You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Add pad token = ['<|▁pad▁|>'] to the tokenizer
<|▁pad▁|>:2
Add image token = [''] to the tokenizer :128815
Add grounding-related tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>'] to the tokenizer with input_ids
<|ref|>:128816
<|/ref|>:128817
<|det|>:128818
<|/det|>:128819
<|grounding|>:128820
Add chat tokens = ['<|User|>', '<|Assistant|>'] to the tokenizer with input_ids
<|User|>:128821
<|Assistant|>:128822
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:58<00:00, 7.29s/it]
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the __call__ method is faster than using a method to encode the text followed by a call to the pad method to get a padded encoding.
Traceback (most recent call last):
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/test001.py", line 54, in
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/modeling_deepseek_vl_v2.py", line 325, in prepare_inputs_embeds
images_feature = self.vision(total_tiles)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 548, in forward
x = self.forward_features(x)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 529, in forward_features
x = self.blocks(x)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/container.py", line 219, in forward
input = module(input)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 231, in forward
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 143, in forward
x = memory_efficient_attention(q, k, v, p=self.attn_drop.p if self.training else 0.)
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 276, in memory_efficient_attention
return _memory_efficient_attention(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 403, in _memory_efficient_attention
return _fMHA.apply(
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/autograd/function.py", line 574, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 74, in forward
out, op_ctx = _memory_efficient_attention_forward_requires_grad(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 428, in _memory_efficient_attention_forward_requires_grad
op = _dispatch_fw(inp, True)
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 119, in _dispatch_fw
return _run_priority_list(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 55, in _run_priority_list
raise NotImplementedError(msg)
NotImplementedError: No operator found for memory_efficient_attention_forward with inputs:
query : shape=(7, 729, 16, 72) (torch.bfloat16)
key : shape=(7, 729, 16, 72) (torch.bfloat16)
value : shape=(7, 729, 16, 72) (torch.bfloat16)
attn_bias : <class 'NoneType'>
p : 0.0 [email protected] is not supported because:
requires device with capability > (8, 0) but your GPU has capability (6, 1) (too old)
bf16 is only supported on A100+ GPUs cutlassF-pt is not supported because:
bf16 is only supported on A100+ GPUs smallkF is not supported because:
max(query.shape[-1] != value.shape[-1]) > 32
dtype=torch.bfloat16 (supported: {torch.float32})
bf16 is only supported on A100+ GPUs
unsupported embed per head: 72
The text was updated successfully, but these errors were encountered:
Add pad token = ['<|▁pad▁|>'] to the tokenizer
<|▁pad▁|>:2
Add image token = [''] to the tokenizer
:128815
Add grounding-related tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>'] to the tokenizer with input_ids
<|ref|>:128816
<|/ref|>:128817
<|det|>:128818
<|/det|>:128819
<|grounding|>:128820
Add chat tokens = ['<|User|>', '<|Assistant|>'] to the tokenizer with input_ids
<|User|>:128821
<|Assistant|>:128822
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:58<00:00, 7.29s/it]
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the
__call__
method is faster than using a method to encode the text followed by a call to thepad
method to get a padded encoding.Traceback (most recent call last):
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/test001.py", line 54, in
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/modeling_deepseek_vl_v2.py", line 325, in prepare_inputs_embeds
images_feature = self.vision(total_tiles)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 548, in forward
x = self.forward_features(x)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 529, in forward_features
x = self.blocks(x)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/container.py", line 219, in forward
input = module(input)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 231, in forward
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 143, in forward
x = memory_efficient_attention(q, k, v, p=self.attn_drop.p if self.training else 0.)
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 276, in memory_efficient_attention
return _memory_efficient_attention(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 403, in _memory_efficient_attention
return _fMHA.apply(
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/autograd/function.py", line 574, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 74, in forward
out, op_ctx = _memory_efficient_attention_forward_requires_grad(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 428, in _memory_efficient_attention_forward_requires_grad
op = _dispatch_fw(inp, True)
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 119, in _dispatch_fw
return _run_priority_list(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 55, in _run_priority_list
raise NotImplementedError(msg)
NotImplementedError: No operator found for
memory_efficient_attention_forward
with inputs:query : shape=(7, 729, 16, 72) (torch.bfloat16)
key : shape=(7, 729, 16, 72) (torch.bfloat16)
value : shape=(7, 729, 16, 72) (torch.bfloat16)
attn_bias : <class 'NoneType'>
p : 0.0
[email protected]
is not supported because:requires device with capability > (8, 0) but your GPU has capability (6, 1) (too old)
bf16 is only supported on A100+ GPUs
cutlassF-pt
is not supported because:bf16 is only supported on A100+ GPUs
smallkF
is not supported because:max(query.shape[-1] != value.shape[-1]) > 32
dtype=torch.bfloat16 (supported: {torch.float32})
bf16 is only supported on A100+ GPUs
unsupported embed per head: 72
The text was updated successfully, but these errors were encountered: