forked from GrapheneOS/hardened_malloc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh_malloc.c
1924 lines (1603 loc) · 57.4 KB
/
h_malloc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if __has_include(<threads.h>)
#include <threads.h>
#else
// glibc < 2.28
#define thread_local _Thread_local
#endif
#include <malloc.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include <unistd.h>
#include "third_party/libdivide.h"
#include "h_malloc.h"
#include "memory.h"
#include "mutex.h"
#include "pages.h"
#include "random.h"
#include "util.h"
#define SLAB_QUARANTINE (SLAB_QUARANTINE_RANDOM_LENGTH > 0 || SLAB_QUARANTINE_QUEUE_LENGTH > 0)
#define MREMAP_MOVE_THRESHOLD (32 * 1024 * 1024)
static_assert(sizeof(void *) == 8, "64-bit only");
static_assert(!WRITE_AFTER_FREE_CHECK || ZERO_ON_FREE, "WRITE_AFTER_FREE_CHECK depends on ZERO_ON_FREE");
static_assert(SLAB_QUARANTINE_RANDOM_LENGTH >= 0 && SLAB_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid slab quarantine random length");
static_assert(SLAB_QUARANTINE_QUEUE_LENGTH >= 0 && SLAB_QUARANTINE_QUEUE_LENGTH <= 65536,
"invalid slab quarantine queue length");
static_assert(REGION_QUARANTINE_RANDOM_LENGTH >= 0 && REGION_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid region quarantine random length");
static_assert(REGION_QUARANTINE_QUEUE_LENGTH >= 0 && REGION_QUARANTINE_QUEUE_LENGTH <= 65536,
"invalid region quarantine queue length");
static_assert(FREE_SLABS_QUARANTINE_RANDOM_LENGTH >= 0 && FREE_SLABS_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid free slabs quarantine random length");
static_assert(GUARD_SLABS_INTERVAL >= 1, "invalid guard slabs interval (minimum 1)");
static_assert(GUARD_SIZE_DIVISOR >= 1, "invalid guard size divisor (minimum 1)");
static_assert(CONFIG_CLASS_REGION_SIZE >= 1048576, "invalid class region size (minimum 1048576)");
static_assert(CONFIG_CLASS_REGION_SIZE <= 1099511627776, "invalid class region size (maximum 1099511627776)");
static_assert(REGION_QUARANTINE_SKIP_THRESHOLD >= 0,
"invalid region quarantine skip threshold (minimum 0)");
static_assert(MREMAP_MOVE_THRESHOLD >= REGION_QUARANTINE_SKIP_THRESHOLD,
"mremap move threshold must be above region quarantine limit");
// either sizeof(u64) or 0
static const size_t canary_size = SLAB_CANARY ? sizeof(u64) : 0;
static_assert(N_ARENA >= 1, "must have at least 1 arena");
static_assert(N_ARENA <= 256, "maximum number of arenas is currently 256");
#define CACHELINE_SIZE 64
#if N_ARENA > 1
__attribute__((tls_model("initial-exec")))
static thread_local unsigned thread_arena = N_ARENA;
static atomic_uint thread_arena_counter = 0;
#else
static const unsigned thread_arena = 0;
#endif
static union {
struct {
void *_Atomic slab_region_start;
void *slab_region_end;
struct size_class *size_class_metadata[N_ARENA];
struct region_allocator *region_allocator;
struct region_metadata *regions[2];
#ifdef USE_PKEY
int metadata_pkey;
#endif
};
char padding[PAGE_SIZE];
} ro __attribute__((aligned(PAGE_SIZE)));
static inline void *get_slab_region_start() {
return atomic_load_explicit(&ro.slab_region_start, memory_order_acquire);
}
#define SLAB_METADATA_COUNT
struct slab_metadata {
u64 bitmap[4];
struct slab_metadata *next;
struct slab_metadata *prev;
u64 canary_value;
#ifdef SLAB_METADATA_COUNT
u16 count;
#endif
#if SLAB_QUARANTINE
u64 quarantine_bitmap[4];
#endif
};
static const size_t min_align = 16;
