-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrainFann.c
99 lines (78 loc) · 2.82 KB
/
trainFann.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/*
* Mex interface for the FANN library
*/
#include "helperFann.h"
#include <stdio.h>
//--------------------------------------------------------------------------------------------------------
//Calling syntax: [ann] = trainFann(ann,samples,values,[desired error],[max epochs]);
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]){
//Declarations
const mxArray *xData;
int sRowLen, sColLen, vRowLen, vColLen;
float desiredError = 1e-5;
unsigned int maxEpochs = 5000;
if(nrhs == 3){
//do nothing
}else if(nrhs == 4){
//desired error passed
xData = prhs[3];
desiredError = (float) mxGetScalar(xData);
}else if(nrhs == 5){
//epochs passed
xData = prhs[4];
maxEpochs = (unsigned int) mxGetScalar(xData);
}else{
mexErrMsgTxt("trainFann usage: 'ann = trainFann(ann, samples, values, [desired error], [max epochs]''");
return;
}
//Get the samples
xData = prhs[1];
double* samples = mxGetPr(xData);
sRowLen = mxGetN(xData);
sColLen = mxGetM(xData);
//printf("%i by %i samples received\n",sRowLen,sColLen);
//Get the values
xData = prhs[2];
double* values = mxGetPr(xData);
vRowLen = mxGetN(xData);
vColLen = mxGetM(xData);
//printf("%i by %i values received\n",vRowLen,vColLen);
if(sColLen != vColLen){
mexErrMsgTxt("The number of samples and values must be equal");
return;
}
//Create the network
struct fann* ann = createFannFromMatlabStruct(prhs[0]);
float connectivity = getConnectivity(prhs[0]);
unsigned int numInputs = fann_get_num_input(ann);
unsigned int numOutputs = fann_get_num_output(ann);
//if training data was passed
if(sColLen > 0){
if(numInputs != sRowLen){
mexErrMsgTxt("The dimension of the passed samples does not match the input dimension of the network");
return;
}
if(numOutputs != vRowLen){
mexErrMsgTxt("The dimension of the passed values does not match the output dimension of the network");
return;
}
//Create the training data structure
struct fann_train_data *data = read_from_array(samples,values,sColLen,numInputs,numOutputs);
//int num = fann_length_train_data(data);
//int numIn = fann_num_input_train_data(data);
//int numOut = fann_num_output_train_data(data);
//printf("\nDataset: %i patterns, %i inputs, %i outputs\n",num,numIn,numOut);
//train the network
ann = trainNetwork(ann,data,desiredError,maxEpochs);
//destroy the training structure, its no longer needed
fann_destroy_train(data);
}
mxArray *layersCopy = mxDuplicateArray(getLayers(prhs[0]));
//Create the struct representing this ann in matlab
plhs[0] = createMatlabStruct(ann, layersCopy, connectivity);
//printf("The trained network is\n");
//fann_print_connections(ann);
//destroy the ann its no longer needed
fann_destroy(ann);
}
//--------------------------------------------------------------------------------------------------------