-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
243 lines (190 loc) · 8.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import cv2
import time
import numpy as np
import pickle
import os
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from thundernet.utils.np_opr import rpn_to_roi, non_max_suppression_fast, apply_regr
from thundernet.layers.snet import snet_146
from thundernet.layers.detector import rpn_layer, classifier_layer
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
# ----------------------------- Path_config ------------------------------ #
base_path = '/data2/intern/TF-Keras-ThunderNet/'
#test_path = '/data2/intern/TF-Keras-ThunderNet/data/train_list.txt'
test_base_path = '/data2/intern/TF-Keras-ThunderNet/data/test_cube'
config_output_filename = os.path.join(base_path, 'model/model_snet_config.pickle')
# ------------------------------- Config ----------------------------------- #
with open(config_output_filename, 'rb') as f_in:
C = pickle.load(f_in)
# turn off any data augmentation at test time
C.use_horizontal_flips = False
C.use_vertical_flips = False
C.rot_90 = False
def format_img_size(img, C):
""" formats the image size based on config """
(height, width, _) = img.shape
print(height, width)
ratio_h = height / 320
ratio_w = width / 320
img = cv2.resize(img, (320, 320), interpolation=cv2.INTER_CUBIC)
return img, ratio_h, ratio_w
def format_img_channels(img, C):
""" formats the image channels based on config """
img = img[:, :, (2, 1, 0)]
img = img.astype(np.float32)
img[:, :, 0] -= C.img_channel_mean[0]
img[:, :, 1] -= C.img_channel_mean[1]
img[:, :, 2] -= C.img_channel_mean[2]
img /= C.img_scaling_factor
img = np.transpose(img, (2, 0, 1))
img = np.expand_dims(img, axis=0)
return img
def format_img(img, C):
""" formats an image for model prediction based on config """
img, ratio_h, ratio_w = format_img_size(img, C)
img = format_img_channels(img, C)
return img, ratio_h, ratio_w
# Method to transform the coordinates of the bounding box to its original size
def get_real_coordinates(ratio_h, ratio_w, x1, y1, x2, y2):
real_x1 = int(round(x1 * ratio_w))
real_y1 = int(round(y1 * ratio_h))
real_x2 = int(round(x2 * ratio_w))
real_y2 = int(round(y2 * ratio_h))
return (real_x1, real_y1, real_x2 ,real_y2)
num_features = 245
input_shape_img = (320, 320, 3)
input_shape_features = (None, None, num_features)
img_input = Input(shape=input_shape_img)
roi_input = Input(shape=(C.num_rois, 4))
feature_map_input = Input(shape=input_shape_features)
# define the base network (VGG here, can be Resnet50, Inception, etc)
shared_layers = snet_146(img_input)
# define the RPN, built on the base layers
num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios)
rpn_layers = rpn_layer(shared_layers, num_anchors)
classifier = classifier_layer(feature_map_input, roi_input, C.num_rois, nb_classes=len(C.class_mapping))
model_rpn = Model(img_input, rpn_layers)
# model_classifier_only = Model([feature_map_input, roi_input], classifier)
model_classifier = Model([feature_map_input, roi_input], classifier)
print('Loading weights from {}'.format(C.model_path))
model_rpn.load_weights(C.model_path, by_name=True)
model_classifier.load_weights(C.model_path, by_name=True)
# --------------------------------------------------------#
# Print class mapping #
# --------------------------------------------------------#
# Switch key value for class mapping
class_mapping = C.class_mapping
class_mapping = {v: k for k, v in class_mapping.items()}
print(class_mapping)
class_to_color = {class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping}
test_imgs = os.listdir(test_base_path)
imgs_path = []
for i in range(485):
idx = np.random.randint(len(test_imgs))
imgs_path.append(test_imgs[idx])