#define MIN_SLAB_SIZE_CLASS_SHIFT 4
#if !CONFIG_EXTENDED_SIZE_CLASSES
static const size_t MAX_SLAB_SIZE_CLASS = 16384;
#define MAX_SLAB_SIZE_CLASS_SHIFT 14
#else
static const size_t MAX_SLAB_SIZE_CLASS = 131072;
#define MAX_SLAB_SIZE_CLASS_SHIFT 17
#endif
static const u32 size_classes[] = {
/* 0 */ 0,
/* 16 */ 16, 32, 48, 64, 80, 96, 112, 128,
/* 32 */ 160, 192, 224, 256,
/* 64 */ 320, 384, 448, 512,
/* 128 */ 640, 768, 896, 1024,
/* 256 */ 1280, 1536, 1792, 2048,
/* 512 */ 2560, 3072, 3584, 4096,
/* 1024 */ 5120, 6144, 7168, 8192,
/* 2048 */ 10240, 12288, 14336, 16384,
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ 20480, 24576, 28672, 32768,
/* 8192 */ 40960, 49152, 57344, 65536,
/* 16384 */ 81920, 98304, 114688, 131072,
#endif
};
static const u16 size_class_slots[] = {
/* 0 */ 256,
/* 16 */ 256, 128, 85, 64, 51, 42, 36, 64,
/* 32 */ 51, 64, 54, 64,
/* 64 */ 64, 64, 64, 64,
/* 128 */ 64, 64, 64, 64,
/* 256 */ 16, 16, 16, 16,
/* 512 */ 8, 8, 8, 8,
/* 1024 */ 8, 8, 8, 8,
/* 2048 */ 6, 5, 4, 4,
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ 2, 2, 2, 2,
/* 8192 */ 1, 1, 1, 1,
/* 16384 */ 1, 1, 1, 1,
#endif
};
static const char *const size_class_labels[] = {
/* 0 */ "malloc 0",
/* 16 */ "malloc 16", "malloc 32", "malloc 48", "malloc 64",
/* 16 */ "malloc 80", "malloc 96", "malloc 112", "malloc 128",
/* 32 */ "malloc 160", "malloc 192", "malloc 224", "malloc 256",
/* 64 */ "malloc 320", "malloc 384", "malloc 448", "malloc 512",
/* 128 */ "malloc 640", "malloc 768", "malloc 896", "malloc 1024",
/* 256 */ "malloc 1280", "malloc 1536", "malloc 1792", "malloc 2048",
/* 512 */ "malloc 2560", "malloc 3072", "malloc 3584", "malloc 4096",
/* 1024 */ "malloc 5120", "malloc 6144", "malloc 7168", "malloc 8192",
/* 2048 */ "malloc 10240", "malloc 12288", "malloc 14336", "malloc 16384",
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ "malloc 20480", "malloc 24576", "malloc 28672", "malloc 32768",
/* 8192 */ "malloc 40960", "malloc 49152", "malloc 57344", "malloc 65536",
/* 16384 */ "malloc 81920", "malloc 98304", "malloc 114688", "malloc 131072",
#endif
};
static void label_slab(void *slab, size_t slab_size, unsigned class) {
memory_set_name(slab, slab_size, size_class_labels[class]);
}
#define N_SIZE_CLASSES (sizeof(size_classes) / sizeof(size_classes[0]))
struct size_info {
size_t size;
size_t class;
};
static inline struct size_info get_size_info(size_t size) {
if (size == 0) {
return (struct size_info){0, 0};
}
if (size <= 128) {
return (struct size_info){(size + 15) & ~15, ((size - 1) >> 4) + 1};
}
for (unsigned class = 9; class < N_SIZE_CLASSES; class++) {
size_t real_size = size_classes[class];
if (size <= real_size) {
return (struct size_info){real_size, class};
}
}
fatal_error("invalid size for slabs");
}
// alignment must be a power of 2 <= PAGE_SIZE since slabs are only page aligned
static inline struct size_info get_size_info_align(size_t size, size_t alignment) {
for (unsigned class = 1; class < N_SIZE_CLASSES; class++) {
size_t real_size = size_classes[class];
if (size <= real_size && !(real_size & (alignment - 1))) {
return (struct size_info){real_size, class};
}
}
fatal_error("invalid size for slabs");
}
static size_t get_slab_size(size_t slots, size_t size) {
return PAGE_CEILING(slots * size);
}
// limit on the number of cached empty slabs before attempting purging instead
static const size_t max_empty_slabs_total = MAX_SLAB_SIZE_CLASS;
