forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nlp.py
385 lines (323 loc) · 14.8 KB
/
nlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""A chart parser and some grammars. (Chapter 22)"""
# (Written for the second edition of AIMA; expect some discrepanciecs
# from the third edition until this gets reviewed.)
from collections import defaultdict
import urllib.request
import re
# ______________________________________________________________________________
# Grammars and Lexicons
def Rules(**rules):
"""Create a dictionary mapping symbols to alternative sequences.
>>> Rules(A = "B C | D E")
{'A': [['B', 'C'], ['D', 'E']]}
"""
for (lhs, rhs) in rules.items():
rules[lhs] = [alt.strip().split() for alt in rhs.split('|')]
return rules
def Lexicon(**rules):
"""Create a dictionary mapping symbols to alternative words.
>>> Lexicon(Art = "the | a | an")
{'Art': ['the', 'a', 'an']}
"""
for (lhs, rhs) in rules.items():
rules[lhs] = [word.strip() for word in rhs.split('|')]
return rules
class Grammar:
def __init__(self, name, rules, lexicon):
"A grammar has a set of rules and a lexicon."
self.name = name
self.rules = rules
self.lexicon = lexicon
self.categories = defaultdict(list)
for lhs in lexicon:
for word in lexicon[lhs]:
self.categories[word].append(lhs)
def rewrites_for(self, cat):
"Return a sequence of possible rhs's that cat can be rewritten as."
return self.rules.get(cat, ())
def isa(self, word, cat):
"Return True iff word is of category cat"
return cat in self.categories[word]
def __repr__(self):
return '<Grammar %s>' % self.name
E0 = Grammar('E0',
Rules( # Grammar for E_0 [Figure 22.4]
S='NP VP | S Conjunction S',
NP='Pronoun | Name | Noun | Article Noun | Digit Digit | NP PP | NP RelClause', # noqa
VP='Verb | VP NP | VP Adjective | VP PP | VP Adverb',
PP='Preposition NP',
RelClause='That VP'),
Lexicon( # Lexicon for E_0 [Figure 22.3]
Noun="stench | breeze | glitter | nothing | wumpus | pit | pits | gold | east", # noqa
Verb="is | see | smell | shoot | fell | stinks | go | grab | carry | kill | turn | feel", # noqa
Adjective="right | left | east | south | back | smelly",
Adverb="here | there | nearby | ahead | right | left | east | south | back", # noqa
Pronoun="me | you | I | it",
Name="John | Mary | Boston | Aristotle",
Article="the | a | an",
Preposition="to | in | on | near",
Conjunction="and | or | but",
Digit="0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9",
That="that"
))
E_ = Grammar('E_', # Trivial Grammar and lexicon for testing
Rules(
S='NP VP',
NP='Art N | Pronoun',
VP='V NP'),
Lexicon(
Art='the | a',
N='man | woman | table | shoelace | saw',
Pronoun='I | you | it',
V='saw | liked | feel'
))
E_NP_ = Grammar('E_NP_', # another trivial grammar for testing
Rules(NP='Adj NP | N'),
Lexicon(Adj='happy | handsome | hairy',
N='man'))
def generate_random(grammar=E_, s='S'):
"""Replace each token in s by a random entry in grammar (recursively).
This is useful for testing a grammar, e.g. generate_random(E_)"""
import random
def rewrite(tokens, into):
for token in tokens:
if token in grammar.rules:
rewrite(random.choice(grammar.rules[token]), into)
elif token in grammar.lexicon:
into.append(random.choice(grammar.lexicon[token]))
else:
into.append(token)
return into
return ' '.join(rewrite(s.split(), []))
# ______________________________________________________________________________
# Chart Parsing
class Chart:
"""Class for parsing sentences using a chart data structure. [Figure 22.7]
>>> chart = Chart(E0);
>>> len(chart.parses('the stench is in 2 2'))
1
"""
def __init__(self, grammar, trace=False):
"""A datastructure for parsing a string; and methods to do the parse.
self.chart[i] holds the edges that end just before the i'th word.
Edges are 5-element lists of [start, end, lhs, [found], [expects]]."""
self.grammar = grammar
self.trace = trace
def parses(self, words, S='S'):
"""Return a list of parses; words can be a list or string."""
if isinstance(words, str):
words = words.split()
self.parse(words, S)
# Return all the parses that span the whole input
# 'span the whole input' => begin at 0, end at len(words)
return [[i, j, S, found, []]
for (i, j, lhs, found, expects) in self.chart[len(words)]
# assert j == len(words)
if i == 0 and lhs == S and expects == []]
def parse(self, words, S='S'):
"""Parse a list of words; according to the grammar.
