-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyzeUncertaintySangita.m
435 lines (416 loc) · 14.8 KB
/
analyzeUncertaintySangita.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
%% Analyze the data collected by runUncertaintySangita.
experiment='uncertaintySangita';
% global printConditions makePlotLinear showLegendBox
% showLegendBox=true;
% printConditions=false;
printFilenames=true;
% plotGraphs=true;
% makePlotLinear=false;
myPath=fileparts(mfilename('fullpath')); % Takes 0.1 s.
addpath(fullfile(myPath,'lib')); % Folder in same directory as this M file.
dataFolder=fullfile(fileparts(mfilename('fullpath')),'data');
cd(dataFolder);
close all
% clear Plot % Clear the persistent variables in the subroutine below.
%% READ ALL DATA FROM EXPERIMENT FILES INTO A LIST OF THRESHOLDS "oo".
vars={'condition' 'conditionName' 'experiment' 'dataFilename' ...
'experimenter' 'observer' 'trials' ...
'targetKind' 'targetGaborPhaseDeg' 'targetGaborCycles' ...
'targetHeightDeg' 'targetDurationSecs' 'targetDurationSecsMean' 'targetDurationSecsSD'...
'targetCheckDeg' 'isTargetFullResolution' ...
'targetFont' ...
'noiseType' 'noiseSD' 'noiseCheckDeg' ...
'eccentricityXYDeg' 'viewingDistanceCm' 'eyes' ...
'contrast' 'E' 'E1' 'N' 'LBackground' 'luminanceAtEye' 'luminanceFactor'...
'filterTransmission' 'useFilter' 'retinalIlluminanceTd' 'pupilDiameterMm'...
'pixPerCm' 'nearPointXYPix' 'NUnits' 'beginningTime' 'thresholdParameter'...
'questMean' 'partingComments'...
'uncertainParameter' 'uncertainValues'...
'pThreshold' 'steepness' 'lapse' 'guess'};
oo=ReadExperimentData(experiment,vars); % Adds date and missingFields.
fprintf('%s %d thresholds.\n',experiment,length(oo));
%% PRINT COMMENTS
% comments={oo.partingComments};
% ok=true(size(comments));
% for i=1:length(comments)
% if isempty(comments{i}) || isempty(comments{i}{1})
% ok(i)=false;
% end
% end
% comments=comments(ok);
% for i=1:length(comments)
% fprintf('%s\n',comments{i}{1});
% end
% CONDITION NAME DESCRIBES THE UNCERTAINTY.
for oi=1:length(oo)
M=1;
for i=1:length(oo(oi).uncertainParameter)
M=M*length(oo(oi).uncertainValues{i});
end
if ismember(oo(oi).conditionName,{'Sloan'})
oo(oi).conditionName=sprintf('M=%.0f',M);
end
str=sprintf(';M=%.0f',M);
if ismember(oo(oi).conditionName(end-3:end),{str(end-3:end)})
if ismember(oo(oi).observer,{'ideal'}) && oo(oi).N>0
psych.trialsDesired=100;
psych.reps=100;
psych.tGuess=0;
psych.tGuessSd=3;
psych.pThreshold=oo(oi).pThreshold;
psych.beta=oo(oi).steepness;
psych.delta=oo(oi).lapse;
psych.gamma=oo(oi).guess;
switch oo(oi).conditionName
case 'gabor;M=1'
if ~exist('EOverNG1','var')
psych.targetKind='gabor';
EOverNG1=UncertainEOverN(M,psych);
end
oo(oi).E=EOverNG1*oo(oi).N;
case 'gabor;M=104'
psych.targetKind='gabor';
if ~exist('EOverNG104','var')
EOverNG104=UncertainEOverN(M,psych);
end
oo(oi).E=EOverNG104*oo(oi).N;
case 'letter;M=1'
psych.targetKind='letter';
% It's ok.
case 'letter;M=104'
psych.targetKind='letter';
if ~exist('EOverNL104','var')
EOverNL104=UncertainEOverN(M,psych);
end
oo(oi).E=EOverNL104*oo(oi).N;
case ''
% Skip this.
otherwise
error('Unknown condition ''%s'' oi=%d.',oo(oi).conditionName,oi);
end
end
end
end
% oo=[oo1 oo2];
% COMPUTE EFFICIENCY
% Select thresholdParameter='contrast', for each conditionName,
% For each observer, including ideal, use all (E,N) data to estimate deltaNOverE and Neq.