struct __attribute__((aligned(CACHELINE_SIZE))) size_class {
struct mutex lock;
void *class_region_start;
struct slab_metadata *slab_info;
struct libdivide_u32_t size_divisor;
struct libdivide_u64_t slab_size_divisor;
#if SLAB_QUARANTINE_RANDOM_LENGTH > 0
void *quarantine_random[SLAB_QUARANTINE_RANDOM_LENGTH << (MAX_SLAB_SIZE_CLASS_SHIFT - MIN_SLAB_SIZE_CLASS_SHIFT)];
#endif
#if SLAB_QUARANTINE_QUEUE_LENGTH > 0
void *quarantine_queue[SLAB_QUARANTINE_QUEUE_LENGTH << (MAX_SLAB_SIZE_CLASS_SHIFT - MIN_SLAB_SIZE_CLASS_SHIFT)];
size_t quarantine_queue_index;
#endif
// slabs with at least one allocated slot and at least one free slot
//
// LIFO doubly-linked list
struct slab_metadata *partial_slabs;
// slabs without allocated slots that are cached for near-term usage
//
// LIFO singly-linked list
struct slab_metadata *empty_slabs;
size_t empty_slabs_total; // length * slab_size
// slabs without allocated slots that are purged and memory protected
//
// FIFO singly-linked list
struct slab_metadata *free_slabs_head;
struct slab_metadata *free_slabs_tail;
struct slab_metadata *free_slabs_quarantine[FREE_SLABS_QUARANTINE_RANDOM_LENGTH];
#if CONFIG_STATS
u64 nmalloc; // may wrap (per jemalloc API)
u64 ndalloc; // may wrap (per jemalloc API)
size_t allocated;
size_t slab_allocated;
#endif
struct random_state rng;
size_t metadata_allocated;
size_t metadata_count;
size_t metadata_count_unguarded;
};
#define CLASS_REGION_SIZE (size_t)CONFIG_CLASS_REGION_SIZE
#define REAL_CLASS_REGION_SIZE (CLASS_REGION_SIZE * 2)
#define ARENA_SIZE (REAL_CLASS_REGION_SIZE * N_SIZE_CLASSES)
static const size_t slab_region_size = ARENA_SIZE * N_ARENA;
static_assert(PAGE_SIZE == 4096, "bitmap handling will need adjustment for other page sizes");
static void *get_slab(struct size_class *c, size_t slab_size, struct slab_metadata *metadata) {
size_t index = metadata - c->slab_info;
return (char *)c->class_region_start + (index * slab_size);
}
#define MAX_METADATA_MAX (CLASS_REGION_SIZE / PAGE_SIZE)
static size_t get_metadata_max(size_t slab_size) {
return CLASS_REGION_SIZE / slab_size;
}
static struct slab_metadata *alloc_metadata(struct size_class *c, size_t slab_size, bool non_zero_size) {
if (unlikely(c->metadata_count >= c->metadata_allocated)) {
size_t metadata_max = get_metadata_max(slab_size);
if (c->metadata_count >= metadata_max) {
errno = ENOMEM;
return NULL;
}
size_t allocate = max(c->metadata_allocated * 2, PAGE_SIZE / sizeof(struct slab_metadata));
if (allocate > metadata_max) {
allocate = metadata_max;
}
if (memory_protect_rw_metadata(c->slab_info, allocate * sizeof(struct slab_metadata))) {
return NULL;
}
c->metadata_allocated = allocate;
}
struct slab_metadata *metadata = c->slab_info + c->metadata_count;
void *slab = get_slab(c, slab_size, metadata);
if (non_zero_size && memory_protect_rw(slab, slab_size)) {
return NULL;
}
c->metadata_count++;
c->metadata_count_unguarded++;
if (c->metadata_count_unguarded >= GUARD_SLABS_INTERVAL) {
c->metadata_count++;
c->metadata_count_unguarded = 0;
}
return metadata;
}
static void set_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->bitmap[bucket] |= 1UL << (index - bucket * 64);
#ifdef SLAB_METADATA_COUNT
metadata->count++;
#endif
}
static void clear_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->bitmap[bucket] &= ~(1UL << (index - bucket * 64));
#ifdef SLAB_METADATA_COUNT
metadata->count--;
#endif
}
