if
`num_beams>1` and `num_beam_groups>1`.
- *constrained beam-search decoding* by calling
[`~generation_utils.GenerationMixin.constrained_beam_search`], if `constraints!=None` or
`force_words_ids!=None`.
"""
pred = seq2seqlm_pipeline(texts, **kwargs)
print(pred)
if __name__ == "__main__":
parser = HfArgumentParser(InferenceArguments)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
inference_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
inference_args = parser.parse_args_into_dataclasses()[0]
main(inference_args)