Leave results in the chart."""
self.chart = [[] for i in range(len(words)+1)]
self.add_edge([0, 0, 'S_', [], [S]])
for i in range(len(words)):
self.scanner(i, words[i])
return self.chart
def add_edge(self, edge):
"Add edge to chart, and see if it extends or predicts another edge."
start, end, lhs, found, expects = edge
if edge not in self.chart[end]:
self.chart[end].append(edge)
if self.trace:
print('Chart: added %s' % (edge,))
if not expects:
self.extender(edge)
else:
self.predictor(edge)
def scanner(self, j, word):
"For each edge expecting a word of this category here, extend the edge." # noqa
for (i, j, A, alpha, Bb) in self.chart[j]:
if Bb and self.grammar.isa(word, Bb[0]):
self.add_edge([i, j+1, A, alpha + [(Bb[0], word)], Bb[1:]])
def predictor(self, edge):
"Add to chart any rules for B that could help extend this edge."
(i, j, A, alpha, Bb) = edge
B = Bb[0]
if B in self.grammar.rules:
for rhs in self.grammar.rewrites_for(B):
self.add_edge([j, j, B, [], rhs])
def extender(self, edge):
"See what edges can be extended by this edge."
(j, k, B, _, _) = edge
for (i, j, A, alpha, B1b) in self.chart[j]:
if B1b and B == B1b[0]:
self.add_edge([i, k, A, alpha + [edge], B1b[1:]])
# ______________________________________________________________________________
# CYK Parsing
def CYK_parse(words, grammar):
"[Figure 23.5]"
# We use 0-based indexing instead of the book's 1-based.
N = len(words)
P = defaultdict(float)
# Insert lexical rules for each word.
for (i, word) in enumerate(words):
for (X, p) in grammar.categories[word]: # XXX grammar.categories needs changing, above
P[X, i, 1] = p
# Combine first and second parts of right-hand sides of rules,
# from short to long.
for length in range(2, N+1):
for start in range(N-length+1):
for len1 in range(1, length): # N.B. the book incorrectly has N instead of length
len2 = length - len1
for (X, Y, Z, p) in grammar.cnf_rules(): # XXX grammar needs this method
P[X, start, length] = max(P[X, start, length],
P[Y, start, len1] * P[Z, start+len1, len2] * p)
return P
# ______________________________________________________________________________
# Page Ranking
# First entry in list is the base URL, and then following are relative URL pages
examplePagesSet = ["https://en.wikipedia.org/wiki/", "Aesthetics", "Analytic_philosophy",
"Ancient_Greek", "Aristotle", "Astrology","Atheism", "Baruch_Spinoza",
"Belief", "Betrand Russell", "Confucius", "Consciousness",
"Continental Philosophy", "Dialectic", "Eastern_Philosophy",
"Epistemology", "Ethics", "Existentialism", "Friedrich_Nietzsche",
"Idealism", "Immanuel_Kant", "List_of_political_philosophers", "Logic",
"Metaphysics", "Philosophers", "Philosophy", "Philosophy_of_mind", "Physics",
"Plato", "Political_philosophy", "Pythagoras", "Rationalism","Social_philosophy",
"Socrates", "Subjectivity", "Theology", "Truth", "Western_philosophy"]
def loadPageHTML( addressList ):
"""Download HTML page content for every URL address passed as argument"""
contentDict = {}
for addr in addressList:
with urllib.request.urlopen(addr) as response:
raw_html = response.read().decode('utf-8')
# Strip raw html of unnessecary content. Basically everything that isn't link or text
html = stripRawHTML(raw_html)
contentDict[addr] = html
return contentDict
def initPages( addressList ):
"""Create a dictionary of pages from a list of URL addresses"""
pages = {}
for addr in addressList:
pages[addr] = Page(addr)
return pages
def stripRawHTML( raw_html ):
"""Remove the <head> section of the HTML which contains links to stylesheets etc.,
and remove all other unnessecary HTML"""
# TODO: Strip more out of the raw html
return re.sub("<head>.*?</head>", "", raw_html, flags=re.DOTALL) # remove <head> section
def determineInlinks( page ):
"""Given a set of pages that have their outlinks determined, we can fill
out a page's inlinks by looking through all other page's outlinks"""
inlinks = []
for addr, indexPage in pagesIndex.items():
if page.address == indexPage.address:
continue
elif page.address in indexPage.outlinks:
inlinks.append(addr)
return inlinks
def findOutlinks( page, handleURLs=None ):
"""Search a page's HTML content for URL links to other pages"""
urls = re.findall(r'href=[\'"]?([^\'" >]+)', pagesContent[page.address])
if handleURLs:
urls = handleURLs(urls)
return urls
def onlyWikipediaURLS( urls ):
"""Some example HTML page data is from wikipedia. This function converts
relative wikipedia links to full wikipedia URLs"""
wikiURLs = [url for url in urls if url.startswith('/wiki/')]
return ["https://en.wikipedia.org"+url for url in wikiURLs]
# ______________________________________________________________________________
# HITS Helper Functions
def expand_pages( pages ):
"""From Textbook: adds in every page that links to or is linked from one of
the relevant pages."""