static bool get_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
return (metadata->bitmap[bucket] >> (index - bucket * 64)) & 1UL;
}
#if SLAB_QUARANTINE
static void set_quarantine(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->quarantine_bitmap[bucket] |= 1UL << (index - bucket * 64);
}
static void clear_quarantine(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->quarantine_bitmap[bucket] &= ~(1UL << (index - bucket * 64));
}
static bool get_quarantine(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
return (metadata->quarantine_bitmap[bucket] >> (index - bucket * 64)) & 1UL;
}
#endif
static u64 get_mask(size_t slots) {
return slots < 64 ? ~0UL << slots : 0;
}
static size_t get_free_slot(struct random_state *rng, size_t slots, struct slab_metadata *metadata) {
if (SLOT_RANDOMIZE) {
// randomize start location for linear search (uniform random choice is too slow)
unsigned random_index = get_random_u16_uniform(rng, slots);
unsigned first_bitmap = random_index / 64;
u64 random_split = ~(~0UL << (random_index - first_bitmap * 64));
unsigned i = first_bitmap;
u64 masked = metadata->bitmap[i];
masked |= random_split;
for (;;) {
if (i == slots / 64) {
masked |= get_mask(slots - i * 64);
}
if (masked != ~0UL) {
return ffzl(masked) - 1 + i * 64;
}
i = i == (slots - 1) / 64 ? 0 : i + 1;
masked = metadata->bitmap[i];
}
} else {
for (unsigned i = 0; i <= (slots - 1) / 64; i++) {
u64 masked = metadata->bitmap[i];
if (i == (slots - 1) / 64) {
masked |= get_mask(slots - i * 64);
}
if (masked != ~0UL) {
return ffzl(masked) - 1 + i * 64;
}
}
}
fatal_error("no zero bits");
}
static bool has_free_slots(size_t slots, struct slab_metadata *metadata) {
#ifdef SLAB_METADATA_COUNT
return metadata->count < slots;
#else
if (slots <= 64) {
u64 masked = metadata->bitmap[0] | get_mask(slots);
return masked != ~0UL;
}
if (slots <= 128) {
u64 masked = metadata->bitmap[1] | get_mask(slots - 64);
return metadata->bitmap[0] != ~0UL || masked != ~0UL;
}
if (slots <= 192) {
u64 masked = metadata->bitmap[2] | get_mask(slots - 128);
return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || masked != ~0UL;
}
u64 masked = metadata->bitmap[3] | get_mask(slots - 192);
return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || metadata->bitmap[2] != ~0UL || masked != ~0UL;
#endif
}
static bool is_free_slab(struct slab_metadata *metadata) {
#ifdef SLAB_METADATA_COUNT
return !metadata->count;
#else
return !metadata->bitmap[0] && !metadata->bitmap[1] && !metadata->bitmap[2] &&
!metadata->bitmap[3];
#endif
}
static struct slab_metadata *get_metadata(struct size_class *c, const void *p) {
size_t offset = (const char *)p - (const char *)c->class_region_start;
size_t index = libdivide_u64_do(offset, &c->slab_size_divisor);
// still caught without this check either as a read access violation or "double free"
if (index >= c->metadata_allocated) {
fatal_error("invalid free within a slab yet to be used");
}
return c->slab_info + index;
}
static void *slot_pointer(size_t size, void *slab, size_t slot) {
return (char *)slab + slot * size;
}
static void write_after_free_check(const char *p, size_t size) {
if (!WRITE_AFTER_FREE_CHECK) {
return;
}
for (size_t i = 0; i < size; i += sizeof(u64)) {
if (*(const u64 *)(const void *)(p + i)) {
fatal_error("detected write after free");
}
}
}
static const u64 canary_mask = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ?