% Compute efficiency by comparing deltaNOverE of each to that of the ideal.
conditionNames=unique({oo.conditionName});
observers=unique({oo.observer});
aa=[];
for conditionName=conditionNames
for observer=observers
match=ismember({oo.conditionName},conditionName) & ismember({oo.observer},observer);
match=match & ismember({oo.thresholdParameter},{'contrast'});
if sum(match)>0
E=[oo(match).E];
N=[oo(match).N];
[Neq,E0,deltaEOverN]=EstimateNeq(E,N);
if deltaEOverN<0.1
warning('observer "%s", conditionName "%s", deltaEOverN<0.1, deltaEOverN %.2g',...
observer{1},conditionName{1},deltaEOverN);
fprintf('E=['); fprintf('%.2g ',E); fprintf('];\n');
fprintf('N=['); fprintf('%.2g ',N); fprintf('];\n');
end
aa(end+1).conditionName=conditionName{1};
aa(end).observer=observer{1};
aa(end).E=E; % array
aa(end).N=N; % array
aa(end).E0=E0; % scalar
aa(end).Neq=Neq; % scalar
aa(end).deltaEOverN=deltaEOverN; % scalar
oi=find(match,1);
aa(end).thresholdParameter=oo(oi).thresholdParameter;
end
end
end
for conditionName=conditionNames
for observer=observers
match=ismember({aa.thresholdParameter},{'contrast'});
match=match & ismember({aa.conditionName},conditionName);
idealMatch=match & ismember({aa.observer},{'ideal'});
match = match & ismember({aa.observer},observer);
if sum(match)>0 && sum(idealMatch)>0
assert(sum(match)==1 & sum(idealMatch)==1);
aa(match).efficiency=aa(idealMatch).deltaEOverN ./ aa(match).deltaEOverN;
end
end
end
% human=~ismember({aa.observer},'ideal');
% aa=struct2table(aa(human));
aa=struct2table(aa);
aa=sortrows(aa,'conditionName');
disp(aa(:,{'conditionName','efficiency','observer','deltaEOverN'}));
dataFolder=fullfile(fileparts(mfilename('fullpath')),'data');
writetable(aa,fullfile(dataFolder,'efficiency.xlsx'));
% return
% oo=ComputeNPhoton(oo);
% Compute efficiency
% Report the luminance fields of each file.
t=struct2table(oo);
fprintf('Ready to analyze %d thresholds:\n',length(oo));
if printFilenames
% t=sortrows(t,{'targetFont','N','observer'});
% disp(t(:,{'targetFont','N','E','observer','noiseSD'}));
% tt=t(:,{'targetFont','N','E','observer','noiseSD'});
% t=sortrows(t,{'conditionName' 'thresholdParameter' 'N' 'observer'});
disp(t(:,{'observer' 'conditionName' 'thresholdParameter' 'N' 'E' 'targetHeightDeg' 'noiseSD' 'contrast'}));
end
tt=t(:,{'conditionName' 'thresholdParameter' 'N' 'E' 'targetHeightDeg' 'observer' 'noiseSD' 'contrast'});
writetable(tt,'ComplexEfficiency.xlsx');
return
list=struct([]);
if plotGraphs
fprintf('Plotting %d thresholds.\n',length(oo));
for observer=unique({oo.observer})
isObserver=ismember({oo.observer},observer);
for conditionName=unique({oo.conditionName})
isConditionName=ismember({oo.conditionName},conditionName);
for noiseType=unique({oo.noiseType})
isNoiseType=ismember({oo.noiseType},noiseType);
which=isObserver & isConditionName & isNoiseType;
if sum(which)>0
% fprintf('%s-%s-%s: %d thresholds. ',observer{1},conditionName{1},noiseType{1},sum(which));
list(end+1).observer=observer{1};
list(end).conditionName=conditionName{1};
list(end).noiseType=noiseType{1};
list(end).thresholds=sum(which);
E=[oo(which).E];
N=[oo(which).N];
% fprintf('%s %s\n',observer{1},conditionName{1});
[Neq,E0]=EstimateNeq(E,N);
E1=oo(which).E1;
E1=mean(E1);
list(end).logC0=0.5*log10(E0/E1);
list(end).logNeq=log10(Neq);
list(end).logE0OverNeq=log10(E0/Neq);
subplots=[1 length(unique({oo.conditionName}))];
[~,subplotIndex]=ismember(conditionName,unique({oo.conditionName}));
Plot(oo(which),subplots,subplotIndex);
end
end
end
end
end
t=struct2table(list);
disp(t);
return
%% PLOT FUNCTION
function Plot(oo,subplots,subplotIndex)
global printConditions makePlotLinear showLegendBox
persistent previousObserver figureHandle overPlots figureTitle axisHandle
if isempty(oo)
return
end
fontSize=12*0.6;
if isempty(get(groot,'CurrentFigure')) || ~streq(oo(1).observer,previousObserver)
previousObserver=oo(1).observer;
rect=Screen('Rect',0);
figureTitle=[oo(1).experiment '-' oo(1).observer];
if makePlotLinear
figureTitle=[figureTitle '-linear'];
end
figureHandle=figure('Name',figureTitle,'NumberTitle','off','pos',[10 10 900 300]);
orient 'landscape'; % For printing.
