-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.c
119 lines (103 loc) · 4.36 KB
/
kmeans.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
** © 2011-2016 by Kornel Lesiński.
** See COPYRIGHT file for license.
*/
#include "libimagequant.h"
#include "pam.h"
#include "kmeans.h"
#include "nearest.h"
#include <stdlib.h>
#include <string.h>
#ifdef _OPENMP
#include <omp.h>
#else
#define omp_get_max_threads() 1
#define omp_get_thread_num() 0
#endif
/*
* K-Means iteration: new palette color is computed from weighted average of colors that map to that palette entry.
*/
LIQ_PRIVATE void kmeans_init(const colormap *map, const unsigned int max_threads, kmeans_state average_color[])
{
memset(average_color, 0, sizeof(average_color[0])*(KMEANS_CACHE_LINE_GAP+map->colors)*max_threads);
}
LIQ_PRIVATE void kmeans_update_color(const f_pixel acolor, const float value, const colormap *map, unsigned int match, const unsigned int thread, kmeans_state average_color[])
{
match += thread * (KMEANS_CACHE_LINE_GAP+map->colors);
average_color[match].a += acolor.a * value;
average_color[match].r += acolor.r * value;
average_color[match].g += acolor.g * value;
average_color[match].b += acolor.b * value;
average_color[match].total += value;
}
LIQ_PRIVATE void kmeans_finalize(colormap *map, const unsigned int max_threads, const kmeans_state average_color[])
{
for (unsigned int i=0; i < map->colors; i++) {
double a=0, r=0, g=0, b=0, total=0;
// Aggregate results from all threads
for(unsigned int t=0; t < max_threads; t++) {
const unsigned int offset = (KMEANS_CACHE_LINE_GAP+map->colors) * t + i;
a += average_color[offset].a;
r += average_color[offset].r;
g += average_color[offset].g;
b += average_color[offset].b;
total += average_color[offset].total;
}
if (!map->palette[i].fixed) {
map->palette[i].popularity = total;
if (total) {
map->palette[i].acolor = (f_pixel){
.a = a / total,
.r = r / total,
.g = g / total,
.b = b / total,
};
} else {
// if a color is useless, make a new one
// (it was supposed to be random, but Android NDK has problematic stdlib headers)
map->palette[i].acolor.a = map->palette[(i+1)%map->colors].acolor.a;
map->palette[i].acolor.r = map->palette[(i+2)%map->colors].acolor.r;
map->palette[i].acolor.g = map->palette[(i+3)%map->colors].acolor.g;
map->palette[i].acolor.b = map->palette[(i+4)%map->colors].acolor.b;
}
}
}
}
LIQ_PRIVATE double kmeans_do_iteration(histogram *hist, colormap *const map, kmeans_callback callback, unsigned int max_threads)
{
LIQ_ARRAY(kmeans_state, average_color, (KMEANS_CACHE_LINE_GAP+map->colors) * max_threads);
kmeans_init(map, max_threads, average_color);
struct nearest_map *const n = nearest_init(map);
hist_item *const achv = hist->achv;
const int hist_size = hist->size;
double total_diff=0;
#if __GNUC__ >= 9 || __clang__
#pragma omp parallel for if (hist_size > 2000) \
schedule(static) default(none) shared(achv,average_color,callback,hist_size,map,n) reduction(+:total_diff)
#else
#pragma omp parallel for if (hist_size > 2000) \
schedule(static) default(none) shared(average_color,callback) reduction(+:total_diff)
#endif
for(int j=0; j < hist_size; j++) {
float diff;
const f_pixel px = achv[j].acolor;
const unsigned int match = nearest_search(n, &px, achv[j].tmp.likely_colormap_index, &diff);
achv[j].tmp.likely_colormap_index = match;
if (callback) {
// Check how average diff would look like if there was dithering
const f_pixel remapped = map->palette[match].acolor;
nearest_search(n, &(f_pixel){
.a = px.a + px.a - remapped.a,
.r = px.r + px.r - remapped.r,
.g = px.g + px.g - remapped.g,
.b = px.b + px.b - remapped.b,
}, match, &diff);
callback(&achv[j], diff);
}
total_diff += diff * achv[j].perceptual_weight;
kmeans_update_color(px, achv[j].adjusted_weight, map, match, omp_get_thread_num(), average_color);
}
nearest_free(n);
kmeans_finalize(map, max_threads, average_color);
return total_diff / hist->total_perceptual_weight;
}