0xffffffffffffff00UL :
0x00ffffffffffffffUL;
static void set_canary(struct slab_metadata *metadata, void *p, size_t size) {
memcpy((char *)p + size - canary_size, &metadata->canary_value, canary_size);
}
static u64 get_random_canary(struct random_state *rng) {
return get_random_u64(rng) & canary_mask;
}
static inline void stats_small_allocate(UNUSED struct size_class *c, UNUSED size_t size) {
#if CONFIG_STATS
c->allocated += size;
c->nmalloc++;
#endif
}
static inline void stats_small_deallocate(UNUSED struct size_class *c, UNUSED size_t size) {
#if CONFIG_STATS
c->allocated -= size;
c->ndalloc++;
#endif
}
static inline void stats_slab_allocate(UNUSED struct size_class *c, UNUSED size_t slab_size) {
#if CONFIG_STATS
c->slab_allocated += slab_size;
#endif
}
static inline void stats_slab_deallocate(UNUSED struct size_class *c, UNUSED size_t slab_size) {
#if CONFIG_STATS
c->slab_allocated -= slab_size;
#endif
}
static inline void *allocate_small(unsigned arena, size_t requested_size) {
struct size_info info = get_size_info(requested_size);
size_t size = info.size ? info.size : 16;
struct size_class *c = &ro.size_class_metadata[arena][info.class];
size_t slots = size_class_slots[info.class];
size_t slab_size = get_slab_size(slots, size);
mutex_lock(&c->lock);
if (c->partial_slabs == NULL) {
if (c->empty_slabs != NULL) {
struct slab_metadata *metadata = c->empty_slabs;
c->empty_slabs = c->empty_slabs->next;
c->empty_slabs_total -= slab_size;
metadata->next = NULL;
metadata->prev = NULL;
c->partial_slabs = slots > 1 ? metadata : NULL;
void *slab = get_slab(c, slab_size, metadata);
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
write_after_free_check(p, size - canary_size);
set_canary(metadata, p, size);
}
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
if (c->free_slabs_head != NULL) {
struct slab_metadata *metadata = c->free_slabs_head;
metadata->canary_value = get_random_canary(&c->rng);
void *slab = get_slab(c, slab_size, metadata);
if (requested_size && memory_protect_rw(slab, slab_size)) {
mutex_unlock(&c->lock);
return NULL;
}
c->free_slabs_head = c->free_slabs_head->next;
if (c->free_slabs_head == NULL) {
c->free_slabs_tail = NULL;
}
metadata->next = NULL;
metadata->prev = NULL;
c->partial_slabs = slots > 1 ? metadata : NULL;
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
set_canary(metadata, p, size);
}
stats_slab_allocate(c, slab_size);
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_metadata *metadata = alloc_metadata(c, slab_size, requested_size);
if (unlikely(metadata == NULL)) {
mutex_unlock(&c->lock);
return NULL;
}
metadata->canary_value = get_random_canary(&c->rng);
c->partial_slabs = slots > 1 ? metadata : NULL;
void *slab = get_slab(c, slab_size, metadata);
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
set_canary(metadata, p, size);
}
stats_slab_allocate(c, slab_size);
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_metadata *metadata = c->partial_slabs;
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
if (!has_free_slots(slots, metadata)) {
c->partial_slabs = c->partial_slabs->next;
if (c->partial_slabs) {
c->partial_slabs->prev = NULL;
}
}
void *slab = get_slab(c, slab_size, metadata);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
write_after_free_check(p, size - canary_size);
set_canary(metadata, p, size);
}
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_size_class_info {
unsigned arena;
size_t class;
};
static struct slab_size_class_info slab_size_class(const void *p) {
size_t offset = (const char *)p - (const char *)ro.slab_region_start;
unsigned arena = 0;
if (N_ARENA > 1) {