expanded = {}
for addr,page in pages.items():
if addr not in expanded:
expanded[addr] = page
for inlink in page.inlinks:
if inlink not in expanded:
expanded[inlink] = pagesIndex[inlink]
for outlink in page.outlinks:
if outlink not in expanded:
expanded[outlink] = pagesIndex[outlink]
return expanded
def relevant_pages(query):
"""relevant pages are pages that contain the query in its entireity.
If a page's content contains the query it is returned by the function"""
relevant = {}
print("pagesContent in function: ", pagesContent)
for addr, page in pagesIndex.items():
if query.lower() in pagesContent[addr].lower():
relevant[addr] = page
return relevant
def normalize( pages ):
"""From the pseudocode: Normalize divides each page's score by the sum of
the squares of all pages' scores (separately for both the authority and hubs scores).
"""
summed_hub = sum(page.hub**2 for _,page in pages.items())
summed_auth = sum(page.authority**2 for _,page in pages.items())
for _, page in pages.items():
page.hub /= summed_hub
page.authority /= summed_auth
class ConvergenceDetector(object):
"""If the hub and authority values of the pages are no longer changing, we have
reached a convergence and further iterations will have no effect. This detects convergence
so that we can stop the HITS algorithm as early as possible."""
def __init__(self):
self.hub_history = None
self.auth_history = None
def __call__(self):
return self.detect()
def detect(self):
curr_hubs = [page.hub for addr, page in pagesIndex.items()]
curr_auths = [page.authority for addr, page in pagesIndex.items()]
if self.hub_history == None:
self.hub_history, self.auth_history = [],[]
else:
diffsHub = [abs(x-y) for x, y in zip(curr_hubs,self.hub_history[-1])]
diffsAuth = [abs(x-y) for x, y in zip(curr_auths,self.auth_history[-1])]
aveDeltaHub = sum(diffsHub)/float(len(pagesIndex))
aveDeltaAuth = sum(diffsAuth)/float(len(pagesIndex))
if aveDeltaHub < 0.01 and aveDeltaAuth < 0.01: # may need tweaking
return True
if len(self.hub_history) > 2: # prevent list from getting long
del self.hub_history[0]
del self.auth_history[0]
self.hub_history.append([x for x in curr_hubs])
self.auth_history.append([x for x in curr_auths])
return False
def getInlinks( page ):
if not page.inlinks:
page.inlinks = determineInlinks(page)
return [p for addr, p in pagesIndex.items() if addr in page.inlinks ]
def getOutlinks( page ):
if not page.outlinks:
page.outlinks = findOutlinks(page)
return [p for addr, p in pagesIndex.items() if addr in page.outlinks]
# ______________________________________________________________________________
# HITS Algorithm
class Page(object):
def __init__(self, address, hub=0, authority=0, inlinks=None, outlinks=None):
self.address = address
self.hub = hub
self.authority = authority
self.inlinks = inlinks
self.outlinks = outlinks
pagesContent = {} # maps Page relative or absolute URL/location to page's HTML content
pagesIndex = {}
convergence = ConvergenceDetector() # assign function to variable to mimic pseudocode's syntax
def HITS(query):
"""The HITS algorithm for computing hubs and authorities with respect to a query."""
pages = expand_pages(relevant_pages(query)) # in order to 'map' faithfully to pseudocode we
for p in pages: # won't pass the list of pages as an argument
p.authority = 1
p.hub = 1
while True: # repeat until... convergence
for p in pages:
p.authority = sum(x.hub for x in getInlinks(p)) # p.authority ← ∑i Inlinki(p).Hub
p.hub = sum(x.authority for x in getOutlinks(p)) # p.hub ← ∑i Outlinki(p).Authority
normalize(pages)
if convergence():
break
return pages