overPlots=zeros(1,subplots(1)*subplots(2));
axisHandle=zeros(1,subplots(1)*subplots(2));
an=annotation('textbox',[0 0.9 1 .1],...
'String',figureTitle,...
'LineStyle','none','FontSize',fontSize*2,...
'HorizontalAlignment','center','VerticalAlignment','top');
else
figure(figureHandle);
end
if axisHandle(subplotIndex)==0
% subplot(m,n,p) makes it easy to show several related graphs in one
% figure window. Calling subplot(m,n,p) for an existing axis object
% seems to erase it. So, when we first select that figure panel, we
% save a handle to it, which we later reuse to select the panel by
% calling subplot(handle), without calling subplot(m,n,p) again.
axisHandle(subplotIndex)=subplot(subplots(1),subplots(2),subplotIndex);
else
hold(axisHandle(subplotIndex),'on');
subplot(axisHandle(subplotIndex));
end
% Sort by noise N. So it'll look pretty if we later connect the dots.
[~,ii]=sort([oo.N]);
oo=oo(ii);
%% Compute derived quantities: Neq, E0, and c/deg
E=[oo.E];
N=[oo.N];
[Neq,E0]=EstimateNeq(E,N);
for i=1:length(oo)
oo(i).E0=E0;
oo(i).Neq=Neq;
oo(i).targetCyclesPerDeg=oo(i).targetGaborCycles/oo(i).targetHeightDeg;
end
%% Create CSV file
vars={'experiment' 'conditionName' ...
'experimenter' 'observer' 'trials' 'contrast' 'luminanceAtEye' 'E' 'N' ...
'targetKind' 'targetCyclesPerDeg' 'targetHeightDeg' 'targetDurationSecs' ...
'noiseType' 'noiseSD' 'noiseCheckDeg' ...
'eccentricityXYDeg' 'viewingDistanceCm' 'eyes' ...
'LBackground' 'dataFilename'};
t=struct2table(oo,'AsArray',true);
dataFilename=[oo(1).experiment '-' oo(1).conditionName '.csv'];
if printConditions
disp(t(:,vars));
end
if false
spreadsheet=fullfile(fileparts(mfilename('fullpath')),'data',dataFilename);
writetable(t,spreadsheet);
fprintf('All selected fields have been saved in spreadsheet: /data/%s\n',dataFilename);
end
return
%% Plot
if Neq>=min(N) && Neq<2*max(N)
% Trust reasonable Neq.
NLow=Neq/100;
NHigh=max([N Neq*10]);
else
% Igore crazy Neq.
NLow=min(N(N>0)); % Smallest nonzero noise.
if isempty(NLow)
NLow=eps;
end
NHigh=max(N);
end
overPlots(subplotIndex)=overPlots(subplotIndex)+1;
switch overPlots(subplotIndex)
case 1
style1='xk';
style2='-k';
hold off;
case 2
style1='ok';
style2='--k';
hold on;
case 3
style1='+k';
style2=':k';
hold on;
otherwise
style1='^k';
style2='-.k';
hold on;
end
legendText=sprintf('%s %s',oo(1).conditionName,oo(1).noiseType);
try
loglog(max(N,NLow),E,style1,'DisplayName',legendText);
catch ME
N
NLow
rethrow(ME)
end
hold on;
ax=gca;
NLine=logspace(log10(NLow),log10(NHigh));
ELine=(NLine+Neq)*E0/Neq;
loglog(NLine,ELine,style2,'DisplayName','Linear fit');
set(gca,'FontSize',fontSize);
title(oo(1).conditionName);
xlabel(['\it N \rm (' oo(1).NUnits ')'],'Interpreter','tex')
ylabel(['\it E \rm (' oo(1).NUnits ')'],'Interpreter','tex');
lgd=legend('show');
lgd.Location='northwest';
lgd.FontSize=fontSize;
lgd.Color='none';
if ~showLegendBox
legend('boxoff');
end
oo=ComputeNPhoton(oo);
caption={};
caption{1}=sprintf('experimenter %s, observer %s, eyes %s', ...