arena = offset / ARENA_SIZE;
offset -= arena * ARENA_SIZE;
}
return (struct slab_size_class_info){arena, offset / REAL_CLASS_REGION_SIZE};
}
static size_t slab_usable_size(const void *p) {
return size_classes[slab_size_class(p).class];
}
static void enqueue_free_slab(struct size_class *c, struct slab_metadata *metadata) {
metadata->next = NULL;
static_assert(FREE_SLABS_QUARANTINE_RANDOM_LENGTH < (u16)-1, "free slabs quarantine too large");
size_t index = get_random_u16_uniform(&c->rng, FREE_SLABS_QUARANTINE_RANDOM_LENGTH);
struct slab_metadata *substitute = c->free_slabs_quarantine[index];
c->free_slabs_quarantine[index] = metadata;
if (substitute == NULL) {
return;
}
if (c->free_slabs_tail != NULL) {
c->free_slabs_tail->next = substitute;
} else {
c->free_slabs_head = substitute;
}
c->free_slabs_tail = substitute;
}
static inline void deallocate_small(void *p, const size_t *expected_size) {
struct slab_size_class_info size_class_info = slab_size_class(p);
size_t class = size_class_info.class;
struct size_class *c = &ro.size_class_metadata[size_class_info.arena][class];
size_t size = size_classes[class];
if (expected_size && size != *expected_size) {
fatal_error("sized deallocation mismatch (small)");
}
bool is_zero_size = size == 0;
if (is_zero_size) {
size = 16;
}
size_t slots = size_class_slots[class];
size_t slab_size = get_slab_size(slots, size);
mutex_lock(&c->lock);
stats_small_deallocate(c, size);
struct slab_metadata *metadata = get_metadata(c, p);
void *slab = get_slab(c, slab_size, metadata);
size_t slot = libdivide_u32_do((char *)p - (char *)slab, &c->size_divisor);
if (slot_pointer(size, slab, slot) != p) {
fatal_error("invalid unaligned free");
}
if (!get_slot(metadata, slot)) {
fatal_error("double free");
}
if (!is_zero_size) {
if (canary_size) {
u64 canary_value;
memcpy(&canary_value, (char *)p + size - canary_size, canary_size);
if (unlikely(canary_value != metadata->canary_value)) {
fatal_error("canary corrupted");
}
}
if (ZERO_ON_FREE) {
memset(p, 0, size - canary_size);
}
}
#if SLAB_QUARANTINE
if (get_quarantine(metadata, slot)) {
fatal_error("double free (quarantine)");
}
set_quarantine(metadata, slot);
size_t quarantine_shift = __builtin_clzl(size) - (63 - MAX_SLAB_SIZE_CLASS_SHIFT);
#if SLAB_QUARANTINE_RANDOM_LENGTH > 0
size_t slab_quarantine_random_length = SLAB_QUARANTINE_RANDOM_LENGTH << quarantine_shift;
size_t random_index = get_random_u16_uniform(&c->rng, slab_quarantine_random_length);
void *random_substitute = c->quarantine_random[random_index];
c->quarantine_random[random_index] = p;
if (random_substitute == NULL) {
mutex_unlock(&c->lock);
return;
}
p = random_substitute;
#endif
#if SLAB_QUARANTINE_QUEUE_LENGTH > 0
size_t slab_quarantine_queue_length = SLAB_QUARANTINE_QUEUE_LENGTH << quarantine_shift;
void *queue_substitute = c->quarantine_queue[c->quarantine_queue_index];
c->quarantine_queue[c->quarantine_queue_index] = p;
c->quarantine_queue_index = (c->quarantine_queue_index + 1) % slab_quarantine_queue_length;
if (queue_substitute == NULL) {
mutex_unlock(&c->lock);
return;
}
p = queue_substitute;
#endif
metadata = get_metadata(c, p);
slab = get_slab(c, slab_size, metadata);
slot = libdivide_u32_do((char *)p - (char *)slab, &c->size_divisor);
clear_quarantine(metadata, slot);
#endif
// triggered even for slots == 1 and then undone below
if (!has_free_slots(slots, metadata)) {
metadata->next = c->partial_slabs;
metadata->prev = NULL;
if (c->partial_slabs) {
c->partial_slabs->prev = metadata;
}
c->partial_slabs = metadata;
}
clear_slot(metadata, slot);
if (is_free_slab(metadata)) {
if (metadata->prev) {