all_imgs = []
classes = {}
# -------------------------------------------------------- #
# Start Testing #
# -------------------------------------------------------- #
# If the box classification value is less than this, we ignore this box
bbox_threshold = 0.0
for idx, img_name in enumerate(imgs_path):
if not img_name.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')):
continue
print(img_name)
st = time.time()
filepath = os.path.join(test_base_path, img_name)
img = cv2.imread(filepath)
X, ratio_h, ratio_w = format_img(img, C)
X = np.transpose(X, (0, 2, 3, 1))
# get output layer Y1, Y2 from the RPN and the feature maps F
# Y1: y_rpn_cls
# Y2: y_rpn_regr
# for layer in model_rpn.layers:
# print(layer.get_config(), layer.get_weights())
[Y1, Y2, F] = model_rpn.predict(X)
# print(Y1.shape)
# Get bboxes by applying NMS
# R.shape = (300, 4)
R = rpn_to_roi(Y1, Y2, C, 'tf', overlap_thresh=0.7)
print(len(R))
# convert from (x1,y1,x2,y2) to (x,y,w,h)
R[:, 2] -= R[:, 0]
R[:, 3] -= R[:, 1]
# apply the spatial pyramid pooling to the proposed regions
bboxes = {}
probs = {}
for jk in range(R.shape[0] // C.num_rois + 1):
ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0)
if ROIs.shape[1] == 0:
break
if jk == R.shape[0] // C.num_rois:
# pad R
curr_shape = ROIs.shape
target_shape = (curr_shape[0], C.num_rois, curr_shape[2])
ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype)
ROIs_padded[:, :curr_shape[1], :] = ROIs
ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :]
ROIs = ROIs_padded
[P_cls, P_regr] = model_classifier.predict([F, ROIs])
# print([P_cls, P_regr])
# Calculate bboxes coordinates on resized image
for ii in range(P_cls.shape[1]):
# Ignore 'bg' class
if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1):
continue
cls_name = class_mapping[np.argmax(P_cls[0, ii, :])]
if cls_name not in bboxes:
bboxes[cls_name] = []
probs[cls_name] = []
(x, y, w, h) = ROIs[0, ii, :]
cls_num = np.argmax(P_cls[0, ii, :])
try:
(tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)]
tx /= C.classifier_regr_std[0]
ty /= C.classifier_regr_std[1]
tw /= C.classifier_regr_std[2]
th /= C.classifier_regr_std[3]
x, y, w, h = apply_regr(x, y, w, h, tx, ty, tw, th)
except:
pass
bboxes[cls_name].append(
[C.rpn_stride * x, C.rpn_stride * y, C.rpn_stride * (x + w), C.rpn_stride * (y + h)])
probs[cls_name].append(np.max(P_cls[0, ii, :]))
all_dets = []
for key in bboxes:
bbox = np.array(bboxes[key])
print(key)
new_boxes, new_probs = non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5)
for jk in range(new_boxes.shape[0]):
#(y1, x1, y2, x2) = new_boxes[jk, :]
(x1, y1, x2, y2) = new_boxes[jk, :]
print((x1, y1, x2, y2))
# Calculate real coordinates on original image
(real_x1, real_y1, real_x2, real_y2) = get_real_coordinates(ratio_h, ratio_w, x1, y1, x2, y2)
cv2.rectangle(img, (real_x1, real_y1), (real_x2, real_y2),
(int(class_to_color[key][0]), int(class_to_color[key][1]), int(class_to_color[key][2])), 4)
textLabel = '{}: {}'.format(key, int(100 * new_probs[jk]))
all_dets.append((key, 100 * new_probs[jk]))
(retval, baseLine) = cv2.getTextSize(textLabel, cv2.FONT_HERSHEY_COMPLEX, 1, 1)
textOrg = (real_x1, real_y1 - 0)
cv2.rectangle(img, (textOrg[0] - 5, textOrg[1] + baseLine - 5),
(textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (0, 0, 0), 1)
cv2.rectangle(img, (textOrg[0] - 5, textOrg[1] + baseLine - 5),
(textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (255, 255, 255), -1)
cv2.putText(img, textLabel, textOrg, cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 0), 1)
cv2.imwrite('./data/res/{}'.format(img_name), img)
print('Elapsed time = {}'.format(time.time() - st))
#print(all_dets)
'''
plt.figure(figsize=(10, 10))
plt.grid()
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
'''