oo(1).experimenter,oo(1).observer,oo(1).eyes);
caption{2}=sprintf('noiseSD<=%.2f, noiseCheckDeg %.3f, noiseType %s', ...
max([oo.noiseSD]),oo(1).noiseCheckDeg,oo(1).noiseType);
caption{3}=sprintf('%.1f cd/m^2, %.0f td, LAT %.2f, log NPhoton %.1f', ...
oo(1).luminanceAtEye,oo(1).retinalIlluminanceTd,oo(1).LAT,log10(oo(1).NPhoton));
caption{4}=sprintf('ecc. [%.0f %.0f] deg, %.1f s, %s %.1f c/deg, log Neq %.2f',...
oo(1).eccentricityXYDeg,oo(1).targetDurationSecs,oo(1).targetKind,oo(1).targetCyclesPerDeg,log10(oo(1).Neq));
if ~makePlotLinear
text(0.02,.02,caption,'Units','normalized','FontSize',fontSize,'VerticalAlignment','bottom');
end
% Set lower Y limit to E0/40. This leaves room for the "caption" text at
% bottom of graph. If necessary, expand Y range to 3 log units.
logUnits=3;
ax=gca;
yLimits=ax.YLim;
yLimits(1)=E0/40;
r=diff(log10(yLimits)); % Number of log units
if logUnits>r
yLimits(2)=yLimits(2)*10^(logUnits-r);
end
ax.YLim=yLimits;
% Widen graph left and right to nearest even log unit.
% Make sure graph is at least 2 log units wide.
xLimits=ax.XLim;
xLimits(1)=10^floor(log10(xLimits(1)));
xLimits(2)=10^ceil(log10(xLimits(2)));
minLogUnits=2;
neededLogUnits=minLogUnits-log10(xLimits(2)/xLimits(1));
if neededLogUnits>0
xLimits(1)=xLimits(1)/10^(neededLogUnits/2);
xLimits(2)=xLimits(2)*10^(neededLogUnits/2);
end
ax.XLim=xLimits;
ax=gca;
if ax.XLim(1)<=0
warning('Lower X limit too low!! Setting it to NLow.')
xLim=ax.XLim
ax.XLim=[NLow xLim(2)];
oo(1).observer
oo(1).experiment
oo(1).conditionName
oo(1).noiseType
NLow
min(NLine)
E0
Neq
end
% Scale log unit to be 1.5 cm, vertically and horizontally.
ax=gca;
u=ax.Units;
ax.Units='centimeters';
drawnow; % Needed for valid Position reading.
pos=ax.Position;
ax.Position=[pos(1:2) 1.5*diff(log10(ax.XLim)) 1.5*diff(log10(ax.YLim))];
ax.Units=u;
% Add second x-axis for noise contrast noiseSD.
% ax1=gca;
% ax2=axes('Position',ax1.Position,...
% 'XAxisLocation','top',...
% 'YAxisLocation','right',...
% 'Color','none',...
% 'XColor','k','YColor','k');
% ax2.XScale=ax1.XScale;
% ax2.YScale=ax1.YScale;
% ax2.XLim=sqrt(ax1.XLim)*oo(end).noiseSD/sqrt(oo(end).N);
% ax2.YLim=ax1.YLim;
% ax2.FontSize=ax1.FontSize;
if makePlotLinear
set(gca,'XScale','linear','YScale','linear');
ax=gca;
xLim=ax.XLim;
yLim=ax.YLim;
xLim(1)=-2*Neq;
yLim(1)=0;
xLim(2)=10*oo(1).Neq;
yLim(2)=E0+(E0/Neq)*xLim(2);
if all(isfinite(xLim))
ax.XLim=xLim;
end
if all(isfinite(yLim))
ax.YLim=yLim;
end
legend('hide');
NLine=[-Neq xLim(2)];
ELine=[0 yLim(2)];
loglog(NLine,ELine,style2);
end
% Save plot to disk
graphFile=fullfile(fileparts(mfilename('fullpath')),'data',[figureTitle '.eps']);
saveas(gcf,graphFile,'epsc')
% print(gcf,graphFile,'-depsc'); % equivalent to saveas above
end