metadata->prev->next = metadata->next;
} else {
c->partial_slabs = metadata->next;
}
if (metadata->next) {
metadata->next->prev = metadata->prev;
}
metadata->prev = NULL;
if (c->empty_slabs_total + slab_size > max_empty_slabs_total) {
if (!memory_map_fixed(slab, slab_size)) {
label_slab(slab, slab_size, class);
stats_slab_deallocate(c, slab_size);
enqueue_free_slab(c, metadata);
mutex_unlock(&c->lock);
return;
}
// handle out-of-memory by just putting it into the empty slabs list
}
metadata->next = c->empty_slabs;
c->empty_slabs = metadata;
c->empty_slabs_total += slab_size;
}
mutex_unlock(&c->lock);
}
struct region_metadata {
void *p;
size_t size;
size_t guard_size;
};
struct quarantine_info {
void *p;
size_t size;
};
#define INITIAL_REGION_TABLE_SIZE 128
#define MAX_REGION_TABLE_SIZE (CLASS_REGION_SIZE / PAGE_SIZE / sizeof(struct region_metadata))
struct region_allocator {
struct mutex lock;
struct region_metadata *regions;
size_t total;
size_t free;
#if CONFIG_STATS
size_t allocated;
#endif
struct quarantine_info quarantine_random[REGION_QUARANTINE_RANDOM_LENGTH];
struct quarantine_info quarantine_queue[REGION_QUARANTINE_QUEUE_LENGTH];
size_t quarantine_queue_index;
struct random_state rng;
};
static inline void stats_large_allocate(UNUSED struct region_allocator *ra, UNUSED size_t size) {
#if CONFIG_STATS
ra->allocated += size;
#endif
}
static inline void stats_large_deallocate(UNUSED struct region_allocator *ra, UNUSED size_t size) {
#if CONFIG_STATS
ra->allocated -= size;
#endif
}
struct __attribute__((aligned(PAGE_SIZE))) slab_info_mapping {
struct slab_metadata slab_info[MAX_METADATA_MAX];
};
struct __attribute__((aligned(PAGE_SIZE))) allocator_state {
struct size_class size_class_metadata[N_ARENA][N_SIZE_CLASSES];
struct region_allocator region_allocator;
// padding until next page boundary for mprotect
struct region_metadata regions_a[MAX_REGION_TABLE_SIZE] __attribute__((aligned(PAGE_SIZE)));
// padding until next page boundary for mprotect
struct region_metadata regions_b[MAX_REGION_TABLE_SIZE] __attribute__((aligned(PAGE_SIZE)));
// padding until next page boundary for mprotect
struct slab_info_mapping slab_info_mapping[N_ARENA][N_SIZE_CLASSES];
// padding until next page boundary for mprotect
};
static void regions_quarantine_deallocate_pages(void *p, size_t size, size_t guard_size) {
if (size >= REGION_QUARANTINE_SKIP_THRESHOLD) {
deallocate_pages(p, size, guard_size);
return;
}
if (unlikely(memory_map_fixed(p, size))) {
deallocate_pages(p, size, guard_size);
return;
}
memory_set_name(p, size, "malloc large");
struct quarantine_info a =
(struct quarantine_info){(char *)p - guard_size, size + guard_size * 2};
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
size_t index = get_random_u64_uniform(&ra->rng, REGION_QUARANTINE_RANDOM_LENGTH);
struct quarantine_info b = ra->quarantine_random[index];
ra->quarantine_random[index] = a;
if (b.p == NULL) {
mutex_unlock(&ra->lock);
return;
}
a = ra->quarantine_queue[ra->quarantine_queue_index];
ra->quarantine_queue[ra->quarantine_queue_index] = b;
ra->quarantine_queue_index = (ra->quarantine_queue_index + 1) % REGION_QUARANTINE_QUEUE_LENGTH;
mutex_unlock(&ra->lock);
if (a.p != NULL) {
memory_unmap(a.p, a.size);
}
}
static int regions_grow(void) {
struct region_allocator *ra = ro.region_allocator;
if (ra->total > SIZE_MAX / sizeof(struct region_metadata) / 2) {
return 1;
}
size_t newtotal = ra->total * 2;
size_t newsize = newtotal * sizeof(struct region_metadata);
size_t mask = newtotal - 1;
if (newtotal > MAX_REGION_TABLE_SIZE) {
return 1;
}
struct region_metadata *p = ra->regions == ro.regions[0] ?
