Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DeepSeek-VL2 can't support old nvidia device like P40 ,1080 , what to do to let this project support these old device? #5

Open
qmzpg opened this issue Dec 15, 2024 · 1 comment

Comments

@qmzpg
Copy link

qmzpg commented Dec 15, 2024

Add pad token = ['<|▁pad▁|>'] to the tokenizer
<|▁pad▁|>:2
Add image token = [''] to the tokenizer
:128815
Add grounding-related tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>'] to the tokenizer with input_ids
<|ref|>:128816
<|/ref|>:128817
<|det|>:128818
<|/det|>:128819
<|grounding|>:128820
Add chat tokens = ['<|User|>', '<|Assistant|>'] to the tokenizer with input_ids
<|User|>:128821
<|Assistant|>:128822

Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:58<00:00, 7.29s/it]
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the __call__ method is faster than using a method to encode the text followed by a call to the pad method to get a padded encoding.
Traceback (most recent call last):
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/test001.py", line 54, in
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/modeling_deepseek_vl_v2.py", line 325, in prepare_inputs_embeds
images_feature = self.vision(total_tiles)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 548, in forward
x = self.forward_features(x)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 529, in forward_features
x = self.blocks(x)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/container.py", line 219, in forward
input = module(input)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 231, in forward
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/accelerate/hooks.py", line 170, in new_forward
output = module._old_forward(*args, **kwargs)
File "/home/baochaoqian/dnn/test/llm/DeepSeek-VL2-main/deepseek_vl/models/siglip_vit.py", line 143, in forward
x = memory_efficient_attention(q, k, v, p=self.attn_drop.p if self.training else 0.)
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 276, in memory_efficient_attention
return _memory_efficient_attention(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 403, in _memory_efficient_attention
return _fMHA.apply(
File "/home/baochaoqian/fixfolder001/Anaconda/python310/lib/python3.10/site-packages/torch/autograd/function.py", line 574, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 74, in forward
out, op_ctx = _memory_efficient_attention_forward_requires_grad(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/init.py", line 428, in _memory_efficient_attention_forward_requires_grad
op = _dispatch_fw(inp, True)
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 119, in _dispatch_fw
return _run_priority_list(
File "/home/baochaoqian/.local/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 55, in _run_priority_list
raise NotImplementedError(msg)
NotImplementedError: No operator found for memory_efficient_attention_forward with inputs:
query : shape=(7, 729, 16, 72) (torch.bfloat16)
key : shape=(7, 729, 16, 72) (torch.bfloat16)
value : shape=(7, 729, 16, 72) (torch.bfloat16)
attn_bias : <class 'NoneType'>
p : 0.0
[email protected] is not supported because:
requires device with capability > (8, 0) but your GPU has capability (6, 1) (too old)
bf16 is only supported on A100+ GPUs
cutlassF-pt is not supported because:
bf16 is only supported on A100+ GPUs
smallkF is not supported because:
max(query.shape[-1] != value.shape[-1]) > 32
dtype=torch.bfloat16 (supported: {torch.float32})
bf16 is only supported on A100+ GPUs
unsupported embed per head: 72

@ApolloRay
Copy link

bf16,try in A100 A800

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants