-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbart_train.py
236 lines (199 loc) · 8.43 KB
/
bart_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python
# coding=utf-8
import logging
import os
import sys
from typing import Dict, List
import numpy as np
import transformers
from datasets import Dataset, load_from_disk
from setproctitle import setproctitle
from transformers import (
HfArgumentParser,
PreTrainedTokenizerFast,
Seq2SeqTrainer,
set_seed,
BartModel,
AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq,
)
from evaluate import load
from transformers.trainer_utils import get_last_checkpoint, is_main_process, EvalPrediction
# Argument
from utils import DatasetsArguments, ModelArguments, TNTTrainingArguments
logger = logging.getLogger(__name__)
def csvs_to_datasets(csv_paths):
import pandas as pd
concat_list = list()
for csv_path in csv_paths:
csv_df = pd.read_csv(
csv_path,
index_col=None,
)
concat_list.append(csv_df)
tot_df = pd.concat(concat_list, axis=0, ignore_index=True)
return Dataset.from_pandas(tot_df)
def main() -> None:
"""
@@@@@@@@@@@@@@@@@@@@ 파라미터 받음
"""
parser = HfArgumentParser((ModelArguments, DatasetsArguments, TNTTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
"""
proc name, wandb 설정
"""
setproctitle(training_args.setproctitle_name)
if is_main_process(training_args.local_rank):
import wandb
wandb.init(
project=training_args.wandb_project,
entity=training_args.wandb_entity,
name=training_args.wandb_name,
)
"""
@@@@@@@@@@@@@@@@@@@@ 이어서 학습할지 처리
"""
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
"""
@@@@@@@@@@@@@@@@@@@@ logger 세팅
"""
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
"""
@@@@@@@@@@@@@@@@@@@@ 모델 시드 설정
"""
set_seed(training_args.seed)
"""
@@@@@@@@@@@@@@@@@@@@ 토크나이저 설정
"""
# Pre-Training에서의 config과 어느정도 일맥상통하므로, 최대한 config를 활용하기 위해서 학습 초기에는 config를 pre-training 모델에서 가져오도록 한다.
# predict의 경우, 이미 학습된 모델이 있다는 가정이므로, output_dir에서 가져오도록 처리.
if training_args.do_train or training_args.do_eval:
model_path = model_args.model_name_or_path
elif training_args.do_predict:
model_path = training_args.output_dir
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path)
def tokenize(batch):
model_inputs = tokenizer(
batch["sen_col"],
return_length=True,
)
labels = tokenizer(
batch["num_col"],
)
labels = labels["input_ids"]
labels.append(tokenizer.eos_token_id)
model_inputs["labels"] = labels
return model_inputs
"""
@@@@@@@@@@@@@@@@@@@@ RAW Data 로딩, 토크나이징 진행, 빠르게 불러 쓰기 위해 train datasets만 임시 저장
"""
train_datasets = None
valid_datasets = None
if training_args.do_train:
if data_args.temp_datasets_dir is not None and os.path.isdir(data_args.temp_datasets_dir):
train_datasets = load_from_disk(data_args.temp_datasets_dir)
else:
train_datasets = csvs_to_datasets(data_args.train_csv_paths)
train_datasets = train_datasets.map(tokenize, remove_columns=["num_col", "sen_col"])
train_datasets.save_to_disk(data_args.temp_datasets_dir)
if training_args.do_eval or training_args.do_predict:
valid_datasets = csvs_to_datasets(data_args.valid_csv_paths)
valid_datasets = valid_datasets.map(tokenize, remove_columns=["num_col", "sen_col"])
"""
@@@@@@@@@@@@@@@@@@@@ 검증 Metrics 정의
"""
blue = load("evaluate-metric/bleu")
rouge = load("evaluate-metric/rouge")
def compute_metrics(evaluation_result: EvalPrediction) -> Dict[str, float]:
result = dict()
predicts = evaluation_result.predictions
predicts = np.where(predicts != -100, predicts, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(predicts, skip_special_tokens=True)
labels = evaluation_result.label_ids
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
blue_score = blue._compute(decoded_preds, decoded_labels)
blue_score.pop("precisions")
# latin이 아닐 시, tokenizer는 split해줘야 띄어쓰기 단위로 n-gram이 정확히 계산됨
rouge_score = rouge._compute(decoded_preds, decoded_labels, tokenizer=lambda x: x.split())
result.update(rouge_score)
result.update(blue_score)
return result
def preprocess_logits_for_metrics(logits, labels):
"""
@@@@@@@@@@@@@@@@@@@@ eval 전에 CPU로 빼고, --predict_with_generate=false 에 따른 argmax 처리
"""
logits = logits.to("cpu") if not isinstance(logits, tuple) else logits[0].to("cpu")
logits = logits.argmax(dim=-1)
return logits
"""
@@@@@@@@@@@@@@@@@@@@ 모델과 콜레터 선언 https://huggingface.co/course/chapter7/4?fw=pt
"""
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
trainer = Seq2SeqTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_datasets if training_args.do_train else None,
eval_dataset=valid_datasets if training_args.do_eval else None,
tokenizer=tokenizer,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
"""
@@@@@@@@@@@@@@@@@@@@ 조건의 맞는 학습, 검증, 테스트 진행
"""
if training_args.do_train:
# use last checkpoint if exist
if last_checkpoint is not None:
checkpoint = last_checkpoint
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model(output_dir=training_args.output_dir)
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset=valid_datasets)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
test_results = trainer.predict(test_dataset=valid_datasets)
metrics = test_results.metrics
metrics["predict_samples"] = len(metrics)
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if __name__ == "__main__":
main()