ro.regions[1] : ro.regions[0];
if (memory_protect_rw_metadata(p, newsize)) {
return 1;
}
for (size_t i = 0; i < ra->total; i++) {
void *q = ra->regions[i].p;
if (q != NULL) {
size_t index = hash_page(q) & mask;
while (p[index].p != NULL) {
index = (index - 1) & mask;
}
p[index] = ra->regions[i];
}
}
memory_map_fixed(ra->regions, ra->total * sizeof(struct region_metadata));
memory_set_name(ra->regions, ra->total * sizeof(struct region_metadata), "malloc allocator_state");
ra->free = ra->free + ra->total;
ra->total = newtotal;
ra->regions = p;
return 0;
}
static int regions_insert(void *p, size_t size, size_t guard_size) {
struct region_allocator *ra = ro.region_allocator;
if (ra->free * 4 < ra->total) {
if (regions_grow()) {
return 1;
}
}
size_t mask = ra->total - 1;
size_t index = hash_page(p) & mask;
void *q = ra->regions[index].p;
while (q != NULL) {
index = (index - 1) & mask;
q = ra->regions[index].p;
}
ra->regions[index].p = p;
ra->regions[index].size = size;
ra->regions[index].guard_size = guard_size;
ra->free--;
return 0;
}
static struct region_metadata *regions_find(const void *p) {
struct region_allocator *ra = ro.region_allocator;
size_t mask = ra->total - 1;
size_t index = hash_page(p) & mask;
void *r = ra->regions[index].p;
while (r != p && r != NULL) {
index = (index - 1) & mask;
r = ra->regions[index].p;
}
return (r == p && r != NULL) ? &ra->regions[index] : NULL;
}
static void regions_delete(struct region_metadata *region) {
struct region_allocator *ra = ro.region_allocator;
size_t mask = ra->total - 1;
ra->free++;
size_t i = region - ra->regions;
for (;;) {
ra->regions[i].p = NULL;
ra->regions[i].size = 0;
size_t j = i;
for (;;) {
i = (i - 1) & mask;
if (ra->regions[i].p == NULL) {
return;
}
size_t r = hash_page(ra->regions[i].p) & mask;
if ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)) {
continue;
}
ra->regions[j] = ra->regions[i];
break;
}
}
}
int get_metadata_key(void) {
#ifdef USE_PKEY
return ro.metadata_pkey;
#else
return -1;
#endif
}
#ifdef USE_PKEY
static inline void thread_set_metadata_access(unsigned access) {
if (ro.metadata_pkey == -1) {
return;
}
pkey_set(ro.metadata_pkey, access);
}
#endif
static inline void thread_unseal_metadata(void) {
#ifdef USE_PKEY
thread_set_metadata_access(0);
#endif
}
static inline void thread_seal_metadata(void) {
#ifdef USE_PKEY
thread_set_metadata_access(PKEY_DISABLE_ACCESS);
#endif
}
static void full_lock(void) {