Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

What are the requirements? #262

Open
martinenkoEduard opened this issue Jul 27, 2023 · 3 comments
Open

What are the requirements? #262

martinenkoEduard opened this issue Jul 27, 2023 · 3 comments

Comments

@martinenkoEduard
Copy link

What are the requirements?

@gdiasbruno
Copy link

Same doubt here

@jingjjjjjie
Copy link

hi guys, have you found out the requirements yet?

@alantim
Copy link

alantim commented Sep 11, 2024

I used the requirements from ultralytics/yolov5 and added some missing packages:

# YOLOv5 requirements
# Usage: pip install -r requirements.txt

# Base ------------------------------------------------------------------------
matplotlib>=3.3
numpy>=1.23.5
opencv-python>=4.1.1
pillow>=10.3.0
psutil  # system resources
PyYAML>=5.3.1
requests>=2.32.0
scipy>=1.4.1
thop>=0.1.1  # FLOPs computation
torch>=1.8.0  # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.64.0
tensorboard
# ultralytics>=8.2.34  # https://ultralytics.com
# protobuf<=3.20.1  # https://github.com/ultralytics/yolov5/issues/8012

# Logging ---------------------------------------------------------------------
# tensorboard>=2.4.1
# clearml>=1.2.0
# comet

# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# Export ----------------------------------------------------------------------
# coremltools>=6.0  # CoreML export
# onnx>=1.10.0  # ONNX export
# onnx-simplifier>=0.4.1  # ONNX simplifier
# nvidia-pyindex  # TensorRT export
# nvidia-tensorrt  # TensorRT export
# scikit-learn<=1.1.2  # CoreML quantization
# tensorflow>=2.4.0,<=2.13.1  # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev>=2023.0  # OpenVINO export

# Deploy ----------------------------------------------------------------------
# setuptools>=70.0.0 # Snyk vulnerability fix
# tritonclient[all]~=2.24.0

# Extras ----------------------------------------------------------------------
ipython  # interactive notebook
cython
# mss  # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6  # COCO mAP

I also made an environment.yaml file, in case you want to install using conda:

# reasons you might want to use `environment.yaml` instead of `requirements.txt`:
# - pip installs packages in a loop, without ensuring dependencies across all packages
#   are fulfilled simultaneously, but conda achieves proper dependency control across
#   all packages
# - conda allows for installing packages without requiring certain compilers or
#   libraries to be available in the system, since it installs precompiled binaries

name: myenv

channels:
  - pytorch
  - conda-forge
  - defaults

# it is strongly recommended to specify versions of packages installed through conda
# to avoid situation when version-unspecified packages install their latest major
# versions which can sometimes break things

# current approach below keeps the dependencies in the same major versions across all
# users, but allows for different minor and patch versions of packages where backwards
# compatibility is usually guaranteed

dependencies:
  - python=3.10
  - matplotlib=3.*
  - numpy=1.*
  - opencv=4.*
  - pillow=10.*
  - pytorch=2.*
  - psutil
  - pyyaml=5.*
  - requests=2.*
  - scipy=1.*
  - pytorch
  - torchvision
  - tqdm=4.*
  - pandas=1*
  - seaborn=0.*
  - tensorboard
  - pip>=23
  - pip:
      - thop

  # ------ For Evaluation ----- #
  - cython
  - ipython

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants